
Innovus User Guide

Product Version 22.10
September 2022

© 2022 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence)
contained in this document are attributed to Cadence with the appropriate symbol. For queries
regarding Cadence's trademarks, contact the corporate legal department at the address shown
above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Patents: Licensed under U.S. Patent Nos. 7,526,739; 8,032,857; 8,209,649; 8,266,560; 8,650,516

Restricted Print Permission: This publication is protected by copyright and any unauthorized use
of this publication may violate copyright, trademark, and other laws. Except as specified in this
permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from
Cadence. This statement grants you permission to print one (1) hard copy of this publication subject
to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;

2. The publication may not be modified in any way;

3. Any copy of the publication or portion thereof must include all original copyright, trademark,
and other proprietary notices and this permission statement; and

4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be
discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not
represent a commitment on the part of Cadence. The information contained herein is the proprietary
and confidential information of Cadence or its licensors, and is supplied subject to, and may be
used only by Cadence's customer in accordance with, a written agreement between Cadence and
its customer. Except as may be explicitly set forth in such agreement, Cadence does not make, and
expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of
such information will not infringe any third party rights, nor does Cadence assume any liability for
damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

22
22
22
24
25
25
26
27
27
27

29
29
30
31
44
50
51
51
52
52
53

54
56
59
60
62
63
69
70
70
71

Contents

About This Manual
Audience
How This Manual Is Organized
Conventions Used in This Manual
Related Documents

Innovus Product Documentation
Stylus Common UI Documentation

Additional Learning Resources
Online Trainings
Videos

1
Introduction and Setup Guide

Product and Licensing Information
Product Packages and Options
Licensing Information

Getting Started
Product and Installation Information
Setting Up the Run-Time Environment
Temporary File Locations
OpenAccess
Launching the Console
Tab Completing Command Names, Parameter Names, Global Variable Names, and Enum
Values
Command-Line Editing
Setting Preferences
Interrupting the Software
The Log Files and Controls
Accessing Documentation and Help

Customizing the User Interface
Overview
Creating a New Menu
Modifying an Existing Menu

September 2022 4 Product Version 22.10

 Innovus User Guide
Table of Contents

73
75
77
78
80
81
81
82
84
84
84
85
85

87
87
88
91
91
92
92

101
105
105
109
114
116
120
123
126
129
129
130
131
131
133
135

Adding a New Toolbar and Toolbutton
Querying and Configuring Interface Elements

Accelerating the Design Process By Using Multiple-CPU Processing
Overview
Running Distributed Processing
Running Multi-Threading
Running Superthreading
Memory and Run Time Control
Checking the Distributed Computing Environment
Setting and Changing the License Check-Out Order
Limiting the Multi-CPU License Search to Specific Products
Releasing Licenses Before the Session Ends
Controlling the Level of Usage Information in the Log File

2
Flows

Design Implementation Flow
Introduction
Recommended Timing Closure Flow
Software
Data Preparation and Validation
Flow Preparation
Pre-Placement Optimization
Floorplanning and Initial Placement
GigaPlace
Clock Tree Synthesis
PostCTS Optimization
Detailed Routing
PostRoute Optimization
Chip Finishing
Timing Sign Off
Final Timing Analysis and Optimization using Tempus/Quantus
Additional Resources

Foundation Flow
Hierarchical and Prototyping Flow

Hierarchical and Prototyping Flow Overview
Top-down and Bottom-up Hierarchical Methodologies

September 2022 5 Product Version 22.10

 Innovus User Guide
Table of Contents

137
140
143
157
158
161
163
184
185
185
187
190

194
194
195
197
197
198
201
224
225
225
226
226
226
226
227
227
228
231
231
232
232
236
238
239

Hierarchical Floorplan Considerations
Hierarchical Partitioning Flow and Capabilities
Chip Planning
Supporting Giga-Scale Designs in Planning stage
Top-level Timing Closure
Chip Assembly
Integrated Hierarchical Database

Machine Learning Flow
Overview
Innovus Machine Learning Options
The Machine Learning Flow
Correlation Test

3
Design Import and Export Capabilities

Data Preparation
Generating a Technology File
Preparing Physical Libraries
Unsupported LEF and DEF Syntax
Generating the I/O Assignment File
Preparing Timing Libraries
Encrypting Libraries
Preparing Timing Constraints
Preparing Capacitance Tables
Preparing Data for Delay Calculation
Preparing Data for Crosstalk Analysis
Checking Designs
Preparing Data in the Timing Closure Design Flow
Converting iPRT Format to LEF

Importing and Exporting Designs
Overview
Verifying Data before Importing a Design
Preparing the Design Netlist
The init_design Import Flow
Importing Designs using the GUI
Loading a Previously Saved Global Variables File
Handling Verilog Assigns

September 2022 6 Product Version 22.10

 Innovus User Guide
Table of Contents

239
253
254
259
265
286
287
290
291
292
294
296

298
298
299
302
302
303
305
311
316
317
320
331
337
347
348
349
350
360
362
362
367
385
385
386

Configuring the Setup for Multi-Mode Multi-Corner Analysis
Saving Designs
Loading and Saving Design Data
Converting an Innovus Database to GDSII Stream or OASIS Format
About the GDSII Stream or OASIS Map File
Updating Files During an Innovus Session
SKILL to TCL Mapping

Trimming the Design
Advantages of Working on a Trimmed Design
Use Model of Working on Trimmed Designs
How Design Objects are Handled in the Trimmed Design
Encrypting the Names of Instances and Nets

4
Design Planning Capabilities

Floorplanning the Design
Overview
Common Floorplanning Sequence
Viewing the Floorplan
Module Constraint Types
Grouping Instances
Creating and Editing Rows
Using Vertical Rows
Using Multiple-height Rows
Performing I/O Row Based Pad Placement
Editing Pins
Running Relative Floorplanning
Saving and Loading Floorplan Data
Snapping the Floorplan
Resizing the Floorplan
Checking the Floorplan
Finishing the Floorplan
FinFET Technology
Unified Floorplan Constraints

Using Structured Data Paths
Introduction to Structured Data Paths
Benefits of Using SDP

September 2022 7 Product Version 22.10

 Innovus User Guide
Table of Contents

388
390
391
407
409
411
412
415
416
416
417
427
427
429
431
431
432
441
444
446
447
449

460
460
461
462
462
463
463
470
471
477
479
481
481
482

General SDP 2G Flow
SDP Placement Flow
Implementing SDP Capability
Setting SDP Options
SDP Online Editing
Converting Failed SDPs
Checking SDP Placement

Bus Planning
Overview
Bus Planning Flow in Innovus
Creating a Bus Guide
Moving and Stretching a Bus Guide
Cutting, Splitting, and Merging Bus Guides
Customizing the Bus Guide Display
Saving and Restoring Bus Guide Information
Limitations of Bus Planning

Power Planning and Routing
Generating Special Power Vias Using Viagen
Generating Default Special Via
Inserting Vias with a Specific Cutclass
Inserting a Via from Specific Viarule
Trimming Redundant PG Stripes and Vias

5
Design Implementation Capabilities

Using the Mixed Placer
Mixed Placer Overview
Recommended Mixed Placement Flow
License Requirement
Using the Mixed Placer Flow
Supported Design Styles
Mixed Place Constraints
Mixed Place Constraints Support List

Low Power Design
Overview
Power Domain Shutdown and Scaling
Support for the Common Power Format (CPF)

September 2022 8 Product Version 22.10

 Innovus User Guide
Table of Contents

484
488
502
507
510
513
515
517
534
542
544
544
544
544
546
547
548
554
556
556
559
560
561
562
562
563
563
564
573
575
576
580
582
590
591
607
622

Support for IEEE1801
Flow Special Handling for Low Power
Multiple Supply Voltage Top-Down Hierarchical Flow
Example of Block-Level CPF Generated by Innovus
Example of Top-Level CPF Generated by Innovus
Multiple Supply Voltage Bottom-Up Hierarchical Flow
Leakage Power Optimization Techniques
Power Shutdown Techniques
Power Switch Prototyping

Placing the Design
Overview
Loading a Design
Preparing for Placement
Guiding Placement With Blockages
Adding Well-Tap Cells
Adding End-Cap Cells
Placing Spare Cells and Spare Modules
Adding Padding
Placing Standard Cells
Running Placement in Multi-CPU Mode
Checking Placement
Adding Filler Cells
Placing Gate Array Style Filler Cells for Post-Mask ECO
Adding Decoupling Capacitance
Adding Logical Tie-Off Cells
Saving Placement Data
Specifying and Placing JTAG and Other Cells Close to the I/Os
Optimizing and Reordering Scan Chains

Clock Tree Synthesis
Overview
Flow and Quick Start
Early Clock Flow
Configuration and Method
Flexible H-Tree and Multi-Tap Clock Flow
Concepts and Clock Tree Specification
Reporting
Retrieving Information using Get Commands

September 2022 9 Product Version 22.10

 Innovus User Guide
Table of Contents

623
626
631
637
651
654
657
657
658
659
659
659
673
676
681
687
687
689
693
695
696
696
699
699
699
700
701
702
702
704
705
705
707
708
708
708
709

Applying Library Cell Halos
Enabling Timing Connectivity-Based Skew Groups
CCOpt Clock Tree Debugger
Additional Topics
CCOpt Property System

Optimizing Timing
Overview
Before You Begin
Results
Interrupting Timing Optimization
Adding Logical Tie-Off Cells
Performing Optimization Before Clock Tree Synthesis
Performing PostCTS Optimization
Performing PostRoute Optimization
Performing Target-Based PostRoute Optimization
Optimizing SI Slew and SI Glitches in PostRoute Optimization
Optimizing Signal EM Violations at PostRoute Stage
Optimizing Power During optDesign
Using Useful Skew
Distributed Timing Analysis for Hold Fixing
Using Active Logic View for Chip-Level Interface Circuit Timing Closure
Optimizing Timing in On-Chip Variation Analysis Mode
Optimizing Timing Using a Rule File
Optimizing Timing When the Constraint File Includes the set_case_analysis Constraint
Using the Footprintless Flow
Using Cell Footprints
Viewing Added Buffers, Instances, and Nets
Using Signoff Timing Analysis to Optimize Timing and Power
Running MMMC SignOff ECO within Innovus
Performing Clock Skewing for Setup Timing Closure
Signoff Timing Analysis in Innovus using Timing Debug
Fixing SI Glitch, SI Slew, and SI Crosstalk Delta Delay Violations
Optimization in Path-Based Analysis (PBA) Mode
Total Power Optimization
Setup Timing Recovery After a Large Leakage or Total Power Optimization
Getting the Best Total Power Optimization Recipe
Path Group Support

September 2022 10 Product Version 22.10

 Innovus User Guide
Table of Contents

712
713
714
717
720
720
721
721
723
723
724
724
725
727
729
732
735
738
739
740
742
743
749
750
751
751
751
754
755
757
760
761
762
764
765
765
765

Top Down Block ECO flow using Tempus Signoff Timing
Metal ECO Flow
One Pass Logical Equivalence Check (LEC)

Using the NanoRoute Router
About NanoRoute Routing Technology
Routing Phases
NanoRoute Router in the Innovus Flow
Before You Begin
Interrupting Routing
Using the routeDesign Supercommand
Results
Use Models
Using NanoRoute Parameters
Accelerating Routing with Multi-Threading and Superthreading
Following a Basic Routing Strategy
Checking Congestion
Resolving Open Nets
Running Timing-Driven Routing
Routing Clocks
Preventing and Repairing Crosstalk Problems
Running ECO Routing
Evaluating Violations
Concurrent Routing and Multi-Cut Via Insertion
Postroute Via Optimization
Optimizing Vias in Selected Nets
Via Optimization Options
Performing Shielded Routing
Routing Wide Wires
Repairing Process Antenna Violations
Creating RC Model Data in TQuantus Model File
Support for High Frequency Routing
Using the Third-party ECO Flow
Troubleshooting

Optimizing Metal Density
Overview
Before You Begin
Adding Metal Fill in the Multiple-CPU Processing Mode

September 2022 11 Product Version 22.10

 Innovus User Guide
Table of Contents

766
766
770
771
773
774
774
775
777
779
780
781
782
784
786
787
788
788
790
794
797
800
801
807
816
838
844
845
883
889
889

892
892
893
899
899

After You Complete Adding Via and Metal Fills
Metal Fill Features
Specifying Metal Fill Parameters
Recommendations for Adding Timing-Aware Metal Fill
Adding Metal Fill Over Macros
Recommendations for Power Strapping Mode
Adding Via Fill
Recommendations for Metal/Via Fill Flow
Recommendations for In-design Sign-off Metal Fill Flow
Signoff Fill - Pegasus Hierarchical Metal Fill
HMF Commands and Parameters
Achieving Gradient Density with Preferred Density Setting
Specifying Metal Fill Spacing Table
Trimming Metal Fill
Trimming Metal Fill for Timing Closure
Verifying Metal Density
Adding Metal Fill Using the GUI
Adding Metal Fill with Iteration
Viewing Metal Density Map in the GUI

Flip Chip Methodologies
Overview
Flip Chip Flow in Innovus
Introduction to Flip Chip Methodology
Data Preparation
Flip Chip Floorplanning
Viewing Flip Chip Flightlines
Power Planning in Flip Chip Design
RDL Routing
Advanced Flip Chip Features
RDL Extraction
SI and Timing Analysis

6
Hierarchical Flow Capabilities

Partitioning the Design
Overview
Flow Methodologies

September 2022 12 Product Version 22.10

 Innovus User Guide
Table of Contents

908
918
922
955

1019
1023
1024
1034
1034
1035
1042
1070
1073
1074
1074
1076
1078
1082
1083
1087
1091
1091
1093
1095
1104
1108
1109
1112
1115
1118
1120
1122
1130
1136
1137
1137
1138

Specifying Partitions and Blackboxes
Working with Nested Partitions
Assigning Pins
Inserting Feedthroughs
Generating the Wire Crossing Report
Estimating the Routing Channel Width
Running the Partition Program
Saving Partitions
Working with OpenAccess Database
Pushing Down a Network into Block Partitions
Focused Methodologies

Timing Budgeting
Overview
Is My Design Ready for Budgeting?
Deriving Timing Budgets
Calculating Timing Budgets
Master Clone Budgeting
Constraints Adjustment
Analyzing Timing Budgets
Budgeting Libraries
Customizing Budget Generation
Fixing Budget
Modifying Budgets
Reading the Justify Budget Report
Reading the Justify Exception Report
Support for Distributed Processing in Budgeting
Constraints Support in Budgeting
Warning Report
Cycle-Based Timing Budgeting
Using setFixedBudget with setCycleBudgetRatio
Using Cycle-Based Timing Budgeting with Nested Partitions
Stage-Based Timing Budgeting
Validating Budgets

Using ART in Hierarchical Designs
Overview
Types of Active Logic Views
Creating an Active Logic View

September 2022 13 Product Version 22.10

 Innovus User Guide
Table of Contents

1139
1141
1142
1157
1157
1171
1176
1178
1184
1185
1186
1187
1187
1188
1203
1204
1206
1209
1210
1210
1211
1211
1214
1215
1216
1217
1222
1225
1225
1227

1228
1228
1229
1230
1230
1234

The flexILM PreCTS Closure Flow
Top-level Timing Closure Methodologies

Using Interface Logic Models (ILM)
Top-level Timing Closure Methodologies for iHDB Flow

Using Interface Logic Models (ILM)
Using Flexible Interface Logic Models (FlexILM)
Using ILM ECO Methodology
ILM Model Generation for ILM ECO Flow

Extracting Timing Models
Overview
ETM Generation
ETM Generation for MMMC Designs
Slew Propagation Modes in Model Extraction
Basic Elements of Timing Model Extraction
Secondary Load Dependent Networks
Characterization Point Selection
Constraint Generation during Model Extraction
Parallel Arcs in ETM
Latency Arcs Modelling
Latch-Based Model Extraction
Model Extraction in AOCV Mode
Stage Weight Modeling in ETM
PG Pin Modeling During Extraction
Extracted Timing Models with Noise (SI) Effect
Merging Timing Models
Limitations of ETM
Validation of Generated ETM
Auto-Validation of ETM
ETM Extremity Validation
Limitation/Implications of EV-ETM

7
Prototyping Flow Capabilities

Using Early Global Route for Congestion and Timing Analysis
Prerequisite for Running Early Global Route
Routing a Flat Design
Routing a Partitioned Design

September 2022 14 Product Version 22.10

 Innovus User Guide
Table of Contents

1239
1241
1243
1245
1246
1251
1252
1253
1256
1257
1258
1262
1266

1286
1286
1287
1287
1288
1290
1291
1292
1292
1297
1298
1306
1307
1307
1309
1313
1314
1317
1319
1320
1320
1321
1321

Using Early Global Router on MSV Designs
Analyzing Route Data
Congestion Distribution Report

What-If Timing Analysis
Performing What-If Timing Analysis

Fast Slack Timing Analysis
Performing Fast Slack Timing Analysis
Initializing Fast Slack Timing Analysis

Prototyping Methodologies
Possible Application of SAI/FlexModel Flows
Using SAI Methodology for Prototyping Without Netlist
Using SAI 2.0 Methodology for Early Prototyping and Planning
Using FlexModel for Prototyping

8
Analysis Capabilities

RC Extraction
Overview
Pre-Requisites for RC Extraction
Performing Extraction in Innovus
Types of RC Extraction
PreRoute RC Extraction
PostRoute RC Extraction
Setting the Scale Factors
Generating a Capacitance Table
Reading a Capacitance Table
Reading a Quantus Techfile
PreRoute Extraction Flow without Capacitance Table Data
Correlating Native Extraction With Sign-Off Extraction
Specifying the Scale Factors
Distributed Processing in Extraction
Using Advanced Virtual Metal Fill in Extraction

Base Delay Analysis
Overview
Base Delay Analysis Flow
Base Delay Analysis Inputs
Base Delay Reporting

September 2022 15 Product Version 22.10

 Innovus User Guide
Table of Contents

1325
1327
1331
1334
1335
1335
1336
1336
1338
1338
1340
1355
1362
1364
1365
1365
1366
1367
1367
1374
1382
1386
1389
1390
1392
1393
1393
1408
1408
1409
1412
1413
1422
1423
1426
1432
1434

Limitations of Traditional Delay Calculators
Base Delay Analysis with Equivalent Waveforms
EWM-Only vs Waveform Propagation

Timing Analysis
Overview
Timing Analysis Features
MMMC-On By Default Functionality
Before You Begin
Calculating Clock Latency
Path Exception Priorities
Timing Analysis Modes
Clock Path Pessimism Removal
Analyzing Timing Problems

Debugging Timing Results
Overview
Timing Debug Flow
Generating Timing Debug Report
Displaying Violation Report
Analyzing Timing Results
Creating Path Categories
Using Categories to Analyze Timing Results
Editing Table Columns
Viewing Schematics
Running Timing Debug with Interface Logic Models

Power and Rail Analysis
Overview
Early Rail Analysis
Signoff-Rail Analysis
TCL Command
Innovus and Voltus Menu Differences

Power Analysis and Reports
Static Power Analysis Overview
Vector-based Average Power Calculation
Propagation-based average power calculation
Static Power Analysis Flow
Static Power Reports
Static Power Analysis Plots

September 2022 16 Product Version 22.10

 Innovus User Guide
Table of Contents

1436
1438
1438
1439
1440
1440
1440
1449
1450
1452

1454
1454
1455
1456
1458
1459
1463
1465
1469
1472
1474
1477
1478
1495
1496
1497
1499
1500
1501
1501
1502
1505
1506
1506
1507
1507

Viewing and Debugging Static Plots
Interactive Queries of Power Data
Static Power Histograms and Pie-charts

Analyzing and Repairing Crosstalk
Overview
Inputs for SI Analysis
Setting Up Innovus for SI Analysis
Preventing Crosstalk Violations
Fixing Crosstalk Violations
Performing XILM-Based SI Analysis and Fixing

9
Verification Capabilities

Identifying and Viewing Violations
Overview
Interrupting Verification
Verifying Connectivity
Verifying Metal Density
Verifying DRC
Verifying Process Antennas
Verifying Well-Process-Antenna Violations
Verifying End Cap Violations
Verifying Maximum Floating Area Violations
Verifying AC Limit
Verifying Isolated Cuts
Verifying Tie Cells
Viewing Violations With the Violation Browser
Saving Violations
Clearing Violations

Verifying Well Pins and Bias Pins
High-Level Flow for Verifying Well Pins and Bias Pins
Adding Information to the Technology and Cell LEF Files
Specifying Connections of Pins to Wells
Validating Connections of Pins to Wells
Exporting the Verilog Netlist
Important Considerations for Defining Well-Layer Information

Integration with LPA and CCP

September 2022 17 Product Version 22.10

 Innovus User Guide
Table of Contents

1509
1509
1509
1510
1531
1531

1540
1540
1541
1542
1543
1547
1550
1554
1558
1562
1565
1589
1596
1597
1597
1597
1597
1600
1602
1604
1605
1606
1607
1608
1609
1610
1614
1614
1615
1616

Overview
Results
Before You Begin Running LPA
Running LPA from Innovus
Before You Begin Running CCP
Running CCP from Innovus

10
ECOs and Interactive Design Editing

ECO Flows
Overview
Pre-Mask ECO Changes from a New Verilog File
Pre-Mask ECO Changes from a New DEF File
Pre-Mask ECO Changes from an ECO File
Post-Mask ECO Changes from a New Verilog Netlist (Using Spare Cells Flow)
Post-Mask ECO Changes from a New Netlist (Using Gate Array Cells Flow)
Post-Mask ECO Changes from a New Verilog Netlist (Using Gate Array Filler Cells Flow)

ECO Directives
HECO Directives

Interactive ECO
Overview
Before You Begin
Results
Adding Buffers
Changing the Cell
Deleting Buffers
Displaying Buffer Trees
Running ECO Placement
Naming Conventions for Interactive ECO

Editing Wires
Overview
Before You Begin
Using Keyboard Shortcuts
Selecting Wires
Deleting Wires
Moving Wires
Copying Wires

September 2022 18 Product Version 22.10

 Innovus User Guide
Table of Contents

1618
1623
1625
1625
1626
1626
1627
1628
1628
1629
1629
1630
1631
1632
1632

1653
1653
1654
1655
1656
1657
1659
1662
1663
1663
1664
1665
1667
1667
1668
1668
1669
1670
1671
1675
1676

Adding Wires
Cutting Wires
Trimming Antennas on Selected Stripes
Changing Special Wire Width
Repairing Maximum Wire Width Violations
Duplicating Special Wires
Stretching Wires
Changing Wire Layers
Splitting and Merging Special Wires
Adding Vias
Changing Vias
Moving Vias
Reshaping Routes
Controlling Cell Blockage Visibility
Parallel Editing Capability

11
Design Methodology for 3D IC with Through Silicon Via

Overview
TSV/Bump/Back Side Metal Modeling in Innovus

Example
Defining Keep Out Area in Hard Macros

Check Bump Keep Out Area Violation
Design Import
Stacked IC Verilog Input
Stack Configuration Input
Power Connectivity Input
Interface Synchronization and Information Exchange between Dies
TSV and Bump Manipulation

TSV/Bump Generation
TSV/Bump Assignment

Feedthru Handling
TSV and Bump Routing

TSV to IO Pads/ Bumps/ PG Stripes Routing
Bump to Bump Routing
TSV/Bump to Instance Pin Routing

Cross Die Connectivity Verification

September 2022 19 Product Version 22.10

 Innovus User Guide
Table of Contents

1677

1679
1679
1680
1758
1758
1758
1758
1758
1759
1759
1759
1768
1778
1786
1797
1807
1816
1826
1835
1836
1837
1839
1841
1843
1844
1846
1847
1848
1849
1851
1852
1853
1854
1855
1856

Export Files

12
Syntax and Scripts

CCOpt Properties
Creating the ICT File

Format
Data
Comments
Case Sensitivity
Warnings and Errors
Invalid Layer Names
ICT File Commands
Sample ICT File

Supported CPF 1.0 Commands
CPF 1.0 Script Example
Supported CPF 1.0e Commands
CPF 1.0e Script Example
Supported CPF 1.1 Commands
CPF 1.1 Script Example
Supported SAI Commands

add_clock
add_macro
connect
constrain
convertLefToSAI
create_module
delete_macro
delete_module
insert_boundary_flops
report_sai_constraint
set_floorplan
set_ref_flop
set_ref_gate
set_ref_macro
set_ref_memory
set_sai_version

September 2022 20 Product Version 22.10

 Innovus User Guide
Table of Contents

1857
1858
1860
1861
1862
1865
1869
1873
1875
1879
1882
1898
1901
1904

Supported UFC Commands
exclude_rule
set_area_rule
set_dont_use_base_cell_rule
set_halo_rule
set_merge_and_reshape_spacing_rule
set_parallel_run_length_rule
set_reshape_available_sites_rule
set_reshape_object_rule
set_same_length_site_rule
set_spacing_rule
set_track_rule
set_white_area_extension_rule
set_width_rule

September 2022 21 Product Version 22.10

 Innovus User Guide
Table of Contents

About This Manual
The Cadence® Innovus™ Implementation System family of products provides an integrated
solution for an RTL-to-GDSII design flow. This manual describes how to install, configure, and use
Innovus™ Implementation System (Innovus) to implement digital integrated circuits.

See Innovus Stylus Common UI User Guide for the Innovus Stylus user interface.

Audience
This manual is written for experienced designers of digital integrated circuits. Such designers must
be familiar with design planning, placement and routing, block implementation, chip assembly, and
design verification. Designers must also have a solid understanding of UNIX and Tcl/Tk
programming.

How This Manual Is Organized
The Innovus User Guide provides an extensive description of the major design flows,
methodologies, and software capabilities.

The Flows section describes the key flows in the software and the recommended methodologies. It
is organized into the following chapters:

Design Implementation Flow

Hierarchical and Prototyping Flow

The rest of the guide describes the capabilities supported by Innovus. Related capabilities are
grouped together. Refer to the following Capabilities sections to see the detailed chapters under
them:

Introduction and Setup Guide

Design Import and Export Capabilities

Design Planning Capabilities

Design Implementation Capabilities

September 2022 22 Product Version 22.10

 Innovus User Guide
About This Manual

../UGcom/UGcomTOC.html

Hierarchical Flow Capabilities

Prototyping Flow Capabilities

Analysis Capabilities

Verification Capabilities

ECOs and Interactive Design Editing

Design Methodology for 3D IC with Through Silicon Via

Syntax and Scripts

September 2022 23 Product Version 22.10

 Innovus User Guide
About This Manual--Audience

Conventions Used in This Manual
This section describes the typographic and syntax conventions used in this manual.

text Indicates text that you must type exactly as shown. For example:

set_message -severity info

text Indicates information for which you must substitute a name or value.

In the following example, you must substitute the name of a specific file
for file_name:
compare_release –out_file file_name

text Indicates the following:

Text found in the graphical user interface (GUI), including form
names, button labels, and field names

Terms that are new to the manual, are the subject of discussion, or
need special emphasis

Titles of manuals

[] Indicates optional arguments.

In the following example, you can specify none, one, or both of the
bracketed arguments:

command [-arg1] [arg2 value]

[|] Indicates an optional choice from a mutually exclusive list.

In the following example, you can specify any of the arguments or none
of the arguments, but you cannot specify more than one:

command [arg1 | arg2 | arg3 | arg4]

{ | } Indicates a required choice from a mutually exclusive list.

In the following example, you must specify one, and only one, of the
arguments:

command {arg1 | arg2 | arg3}

September 2022 24 Product Version 22.10

 Innovus User Guide
About This Manual--Conventions Used in This Manual

Related Documents
For more information about the Innovus family of products, see the following documents. You can
access these and other Cadence documents using the Cadence Help documentation system.

Innovus Product Documentation
What's New in Innovus
Provides information about new and changed features in this release of the Innovus family of
products.

{[] []} Indicates a required choice of one or more items in a list.

In the following example, you must choose one argument from the list,
but you can choose more than one:

command {[arg1] [arg2] [arg3]}

{ } Indicates curly braces that must be entered with the command syntax.

In the following example, you must type the curly braces:

command arg1 {x y}

... Indicates that you can repeat the previous argument.

.

.

.

Indicates an omission in an example of computer output or input.

Command -
Subcommand

Indicates a command sequence, which shows the order in which you
choose commands and subcommands from the GUI menu.

In the following example, you choose Power from the menu, then Power
Planning from the submenu, and then Add Ring from the displayed list:

Power - Power Planning - Add Ring

This sequence opens the Add Rings form.

September 2022 25 Product Version 22.10

 Innovus User Guide
About This Manual--Related Documents

../innovusWN/innovusWNTOC.html

Innovus Text Command Reference
Describes the Innovus text commands, including syntax and examples.

Innovus Menu Reference
Provides information specific to the forms and commands available from the
Innovus graphical user interface.

Innovus Database Access Command Reference
Lists all of the Innovus database access commands and provides a brief description of syntax
and usage.

Innovus Foundation Flow Guide
Describes how to use the scripts that represent the recommended implementation flows for
digital timing closure with the Innovus software.

Mixed Signal Interoperability Guide
Describes the digital mixed-signal flow.

README file
Contains installation, compatibility, and other prerequisite information, including a list of
Cadence Change Requests (CCRs) that were resolved in this release. You can read this file
online at downloads.cadence.com.

Stylus Common UI Documentation
Innovus Stylus Common UI Migration Guide
Provides information on migrating from legacy to the Stylus Common UI version of the
Innovus software.

Innovus Stylus Common UI User Guide
Describes how to install and configure the Innovus Stylus software, and provides strategies
for implementing digital integrated circuits.

What's New in Innovus Stylus Common UI
Provides information about new and changed features in this release of the Innovus family of
products.

Innovus Stylus Common UI Text Reference Manual
Describes the Innovus Stylus Common UI text commands, including syntax and examples.

Innovus Stylus Common UI Menu Reference
Provides information specific to the forms and commands available from the Innovus Stylus

September 2022 26 Product Version 22.10

 Innovus User Guide
About This Manual--Related Documents

../innovusTCR/innovusTCRTOC.html
../innovusMR/innovusMRTOC.html
../innovusDBAref/innovusDBArefTOC.html
../flowSetup/flowSetupTOC.html
../dmsflow/dmsflowTOC.html
https://downloads.cadence.com
../MIGcom/MIGcomTOC.html
../UGcom/UGcomTOC.html
../WNcom/WNcomTOC.html
../TCRcom/TCRcomTOC.html
../MRcom/MRcomTOC.html

Common UI graphical user interface.

Stylus Common UI Database Object Information
Provides information about Stylus Common UI database objects.

Innovus Stylus Common UI Mixed Signal (MS) Interoperability Guide
Describes the digital mixed-signal flow using Innovus Stylus Common UI.

For a complete list of documents provided with this release, see the Cadence Help online
documentation system.

Additional Learning Resources

Online Trainings
Cadence offers several training courses on Innovus. For a visual guide of the courses available in
the Digital Design and Signoff space, click the links provided on our Learning Map page.

You can also write to training_enroll@cadence.com.

Videos
The Video Library on Cadence Online Support provides a comprehensive list of videos on various
Cadence products. Click the link below to view a list of available Innovus videos:

 Innovus Video Library

September 2022 27 Product Version 22.10

 Innovus User Guide
About This Manual--Additional Learning Resources

../DBcom/DBcomTOC.html
../DMScom/DMScomTOC.html
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/training/master-learning-maps.pdf#page=6
mailto:training_enroll@cadence.com
https://support.cadence.com/
https://support.cadence.com/apex/COSSearchLanding?url=https%253A%252F%252Fcossearch.cadence.com%252Fsearch%252F%253Fclient%253Dspecial_srch_frontend%2526getfields%253D*%2526proxystylesheet%253Dspecial_srch_frontend%2526output%253Dxml_no_dtd%2526sort%253Dmeta%253Ac_modifiedDate%253AD%253AED%2526oe%253DUTF-8%2526ie%253DUTF-8%2526num%253D20%2526filter%253D0%2526access%253Dp%2526menu%253DSearch%252Bin%252BVideo%252BLibrary%2526requiredfields%253D(-FileType%253ATOC).c_doctype%253AVideos%2526PartialFields%253D(-FileType%253ATOC).c_doctype%253AVideos%2526site%253DSupport%2526searchType%253DSupport%2526lr%253Dlang_en%2526uid%253D005d0000000q5HnAAI_201612156249228%2526ulang%253D%2526ip%253D192.190.239.71%2526entqr%253D3%2526entqrm%253D0%2526wc%253D200%2526wc_mc%253D1%2526ud%253D1%2526q%253D%252Binmeta%253Ac_product%25253DInnovus%2526dnavs%253Dinmeta%253Ac_product%25253DInnovus&pageName=VideoLibrary

September 2022 28 Product Version 22.10

 Innovus User Guide
About This Manual--Additional Learning Resources

1

Introduction and Setup Guide

Product and Licensing Information

Getting Started

Customizing the User Interface

Accelerating the Design Process By Using Multiple-CPU Processing

September 2022 29 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide

Product and Licensing Information
Product Packages and Options

Innovus Product Packaging

Key Features in INNOVUS (INVS100)

Innovus Basic Product Packaging

Key Features in INNOVUS BASIC (INVS95)

Virtuoso Digital Implementation Product Packaging

Key Features in VDI (3002)

Key Features in VDI-XL (3003)

First Encounter Product Packaging

Key Features in FE-L (FE80)

Key Features in FE-XL (FE100GPS)

Product Options

Licensing Information

Dynamic Checkout Matrix

Multi-CPU Matrix

Optional License Requirement for 3/5/7/10/20/32nm Nodes

September 2022 30 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Product Packages and Options
This release of the software includes the following product packages and options:

Innovus Product Packaging

Innovus Basic Product Packaging

Virtuoso Digital Implementation Product Packaging

First Encounter Product Packaging

Product Options

Innovus Product Packaging

To start the product, type innovus on the UNIX command line. For more information on using this
command, see "Starting the Software" section in the Getting Started chapter in the User Guide and

September 2022 31 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

the innovus command description in the Text Command Reference.

Key Features in INNOVUS (INVS100)

Full Netlist2GDSII Block Implementation (Placement, Optimization, Clock Design, Routing)

Massively parallel multi-threaded and distributed computing architecture

Supports all process nodes, including the latest 16nm, 14nm, and 10nm FinFET devices

New GigaPlace solver-based placement technology that is slack-driven and topology-/pin
access-/color-aware, enabling optimal pipeline placement, wirelength, utilization and PPA

Advanced timing and power-driven optimization that is multi-threaded and layer aware,
reducing dynamic and leakage power with optimal performance

Includes Low Power, Advanced Node and CCOpt capabilities

Unique concurrent clock and datapath optimization that includes automated hybrid H-tree
generation, enhancing cross-corner variability and driving maximum performance with
reduced power

Slack-driven routing with track-aware timing optimization that tackles signal integrity and
improves post-route QOR

Full-flow multi-objective technology enables concurrent electrical and physical optimization
for best PPA

Tight integration with signoff Tempus, Quantus and Voltus technologies to accurately model
parasitics, timing, signal, and power integrity issues and converge smoothly to signoff.

Mixed-signal design seamless Interoperability flow through integration to Virtuoso® and our
custom/analog tools

Hierarchical model creation (ILM, black box) and top-level assembly and signoff optimization

Complete flip-chip support, 45 degree routing (Area/peripheral IO support)

Global Timing Debug with links to Conformal Constraint Designer, Global Clock Debug,
Global Power Debug

September 2022 32 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

../innovusTCR/innovus.html

Innovus Basic Product Packaging

September 2022 33 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Key Features in INNOVUS BASIC (INVS95)

Full Netlist2GDSII Block Implementation (Placement, Optimization, Clock Design, Routing)

Supports parallel multi-threaded and distributed computing architecture with 4 CPUs per base

Supports process nodes 16 and above (does not support 10nm capabilities)

New GigaPlace solver-based placement technology that is slack-driven and topology-/pin
access-/color-aware, enabling optimal pipeline placement, wirelength, utilization and PPA

Advanced timing and power-driven optimization that is multi-threaded and layer aware,
reducing dynamic and leakage power with optimal performance

Allows Low Power, Advanced Node and CCOpt capabilities to be added through options

Unique concurrent clock and datapath optimization that includes automated hybrid H-tree
generation, enhancing cross-corner variability and driving maximum performance with
reduced power

Slack-driven routing with track-aware timing optimization that tackles signal integrity and
improves post-route QOR

Full-flow multi-objective technology enables concurrent electrical and physical optimization
for best PPA

Tight integration with signoff Tempus, Quantus and Voltus technologies to accurately model
parasitics, timing, signal, and power integrity issues and converge smoothly to signoff

Mixed-signal design seamless Interoperability flow through integration to Virtuoso® and our
custom/analog tools

Hierarchical model creation (ILM, black box) and top-level assembly and signoff optimization

Complete flip-chip support, 45 degree routing (Area/peripheral IO support)

Global Timing Debug with links to Conformal Constraint Designer, Global Clock Debug,
Global Power Debug

September 2022 34 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Virtuoso Digital Implementation Product Packaging

September 2022 35 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Key Features in VDI (3002)

Genus Synthesis and N2N (Netlist to Netlist) optimization

50K instances per license (Up to two VDI licenses can be stacked up to 100K instances)

Block-level floorplanning, wire editing, clock tree synthesis, routing, optimization and design
closure

50K instances per license (multiple VDI licenses can be stacked up to 100K instances)

Hierarchical model creation (ILM, black box)

Automatic floorplan synthesis, automatic macro placement, wire editing

SMART routing (Signal integrity, Manufacturing Aware, Routability, and Timing), metal fill,
verify DRC/LVS, ECOs

Multi-Vth optimization, clock gating for low power, early rail analysis using signoff power
analysis engine

GDSII, Oasis, and OpenAccess (OA) support and interoperability

Implementation timing and delay calculation, Global Timing Debug (GTD) with links to
Conformal Constraint Designer (CCD)

Signoff timing enabled with VDS-T or Tempus license

Key Features in VDI-XL (3003)

Capacity limited to 50K instances per license, stackable up to 100K instances with two
licenses

Capacity can be increased to 300K using the VDI-XL Capacity option

All VDI features

Top-level assembly and timing analysis

Multi-mode and multi-corner support

SI analysis and fixing

Signoff timing enabled with VDS-T or Tempus license

Low power synthesis capabilities from the Genus Low Power option

Low power implementation capability from the Innovus Low Power option

September 2022 36 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

First Encounter Product Packaging

Key Features in FE-L (FE80)

Silicon Virtual Prototyping (SVP), floorplanning

Hierarchical planning (floorplanning, budgeting, partition, pin assignment)

Hierarchical model creation (ILM, black box)

Wire editing

Power grid planning and routing, flat and hierarchical support, basic flip-chip support

Common Power Engine (power analysis) and Early Rail Analysis with port power views

Fast Mode Placement and Optimization

First Encounter extraction

Signoff timing and delay calculation, Global Timing Debug, Global Clock Debug

September 2022 37 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Key Features in FE-XL (FE100GPS)

All FE-L features included

Netlist-to-netlist optimization and advanced netlist restructuring

Automatic floorplan synthesis, automatic macro placement

Placement and optimization

Clock Tree Synthesis

Complete MMMC support including MMMC-ILM top-level assembly

Power domain floorplanning, power driven place, Multi-Vth opt, DVFS, PSO, and Global
Power Debug

Tri-lib support for multi-voltage, multi-temperature delay calc

Advanced flip-chip support with 45 degree RDL routing (Area/peripheral IO support)

Timing Aware ECO/spare-cell remapping

Product Options
The product options provide extendability and cost-effective access to additional advanced
technologies for specific design needs, such as low power design, mixed-signal design, design at
advanced nodes and signoff analysis. The following product options are available with this release
of the software:

3nm Option (INVS03)

Enables 3nm node features

Enables all higher node (5/7/10/14/16/20nm and above) features as well

5nm Option (INVS05)

Enables 5nm node features

Enables all higher node (7/10/14/16/20nm and above) features as well

September 2022 38 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

7nm Option (INVS07)

Enables 7nm node features

Placement support for new pin access rules

Router support for color dependent “wire cutting” or “metal trim rules”

New metal cutting rules for pin extension, signal, and PG routing

Compact base layer abutment rule support

New PG structure rules with specialized cuts

Layer Additions to DEF, GDS

Enables all higher node (10/14/16/20nm and above) features as well

10nm Option (INVS10)

Enables 10nm node features

Supports self-aligned double patterning (SADP)

Supports triple mask/color (TPT) on the first metal layer and cut layers

Enables all higher node (14/16/20nm and above) features as well

20nm Option (INVS20)

Enables 20/22/16/14nm node features

FinFET support

Double patterning-correct placement and optimization

NanoRoute double patterning-correct routing for all rules

Rules, colorization for standard cells/hard macros

Real-time colorization for uncolored metal shapes

Implementation-stage DPT conflict/DRC checks

Enables all higher node (28/32nm and above) features as well

September 2022 39 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Mixed Signal Option (INVS30)

Mixed Signal floorplanning and interoperability with Virtuoso, and ability to
automatically create detailed abstracts for routing

Enables accurate digital timing analysis using the full timing model

Full automation of digital block implementation using the VDI interface from
Virtuoso

Ability to interoperate P-cell submaster geometries in Innovus through P-cell
cache

Interoperability of Width Spacing Patterns (WSPs) between Innovus and Virtuoso

Hierarchical propagation of integrated routing constraints through pull and push

Support for creating and modifying Mixed Signal routing constraints

Support for launching Virtuoso Space-Based Router from Innovus

Integrated constraint verification using PVS

Ability to populate Virtuoso layout canvas with interoperability violation markers

High Frequency Route Option (INVS35)

Enables structured routing for high frequency nets

Parallel and coaxial shielding support

Differential pair routing

Routing with a length and resistance constraints

Bus routing

NDR with combination of constraints

September 2022 40 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Hierarchical Option (INVS40)

Enables all Hierarchical design capabilities

Partitioning and Budgeting features supported

FlexModel design exploration and prototyping

FlexILM for hierarchical implementation

Partition-in-partition capability

Early floorplanning and exploration using SoC Architecture Information (SAI)

psPM.model creation and usage

No instance limit restrictions

Early Hierarchical Floorplan Synthesis Option (INVS46)

Functional block modeling by SAI or quick RTL-generated models

Timing-driven module clustering and placement

Hierarchical area compaction and minimization

Shape generation considering embedded macros packing

Channel creation and various placement constraint support

Full-chip congestion-aware early feedthrough estimation

Floorplan geometry checking by UFC (or tCIC)

GigaPlace GXL Option (INVS48)

Allows concurrent standard cell and macro placement for quick floorplan
generation

Automatically creates initial floorplan from RTL as part of iSpatial flow

Legalizes and aligns macro cells during placement

Enables automated 3D-IC memory on logic flow

September 2022 41 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

DFM Option (INVS50)

Litho hotspot analysis and hotspot detection

Samsung Process Hotspot Repair (PHR) hotspot detection for 32nm and below

GF DRC and hotspot detection for 40nm and below

User-defined and/or foundry-defined pattern search

Limited model-based CMP analysis and hotspot detection

Used with LPA120 to apply local optimization and guideline-based fixing

Power Integrity Option (INVS55)

IR drop and EM aware placement to spread high power density hot spots to
reduce IR drop

IR drop fixing with local PG stripe/via addition in hotspots

Power grid optimization to free up routing resources for better PPA

Automotive Option (INVS56)

Enables the automatic implementation and checking of the safety mechanisms
defined in the Unified Safety Format (USF) file

Supports triple modular redundancy (TMR) insertion, placement separation, and
clock isolation

Supports dual-core lockstep (DCLS) placement and routing separation and clock
isolation

3D-IC Option (INVS60)

Stacked die design capabilities

Applies to implementation and signoff

Machine Learning Implementation Option (INVS65)

Enables Innovus Machine Learning (ML) implementation flow

At least one INVS65 license is required

September 2022 42 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Machine Learning Training Option (INVS66)

Enables the generation of custom ML-based training models and testing

At least one INVS66 license is required

Multiple training licenses can be purchased to run training in parallel

CPU Accelerator Option (INVS80)

Multi-CPU acceleration with 8 additional CPUs throughout the flow

Low Power Option (EDS10)

Power-intent driven low power methodology with CPF/IEEE1801 specification

End-to-end multi-supply voltage (MSV) support

Power domain-aware automatic floorplan synthesis and routing

Dynamic Voltage Frequency Scaling support

Power shut-off and power switch prototyping

State Retention Power Gating support

Always-on buffer and Dual-flop support

Hierarchical Macro Model support

Advanced Node Option (EDS30)

32/28nm support in routing and verify

Context-driven placement

Structured datapath support

DFM/DFY optimization for wires, cell, vias

Litho-aware routing with prevention and fixing

1-D routing support

Clock mesh and hybrid implementation

September 2022 43 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Licensing Information
The following terminology is useful in understanding licenses.

Base license - The license that is checked out when the software starts. Only a full-fledged

CCOpt Option (EDS210)

Simultaneous clock tree synthesis and physical optimization

True useful-skew and Multi-mode multi-corner timing including OCV derates

Worst chain design closure with time borrowing across the delay chain

FlexH driven Hybrid H-tree CTS

VDI-XL Block Capacity Option (3004)

License check-out behavior is as follows:

Default

Under 50k instances: vdixl checked out

Between 50 and 100k instances: Second vdixl checked out, as in previous
releases. If not found, new vdixl_capacity_opt checked out

Between 100 and 300k instances: One vdixl base plus one vdixl_capacity_opt
checked out

Greater than 300k instances: Errors out with appropriate message

Explicit (at startup)

-lic_startup vdixl –lic_startup_options vdixl_capacity

September 2022 44 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

product license can be used as a base license. You cannot use a product option license as a
base license to start the software.

Dynamic license - A license for a product option that is not checked out until a feature
provided by the product option is needed. You can check out more than one dynamic license
per base license.

Multi-CPU license - A license that enables additional CPUs for multithreading,
superthreading, or distributed processing. Multi-CPU licenses must be product licenses, and
can be checked out after the base license is checked out. You can check out more than one
multi-CPU license per base license.

License Mgr & Daemon - License Manager (lmgrd) and the Cadence license Daemon
(cdslmd) should be at 11.16.4.0 or higher. This can be checked with lmgrd -v and cdslmd -v.
If the daemon versions have not been updated, Innovus may fail to check out a license. In this
case, you will need to restart the license server using the latest cdslmd and lmgrd versions
included in the release tree.

For information on startup options, refer to innovus -help in the software or the innovus command
description in the Text Command Reference.

For information on the managing licenses for product options, see setLicenseCheck in the Text
Command Reference.

September 2022 45 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

../innovusTCR/innovus.html
../innovusTCR/setLicenseCheck.html

Dynamic Checkout Matrix
The Dynamic Licensing matrix shows the product options that each base product can check out:

The first column lists the base product names in abbreviated format.

The second column lists the base product number.

The top row lists the product option names in abbreviated format.

The second row lists the product option numbers.

License check-out order is from left to right.

A tick mark in a table cell means that the base product in that row can check out the product
option in that column.

A gray box means that the base product in that row is not allowed to check-out the product
option in that column

Note: The table has been split into two parts to improve readability.

Dynamic Licensing Matrix - Part 1

Dynamic Licensing Matrix - Part 2

September 2022 46 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Multi-CPU Matrix
The Multi-CPU matrix shows the number of CPUs that are enabled by each base/additional license.

The first column lists the base product names in abbreviated format.

The second column lists the base product number.

The third column shows the number of CPUs enabled by the base product in that row.

The top row lists the names of products that can be used as multi-CPU licenses in an
abbreviated format.

The second row lists the product numbers.

Column 4 and subsequent columns show the number of additional CPUs enabled by each
multi-CPU license.

Product option licenses cannot be used as base licenses or multi-CPU licenses.

If you request more CPUs than are available (based on the number of available licenses), the
software issues a warning and runs with the number of CPUs that are available.

Multi-CPU Acceleration Matrix

September 2022 47 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

Optional License Requirement for 3/5/7/10/20/32nm Nodes
The following Innovus product options provide licenses for advanced nodes:

INVS03

Needed if the minimum width specified on any routing layer is <= 12nm

Is a superset of 5, 7,10, 20, and 32nm node features

INVS05

Needed if the minimum width specified on any routing layer is <= 15nm

Is a superset of 7,10, 20, and 32nm node features

INVS07

Needed if the minimum width specified on any routing layer is <= 20nm

Is a superset of 10, 20, and 32nm node features

INVS10

Needed if the minimum width specified on any routing layer is <= 26nm

Is a superset of 20 and 32nm node features

INVS20

Needed if the minimum width specified on any routing layer is <= 40nm

Is a superset of 32nm node features

EDS30

Needed for the VDI products if the minimum width specified is <= 50nm

This is not needed for Innovus products which have the capability built-in

September 2022 48 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

For more information on these products and options, see Innovus Packaging and Licensing.

September 2022 49 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Product and Licensing Information

https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O3w000009FBLmEAO

Getting Started
Product and Installation Information

Setting Up the Run-Time Environment

Temporary File Locations

OpenAccess

Launching the Console

Tab Completing Command Names, Parameter Names, Global Variable Names, and Enum
Values

Command-Line Editing

Setting Preferences

Interrupting the Software

The Log Files and Controls

Accessing Documentation and Help

September 2022 50 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Product and Installation Information
For product, release, and installation information, see the README file at any of the following
locations:

downloads.cadence.com , where you can review the README before you download the
software

In the software installation, where it is also available when you are using or running the
software

For information about Innovus™ Implementation System licenses, see "About Innovus Licenses" in
the Product and Licensing Information chapter.

Setting Up the Run-Time Environment
If install_dir is the location of your Innovus installation, you should set up your run-time
environment like this:

Add the install_dir/bin directory to your path. The bin directory has links to all the public
executables in the install hierarchy.

If you want the legacy Innovus man pages to be available from the Unix man command, you
can add install_dir/share/innovus/man to your MANPATH envar.

If you want the Tcl man pages to be available from the Unix man command, you can add
install_dir/share/tcltools/man to your MANPATH envar.

For example, you might add this to your startup shell script:

set install_dir = /tools/innovus17.1/lnx86

set path = ($install_dir/bin $path)

setenv MANPATH $install_dir/share/innovus/man:$install_dir/share/tcltools/man:$MANPATH

Note: When Innovus launches, it automatically adds the legacy man pages and the Tcl man pages
to the beginning of the current MANPATH inside Innovus. Therefore, from within Innovus,
the man command will see both sets of man pages before any other man pages.

September 2022 51 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

https://downloads.cadence.com

Supported and Compatible Platforms
The README file lists the supported and compatible platforms for this release.

64-Bit Version of Innovus Applications
Innovus software only has a 64-bit mode. A 32-bit version of the software is no longer supported.

Temporary File Locations
Each Innovus session creates its own temporary directory to store temporary files at the beginning
of the run.

By default, tmp_dir is created in ./. If you do not have write permission in ./, the tool will use /tmp.

The name of the tmp_dir directory will look like:

innovus_temp_[pid]_[hostname]_[user]_xxxxxx

Where _xxxxxx is a string added to make the directory unique. For example:

innovus_temp_10233_farm254_bob_nfp9ez

The temporary directory is automatically removed on exit or if the run terminated with a catchable
signal (e.g. SIGSEGV).

OpenAccess
Innovus installs OpenAccess in the <Cadence_install_dir>/ directory. The software creates a
symbolic link from <Cadence_install_dir>/share/oa to the OpenAccess installation directory.

The various OpenAccess Unix utilities, such as def2oa, oa2def, verilog2oa, oaGetVersion, and so
on are all linked into the <Cadence_install_dir>/bin directory.

For more information on the version of OpenAccess supported with this release, see the
OpenAccess installation directory or use oaGetVersion.

September 2022 52 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Launching the Console
The window (shell tool, xterm, and so on) where you start the Innovus session is called the Innovus
console. You enter all Innovus text commands in the console window, and the software displays
messages there. You start legacy Innovus from Unix like this:

>innovus

When a session is active, Innovus shows the Tcl interpreter prompt like this:

innovus 1>

Innovus currently uses Tcl version 8.6. The current version of the Tcl interpreter is in the
$tcl_version variable.

If you use the console for other actions--for example, to use the vi editor--the session suspends until
you finish the action.

If you suspend the session by typing Control-z, the innovus> prompt is no longer displayed. To
return to the Innovus session, type fg, which brings the session to the foreground.

For a detailed description of the innovus command-line options and the initialization files loaded at
startup, see innovus in the Text Command Reference. The initialization files can be used to
configure the GUI, load utility Tcl files, or configure Innovus settings.

Alternatively, at the Unix prompt ,you can type:

>innovus -help

for a summary of the options or

>man innovus

for the full man page (available if MANPATH includes <install_dir>/share/innovus/man).

If you type the innovus command without parameters, the Innovus software starts in the GUI mode
and creates a log file and a command file. The system attempts to check out the license with the
most functionality, then the license with the next most functionality, and so on.

The innovus command starts one of the following products:

Innovus™ Implementation System

Virtuoso® Digital Implementation

Virtuoso® Digital Implementation XL

First Encounter® L

September 2022 53 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

../innovusTCR/innovus.html

First Encounter® XL

For an overview of the products and product licensing, see Product and Licensing Information.

Tab Completing Command Names, Parameter Names,
Global Variable Names, and Enum Values
You can use the Tab key within the software console to complete text command names.

After you type a partial text command name and press the Tab key, the software displays the exact
command name that completes or matches the text you typed (if the string is unique to one text
command) or all the commands that match the text you typed. For example, if you type run_ and
press the Tab key, the software displays the following commands:

innovus 3> run_<Tab>

run_abstract run_decap_eco run_replay run_vsr

If you type run_a<Tab>, the software completes the command name as follows:

innovus 3> run_abstract

Note: This function supports all Tcl commands, and the man first argument also supports it (e.g. man
run_a<Tab>).

Tab Completing Parameter Names
The Tab completion capability is also available for parameter names staring with "-" for Innovus
commands or for user commands registered with define_proc_arguments.

For example,

innovus 3> report_timing -check<Tab>
-check_clocks -check_type

If you type report_timing -check_t<Tab>, the software completes the parameter name as follows:

innovus 3> report_timing -check_type

To view all parameters of a command, type the command name followed by - and press Tab. For
example:

innovus 3> report_timing -<Tab>

September 2022 54 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

../innovusTCR/man.html
../innovusTCR/define_proc_arguments.html

-begin_end_pair -check_clocks -check_type

-clock_from -clock_to -collection

-debug -delay_limit -derate_summary

-early -edge_from -edge_to

-fall -format -from

-from_fall -from_rise -hpin

...

Tab Completing Global Variable Names
The Tab completion capability is also available for Tcl variable names. The set_db command
understands them for its first argument.

For example, if you type set_db lefDefOut<Tab> the software completes the name:

innovus 5> set_db lefDefOutVersion

Similarly, the man command also takes Tcl variable names as its first argument and allows Tab
completion.

Other commands use a leading $ to look for Tcl variable names, like this:

innovus 6> puts $delaycal_default<Tab>

delaycal_default_net_delay delaycal_default_net_load

delaycal_default_net_load_ignore_for_ilm

Tab Completing Enum Type Values for Parameters
Tab completion can be used to view or complete enum values.

For example, if you type verify_drc -check_only followed by a space and press the Tab key, the
software displays the following:

innovus 5> verify_drc -check_only <Tab>
all cell regular special

If you type verify_drc -check_only r<Tab>, the software completes the value as follows:

innovus 5> verify_drc -check_only regular

September 2022 55 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Tab Completing Unix file and directory names
If you type a <Tab> in any other context, the Tcl shell will look for Unix file and directory names that
match the string.

For example,

innovus 5> defIn test<Tab>
test.tcl test.def test.lef

 Command-Line Editing
Innovus provides a mulitline editing interface. This means, you can move the cursor to any position
and edit any character of a multiline command before execution. For example, in the following
command, if your cursor is at ‘.’ located at the beginning of the second line and you press the Left
arrow key, the cursor will go to ‘\’ at the end of the previous line.

innovus 5> dbGet top\
+ .name

Several hotkeys are provided for command-line editing, similar to emacs hotkeys. Using these
hotkeys, you can quickly move the cursor within and between the lines of a command before
execution. Hotkeys can be independent, control characters, or escape sequences. A control
character is typed by holding down the Control (Ctrl) key when typing the character. Escape
sequences are used by pressing the Escape (Esc) key before pressing the other key(s) in the
sequence.

Notes

You can type an editing command anywhere on the line, not just at the beginning. You can
press Enter anywhere on the line, not just at the end.

Editing commands are case sensitive.

Independent
keys

Result

Copying and pasting pointers in an active session may cause the tool to crash. To prevent
this situation, do not:

Copy pointers from one command’s result and paste to another command as input.

Copy a pointer from one session to another.

September 2022 56 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Home Goes to the start of the current line. If already there, goes to the start of the
previous line.

Down In a multiline command, moves to the next line.

End Goes to the end of the current line. If already there, goes to the end of the next
line.

Tab Completes the command.

Up In a multiline command, moves to the previous line.

Control
characters

Result

Ctrl+a Goes to the beginning of the line.

Ctrl+b Moves the cursor left by one character.

Ctrl+c Exits from editing mode, returning the console to normal Innovus mode.

Ctrl+d Deletes the next character if the cursor is in the middle of a line. Lists the files in
the current directory

beginning with the word just before the cursor, if the cursor is at the end of a
line.

Ctrl+e Goes to the end of the current line.

Ctrl+f Move the cursor one character to the right.

Ctrl+h Deletes one character before the cursor.

Ctrl+i Completes filename or displays all possible options in the given context.

Ctrl+j Submits the line; Same as Enter.

Ctrl+k Deletes characters from the cursor to the end of the line.

Ctrl+l Clears the screen and redisplays the last line.

Ctrl+m Same as Ctrl+j.

Ctrl+n Goes to the next line in history; Same as Ctrl+Down.

Ctrl+o Accepts the line, moves the history pointer to the next position.

September 2022 57 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Ctrl+p Goes to the previous line in history; Same as Ctrl+Up.

Ctrl+r Searches backword through history for text; must start line if text begins with an
Up arrow.

Ctrl+t Transposes characters, that is exchanges the character before the cursor with
the character at the cursor,

and then moves the cursor one character right.

Ctrl+u Deletes the line.

Ctrl+w Deletes the characters between the cursor and the marked position set by
Esc+space.

Ctrl+x Moves the cursor to the marked position set by Esc+space.

Ctrl+y Pastes yanked string before the cursor.

Ctrl+z Suspends the tool (System hotkey)

Ctrl+] Moves to the next character; Equals to the next input character.

Ctrl+Down Goes to the next line in history; Same as Ctrl+n.

Ctrl+Up Goes to the previous line in history; Same as Ctrl+p.

Ctrl+? Deletes the character before cursor.

Escape
sequences

Result

Esc+Ctrl+h Deletes the previous word.

Esc+Delete Deletes the previous word.

Esc+space Marks a position.

Esc+. Inserts the last argument of the last command before the cursor.

Esc+< Displays the first command in history.

Esc+> Displays the last command in history.

Esc+? Displays all possible file names.

September 2022 58 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Notes

The Ctrl+[and Ctrl+v key sequences are not currently supported. These will be
implemented in a subsequent release.

Setting Preferences
You can set preferences at the beginning of a new design import. You can assign special
characters for the design import parser for Verilog®, DEF, and PDEF files, and control the display of
the Floorplan and Physical view windows. You can also change the hierarchical delimiter character
in the netlist before importing the design, and change the DEF hierarchical default character and
the PDEF bus default delimiter before loading the file.

Note: If you change the default values for the DEF delimiter or PDEF bus delimiter, these changes
become the default delimiters for the DEF and PDEF writers.

You can also change the control defaults while working in the floorplan. These defaults include the

Esc+b Moves the cursor to the beginning of the word to the left.

Esc+d Deletes the word to the right of the cursor.

Esc+f Moves cursor to the beginning of the next word.

Esc+l Changes the characters from the cursor to the end of the word to lowercase.

Esc+u Change the characters from the cursor to the end of the word to uppercase.

Esc+y Pastes the yanked string before the cursor.

Esc+w Saves the strings between the marked position (set by Esc+space) and the
cursor position into the yank buffer.

Esc+p Starts a backward search in history.

Esc+Up Moves the cursor up to the previous line.

Esc+Down Moves the cursor down to the next line.

Esc+Left Same as Esc+b.

Esc+Right Same as Esc+f.

September 2022 59 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

snapping of the module guides, minimum module guides, minimum flight line connection width, and
route congestion.

For information on setting design preferences, see "Set Preference" in the View Menu chapter
of the Menu Reference.

Interrupting the Software
Like most Unix programs, an Innovus session is interrupted by the interrupt signal (SIGINT). You
can send this signal to the Innovus process by using the Ctrl+C key combination.

Interrupt Behavior When Tool Is Idle
If you press Ctrl+C while the tool is idle, the following message is printed:
INFO (INTERRUPT): One more Ctrl-C to exit Innovus ...

If you do not press Ctrl + C again, the software proceeds as normal.

If you press Ctrl + C again, the software stops and the session ends.

Interrupt Behavior in Interactive Mode
When you press Ctrl+C during an interactive Innovus process, an Interrupt menu is displayed. All
threads other than the main thread (that is, the thread that is handling the display of the menu) are
immediately suspended until the menu action is resolved. The Interrupt menu displayed is as
follows:
INFO (INTERRUPT): The interrupted design can be viewed in its current state but should

not be used to continue the flow.

1) Ignore and continue.

2) Quit.

3) Finish current command but interrupt Tcl script.

4) Interrupt current command and Tcl script and return to prompt.

5) Suspend current command and return to prompt. Use command 'resume' to continue.

Type a number 1-5 and press ENTER:

Options 1 and 2 are always available. Option 3 is available if the interrupt happens while a
command is running. Options 4 and 5 are displayed only if the command that is currently running is
registered to support interruption.

September 2022 60 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

../innovusMR/View_Menu.html

Note: If you press Ctrl+C while running a short-duration command, the Interrupt menu may not be
visible. This is because the command's runtime may be shorter than the time taken to press Ctrl+C.

The Interrupt menu makes debugging easier for long-running commands as it can help you trace
the underlying causes of problems. Some examples of long-running commands where the Interrupt
menu can be useful are:

routeDesign

globalDetailRoute

optDesign

verifyConnectivity

verifyPowerVia

verifyMetalDensity

verifyProcessAntenna

verifyACLimit

Interrupting the Execution of Batch Files
The behavior of the software when you use Ctrl + C differs if you interrupt the execution of a batch
script.

When you press Ctrl + C during the execution of a batch script, the command that is running when
you press Ctrl + C continues to completion. The software then stops and prompts you to confirm
whether to interrupt the script.

To confirm that you want to interrupt script, type Y.
In this case, you can save the design and proceed with the flow.

To continue running the script, type N.

Suspending the Execution of a Script
If you want to debug your script, you can use the suspend command to suspend your script and
return to the Innovus prompt. You can then type any command required for debugging. Whenever
you want to resume your script, just type resume at the Innovus prompt.

September 2022 61 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

../innovusTCR/suspend.html
../innovusTCR/resume.html

Stopping the Software
Use one of the following methods to stop the software:

In the main Innovus window, select File - Exit.

On the text command line, type the following command:
exit

The Log Files and Controls
Command logging plays a vital role in the debug process. By default, the tool creates a.log, .logv,
and .cmd file at startup for the following purposes:

.log - Captures all the output to the xterm.

.logv - Captures all the output to the xterm with detailed information that is not needed
normally but can be useful while debugging problems. Every output line has a time-stamp,
and complex commands, such as optDesign, will write out much more detailed internal
information to help debug issues.

.cmd - Captures just the Tcl commands that are executed, without any extra formatting, so that
they can be cut-and-pasted for reuse.

The names of the files default to the program name, extension, and an extra number if there is a file
name collision. For example, innovus.log2, innovus.logv2, and innovus.cmd2. These names can
be overridden, or the files suppressed with the Linux innovus command-line options -log, -no_cmd,
and -no_logv . Type man innovus at the Linux prompt for details.

You can access the log file through the integrated log file viewer. Use one of the following methods
to access the viewer:

Select Tools - Log Viewer on the main menu.
The Log File window is displayed. Select the log file to view. The software opens a separate
console window and displays the log file. For more information, see "Log Viewer" in the Tools
Menu chapter of the Menu Reference.

On the text command line, type the following command in the console window where the
software is running:
viewLog [-file logFileName]

September 2022 62 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

../innovusTCR/optDesign.html
../innovusTCR/innovus.html
../innovusMR/Tools_Menu.html
../innovusTCR/viewLog.html

This command opens the log file in a separate window. It opens the most recently created log
file unless you specify a different log file with the -file parameter.

Accessing Documentation and Help
You can access the Innovus documentation and help system by using the following methods:

Launching Cadence Help From the Command Prompt

Accessing Documentation and Help from the GUI

Using the man and help Commands on the Command Line

Launching Cadence Help From the Command Prompt
You can type the Unix command cdnshelp (which is inside the <install_dir>/bin directory) to
launch the Cadence Help tool. It includes access to all the documents in the installation, along with
Search functions.

After launching Cadence® Help, press F1 or choose Help - Contents to display the help page for
Cadence Help.

Accessing Documentation and Help from the GUI
The software provides the following two methods to access documentation and help from the GUI:

Select Help from the Main Menu

Select Help Button on a Form

Select Help from the Main Menu

Click Help on the main menu and then select Documentation Library to open the Cadence Help
window. The Cadence Help window provides access to all the documentation shipped with the
release.

September 2022 63 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Alternatively, you can select any of the options in the Help menu to open that document directly. For
example, select Text Command Reference to open the Table of Contents page of the text command
reference.

Select Help Button on a Form

Click the Help button in the bottom right corner of a form.

September 2022 64 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Clicking the Help button on a form opens the Menu Reference entry for that form in the Cadence
Help window.

Using the man and help Commands on the Command Line

Using the help Command to View the Command Syntax

To see syntax information for a command, type the following command in the software
console:
help command_name

For example, to see syntax information for the getAllLayers command, type the following
command:
help getAllLayers

The software displays the following text:
Usage: getAllLayers [-help] [<type>]
-help # Prints out the command usage
<type> # <Type of layer> (string, optional)

To see the entire list of Innovus commands and their syntax, type the following command in
the software console:
help

Using the man Command to View the Command Description

To see the complete set of information for an Innovus command, type the following command
in the software console:
man command_name

For example, to see the complete information for the getAllLayers command, type the
following command:
man getAllLayers

September 2022 65 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

../innovusMR/innovusMRTOC.html

The software displays the following text:

Name

 getAllLayers - Returns a complete list of all layers and floorplan object

 settings

Syntax

 getAllLayers [-help] [type]

Description

 Returns a complete list of all layers and floorplan object settings. If

 you specify type, the software returns all the layers of the specified

 type. This command can be used at any stage in the design flow.

Parameters

 -help Prints a brief description that includes type and default informa-

 tion for each getAllLayers parameter.

 For a detailed description of the command and all of its parame-

 ters, use the man command:

 man getAllLayers

 type Specifies the type of the layer. Innovus supports six types of lay-

 ers, which can be specified as follows:

 * object: If you specify type as object, the software returns all

 object layers, which represent db objects, such as instances,

 modules, pins, and so on.

 * display: If you specify type as display, the software returns

 display-only or view-only layers, including flightlines, rulers,

 and congestion.

 * multi: If you specify type as multi, the software returns multi-

 ple color layers, such as congestion, maps, and yield map.

 * metal: If you specify type as metal, the software returns

 wire/via layers, including metal/via, pin, and blockage.

September 2022 66 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

 * custom: If you specify type as custom, the software returns cus-

 tom layers, which are used to represent custom objects and GDSII

 data.

 * internal: If you specify type as internal, the software returns

 all internal layers.

Example

 Returns all metal layer names:

 getAllLayers metal

(END)

Using the help Command to View Message Summary

To see the message summary of a particular message ID, type the following command in the
software console:
help msg_id

For example, to see the message summary for the TAMODEL-302 message ID, type the
following command:
help TAMODEL-302

The software displays the following text:
Data signal arrives at clock pin '%s'. This data/clock conflict may be due to

missing or incomplete clock definitions. Trigger arcs and check arcs associated

with '%s' are being removed to prevent data signal from propagating to clock

paths.

Using the man Command to View Message Detail

Some error messages have extended help to provide more detailed information or solution.
To see the message detail of a particular message ID, type the following command at the
software console:

September 2022 67 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

To see the message detail of a particular message ID, type the following command at the
software console:
man msg_id

For example, to see the message summary for the TAMODEL-302 message ID, type the
following command:
man TAMODEL-302

The software displays the following text:

NAME

 TAMODEL-302 (warning)

SUMMARY

 Data signal arrives at clock pin '%s'. This data/clock conflict may be

 due to missing or incomplete clock definitions. Trigger arcs and check

 arcs associated with '%s' are being removed to prevent data signal from

 propagating to clock paths.

DESCRIPTION

 Usually data signals arrive at clock pins of sequential elements

 because clock source is not defined properly. Please trace clock

 sources backward from the clock pins of sequential elements to make

 sure that clock waveforms are associated with clock sources. This can

 be done by using create_clock or create_generated_clock command.

The detailed description is not available for all active message IDs.

September 2022 68 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Getting Started

Customizing the User Interface
Overview

Creating a New Menu

Modifying an Existing Menu

Adding a Menu Element to an Existing Menu

Replacing an Existing Menu Element

Adding a New Toolbar and Toolbutton

Supported Image Formats for Icons

Querying and Configuring Interface Elements

Iterating, Querying, and Configuring a Menu

Setting the Main Window's Size and Title

September 2022 69 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Customizing the User Interface

Overview
Innovus™ Implementation System provides a GUI development kit comprising five APIs that let you
customize the menus, toolbars, status bar, main window, and other interface elements. The kit
comprises the following five APIs:

uiAdd

uiDelete

uiSet

uiGet

uiFind

For more information on these commands, see the "GUI Commands" chapter of the Text Command
Reference.

Using the commands in the GUI development kit, you can:

Add a new menu to the main window menu bar. This includes adding a submenu, menu
commands, separators, checks and radio buttons. For more information, see Creating a New
Menu.

Modify an existing menu. For more information, see Modifying an Existing Menu.

Add a new toolbar and toolbutton. For more information, see Adding a New Toolbar and
Toolbutton.

Query and configure interface elements, including menus, status bar, and the main window.
For more information, see Querying and Configuring Interface Elements.

This chapter provides a suite of simple examples with annotated comments to familiarize you with
the development kit and shorten the learning curve.

Creating a New Menu
Using the uiAdd command, you can create a new menu and add it to the main window menu bar.
You can then add menu elements, such as command, submenu, separator, radio button and check
box, to the new menu using the same uiAdd command.

The following script adds a new menu, labeled ExampleMenu, to the main window menu bar:

September 2022 70 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Customizing the User Interface

../innovusTCR/uiAdd.html
../innovusTCR/uiDelete.html
../innovusTCR/uiSet.html
../innovusTCR/uiGet.html
../innovusTCR/uiFind.html

uiAdd expMenu -type menu -label ExampleMenu -in main

uiAdd expCommand -type command -label "ExampleCommand..." -command [list puts "Example

Command"] -in expMenu

uiAdd expSep -type separator -in expMenu

uiAdd expSubmenu -type submenu -label "ExampleSubmenu" -underline 1 -in expMenu

uiAdd expCommand2 -type command -label "ExampleCommand2..." -command [list

puts "Example Command"] -in expSubmenu

By default, the new ExampleMenu is appended to the end of the menu bar. By specifying the -
before option in Line 1 of the script, you can insert the new menu before a specified menu.

Lines 2 to 5 of the script add three types of elements to the menu, including command, separator and
submenu.

Similarly, you can add items of type radio and check using the uiAdd command.

For more information on the syntax and parameter of the uiAdd command, see the "GUI
Commands" chapter of the Text Command Reference.

Modifying an Existing Menu
You can also use the uiAdd command to add or replace menu elements in an existing menu.

September 2022 71 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Customizing the User Interface

Adding a Menu Element to an Existing Menu
The following script adds a new command to the existing Windows menu:

set wMenu [uiFind main -type menu -label "Windows"]

uiAdd newWindows -type command -label "New Windows Item" -command [list puts

"New Windows Item"] -in $wMenu

Line 1 of the script retrieves the name of the Windows menu and assigns it temporarily to the variable
wMenu. Line 2 adds a new command labeled New Windows Item to wMenu, which represents the
Windows menu.

Replacing an Existing Menu Element
The following script finds an existing menu element and replaces it with a new one:

set viewMenu [uiFind -type menu -label "View"]

set oldMenu [uiFind $viewMenu -type command -label "All Colors..."]

set before [uiGet $oldMenu -before]

uiDelete $oldMenu

set newMenu ${oldMenu}_new

uiAdd $newMenu -type command -label "New All Colors..." -before $before -command "puts

{New All Colors}" -in $viewMenu

September 2022 72 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Customizing the User Interface

In this script:

Line 1 finds the name of the View menu.

Line 2 finds the name of All Colors menu element in the View menu by its label.

Line 3 finds its neighbor using the uiGet command.

Line 4 deletes the All Colors menu element by using the uiDelete command.

Line 5 and 6 create a new menu element labeled New All Colors in the same location.

Adding a New Toolbar and Toolbutton
Using the uiAdd command, you can add a new toolbar and toolbuttons as shown in the following
script:

uiAdd expToolbar -type toolbar -in main -label "Example Toolbar" -newline true

September 2022 73 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Customizing the User Interface

set ICON_DIR "./"

uiAdd expToolbutton -type toolbutton -in expToolbar -label "Example Toolbutton" -

tooltip "Example Toolbutton" -icon [file join $ICON_DIR example.png]

Line 1 adds a new toolbar in the main window. As the -newline option is set to true, the toolbar is
added as a new row. Lines 2 and 3 add a new toolbutton, which uses a .png file as its icon.

Note: You must have the example.png file in the specified directory for the above code to work
correctly.

Supported Image Formats for Icons
The following image formats are supported for icon files:

Table 3-1

Format Description

BMP Windows Bitmap

GIF Graphic Interchange Format (optional)

JPG, JPEG Joint Photographic Experts Group

PNG Portable Networks Group

XBM X11 Bitmap

September 2022 74 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Customizing the User Interface

Querying and Configuring Interface Elements
Using the uiGet, uiFind, and uiSet commands in the GUI development kit, you can query and
configure various interface elements, including menus, status bar, and the main window.

Iterating, Querying, and Configuring a Menu
The following script finds and sets the File menu's state.

set menus [uiGet main -menu]

foreach menu $menus {

 if {[uiGet $menu -label] == "File"} {

 uiSet $menu -disabled true

 }

}

This script iterates all the menus in the main window to find the File menu. It disables the File menu
with the uiSet command.

The same thing can also be done using the script below:

set menu [uiFind main -type menu -label "File"]

uiSet $menu -disabled true

XPM X11 Pixmap

September 2022 75 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Customizing the User Interface

Setting the Main Window's Size and Title
You can use the uiSet command to set the size of the main window as desired. For instance, you
can set the main window size to 800x600 as follows:

uiSet main -geometry 800x600

In addition, uiSet can be used to set the main window's coordinates and title as in the following
script:

uiSet main -geometry 780x686+232+0

uiSet main -title "New Window Title"

Line 1 of the script sets main window size to 780x686 and its coordinates to 232,0. Line 2 sets the
main window's title to New Window Title.

September 2022 76 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Customizing the User Interface

Accelerating the Design Process By Using
Multiple-CPU Processing

Overview

Running Distributed Processing

Running Multi-Threading

Running Superthreading

Memory and Run Time Control

Checking the Distributed Computing Environment

Setting and Changing the License Check-Out Order

Limiting the Multi-CPU License Search to Specific Products

Releasing Licenses Before the Session Ends

Controlling the Level of Usage Information in the Log File

September 2022 77 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

Overview
You can accelerate portions of the design flow by using multiple-CPU processing. The Innovus
software has the following multiple-CPU modes:

Multi-threading
In this mode, a job is divided into several threads, and multiple processors in a single
machine process them concurrently.

Distributed processing
In this mode, a job is processed by two or more networked computers running concurrently.

Super-threading
In this mode, a job runs in the distributed processing mode but each distributed job can also
run threads, that is, one or more networked computers, each with multiple processors, work
concurrently to complete a job.

You configure multiple-CPU processing by using the commands described in the Multiple-CPU
Processing Commands chapter of the Innovus System Text Command Reference or the "Multiple
CPU Processing" form in the Tools Menu.

The following table shows the Innovus System features that support multiple-CPU processing:

Table: Innovus System features that support multiple-CPU processing

Feature Commands Details

Capacitance
table
generation

generateCapTbl See Generating a Capacitance Table.

Global
placement

place_design See Running Placement in Multi-CPU Mode in the
"Placing the Design" chapter.

Optimization optDesign {-preCTS

| -postCTS | -

postRoute}

See Distributed Timing Analysis for Hold Fixing in the
"Optimizing Timing" chapter.

Clock
concurrent
Optimization
(CCOPT)

ccopt_design See section Clock Tree Synthesis.

September 2022 78 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

../innovusTCR/Multiple-CPU_Processing_Commands.html
../innovusMR/Tools_Menu.html
../innovusTCR/generateCapTbl.html
../innovusTCR/place_design.html
../innovusTCR/optDesign.html
../innovusTCR/ccopt_design.html

Metal fill addMetalFill See Adding Metal Fill in the Multiple-CPU Processing
Mode in the "Optimizing Metal Density" chapter.

NanoRoute
router

globalRoute

detailRoute

routeDesign

ecoRoute

Superthreading is supported for detailed routing
only.

Superthreading options take precedence over
multi-threading options.

See Accelerating Routing with Multi-Threading and
Superthreadingin the "Using the NanoRoute Router"
chapter.

TQuantus,
IQuantus,
and
Standalone
extraction

setExtractRCMode

extractRC

See Distributed Processing in Extraction.

Signal
integrity
analysis

optDesign

timeDesign

See Multi-CPU Processing Settings in the "Analyzing
and Repairing Crosstalk" chapter.

For backward compatibility, distributed processing
options take precedence.

Superthreading options take precedence over
multi-threading options.

Verify
connectivity

verifyConnectivity See "Verifying Connectivity" in the "Identifying and
Viewing Violations" chapter.

Verify DRC verify_drc See Verifying DRC in the "Identifying and Viewing
Violations" chapter.

Verify metal
density

verifyMetalDensity See Verifying Metal Density in Multi-Thread Mode in
the "Identifying and Viewing Violations" chapter.

Delay
calculation

All commands that
require
timing data and
invoke a
full delay calculation.

See "Base Delay Analysis" chapter.

September 2022 79 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

../innovusTCR/addMetalFill.html
../innovusTCR/globalRoute.html
../innovusTCR/detailRoute.html
../innovusTCR/routeDesign.html
../innovusTCR/ecoRoute.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/extractRC.html
../innovusTCR/optDesign.html
../innovusTCR/timeDesign.html
../innovusTCR/verifyConnectivity.html
../innovusTCR/verify_drc.html
../innovusTCR/verifyMetalDensity.html

Running Distributed Processing
To run the software in distributed processing mode, the following two commands are required:

setDistributeHost

Use this command to specify a configuration file for distributed processing or create the
configuration for the remote shell, secure shell,RTDA, or load-sharing facility queue to use for
distributed processing. If you request more machines than are available, most applications
wait until all requested machines are available.
To display the current setting for setDistributeHost, use the getDistributeHost command.

setMultiCpuUsage

Use this command to specify the maximum number of computers to use for processing.
To display the current setting for setMultiCpuUsage, use the getMultiCpuUsage command.

Timing
Budgeting

deriveTimingBudget

saveTimingBudget

See the 'Support for Distributed Processing in
Budgeting' section in the Timing Budgeting chapter.

Power
Planning

addStripe See the 'Planning Power' section in the Low Power
Design chapter.

September 2022 80 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

../innovusTCR/deriveTimingBudget.html
../innovusTCR/saveTimingBudget.html
../innovusTCR/addStripe.html
../innovusTCR/setDistributeHost.html
../innovusTCR/getDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/getMultiCpuUsage.html

Running Multi-Threading
To run the software in multi-threading mode, the following command is required:

setMultiCpuUsage

Use this command to specify the number of threads to use. Upon completion, the log file generated
by each thread is appended to the main log file.

Note: The -localCpu parameter limits the number of threads running concurrently. Although the
software can create additional threaded jobs during run time, depending on the application in use,
only the number of threads specified with this parameter are run at a given time.

If you ask for more threads than are available, the software issues a warning and runs with the
maximum number of available threads.

For example, to run placement with four threads, specify the following commands:

setMultiCpuUsage -localCpu 4

place_design

Running Superthreading
To run the Innovus software in super threading mode, the following two commands are required:

setDistributeHost

setMultiCpuUsage

Because Superthreading is distributed processing plus multi-threading, you must specify the
number of hosts and number of threads per host. If you request more machines than are available,
most applications wait until all requested machines are available.

For example, to run the NanoRoute router in Superthreading mode, using a load-sharing facility
queue with two machines and three processors each, specify the following commands:

setDistributeHost -lsf -queue myQueue -resource "mem>4000 OS=RH4"

setMultiCpuUsage -remoteHost 2 -cpuPerRemoteHost 3

detailRoute

September 2022 81 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

../innovusTCR/setMultiCpuUsage.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html

Memory and Run Time Control
Use the report_resource command to report memory/run time in multiple-CPU processing. This
command allows you to determine how much memory is being used at any time and of what form
(physical vs. virtual), and to determine real time and CPU time. You can use the -
verbose parameter of the report_resource command to get detailed memory usage information.

When you run report_resource -verbose, the following detailed memory information is displayed:

Cpu(s) is the number of available processors in the machine.

Load average is the system load averages for the past 1 minute.

Mem and Swap are the current memory information of the machine.
The value of MEM in the LSF report corresponds to the value of RES in the report_resource
report, and the value of SWAP in the LSF report corresponds to the value of VIRT in the
report_resource report.

Data Resident Set (DRS)is the amount of physical memory devoted to other than executable
code. "current mem" shows this value (Total current DRS) .

Private Dirty (DRT) is the memory which must be written to disk before the corresponding
physical memory location can be used for some other virtual page. "peak res" shows this
value (Total peak DRT). This is the minimum number that you must reserve to run the
program.

Current (total cpu=0:00:12.9, real=0:05:48, peak res=275.8M, current mem=383.9M)

Cpu(s) 2, load average: 4.63

Mem: 16443800k total, 16378412k used, 65388k free, 105704k buffers

Swap: 16777208k total, 17460k used, 16759748k free, 12528212k cached

Memory Detailed Usage:

Data Resident

Set(DRS)

Private

Dirty(DRT)

Virtual

Size(VIRT)

Resident

Size(RES)

Total

current:

383.9M 275.8M 854.1M 358.9M

peak: 383.9M 275.8M 854.1M 358.9M

September 2022 82 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

../innovusTCR/report_resource.html

Virtual Size (VIRT) is the total amount of virtual memory used by the task. It includes the
swapped and non-swapped memory.

Resident Size (RES) is the non-swapped physical memory a task has used. The number of
"Total Peak RES" is the recommended physical memory to reserve.

The -verbose parameter also works in conjunction with the -peak and -start/-end parameters of
the report_resource command. When you run the local distributed host (setDistributeHost -
local) command, the memory information will include the memory consumed by master and clients.
Otherwise, the master and client details are not displayed.
The following command script specifies to display detailed memory information during
the optDesign -postRoute command:

report_resource -start opt_postroute

setDistributeHost -local

setMultiCpuUsage -localCpu 8

optDesign -postRoute

report_resource -end opt_postroute -verbose

Note: For -start/-end parameters, use -verbose with the -end parameter.

The following message is displayed:

The Task peak reports peak value of each item from all clients, therefore, it is possible that eight

Ending "opt_postroute" (total cpu=0:57:18, real=0:33:24, peak res=6493.1M, current

mem=5305.0M)

Memory Detailed Usage:

Data Resident

Set(DRS)

Private

Dirty(DRT)

Virtual

Size(VIRT)

Resident

Size(RES)

Total

current:

5305.0M 4012.1M 5919.2M 4255.4M

peak: 10712.8M 6493.1M 15090.3M 7312.5M

Master

current:

5305.0M 4012.1M 5919.2M 4255.4M

peak: 5565.5M 4055.1M 6064.5M 4298.4M

Task peak: 748.8M 368.7M 1219.4M 456.4M

September 2022 83 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

values come from eight different clients.

Checking the Distributed Computing Environment
To check if distributed processing can work in the software environment, use the
checkMultiCpuUsage command. This command checks if the specified CPUs can be accessed.

Setting and Changing the License Check-Out Order
To change the license check-out order, use the following command:

setMultiCpuUsage -licenseList {vdi edsl edsxl fexl}

Limiting the Multi-CPU License Search to Specific
Products
Each base license allows a set of specific licenses to be used for multi-CPU processing. This list
can be obtained from the getMultiCpuUsage command after invoking the software.

[DEV]innovus 1> getMultiCpuUsage

Total CPU(s) Enabled: 2

Current License(s): 1 Encounter_Digital_Impl_Sys_XL

keepLicense: true

licenseList: enccpu edsl edsxl

This license list can be customized from among the available choices by using
the setMultiCpuUsage -licenseList command.

September 2022 84 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

../innovusTCR/checkMultiCpuUsage.html
../innovusTCR/setMultiCpuUsage.html

Releasing Licenses Before the Session Ends
By default, the software holds multi-CPU licenses for the duration of the current session. To release
the multi-CPU licenses before the Innovus software session ends, complete one of the following
steps:

Before running any multi-CPU applications, specify the following command to keep the
acquired multiple CPU-licenses until the current session ends:
setMultiCpuUsage -keepLicense false

To display the current setting for setMultiCpuUsage -keepLicense, use
the getMultiCpuUsage -keepLicense command.

At the point when you want to release the multi-CPU licenses (for example, when global
placement finishes), specify the following command:
setMultiCpuUsage -releaseLicense

Controlling the Level of Usage Information in the Log
File
Use the following command to set the level of usage information in the log file:

setMultiCpuUsage -threadInfo {0 | 1 | 2}

By default, the software does not write starting and ending information for threads or timing details
to the log file, but you can change this behavior by specifying 1 or 2 for the -threadInfo parameter.

Specify 1 to write the final message to the log file.

Specify 2 to write additional starting/ending information for each thread.

September 2022 85 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

../innovusTCR/setMultiCpuUsage.html
../innovusTCR/getMultiCpuUsage.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/setMultiCpuUsage.html

September 2022 86 Product Version 22.10

 Innovus User Guide
Introduction and Setup Guide--Accelerating the Design Process By Using Multiple-CPU Processing

2

Flows

Design Implementation Flow

Foundation Flow

Hierarchical and Prototyping Flow

Machine Learning Flow

September 2022 87 Product Version 22.10

 Innovus User Guide
Flows

Design Implementation Flow
Introduction

Recommended Timing Closure Flow

Software

Data Preparation and Validation

Data Preparation

Timing Libraries

Physical Libraries

Verilog Netlist

Timing Constraints

Setting Preservation Constraints for Design Objects

Constraining Design Objects

Dealing with SDC and Library Constraints

Extraction

Signal Integrity (SI) Libraries

Multi-Mode Multi-Corner (MMMC) Setup for Timing

Data Validation

Loading the Design

Checking Timing Constraint Syntax

Extraction File Checks

Validating Timing Constraints

Checking Logically Equivalent Cells Available for Optimization

Checking for Missing or Inconsistent Library and Design Data

Flow Preparation

Setting the Design Mode

Extraction

September 2022 88 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

Timing Analysis

Pre-Placement Optimization

Floorplanning and Initial Placement

Ensuring Routability

Validating the Floorplan

GigaPlace

Placement Analysis

Guidelines for PreCTS Optimization

PreCTS optDesign Command Sequences

Checking and Debugging Timing Optimization Results

Path Group Optimization

Clock Tree Synthesis

Configuring CCOpt-CTS or CCOpt

Running CCOpt-CTS or CCOpt

Reporting after CCOpt-CTS or CCOpt

Visualization of Clock Trees after CCOpt-CTS or CCOpt

PostCTS Optimization

PostCTS SDC Constraints

PostCTS Setup Optimization Command Sequences

Hold Optimization

Detailed Routing

Routing Command Sequence

Improving Timing during Routing

PostRoute Extraction

Checking Timing

PostRoute Optimization

Data Preparation for SI Analysis

September 2022 89 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

PostRoute Optimization Command Sequences

Analysis and Debug of PostRoute Optimization Results

Optimizing With Third-Party SPEF

Chip Finishing

Timing Sign Off

Final Timing Analysis and Optimization using Tempus/Quantus

Additional Resources

September 2022 90 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

Introduction
Achieving timing closure on a design is the process of creating a design implementation that is free
from logical, physical, and design rule violations and meets or exceeds the timing specifications for
the design. For a production chip, all physical effects, such as metal fill and coupling, must be taken
into account before you can confirm that timing closure has been achieved.

Timing closure is not just about timing optimization. It is a complete flow that has to converge,
including placement, timing optimization, clock tree synthesis (CTS), routing, and SI fixing. Each
step has to reach the expected targets or else timing closure will likely not be achieved.

This chapter discusses each step in the implementation flow as it relates to timing closure in the
Innovus™ Digital Implementation System (Innovus), and provides the recommended settings
specific to high performance, congested, or high utilization designs.

Recommended Timing Closure Flow
Below is a diagram showing the steps in the flat implementation flow:

As you proceed through the flow, it is important to investigate and validate each step before
continuing. The goal is to have consistent and predictable timing results as you proceed through the
flow, so it is best to debug and resolve issues early in the flow when changes have the least impact

September 2022 91 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

on the physical design. It is also a good idea to run the full flow in parallel to identify any roadblocks
that may occur later on.

Software
The Innovus software is constantly being improved to provide better quality of results, reliability, and
ease of use. To ensure that you are running with the latest improvements, it is recommended that
you run the latest software version available from http://downloads.cadence.com.

Specific features added in the recent versions to improve design closure include the following:

GigaPlace: enables slack-driven placement and interleaving preCTS optimization for better
congestion and timing closure.

GigaOpt: a multi-threaded optimization engine used for preCTS, postCTS, and postRoute
optimization.

Clock Concurrent Optimization (CCOpt): combines CTS with datapath optimization to
achieve better timing, power, and area results.

Layer-Aware Optimization: controls both preRoute and postRoute layer-aware optimization,
and is able to improve timing by assigning a minimum layer constraint on some timing-critical
nets.

Data Preparation and Validation
This section outlines the data (libraries, constraints, netlist) required for implementing the design
closure flow and how to validate that data.

The goals of data preparation and validation include:

Confirming that Innovus has a complete and consistent set of design data (all library views
and versions must be consistent).

Ensuring that all tools in the flow interpret the timing constraints consistently.

Making sure logically equivalent cells are defined properly.

Correlating parasitics among the prototyping and sign-off extraction tools.

September 2022 92 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

https://downloads.cadence.com/

Data Preparation
This section lists the data required and data setup recommended for the design closure flow.

Timing Libraries

Every cell used in the design should be defined in the timing library.

If multiple delay corners are being analyzed, then each cell needs to be characterized
for each corner.

Innovus supports Non-linear Delay Models (NLDM), ECSM, and CCS. ECSM libraries
are recommended.

CCS/ECSM are less pessimistic than NLDM and, therefore, you can gain about
5% to 10% of the clock period on the slack by using these libraries.

Physical Libraries

You need to have an abstract defined for every cell in either a LEF file or in the OpenAccess
database.

Define Non-Default Rules (NDRs) for routing, as needed. These can be defined in the LEF
file or added within Innovus using the add_ndr command.

The technology should have an optimized set of vias to be used for routing. Confirm that you
have the latest technology LEF file from your library vendor or foundry. Alternatively, you can
generate it using the setGenerateViaMode command.

Verilog Netlist

The netlist should be unique.

Use the init_design_uniquify global variable to 1.

Timing Constraints

Timing constraints in the form of SDCs are required. You should have an SDC file for each
operational mode required for analysis.

September 2022 93 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/setGenerateViaMode.html

Setting Preservation Constraints for Design Objects

As part of data preparation, preservation constraints (such as the dont_touch* and dont_use*
attributes) can be set on various netlist objects, including topCell, hInst, net, instTerm, libCell,
vCell, hNet, and hPin. Preservation constraints are optimization constraints that are independent of
the timing constraints. So, the software does not depend on the SDCs to save, restore, or report
these optimization constraints. These constraints are kept as database attributes and can be set
and queried, as required.

The user and application-created constraints are stored with different attributes. So, the user
constraints are never overwritten. Hence, the original user intent can always be queried. For
example, ccopt_design will not change an inst .pStatus, but instead, it will set .pStatusCTS. When
there are multiple constraints for a specific attribute, there is an overall effective attribute to get the
net result (for example, an inst has pStatusEffective and dontTouchEffective attributes).

Constraining Design Objects

Like any other attribute, all the preservation attributes can be queried and set through the dbSet
command, as shown below:

dbSet [dbGet top.insts.name i1/i2 -p1].dontTouch true

The existing SDC commands can also be used as shown below:

set_dont_touch i1/i2 true

These commands do not require interactive constraint modes, because they are not associated with
constraint modes and are not stored as part of SDCs.

Use one of the following commands to see all the preservation attributes on the various objects:

dbSchema * dont*

dbSchema inst place_status*

See the Innovus Database Object Information document for information on Innovus objects and
attributes.

Dealing with SDC and Library Constraints

Some users have initial preservation constraints in their SDC and .lib files (such as
set_dont_touch and set_dont_use). So, when an SDC or .lib file is read for the first time during
design initialization using the read_mmmc and init_design commands, these commands set the
corresponding database preservation attributes.

September 2022 94 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/ccopt_design.html
../innovusTCR/dbSet.html
../dbSchema/dbSchemaTOC.html
../innovusTCR/init_design.html

However, later in the flow, these commands are ignored inside the SDC or .lib files (like during
restoreDesign, or if set_analysis_view causes new SDC or .lib files to be read). This prevents
the database attributes from being inadvertently reset back to their initial values after the user
changes them during the flow. To change the values, direct commands must be used outside the
SDC or .lib files (like by directly sourcing a file, or by typing them in).

Extraction

A Quantus technology file is used by Innovus to accurately extract parasitics and is required for
each RC corner in order to run extraction. A Quantus tech file is recommended for postroute
extraction for 65nm and below and for both preroute and postroute extraction for 32nm and below.
For older technologies, a capacitance table (captable) file can be used with the native extractor of
Innovus, but a Quantus tech file is required for TQuantus, IQuantus, and signoff Quantus.

Signal Integrity (SI) Libraries

Noise models are required for performing Signal Integrity (SI) analysis and optimization to fix delay
and glitch violations due to crosstalk. The noise models can be defined in the ECSM or CCS
libraries, or separately in the form of cdB libraries.

Multi-Mode Multi-Corner (MMMC) Setup for Timing

Multi-Mode Multi-Corner (MMMC) setup is required for optimizing and analyzing designs over
multiple operating conditions. It defines the view(s) to analyze for setup and hold. Each view is
defined by an operating mode and a delay corner. The operating mode is a set of SDC constraints
used for timing analysis in that mode. A delay corner is made up of a library set, operating
conditions, and RC corner.

See Configuring the Setup for Multi-Mode Multi-Corner Analysis in the Innovus User Guide for
information on defining the MMMC environment.

Data Validation
This section explains how to identify problems when importing the data and the checks you can run
to catch data issues early in the flow.

September 2022 95 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/restoreDesign.html
../innovusTCR/set_analysis_view.html
../innovusUG/Importing_and_Exporting_Designs.html#ImportingandExportingDesigns-ConfiguringtheSetupforMulti-ModeMulti-CornerAnalysis

Loading the Design

Once you have prepared the necessary data, it is ready to be imported. Use the Design Import form
or load a global variables file and run init_design to import the libraries, netlist, and timing
environment.

source design.globals

init_design

The init_design command executes a number of checks to validate the data and highlight
problems. It is important that you review the log file to understand and resolve the warnings and
error messages that it reports. The Log Viewer (Tools - Log Viewer) can make debugging the log
file easier by highlighting error and warning messages.

Look for the following when reviewing the init_design output:

init_design reports cells in the LEF file that are not defined in the timing libraries. Look for
the following and confirm if these cells need to be analyzed for timing:

**WARN: (ENCSYC-2): Timing is not defined for cell INVXL.

A blackbox is an instance declaration in the netlist for which no module or macro definition is
found. Unless your design is being done using a blackbox style of floorplanning, there should
be no blackboxes in the design. If there are blackboxes to be reported, be sure to load the
Verilog file that defines the logic module, and make sure you include the LEF file that defines
the macro being referenced in the netlist. The following is reported for blackbox (empty)
modules:

Found empty module (bbox).

Verify that the netlist is unique. The following is reported if it is not unique:

*** Netlist is NOT unique.

By default, Innovus utilizes a "footprintless" flow. This means that instead of relying on the
"footprint" definitions inside the timing libraries, it uses the "function" statement to determine
cells that are functionally equivalent and can be swapped during optimization. Additionally, it
identifies buffers, inverters, and delay cells. Inconsistencies in how the cell functions are
defined can lead to sub-optimal or erroneous optimization results. Review the log file to
confirm that the buffers, inverters, and delay cells are properly identified. Below is an example
of what you will see:

List of usable buffers: BUFX2 BUFX1 BUFX12 BUFX16 BUFX20 BUFX3 BUFX4 BUFX8 BUFXL

CLKBUFX2 CLKBUFX1 CLKBUFX12 CLKBUFX16 CLKBUFX20 CLKBUFX3 CLKBUFX4 CLKBUFX8

CLKBUFXL

September 2022 96 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/init_design.html

Total number of usable buffers: 18

List of unusable buffers:

Total number of unusable buffers: 0

List of usable inverters: CLKINVX2 CLKINVX1 CLKINVX12 CLKINVX16 CLKINVX20

CLKINVX3 CLKINVX4 CLKINVX8 CLKINVXL INVX1 INVX2 INVX12 INVX16 INVX20 INVX3 INVXL

INVX4 INVX8

Total number of usable inverters: 18

List of unusable inverters:

Total number of unusable inverters: 0

List of identified usable delay cells: DLY2X1 DLY1X1 DLY4X1 DLY3X1

Total number of identified usable delay cells: 4

List of identified unusable delay cells:

Total number of identified unusable delay cells: 0 Also, look for cells that do

not have a function defined for them: No function defined for cell 'HOLDX1'. The

cell will only be used for analysis.

Checking Timing Constraint Syntax

In addition to checking the libraries, init_design also checks the syntax of timing constraints. After
running init_design, check for the following problems:

Unsupported constraints

The Innovus software may not support the SDC constraints being used with the design,
or the constraints may not match the netlist. If the constraints are not supported, they
may need to be re-expressed (if possible) in constraints that the Innovus software does
support.

Ignored timing constraints

Syntax errors can cause the tools to ignore certain constraints resulting in the
misinterpretation of important timing considerations. Check for warnings or errors about
unaccepted SDC constraints. The following are possible causes for ignored constraints.

A design object is not found. If the constraints refer to pins, cells, or nets that are
not found in the netlist, then consider the following possible causes:

There could be a naming convention problem in the constraint file.

The netlist and constraints are out of sync, and a new set of constraints
and/or a new netlist needs to be obtained.

September 2022 97 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

An incorrect type of object is being passed to a constraint.

An option is being used incorrectly or an unknown option is used.

Illegal endpoints are used in assertions. Use the primary IOs (top-level ports, CK
or D register pin) to define the starting and endpoints
of set_false_path and set_multicycle_path. A combinatorial pin or a Q register
pin is not valid.

Other things to consider when defining constraints

set_ideal_network will prevent optimization on these nets

set_propagated_clock will limit preCTS optimization by not allowing resize on
sequential elements.

set_dont_use, set_dont_touch confirm that the proper settings are used

Have a constraint file for every mode required for signoff timing analysis

Understand and adjust clock uncertainty depending on the stage of the design flow
(preCTS / postCTS / postRoute / signoff).

Extraction File Checks

Make sure the Quantus techfile and LEF files match. The routing layer count, widths,
spacings, and pitches should be consistent between the files.

Use the correct temperature for resistance extraction.

If using a cap table, ensure that it is current and generated with a recent version of
the generateCapTbl command. This ensures that the capacitance table information is used
most effectively by extraction.

Validating Timing Constraints

As described in the previous section, the init_design command checks the syntax of specified
timing constraints. However, it is also important to ensure that the timing constraints are valid for the
design. A good first-pass method is to check the zero wire-load model timing.

To validate timing constraints, use the following command:
timeDesign -prePlace -outDir

September 2022 98 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/set_ideal_network.html
../innovusTCR/set_propagated_clock.html
../innovusTCR/set_dont_use.html
../innovusTCR/set_dont_touch.html
../innovusTCR/generateCapTbl.html
../innovusTCR/init_design.html
../innovusTCR/timeDesign.html

This command generates a quick timing report using zero wire load and provides a first indication,
before placement and routing, of how much effort will be required to close timing and whether the
timing constraints are valid for the design. During pre-placement timing analysis, high fanout nets
are temporarily set as ideal so that more immediate timing issues can be addressed first.

Additionally, you can run the command, check_timing -verbose, to report timing problems that the
Common Timing Engine (CTE) sees.

Checking Logically Equivalent Cells Available for Optimization

Run the checkFootPrint command to report any problems with footprint functions.

If there are problems reported, run the reportFootPrint-outfile file_name command to
create a footprints file. You can review this file to see which cells are identified as logically
equivalent.

You can edit the footprints file if needed and
run loadFootPrint-infile file_name command to load it.

If you made updates, run the checkFootPrint command again to verify that the file you loaded
does not have problems.

Checking for Missing or Inconsistent Library and Design Data
After importing the design you can run the check_design -all command to check for missing or
inconsistent library and design data. This will run a number of checks and output the results to a text
file. Review the file to understand any problems that are found.

Data Preparation and Validation for Low Power Designs

If your design is utilizing a low power flow using a Common Power Format (CPF) file, then also
check the following:

If you are defining the MMMC setup in the CPF, make sure the CPF points to the proper
libraries and constraints.
Note: Delay corner names are 'CPF-generated', so keep that in mind when attaching RC
corners and derating timing.

For low power designs utilizing power shutdown, ensure that an always-on buffer is available

September 2022 99 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/check_timing.html
../innovusTCR/checkFootPrint.html
../innovusTCR/reportFootPrint.html
../TCRcom/report_footprints.html
../innovusTCR/loadFootPrint.html
../innovusTCR/check_design.html

and usable. It is recommended to use check_design -type {power_intent} to validate the
current design setup.

Optimization of leakage and/or dynamic power is typically on top of the presented flows:

For designs where leakage is a high priority, the recommended flow is to enable leakage
optimization at the beginning of the flow and allow the tool to manage the optimization. This is
done by setting the following:
setOptMode -opt_power_effort {low | high} -opt_leakage_to_dynamic_ratio 1.0

Note: The power effort selected has an impact of the power-driven timing optimization, the
calls to leakage reclaim, and the steps within preCTS optimization.

For designs where dynamic power is a high priority, dynamic power optimization can be
enabled at the beginning of the flow by using the following command:
setOptMode -opt_power_effort {low | high} -opt_leakage_to_dynamic_ratio 0.0

 Note: This method typically works best with a VCD or TCF to apply the activity rates properly.

For more information on leakage, dynamic, and combined power optimization, see "Optimizing
Power During optDesign" section of the Optimizing Timing chapter.

Several steps need to be performed to ensure that power optimization gives the best results and
these should always be undertaken before starting all leakage and dynamic power optimization.

It is important to specify the correct leakage and dynamic view for optimization. The optimal view for
leakage is the one with higher temperature corners (85/125 degrees) and typical libraries. The
optimal view for dynamic power is dependent both on the design and on your inputs. For specifying
the power view, consider the following:

If the leakage and dynamic view is to be the same, then run the following command:
set_power_analysis_mode –leakage_power_view power_view_name –

dynamic_power_view power_view_name

You can still use the –analysis_view power_view_name parameter but this parameter will be
made obsolete in a future release, so it is not recommended.

If the leakage and dynamic view is to be different, then run the following command:
set_power_analysis_mode –leakage_power_view leakage_view_name -

dynamic_power_view dynamic_view_name

If the view is not an active view, it will be automatically handled by the optimization code. However,
the report_power command does not support non-active views. So, for this command, you will need

September 2022 100 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../TCRcom/check_design.html
../innovusTCR/setOptMode.html
../innovusTCR/set_power_analysis_mode.html
../innovusTCR/report_power.html

to add the view to the active views using the set_analysis_view command and then call
the report_power –view power_view_name command. Also, in terms of leakage, if the view is not
active then the optimization will be forced to set the -state_dependent_leakage parameter of
the set_power_analysis_mode command to false.

Note: If you want to have state-dependent leakage (-state_dependent_leakage true) optimization,
then the view needs to be made part of the active view list. Also, it is important to ensure that the
specified views used are always well defined from both a power and timing point of view to get the
optimal QOR.

For dynamic power optimization, it is also recommended that you provide an activity file. This can
be done by using the following command:

read_activity_file –format {VCD | TCF | SAIF | FSDB | PHY | SHM} file_name

In the absence of a switching file, it is recommended you use the following command:

set_default_switching_activity -input_activity 0.2 -seq_activity 0.2

This will ensure both predictability and consistency throughout the flow.

Flow Preparation
Setting the design mode and understanding how extraction and timing analysis are used during the
flow are important for achieving timing closure.

September 2022 101 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/set_analysis_view.html
../innovusTCR/read_activity_file.html
../innovusTCR/set_default_switching_activity.html

Setting the Design Mode
The setDesignMode command specifies the process technology value and the flow effort level.

The setDesignMode -process command specifies the process technology you are designing.
Use this command to change the process technology dependent default settings globally for
each application instead of setting several mode options. When you specify a process
technology value using the setDesignMode command, Innovus automatically assigns coupling
capacitance threshold values to the RC extraction filters. These values determine whether the
coupling capacitances of the nets in a design will be lumped to the ground or not.

Note: In post route extraction mode, the grounding of coupling capacitances also depends on
the capacitance filtering mode set by the -capFilterMode parameter of
the setExtractRCMode command.

The setDesignMode -flowEffort command is used to force every super command, such
as place_opt_design, optDesign, routeDesign and so on to use their extreme-effort settings
and the additional non-default options. In this mode, the target is to achieve the best possible
timing/yield at the expense of some increase in the CPU runtime.

express: Configures the flow to give the best turnaround time with good WNS/area
correlation as compared to the standard flow. The flow is appropriate for prototyping.

standard: Configures the flow to give the best overall combination of quality of results
and full-flow turnaround time. This flow is appropriate for the majority of designs.

extreme: Configures the flow to give the best quality of results at some cost in turnaround
time. This flow is appropriate for designs where timing closure is challenging.

The following example sets the process to 45nm and effort level to extreme:
setDesignMode -process 45 -flowEffort extreme

The extreme flow is part of a limited-access feature in this release. It is enabled by a variable
specified using the setLimitedAccessFeature command. To use this feature, contact your
Cadence representative to explain your usage requirements, and make sure this feature
meets your needs before deploying it widely.

September 2022 102 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/setDesignMode.html
../innovusTCR/place_opt_design.html
../innovusTCR/optDesign.html
../innovusTCR/routeDesign.html
../innovusTCR/setLimitedAccessFeature.html

Extraction
Resistance and Capacitance (RC) extraction using the extractRC command is run frequently in the
flow each time timing analysis is performed. The setExtractRCMode options, -engine and -
effortLevel, control which extractor is used by extractRC. The lower the effort level, the faster
the extraction runs at the expense of being less accurate. Fast extraction is used early in the flow to
provide a quick turnaround time so you can experiment with different floorplans and solutions. As
you progress through the flow, the effort level is increased, which improves the accuracy of the
extraction at the expense of the runtime.

The setExtractRCMode -engine option indicates whether to use the preRoute or postRoute
extraction engine.

Use the -engine preRoute option when the design has not yet been detail routed by
NanoRoute. When the -engine preRoute option is set, RC extraction is done by the fast
density measurements of the surrounding wires; coupling is not reported.

Use the -engine postRoute option after the design has been detail routed by NanoRoute. RC
extraction is done by the detailed measurement of the distance to the surrounding wires;
coupling is reported. The -effortLevel parameter further specifies which postRoute engine
is used for balancing the performance versus accuracy needs.

The setExtractRCMode -effortLevel value controls which extractor is used when the postRoute
engine is used.

low - Invokes the native detailed extraction engine.

medium- Invokes the TQuantus extraction mode. TQuantus performance and accuracy falls
between native detailed extraction and IQuantus engine. This engine supports distributed
processing. TQuantus is the default extraction mode for process nodes 65nm and below
whenever Quantus techfiles are present. Note: This setting does not require a Quantus
license.

high- Invokes the Integrated Quantus (IQuantus) extraction engine. IQuantus provides
superior accuracy compared to TQuantus. IQuantus is recommended for extraction after ECO.
In addition, IQuantus supports distributed processing. Note: IQuantus requires a Quantus
license.

signoff - Invokes the Standalone Quantus extraction engine. This engine choice provides the
highest accuracy. The engine has several run modes, thereby, providing maximum
flexibility. Note: Quantus obviously requires a Quantus license.

The default value for the -effortLevel parameter depends on the value of setDesignMode settings.

September 2022 103 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

 The table below shows how extraction is run based on the process and whether a Quantus tech file
and/or captable is provided.

Timing Analysis

Timing analysis is typically run after each step in the timing closure flow using
the timeDesign command. If timing violations exist, we recommend that you use the Global Timing
Debug (GTD) GUI to analyze and debug the results. The Global Timing Debug (GTD) is an
invaluable tool that provides forms and graphs to help you view timing problems.

Note: To learn more about GTD, see the Global Timing Debug Rapid Adoption Kit (RAK). This
RAK provides a lab and includes instructions to demonstrate the features of GTD.

September 2022 104 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/timeDesign.html

Pre-Placement Optimization
Data preparation is complete and you are now ready to implement your design. It is important to
note that using options from a previous design might not necessarily apply to your current design.
Therefore, we recommend that you start with the default flow (or Foundation Flow), then apply
additional options based on your design requirements. Additionally, as you proceed through the
flow you should investigate each flow step and validate it before moving to the next one.

The goals of pre-placement optimization are to optimize the netlist to:

Improve the logic structure

Reduce congestion

Reduce area

Improve timing

In some situations, the input netlist (typically from a poor RTL synthesis) is not a good candidate for
placement because it might contain buffer trees or logic that is poorly structured for timing closure.
In most cases, high-fanout nets should be buffered after placement. It is more reliable to allow buffer
insertion algorithms to build and place buffer trees rather than to rely on the placer to put previously
inserted trees at optimal locations. Additionally, having buffer trees in the initial netlist can adversely
affect the initial placement.

Because of these effects, it can be advantageous to run pre-placement optimization or simple buffer
and double-inverter removal (area reclamation) prior to initial placement. This can be accomplished
by using the deleteBufferTree command.

Note: By default, the deleteBufferTree command is run by place_opt_design.

Floorplanning and Initial Placement
The goals of floorplanning and initial placement include the following:

Creating prototypes using multiple iterations with a focus on routability

Moving toward timing-driven placement as routability stabilizes

Adding power routing once timing and congestion converge

The initial floorplan and placement have a primary impact on the performance of a design.
Innovus allows you to use prototypes to analyze various placements and floorplans before you
begin the optimization process. Prototyping allows you to create a floorplan that can be
implemented with high confidence before you spend time and effort on optimization and routing.

September 2022 105 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/deleteBufferTree.html

Prototyping involves multiple placement iterations that converge on a solution that meets a design's
requirements for routability, timing (including clocks), power, and signal integrity. The initial
floorplan drives the constraints leveraged by placement and partitioning to meet these objectives.
The following steps outline a basic procedure for obtaining an initial placement.

Run the initial placement without any regions and guides. It is best to get a baseline
placement without constraining the placer.

Early on, use the setPlaceMode -place_design_floorplan_mode true command to run placement
in prototyping mode for a faster turnaround.

Prototype placement does not produce legal placement so make sure you run placement with
the setPlaceMode -place_design_floorplan_mode false command as you converge on a
floorplan.

Use the Prototyping Foundation Flow if your design contains a large number of hard macros.
The Prototyping Foundation Flow utilizes Flex Models that can improve the run time by 20X,
while still providing accurate area, timing and congestion analysis. The Prototyping
Foundation Flow RAK provides a lab, instructions, and other information to demonstrate its
features.

Analyze the placement for timing and routability issues, and make the necessary adjustments.

Employ module guides, placement blockages, and other techniques to refine the floorplan.
The placement engine automatically detects low-utilized designs and turns on the options
required to achieve an optimal placement.

Ensuring Routability
Initial prototype iterations should focus on routability as the key to achieving predictable timing
closure. You should attempt to resolve congestion before attempting timing closure. Designs that
are congested are more likely to have timing jumps during timing and Signal Integrity (SI) closure.
Tools such as module guides, block placement, block halos, obstructions, and partial placement
blockages (density screens) are used to control the efficient routing of the design.

Use the following guidelines during floorplanning and placement to avoid congestion.

Choose an appropriate floorplan style.

If possible, review a data flow diagram or a high-level design description from the chip
designer to determine an appropriate floorplan style.

Assess different floorplan styles such as hard macro placement in periphery, island, or
doughnut (periphery and island). Keep the macro depth at 1 to 2 for best CTS,

September 2022 106 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

https://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=wp;q=ProductInformation/Digital_IC_Design/ApplicationPackages/ICD_RAK_Home.htm

optimization, and Design-for-test (DFT) results. If possible, consider different aspect
ratios to accommodate a shallower macro depth. Consider using the Prototyping
Foundation Flow and relative floorplanning constraints to simplify floorplan iterations.

Preplace I/Os and macros.

Review hard macro connectivity and placement based on the minimum distance from a
hard macro to its target connectivity.

Preplace high-speed and analog cores based on their special requirements for noise
isolation and power domains.

Review I/O placement to identify I/O anchors and the associated logic.

Verify that logic blocks and hard macros that communicate with I/O buffers are properly
placed and have optimal orientation for routability. Push down into module guides to
further assess the quality of the floorplan and resulting placement.

Allow enough space between preplaced blocks.

Allow space between I/Os and peripheral macros for critical logic such as JTAG, PCI, or
Power management logic. Use the specifyJtag and placeJtag commands prior to
placing blocks.

Use block halos, placement obstructions or fences around blocks prior to optimization or
Clock Tree Synthesis (CTS). Placement generally does not do a good job of placing
cells between macros. Reduce or remove halos and obstructions after placement to
make sufficient space available around macros for optimization, CTS, DRV, or SI fixing
to add buffers. Placement blockages of type Soft or Partial are useful tools to control cell
placements between blocks.

Place other cells such as endcaps, welltaps, and decaps prior to placement, as
required.

Use module guides carefully.

Place module guides, regions, or fences only when greater control is required. Be
careful not to place too many module constraints early in the floorplanning process
because it is time consuming and greatly constrains the placement. Module guides
should be used for floorplan refinement or hierarchical partitioning.

Review the placement of module guides related to the datapath and control logic
relative to the associated hard macros. Datapath logic can be a source of congestion
problems due to poor aspect ratios, high fanout, and large amounts of shifting. Consider

September 2022 107 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

tuning the locations of these module guides and lowering the density to reduce
congestion.

Review the placement of module guides related to memories. These modules can
typically have higher densities due to the inclusion of the memories.

Reorder scan chains

When evaluating congestion, make sure that scan chains are reordered to eliminate
"false" hot spots in the design. Failing to reorder the scan chain can cause a routable
floorplan to appear unroutable. By default, place_design performs scan tracing and scan
reordering based on global or user-specified scan reorder settings and specified or
imported scan chain information. If scan chain information is missing, no reordering is
performed.

Validating the Floorplan
A congested or unroutable design at this stage will not get better during optimization. With a good
floorplan you should be able to:

Place the design in the floorplan without issues

Create a routable placement

Make sure to consider the following when finalizing the floorplan:

The power grid should be defined:

Global net connections are properly defined using the globalNetConnect command.

Nets requiring optimization should be defined as signal (regular) nets. Optimization
treats nets in the SPECIALNETS as dont_touch.

PINS marked with + SPECIAL cannot be optimized.

Followpin routing should align to rows/cells with the correct orientation (VDD pin to VDD
followpin).

Gaps between standard cells and blocks should be covered with soft or hard blockages.
Placement cannot place cells in the area of soft blockages but optimization and CTS can.

All blocks should be marked fixed.

Tracks should match IO pins and placement grid (rows). Use add_tracks to update the tracks.

September 2022 108 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../voltustxtcmdref/globalNetConnect.html
../innovusTCR/add_tracks.html

GigaPlace
As the routability of the floorplan stabilizes, you should shift your focus to placement
and preCTS timing closure based on ideal clocks including:

Setup slack (WNS - Worst Negative Slack)

Design rule violations (DRVs)

Setup times (TNS - Total Negative Slack)

Preplace optimization, Slack driven placement and interleaving optimization are enabled by default:

place_opt_design

GigaPlace will remove buffer trees, followed by slack-driven global placement, and detail
placement. The new congestion-driven algorithm is faster and more stable in maintaining
congestion anywhere in the flow. The wire length model is the same between global and detail
placement to ensure that wirelength and congestion are maintained throughout the Innovus flow.

PreCTS optimization is also called by GigaPlace to do more interleaving between placement and
congestion. It leads to better timing and congestion QOR because placement is more aware of
timing and congestion critical areas. By default, preCTS timing optimization begins with the first
phase in which following transforms are called: netlist simplification, high fanout net buffering
(including high fanout net), multidriver buffering, DRV fixing at high level, and global optimization.
After this stage, the core optimization starts for all the negative end points. While working on WNS
and TNS, the software controls timing convergence by updating the design state, placement and
routing, incrementally. Adaptively calling area reclaim allows you to control utilization at the preCTS
stage. It also takes advantage of the upper layer characteristics by using layer assignment transform
on the optimization of critical nets.

For more information on optimizing the design, refer to the Optimizing Timing chapter in
the Innovus User Guide.

place_opt_design can be used to replace the old flow place_design + optDesign –preCTS.

Additionally, place_opt_design –incremental can be used to perform additional timing optimization
after the initial place_opt_design call. This is the preferred incremental optimization strategy and
replaces the optDesign –incremental approach.

Placement Analysis
Once gigaPlace is complete it is important to analyze the global and local congestion to identify any
areas that will be difficult to route.

Review the overflow values in the log file. Typically they should be below 1% but will depend

September 2022 109 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusUG/Optimizing_Timing.html

on the design and technology.

The following option increases the numerical iterations and makes the instance bloating
more aggressive. It also automatically enables the congRepair command.
setPlaceMode -place_global_cong_effort high

Turn on the congestion map and analyze any hot spots. Although the global congestion may
be low, a hot spot can make the design impossible to route.

Use partial placement blockages to reduce the density in specified areas.

There is a standalone command called congRepair that can be called in any part of the
preRoute flow to attempt to relieve congestion. The command uses globalRoute +
incremental placement. This can have a significantly detrimental effect on timing and often
requires additional optDesign calls (and may not converge). So, use the congRepair command
with caution.

Clocks are consuming more routing resources because they are routed with wider rules,
greater spacing and shielding. So it is important to model this early on by reading in the clock
routing constraints prior to placement. The CTS specification file and the CCOpt property
should contain the routing constraints including non-default rules (NDRs), spacing, and
shield.

Guidelines for PreCTS Optimization
Before starting place_opt_design, perform the following sanity checks for preCTS optimization:

Review checkDesign -all results.

Check that the SDC is clean.

Check that the timing is met in zero wireload using timeDesign -prePlace. Violating paths in
this mode are likely to be failing significantly more when actual wireloading has been applied.

Check that the NDRs are good and well selected for NDR aware optimization – too many
NDRs will slow down optimization.

Check the don’t use report.

Activate all required views.

Adjust settings depending on specific scenarios: high performance (timing/power), high
routing congestion, high utilization, mixture.

September 2022 110 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/congRepair.html

While performing timing optimization, check the following:

Follow WNS/TNS convergence for each active path group

Check physical update – large max move of instances, large mean move of instances, routing
congestion, and so on

Check DRV fixing convergence

Monitor routing congestion at different stages

PreCTS optDesign Command Sequences
You can use standalone place_opt_design for preCTS optimization in the following ways if needed:

Note: You can use any of these features separately or in combination. Use the setOptMode
command to control optimization behavior.

To optimize a design after you have already run place_opt_design, use the following
command:
place_opt_design -incremental

To perform rapid timing optimization for design prototyping, use the following commands:
setDesignMode -flowEffort express

place_opt_design

Checking and Debugging Timing Optimization Results

When place_opt_design completes, you will see a summary of the timing results. Additionally, you
can use the command timeDesign -preCTS to check the current timing.

timeDesign -preCTS -outDir preCTSOptTiming

If timing violations exist, use Global Timing Debug (GTD) to analyze the violations.

Graphically check the critical paths, not just the first one.

Investigate cell/net delay to identify bad buffering, bad sizing, and weak cell usage.

Investigate routing:

Scenic routing on standard cells area – rework on placement.

Check for bad routing over macros – add soft placement blockage or modify floorplan.

September 2022 111 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/setOptMode.html
../innovusTCR/setDesignMode.html

Critical paths go through congested area. Try using cell padding (using
the specifyCellPad or specifyInstPad commands) or partial placement blockages (also
known as density screens) to reduce the congestion – check global density and hot
spot.

Critical path(s) go through routing congested area – review floorplan / macro placement /
narrow channels.

Check if the worst path is going through deep logic level – If yes, see if the initial netlist
is to be further improved during synthesis.

Following are some common types of timing and congestion problems seen
during preCTS optimization and suggestions for resolving them:

If some nets are not being optimized, run the following to output a report of the ignored nets
during optimization. Use the abbreviation in the last column with the key at the bottom of the
file to determine why certain nets are not being optimized.
reportIgnoredNets -outfile fileName

If timing after optimization is poor or degraded, check the log file for slack jumps. This can be
related to physical update placement legalization/earlyGlobalRouting. In this case, check
routing congestion, scaling factors, and initial placement

Run the following command to identify cells with a set_dont_touch or set_dont_use
attribute. The file will identify these cells in the far right column. Ensure that the cells
intended for optimization are available for use.
reportFootPrint -dontTouchNUse -outfile fileName

If similar paths are not meeting timing, create a custom path group for these paths and
optimize them separately. See the "Path Group Optimization" section for details.

If critical paths go through congested area, then try using cell padding (running
the specifyCellPad or specifyInstPad commands) or partial placement blockages (also
known as density screens) to reduce the congestion.

Useful skew is often required on hard to close timing designs.Useful skew is now integrated
into all design steps from preCTS to postRoute, as appropriate. Useful skew in all flow steps
can be disabled using the following command:
setOptMode -opt_skew false

If clock gating checks are on the critical path, you can create separate path groups for the
clock gating cells and over-constrain them. Following is a sample script to do this. Set
the $clkgate_target_slack to your desired value. Use caution when over-constraining

September 2022 112 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/specifyCellPad.html
../innovusTCR/specifyInstPad.html
../innovusTCR/reportIgnoredNets.html
../innovusTCR/reportFootPrint.html

designs as it increases the runtime:

Set target overshoot slack for clock gating elements preCTS (in nanoseconds):

set clkgate_target_slack 0.15

Create separate reg2reg and clkgate groups

group_path -name reg2reg -from all_registers -to [filter_collection

[all_registers] "is_integrated_clock_gating_cell != true"]

group_path -name clkgate -from [all_registers] -to [filter_collection

[all_registers] "is_integrated_clock_gating_cell == true"]

setPathGroupOptions reg2reg -effortLevel high

setPathGroupOptions clkgate -effortLevel high -targetSlack $clkgate_target_slack

The risk for timing optimization on designs with high-routing congestion mainly comes from
nets detouring that are unpredictable. In addition to floorplan and placement
recommendations made previously, it is usually beneficial to identify the weak cells and to set
them as dont_use.
setDontUse cellName(s)

Note: It is recommended to use setDontUse rather than the SDC set_dont_use. This is
because setDontUse applies to all operating modes while set_dont_use only affects the
operating mode(s) to which it is applied.

Monitor the density increase. If needed, reduce or remove extra margins on setup target and
DRV. Usually the density starts increasing when trying to fix the last tens of picoseconds and
the better timing seen in preCTS will lead to flow divergence later on. Properly setting the
setup target slack will reduce area and improve the runtime. For example, if the target is -
0.5ns, it might be helpful to set "setOptMode -opt_setup_target_slack -0.2". The same
applies to DRV fixing by using the -opt_drv_margin option:
setOptMode -opt_setup_target_slack slack -opt_drv_margin value

Path Group Optimization
You can focus timing optimization on specific paths using path groups. If path groups are not
defined, place_opt_design will temporarily generate two high-effort path_groups (reg2reg and
reg2cgate).

September 2022 113 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/set_dont_use.html

A path_group can be set as “low” or “high” effort.

A high-effort path_group will receive a higher focus from the optimization engine than a
low-effort one

All high-effort path groups defined are optimized at the same time.

You can add slack adjustment and priority to any path group using
the setPathGroupOptions command

By default, place_opt_design will use the slack adjustment value that leads to the worst
slack

The priority is used when an endpoint is part of several path groups so the software can
choose which adjustment value to use

The flow to create and optimize path groups is as follows:

group_path -name path_group_name -from from_list -to to_list -through through_list

setPathGroupOptions...

place_opt_design

Creating path groups is not mandatory to achieve the best results:

Too many custom path groups may impact the run time significantly.

Too many overlapping or nested path groups may impact TNS timing closure.

Clock Tree Synthesis

The traditional goal of CTS is to buffer clock nets and balance clock path delays. From the
software's 14.2 release onwards, the default engine for performing this is CCOpt-CTS. CCOpt-CTS
can automatically generate a clock tree specification from multi-mode timing constraints and then
synthesize and balance clock trees to that specification. CCOpt extends CCOpt-CTS by adding
Clock Concurrent Optimization, which simultaneously optimizes clock and datapath to achieve
better performance, area, and power.

For details on the capabilities and configuration of CCOpt-CTS and CCOpt, an overview of CTS
engines in Innovus, and an introduction to the concepts and terminology used, see the Clock Tree
Synthesis chapter in the Innovus User Guide.

September 2022 114 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/setPathGroupOptions.html
../innovusTCR/group_path.html
../innovusUG/Clock_Tree_Synthesis.html

Configuring CCOpt-CTS or CCOpt
For complete command examples, see the Flow and Quick Start section in the Clock Tree
Synthesis chapter.

The key steps and commands for a typical setup are as follows:

 Configure non-default routing rules (NDRs) and route types using the following commands:
create_route_type

set_ccopt_property route_type

Set a target maximum transition time, and for CCOpt-CTS a target skew,
using set_ccopt_property target_max_trans and set_ccopt_property
target_skew commands.

Configure which library cells CTS should use by setting the
buffer_cells, inverter_cells, clock_gating_cells, and use_inverters properties.

Create a clock tree specification from active timing constraints using
the create_ccopt_clock_tree_spec command.

For more recommendations on settings, see the Configuration and Method section in the Clock
Tree Synthesis chapter.

Running CCOpt-CTS or CCOpt
To run CCOpt-CTS to perform CTS with global skew balancing, use the following command:

ccopt_design –cts

To run CCOpt to perform CTS with Clock Concurrent Optimization, use the same command but
without the –cts parameter. An example is provided below.

ccopt_design

CCOpt and CCOpt-CTS automatically do the following:

Detail route clock nets using NanoRoute

Switch timing clocks to propagated mode and update source latencies to maintain correct I/O
and inter-clock timing. There is no need to use the update_io_latency command after
the ccopt_design command and doing so will not give valid results. For details, see
the Source Latency Update section in the Clock Tree Synthesis chapter.

September 2022 115 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-FlowAndQuickStart
../innovusTCR/create_route_type.html
../innovusTCR/set_ccopt_property.html
../innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-ConfigurationandMethod
../innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-SourceLatencyUpdate

Reporting after CCOpt-CTS or CCOpt
To report timing after CCOpt-CTS or CCOpt, use the timeDesign -postCTS command. The -
outDir, -prefix and other parameters can be used as with earlier flow steps.

Reports on clock trees and skew groups can be obtained using these CCOpt reporting commands:

report_ccopt_clock_trees -file clock_trees.rpt

report_ccopt_skew_groups -file skew_groups.rpt

For more information on clock trees and skew groups, see the Concepts and Clock Tree
Specification section in the Clock Tree Synthesis chapter. For more information on reporting
capabilities, see the Reporting section in the Clock Tree Synthesis chapter.

Visualization of Clock Trees after CCOpt-CTS or CCOpt
The CCOpt Clock Tree Debugger (CTD) permits interactive visualization and debugging of clock
trees. Choose the Clock menu in the main Innovus window and select CCOpt Clock Tree
Debugger. A graphical representation of the clock tree alongside an insertion delay scale will
appear. The CCOpt CTD permits a variety of functions including path highlighting and cross
probing with the placement view. For more information, see the CCOpt Clock Tree
Debugger section in the Clock Tree Synthesis chapter of the Innovus User Guide and the
CCOpt Clock Tree Debugger section in the Clock Menu chapter of the Innovus Menu Reference.

PostCTS Optimization
The goals of postCTS optimization include:

Fixing remaining design rule violations (DRVs)

Optimizing remaining setup violations

Optimizing hold timing violations

PostCTS SDC Constraints
For flows which deploy full CCOpt, and not just CCOpt-CTS, additional postCTS setup optimization
is not normally required. Furthermore, the recommend flow for CCOpt is to load postCTS timing
constraints before invoking CCOpt. CCOpt is discussed further in Clock Tree Synthesis.

At this point in the design flow, the clocks are inserted and routed. Since timing analysis uses the

September 2022 116 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/timeDesign.html
../innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-ConceptsandClockTreeSpecification
../innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-Reporting
../innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-CCOptClockTreeDebugger
../innovusMR/Clock_Menu.html

actual clock delays, you should adjust the timing constraints as follows. Typically, designers have
separate SDC files for preCTS and postCTS timing analysis. Use
the update_constraint_mode command to update the SDC files for each operating mode.

Task Command

Set the clocks to propagated by adding the following to
your SDC file(s)

set_propagated_clock [all_clocks]

Adjust the clock uncertainty to model only jitter. You
need to update the constraints after clock tree synthesis

to adjust clock jitter according to the design. Modeling
only the jitter avoids making the timing appear worse
than it is.

Remember that, since the actual clock skew data is now
available, it is possible that the critical path timing will
be worse.

set_clock_uncertainty SDC

Remove or change the SDC constraints that are not
valid postCTS like clock uncertainty or clock latency.

You may need to adjust the clock latencies on the IOs
so that IO timing does not become the critical path by

adjusting the virtual clock source latencies.

Note: CCOpt and CCOpt-CTS automatically adjust
source latencies. If FE-CTS is used, you can adjust IO
constraints directly.

clock_uncertainty

clock_latency

set_clock_latency -source

xxx clock

set_input_delay or

set_output_delay

OR
update_io_latency

Adjust derating applied to each delay corner.

Clock routing will use a different scale factor than the
signal nets.

Signal nets:
create_rc_corner/update_rc_corner

-preRoute_cap

Clock nets:
create_rc_corner/update_rc_corner

-postRoute_clkcap (if defined) or

-postRoute_cap.

Run timing analysis to check the timing. timeDesign -postCTS -outDir

ctsTimingReports

September 2022 117 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/update_constraint_mode.html
../innovusTCR/set_propagated_clock.html
../innovusTCR/set_clock_uncertainty.html
https://dsmpubs/icd_pubs_website/encounter/past_releases/19.1/innovusTCR/set_clock_latency.html
https://dsmpubs/icd_pubs_website/encounter/past_releases/20.1/innovusTCR/update_io_latency.html

Note: If the timing is not similar to preCTS timing results, check the following:

Was CTS able to achieve the skew constraints?

Are these skew constraints within the set_clock_uncertainty set during preCTS timing?

Was the clock uncertainty adjusted after CTS to only model jitter?

PostCTS Setup Optimization Command Sequences
For flows that deploy full CCOpt, and not just CCOpt-CTS, that additional postCTS setup
optimization is not normally required. CCOpt is discussed further in the Clock Tree Synthesis
chapter.

The timing at this point should be similar to the preCTS timing results. If there is a large jump in
negative slack, investigate whether the end points are clock gating cells. A jump in negative slack
may occur for clock gating cells now that their real skew is used for timing analysis. If the large slack
is occurring at other points, you should use global Clock Debug (GTD) to analyze the paths.
Double-check that the clocks are propagated and that the skew is within your specifications.

Typically the same options applied during preCTS optimization are used for postCTS optimization.

Use the timeDesign command to check the postCTS timing:
timeDesign -postCTS -outDir postctsTimingReports

The timing at this point should be similar to the preCTS timing results. If there is a large jump in
negative slack, investigate whether the end points are clock gating cells. A jump in negative slack
may occur for clock gating cells now that their real skew is used for timing analysis. If the large slack
is occurring at other points, you should use Global Timing Debug (GTD) to analyze the paths.
Double-check that the clocks are propagated and that the skew is within your specifications.

To optimize timing after the clock tree has been built, use the following commands:
optDesign -postCTS -outDir postctsOptTimingReports

PostCTS incremental optimization takes advantage of useful skew by default starting from
Innovus 16.1 release.

Hold Optimization
At this point, run timing analysis to report hold violations:

timeDesign -postCTS -hold -outDir postctsHoldTimingReports

Timing optimization to fix hold violations can be performed at this point. This is recommended if
your design has a significant number of hold violations because they are easier to fix prior to

September 2022 118 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/timeDesign.html

routing. If the number of hold violations is low you can wait until after routing the signal nets. To
perform hold optimization:

optDesign -postCTS -hold -outDir postctsOptHoldTimingReports

Hold optimization will insert cells and perform resizing to fix hold violations while minimizing the
effect on setup timing. It will minimize the number of cells added by inserting buffers at the common
points that fix violations at multiple end points.

Following are recommendations to achieve closure for hold timing:

Ensure that the hold timing uncertainty is realistic

Too large a value can cause the insertion of thousands more buffers

Ensure that delay cells are allowed to be used and avoid providing very weak buffers for hold
fixing because they are more sensitive to routing detour and signal integrity

For Multi-Vth design, ensure that you run leakage optimization
(through optDesign or optPower) before running hold fixing since leakage reduction improves
hold timing.

Add cell padding during placement to leave more space for hold fixing.

Cell padding must be removed before postCTS hold fixing

Ensure that timing constraints are correctly in sync between setup and hold (especially
multicycle paths)

Ensure that the skew in hold is also good.

A good clock tree for hold is as important as for setup

For a design with many hold violated paths, it is highly recommended to run hold fixing at the
postCTS stage already (although there is no need to achieve 0ns slack at this stage). Then,
use postRoute hold fixing to fix the remaining violations. You can use a negative hold target
slack to focus hold fixing on the paths with large violations and fix the remaining hold
violations after routing. For example, the following sets a hold target slack of -200ps:
setOptMode -opt_hold_target_slack -0.2

Note: Additionally, optDesign –hold can be run with the –holdVioData fileName option to print
detailed information about the reasons for remaining violations.

By default, hold fixing can degrade setup TNS (but not Setup WNS). This can be changed
through the following:
setOptMode -opt_hold_allow_setup_tns_degradation true | false

To exclude some path_groups from hold fixing, apply the following:

September 2022 119 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

setOptMode -opt_hold_ignore_path_groups {groupA groupB...}

In the innovus.logv file hold fixing will print a detailed report where each net that is not
buffered will be sorted through several categories.

This will allow the user to identify what are the most critical issues to resolve.

It will help the user in understanding why a given net was not buffered.

Below is an example:
==

 Reasons for remaining hold violations

===

*info: Total 1 net(s) have violated hold timing slacks.

*info: 1 net(s): Could not be fixed as the violating term's net is

marked IPO ignored.

The setOptMode -opt_hold_allow_overlap command controls if hold fixing is limited to
purely legal moves (no overlaps). When set to true, hold optimization allows initial cell
insertion to overlap cells and then refinePlace legalizes the cells placement. This provides
optimization more opportunity to fix violations. When set to the default, the value of auto hold
optimization is allowed to create overlaps during postCTS optimization but not during
postRoute optimization. To allow overlaps during postRoute optimization as well set the
following:
setOptMode -opt_hold_allow_overlap true

Control hold time margins

Beyond certain hold margin, delay buffer addition rate increases exponentially

Try useful skew optimization for RAM and Register files

Detailed Routing
After postCTS optimization, there should be few, if any, timing violations left in the design. The
goals of detailed routing include the following:

Routing the design without DRC or LVS violations.

Routing the design without degrading timing or creating signal integrity violations.

September 2022 120 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

Using DFM techniques such as multi-cut via insertion, wire widening, and wire spacing to
optimize the yield.

NanoRoute performs timing-driven and SI-driven routing concurrently. NanoRoute routes the
signals that are critical for signal integrity appropriately to minimize cross-coupling between these
nets, which would lead to postRoute signal integrity issues. Additionally, it can perform multi-cut via
insertion, wire widening, and spacing to optimize the yield.

Routing Command Sequence
The following example shows the use of NanoRoute to perform detailed routing. If filler cells
containing metal obstruction other than the followpins are to be used, ensure that they are inserted
prior to the initial route.
routeDesign

If you have timing information loaded, the routeDesign command automatically sets
setNanoRouteMode -route_with_timing_driven true. The routeDesign command automatically
unfix the clock nets (setNanoRouteMode -route_fix_clock_nets false) so it can ECO route the
clock nets after postCTS optimization and resolve DRC violations.

PostRoute wire spreading significantly reduces SI impact. It is enabled by default when
setDesignMode -flowEffort extreme is set. To run it separately after routeDesign:
setNanoRouteMode -route_with_timing_driven false

setNanoRouteMode -route_detail_post_route_spread_wire true

routeDesign -wireOpt

setNanoRouteMode -route_detail_post_route_spread_wire false

Double cut via effort is set with setNanoRouteMode -route_detail_use_multi_cut_via_effort
{low | medium | high}

Improving Timing during Routing
The following tips can help achieve better timing results during the routing phase of the design.

Check with your library provided or foundry for the latest technology LEF to use.

Check the definition of tracks in the DEF file. If the tracks are poorly defined, regenerate tracks
with the add_tracks command.

If there is local or global congestion, return to placement, optimization and postCTS
optimization to optimize further until congestion is resolved.

Make sure the top max routing later is set appropriately.

September 2022 121 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/routeDesign.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/setDesignMode.html
../innovusTCR/add_tracks.html

Check the NonDefaultRules (NDRs) and shielding and layer constraints.

PostRoute Extraction
All nets are now routed. It is important to now set the extraction mode to postRoute and specify the
extractor to use.

Specify the engine to postRoute:
setExtractRCMode -engine postRoute

Set the -effortLevel so that extractRC uses your desired extractor:
setExtractRCMode -effortLevel low | medium | high | signoff

low - Invokes the native detailed extraction engine. This is the same as specifying the "-
engine postRoute" setting.

medium- Invokes the TQuantus extraction mode. TQuantus performance and accuracy falls
between the native detailed extraction and IQuantus engine. This engine supports distributed
processing. TQuantus is the default extraction mode for process nodes 65nm and below
whenever Quantus techfiles are present.
Note: This setting does not require a Quantus license.

high- Invokes the Integrated Quantus (IQuantus) extraction engine. IQuantus provides
superior accuracy compared to TQuantus. IQuantus is recommended for extraction after ECO.
In addition, IQuantus supports distributed processing.
Note: IQuantus requires a Quantus license.

signoff- Invokes the Standalone Quantus extraction engine. Quantus provides the highest
level of accuracy. It can be used if postRoute optimization TAT is not a concern.
Note: Quantus obviously requires a Quantus license.

Checking Timing
Use the following commands to do a postRoute timing check on non-SI timing to compare with the
preRoute timing:

setDelayCalMode -SIAware false

timeDesign -postRoute -outDir postrouteTimingReports

timeDesign -postRoute -hold -outDir postrouteTimingReports

September 2022 122 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/extractRC.html
../innovusTCR/setDelayCalMode.html
../innovusTCR/timeDesign.html
../innovusTCR/timeDesign.html

If timing jumps at this point compared to timing before routing, check the following:

One reason for timing jumps is that the extractors are not correlated properly. The RC Scaling
factors are recommended to correlate the parasitic extractors of Innovus with your signoff
extractor. This provides more accurate timing and predictability throughout the flow. Use
Ostrich to obtain the parasitic measurements to determine the appropriate scaling factors. This
command calculates the capacitance factors by comparing the Innovus extraction with the
results of either Quantus Extraction or a SPEF file. Please see the solution How to Generate
Scaling Factors for RC Correlation for the steps to generate the correlation factors with
Ostrich.

Note: Once the scaling factors are determined, specify them in your MMMC setup using
the create_rc_corner or update_rc_corner commands.

Is the routing topology similar between postCTS and postRoute wires? Compare the same
paths between postCTS and postRoute databases and for large differences in loads

PostRoute Optimization
During postRoute optimization, there should be minimal violations that need correction. The primary
sources of these timing violations include:

Inaccurate prediction of the routing topology during preRoute optimization due to congestion-
based detour routing

Incremental delays due to parasitics coupling and SI effects

Since the violations at this stage are due to inaccurate modeling of the final route topology and the
attendant parasitics, it is critical at this point not to introduce any additional topology changes
beyond those needed to fix the existing violations. Making unnecessary changes to the routing at
this point can lead to a scenario where fixing one violation leads to the creation of others. This
cascading effect creates a situation where it becomes impossible to close on a final timing solution
with no design rule violations.

One of the strengths of postRoute optimization is the ability to simultaneously cut a wire and insert
buffers, create the new RC graph at the corresponding point, and modify the graph to estimate the
new parasitics for the cut wire without re-doing extraction.

In addition to the timing violations caused by inaccurate route topology modeling, the parasitics
cross-coupling of neighboring nets can cause the following problems that need to be addressed in
high speed designs:

An increase or decrease in incremental delay on a net due to the coupling of its neighbors
and their switching activity.

September 2022 123 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

https://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:ViewSolution;solutionNumber=11721998
../innovusTCR/create_rc_corner.html
../innovusTCR/update_rc_corner.html

Glitches (voltage spikes) that can be caused in one signal route by the switching of a neighbor
resulting in a logic malfunction.

These effects need to be analyzed and corrected before a design is completed. They are magnified
in designs with small geometries and in designs with high clock speeds.

Data Preparation for SI Analysis
SI optimization requires the following preparation:

Make sure ECSM/CCS noise models or cdB libraries are provided for each cell for each delay
corner.

You must be in the on-chip variation (OCV) mode to see simultaneous clock pushout/pullin
and enable CPPR (Clock Path Pessimism Removal). Enable this feature using the following
settings:
setAnalysisMode -analysisType onChipVariation -cppr both

Enable SI CPPR using set_global timing_enable_si_cppr true. (This is the default setting.)

Additionally, consider the following techniques if you have difficulty achieving signal integrity
closure on your design.

Watch for routing congestion during floorplanning and especially after detailed routing.

Consider running the congRepair command on the design at the preRoute stage to
eliminate local hot spots or adjust your floorplan

Use NanoRoute advanced timing with SI-driven routing options during detailed routing. These
are automatically enabled when running routeDesign:
setNanoRouteMode -route_with_timing_driven true
setNanoRouteMode -route_with_si_driven true

Fix transition time violations. This is automatically done as one of the first steps when
the optDesign -postRoute command is run.

Slow transitions introduce a larger delay penalty or incremental delay and can more
readily be victim to faster switching SI aggressors coupled to the net.

PostRoute Optimization Command Sequences
The command sequence to fix postRoute setup and hold violations is:

September 2022 124 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/setAnalysisMode.html
../innovusTCR/timing_enable_si_cppr.html
../innovusTCR/routeDesign.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/optDesign.html

optDesign -postRoute

optDesign -postRoute -hold

Note: PostRoute setup and hold optimization can be combined to reduce runtime by using the
following command:

optDesign -postRoute -setup -hold

Analysis and Debug of PostRoute Optimization Results
Use Global Timing Debug to debug any remaining violations. If violations remain, consider the
following suggestions:

For multi-VT designs, you can perform a LEF-Safe Optimization with only cell swapping by
setting the following:
setOptMode -opt_allow_only_cell_swapping true

optDesign -postRoute

Doing so after a normal optDesign -postRoute may help close timing if the design is
congested and those final few paths were detoured by NanoRoute's ECO routing.

Doing so prior to a normal optDesign -postRoute may speed up closure in terms of
turnaround time.

Only works for multi-VT libraries

Does not have much impact when design has already mainly LVT cells.

Make sure your extraction filters correlate to your signoff extraction

When using IQuantus the filters typically can be set to the exact signoff values. Make sure to
use setExtractRCMode -capFilterMode relAndCoup

Below are suggestions to help achieve SI Closure:

SI prevention in the preRoute flow for data path can be achieved by adding more pessimism
to force optimization to work harder. This can be done by increasing the clock uncertainty.

Choose reasonable values to avoid over fixing and increasing area/power too much

You can apply a targeted approach for cases with the timing paths with very large depth (> 40)

Sum of small SI push-out on long paths leads to large timing penalty.

Solution is to add a pessimism only on nets that are part of the large depth path.

September 2022 125 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

Check the global max transition and ensure that wire spreading is enabled during detailed
routing.

Optimizing With Third-Party SPEF
If you are using a third-party tool for extraction or timing analysis, the most important step is to make
sure they correlate with the corresponding function in Innovus. For example, if you are using a third-
party extractor, make sure the RC scaling factors are set properly within Innovus. If you are using a
third-party timing analysis tool, make sure it correlates with Innovus by verifying that SDC
constraints are applied consistently between the tools. The delay calculation and timing analysis
results between Innovus and the third-party tool should also correlate.

If timing violations occur when using SPEF from a third-party extractor you can import the SPEF into
Innovus and perform optimization. You must import a SPEF for each RC corner. The flow is:

spefIn rc_corner1.spef -rc_corner rc_corner1

spefIn rc_corner2.spef -rc_corner rc_corner2

...

optDesign -postRoute [-hold] -outDir spefFlowTimingReports

The -hold option is optional in the above command. Use -hold if you need to perform hold fixing
based on the SPEF.

The optDesign command will use the SPEF for initial timing to determine the best location to
optimize the paths.

Chip Finishing
Once postRoute optimization is performed, you may need to add filler cells and metal fill shapes to
meet the DRC rules. The filler cells are recommended to be inserted before routeDesign, with
proper setFillerMode settings. The postRoute optimization can automatically delete the fillers
before optimizing, restore the deleted fillers back, and insert fillers again before eco route. In the
ECO stage, deleteFiller can be used to free the placement space. Filler cells are used to fill the
gaps between standard cells in the standard cell rows to fill in the device layers like pwells or
nwells, and to meet any implant layer width or spacing DRC rules. The normal cells have implant
layers but they may not meet the width and spacing rules of the implant layers without abutting filler
cells that use the correct implant layers. An example of the command to insert filler cells is provided
below:

September 2022 126 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/routeDesign.html
../innovusTCR/setFillerMode.html
../innovusTCR/deleteFiller.html

addFiller -cell filler_cell_list -prefix FILLER

Sometimes, the library provides filler cells with built in decoupling capacitors (decap). You can also
insert these fillers to improve the voltage or IR drop, normally at the expense of higher leakage
currents. An example of the command to insert decap filler cells is provided below:

addFiller -cell decap_filler_list -prefix FILLER_DECAP -area {x1 y1 x2 y2}

Metal fill, also called dummy metal, is used to make the metal density more uniform by adding
small, floating, metal-fill shapes in empty areas. You can either use Innovus to add metal fill, or use
a physical verification tool. The Innovus metal fill can meet the DRC rules for older process nodes,
but for newer process nodes such as 28nm and below, the Innovus metal-fill rules are generally not
sufficient and you must use physical verification tools. Metal fill has some special DRC rules in
addition to the normal metal shapes that are defined in the technology LEF file. These are listed
below.

[PROPERTY LEF58_FILLTOFILLSPACING “FILLTOFILLSPACING spacing ;” ;]

[FILLACTIVESPACING spacing ;]

[MINIMUMDENSITY minDensity ;]

[MAXIMUMDENSITY maxDensity ;]

[DENSITYCHECKWINDOW windowLength windowWidth ;]

[DENSITYCHECKSTEP stepValue ;]

You can use the setMetalFill command to overwrite the metal-fill rules in the technology LEF file.
The setMetalFill command can define different metal-fill settings. If you do not specify the iteration
name (using the -iterationName parameter), the setting will be saved to a "default" iteration name.

Use the addMetalFill command to insert metal fill based on the rules defined by
the setMetalFill command. In Innovus, the addMetalFill command also supports the metal-fill
connect to power/ground (PG) mesh. The metal fill can carry current to improve the IR drop.
Use addMetalFill -net to specify the PG net to be connected.

After metal fills are inserted, use the verifyMetalDensity command to verify the metal density rules
defined in the technology LEF file and by the setMetalFill command.
The verifyMetalDensity command only honors the default iteration name setting. Ensure that you
have defined the default iteration name before running the verifyMetalDensity command.

There are two flows that can be used to insert metal fill. Use the commands listed below to insert
metal fills in Innovus:

setMetalFill -activeSpacing value -gapSpacing value -maxWidth value -maxLength value

-windowSize x y -windowStep x_step y_step -minDensity value -maxDensity value

addMetalFill

September 2022 127 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/setMetalFill.html
../innovusTCR/addMetalFill.html
../innovusTCR/verifyMetalDensity.html

Use the commands listed below to insert sign-off metal fill in the design. This flow calls the
Cadence Pegasus application or Cadence PVS application depending on which product you are
using for sign-off metal-fill insertion. This is the recommended flow:

If using Pegasus:

streamOut -mapFile gds_map -outputMacros -units unit

run_pegasus_metal_fill -ruleFile PEGASUS_RULE_DECK -defMapFile -gdsFile -cell

gds_top_cell

If using PVS:

streamOut -mapFile gds_map -outputMacros -units unit

run_pvs_metal_fill -ruleFile PVS_RULE_DECK -defMapFile -gdsFile -cell gds_top_cell

In Innovus, you can run the timeDesign command to check the timing. If the timing has degraded,
you can trim the metal fill from critical nets for timing closure. Use the command below to trim the
metal fill around critical nets:

setMetalFill -windowStep x_step y_step -windowSize x y

trimMetalFillNearNet -slackThreshold $slack1 -

spacing value -spacingAbove value -spacingBelow value -minTrimDensity value

September 2022 128 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/streamOut.html
../innovusTCR/timeDesign.html
../innovusTCR/trimMetalFillNearNet.html

Timing Sign Off
The goal of timing sign off is to verify that the design meets the specified timing constraints. This is
accomplished by first using Quantus to generate detailed extraction data, and then using the
specified timing analysis engine for a final analysis of setup and hold data.

At this point in the design process, final routing and postRoute optimization is complete.

The following command sequence generates the reports needed to verify timing by calling the
Tempus timing analyzer. A Tempus license is required:

timeDesign -signoff -outDir signOffTimingReports

timeDesign -signoff -hold -reportOnly -outDir signOffTimingReports

These commands perform the following operations:

1. Run Quantus to generate detailed parasitics (Quantus license required).
2. Use the detailed parasitics and generate the setup timing reports using Tempus.
3. Generate the hold timing reports.

If the timing degrades compared to postRoute timing, check whether the postRoute RC scaling
factors that correlate to the signoff extractor are properly set. If you are using a third-party extractor,
use spefIn to read the SPEF for each RC corner, then run timeDesign using the -
reportOnly option:

spefIn rc_corner1.spef -rc_corner rc_corner1

spefIn rc_corner2.spef -rc_corner rc_corner2

...

timeDesign -signoff -reportOnly -outDir signOffTimingReports

timeDesign -signoff -hold -reportOnly -outDir signOffTimingReports

Final Timing Analysis and Optimization using
Tempus/Quantus
Although Innovus has a mode to time the design in the signoff mode, it does not always have the
environment that corresponds exactly to what the final signoff timing analysis will use. For example,
a signoff tool may propagate full waveforms for delay calculation where an optimization tool would
model the waveform as a linear ramp; and a signoff tool will use path-based AOCV where an
optimization tool would use graph-based AOCV.

These differences between the implementation tool and signoff tool on timing are because of the
runtime consideration during timing optimization. The implementation tool cannot always work with
the full timing accuracy level otherwise TAT would be a concern. You can use

September 2022 129 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/timeDesign.html
../innovusTCR/spefIn.html

the signoffTimeDesign and signoffOptDesign commands to analyze and optimize the timing
generated by Tempus Signoff STA and Quantus Signoff extraction while remaining in the
implementation tool cockpit.

For more information about how the commands are used and the template scripts that are available,
see Using Signoff Timing Analysis to Optimize Timing and Power in Innovus User Guide.

Additional Resources
Following are additional application notes, training and documentation related to timing closure.
These can be found at http://support.cadence.com:

Innovus Foundation Flows User Guide

How to Generate Scaling Factors for RC Correlation

September 2022 130 Product Version 22.10

 Innovus User Guide
Flows--Design Implementation Flow

../innovusTCR/signoffTimeDesign.html
../innovusTCR/signoffOptDesign.html
../innovusUG/Optimizing_Timing.html#OptimizingTiming-UsingSignoffTimingAnalysistoOptimizeTimingandPower
https://support.cadence.com/
../flowSetup/flowSetupTOC.html
https://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:ViewSolution;solutionNumber=11721998

Foundation Flow
If you have developed your own flow scripts, you know that maintaining and updating them can be
time consuming and error prone. Also, ensuring that you are running with the latest recommended
commands and options can be challenging. Therefore, we recommend using the Foundation Flow
scripts. The Foundation Flow provides Cadence-recommended procedures for implementing flat,
hierarchical, and low-power/CPF designs using the Innovus software. The Foundation Flow is a
starting point for building an implementation environment, but you can augment them with design-
specific content. Utilizing the Foundation Flow helps achieve timing closure because it provides the
latest recommended flow which you can further customize based on your design requirements.

If you are new to the Foundation Flow, we recommend you start with the Foundation Flow video
demonstrations. These provide examples of setting up and using the flows. They are accessible
from within the Innovus GUI by selecting Flows - Foundation Flow Demo.

When using the Foundation Flow it is important to re-generate the scripts with each release so you
run the latest flow qualified with the software. Also, review custom plug-ins on a regular basis to
confirm they are still needed and do not adversely affect the flow.

Related Information

Design Implementation Flow

Hierarchical and Prototyping Flow
Hierarchical and Prototyping Flow Overview

Top-down and Bottom-up Hierarchical Methodologies

Top-down Methodology

Bottom-up Methodology

Hierarchical Floorplan Considerations

Hierarchical Methodologies

Hierarchical Partitioning Flow and Capabilities

Hierarchical Partitioning

Chip Planning

FlexModel

Timing Net Delay Model with Pico-second Per Micron (psPM)

September 2022 131 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Prototyping Flow

Supporting Giga-Scale Designs in Planning stage

Active-logic Reduction Technology

Top-level Timing Closure

Using Interface Logic Models (ILM)

Using Flexible Interface Logic Models (FlexILM)

Chip Assembly

Integrated Hierarchical Database

Overview

Integrated Hierarchical Database Flow: Examples

Integrated Hierarchical Database Repository Management

Creating a Module Model

Setting and Commit a Module Model

Updating a Module Model

Importing/Converting an Existing DB(*.enc.dat) to a Hierarchical Module Model

Validating Budgeting Results

Validating an ILM Model

Working with Nested ILMs in the iHDB Flow

Controlling the Physical View Visibility of ILMs

Example of Using Hierarchical DB for Timing Debugging and Floorplan Editing

Hierarchical Extraction

Check-in Version Control (SVN)

September 2022 132 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Hierarchical and Prototyping Flow Overview
Most of the system-on-a-chip devices are designed in a traditional flat flow that avoids the effort to
set up a design hierarchy. However, as the design size grows beyond a few million instances, Flat
design flow becomes unavailable due to huge memory requirements and excessive run time.
Hierarchical Flow capabilities are essential to divide and conquer the design process – where the
design can be divided into manageable partitions, and each partition can be independently
assigned to different design groups to be developed in parallel.

However, Hierarchical Flow presents new challenges – such as increased complexity of
Prototyping, Planning and Partitioning the design, Hierarchical timing closure at the top level, and
managing the late ECOs. Design planning and hierarchical timing closure contribute significantly to
Hierarchical design turnaround time. These challenges need advanced planning and modeling
capabilities.

Hierarchical design can be divided into three general stages: chip planning, implementation, and
chip assembly.

Chip Planning
Breaks down a design into block-level designs to be implemented separately.

Implementation
This stage consists of two sub-stages: block implementation for a block-level design and top-
level implementation for a design based on block-level design abstracts and timing models.

Chip Assembly
Connects all block-level designs into the final chip.

September 2022 133 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

A few important considerations in choosing the Hierarchical design methodology are:

Whether to use top-down or bottom-up methodology

Whether to use traditional channel-based designs, channel-less designs, or a variation that
provides benefits of both the approaches

Whether advanced tool support exists, such as floorplanning and pin-assignment for multi-
level hierarchical designs, single-pass timing closure for interface paths

September 2022 134 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Top-down and Bottom-up Hierarchical
Methodologies
The top-down methodology usually consists of the top-down planning, implementation, and chip
assembly stages. Use this methodology to create a top-level or hierarchical floorplan from a flat
floorplan based on fenced modules. In this approach, the die size, shape, and I/O pads locations
drive block and partition placement. Block-level design size and pins are generated based on the
top-level floorplan. This approach is conducive to early and efficient planning of resources, pins,
feedthrough paths and timing, and aims to deliver better performance, area, timing and power
planning. It also enables concurrent implementation of blocks and top-level design. However, it
requires advanced tool support to handle the full design at early stages and focus on early design
planning.

The bottom-up methodology consists of the implementation and assembly stages. In the bottom-up
methodology, the size, shape, and pin position of block-level designs drives the top-level
floorplanning. It does not need planning ahead, but runs the risk of performance, area, timing, and
power not being fully optimal and long design iterations between block and top-level
implementations.

Top-down Methodology

Chip Planning

Chip planning involves optimal planning of resources, pins, feedthrough paths and timing, and aims
to deliver better performance, area, timing and power planning. The Chip Planning section
describes the most common flow for chip planning which includes specifying partitions and
blackboxes.

Note: For information on Chip Planning with the Integrated Hierarchical Database (iHDB)
flow, refer to the "Chip Planning" section of the Partitioning the Design chapter.
To know more about the Stylus Hierarchical Database Flow, see Stylus Hierarchical
Database Flow.

September 2022 135 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Top and Block Implementation

After the chip planning, the next stage is to implement the individual blocks. Each block is
implemented using the constraints for timing, size, and pin assignment determined during the
planning stage. Block implementation should be done at a block directory that is generated by the
savePartition step.

Note: At the completion of this step, all needed models such as block abstracts, timing models, a
DEF file, and a GDSII file should be generated to be used in top-level implementation and chip-
assembly.

The next step is to implement the top-level designs with block model data such as LEF, timing
model such as .lib and ILM, and FlexILM (Refer to the "Top-level Timing Closure
Methodologies" section for more information), power model, and noise model.

Chip Assembly

Chip assembly is the last stage in the top-down process and consists of bringing together the
detailed information for the top-level and all of the blocks for full chip extraction, power, timing, and
crosstalk analysis. Chip assembly is done using the assembleDesign command.

Note: For the Integrated Hierarchical Database (iHDB) flow, block implementation must be
done with the pnr model that was generated by the savePartition step. To restore a block or
top-level design, restore_module_model -cell cell_name -tag tagName should be used.

Note: For the Integrated Hierarchical Database (iHDB) flow, chip assembly is done using
set_module_model and commit_module_model commands.

Note: For the top-down approach in the iHDB flow, see the "Chip Assembly for iHDB Flow"
section of the Partitioning the Design chapter. It contains information on how to bring
together all the top-level and block-level netlists and routing information in the iHDB flow.

To know more about the Integrated Hierarchical Database Flow, see Integrated Hierarchical
Database Flow.

September 2022 136 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

../innovusTCR/savePartition.html
../innovusTCR/savePartition.html
../innovusTCR/assembleDesign.html

Bottom-up Methodology

Implementation

Implementation in this section means completing place and route, including all I/Os, clock trees and
power.

Block Implementation

The size of a block-level design can be derived or adjusted using the Floorplan - Specify Floorplan
menu command or the floorPlan text command. The Innovus software can support a rectilinear
block-level design. You can use the same procedure to create a rectilinear partition to create a
rectilinear block-level design using the following steps. Refer to the “Design Implementation Flow”
chapter of the User Guide for more information.

Top-level Implementation

After block implementation, physical and timing abstract models (ILM/FlexILM) should be
developed for each block-level design that will be used in the top-level implementation. For the
bottom-up approach, create a top-level floorplan where block-level abstracts are referenced in the
top-level design.

Chip Assembly

For the bottom-up approach, see the "Chip Assembly " section of the Partitioning the
Design chapter for information on how to bring together all the top-level and block-level netlists and
routing information.

Hierarchical Floorplan Considerations
Prototype the design to plan up-front as much as possible

Pick a partition size that is optimal for a flat block implementation

Match logical and physical hierarchy

Find better partitioning in terms of:

September 2022 137 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

../innovusTCR/floorPlan.html

Minimal top-level timing paths or logics

Simple partition interface timing

Minimal pin count

Create a hierarchical Verilog module wrapper if feedthrough insertion is needed
Note: The hierarchical Verilog module wrapper is required if you do not want to change the
original block netlist due to a requirement to change test vectors for simulation or to avoid
running into LEC problems later on if using third party LEC tools that do not support
feedthroughs.

Do register-bounded on the partition interface

Interface latches are not good for modeling, for example ILM

Hierarchical Methodologies
Following are the methodologies that can be used for hierarchical designs.

Channel-based Methodology

Channel-based methodology is a well-established methodology. It is simple, can accommodate
hardened IPs easily, and does not generally need the Feedthrough buffers through partitions.
However, it may lead to sub-optimal results in terms of area and timing.

September 2022 138 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Channel-less Methodology

Channel-less methodology may give 5-7% die-area saving and has the advantage of not having
any top-level logic. However, it requires careful planning for multi-fanout nets leaving a partition
boundary, precise alignment of pins for abutted partitions, complex master-clone (repeated blocks)
configurations, highly-customized clock trees and iterative process, and pin connections for
hardened IPs. It also needs Verilog module wrappers for LEC validation due to the netlist changes
owing to imminent Feedthrough paths.

Narrow Channel Methodology

Innovus supports a Narrow Channel Methodology that is a good balance between the Channel-
based and Channel-less methodologies. It does not have strict requirements for pin locations or
Feedthrough paths, can work easily with hardened IPs, offers more flexible clock-tree topology
choices, and leads to faster convergence. It does have a minor area penalty compared with
channel-less designs.

September 2022 139 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Hierarchical Partitioning Flow and Capabilities
The fundamental Innovus capabilities for Hierarchical Flow are given below. For more information
on these capabilities, see Partitioning the Design chapter of the User Guide.

Hierarchical Partitioning

Capabilities

This is about partitioning the design logically and physically into the top-level design and the
various partition blocks, and pushing down all the relevant design data to the partition blocks. It
provides capabilities for defining and handling partition blocks, blackboxes, various orientations,
rectilinear shapes, multiple instantiated partitions, multiple-levels of partitions, partition guard-
bands, and so on. It creates different directories for the top-level and the blocks, which can then be
independently implemented by different design teams.

Pin Assignment

Innovus offers very strong automatic pin-assignment capabilities for partitions and blackboxes,
which include:

Abutted (channel-less) designs

Multiple levels of hierarchical design

Master and clone designs

Flip chip (area IO designs)

Rectilinear partition shapes

Route-based pin assignment

Placement-based pin assignment

Pin assignment allows users to set a variety of powerful constraints to guide the pin assignment for
optimizing as per the specific needs of the design. The constraints can be set at the level of the
design, individual partition(s), or specific pins or their groups. Any contentions are handled by a
neatly-defined precedence rule.

A very useful capability for pin assignment is the Interactive Pin-Editor, which allows custom pin
placement for specialty usage, such as spreading a group of pins in any of the variety of schemes
across layers in a given area, placing pins of non-preferred layers, while still conforming to the user-

September 2022 140 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

specified pin constraints.

It also offers a host of capabilities for checking the assigned pins, legalizing any violating pins, and
aligning pins across a routing channel.

Feedthrough Insertion

The insertPtnFeedthrough command inserts feedthrough nets and buffers into partitions on the
way, to avoid routing those nets over partition areas (to avoid conflict with partition’s routing
resources), or detouring to avoid the partition (to avoid longer routes and resulting delays). It is
absolutely necessary in channel-less designs, and may be useful in channel-based designs too.
Innovus can insert Feedthroughs, both based on just placement or along the routes if design has
been routed. It has advanced capabilities such as inserting correct buffers for Multi-Supply Voltage
designs, optimally reusing buffers across even the abutted multiply-instantiated (Master/Clone)
partitions, and reusing buffers for multi-fanout nets.

For more information, see "Multiple Supply Voltage Top-Down Hierarchical Flow" in the Low Power
Design chapter of the User Guide.

Timing Budgeting

In hierarchical design flows, chip-level timing constraints must be mapped correctly to
corresponding block-level constraints while partitioning the design. Innovus automatically
apportions budgets to blocks using a path-based method. Since the budgeting is run on an early-
stage non-optimized design, Innovus performs a virtual design optimization to derive more accurate
timing budgets for the partitions that allows better design convergence. It also has a faster mode
that avoids this virtual optimization.

Assembling Partitions

The assemble design capability brings back partition data for nested partitions. It first restores the
top design, assembles the parent partitions, and then brings back all child nodes partitions. It
ensures that all references of master and clones (which may be at different levels of hierarchy in
different partitions) are assembled properly.

September 2022 141 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

../innovusTCR/insertPtnFeedthrough.html

Hierarchical Partitioning Flow

The flow chart below shows the most common flow for chip planning.

Note: For more information on these flow steps, see the Partitioning the Design chapter of
the User Guide. To know more about the Stylus Hierarchical Database Flow the, see Stylus
Hierarchical Database Flow.

September 2022 142 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Note: The use of FlexModel is optional in the flow diagram above. If FlexModels are not used, the
FlexModel creation step is not needed. Please refer back to the FlexModel section for detailed
information.

Chip Planning
Innovus allows you to do productive chip planning and concurrently handle multiple design
objectives (Capacity/Turn Around Time/Abstract models/Optimization) with the following flow
methodologies:

FlexModel

Timing Net Delay Model with Pico-second Per Micron (psPM)

Prototyping Flow

FlexModel
FlexModel can be used in hierarchical partition implementation flow for reducing netlist size and/or
prototyping flow for design exploration and planning. With FlexModel abstraction, netlist can be
reduced up to 20x. This netlist reduction allows all Innovus applications to run up to 20x faster,
while still enabling fairly accurate timing, area, and congestion analysis. The accuracy helps the
resulting floorplan to be “implementable” in nearly one pass, rather than going through expensive
iterations to converge on the floorplan.

Challenges of implementing a Gigascale design are the capacity limitation and long run time issue.

Note: FlexModel and psPM generation do not support the Integrated Hierarchical Database
(iHDB) flow yet.

September 2022 143 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Challenges of implementing a Gigascale design are the capacity limitation and long run time issue.

To address these challenges, FlexModel can be used to fasten the overall process. The FlexModel

September 2022 144 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

To address these challenges, FlexModel can be used to fasten the overall process. The FlexModel
flow requires an additional FlexModel generation step after restoring the design. Other than that, the
flow is almost the same as the normal hierarchical flow.

September 2022 145 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

FlexModel - Introduction

A FlexModel can be a Verilog module or an instance group. It contains macros, interface standard
cells, and FlexFillers. FlexFillers fill in the space for the internal register-to-register logic. They do
not have timing models associated with them, and connect such that the placer will place them
close together in one group. This helps in accurate timing and area estimation. A FlexModel netlist
is usually one-tenth the number of instances of its full netlist. It is used during early design planning
to reduce the run time and memory while accurately modeling the timing and area.

A FlexModel can be created even in early stages of the design where the netlist is not complete.

September 2022 146 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

FlexModel Prototyping Flow Stages

Following are the prototyping flow stages:

Create FlexModels

Identify models

Create models

Create timing net delay model: Pico-second-Per-Micron model (psPM)

Debug Constraints and Plan Design

Debug constraints

Generate a good initial floorplan that can be used as starting point for manual
modification

Analyze and Adjust the Floorplan

Manually move FlexModels to shorten timing paths

Re-analyze floorplan

Define Partitions

Define partitions based on FlexModel placement

September 2022 147 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Optionally re-place macros within partition fences

Optionally manually re-shape and position FlexModel regions within partition
boundaries

Generate partition fences

Finish and Save Partitions

Placement and early global route

Commit/Save partitions

Pin assignment, feedthrough insertion, budgeting

Power, bus and pipeline planning

For more information on creation of FlexModel, model generation, see the Prototyping
Methodologies chapter of the User Guide.

Timing Net Delay Model with Pico-second Per Micron (psPM)
Pico-second per micron model (psPM model) is the timing net delay model that is used for fast
timing estimation without requiring the users to optimize the design. This timing model can be used
for the hierarchical implementation flow and/or for the prototyping flow where
the timeDesign command should be invoked with the parameter to use psPM timing model.

Pico-second per micron model is for modeling virtual buffering effect that dominates for long nets
used for quick timing estimation. It is characterized based on net length, routing layer, and the
number of fanouts. Innovus uses the current loading library technology to create a sample design
with 2 pin nets and multiple fanout nets. GigaOpt is used to optimize these nets to derive net delay
values that are called pico-second per micron (psPM).

With prototype timer that uses psPM models, timing can be accurately estimated with a quick TAT.
Since the same gigaOpt engine (optDesign) is used for characterizing and generating psPM
models, timing results with psPM models are correlated well with optDesign -preCTS results (~10%)

September 2022 148 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

../innovusTCR/timeDesign.html
../TCRcom/time_design.html

psPM = (total delay including virtual buffer delay) / (net length)

Input transition is also considered

Delay and slew are optimized using the optDesign -preCTS command

The psPM models can be created using the create_ps_per_micron_model command. They can
also be generated automatically during the partition based FlexModel generation step.

Prototyping Flow

Overview

For a GigaScale design, it may take many weeks and/or months to generate an implementable
floorplan. Innovus has provided a comprehensive prototyping flow that allows designers to find real
problems in minutes rather than days so an implementable floorplan can be obtained quickly.
Prototyping flow is a subset of the Innovus hierarchical flow. During prototyping an early flow
methodology is built upon, which then serves to provide specification for a real implementation flow.

Prototyping flow allows you to do productive chip planning and concurrently handle multiple design
objectives. This flow provides:

Capacity: It can handle more than 100 million instances in concurrent timing and congestion
driven mode.

Turnaround Time: This is a progressively converging flow and enables you to run:

September 2022 149 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

../innovusTCR/optDesign.html
../innovusTCR/create_ps_per_micron_model.html

Global placement of modules

Incremental macro placement

Detailed standard cell placement

Fast accurate timing analysis using the estimated net delay model called pico-second
per micron model

Prototyping Methodologies

Innovus prototyping flow supports different abstract models such as:

Black box

Soc Architecture Information (SAI)

September 2022 150 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

FlexModel

As shown in the above diagram, there is a tradeoff between accuracy and run time. As the details in
the models increase, the accuracy improves. However, it comes at the cost of increased run time
and memory. For example, usage of the BlackBox model during prototyping enables quicker run
time but lesser accuracy. Next in line is the SoC Architecture Model, where some minimum details
are covered till the boundary flops. It provides more accuracy in terms of Quality of results, but with
a marginal increase in run time. FlexModels improves the modeling accuracy even further, leading
to better accuracy but with slight increase in runtime.

Note: The netlist of a FlexModel is similar to an ILM netlist where interface boundary logics are kept
and internal logics between registers are removed.

A partition can be defined as FlexModel or it can have more than one FlexModel per partition.

BlackBox

Normally a blackbox is a module with content that is not well defined. However, a well-defined
module can also be defined as a blackbox. A blackbox is similar to a hard block, but like a fence, a
blackbox can be resized, reshaped, and have pins assigned. After a blackbox has its pins assigned
and is partitioned, it behaves like a hard block. The blackbox feature can be used only with a
partitioned design. After the netlist has been loaded, you can further specify which modules or cells
will be regarded as blackboxes, or modify the existing blackbox sizes. A blackbox size can be
specified in terms of an estimated area (an actual value or an area value in terms of gate count), or
a fixed block width and height.

September 2022 151 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Blackbox-based Flow

The following flow specifies blackboxes with an original netlist that has modules with content that is
not well-defined:

Import the design.
Note: Users can import their blocks even if they are partially defined, or undefined, and then
convert them into Blackboxes to continue with prototyping flow. During importing, the Innovus
software by default would keep the empty modules.
Specify the blackboxes or load a floorplan file with blackbox information.

Floorplan the design.

(Optional) Save the design, which saves the blackbox information.

Run placement.

(Optional) Run earlyGlobalRoute.

Saving Blackbox

Proceed with the normal hierarchical flow for the design. To save blackbox information, use the
saveDesign command or the File - Save Design menu command.

Reshaping Blackbox

During proto_design, a blackbox can be reshaped (within specified aspect ratio range) to minimize
overlaps. This reshape is based on the minimum and maximum values for the aspect ratio range
while maintaining the current area. The master and clone blackboxes are reshaped such that the
clone blackbox take the same size and shape as its master while meeting orientation constraints.

Removing Blackbox Specifications

A blackbox can be unspecified by using the unspecifyBlackBox command. If the blackbox is an
empty module in the netlist, then you can also convert it to a partition fence using
the convertBlackBoxToFence command.

Soc Architecture Info (SAI)

Soc Architecture Information (SAI) is new methodology for prototyping that is available from the 14.1
version of the software onwards. SAI allows design exploration floorplan creation and analysis at a
much earlier stage in the design flow. It is very useful in very early chip size study, hierarchical
floorplan analysis. Using this methodology you can begin design feasibility without a complete
netlist and get to enable Innovus floorplanning.

September 2022 152 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

../innovusTCR/earlyGlobalRoute.html
../innovusTCR/saveDesign.html
../innovusTCR/proto_design.html
../innovusTCR/unspecifyBlackBox.html
../innovusTCR/convertBlackBoxToFence.html

Soc Architecture Info (SAI)

Soc Architecture Information (SAI) is new methodology for prototyping that is available from the 14.1
version of the software onwards. SAI allows design exploration floorplan creation and analysis at a
much earlier stage in the design flow. It is very useful in very early chip size study, hierarchical
floorplan analysis. Using this methodology you can begin design feasibility without a complete
netlist and get to enable Innovus floorplanning.

SoC Architecture Info (SAI) File

SAI flow is simple and is mainly driven by the way the Chip Architecture and IPs information is
captured:

Reference unit “gate” from the foundry specification

Reference flop

Macros or special IPs

Memory with different sizes and ports

Bus connection

Soft modules (partitions)

September 2022 153 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Clocks

Floorplan dimension

SAI architecture as seen can contain the details, such as reference gate, IP information, reference
flop, partitions, partial netlist, clock, and floorplan information.
Basically one can build upon the design by providing this content information using the SAI
commands.

Through SAI, you can create an ideal mechanism for communicating between front-end and back-
end designers.

Netlist Creation

SAI can be used to generate an initial netlist for floorplanning. This netlist can be generated in a few
minutes and be ready for Innovus floorplanning.

Innovus Schematics Display

You can also visualize the content that has been built upon from SAI using the Innovus schematic
display.

September 2022 154 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Automatic Netlist Creation Flow with SoC Architecture Info(SAI)

Based on specified SAI architecture information, Innovus creates a netlist to enable Innovus
floorplanning as follows:

Parse a partial netlist and the SAI file to create a netlist that has SAI-content added

Add dummy cells to mimic the size of the define modules (RFQ)

Basically add gut information to the module

Add a dummy flop to mimic the boundary connection from module to module

Add a dummy memory or the real memory in order to assist subchip floorplan

Add pipe line stage registers as per the specification in the connection file

Create a sdc timing constraints file for the defined boundary connection and read into Innovus

Define the die size and read into Innovus

Create all the net groups and pipeline net groups

Handle master-clone where connection model is single-driver but multiple receiver

Once the netlist has been created, you should go thru the same flow as Innovus

September 2022 155 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

floorplanning/prototyping flow.

Possible Application of SAI/FlexModel Flows

SAI can be used along with FlexModel in different phases of prototyping. The following diagram
shows the possible application of SAI with FlexModel.

SAI based Black-Box Time Budgeting Flow

SAI features is helpful in scenarios where you implement a time budgeting flow from a hierarchical
netlist consisting of BlackBox.

September 2022 156 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

FlexModel

For more information, refer to the FlexModel section.

Supporting Giga-Scale Designs in Planning stage
As the design size grows to 10s or 100s of millions of instances, serious capacity and run time
limitations start occurring in various parts of the Hierarchical Planning stages. Addressing these
limitations need advanced modeling techniques and capabilities in the flow. FlexModels provide a
very light-weight abstraction for the partitions that can help reduce the design netlist up to 95%,
leading to higher capacity and faster runtimes through the Planning stages. Besides using
FlexModel technology, Active-logic Reduction Technology can be used to reduce timing graph.

Active-logic Reduction Technology
Active-logic Reduction Technology (ART) is a technique that is used to activate a certain portion of
logic in a design and masking the other logic, while maintaining full physical design database in
memory. In ART, an active logic view contains only the active portion of the logic. ART can be
applied to any timing-related command, such as timing budgeting or timing optimization to reduce
run time and memory usage. In timing operations, an active logic view contains only the set of
timing paths exposed to the specific operation. When applied to timing optimization, active logic
views enable cross-hierarchical optimization while preserving the full hierarchical view of the
design after optimization is complete.

September 2022 157 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Top-level Timing Closure
Innovus provides strong block modeling capabilities for efficient closure of top-level design.

Using Interface Logic Models (ILM)
An Interface Logic Model (ILM) is a structural representation of a block, specifically a subset of the
block's structure including instances along the I/O timing paths, clock-tree instances, and instances
or net coupling affecting the signal integrity (SI) on I/O timing paths. It is a compact and accurate
representation of timing characteristics of a block. Instead of using a blackbox at the top level, you
create an ILM at the block level and use it as you would use a blackbox.

The advantages of using ILMs are as follows:

More accurate analysis than a blackbox flow

More SI aware than combined .lib or .cdb approach

Can model clock generator inside block

More accurate timing and SI reduces the number of design iterations to close timing and SI

No need to characterize blocks

Works on a actual design data

Can be used in the initial prototyping stage for very big designs, when loading full design data
is not feasible

Allows you to modify only top-level data

Fully preserves implemented partitions

Uses the original constraint file for top-level analysis

No abstraction for timing exceptions

While ILMs serve well for accurately modeling Partition timing characteristics to drive faster design
convergence, they cannot be modified to close timing at the top-level, if needed, to avoid iterations
between block and top-level optimizations. This is an important challenge of Hierarchical
implementation.

September 2022 158 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Using Flexible Interface Logic Models (FlexILM)
Designers may need to do at least two or three passes of hierarchical flow to close timing. To
address this challenge, a single-pass hierarchical solution with Flexible Interface Logic Models
(FlexILM) can be used. FlexILM is a reduced netlist where logic on interface paths are kept and
logic on internal paths are removed. FlexILM also reduces memory in timing graph and physical
data where removed instances are replaced by placement blockages to avoid violations with new
optimized logics. Additionally, routing of removed nets is be replaced by RC grids to improve RC
extracted correlation. At the top-level design, interface paths of FlexILMs can be optimized, and
netlist and placement changes can be ECO back to partition blocks automatically.

September 2022 159 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Note: For information on how to create a FlexILM model using the Integrated Hierarchical
Database (iHDB) flow, see Top-level Timing Closure Methodologies for iHDB Flow.

Note: For the Integrated Hierarchical Database (iHDB) flow, chip assembly is done using
set_module_model and commit_module_model commands.

Note: For information on how to bring together all the top-level and block-level netlists and
routing information in the iHDB flow, see "Chip Assembly for iHDB Flow"" section of the
Partitioning the Design chapter.

To know more about the Integrated Hierarchical Database Flow, see Integrated Hierarchical
Database Flow.

September 2022 160 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Chip Assembly
Chip assembly is the last stage in the top-down process and consists of bringing together the
detailed information for the top-level and all of the blocks for full chip extraction, power, timing, and
crosstalk analysis. Chip assembly is done using the assembleDesign command.

Before using the assembleDesign command, for each design, save the top-level and the block-level
designs using the saveDesign -def command. Designs should be saved with a def file so that it can
be used for assembling back the designs using the DEF merge capability for a fast turn around
time.

Note: In case of Tempus ECO flow usage, the checkPlace command must be run after the
assembleDesign command and all violations must be fixed in order get the best possible QOR with
the Tempus physical ECO feature.

As an example, consider a design called dtmf that has two partitions: a1 and b1. After running the
partition command, the partition directories are saved under the PTN directory. You would,
therefore, implement the following:

The design files are a1.enc and a1.enc.dat for a1 block and b1.enc and b1.enc.dat for b1
block. The following figure shows the directory structure:

Note: For the Integrated Hierarchical Database (iHDB) flow, chip assembly is done using
set_module_model and commit_module_model commands.

Note: For information on how to bring together all the top-level and block-level netlists and
routing information in the iHDB flow, see "Chip Assembly for iHDB Flow"" section of the
Partitioning the Design chapter.

To know more about the Integrated Hierarchical Database Flow, see Integrated Hierarchical
Database Flow.

September 2022 161 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

../innovusTCR/assembleDesign.html
../innovusTCR/saveDesign.html
../innovusTCR/checkPlace.html
../innovusTCR/assembleDesign.html
../innovusTCR/partition.html

Chip assembly also supports the DEF merge capability. You can use the direct block DEF
transform-and-merge approach during assembleDesign. The following are the advantages of the
DEF merge capability:

No partition LEF files are required

Lesser peak memory requirement

You can perform chip assembly using the assembleDesign command. This command does the
following:

Concatenates the Verilog netlist files from the partitions back to the top level
Note: The partition netlists and top-level netlist are changed from the time the save partition
step was performed.

Merges the design data with the original top design level. By default, data from DEF files is
used. However, you can use the -fe parameter to specify that Innovus data should be used.
You can also use data in the OpenAccess database format.

Rows at top-level design will be cut, and the rows at block-level design will be brought back

Preserves scan chain information at partition block-level design, therefore minimizing the
floorplan data loss during partition and assemble design cycle. The start and stop scan chain
points at partition block I/O pins are adjusted back to instances that connect to scan chain
points. Top-level scan chains are not connected to block-level scan chains.

Note: You must run the assembleDesign command from the directory that contains the full chip-level
floorplan for the top-down hierarchical flow.

September 2022 162 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

../innovusTCR/assembleDesign.html
../innovusTCR/assembleDesign.html
../innovusTCR/assembleDesign.html

Integrated Hierarchical Database

Overview
The Integrated Hierarchical Database (iHDB) flow capability enables you to easily navigate through
the hierarchical database and selectively open specific blocks in a specific block model to save
memory. This feature helps to traverse through multiple levels of hierarchy easily. It automatically
synchronizes the database changes from top-level to block level or vice versa.

With just a GUI click you can open a block-level database in an independent session. You can use
this session to:

Modify the database. For example, change the floorplan, update pin locations, change power
routing, or run the place_opt_design command.

Save the changes and create block models

Synchronize the changes back to the top-level design such that it includes the updated
changes.
Note: You can also generate the ECO diff report when changes are synchronized from the
top-level design to a block design.

The Integrated Hierarchical Database flow provides:

Provides a bird's-eye view through hierarchies. From the top-level design, you can view
lower level hierarchies.

Enables you to do DRC/Timing debugging across the boundary and multi-levels of logical
hierarchy.

September 2022 163 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Supports different models (such as ILM, FlexILM, LEF, etm, pnr DB, customized model) at the
block-level design.

Enables you to set or configure block models at the top-level design. It supports mix-and-
match model types and selective model view/tags. Additionally, it provides flexibility in saving
and restoring the hierarchical database configuration.

Supports global block database repository management as well as version control (SVN). It
also includes the utility to pack the block database repository and re-link libraries for
portability.

Note: The Integrated Hierarchical Database (iHDB) flow works with the "base" Innovus Digital
Implementation System license (the base license is the license used to invoke the software).
However, you do require an additional Hierarchical license to use the commit_module_model
command for the pnr and FlexILM model types.

Integrated Hierarchical Database Flow: Examples

Partitioning and Creating Initial iHDB

The following is a sample of a Tcl script for partitioning and creating the initial Integrated
Hierarchical Database:

Define module models repository

set_module_model –default_dir /myproject/DATA

Note: If set_module_model –default_dir is not specified, the Innovus system does not set any
directory by default. Later on, when you try to run the restore_module_model command, it displays
an error message that the -default_dir parameter is not set.

restore_module_model myTopCell –tag myTagName

Place design

Feedthrough and pin assignment

deriveTimingBudget –cycleRatio

partition

savePartition –module_model_tag mytagName

It is mandatory to specify the tag name here.

September 2022 164 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Block Model Generation

The following is a sample of a Tcl script for block model generation in the Integrated Hierarchical
Database (iHDB) flow:

Define module models repository

set_module_model –default_dir /myproject/DATA

set_module_model -default_options {stripes_pins -pg_pin_layers {M2 M3 M4}} -type lef

restore_module_model blockCellName -tag init

Place and optimize the design

Insert clock tree

Route the design

create_module_model –tag preCTS; # This will create pnr and lef models.

create_module_model -tag preCTS -type ilm

September 2022 165 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Top-level Instantiation

The following is a sample of a Tcl script for top-level instantiation in the Integrated Hierarchical
Database (iHDB) flow:

set_module_model –default_dir /myproject/DATA

restore_module_model myTopDesign -tag init

set_module_model -cells * -type lef

Latest tag will be used for all cells since –tag option is not specified

set_module_model -cells ptn_wrapper –tag preCTS -type flexIlm

set_module_model -cells ram_128x16_test –tag latest -type pnr

commit_module_model

set_module_model -cells tdsp_core -type ilm -update

commit_module_model

report_module_model

September 2022 166 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Integrated Hierarchical Database Repository Management
The Integrated Hierarchical Database flow supports global database repository management as
well as simple version control. To manage the database:

Use the set_module_model -default_dir command to specify the default location where the
module models will be loaded or saved.

Create or update the module models using the following commands:

savePartition –module_model_tag

With the -module_model_tag parameter, the savePartition command saves top and
block level pnr module models into the Stylus global hierarchical database
repository. These block-level and top-level pnr models can be used for implementing the
block-level and top-level designs, respectively.

create_module_model

This command creates and saves the specified module models into the global database
repository.

Restore top cell (block db) database in a consistent way using the restore_module_model
command.

September 2022 167 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

The logical structure of the global database repository has the default directory
(set_module_model -default_dir) on the top. All the cells or module models are configured under
the default directory. Each cell name is associated with a user-defined tag name that can be used
as simple version control. These tags names can be a design stage/status name such as ‘prects’,
‘cts’, etc. It can be any name except 'latest'.

Note: The 'latest' tag will be used if this a tag name is not specified. Latest tag will point to the latest
saved tag directory.

Example:

The following is the example of the disk directory structure:

set_module_model -default_dir /myproject/DATA

Note: Cadence recommends you to specify all the hierarchical DB default settings in an Innovus
environment file (.encrc) at the current run directory so that you do not need to specify them in two
run scripts.

For example:

setMultiCpuUsage -localCpu 4

September 2022 168 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

set_module_model -default_dir /myproject/DATA

Creating a Module Model
To create a module model:, do the following:

1. Use the set_module_model -default_dir command to specify the default central directory
name where models data will be saved/loaded.
For example, set_module_model –default_dir /myproject/DATA

2. Use the restore_module_model command to restore a block-level design from a default
module model repository.
For example, the following command restores the myTopCell database and uses the "latest"
tag.
restore_module_model myTopCell -tag latest

3. Implement the block-level design.

4. Use the create_module_model command to create a module model and save different types of
models. It honors the set_module_model –default_options command settings.

Setting and Commit a Module Model
A module model type can be set or configured at a top-level design using the set_module_model
command. It supports:

Mix and match models types

Selective view or tag information

Wildcard for cell names where Innovus will automatically set all models at top-level based on
their existence in the global DB repository.

Once the specified type of module models are specified, the commit_module_model command
should be run to load the specified models.

Example:

Latest tag will be used for all cells since –tag option is not specified

set_module_model -cells * -type lef

set_module_model -cells ptn_wrapper –tag preCTS -type flexIlm

set_module_model -cells ram_128x16_test –tag latest -type pnr

September 2022 169 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

commit_module_model

set_module_model -cells tdsp_core -type ilm -update

commit_module_model

Updating a Module Model
The Integrated Hierarchical Database provides the ability to reflect the floorplan changes from the
top to the block database and vise-versa using the update_module_model command.

Floorplan changes made at the top-level can be updated to a block-design in an independent
session.

Changes made at block-level design can be updated to top-level design once exiting an
independent session to go back to top-level design. By default, an updated LEF of the same
tag will be brought back to top-level design. However, the LEF model will not be updated if
you do not re-generate the updated models at block-level design using the
create_module_model command.

The update_module_model command can invoke an Innovus independent session with in interactive
or batch mode.

September 2022 170 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Interactive Mode

For interactive mode, move the cursor on top of a model and click on 'Open as Full Block DB in
New Session' option from the context pop-up menu to open an independent session in GUI.

Batch Mode

For batch mode, the -plugin_tcl parameter should be specified with the list of TCL commands that
will be executed at block level design. Once the block design has been re-implemented with the
new floorplan change, updated models should be re-generated.

September 2022 171 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Example: Open an Innovus independent session with the ptn_wrapper block-level design (pnr) to
do ECO route and generate update module models (pnr/LEF/ILM/FlexILM):

update_module_model -cell ptn_wrapper -plugin_tcl {

ecoRoute

create_module_model

create_module_model -type ilm

create_module_model -type flexilm

}

Importing/Converting an Existing DB(*.enc.dat) to a Hierarchical
Module Model
To convert an existing Innovus database into a hierarchical module model, do the following:

1. Specify the default central directory name where the module models data will be
saved/loaded. For example:
set_module_model –default_dir /myproject/DATA

2. Restore the existing database from the default module model repository.
restoreDesign ./design/dtmf_recvr_core.enc.dat dtmf_recvr_core

3. Create a module model. By default, it will create pnr and LEF models.
create_module_model –tag start

Validating Budgeting Results
When you generate the timing budgets for partitions using the deriveTimingBudget command,
the checkPartitionSdc command can be used to validate the results. The validation ensures that
the timing data of the partitioned block is the same as that of the chip. This saves the ECO iteration
for the chips and partitioned blocks, and thereby reduces the overall design cycle time. You can use
checkPartitionSdc -module_model_tag command to specify the module model tag for the cell on
which the SDC comparison is to be done.

For example, the following commands validates the timing budgeting results for the specified
module model:

set_module_model -default_dir /myproject/DATA

checkPartitionSdc -chip scripts/chip.tcl -cells $block -module_model_tag init -no_top

September 2022 172 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Validating an ILM Model
You can use the check_module_model command to check and validate an ILM model to see if
current reduction ratio will cause:

Missing constraints at the hinst terminal

Slack difference

The check_module_model command compares/checks the target timing result with the reference
timing result and generates a summary and detailed report.

Note: If a specified cell has more than one instantiated modules, all hinst terminals are checked
and reported.

Usage Model:

Generate a reference ILM model with the createInterfaceLogic -keepAll option and a
target ILM model with user-specified settings.
Note: The reference ILM model should be specified with the same user-specified settings as
the target ILM model.

Restore the top-level design and set/commit target ILM model(s).

Time the design.

Call check_module_model

Example:

restore_module_model top –tag init

set_module_model –cell A –type ilm –tag pre_cts

set_module_model –cell B –type ilm –tag pre_cts

commit_module_model –mmmc_file full_chip_view_definition.tcl

timeDesign –preCTS

check_module_model –cell A –ref_tag ilm_reference –type ilm –out_file

check_module_model.rpt

September 2022 173 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Working with Nested ILMs in the iHDB Flow
ILM models (donut models) of all levels of hierarchy can be specified at top-level design for top-
level timing closure. The following is a sample of a Tcl script for specifying nested ILMs in the iHDB
flow:

1. Specify the default central directory name where the module models data will be
saved/loaded. For example:
set_module_model –default_dir ./DATA2

2. Restore the top-level design:
restore_module_model dtmf_recvr_core -tag init

3. Specify all ILMs included nested ones:
set_module_model -cell tdsp_core -tag my_preCts -type ilm

set_module_model -cell ptn_wrapper -tag my_preCts -type ilm

set_module_model -cell ram_128x16_test -tag my_preCts -type ilm

4. Commit flexILM
commit_module_model

5. Execute the pre-CTS flow with both placement and pre-CTS optimization.
place_opt_design

6. Create a module model.
create_module_model -tag top_pod

Controlling the Physical View Visibility of ILMs
While configuring ILM type of module models (set_module_model -type ilm), you can use the
pnr_view add_ons model to see the complete physical view of an ILM including routing, cells, etc.

For example:

set_module_model -default_dir ./DATA –cell tdsp_core –type ilm –tag my_tag –add_ons

{pnr_view}

Note: A pnr_view add_on model is an independent container. When you move a pnr_view, all
object that belong to it will also move.

September 2022 174 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

The Inside ILM checkbox in the All Colors panel is the global control for all ILM displays. It
controls the visibility and selectability of ILM models. When this option is enabled, the details of the
ILM are displayed but if this option is disabled, an ILM block is displayed instead. While configuring
ILM type of module models (set_module_model -type ilm), you can use the pnr_view add_ons
model to see the complete physical view of an ILM including routing, cells, etc.

September 2022 175 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

You can turn on or off the visibility and selectability of a specific ILM model by using the Load ILM
Physical View from the right-click context menu.

September 2022 176 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

The following table summarizes the updated ILM view settings:

Example of Using Hierarchical DB for Timing Debugging and
Floorplan Editing

1. Consider a design where timing is not met. The root cause of timing violation may be due to
bad pin location.

Inside
ILM checkbox
in Color Panel

Load ILM Physical View
checkbox in a specific
ILM context menu

Show/Hide Object in ILM block

On On Pnr physical view of the block is
displayed.

Note: If the pnr physical view is not
available in memory then it is dynamically
loaded.

On Off ILM global view is displayed.

Off On Hidden

Off Off Hidden

September 2022 177 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

restore_module_model -tag init

set_module_model -cell * -tag post_route -type flexilm

commit_module_model -mmmc_file chip.enc.dat/viewdefinition.tcl

2. Adjust the pin location of a block at the top-level database.

September 2022 178 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

3. Open the block level database of the modified block module in an independent session to
update the block design with pin location change using update_module_model command.
Modified pin location is automatically updated at block-level design.
For example, the following commands can be used at block-level design to run ECO route
based on the new pin location and re-generate all models(LEF/ILM/flexIlm/Full DB):
update_module_model -cell ptn_wrapper -plugin_tcl {

ecoRoute

create_module_model

create_module_model -type ilm

create_module_model -type flexilm

}

September 2022 179 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

4. Once the independent session is exits, the main Innovus session will be resumed and the
new re-generated model of the same is automatically updated at the top-level design.
set_module_model -cell ptn_wrapper -type lef

commit_module_model

earlyGlobalRoute

set_module_model -cell * -tag latest -type flexilm

commit_module_model -mmmc_file chip.enc.dat/viewdefinition.tcl

You can check the timing again and see the difference.

September 2022 180 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Hierarchical Extraction
The iHDB flow supports hierarchical extraction where the tool can generate parasitic information of
a target instance that includes the routing surrounding the target block at its parent level design and
detailed extracted LEF(s) of its lower-level hierarchy block(s).

Following is the use model for the high level hierarchical extraction flow for the target instance
ptn_wrapper (N level) that is instantiated at dtmf_revcr_core design (N-1 level) and it has
ram_128X1_test as the lower level hierarchy (N+1 level):

September 2022 181 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Session 1: Lower-level (N+1)

Create detailed LEF models for N+1 level blocks (ram_128x16_test).
restore_module_model ram_128x16_test –tag init

set_module_model –default_options {-cutObsToExposeRouting 20} –type lef

create_module_model –type lef –tag my_extract_v1

Session 2: Upper-level (N-1)

At N-1 level design (dtmf_recvr_core), create extraction_context _model that has routing
information within specified halo extension around target instance (ptn_wrapper)

restore_module_model dtmf_recver_core -tag init

set_module_model –cell ptn_wrapper –tag my_extract_v1 –type lef

write_module_model_context –type extraction_context -cell ptn_wrapper –

type_specific_options {-extension 50) –tag my_extract_v1

September 2022 182 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Session 3: Target-level (N)

Restore the N level design (ptn_wrapper) with its extraction_context add_ons model.

restore_module_model ptn_wrapper –tag my_extract_v1 –add_ons {extraction_context}

Set and commit the N+1 level detailed LEF model(s) (ram_128x16_test)

set_module_model –cell ram128x16_test –type lef –tag my_extract_v1

commit_module_model

Run Extraction
rcOut –spef …

Check-in Version Control (SVN)
Innovus supports a simple way for database version control using tags. Additionally, the Integrated
Hierarchical Database is compatible with the Apache subversion (SVN) that can be used for
controlling the database versions and revisions. For database version control in the Integrated
Hierarchical Database (iHDB) flow:

A central repository is set-up for checking-out data to the local working directory before
invoking Innovus.

Updated block data models are checked into the central repository after generating models for
block-level designs.

Data is checked-in and checked-out in a sequential order to avoid data locking issues.

September 2022 183 Product Version 22.10

 Innovus User Guide
Flows--Foundation Flow

Machine Learning Flow
Overview

Innovus Machine Learning Options

The Machine Learning Flow

Data Preparation

Model Training

Deployment

Correlation Test

September 2022 184 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

Overview
Although crucial for final power, performance, and area (PPA), preRoute and postRoute delay
correlation is difficult to achieve due to three major reasons:

Different routing topology between Early Global Route (EGR) and NanoRoute

Different RC engine at the preRoute and postRoute stages

Exclusion of coupling delay in the preRoute stage

To achieve a better convergence for final timing closure, users typically tune preRoute and
postRoute delay/timing correlation either by using different preRoute and postRoute settings, such
as clock uncertainty, timing derate, and RC Factor, or by applying some delay/RC settings to
introduce extra pessimism or optimism in the preRoute stage. These methods work on all the paths
and timing arcs arbitrarily. As a result, preRoute optimization either addresses some wrong paths
(pessimism) or misses some real critical paths (optimism), which would need to be fixed later in the
postRoute stage.

In such cases, the machine learning (ML) based preRoute opt flow provides the ideal solution for
improving PPA. In this flow, the basic idea is to learn postRoute delay from the routed database by
a supervised learning method. The ML-predicted delays are then fully integrated in preRoute
optimization to guide opt transforms. The advantage of this method is that ML-predicted delays are
calculated for every timing arc (net or cell) and are adjusted dynamically throughout the preRoute
optimization stage.

With the ML-based preRoute opt flow, better preRoute and postRoute delay/timing correlation are
shown in most designs, helping you achieve better final PPA and shorter Time-to-Market (TTM).

Innovus Machine Learning Options
The ML capability comprises two basic parts:

1. Training: The training part of the flow is used to generate ML-based specific models: Multiple
training runs may be required to generate the ML models. The training program can be done
outside Innovus. In addition, correlation tests can also be done through a testing program
outside Innovus.

2. Implementation: In the implementation part of the flow, the ML-based training models are used
to run the Innovus implementation flow.

September 2022 185 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

The INVS100 base product supports the ML-based flow, which can be used during placement and
optimization to improve PPA of the final design implementation. Innovus provides the following two
license options for the ML-based flow:

Name Short
Name

Product
Number

Command
Line
Name

Description

September 2022 186 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

The Machine Learning Flow

Data Preparation
If you are running the CCOpt flow, run the ML-based flow from a placed database:

Load the placed db.

Innovus
Machine
Learning
Training Option

Innovus
ML
Training
Opt

INVS66 dlTrain

and
dlTest

*External
binaries,
part of the
Innovus
installation
directory

Enables the
generation of
custom ML-
based training
models and
testing

At least one
INVS66 license
is required

Multiple training
licenses can be
purchased to
run training in
parallel

Innovus
Machine
Learning
Implementation
Option

Innovus
ML Impl
Opt

INVS65 invs_ml
Enables
Innovus ML
implementation
flow

At least one
INVS65 license
is required

September 2022 187 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

Run the following command:
setMachineLearningMode -training net_cell_delay

Run from ccopt_design to routeDesign.

Do not modify the original flow, except for adding setMachineLearningMode.

The data file is dumped out after routeDesign. The data file is named as
<design_name>_postroute.db. If you rename it, be sure to retain the postroute.db postfix in the
name.

In the Data Preparation step, data files are generated for the machine learning model training. The
current recommended flow is to run routeDesign from a pure CTS database without doing any
optimization, which is referred as the noOpt flow.

To simplify usage, the flow is customized to use the machine learning mode.
Add setMachineLearningMode -training <delay_type> and run your original flow. Do not make
any other modifications in the flow script.

The purpose of the Data Preparation flow is to generate data for model training. The databases
saved in the flow are not usable for further implementation because all optimizations are skipped in
this flow.

Model Training
The Model Training step of the ML-based flow is executed using the dlTrain external binary, which
is part of the Innovus installation directory. As mentioned previously, the training program can be
done outside Innovus.

September 2022 188 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

Note: Model training needs some extra packages that are not installed with Innovus. Contact your
Cadence representative for installation of these additional packages.

Deployment
In the Deployment step of the ML-based flow, the ML-predicted delays from the previous step
are fully integrated in preRoute optimization to guide opt transforms. By
setting setMachineLearningMode -deployment, postCTS optimization and TDGR previous layer
assignment will use ML-predicted delays.

The flow is as follows:

Load the placed db.

setMachineLearningMode -deployment {models}

Run from ccopt_design to postRoute.

Training Command
Use the following command for launching model training:

<innovus_installation>/bin/dlTrain -mode train -type <training_type> -datadir

<data_dir> -outdir <model_dir> -pybin <python_bin_dir> -log <log_file_name>

Here:

<data_dir> is the directory containing the dumped out data,
<design_name>_postroute.db, from the Data Preparation step.

<model_dir> is the directory containing the output model files (.pb) and training log files.
The model file (.pb) naming conventions are as follows:

net_slew_model: xxx_slew1_net_xxx.pb

net_delay_model: xxx_net_xxx.pb

cell_delay_model: xxx_slew1_cell_xxx.pb

<python_bin_dir> is the directory containing the python binary.

September 2022 189 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

Correlation Test
After completing the training ML delay model, you may want to check the accuracy of the trained ML
models by using a correlation test. In this test, the errors between ML delays and postRoute delays
(golden) are calculated and compared with the errors between preRoute delays and postRoute
delays (golden).

Test Command:

<innovus_installation>/bin/dlTest -preroute_db <preroute_db_name> -route_db
<route_db_name> -model <model_directory>

The delay correlation test will report delay error statistics by view, including ME (mean error), MAE
(mean absolute error), STD (error standard deviation) of PREROUTE vs POSTROUTE and ML vs
POSTROUTE. ML model accuracy is guaranteed by smaller ML vs POSTROUTE error
(MAE/STD). Scatter plots and histograms are also generated.

Detail Settings

Net model only:
setMachineLearningMode -deployment {net_delay <net_delay_model>}

Or

All net/cell models:
setMachineLearningMode -deployment {{net_delay net_delay_slew_model}

{cell_delay cell_delay_model}} -slew true

September 2022 190 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

Delay Correlation Test Result
View: <view1_name>
net_preroute_vs_ml delay_rise PREROUTE vs POSTROUTE: ME -3.106 MAE 4.450 STD

12.103 MIN -6.060e-01 MAX 4.820e-01 GOLDEN 10.999

net_preroute_vs_ml delay_fall PREROUTE vs POSTROUTE: ME -2.869 MAE 4.257 STD

11.478 MIN -5.440e-01 MAX 4.720e-01 GOLDEN 10.855

net_preroute_vs_ml delay_rise ML vs POSTROUTE: ME -1.925 MAE 3.379 STD 9.215 MIN

-6.030e-01 MAX 2.180e-01 GOLDEN 10.999

net_preroute_vs_ml delay_fall ML vs POSTROUTE: ME -1.625 MAE 3.169 STD 8.508 MIN

-5.240e-01 MAX 2.240e-01 GOLDEN 10.855

View: <view2_name>
net_preroute_vs_ml delay_rise PREROUTE vs POSTROUTE: ME -2.349 MAE 3.726 STD

9.773 MIN -4.330e-01 MAX 4.610e-01 GOLDEN 10.333

net_preroute_vs_ml delay_fall PREROUTE vs POSTROUTE ME -2.316 MAE 3.724 STD 9.736

MIN -4.300e-01 MAX 4.530e-01 GOLDEN 10.402

net_preroute_vs_ml delay_rise ML vs POSTROUTE: ME -1.211 MAE 2.746 STD 7.078 MIN

-5.680e-01 MAX 2.180e-01 GOLDEN 10.333

net_preroute_vs_ml delay_fall ML vs POSTROUTE: ME -1.109 MAE 2.710 STD 6.936 MIN

-4.950e-01 MAX 2.240e-01 GOLDEN 10.402

View: <view3_name>
net_preroute_vs_ml delay_rise PREROUTE vs POSTROUTE: ME -1.766 MAE 3.345 STD

8.747 MIN -5.460e-01 MAX 4.680e-01 GOLDEN 10.740

net_preroute_vs_ml delay_fall PREROUTE vs POSTROUTE: ME -1.961 MAE 3.544 STD

9.069 MIN -5.490e-01 MAX 4.620e-01 GOLDEN 11.109

net_preroute_vs_ml delay_rise ML vs POSTROUTE: ME -0.998 MAE 2.431 STD 6.273 MIN

-6.240e-01 MAX 2.410e-01 GOLDEN 10.740

net_preroute_vs_ml delay_fall ML vs POSTROUTE: ME -1.014 MAE 2.552 STD 6.448 MIN

-5.950e-01 MAX 2.480e-01 GOLDEN 11.109

September 2022 191 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

Typically, correlation should be tested on two databases, before and after routing, with the same
netlist.

Usually, the delay correlation is tested on databases saved in the Data Preparation flow (noOpt
flow), in which trackOpt is turned off internally. The databases saved before and
after routeDesign can be used directly for correlation test because they have the same netlist.

September 2022 192 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

However, if you want to test the ML model correlation in databases with different netlists rather than
that in the noOpt flow (for example, using the database saved in the refOpt flow, which is the
database after running routeDesign -trackOpt in the baseline run), you need to specify only -
route_db in the test command, and the preroute_db can be generated from dlTest itself by calling
earlyGlobalRoute on the specified route_db to make sure that you are performing correlation test
on pre-route and post-route databases with the same netlist.

September 2022 193 Product Version 22.10

 Innovus User Guide
Flows--Machine Learning Flow

3

Design Import and Export Capabilities

Data Preparation

Importing and Exporting Designs

September 2022 194 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities

Data Preparation
Generating a Technology File

Creating Technology Information Using LEF

Creating Technology Information Using OpenAccess

Preparing Physical Libraries

Using LEF to Create Physical Libraries

Creating OpenAccess Physical Libraries

Unsupported LEF and DEF Syntax

Unsupported LEF 5.7 Syntax

Unsupported DEF 5.7 Syntax

Generating the I/O Assignment File

Creating an I/O Assignment File

Specifying Area I/O Information

Creating a Rule-Based I/O Assignment File

I/O Pad and Pin Assignment Examples

Assigning Pads for Multiple Rows

Assigning Module Pins

Recognizing Multiple Corner Cells

Performing Area I/O Placement

Defining the Connection between a Bump and P/G Pin Shape

Defining BUMP CELL in LEF

Defining BUMP CELL Placement Status

Importing LEF Files

Preparing Timing Libraries

Encrypting Libraries

Parameters

September 2022 195 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

Preparing Timing Constraints

Preparing Capacitance Tables

Preparing Data for Delay Calculation

Preparing Data for Crosstalk Analysis

Checking Designs

Preparing Data in the Timing Closure Design Flow

Converting iPRT Format to LEF

September 2022 196 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

 Generating a Technology File
The technology file provides the software with design rules for placement and routing, and
interconnect resistance and capacitance data for generating RC values and wireload models for the
design. The technology file also contains process information for the metal interconnect layers,
including metal thickness, metal resistance, and line-to-line capacitance values of metal layers, for
determining coupling capacitance.

Creating Technology Information Using LEF
You can use the Library Exchange Format (LEF) to specify technology information. If you do not
have LEF technology information, refer to the LEF/DEF Language Reference for details on
specifying the information manually.

Creating Technology Information Using OpenAccess
You can also create technology information equivalent to the information you specify in LEF, but in
an OpenAccess database format. This allows you to share technology information easily among
tools that support the OpenAccess standard.

Preparing Physical Libraries
To run the software, you must create physical libraries (cells and macros).

If you have a complete LEF file that contains all cells in the design, and process technology
information, then you can import a LEF file.

Using LEF to Create Physical Libraries
You can use the following methods for creating abstracts for each leaf cell in the design.

Use the Abstract Generator.
For more information, see the Cadence Abstract Generator User Guide.

Create LEF MACROs manually.
For more information, see the LEF/DEF Language Reference.

September 2022 197 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

../lefdefref/lefdefrefTOC.html
../lefdefref/lefdefrefTOC.html

Creating OpenAccess Physical Libraries
You can translate the LEF MACROs to OpenAccess format by using a LEF-to-OpenAccess translator.
This allows you to share libraries easily among tools supporting OpenAccess standard.

 Unsupported LEF and DEF Syntax
The software supports most of the syntax statements in the 5.7 versions of LEF and DEF with the
exception of the ones listed below.

Unsupported LEF 5.7 Syntax
The software parses but ignores the following LEF 5.7 syntax:

LEF Statement Unsupported Syntax

Layer (Routing) [DIAGWIDTH diagWidth ;]

[DIAGSPACING diagSpacing ;]

[DIAGMINEDGELENGTH diagLength ;]

[SLOTWIREWIDTH minWidth ;]

[SLOTWIRELENGTH minLength ;]

[SLOTWIDTH minWidth ;]

[SLOTLENGTH minLength ;]

[MAXADJACENTSLOTSPACING spacing ;]

[MAXCOAXIALSLOTSPACING spacing ;]

[MAXEDGESLOTSPACING spacing ;]

[SPLITWIREWIDTH minWidth ;]

[HEIGHT distance ;]

[SHRINKAGE distance ;]

[CAPMULTIPLIER value ;]

Macro Pin [TAPERRULE ruleName ;]

[NETEXPR " netExprPropName defaultNetName " ;]

September 2022 198 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

The following LEF 5.7 syntax causes an error message in the Innovus software:

Unsupported DEF 5.7 Syntax
The Innovus software parses but ignores the following DEF 5.7 syntax:

Nondefault Rule [DIAGWIDTH diagWidth ;]

[HARDSPACING ;]

[USEVIARULE viaRuleName ;]

Via Rule Generate [DEFAULT]

LEF Statement Unsupported Syntax

Layer (Routing) DIRECTION {DIAG45 | DIAG135} ;

DEF
Statement

Unsupported Syntax

Blockages [+ SLOTS]

Groups [+ PROPERTY { propName propValue }...]

Extensions All BEGINEXT syntax

History All HISTORY syntax

September 2022 199 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

Nets [+ SYNTHESIZED]

[+ VPIN vpinName [LAYER layerName] pt pt

 [PLACED pt orient | FIXED pt orient | COVER pt orient]]

[+ SUBNET subNetName

 [({ compName pinName | PIN pinName | VPIN vpinName })]

 [NONDEFAULTRULE ruleName]]

Note: SUBNET NONDEFAULTRULE is ignored; routing uses rule for NET.

[+ USE {RESET | SCAN | TIEOFF}]

Note: Supports ANALOG, CLOCK, GROUND, POWER, and SIGNAL.

[+ PATTERN {STEINER | WIREDLOGIC}

[+ ESTCAP wireCapacitance]

[+ SOURCE {DIST | NETLIST | TEST | USER}

Pins [+ USE {TIEOFF | SCAN | RESET}

Note: Supports SIGNAL, POWER, GROUND, ANALOG, and CLOCK.

[+ DIRECTION FEEDTHRU]

[+ NETEXPR " netExprPropName defaultNetName "]

[+ SUPPLYSENSITIVITY powerPinName]

[+ GROUNDSENSITIVITY groundPinName]

Pin
Properties

All PINPROPERTIES syntax

Property
Definitions

The object types: GROUP, REGION, and ROW

Regions [+ PROPERTY { propName propVal }...]

Rows [+ PROPERTY { propName propVal }...]

Slots All SLOTS syntax

September 2022 200 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

The following syntax causes an error message in the Innovus software:

Generating the I/O Assignment File
The I/O assignment file defines the rules that determine how the I/O instances (pad cells and area
I/O), I/O pins, bumps, and bump arrays are organized. The file is rule-based to specify exact
location, global spacing, individual spacing, skip, offset, keep clear, and corner information. You
can specify detailed rules to control the locations, or you can specify minimal or no rules to allow

Special
Nets

[+ SYNTHESIZED]

[+ VOLTAGE volts]

[+ SOURCE {DIST | NETLIST | USER}]

[+ USE {RESET | SCAN | TIEOFF}]

Note: Supports ANALOG, CLOCK, GROUND, POWER, and SIGNAL.

[+ PATTERN {STEINER | WIREDLOGIC}]

[+ ESTCAP wireCapacitance]

[+ WEIGHT weight]

Note: + WEIGHT only supported in NETS section.

Special Wiring Statement:

[+ STYLE styleNum]

Note: If included in the DEF file, the software displays an error message
stating that only the default style is supported, ignores the specified style,
and replaces it with the default one.

Styles All STYLES syntax

DEF Statement Unsupported Syntax

Nets

(Regular Wiring Statement)

[orient]

[STYLE styleNum]

September 2022 201 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

Innovus to determine the locations automatically.

Innovus does not require you to create an I/O assignment file to run the software. If you do not
specify an I/O assignment file when you import a design, I/Os are assigned randomly.

If you do not specify an I/O assignment file, but you want to set I/O pin or pad placement, use a DEF
file. Load the DEF file after importing the design, then save the floorplan. You can also save the I/O
file to write a sequence file for rule-based work.

If you provide an I/O assignment file, you are not required to specify the exact location of all I/O
pads. You can specify the I/O row name to place the I/O pads in a specific I/O row. Also, if you do
not provide offset values, Innovus spaces the I/O pads evenly along the specified row. The spacing
between the corners and adjacent pads is the same as the spacing between the other pads.

This section discusses the following topics:

Creating an I/O Assignment File

Creating a Rule-Based I/O Assignment File

I/O Pad and Pin Assignment Examples

Performing Area I/O Placement

Creating an I/O Assignment File
You manually create an I/O assignment file using the following template:

(globals

 version = 3

 space = 0

 io_order = default

)

(row_margin

 (top

 (io_row ring_number = 1 margin = 0)

 (io_row ring_number = 2 margin = 630)

 (io_row ring_number = 3 margin = 830)

September 2022 202 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

)

 (bottom

 (io_row ring_number = 1 margin = 0)

 (io_row ring_number = 4 margin = 0)

 (io_row ring_number = 5 margin = 0)

)

 (left

 (io_row ring_number = 1 margin = 0)

 (io_row ring_number = 6 margin = 200)

 (io_row ring_number = 7 margin = 0)

)

 (right

 (io_row ring_number = 1 margin = 0)

 (io_row ring_number = 8 margin = 200)

)

)

(iopad

 (topleft

 (locals ring_number = 1)

 (inst name="ins_0")

)

 (left

 (locals ring_number = 6)

(inst name="ins_5" offset = 5896.2)

(inst name="ins_7" space = 5)

September 2022 203 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

(inst name="ins_9" place_status = placed)

(inst name="ins_10" orientation = R0)

(inst name="ins_11")

(inst name="ins_12")

(inst name="ins_14" space = 0)

 (locals ring_number = 7)

(inst name="ins_6" offset = 5826.4)

(inst name="ins_8")

(inst name="ins_13")

(inst name="ins_15")

(inst name="ins_17")

(inst name="ins_19")

(inst name="ins_21")

(inst name="ins_23")

(inst name="ins_25")

(bottomleft

 (locals ring_number = 1)

 (inst name="ins_1")

)

 (bottom

 (locals ring_number = 4)

(inst name="ins_167" offset = 3946.8)

(inst name="ins_168")

(inst name="ins_169" space = 5)

(inst name="ins_170")

(inst name="ins_171")

September 2022 204 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

(inst name="ins_172" space = 0)

(inst name="ins_173")

(inst name="ins_174")

(inst name="ins_175")

(inst name="ins_176")

 (locals ring_number = 5)

(inst name="ins_261" offset = 11812.3)

(inst name="ins_262")

(inst name="ins_263")

(inst name="ins_264")

(inst name="ins_265")

(inst name="ins_266")

(inst name="ins_267")

(bottomright

 (locals ring_number = 1)

(inst name="ins_2" orientation=R0)

)

 (right

 (locals ring_number = 8)

(inst name="ins_313" offset = 200)

(inst name="ins_315")

(inst name="ins_316")

(inst name="ins_318")

(inst name="ins_320")

(inst name="ins_322")

(inst name="ins_324")

(inst name="ins_326")

September 2022 205 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

(inst name="ins_328")

(inst name="ins_330")

(inst name="ins_332")

(inst name="ins_334")

(inst name="ins_336")

(inst name="ins_337")

(inst name="ins_338")

(inst name="ins_339")

(inst name="ins_341")

(inst name="ins_343")

(inst name="ins_344")

(topright

 (locals ring_number = 1)

(inst name="ins_3")

)

(top

 (locals ring_number = 2)

 (inst name="ins_610" offset = 100)

 (locals ring_number = 3)

(inst name="ins_611" offset = 200)

(inst name="ins_612")

(inst name="ins_614")

(inst name="ins_616")

(inst name="ins_617")

(inst name="ins_619")

)

)

September 2022 206 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

The following entries are included in the template:

globals

version = 3 Specifies the beginning of a new I/O format.

io_order Specifies the order of the I/O pads and pins. This can be:

clockwise

counterclockwise

default

Note: The default I/O order for a vertical edge is from the bottom to
the top, and for a horizontal edge, it is from the left to the right.

total_edge Specifies the number of edges for the rectilinear block design.

The edges are numbered starting from 0. For example, if the
total_edge is 4, then the edges are numbered as edge 0, edge 1,
edge 2, and edge 3.

Note: You must verify that the total number of edges that you specify
matches with the value in the destination design.

space Specifies the global I/O pin spacing, in µmeters.

iopad locals

space Specifies the local I/O pad spacing, in µmeters.

Note: This space setting is honored by the first cell on one edge,
when xy or offset is not specified.

ring_number Specifies the ring number in which the I/O pad is placed.

row_name Specifies the I/O row name.

iopad instance

name Specifies the name of the I/O instance.

x, y Specifies the absolute x,y location of the I/O pad instance, starting
from the lower left corner.

Note: Specifying x,y location for sides and edges of I/O pads is not
supported in the I/O file.

September 2022 207 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

skip Specifies the distance, in µmeters, of the I/O pad from the previously
defined I/O pad.

The value that you specify here is valid only for this cell.

space Specifies the spacing, in µmeters, between the pad being defined
and the previously defined pad.

The value that you specify here, overrides the global space setting.

offset Specifies the distance in microns from the IO ring edge to the pad
edge based on io_order constraint.

The value that you specify here is valid only for this cell.

Note: For one I/O pad, you can specify only one of the following parameters:

skip

space

offset

If you specify all the three parameters, only the last parameter that you define, is
considered for I/O pad placement.

September 2022 208 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

indent Specifies the offset, in µmeters, from the row margin.

However, for designs with single I/O ring, row margin is 0. Hence,
indent is the offset of the I/O pad from the die boundary.

orientation Specifies the orientation of the I/O.

place_status Specifies the placement status of the I/O pad instance. This can be:

placed

covered

fixed

Default : fixed.

September 2022 209 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

keepclear Specifies an area on the chip where you cannot place pins or pads.
Specify a range between begin and end , in µmeters, on the chip
side in which pins and pads cannot be placed.

Note: You must define pad cells in the order in which they appear in
the design.

cell Specifies the physical I/O cell.

endspace gap Specifies the space, in µmeters, between the corner pad and the last
I/O pad for the specified side of the design.

iopin locals

September 2022 210 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

side Specifies the side of the I/O pin. This can be:

top | north

left | west

right | east

bottom | south

edge num = 0 Specifies the edge number of the I/O pin, with edge num = 0 starting
from the left side of the lowest y coordinate and the left most corner,
in the clockwise direction.

space Specifies the spacing, in µmeters, between the previously defined
pin and the pin being defined.

The value that you specify here, sets the global space setting.

iopin

pin name Specifies the name of a pin. Specify I/Os as pins for block designs.

layer Specifies the metal layer on which the pin must be placed.

width Specifies the width of the pin in µmeters. It is the length of the edge
that is centered at the reference point.

depth Specifies the length of the pin in µmeters.

up Specifies the details of internal
I/O pins.

x, y Specifies the absolute x,y location of the internal I/O pin.

Note: The I/O file supports specifying xy location for internal I/O pins
only.

September 2022 211 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

The following commands allow you to create multiple I/O rows on multiple rings:

Note: You can use the Edit I/O Ring form to specify I/O pad rings and row margins for multiple rows.
Alternatively, to achieve the same using text commands, you must first use the setIoRowMargin
 command to set the distance from the die boundary edge to start of each row and then use the
placePadIO command to place the I/O pads evenly between these rows.

Note: When creating the I/O assignment file, start comment lines with a pound (#) sign.

Example for margin/offset/space usage:

(globals
 version = 3

 space= <value>
 io_order = default

)

Specifies the incremented I/O pin edge number.

Row Margin

side Specifies the side of the I/O row margin. This can be:

top

north

left

west

right

east

bottom

south

ring_number Specifies the I/O ring number on which the I/O rows are placed, with
ring 1 being the outer most ring.

margin Specifies the distance, in microns, from the die boundary edge to the
I/O row edge.

September 2022 212 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

../innovusTCR/setIoRowMargin.html
../innovusTCR/placePadIO.html

(row_margin
 (top
 (io_row ring_number=1 margin=0.0000)
 (io_row ring_number=2 margin=55.0000)
)
 (left
 (io_row ring_number=1 margin=0.0000)
 (io_row ring_number=2 margin=65.0000)
)
 (bottom
 (io_row ring_number=1 margin=0.0000)
 (io_row ring_number=3 margin=75.0000)
)
 (right
 (io_row ring_number=1 margin=0.0000)
 (io_row ring_number=4 margin=85.0000)
)

)

(iopad
 (topright
 (locals ring_number=1)
 (inst name="CORNER_TL” orientation=R0)
)
 (top
 (locals ring_number=2)
 (inst name="ESD_3“ offset=80.0000 orientation=R0)
 (inst name="PAD_1“ space=50 place_status=placed)
)
 (topleft
)
 (left
)

 (bottomleft
)
 (bottom
)
 (bottomright

September 2022 213 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

)
 (right
)
)

Specifying Area I/O Information

You can also define the following objects in the I/O assignment file for area I/O placement:

Bump
A bump is a piece of metal that works as a bonding pad to the package. When defining a
bump, you must specify its master bump cell and its physical location. You can generate one
bump or mutiple bumps of the same bump cell type.

To define signal bumps, use the following syntax:
bump name="bump_name" cell="bumpcell" x=llx y=lly signal="net_name"

For example:
bump name="Bump_89_8_8" cell="BUMPCELL" x=855.7200 y=855.7200

signal="port_pad_data_in[1]"

To define power bumps, use the following syntax:
bump name="bump_name" cell="bumpcell" x=llx y=lly

 signal="net_name" type=power/ground

September 2022 214 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

For example:
bump name="Bump_90_9_8" cell="BUMPCELL" x=955.7200 y=855.7200 array="array_0"

signal="VDD" type=power

IOInst
This section specifies the preplaced area I/O instances. Define area I/O instances using the
following format:
inst name="inst_name" offset=value place_status=placed/fixed/covered

For example:
inst name="IOPADS_INST/Pibiasip" offset=35.2800 place_status=placed

Example of an Area I/O file

(globals
version = 3
io_order = default
)
(iopad
(top
(inst name="IOPADS_INST/Pibiasip" offset=35.2800 place_status=placed)
(inst name="IOPADS_INST/Ppllrstip" offset=108.8050 place_status=placed)

)
(left
(inst name="IOPADS_INST/Ptdspip03" offset=35.2800 place_status=placed)
(inst name="IOPADS_INST/Ptdspip04" offset=106.8500 place_status=placed)

)
(bottom
(inst name="IOPADS_INST/Pscanout1op" offset=35.2800 place_status=placed)
(inst name="IOPADS_INST/Pvcopop" offset=108.8050 place_status=placed)

)
(right
(inst name="IOPADS_INST/Ptdspop04" offset=35.2800 place_status=placed)
(inst name="IOPADS_INST/Ptdspop05" offset=112.3550 place_status=placed)

)
(bumps

(bump name="Bump_90_9_8" cell="BUMPCELL" x=955.7200 y=855.7200 signal="VDD" type=power

)

September 2022 215 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

(bump name="Bump_89_8_8" cell="BUMPCELL" x=855.7200 y=855.7200

signal="port_pad_data_in[1]")
(bump name="Bump_88_7_8" cell="BUMPCELL" x=755.7200 y=855.7200 signal="scan_en")

(bump name="Bump_58_7_5" cell="BUMPCELL" x=755.7200 y=555.7200 signal="VSS" type=ground

)

)

Creating a Rule-Based I/O Assignment File
To create a rule-based I/O assignment file:

1. Create an I/O assignment file with I/O pads in the proper sequence. This file can include VDD
and VSS filler pads.

2. Import the design.

3. After reviewing the I/O pads, choose File - Save - IO File.

4. On the Save IO File form, select sequence.

5. Edit the new file for reimporting, or use the loadIoFile command.

6. Save the floorplan to a file.

I/O Pad and Pin Assignment Examples
The following example shows statements in a sample I/O assignment file for I/O pads as shown in
the figure below:

version = 3

September 2022 216 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

io_order = clockwise

total_edge = 4

space = 1.06

(inst

 name = IOPADS_INST/pad1 W

 offset = 235.0000

 orientation = R0

 place_status = fixed

)

 (inst

 name = IOPADS_INST/pad2 W

 offset = 296.1250

 orientation = R0

 place_status = fixed

)

Assigning Pads for Multiple Rows

The following example shows statements in a sample I/O assignment file for multiple rows of I/O
pads as shown in the figure below:

version = 3

io_order = clockwise

September 2022 217 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

total_edge = 4

space = 1.06

iopad

(topright

 (locals

 ring_number = 1

)

 (instname = IOPADS_INST/pad1 W

 offset = 235.0000

)

 (locals

 ring_number = 2

)

 (instaname = IOPADS_INST/pad2 W

 offset = 296.1250

)

)

Assigning Module Pins

The following example shows an I/O assignment file for module pins as shown in the figure below:

September 2022 218 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

version = 3

(iopin

 (top | north | edge num = 0

 (locals

 space = 1.2

)

 (pin name = address[14] N

 layer = 3

 width = 0.28

 depth = 0.28

 offset = 19.4700

 place_status = fixed

)

 (pin name = address[14] N

 layer = 4

 width = 0.38

 depth = 0.38

 offset = 39.2700

 place_status = fixed

)

)

)

Recognizing Multiple Corner Cells

The following example shows multiple corner cells defined in I/O file. The loadIoFile command
recognizes the multiple corner cells defined in I/O file and place them in the right corner with right
orientation.

September 2022 219 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

version = 3

(iopad

(topright

(instname = CNR@0001

orientation = RO

cell = ZMGACS101N

)

(instname = CNR@0002

orientation = RO

cell = ZCGLSNEIS1A

)

)

)

 Performing Area I/O Placement
Before you begin area I/O placement, you must first specify CLASS PAD AREAIO, CLASS PAD or
CLASS BLOCK with CLASS BUMP in a LEF file. See the "Data preparation" section in the Flip Chip
Methodologies chapter.

Additionally, a SITE or region must be defined for the placeAIO command to place the CLASS PAD
AREAIO macro in the required location. The SITE must be referenced in the AREAIO macro.

The following example shows a SITE definition followed by a CLASS PAD AREAIO macro which refers
to the SITE.

SITE IO CLASS PAD ; SIZE 210 BY 100.8 ; END IO

MACRO INBUF

 CLASS PAD AREAIO ;

 FOREIGN INBUF 0.00 0.00 ;

September 2022 220 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

 ORIGIN 0 0 ;

 SIZE 210 BY 100.8 ;

 SYMMETRY X Y R90 ;

 SITE 10 ;

 PIN PAD

 DIRECTION INPUT ;

 USE SIGNAL ;

 PORT ;

 LAYER M6 ;

 RECT 95.0 40.0 115.0 60.0 ;

 END

 END PAD

Note: The bump status can be saved in the DEF file only if the bump status is FIXED or COVER. See
Defining BUMP CELL Placement Status.

Defining the Connection between a Bump and P/G Pin Shape

The flip chip router (area I/O) determines which power/ground pin shape on the I/O driver cell must
be connected to a bump. The following MACRO PIN statement added in the LEF 5.7 file specifies that
the port is a bump connection point for multiple pins.

MACRO PVDD1DGZ

 CLASS PAD AREAIO ;

FOREIGN PVDD1DGZ 0.000 0.000 ;

 ORIGIN 0.000 0.000 ;

 SIZE 40.000 BY 35.280 ;

 SYMMETRY x y r90 ;

 SITE IO1 ;

September 2022 221 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

PIN VDD

 DIRECTION OUTPUT ;

 USE POWER ;

 PORT

 CLASS BUMP ;

 LAYER METAL8 ;

 RECT 5.0 25.0 15.0 35.0 ;

 END

 END VDD

 END PVDD1DGZ

For more information, see "Macro Pin Statement" in the LEF/DEF Language Reference and the
"CLASS BUMP Attribute" section in the Flip Chip Methodologies chapter.

Defining BUMP CELL in LEF

Bumps must also be defined in a LEF file. The following example shows a BUMPCELL macro.

MACRO BUMPCELL

 CLASS COVER BUMP ;

 ORIGIN 0 0 ;

 SIZE 80.0 BY 80.0 ;

 SYMMETRY X Y ;

 PIN PAD

 DIRECTION INPUT ;

 USE SIGNAL ;

 PORT

 LAYER M6 ;

 RECT 0.0 0.0 80.0 80.0 ;

 #POLYGON 23.0 0.057.0 0.0 80.0 2

September 2022 222 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

 END

 END PAD

 END BUMPCELL

Defining BUMP CELL Placement Status

You can define the bump cell placement status, FIXED | COVER for a bump object in the design, in a
DEF/IN file or using the Attribute Editor in Innovus. The bump placement status, FIXED or COVER,
could be saved to DEF file.

Note: The default bump placement status is PLACED.

The following example shows the BUMP CELL placement status defined in the DEF file:

Bump: Bump_83_2_8 BUMPCELL 255.720 855.720 refclk -fixed -placeStatus placed

Bump: Bump_82_1_8 BUMPCELL 155.720 855.720 pllrst -fixed -placeStatus cover

Bump: Bump_81_0_8 BUMPCELL 55.720 855.720 ibias -fixed -placeStatus fixed

Importing LEF Files

To import the LEF files, use the following procedure:

1. Select File - Import Design.
The Design Import form appears.

2. On the Design page, enter the names of the Verilog files, and choose a top cell assignment
option.

3. In the LEF Files field, type the LEF file names to import, and include the file that contains
the CLASS PAD AREAIO statement. Or, you can click on the … icon to the right of the field to
select files.

4. Click OK.
The Design Import form closes and Innovus imports the data.

To load the floorplan and I/O assignment files separately, use the following procedure:

1. Select File - Load - Floorplan or run the loadFPlan text command.

2. Select File - Load - I/O File or run the loadIoFile text command.

September 2022 223 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

As an alternative, you can include the I/O assignment file in the floorplan file, add the following
statement to your floorplan file before loading your floorplan.

IOFile: iofile_name

Note: You can also specify area I/O rows in DEF or PDEF files.

For more information on the I/O assignment file, see "Creating an I/O Assignment File".

To save your floorplan and I/O assignment files, use the following procedure:

1. Select File - Save - Floorplan. Fill out the form and click Save.
As an alternative, you can specify the text command.

2. Select File - Save - I/O File. Fill out the form and click Save.
As an alternative, you can specify the text command.

To place area I/Os, use either the GUI or command line:

To place area I/Os from the GUI, select Tools - Flip Chip - Place & Route - Place Flip Chip I/O
- Area I/O. Fill out the form and click OK.

To place area I/Os from the command line, use the text command.
Specify the argument to place only the area I/Os on the area I/O rows. If you do not specify
this argument, all standard cell instances and blocks are also placed.

Specify the argument if you have unassigned bumps for area I/O instance connections. If you
specify this argument, area I/O instances are connected to the nearest unassigned bumps.

Note: You can also assign bumps after area I/O placement by using the command.

Preparing Timing Libraries
Timing library files contain timing information in ASCII format for all of the standard cells, blocks and
I/O pad cells. The Innovus software reads timing library format files (.tlf) or Technology Library
format files (.lib). You do not need to translate timing library files before reading them into the
software.

September 2022 224 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

Encrypting Libraries
To protect proprietary data, you can encrypt the ASCII library files. Use the lib_encrypt utility to
perform the encryption. The lib_encrypt utility is installed along with the Innovus software. To
encrypt the ASCII library file, use the following command:

lib_encrypt [-ogz] [-help] in_file out_file

Parameters

Preparing Timing Constraints
To import timing constraints, use the write_script or write_sdc command from within Genus.
These commands eliminate any variable substitution confusion, making them easier for the user
and the software to read.

Use the write_script command on the design inside dc_shell or pt_shell for the best results, for
example:

write_script -format {ptsh | dcsh | dctcl} -output fileName

Or inside Genus, you can use the following command:

write_sdc

You do not need to translate the DC constraints before reading them into the software.

Note: When reading in constraints, only read in one format type in a session.

-help Displays the syntax of the lib_encrypt command.

in_file Specifies the name of library file to be encrypted.

-ogz Creates a gzip file of the encrypted output library file.

out_file Specifies the name of the output file.

September 2022 225 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

Preparing Capacitance Tables
For accurate extraction results, use capacitance tables. You can generate and use separate
capacitance tables for different process corners.

For more information on preparing capacitance tables, see chapter RC Extraction.

Preparing Data for Delay Calculation
If you want to use the SignalStorm® nanometer delay calculator, see chapter Base Delay
Analysis for information about preparing ECSM libraries.

Preparing Data for Crosstalk Analysis
For information on preparing data for crosstalk analysis, see chapter Analyzing and Repairing
Crosstalk. For more information on preparing cdB noise libraries using the make_cdB utility, see the
"make_cdB Noise Characterizer User Guide."

Checking Designs
Before importing the design or running Innovus at various stages of the design process, you can
check for missing or inconsistent library and design data.

To perform these checks, use the following commands:

checkDesign

checkNetlist

check_timing

check_design

You can check for the following data:

Physical library

Timing library

Netlist

September 2022 226 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

../innovusTCR/checkDesign.html
../innovusTCR/checkNetlist.html
../innovusTCR/check_timing.html
../innovusTCR/check_design.html

I/Os

Tie-high and tie-low pins

Power and ground pins

Cadence recommends that you check libraries and data as follows:

Perform I/O checking at any time. I/O problems might not impede any tool, but they might add
to design problems.

Perform netlist checking at any time after the design has been loaded.

Perform physical library checking before floorplanning.

Perform power and ground checking before routing and extraction, and verifying geometry
and connectivity.

Perform timing library checking before any timing-related operation (for example, timing-driven
placement or routing, timing optimization, clock-tree synthesis, and static timing analysis).

Perform tie-high and tie-low checking before routing and extraction.

Preparing Data in the Timing Closure Design Flow
For information on preparing data for the timing closure design flow, see the Innovus Timing
Closure Guide.

Converting iPRT Format to LEF
The iprt2lef translator converts DRC rules, place-and-route technology data, and RCX data from
iDRC, iPRT and iRCX format to the technology LEF format.

For more information about this translator, refer to the iPRT to LEF Translator Application Note on
Cadence Online Support.

Note: You can use the Edit I/O Ring form to specify I/O pad rings and row margins for multiple rows.
Alternatively, to achieve the same using text commands, you must first use the setIoRowMargin
command to set the distance from the die boundary edge to start of each row and then use the
placePadIO command to place the I/O pads evenly between these rows.

September 2022 227 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Data Preparation

https://dsmpubs/icd_pubs_website/encounter/past_releases/14.1/timingclosure/timingclosureTOC.html
../innovusTCR/setIoRowMargin.html
../innovusTCR/placePadIO.html

Importing and Exporting Designs
Overview

Verifying Data before Importing a Design

Preparing the Design Netlist

The init_design Import Flow

init_design Simple Data Flow

Supported init_design Invocation Methods

Using a Pointer to an MMMC Configuration File

Using a Pointer to a CPF File

Using init_design with an Inline MMMC Script

Using Physical-Only Flow

Importing Designs using the GUI

Importing an OpenAccess Design

Importing a Design with LEF and Verilog

Loading a Previously Saved Global Variables File

Handling Verilog Assigns

Configuring the Setup for Multi-Mode Multi-Corner Analysis

Creating Library Sets

Editing a Library Set

Creating Virtual Operating Conditions

Creating RC Corner Objects

Creating Delay Calculation Corner Objects

Editing a Delay Corner Object

Adding a Power Domain Definition to a Delay Calculation Corner

Editing a Power Domain Definition

Creating Constraint Mode Objects

September 2022 228 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Editing a Constraint Mode Object

Entering Constraints Interactively

Constraint Support in Multi-Mode and Multi-Mode Multi-Corner Analysis

Creating Analysis Views

Setting Active Analysis Views

Guidelines for Setting Active Analysis Views

Changing the Default Active Analysis View

Checking the Multi-Mode Multi-Corner Configuration

Changing How the MMMC Browser Displays Configuration Information

Saving Multi-Mode Multi-Corner Configurations

Saving Designs

Saving an OpenAccess Design

Transferring OpenAccess Data between Innovus and Virtuoso for ECO

Loading and Saving Design Data

Loading a Partition

Loading Floorplan Data

Placement File Requirement

Loading an I/O Assignment File

Saving a Partition

Saving Floorplan Data

Saving and Restoring Timing Graph

Converting an Innovus Database to GDSII Stream or OASIS Format

Related Topics

Creating Cells and Instances

Renaming LEF Vias

Merging GDSII Stream or OASIS Files

Merging Files Using the Command Line

September 2022 229 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Merge Examples

Case 1

Case 2

Merging GDS/OASIS Files Using the GUI

About the GDSII Stream or OASIS Map File

Map Files

Flat Map File Format

Hierarchy Map File Format

Using Multiple Layers and Data Types

Updating Files During an Innovus Session

SKILL to TCL Mapping

September 2022 230 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Overview
The Innovus® Implementation System (Innovus) software provides the following options for saving,
restoring, importing, and exporting design data:

Verifying Data before Importing a Design
To check that Verilog, LEF, and .lib files are available at the beginning of an Innovus session, use
the following command:

setCheckMode -netlist true -library true

Innovus performs this check by default. To report the current checking mode, use the following
command:

getCheckMode

Starting
(importing)
designs

Allows you to specify data for starting or initializing a design.

Saving
designs

Allows you to save the work you complete on designs during a
design session for access at a later date.

Restoring
designs

Allows you to load saved data from a previous design session.

Loading
design
data

Allows you to load design data saved in various stages of the
design process, and to bring data from specific formats (DEF,
PDEF, SPEF, SDF, and OA Cellview) into the Innovus
environment.

Saving
and
exporting
design
data

Allows you to save design data in various stages of the design
process, and to export data in specific formats (DEF, PDEF,
GDS, and OASIS) from the Innovus environment.

September 2022 231 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Preparing the Design Netlist
The Innovus software requires that your Verilog® design netlist or OpenAccess netlist be unique so
that you can run Clock Tree Synthesis (CTS), Scan Reorder, and timing optimization features.

To ensure that the design is uniquified automatically after the top cell is flattened, set the
following global variable to 1:
init_design_uniquify

The init_design Import Flow
All designs are saved in Innovus using the init_design import model. In this design import model,
all analyses are configured the same way using the multi-mode/multi-corner (MMMC) style of
configuration, and the configurations are used directly for initialization.This section introduces the
basics of the init_design-based data flow. This section has the following subsections:

init_design Simple Data Flow

Supported init_design Invocation Methods

init_design Simple Data Flow
In the init_design-based data flow:

Global variables that store data explicitly required for the initialization process are prefixed
with init_.

All init_* global variables have help, can be queried, and are stored by saveDesign in the
.globals file.

Since MMMC syntax can be used to configure one mode or corner as well as many,
init_design relies on a valid MMMC specification to provide the necessary timing, SI,
constraint, and extraction related data for the system

Note: The Innovus init_design style configuration cannot be restored by 10.x or earlier releases of
the software directly.

init_* style variables are used to store design-level and physical data. For example, the
init_mmmc_file variable is the pointer to the file containing the MMMC configuration. In addition,
the init_cpf_file provides a pointer to the design's Common Power Format (CPF) file. This is
significant for initialization since an MMMC configuration can be derived from CPF. So while a valid

September 2022 232 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/init_design_uniquify.html
../innovusTCR/init_mmmc_file.html#init_mmmc_file-init_mmmc_file
../innovusTCR/init_cpf_file.html#init_cpf_file-init_cpf_file

MMMC configuration must be available for init_design, it is not required that it come specifically
from the init_mmmc_file pointer.

The Tcl global variables used by init_design are:

init_abstract_view

init_cpf_file

init_design_netlisttype

init_design_settop

init_gnd_net

init_import_mode

init_io_file

init_layout_view

init_lef_file

init_mmmc_file

init_oa_default_rule

init_oa_design_cell

init_oa_design_lib

init_oa_design_view

init_oa_ref_lib

init_oa_search_lib

init_oa_special_rule

init_pwr_net

init_top_cell

init_verilog

For more information on the init_* globals, see the Import and Export Global Variables section in
the Innovus Text Command Reference. Several possible init_design scenarios are discussed in a
later section of this chapter.

September 2022 233 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/init_abstract_view.html
../innovusTCR/init_cpf_file.html
../innovusTCR/init_design_netlisttype.html
../innovusTCR/init_design_settop.html
../innovusTCR/init_gnd_net.html
../innovusTCR/init_import_mode.html
../innovusTCR/init_io_file.html
../innovusTCR/init_layout_view.html
../innovusTCR/init_lef_file.html
../innovusTCR/init_mmmc_file.html
../innovusTCR/init_oa_default_rule.html
../innovusTCR/init_oa_design_cell.html
../innovusTCR/init_oa_design_lib.html
../innovusTCR/init_oa_design_view.html
../innovusTCR/init_oa_ref_lib.html
../innovusTCR/init_oa_search_lib.html
../innovusTCR/init_oa_special_rule.html
../innovusTCR/init_pwr_net.html
../innovusTCR/init_top_cell.html
../innovusTCR/init_verilog.html
../innovusTCR/Import_and_Export_Global_Variables.html

Supported init_design Invocation Methods
You have seen how to get all the data required to bring up an Innovus session with init_design.
Let us now look at different examples of actually invoking the init_design command:

Using a Pointer to an MMMC Configuration File

Using a Pointer to a CPF File

Using init_design with an Inline MMMC Script

Using Physical-Only Flow

Using a Pointer to an MMMC Configuration File

One of the most common ways of invoking init_design is to first use initialization variables to
define where to find the key pieces of data. The init_mmmc_file variable is used to point to a
functioning MMMC configuration. Here, functioning is defined as follows:

The MMMC configuration must include a set_analysis_view command and be complete and
correct enough to initialize the specified -setup view

At a minimum, timing library information is required.

The following example uses a pointer to an MMMC configuration file before invoking init_design:

set init_verilog "top.v"

set init_top_cell "top"

set init_mmmc_file "viewDefinition.tcl"

init_design

Instead of having the init globals asserted one-by-one, you can also source the file containing the
variable settings and then initialize the design as follows:

source test.globals

init_design

Note: Here, it is assumed that test.globals is configured in MMMC mode.

September 2022 234 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Using a Pointer to a CPF File

In the following example, a CPF file is used in place of an explicit viewDefinition.tcl file. The
MMMC configuration is derived from the CPF:

set init_verilog "top.v"

set init_top_cell "top"

set init_cpf_file "top.cpf"

init_design

Here:

The CPF must be a MMMC style-CPF, which means it must contain at least one analysis view
definition.

The design is initialized based on the default power domain's library information.

Using init_design with an Inline MMMC Script

If you have a script which is creating the MMMC configuration on-the-fly rather than having a pointer
to static file, you can still use the init_design flow successfully. However, there is a circular
dependency problem that needs to be resolved. set_analysis_view cannot be issued until the
design has been initialized by init_design, but init_design requires a complete MMMC
configuration including the requisite -setup and -hold view information. The solution is to use the -
setup and -hold options of the init_design command itself, instead of using set_analysis_view in
this scenario.

set init_verilog "top.v"

set init_top_cell "top"

create_delay_corner -name my_delay_corner_max

 -library_set my_max_library_set

 -rc_corner my_rc_corner_worst

create_delay_corner -name my_delay_corner_min

 -library_set my_min_library_set

 -rc_corner my_rc_corner_worst

create_analysis_view -name my_analysis_view_setup

 -constraint_mode my_constraint_mode

 -delay_corner my_delay_corner_max

September 2022 235 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

create_analysis_view -name my_analysis_view_hold

 -constraint_mode my_constraint_mode

 -delay_corner my_delay_corner_min

 init_design -setup my_analysis_view_setup

 -hold my_analysis_view_hold

Using Physical-Only Flow

You can also run init_design in the absence of an MMMC configuration. This initializes the system
into physical-only mode. No access to the timing part of the system is provided under this mode. To
reinitialize, you would need to exit the software or run the freeDesign command.

Importing Designs using the GUI
Before you import a design, you must first prepare the data. For more information, see the Data
Preparation chapter in the Innovus User Guide.

Importing an OpenAccess Design
To import an OpenAccess design, complete the following steps:

Select File - Import Design.

Select OA.

Specify the following information:

Library
Specifies the OpenAccess database library.

Cell
Specifies the OpenAccess database cell.

View
Specifies the OpenAccess database view.

Specify the following OpenAccess technology and physical library information:

OA Reference Libraries
Specifies the OpenAccess reference libraries to import. The first OpenAccess reference

September 2022 236 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/freeDesign.html#freeDesign-freeDesign

library listed in this field must contain the technology information for the leaf cells.
Each reference library is processed using the abstract view name list (Abstract View
Names).

For example, if the reference library is "lib1 lib2", and the abstract view name list is
"abstract abstract2", LEF MACRO information is processed for lib1 with the abstract
view. Then, for any cells in lib1 that did not have abstract, but did have abstract2, that
view is processed for MACRO information. If a cell has both views, the first one is used.
The process then is repeated for lib2.

OA Abstract View Names
Specifies the OpenAccess view names that the software should examine to find the
equivalent LEF MACRO information (for example, PINS, OBS, FOREIGN).

OA Layout View Names
Specifies the layout view names (separated by spaces) to import.

Click Save or OK.

Save saves your settings to a configuration file. The design is not imported.

OK uses the current settings to import the design. The configuration file is not updated.

Importing a Design with LEF and Verilog
To import a LEF and Verilog design, complete the following steps:

Select File - Import Design.

Specify the gate-level Verilog netlist files to import in the Files text field.

Select one of the following options to specify the top cell:

Auto Assign
Automatically extracts the top cell name from the netlist, provided the netlist contains
only one design.

By User
(Default) Specifies the name of the top cell when a netlist contains more than one
design (more than one top design name). The top cell name specified is the design the
software imports and processes.

Specify the LEF files to import. You must specify the technology LEF file first, then specify the

September 2022 237 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

standard cell LEF and block LEF in any order.
The LEF file provides technology information, such as metal layer and via layer information
and via generation rules, which is used in the Add Rings and Add Stripes forms. The router
also uses the technology information contained in the LEF file.

If a cell is defined multiple times, Innovus reads the geometry information only from the first
definition. For subsequent definitions, Innovus reads the antenna information only.

Note: If the LEF file contains all the physical information for the design, no other files are
required for the Technology/Physical Libraries panel.

Click Save or OK.

Save saves your settings to a configuration file. The design is not imported.

OK uses the current settings to import the design. The configuration file is not updated.

Loading a Previously Saved Global Variables File
To load a previously saved global variable file from the GUI, complete the following steps:

Select File - Import Design.

Click Load. The Load Global Variables form is displayed.

Select the directory of the file you want to load.

Select Global Variable files (*.globals) in the Files of type field.

Specify a file name or click on the filename in the window. The filename suffix is .global.

Click Open. The Load Global Variables form closes. The global variable file is loaded.

In the Design Import form, continue to specify data you want to import into the design.

Click Save or OK.

Save saves your settings to the global file. The design is not imported.

OK saves your settings to the global file and starts the design import process. This might
take several minutes to complete, depending on the size of your design. When the
design is loaded, the Design Import form closes and the design displays in the
Innovus main window.

September 2022 238 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Handling Verilog Assigns
Verilog assign statements may be added, removed, or replaced with buffers automatically by
Innovus. All Innovus applications, including GigaOpt, CTS, CCopt, Place, Route, Hierarchy/ILM
Flow, MSV, and manual ECO, can handle verilog assign nets natively.

Configuring the Setup for Multi-Mode Multi-Corner
Analysis
Multi-mode multi-corner analysis uses a tiered approach to assemble the information necessary for
timing analysis and optimization. Each top-level definition (called an analysis view) is composed of
a delay calculation corner and a constraint mode. The active analysis views defined in the software
represent the different design variations that will be analyzed.

Figure 6-1 Hierarchical Analysis View Configuration

September 2022 239 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Creating Library Sets
Complex designs can require the specification of multiple library files to define all of the standard
cells, memory devices, pads, and so forth, included in the design. Different library sets can be
defined to provide uniquely characterized libraries for each delay corner or power domain.

Library sets allow a group of library files to be treated as a single entity so that higher-level
descriptions (delay calculation corners) can simply refer to the library configuration by name. A
library set can consist of just timing libraries, or it also can include cdB libraries to keep timing and
signal integrity libraries in sync throughout a multi-corner flow.

The same library set can be referenced multiple times by different delay calculation corners.
To create a library set, use the following command:

create_library_set

The following figure shows the creation of a library set that associates timing libraries and cdB
libraries with a nominal voltage of 1 volt with the library name IsCOM-1V:

Editing a Library Set
To change the timing and cdB library files for an existing library set, use the following command:

update_library_set

You also can make changes to a library set using the Edit Library Set form:

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis
Configuration. In the MMMC Browser form, double click on the name of the library set you
want to edit.
or:

Choose Timing - MMMC Browser, and double click on the name of the library set you want to
edit.

September 2022 240 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/create_library_set.html#create_library_set-create_library_set
../innovusTCR/update_library_set.html#update_library_set-update_library_set

Creating Virtual Operating Conditions
Generally in most user environments, the process, voltage, and temperature (PVT) point is specified
by referring to a predefined operating condition definition in a specific timing library. The library
operating condition provides the system with values for P,V, and T, and these then are used to
calculate derating parameters and other aspects of the analysis. However, there are situations
when there are no predefined operating conditions in the user timing libraries, or the pre-existing
operating conditions are not consistent with the user's operating environment.

Instead of actually modifying the timing libraries to add or adjust operating condition definitions, you
can create a set of virtual operating conditions for a library, to define a PVT operating point. These
virtual operating conditions can then be referenced by a delay corner as if they actually existed in
the library.
To create a virtual operating condition for a library, use the following command:

create_op_cond

For example, the following command creates a virtual operating condition called PVT1 for the library
IsCOM-1V:

create_op_cond -name PVT1

 -library_file IsCOM-1V.lib

 -P 1.0

 -V 1.2

 -T 120

Editing a Virtual Operating Condition

You can add, delete, or change attributes for a defined virtual operating condition using the Edit
Operating Condition form.

You can use the update_library_set command or the Edit Library Set form before multi-mode
multi-corner view definitions are loaded into the design, or after. However, after the software
is in multi-mode multi-corner analysis mode, any changes to an existing object results in the
timing, delay calculation, and RC data being reset for all analysis views.

September 2022 241 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/create_op_cond.html#create_op_cond-create_op_cond

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis
Configuration. In the MMMC Browser form, double click on the name of the library set you
want to edit.
or:

Choose Timing - MMMC Browser, and double click on the name of the operating condition
you want to edit.

Creating RC Corner Objects
An RC corner object provides the software with all of the information necessary to properly extract,
annotate, and use the RCs for delay calculation. RC corner objects also control the attributes for
running sign-0ff extraction sequentially on each RC corner.

For each active RC corner in the design, the software extracts and stores a unique set of parasitics.
You must use the RC corner attributes to control RC scaling when running the software in multi-
mode multi-corner analysis mode.

RC corner objects are referenced when creating delay calculation corner objects.

To create an RC corner, use the following command:

create_rc_corner

For example, the following command creates an RC corner called rc-typ that uses the capacitance
table myTech_nc.CapTbl, and derates the resistance values based on the temperature of 50 Celsius:

create_rc_corner -name rc-typ -cap_table myTech_nc.CapTbl -T 50

Editing an RC Corner Object

To add or change attribute values for an existing RC corner object, use the following command:

update_rc_corner

You also can make changes to an RC corner object using the Edit RC Corner form:

You can edit a virtual operating condition before multi-mode multi-corner view definitions are
loaded into the design, or after. However, after the software is in multi-mode multi-corner
analysis mode, any changes to an existing object results in the timing, delay calculation, and
RC data being reset for all analysis views.

September 2022 242 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/create_rc_corner.html#create_rc_corner-create_rc_corner
../innovusTCR/update_rc_corner.html#update_rc_corner-update_rc_corner

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis
Configuration. In the MMMC Browser form, double click on the name of the library set you
want to edit.
or:

Choose Timing - MMMC Browser, and double click on the name of the RC corner object you
want to edit.

Creating Delay Calculation Corner Objects
A delay calculation corner provides all of the information necessary to control delay calculation for a
specific analysis view. Each corner contains information on the libraries to use, the operating
conditions with which the libraries should be accessed, and the RC extraction parameters to use for
calculating parasitic data. Delay corner objects can be shared by multiple top-level analysis views.
To create a delay calculation corner, use the following command:

create_delay_corner

Use separate delay calculation corners to define major PVT operating points (for example,
Best-Case and Worst-Case).

Use the -early_* and -late_* parameters within a single delay calculation corner to control
on-chip variation.

The following figure shows the creation of a delay calculation corner called dcWCCOM.This corner
uses the libraries from IsCOM-1V, sets the operating condition to WCCOM, as defined in the stdcell_1V
timing library, and uses the rc-cworst RC corner:

You can use the update_rc_corner command or the Edit RC Corner form before multi-mode
multi-corner view definitions are loaded into the design, or after. However, after the software
is in multi-mode multi-corner analysis mode, any changes to an existing object results in the
timing, delay calculation, and RC data being reset for all analysis views.

September 2022 243 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/create_delay_corner.html#create_delay_corner-create_delay_corner

Editing a Delay Corner Object
To add or change attribute values of an existing delay calculation corner object, use the following
command:

update_delay_corner

You also can make changes to a delay calculation corner object using the Edit Delay Corner form:

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis
Configuration. In the MMMC Browser form, double click on the name of the library set you
want to edit.
or:

Choose Timing - MMMC Browser, and double click on the name of the delay calculation
corner you want to edit.

You can use the update_delay_corner command or the Edit Delay Corner form before multi-
mode multi-corner view definitions are loaded into the design, or after. However, after the
software is in multi-mode multi-corner analysis mode, any changes to an existing object
results in the timing, delay calculation, and RC data being reset for all analysis views.

September 2022 244 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/update_delay_corner.html#update_delay_corner-update_delay_corner

Adding a Power Domain Definition to a Delay Calculation Corner
A single delay calculation corner object specifies the delay calculation rules for the entire design. If
a design includes power domains, the delay calculation corner can contain domain-specific
subsections that specify the required operating condition information, and any necessary timing
library rebinding for the power domain.
To create a power domain definition for a delay calculation corner, use the following command:

update_delay_corner

For example, the following command adds a definitions for the power domain domain-3V to the
dcWCCOM delay calculation corner:

update_delay_corner -name dcWCCOM

 -power_domain domain-3V

 -library_set libs-3volt

 -opcond_library delayvolt_3V

 -opcond slow_3V

Editing a Power Domain Definition

To add or change attribute values for an existing power domain definition, use the following
command:

update_delay_corner

You also can make changes to a power domain definition using the Edit Power Domain form:

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis
Configuration. In the MMMC Browser form, click the + next to Delay Corners to list the
available delay corners, click the + next to the delay corner to which the power domain
definition belongs, and double click on the name of the power domain definition.
or

Choose Timing - MMMC Browser, click the + next to Delay Corners to list the available delay
corners, click the + next to the delay corner to which the power domain definition belongs, and
double click on the name of the power domain definition.

September 2022 245 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/update_delay_corner.html#update_delay_corner-update_delay_corner
../innovusTCR/update_delay_corner.html#update_delay_corner-update_delay_corner

Creating Constraint Mode Objects
A constraint mode object defines one of possibly many different functional, test, or Dynamic Voltage
and Frequency Scaling (DVFS) modes of a design. It consists of a list of SDC constraint files that
contain timing analysis information, such as the clock specifications, case analysis constraints, I/O
timings, and path exceptions that make each mode unique. SDC files can be shared by many
different constraint modes, and the same constraint mode can be associated with multiple analysis
views.
To create a constraint mode object, use the following command:

create_constraint_mode

The following figure shows the grouping of the SDC files io.sdc, mission1-clks.sdc, and
mission1-except.sdc to create a mode object named missionSetup:

Editing a Constraint Mode Object

To change the SDC constraint file information for an existing constraint mode object, use the
following command:

update_constraint_mode

You also can make changes to a constraint mode object using the Edit Constraint Mode form:

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis
Configuration. In the MMMC Browser form, double click on the name of the library set you

You can use the update_delay_corner command or the Edit Power Domain form before
multi-mode multi-corner view definitions are loaded into the design, or after. However, after
the software is in multi-mode multi-corner analysis mode, any changes to an existing object
results in the timing, delay calculation, and RC data being reset for all analysis views.

September 2022 246 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/create_constraint_mode.html#create_constraint_mode-create_constraint_mode
../innovusTCR/update_constraint_mode.html#update_constraint_mode-update_constraint_mode

want to edit.
or:

Choose Timing - MMMC Browser, and double click on the name of the constraint mode object
you want to edit.

Entering Constraints Interactively

You can use the set_interactive_constraint_modes command to update assertions for a multi-
mode multi-corner constraint mode object, and have those changes take immediate effect.

Specifying set_interactive_constraint_modes puts the software into interactive constraint entry
mode for the specified constraint mode objects. Any constraints that you specify after this command
will take effect immediately on all active analysis views that are associated with these constraint
modes. By default, no constraint modes are considered active.

For example, the following commands put the software into interactive constraint entry mode, and
apply the set_propagated_clock assertion on all views in the current session that are associated
with the constraint mode func1:

set_interactive_constraint_modes func1

set_propagated_clock [all_clocks]

The software stays in interactive mode until you exit it by specifying the
set_interactive_constraint_modes command with an empty list:

set_interactive_constraint_modes { }

All new assertions are saved in the SDC file for the specified constraint mode when you save the
design (saveDesign).

The all_constraint_modes command can be used to generate a list of constraint modes as the
argument for this command.

For example, the following commands put the software into interactive constraint entry mode, and

You can use the update_constraint_mode command or the Edit Constraint Mode form before
multi-mode multi-corner view definitions are loaded into the design, or after. However, after
the software is in multi-mode multi-corner analysis mode, any changes to an existing object
results in the timing, delay calculation, and RC data being reset for all analysis views.

September 2022 247 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/set_interactive_constraint_modes.html
../innovusTCR/all_constraint_modes.html#all_constraint_modes-all_constraint_modes

apply the set_propagated_clock assertion on all active analysis views in the current session.

set_interactive_constraint_modes [all_constraint_modes -active]

set_propagated_clock [all_clocks]

Use the get_interactive_constraint_modes command to return a list of the constraint mode
objects in interactive constraint entry mode.

Note: Interactive constraint mode only works when the software is in multi-mode multi-corner timing
analysis mode. In min/max analysis mode, constraints are always accepted interactively.

Constraint Support in Multi-Mode and Multi-Mode Multi-Corner

Analysis

The Innovus software isolates the following SDC constraints from conflicting with each other, in
both multi-mode and multi-mode multi-corner analysis modes:

create_clock

create_generated_clock

set_annotated_check

set_annotated_delay

set_annotated_transition

set_case_analysis

set_clock_gating_check

set_clock_groups

set_clock_latency

set_clock_sense

set_clock_transition

set_clock_uncertainty

set_disable_timing

set_drive

set_driving_cell

September 2022 248 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/get_interactive_constraint_modes.html#get_interactive_constraint_modes-get_interactive_constraint_modes

set_false_path

set_fanout_load

set_input_delay

set_input_transition

set_load

set_max_delay

set_max_time_borrow

set_max_transition

set_min_delay

set_min_pulse_width

set_multicycle_path

set_output_delay

set_propagated_clock

set_resistance

Note: Path groups defined with group_path are considered to be global definitions across all
analysis views.

Creating Analysis Views
An analysis view object provides all of the information necessary to control a given multi-mode
multi-corner analysis. It consists of a delay calculation corner and a constraint mode.

To create an analysis view, use the following command:
create_analysis_view

The following figure shows the creation of the analysis view missionSetup:

September 2022 249 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/create_analysis_view.html#create_analysis_view-create_analysis_view

Editing an Analysis View Object

To change the attribute values for an existing analysis view, use the following command:

update_analysis_view

You also can make changes to an analysis view using the Edit Analysis View form:

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis
Configuration. In the MMMC Browser form, double click on the name of the library set you
want to edit.
or:

Choose Timing - MMMC Browser, and double click on the name of the analysis view you
want to edit.

You can use the update_analysis_view command or the Edit Analysis View form before
multi-mode multi-corner view definitions are loaded into the design, or after. However, after
the software is in multi-mode multi-corner analysis mode, any changes to an existing object
results in the timing, delay calculation, and RC data being reset for all analysis views.

September 2022 250 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/update_analysis_view.html#update_analysis_view-update_analysis_view

Setting Active Analysis Views
After creating analysis views, you must set which views the software should use for setup and hold
analysis and optimization. These "active" views represent the different design variations that will be
analyzed. Active views can be changed throughout the flow to utilize different subsets of views.
Innovus applications can handle the views concurrently or sequentially, depending on their
individual capabilities. Libraries and data are loaded into the system, as required to support the
selected set of active views.
 To set active analysis views, use the following command:

set_analysis_view

Note: You must define at least one setup and one hold analysis view.

For example, the following command sets missionSlow and mission2Slow as the active views for
setup analysis, and missionFast and testFast as the active views for hold analysis:

set_analysis_view

 -setup {missionSlow mission2Slow}

 -hold {missionFast testFast}

Guidelines for Setting Active Analysis Views

The order in which you specify views using the set_analysis_view command is important. By
default, the first views defined in the -setup and -hold lists are the default views. Certain
Innovus applications that do not support multi-mode multi-corner can only process the data
defined for a single view. These applications use the information defined for the default view.

Concurrent analysis of views for timing optimization costs memory and CPU.

Changing the Default Active Analysis View

Some Innovus applications can function only on a single analysis view at a time. By default, these
single-view applications use the default analysis view. If an application or flow step does not
provide a native option for specifying which view to use, you can use the set_default_view
command to temporarily change the default view to a different active view that is better suited to that
flow step.

September 2022 251 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/set_analysis_view.html#set_analysis_view-set_analysis_view
../innovusTCR/set_default_view.html#set_default_view-set_default_view

For example, if the analysis view missionSlow is currently the default active setup view in the
design, the following command temporarily changes the default view to mission2Slow:

set_default_view -setup mission2Slow

Note: Using the set_default_view command does not affect software performance because it only
uses views that are already active in the design. If you use the set_analysis_view command to
change the default views, the existing timing, delay calculation, and RC data is reset.

Checking the Multi-Mode Multi-Corner Configuration
Use the following command to generate a hierarchical report of your current MMMC configuration:

report_analysis_views

You can customize the report to show only the active setup or hold analysis views, all of the active
views, or all of the defined views in the design, including those that are currently inactive.

You can also use the Innovus GUI to review the MMMC configuration:

Select File -> Import Design -> Create Analysis Configuration

or

Select Timing -> MMMC Browser.

For more information, see the File Menu chapter in the Innovus Menu Reference Guide.

Changing How the MMMC Browser Displays Configuration

Information

By default, the MMMC Browser displays configuration information in two columns: one displays the
different existing analysis views, and the other displays the different existing multi-mode multi-
corner objects.

You can change how the MMMC Browser displays configuration information using the MMMC
Preferences form. You can use this form to change the number of columns displayed, and rename
the titles of the columns.

You also can use this form (and the Add Object form) to add and delete objects from columns, and
rearrange the order in which the objects are listed, by clicking and holding the left mouse button on
an object name, and dragging it to a different position in the list.

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis

September 2022 252 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/set_analysis_view.html#set_analysis_view-set_analysis_view
../innovusTCR/report_analysis_views.html#report_analysis_views-report_analysis_views
../innovusMR/File_Menu.html

Choose File - Import Design. Click the Create Analysis Configuration button under Analysis
Configuration. In the MMMC Browser form, click the Preferences button.
or:

Choose Timing - MMMC Browser, and click the Preferences button.

Saving Multi-Mode Multi-Corner Configurations
The software stores the multi-mode multi-corner configuration as Tcl commands in a view definition
file. The view definition file contains all of the library set, RC corner, delay calculation corner,
constraint mode, and analysis view definitions that you created. When you specify the saveDesign
command, the software saves the file to the save directory, and updates the configuration file with a
pointer to the file. This multi-mode multi-corner configuration will be reloaded automatically by the
subsequent use of the restoreDesign command.

In legacy environment, during restoreDesign, if the memory has:

init_mmmc_version 1, you can use saveDesign to save a legacy DB, and you can also
use saveDesign -mmmc2 to save a Stylus DB . In this scenario, the tool does not
support eval_common_ui {read_db} flow.

init_mmmc_version 2. you can use saveDesign to save a Stylus DB only. In this scenario, the
tool supports eval_common_ui {write_db} to save a Stylus design.

Updated SDC files for each mode are saved to the save directory, if ECO changes were made that
affect pins that have constraint assertions.

Saving Designs
To save a design, you can use the text command or menu command.

Use the text command as follows:
saveDesign sessionName

or

In the Innovus GUI, click the Save Design command on the File Menu and then click
the Innovus option button in the Save Design form.

The design files you save depend on the work completed during an Innovus session.

September 2022 253 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/saveDesign.html#saveDesign-saveDesign
../innovusTCR/restoreDesign.html#restoreDesign-restoreDesign
../innovusTCR/saveDesign.html#saveDesign-saveDesign
../innovusMR/File_Menu.html

Saving an OpenAccess Design
A Verilog based design that was loaded from File - Import Design can only be saved into
OpenAccess if it uses OpenAccess reference libraries. It cannot be saved in OpenAccess if LEF
files were used.

Transferring OpenAccess Data between Innovus and Virtuoso
for ECO

From an Innovus session, save the OpenAccess design.
saveDesign sessionName -cellview {lib cell view}

Exit the Innovus session.

Open the OpenAccess database in Virtuoso XL (VXL) and edit the design.
Note: You must use VXL rather than the Virtuoso Layout Editor.

Save the design.

Exit the VXL tool.

Start an Innovus session.

Restore the OpenAccess design.
restoreDesign sessionName topCell -cellview {lib cell view}

Loading and Saving Design Data
This section contains some general suggestions for importing design data into the
Innovus environment and exporting data out of the Innovus environment.

You can save a netlist file only if you made a design change during the Innovus session. If
you make no changes, Innovus references the original netlist when it saves the design. Do
not use the Save Design form to save a partition.

September 2022 254 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Loading a Partition
To load a partition, you can use the Load - Partition command from the File Menu. Before you load
a partition, perform the following tasks:

Import the design

Load the full chip (flat) floorplan, including partition specifications

Commit the partition without pin assignment or a timing budget

Place and route each of the partitions

When you load a partition design, the Innovus software rebuilds the individual partition and the top
level, so that the entire chip can be analyzed. When you load a saved partition, the software loads
all the files that are selected in the Load Partition File form.

Loading Floorplan Data
To load floorplan data, use the following command from the File menu:

Load > Floorplan

When you load a floorplan, the Innovus software treats the following items as floorplan data:

Floorplan dimensions

Standard cell rows

Floorplan guides

Hard blocks (macros)

Blackboxes

Power structures

Density screens

The netlist and routing must be consistent when you load a partition that contains routing
data. For example, if your netlist was modified after in-place optimization (IPO) or after
running NanoRoute, you should make sure that the loaded routing results correctly
correspond to the new netlist.

September 2022 255 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusMR/File_Menu.html

Placement blockages

Routing blockages

Pin blockages

Partition pin cuts

Feedthrough guides

Placement File Requirement

Before you load the floorplan file that was used to generate the placement file, make sure the
placement file is in Innovus format.

Loading an I/O Assignment File
If you do not read an I/O assignment file into your Innovus session, and if no I/O pad instances are
preplaced, the Innovus software randomly places I/O pad instances.

Saving a Partition
You can save import configuration, netlist, floorplan, special route, and vendor-specific files for each
partition, including the top level.

Note: Regardless of your choice of output file, the Verilog® netlist, configuration file, and floorplan
file are always saved.

Blocks and instances that you load with the Load Floorplan command are set as preplaced.

You can specify a timing constraint output format for each partition only if you selected
Derive Timing Budget when you ran the Partition program.

September 2022 256 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Saving Floorplan Data
When you save a floorplan, the Innovus software treats the following items as floorplan data:

Floorplan dimensions

Standard cell rows

Floorplan guides

Hard blocks (macros)

Blackboxes

Power structures

Density screens

Placement blockages

Routing blockages

Pin blockages

Partition pin cuts

Feedthrough guides

After you save a floorplan, the Innovus software creates the following files:

A general floorplanning file with the extension .fp

A power route data file with the extension .fp.spr

If there is an entry in the IO Cell Libraries field in the Design Import form, a third file is created with
the extension .fp.areaio.

Saving and Restoring Timing Graph
You can use the Timing Graph save and restore to get identical initial QOR upon restoring the DB
using the standalone optimization and reporting commands. It provides CPU saving as you do not
need to redo RC extraction, AAE DelayCal, and Timing Graph rebuild. You need to perform these
only if there is a change in timer settings or extraction settings, which will lead to a different timing
graph. With Timing Graph save and restore incremental optimizations, timing debug becomes
faster.

You will get maximum benefit with Timing Graph save/restore in the following cases:

Incremental optimizations preroute and postroute

September 2022 257 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

For example:

place_opt_design -incremental

place_opt_design -incremental_timing

optDesign -postRoute -incr

Debugging the timing at various stages with save/restore

Postroute and preroute setup and hold optimizations

You can trigger the flow using the following command:

saveDesign -timingGraph

The saveDesign –timingGraph command currently saves RC, timing graph, and AAE
DelayCal information. You do not need to specify the -rc option with -timingGraph.
Note that -timingGraph is not on by default.

After restoring the design, you can use any reporting command such as report_timing,
timeDesign, or any optimization command such as optDesign without the need to do RC
extraction, delay calculation, or timing computation.

This applies to preroute and postroute, and only to the same Innovus build. If a different build
is used then the Timing Graph will not load.

Commands must not force timing recomputation when it is not needed.
Examples:

1. Consider timeDesign in the following sequence of commands:

a. timeDesign -preCTS

b. saveDesign –timingGraph preCtsOptDB.enc

c. restoreDesign preCtsOptDB.enc

d. timeDesign -preCTS
The timeDesign -preCTS command in step d will not rebuild Timing Graph. It will simply
regenerate the reports and output a timing summary.

2. Consider optDesign in the following sequence of commands:

a. optDesign -preCTS

September 2022 258 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

b. saveDesign –timingGraph preCtsOptDB.enc

c. restoreDesign preCtsOptDB.enc

d. optDesign –preCTS -incr
The optDesign command in step d does not rebuild Timing Graph to generate the Initial
Summary. you should simply use the Timing Graph stored and continue with the
optimization.

Converting an Innovus Database to GDSII Stream or
OASIS Format
To convert an Innovus database to GDSII Stream or OASIS format at any stage of the design flow,
use the following commands:

For GDSII Stream format:

setStreamOutMode

streamOut

Create GZIP files by appending .gz to the filename. The streamOut -merge command
can read files with the .gz extension.
Note: You can also use the following GUI forms:

Mode Setup - StreamOut from the Tools Menu.

Save - GDS/OASIS from the File Menu.

For OASIS format:

setStreamOutMode

streamOut

Note: You can also use the following GUI forms:

Mode Setup - OasisOut from the Tools Menu.

Save - GDS/OASIS from the File Menu.

September 2022 259 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/setStreamOutMode.html
../innovusTCR/streamOut.html#streamOut-streamOut
../innovusMR/Tools_Menu.html
../innovusMR/File_Menu.html
../innovusMR/Tools_Menu.html
../innovusMR/File_Menu.html

If the database is partitioned into hierarchical blocks, create a file that includes all cells by
completing the following steps:

Generate GDSII Stream or OASIS files for the hierarchical blocks.

Merge the block-level GDSII Stream or OASIS files to make a top-level file for the whole
design.

Related Topics

For more information, see Merging GDSII Stream or OASIS Files.

Creating Cells and Instances
When it converts the database, the software creates instances according to following cases:

If a LEF MACRO does not have any FOREIGN statements, or if a MACRO name and FOREIGN name
are the same, the software creates one top-level instance that has the same name as the
MACRO. At the cell level, a cell with the same name as the MACRO already exists, so the software
does not create any new cells.

If a LEF MACRO has multiple FOREIGN statements, or if the MACRO name and FOREIGN name are
different, the software also creates one top-level instance that has the same name as the
MACRO. However, at the cell level there is no cell with the same name as the MACRO, so the
software creates one. This cell contains pointers to the data for each FOREIGN structure in the
LEF MACRO.

Renaming LEF Vias
To force the streamOut command to give unique names to LEF vias, type the following command
before running the streamOut command:

setStreamOutMode -SEvianames true

These commands rename all LEF vias, and all generated vias, using the following naming
convention:

topSructureName_VIA index

Examples of renamed vias are chip_VIA1 and bigDesign_VIA23.

September 2022 260 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

For more information, see setStreamOutMode in the Innovus Text Command Reference.

Merging GDSII Stream or OASIS Files
The software allows you to merge several GDSII Stream or OASIS files into a single file for
hierarchical designs. It merges cells that are either referenced (instantiated) in the design or can be
referenced in a recursive search from any child cell that is referenced in the design. For example, if
a merge file contains cells A, B, C, X, Y, and Z, and C has a reference to X, and X has a reference to Y,
and the design references cells A, B, and C (but not directly X, Y, or Z), the software merges cells A, B,
C, X, and Y, but not Z.

The software creates a file in the highest version number of all the merge files.

Merging Files Using the Command Line

Create the block-level GDSII Stream or OASIS files by using one of the following commands:
streamOut -merge list_of_GDS_files [-uniquifyCellNames]

If you specify the -uniquifyCellNames parameter, you must list the top-level file first, as the
software uses the first name in the search path when renaming cells. For more information,
see "Merge Examples".

Create the top-level GDSII Stream or OASIS file by using the block-level files as the merge
files.

The software issues warning messages if any of the files, including the block-level files, contain
structures with the same name or if it renames any cells.

The top-level GDSII Stream or OASIS file contains the following structures:

Top structure (the design data from the Innovus software)

Via structures (output from the Innovus design data)

Leaf cell structures and their children (copied from the merge files)

Intermediate structures from the FOREIGN structure

September 2022 261 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Merge Examples
The following examples show the order dependency in merge files. In the examples, the COMMON
cells may be the same or different. If the cells are different, or if you are not sure whether they are
the same or different, use the -uniquifyCellNames parameter in addition to the -merge parameter.

Note: In the examples, for simplicity GDS and streamOut are used. If you are merging OASIS format
files, substitute OASIS for GDS.

Case 1

Most cases are similar to the following:

GDS1 contains cells X, COMMON (COMMON is instantiated in X).

GDS2 contains cell Y, COMMON (COMMON is instantiated in Y).

The design instantiates cells X and Y.

For examples of cases where hierarchical cells are involved and the contents of a hierarchical
cell is different from another cell with the same name, see Case 2.

Example 1

streamOut -merge {GDS1 GDS2}

GDS1 processed: X and COMMON are copied from GDS1.

GDS2 processed: Y is copied from GDS2, COMMON is assumed to be the same, so it is not
copied, Y references the version of COMMON that was copied from GDS1.

Example 2

streamOut -merge {GDS2 GDS1}

GDS2 processed: Y and COMMON are copied from GDS2.

GDS1 processed: X is copied from GDS1, COMMON is assumed to be the same, so it is not
copied, X references the version of COMMON that was copied from GDS2.

September 2022 262 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Example 3

streamOut -merge {GDS1 GDS2} -uniquifyCellNames

GDS1 processed: X and COMMON are copied from GDS1.

GDS2 processed: Y is copied from GDS2, COMMON is copied from GDS2 but renamed
COMMON_GDS2 due to uniquification, reference from Y to COMMON is changed to COMMON_GDS2.

Example 4

streamOut -merge {GDS2 GDS1} -uniquifyCellNames

GDS2 processed: Y and COMMON are copied from GDS2.

GDS1 processed: X is copied from GDS2, COMMON is copied from GDS2 but renamed to
COMMON_GDS1 due to uniquification, reference from X to COMMON is changed to COMMON_GDS1.

Results

Assuming the COMMON cells are copies of the same cell, the results of Example 1 and Example 2 are
the same. Example 3 and Example 4 are geometrically equivalent, but have duplicate copies of the
COMMON cell (with one copy with a different name).

Assuming the COMMON cells are different, the results of Example 1 and Example 2 are not correct. In
this case, the results of Example 3 and Example 4 are both correct, but yield different cell names
depending on the order.

Case 2

In some cases, hierarchical cells are involved and the contents of a hierarchical cell is different from
another cell with the same name. The following examples show the results of order dependency of
merge files in these cases.

GDS1 contains cells X, Y (Y is instantiated in X).

GDS2 contains cell Y.

The Y cells in the files contain different information.

The design instantiates cells X and Y.

September 2022 263 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Example 5

streamOut -merge {GDS1 GDS2}

GDS1 processed: X and Y are copied from GDS1.

GDS2 processed: Y from GDS2 is dropped.

Example 6

streamOut -merge {GDS2 GDS1}

GDS2 processed: Y from GDS2 is copied from GDS2.

GDS1 processed: X is copied from GDS1, Y is dropped (references from X to Y now use the
one copied from GDS2).

Example 7

streamOut -merge {GDS1 GDS2} -uniquifyCellNames

GDS1 processed: X and Y are copied from GDS1.

GDS2 processed: Y from GDS2 is dropped.

Example 8

streamOut -merge {GDS2 GDS1} -uniquifyCellNames

GDS2 processed: Y from GDS2 is copied from GDS2.

GDS1 processed: X is copied from GDS1, Y is copied from GDS1 but renamed to Y_GDS1 due
to uniquification, reference from X to Y changed to Y_GDS1.

Results

Assuming the Y cells are copies of the same cell, the results of Example 5, Example 6, and
Example 7 are the same. The results of Example 8 are geometrically equivalent, but have two
copies of the Y cell, and one copy has a different name.

Assuming the Y cells are different, you must know whether the design is supposed to have its Y cell
from GDS1 or GDS2. If the correct version of Y is from GDS1, then Example 5 and Example 7 give the

September 2022 264 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

correct results. If the correct version of Y is from GDS2, then only Example 8 gives the correct results.

For more information, see the following commands:

streamOut

Merging GDS/OASIS Files Using the GUI

Use the GDS/OASIS Export form.

Choose File - Save - GDS/OASIS.

Fill in the appropriate fields on the form.

For more information, see Save - GDS/OASIS in the File Menu chapter of the Innovus Menu
Reference.

About the GDSII Stream or OASIS Map File
When the software converts an Innovus database to GDSII Stream or OASIS format, it creates a file
for mapping the layers in the Innovus database to a GDSII Stream or OASIS database. The file can
handle up to 1000 GDSII Stream or OASIS layers. In the file each layer is assigned a unique
number and is described on a separate line. You must customize the file to make it appropriate for
your design.

Map Files

Flat Map File Format

The file has the following four columns, and may contain comments:

Layer object name (layerObjName)

Layer object type (layerObjType)

Layer number (layerNumber)

Data type (dataType)

Each comment starts and ends with a hash mark (#) and must be the first or last argument on a line.
It can be preceded by spaces or tabs.

September 2022 265 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/streamOut.html#streamOut-streamOut
../innovusMR/File_Menu.html

Following is a short example of a map file with comments:

#This comment is the first argument on a line#

METAL1 NET 1 0

METAL1 SPNET 999 0

 #This comment is preceded by white space#

METAL1 PIN 1000 0

 #This comment is preceded by a tab#

METAL1 LEFPIN 2000 0

METAL1 FILL 3000 0

METAL1 VIA 4000 0 #This comment is at the end of a line#

METAL1 VIAFILL 5000 0

METAL1 LEFOBS 10000 0

NAME METAL1/NET 20000 0

Map File Columns

layerObjName Specifies one of the following objects:

LEF_layer_name Specifies a LEF layer from the LAYER statement in the
LEF technology file.

If the layerObjName is a LEF layer name, the
layerObjType must specify the DEF object type.

LEFOVERLAP Specifies the macro boundary.

If the layerObjName is LEFOVERLAP, the layerObjType
must specify ALL.

COMP Specifies component outlines.

If the layerObjName is COMP, the layerObjType must
specify ALL.

 DIEAREA Specifies the chip boundary.

If the layerObjName is DIEAREA, the layerObjType
must specify ALL.

September 2022 266 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

MAXVOLTAGE Adds max voltage label for each net according to its
voltage. Labels will be used for checking of voltage-
related DRC rules in VDR (Voltage Dependent
Rules) flow.

Sample syntax:
MAXVOLTAGE M1 123 1

MINVOLTAGE Adds min voltage label for each net according to its
voltage. Labels will be used for checking of voltage-
related DRC rules in VDR (Voltage Dependent
Rules) flow.

Sample syntax:
MINVOLTAGE M1 456 1

 NAME Specifies a text label for the layer name and
associated object type. If you do not want to output
text labels, remove the NAME lines from the file.

There is no limit on the length of a structure (cell)
name. Because some GDS/OASIS readers have a
32-character limit, the Innovus software issues a
warning message when a structure name is longer
than 32 characters.

If layerObjName is NAME, layerObjType can be a
composite layer name/object type (LEFPIN, NET, PIN,
or SPNET), or COMP.

LEFPIN places the label on the LEF MACRO PIN
shape. (Applies only when the -outPutMacros
parameter is specified. For more information, see
streamOut.)

NET places the label on the NET.

PIN places the label on the PIN or I/O abstract pad.

SPNET places the label on the SPECIALNET.

COMP places the label on the placed DEF
component.

September 2022 267 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/streamOut.html#streamOut-streamOut

layerObjType
Specifies an object type.

You can specify a subtype for some layerObjTypes. For more
information, see Specifying Object Subtypes.

ALL
In routing layers, ALL is equivalent to NET, SPNET,
VIA, PIN, LEFPIN, FILL, FILLOPC, LEFOBS, VIAFILL,
and VIAFILLOPC.

In cut layers, ALL is equivalent to VIA, VIAFILL,
and VIAFILLOPC.

BLOCKAGE Equivalent to DEF BLOCKAGES without + FILLS.

BLOCKAGEFILL Equivalent to DEF BLOCKAGES with + FILLS.

CUSTOM Applies to text labels created via the
add_gui_text command.

The add_gui_shape command also applies shapes
on a CUSTOM layer.

FILL Equivalent to DEF FILLS without + OPC or DEF
SPECIALNETS with + SHAPE FILLWIRE.

You can separate FILL into floating and connected fill
by specifying the FLOATINGsubtype. For more
information, see "Fill Subtype" in the Specifying
Object Subtypes section of this chapter.

FILLOPC Equivalent to DEF FILLS with + OPC or DEF
SPECIALNETS + SHAPE FILLWIREOPC.

You can separate FILLOPC into floating and
connected fill by specifying the FLOATING subtype.
For more information, see "Fill Subtype" in the
Specifying Object Subtypes section of this chapter.

Note: DEF 5.6 does not support this object type.

September 2022 268 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/add_gui_text.html
../innovusTCR/add_gui_shape.html

LEFOBS Equivalent to LEF OBS. (Applies only when the -
outPutMacros parameter is specified. For more
information, see streamOut.)

LEFPIN Equivalent to LEF PIN. (Applies only when the -
outPutMacros parameter is specified. For more
information, see streamOut.)

NET Equivalent to DEF NETS wiring. For more information,
see "Net Name Subtype" in the Specifying Object
Subtypes section of this chapter.

PIN Equivalent to DEF PINS.

SHORT Applies to trim-metal layer. It is used to control
whether a short metal shape will be generated.

SPNET Equivalent to DEF SPECIALNETS without + SHAPE
FILLWIRE or + SHAPE FILLWIREOPC. For more
information, see "Net Name Subtype" in the
 Specifying Object Subtypes section of this chapter.

TEXT Applies to text labels created via the add_text
command.

TRIM Indicates that this is the trim-metal.

VIA For via master creation for regular vias. For more
information, see "Net Name Subtype" in the
 Specifying Object Subtypes section of this chapter.

VIAFILL You can separate VIAFILL into floating and
connected fill by specifying the FLOATING subtype.
For more information, see "Fill Subtype" in the
Specifying Object Subtypes section of this chapter.

September 2022 269 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/streamOut.html#streamOut-streamOut
../innovusTCR/streamOut.html#streamOut-streamOut
../innovusTCR/add_text.html#add_text-add_text

See the DEF Syntax chapter in the LEF/DEF Language Reference for more information on the
object types.

Specifying Object Subtypes

You can specify subtypes for some layerObjTypes. Specifying a subtype allows you to split the data
from a layerObjType, so that part of it is output to one layerName/dataType and part of it is output to
another layerName/dataType, or to copy it, so it is output to more than one layerName/dataType. For
example, if you use the FLOATING subtype for FILL, you can divide the output for FILL so that FILL
that is FLOATING is output to one layerName/dataType and FILL that is not FLOATING is output to a
different layerName/dataType, or you can output FILL that is FLOATING to a specified
layerName/dataType and also output it to the same layerName/dataType as FILL that is not FLOATING.

You can specify the following subtypes:

Blockage name
For more information, see "BLOCKAGE name Subtype".

VIAFILLOPC You can separate VIAFILLOPC into floating and
connected fill by specifying the FLOATING subtype.
For more information, see For more information, see
"Fill Subtype" in the Specifying Object Subtypes
section of this chapter.

Note: DEF 5.6 does not support this object type."Fill
Syntax"

layerNumber Specifies the GDSII Stream/OASIS single layer number, comma
separated list of layer numbers (for example, 21, 31, 99), or a range of
layer numbers (for example, 31-35). The numbers must be integers
between 1 and 65535.

dataType Specifies the GDSII Stream/OASIS single data types, comma separated
list of data types (for example, 1, 2, 4), or a range of data types (for
example, 1-4). The data type must be an integer between 0 and 65535.

Layer names or object types that exist in the Innovus database but are not specified in the
map file are not output to the GDSII Stream or OASIS file.

September 2022 270 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Floating and non-floating metal and via fill
For more information, see "Fill Subtype".

Net names
For more information, see "Net Name Subtype".

Voltage levels
For more information, see "Voltage Subtype".

VIA cut sizes
For more information, see "SIZE Subtype".

BLOCKAGE name Subtype

Use the following syntax to specify blockage name:

layerObjName layerObjType[:NAME:<name>] layerNumber dataType

:name is optional. It specifies blockage name. Use this syntax for BLOCKAGE and
BLOCKAGEFILL shapes.

In the map file, different name blockage shapes can be output to a different layerNumber/dataType,
or they can be output to the same layerNumber/dataType and to a different layerNumber/dataType.

For example, to divide the output of metal fill shapes, so that fill blockage named as critical_1 on
METAL1 is output to layerNumber 8 dataType 0 and blockage named as normal_1 to layerNumber
8 dataType 51, the map file would have the following statements:

METAL1 BLOCKAGEFILL:NAME:critical_1 8 0

METAL1 BLOCKAGE:NAME:normal_1 8 51

Fill Subtype

Use the following syntax to specify metal and via fill:

layerObjName layerObjType[:FLOATING] layerNumber dataType

:FLOATING is optional. It specifies unconnected fill. Use this syntax for FILL, FILLOPC, VIAFILL, and
VIAFILLOPC shapes.

In the map file, FLOATING shapes can be output to a different layerNumber/dataType than the non-
FLOATING (connected) shapes, or they can be output to the same layerNumber/dataType and to a
different layerNumber/dataType.

September 2022 271 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

For example, to divide the output of metal fill shapes, so that non-floating fill on METAL1 is output to
layerNumber 8 dataType 0 and floating fill to layerNumber 8 dataType 51, the map file would have the
following statements:

METAL1 FILL 8 0

METAL1 FILL:FLOATING 8 51

To output the connected metal fill shapes on METAL1 to layerNumber 8 dataType 0 and floating fill
to both layerNumber 8 dataType 0 and to layerNumber 8 dataType 51, the map file would have the
following statements:

METAL1 FILL 8 0

METAL1 FILL:FLOATING 8 0,51

Net Name Subtype

Innovus supports the following net name subtypes:

SPNET

Usage: SPNET:NETNAME:$netname

NET

Usage: NET:NETNAME:$netname

VIA

Usage: VIA:NETNAME:$netname

FILL

Usage: FILL:NETNAME:$netname

FILLOPC

Usage: FILLOPC:NETNAME:$netname

FILLDRC

Usage: FILLDRC:NETNAME:$netname

VIAFILL

Usage: VIAFILL:NETNAME:$netname

Use the following syntax to specify layers for nets.

For special nets, use the following syntax:

layerObjName SPNET[:netName] layerNumber dataType

September 2022 272 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

For regular nets, use the following syntax:

layerObjName NET[:netName] layerNumber dataType

:netName is optional. Use the whole net name of any net.

For example, to output special net named VSS on LEF layer METAL3, include the following lines in the
map file:

METAL3 SPNET:VSS 111 0

METAL3 SPNET 11 0

To output via named VSS on LEF layer METAL3 to GDS layer 111, via VSS on LEF layer VIA34 on
GDS layer 112, and via VSS on LEF layer METAL4 to GDS layer 113, include the following lines in the
map file:

routing/metal layers

METAL3 NET,SPNET 11 0

METAL4 NET, SPNET 13 0

via cell layers

METAL3 VIA 11 0

VIA34 VIA 12 0

METAL4 VIA 13 0

routing/metal layers - net name sub-types

METAL3 SPNET:VSS 111 0

METAL4 SPNET:VSS 113 0

via cell - net name sub-types

METAL3 VIA:VSS 111 0

VIA34 VIA:VSS 112 0

METAL4 VIA:VSS 113 0

The specified nets can be streamed out into multi layers:

layerName NET layerNumber dataType

layerName NET:netName layerNumber dataType

layerName NET:netName layerNumber1 dataType1

September 2022 273 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Example:

Metal2 NET:clk1 32 10

Metal2 NET:clk1 132 0

Voltage Subtype

Use the following syntax to specify the voltage level for nets, special nets, pins, and vias:

layerObjName layerObjType:VOLTAGE:minVoltage[:maxVoltage] layerNumber dataType

For example, to output nets on LEF layer METAL1 with a minimum voltage of 1.8 to layerNumber 31
dataType 3, use the following syntax:

METAL1 NET:VOLTAGE:1.8 31 3

To output nets on LEF layer METAL1 with a minimum voltage of 1.8 and a maximum voltage of
2.499 to layerNumber 31 dataType 3, use the following syntax:

METAL1 NET:VOLTAGE:1.8:2.499 31 3

If you specify both net names and voltages in the file, the net name overrides the voltage (because
the net name is more specific than the voltage). In the following example, VDD nets are output to
layerName/dataType 31 4, even whose voltage is between 1.8 and 2.499.

METAL1 NET:VDD 31 4

METAL1 NET:VOLTAGE:1.8:2.499 31 1

As with other subtypes, you can output objects with different voltages to different
layerNames/dataTypes, or you can copy the output, so that it appears in more than one
layerName/dataType in the map file. In the following example, nets whose voltage is between 1.8
and 2.499 are output to both layerName/dataType 31 0 and layerName/dataType 31 1.

METAL1 NET 31 0

METAL1 NET:VOLTAGE:1.8:2.499 31 0,1

SIZE Subtype

You can use the SIZE attribute to specify the size of cuts to be checked. The SIZE attribute applies
only to VIA object types (VIA, VIAFILL, and VIAFILLOPC) and to their cut layers. A warning message
is displayed if the SIZE attribute is applied to a non-cut layer or a non-VIA object.

The map file syntax is as follows:

September 2022 274 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

layer VIA:SIZE:value1xvalue2 gdsLayer gdsDatatype

layer VIAFILL:SIZE:value1xvalue2 gdsLayer gdsDatatype

layer VIAFILLOPC:SIZE:value1xvalue2 gdsLayer gdsDatatype

The cut size values value1 and value2 are specified in microns.

Examples of usage of SIZE attribute are given below:

VIA12 VIA:SIZE:0.1x0.1 41 0

VIA12 VIA:SIZE:0.1x0.2 41 1

VIA12 VIA:SIZE:0.2x0.2 41 2

For rectangles both the cut orientations are checked using one statement. For example, cuts
0.1x0.2 and 0.2x0.1 are checked using the following statement:

VIA12 VIA:SIZE:0.1X0.2 41 1

It is recommended to define a via without using the SIZE attribute. For example,

VIA12 VIA 41 0

VIA12 VIA:SIZE:0.1x0.1 41 0

VIA12 VIA:SIZE:0.1x0.2 41 1

VIA12 VIA SIZE:0.2x0.2 41 2

In this case, all the possible cut sizes are checked. If, say, three standard cut sizes are specified, the
"default" size is picked and not the one specified using the SIZE attribute. The "unsized" construct is
used to check cuts that do not have standard sizes.

For 0.1x0.1 VIA defined without a SIZE attribute, you can also specify a simpler usage, such as,

VIA12 VIA 41 0

VIA12 VIA:SIZE:0.1x0.2 41 1

VIA12 VIA SIZE:0.2x0.2 41 2

MASK Subtype

Use the following syntax to specify MASK attribute for designs using processes that require multiple
masks per layer:

layerObjName layerObjType[:MASK:#] layerNumber dataType

Example

Met1 NET,SPNET,PIN 31 0 # collector for "gray/uncolored" data

Met1 NET,SPNET,PIN:MASK:1 31 1 # output for "MASK1" wiring shapes

September 2022 275 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Met1 NET,SPNET,PIN:MASK:2 31 2 # output for "MASK2" wiring shapes

Met1 VIA 31 0 # collector for "gray/uncolored" data

Met1 VIA:MASK:1 31 1 # output for "MASK1" via shapes

Met1 VIA:MASK:2 31 2 # output for "MASK2" via shapes

Via12 VIA 41 0 # no support for cut layer coloring in Phase 1

Met2 VIA 32 0 # collector for "gray/uncolored" data

Met2 VIA:MASK:1 32 1 # output for "MASK1" via shapes

Met2 VIA:MASK:2 32 2 # output for "MASK2" via shapes

...

...

SHAPE Subtype

You can use SHAPE to streamOut SPNET per shape. The SHAPE name supports:

None

RING

STRIPE

FOLLOWPIN

IOWIRE

COREWIRE

BLOCKWIRE

PADRING

BLOCKRING

Note: Shape names are not case sensitive

The syntax for using SHAPE Subtype is:

layerObjName layerObjType:SHAPE:shape_name layerNumber dataType

Example

September 2022 276 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

In the following example, all the SPNET objects (other than STRIPE) are streamed out to layer
31:0. STRIPE objects on SPNET are streamed out to both layers 31:0 and 31:1.

METAL1 SPNET 31 0

METAL1 SPNET:SHAPE:STRIPE 31 0,1

Note: From the 14.1 release, a cut layer in the map file (for a via) can have MASK, SIZE, and
VOLTAGE at the same time. For example, you can specify the size of cuts and the mask attribute for
design as follows:

layer VIA:SIZE:value1xvalue2:MASK:maskvalue layerNumber dataType

Example:

Via1 VIA:SIZE:0.24x0.24:MASK:2 196 2

Hierarchy Map File Format

Hierarchy map file format is supported by default in Innovus. This means that the tool can recognize
the map file format itself, parse it automatically. You are not required to use any additional setting.

The streamOut command creates a hierarchy format map if -mapFile option is not used.

Rules

The rules for the hierarchy map file format are given below:

File has version number

Use # for comment

Root hierarchy is layer or design, keywords is LAYER, DESIGN, and VERSION.

Hierarchy structure, use indent and ‘-‘ char to indicate

Attribute starts with ‘.’,

AND keyword indicates the and logic

Use ‘,’ to separate multiple objects, like layers or objects

Uses “()” for range

September 2022 277 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/streamOut.html

Keywords

Supported Attributes

Hierarchy map file format supports the following attribute types:

Keyword Meaning

VERSION File version number

LAYER LEF layer or user-defined layer setting is under this hierarchy node

DESIGN Design global setting is under this hierarchy node

LABEL NET, SPNET, PIN, LEFPIN name text

NETNAME Net name for NET, SPNET, VIA object type

FILLS Routing BLOCKAGE with fills attribute setting

AND Attributes are in and logic

MASK Mask shift setting on layer shape object

VOLTAGE Voltage range on regular/special net and pin

SIZE Via size

NETNAME Net name for specified object about net special net and via

LABEL Name label for net, special net, pin and LEF pin

NAME Blockage name

MAXVOLTAGE Max voltage text for pin

MINVOLTAGE Min voltage text for pin

FILLS Blockage attributes

FLOATING Floating metal fill on _FILLS_RESERVED net

September 2022 278 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

The following table lists the hierarchy map file formats objects and the supported attributes for each
object:

OBJECT Sub Object support Description

NET MASK, VOLTAGE, NETNAME,
LABEL, MAXVOLTAGE,
MINVOLTAGE

Regular wires on net

SPNET MASK, VOLTAGE, NETNAME,
LABEL, MAXVOLTAGE,
MINVOLTAGE

Special wires on special net

PIN MASK, VOLTAGE, LABEL Top cell design pin and
physical pin

LEFPIN MASK, LABEL Cell pin

VIA MASK, VOLTAGE, SIZE, NETNAME Via cell top/cut/bottom layer
shape

FILL MASK, FLOATING Metal fill special wire on
special net

FILLOPC MASK, FLOATING Metal fill special wire with
OPC attribute on special net

FILLDRC MASK, FLOATING Metal fill special wire with
DRC attribute on special net

VIAFILL MASK, FLOATING, SIZE Metal fill special via on
special net

VIAFILLOPC MASK, FLOATING, SIZE Metal fill special via with OPC
attribute on special net

VIAFILLDRC MASK, FLOATING, SIZE Metal fill special via with
DRC attribute on special net

SPENTNOFILLDRC Special wires on special net
without DRC fill

TRIM MASK Ttrimmetal on regular and
special net patch wire

September 2022 279 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Example of Hierarchy Syntax Format

The following example of hierarchy syntax format shows all type combinations:

layer map file in hierarchy format

VERSION 1.0

FE layer setting

LAYER METAL1,METAL2

 - NET 100 0

 - .MASK 1 100 1

 - .MASK 2 100 2

 - .FIXEDMASK 100 3

 - .VOLGATE (0.001 3.338) 100 4

 - .NETNAME spi_clk 100 5

 - .LABEL 110 6

 - SPNET 110 0

 - .MASK 1 110 1

SHORT MASK Trimmetal short on regular
and special net patch wire

BLOCKAGE MASK, FILLS, NAME Routing blockage

CUSTOM GUI object

TEXT OA text object

COMP LABEL Instance box, instance name

DIEAREA Design die area box

LEFPVERLAP Cell LEF overlap layer box

September 2022 280 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

 - .MASK 2 110 2

 - .VOLGATE (0.001 3.338) 110 3

 - .NETNAME VSS,VDD 110 3

 - .LABEL 110 12

 - PIN,LEFPIN 10 0

 - .MASK 1 10 1

 - .MASK 2 10 2

 - PIN

 - .VOLTAGE (0.001 3.339) 10 3

 - VIA 120 0

 - .MASK 1 120 1

 - .MASK 2 120 2

 - .VOLTAGE (0.003 3.337) 120 3

 - .SIZE 24x24 120 4

 - .NETNAME VSS,VDD 120 5

 - BLOCKAGE 200 0

 - .FILLS 200 1

 - .NAME bkg_tx 200 3

LAYER METAL3

 - NET 130 0

 - .MASK 1 130 1

 - .MASK 1 AND .VOLTAGE (1.5 3.33) 130 100

 - .MASK 1 AND .VOLTAGE (1.5 3.33) AND .NAME spi_clk 130 110

 - .MAXVOLTAGE 130 120

 - .MINVOLTAGE 130 130

LAYER METAL4

September 2022 281 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

 - FILL,FILLOPC,FILLDRC 400 0

 - .FLOATING 400 1

 - VIAFILL,VIAFILLOPC,VIAFILLDRC 500 0

 - .FLOATING 500 0

customer layer setting

LAYER CUST_M3

 - CUSTOM 200 0

text setting

LAYER text

 - TEXT 300 0

design setting

DESIGN

 - DIEAREA 140 0

 - COMP 150 0

 - .LABEL 150 1

 - LEFOVERLAP 160 0

The following example shows the syntax format map file with contents,

##

file version number

##

Version: 1.0

For trimmetal object

September 2022 282 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

LAYER CUSTM1

 - TRIM 1 0

LAYER CUTM2,CUTM3

 - TRIM 2 0

LAYER CUTM3

- TRIM 3 0

For FE layer object

LAYER M0

 - NET 4 0

 - .LABEL 14 0

 - SPNET 5 0

 - .LABEL 15 0

 - PIN 6 0

 - .LABEL 16 0

 - LEFPIN 7 0

 - .LABEL 17 0

 - FILL 8 0

 - FILLOPC 9 0

 - VIA 10 0

 - VIAFILL 11 0

 - VIAFILLOPC 12 0

 - LEFOBS 13 0

LAYER V0

 - PIN 18 0

September 2022 283 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

 - LEFPIN 19 0

 - FILL 20 0

 - FILLOPC 21 0

 - VIA 22 0

 - VIAFILL 23 0

 - VIAFILLOPC 24 0

LAYER M1

 - NET 25 0

 - .LABEL 35 0

 - SPNET 26 0

 - .LABEL 36 0

 - PIN 27 0

 - .LABEL 37 0

 - LEFPIN 28 0

 - .LABEL 38 0

 - FILL 29 0

 - FILLOPC 30 0

 - VIA 31 0

 - VIAFILL 32 0

 - VIAFILLOPC 33 0

 - LEFOBS 34 0

LAYER V1

 - PIN 39 0

 - LEFPIN 40 0

 - FILL 41 0

 - FILLOPC 42 0

September 2022 284 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

 - VIA 43 0

 - VIAFILL 44 0

 - VIAFILLOPC 45 0

LAYER M1

 - NET 46 0

 - .LABEL 56 0

 - SPNET 47 0

 - .LABEL 57 0

 - PIN 48 0

 - .LABEL 58 0

 - LEFPIN 49 0

 - .LABEL 59 0

 - FILL 50 0

 - FILLOPC 51 0

 - VIA 52 0

 - VIAFILL 53 0

 - VIAFILLOPC 54 0

 - LEFOBS 55 0

For design setting

DESIGN

 - COMP 313 0

 - .LABEL 312 0

 - DIEAREA 314 0

 - LEFOVERLAP 315 0

September 2022 285 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Using Multiple Layers and Data Types
The following examples show the use of multiple layers and data types.

Updating Files During an Innovus Session
The following table lists the files you can replace or update incrementally during an
Innovus session:

Use the Following
Syntax

To ... To Output
Layer/Datatype(s)

METAL1 NET 31 0 Single layer, single data type 31:0

METAL1 NET 31 0,1 Single layer, two data types 31:0, 31:1

METAL1 NET 31,32 0 Two layers, single data type 31:0, 32:0

METAL1 NET 31,32

0,1
Two layers, two data types 31:0, 31:1, 32:0, 32:1

METAL1 NET 31 0

METAL1 NET 32 1
Two layers, each with a different
data type

31:0, 32:1

Type Replace Update How

ILM Y Y specifyIlm

unspecifyIlm

LEF N Y loadLefFile -incremental

Quantus Tech
File

Y N update_rc_corner -qx_tech_file

Timing Libraries N Y update_library_set

Timing
Constraints

Y Y update_constraint_mode

set_interactive_constraint_modes

source

September 2022 286 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

* The Innovus software loads information for display only. You cannot edit it.

SKILL to TCL Mapping
The following table shows the mapping of Virtuoso SKILL functions to Innovus TCL functions while
using the setOaxMode -bindkeyFile parameter.

I/O Assignment
File

Y N loadIoFile

Partition File Y N specifyPartition

Floorplan File Y N loadFPlan

Routing File Y N restoreRoute

Special Route
File

Y Y Use loadSpecialRoute to replace

DEF Y Y defIn

(use the -scanChain option to update scan
chains)

PDEF Y Y pdefIn

Virtuoso Key
(Default)

SKILL Function Innovus Key
(Default)

Innovus
Command

Shift-k leHiClearRuler() K cleanRuler

Shift-m leHiMerge() M mergeWire

Shift-q leEditDesignProperties() Q summaryReport

Shift-r leHiReShape() R resizeMode

Shift-s leHiSearch() S getWireInfo

Shift-u hiRedo() U redo

Shift

<DrawThru3>
hiZoomOut() Z zoomOut

September 2022 287 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

../innovusTCR/setOaxMode.html#setOaxMode-setOaxMode

a geSingleSelectPoint() a selectMode

c leHiCopy() c copySpecialWire

e leHiEditDisplayOptions() e popUpEdit

f hiZoomAbsoluteScale

(hiGetCurrentWindow())

f fit

k leHiCreateRuler() k createRuler

m leHiMove() m moveWireMode

o leHiCreateVia() o addViaMode

q leHiEditProp() q attributeEditor

Shift-o leHiRotate() r rotateInstance

s leHiStretch() s stretchWireMode

u leUndo() u undo

w hiPrevWinView

(hiGetCurrentWindow())

w previousView

z hiZoomIn() z zoomIn

4- Down arrow
key

geScroll(nil \\\"n\\\"

nil)
Up panUp

5- Down arrow
key

geScroll(nil \\\"s\\\"

nil)
Down panDown

4-Down arrow
key

geScroll(nil \\\"w\\\"

nil)
Left panLeft

5-Down arrow
key

geScroll(nil \\\"e\\\"

nil)
Right panRight

F2 geSave() F2 saveDesign

Delete leHiDelete() Delete deleteSelected

Escape cancelEnterFun() Escape cancel

September 2022 288 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Note: If the setOaxMode -bindkeyFile parameter is used, then the Virtuoso Key column applies to
Innovus for all of the equivalent commands in the mapping.

Ctrl-d geDeselectAllFig() Ctrl-d deselectAll

Ctrl-n leSetFormSnapMode

(\\\"90XFirst\\\")

Ctrl-n snapFloorplan

Ctrl-r hiRedraw() Ctrl-r redraw

Ctrl-s leHiSplit() Ctrl-s splitWire

September 2022 289 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Importing and Exporting Designs

Trimming the Design
Sometimes instead of sharing the whole design (containing third-party IP data), you may want to
only share a small portion of the design and avoid sharing the whole third-party IP information. This
is especially helpful in a scenario where you want to analyze a part of the design to investigate a
localized issue or try out a different setting. The small trimmed version of the design can then be
treated as a small independent design for designers to work on.

With the trimDesign command, you can create a small trimmed down portion of a design. This
trimmed version of the design is an independent design that can be used for investigation and
analysis. The trimDesign command enables you to specify the coordinates of a box to create a
small portion of the design. While the trimmed design completely preserves the physical data, it
does not preserve the timing and the power domain data. Working on a small portion of the design
offers a faster turnaround time and a lesser memory footprint.

September 2022 290 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Trimming the Design

../innovusTCR/trimDesign.html
../innovusTCR/trimDesign.html

Related Information

Advantages of Working on a Trimmed Design

Use Model of Working on Trimmed Designs

How Design Objects are Handled in the Trimmed Design

Encrypting the Names of Instances and Nets

Advantages of Working on a Trimmed Design
The advantages of working on a trimmed design are:

Helps you to focus on a smaller database.

The trimmed design inherits the physical design data elements like regular/special wires,
instances, macros, rows, sites, tracks, colors, routing/placement blockages, attributes,
properties of the original full design. This ensures a design environment similar to the original
full design and similar behavior by the tool.

All the violations (checkPlace and verify_drc) present in the original design are inherited in
the trimmed version of the design. This makes the trimDesign capability a useful feature for
debugging smaller sections of the design, thereby boosting quality.

The names of design objects are encrypted in the trimmed design to maintain data
confidentiality. The trimDesign command enables you to customize the encryption procedure
that is used to achieve this. The trimDesign process does not save any binary data, instead
it saves the DEF, Verilog, LEF information in a .txt file format.

Related Information

Trimming the Design

Use Model of Working on Trimmed Designs

How Design Objects are Handled in the Trimmed Design

Encrypting the Names of Instances and Nets

September 2022 291 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Trimming the Design

../innovusTCR/checkPlace.html
../innovusTCR/verify_drc.html
../innovusTCR/trimDesign.html
../innovusTCR/trimDesign.html
../innovusTCR/trimDesign.html

Use Model of Working on Trimmed Designs
With trimDesign, you can create a design which is physically equivalent to a small portion of a big
design. It will preserve all physical data so much so that checkPlace and verify_drc will yield
similar results on this small design, versus the same area in the big design. Thus, you can then
share this small design independently for any investigation related to checking the placement and
DRC violations.

Note: The LEF technology file must be shared with the trimmed design as it is required for checking
the placement and verifying the drc.

In the following example, a trimmed design, trim_db, is created with the specified coordinates and
is saved in the DB file:
trimDesign –dir DB –name trim_db –area{300.0 200.0 800.0 700.0}

September 2022 292 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Trimming the Design

../innovusTCR/trimDesign.html
../innovusTCR/checkPlace.html
../innovusTCR/verify_drc.html

With trimDesign, you can create a design which is physically equivalent to a small portion of a big
design. It will preserve all physical data so much so that checkPlace and verify_drc will yield
similar results on this small design, versus the same area in the big design. Thus, you can then
share this small design independently for any investigation related to checking the placement and
DRC violations.

To use a selected routing blockage as the trim area, use the following command:
trimDesign –selectedRouteBlk

The trimDesign command does not include any timing related data (viewDefinition.tcl, SDC, power
domains), however, it does include the physical data (.fp, .place, .route). Since timing and
power data is not included, the trimmed design is better suited for physical data analysis rather than
optimization, timing, power analysis.

The checkPlace command reports all violations that were there on instances in the trim
box/area in the original full design. However, since hierarchical fences are not brought back,
the trimmed design may not have the Region/Fence and Not-of-Fence Violations.

The verify_drc command reports all violations that were there on nets in the trim box/area in
the original full design. However, since only the net wires crossing box boundary are
preserved, the trimmed design may have some extra violations.

September 2022 293 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Trimming the Design

../innovusTCR/trimDesign.html
../innovusTCR/checkPlace.html
../innovusTCR/verify_drc.html
../innovusTCR/trimDesign.html
../innovusTCR/trimDesign.html
../innovusTCR/checkPlace.html
../innovusTCR/verify_drc.html

Related Information

Trimming the Design

Advantages of Working on a Trimmed Design

How Design Objects are Handled in the Trimmed Design

Encrypting the Names of Instances and Nets

How Design Objects are Handled in the Trimmed
Design
With the trimDesign command you can specify the coordinates of a box to create a small portion of
the design as an independent design. This trimmed down version of the design can be then used
for investigation and analysis. The dimensions of the trimmed design are the same as
the dimensions of the trim box/area specified with the trimDesign command.

For example, the following command will create a trimmed area of 500uX500u:
trimDesign –dir DB –name trim_db –area {300.0 200.0 800.0 700.0}

Note: During trimDesign the specified trim box/area is snapped to the instance grid. All instances
in the box lose their original logic hierarchy and appear flat in the new db. This process is
irreversible, and it is used only for debugging purposes. You should not attempt to assemble back
the trimmed design to the original full design.

September 2022 294 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Trimming the Design

../innovusTCR/trimDesign.html
../innovusTCR/trimDesign.html

The trimmed design:

Retains the attributes and properties of all the standard cells and macros that are completely
inside the trim box/area. All hard macros that overlap with the trim box/area are also
preserved. It does not include any standard cells or macros that are completely outside the
specified trim box/area.

Preserves all overlapping rows, sites, and colors.

Flattens all instances and net names. All instances in the trim box/areal lose their original
logic hierarchy and appear ‘flat’ in the trimmed database. Any naming conflicts arising due to
flattening are automatically resolved. For example, h1/h2/i1 in the full design will appear as i1
in the trimmed design. Also, h1/h4/i1 may appear as i1_uniquify1, to distinguish it from i1.
Note: To resolve naming conflicts due to the loss of hierarchy, additional name uniquification
is done. A mapping of original nets/instances names vs their trimmed design modified names,
is written in a map file for book keeping purpose.

Maintains the design parameters such as instance location/orientation, regular/special wire
and its connectivity relative to the original full design.

Retains the attributes and properties of all the nets having some instances inside the trim
box/area. It also preserves (pushes down) the nets that are not connected to any instance in

September 2022 295 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Trimming the Design

the trim box/area, but have some wires overlapping with trim box/area. Nets having all
instances and wires outside of trim box/area are discarded.

Creates ports for all wires crossing the boundary of the trimmed design.

Preserves the tracks, attributes and colors of all wires that are completely inside the trim
box/area. All wires that overlap with the trim box/area are also preserved. It does not include
any wire that is completely outside the specified trim box/area.

Preserves the Power/Ground/Special wires that overlap with the boundary of the trim box by
cutting them against the boundary. It creates additional PG ports at cross points of these
wires.

Discards fences, regions, guides, instance groups, and power domains.

Saves the .globals file(s) that have the .lef list copied from original full design’s .globals
file(s).

Related Information

Trimming the Design

Advantages of Working on a Trimmed Design

Use Model of Working on Trimmed Designs

Encrypting the Names of Instances and Nets

Encrypting the Names of Instances and Nets
The names of design objects are encrypted in the trimmed design to maintain data confidentiality.
Using the -encryptName parameter of the trimDesign command you can specify the procedure that
is used to encrypt the names of instances and nets in the trimmed design. This feature is useful
to maintain data confidentiality.

Note: The trimDesign process does not save any binary data, instead it saves the DEF, Verilog,
LEF information in a .txt file format.

For example, the following command uses a get_new_name procedure to encrypt the names on the
instances and nets in the trimmed design trim_db:
trimDesign –dir DB –name trim_db –area {300.0 200.0 800.0 700.0} -encryptName

gen_new_name

September 2022 296 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Trimming the Design

The following is format of the encryption procedure that is used by the trimDesign.

You can customize this procedure:

proc gen_new_name {name} {

 global n

 if {![info exists n]} {

 set n 0

 }

 set new_name en_name__$n

 incr n

 return $new_name

}

Related Information

Trimming the Design

Advantages of Working on a Trimmed Design

Use Model of Working on Trimmed Designs

How Design Objects are Handled in the Trimmed Design

September 2022 297 Product Version 22.10

 Innovus User Guide
Design Import and Export Capabilities--Trimming the Design

4

Design Planning Capabilities

Floorplanning the Design

Using Structured Data Paths

Bus Planning

Power Planning and Routing

September 2022 298 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities

Floorplanning the Design
Overview

Common Floorplanning Sequence

Viewing the Floorplan

Module Constraint Types

Target Utilization Display

Effective Utilization Display

Calculating Density

Standard Row Spacing

Grouping Instances

Defining the Bounding Box

Adding Logical Hierarchy Without Creating Additional Hierarchy

Logical Hierarchy Manipulation

Creating and Editing Rows

Using Vertical Rows

Using Multiple-height Rows

Using Integer Multiple-height Rows

Using Non-Integer Multiple-height Rows

Working with User-defined DEF Files that Contain NIMH Rows or Unaligned Rows

Merging Hierarchical Floorplans from Partitions

Performing I/O Row Based Pad Placement

Prerequisites

Enabling the I/O Row Flow in Innovus

Use Models

Resizing Rectilinear block-level floorplan

Editing Pins

September 2022 299 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Pin Snapping on Resized Boundaries

Moving Pins

Swapping Pins

Using the Pin Editor

Spreading Floating Pins

Running Relative Floorplanning

Orientation Key

Instance Place Example

Saving and Restoring Relative Floorplan

Saving and Loading Floorplan Data

Specific Floorplan Section TCL Export/Import

Snapping the Floorplan

Resizing the Floorplan

Resize Floorplan Options

Setting Resize Lines

Specifying Resize Directions

Snapping Resize Values

Viewing Resize Lines using Color Preferences

Distributing I/Os using Resize Floorplan

Resizing Floorplan Bounding Box in GUI

Checking the Floorplan

Finishing the Floorplan

FinFET Technology

FinFET Support in Innovus

Unified Floorplan Constraints

Recommended UFC Flow

Creating a UFC file with Floorplan Rules

September 2022 300 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Sample UFC File

Checking UFC rules

Fixing reported violations

September 2022 301 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Overview
Floorplanning a chip or block is an important task of physical design in which the location, size, and
shape of soft modules, and the placement of hard macros are decided. Depending on the design
style or purpose, floorplanning can also include row creation, I/O pad or pin placement, bump
assignment (flip chip), bus planning, power planning, and more. For example, floorplanning is very
important when preparing the design for timing closure and detailed routing. Floorplanning, in
conjunction with placement and early global routing, can be an iterative design process.

The Innovus Implementation System (Innovus) software provides a rich set of commands and GUI
functions to floorplan your design interactively. There are also commands for creating an initial
floorplan automatically, or, resize a finished floorplan while keeping relative placement of objects.

For information on floorplan commands, see the Floorplan Commands chapter, in the Innovus
Text Command Reference.

For information on floorplan GUI, see the Floorplan Menu chapter, in the Menu Reference.

Innovus includes several keyboard shortcuts for use with the floorplanning feature. Make sure you
type the bindkey while the main Innovus window is active and the cursor is in the design display
area. The Binding Key form contains a complete list of bindkeys. To display this form, select View -
Set Preference from the Innovus menu, then click the Binding Key button on the Design tab of
the Preferences form, or use the default b binding key.

Common Floorplanning Sequence
Floorplanning usually starts by preplacing blocks, modules, and submodules according to the
prepared floorplan. All other modules or blocks not in the prepared floorplan are left outside the chip
area. The following steps describe the most common sequence for floorplanning:

1. Importing the design. For more information, see Importing and Exporting Designs.

2. Studying the design's connectivity.

3. Performing the minimum amount of floorplanning based on the chip design floorplan, or do no
floorplanning at all.

4. In some cases, no floorplanning is required. For example, a front-end designer might want to
predict the quality of the design's netlist by initially placing the entire design without any
floorplanning. This iteration provides a good indication of how the blocks should be located
and arranged together with the larger modules. After a few iterations, it should be clear how to
position the blocks and modules in the floorplan.

September 2022 302 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/Floorplan_Commands.html
../innovusMR/Floorplan_Menu.html

5. Running placement and Early Global Route to view placement and routing congestion.

Optionally, running the resizeFloorplan command to enlarge or shrink the die after
placement and routing.

6. In this case, floorplanning is done to detail the pre-placement of all blocks, most likely done by
a back-end designer to gauge the feasibility of a prepared floorplan.

7. The placer places all remaining blocks that were not preplaced in the floorplan, and also
recognizes the floorplan object, such as power and ground routes.

8. If you are at the design's top-level in the display area and want to generate a guide for a
submodule, ungroup the top module until you have reached the submodule.

9. Using the full chip placement to refine block (hard macro and blackbox) locations.
(Optional) Based on the full chip placement results - placement density and routing
congestion, running resize floorplan to enlarge or shrink the die.

10. View the placements of blocks to determine if you need to change the alignment or
orientations.

11. Looking for congestion in modules and change heavily congested modules' placement
density to a lower percentage.

12. (Optional) If you made any changes in step 5, or especially step 6, rerun placement.

Viewing the Floorplan
In the design display area, the objects to the left of the core area are the top-level modules, which
can be moved and reshaped. The objects to the right of the chip area are the blocks, which can be
moved but not reshaped.

September 2022 303 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Use the G key (ungroup), or click the Hierarchy Down icon, to display the submodules for a selected
module guide. Each time you use the G key, you move further down the hierarchy. Use the g key
(group), or click the Hierarchy Up icon, to move up the hierarchy. In Floorplan view, you can view
the block pins and connection flight lines by clicking on a block or module. Flight lines show the
connections and number of connections between the selected module or block to any other
modules and blocks.

The pins for blocks are displayed where the flight lines terminate to help you orient the blocks so
that the block pins face in the direction that best reduces routing congestion. To set options for
displaying flight lines in the design, select View - Set Preference from the Innovus menu, then click
the Flightline tab on the Preferences form in the GUI. You can change the die or core size; the
margins between the core box and I/O pad instances; and the individual die (head), I/O, or core box
sizes. These boxes are shown in the following figure.

You can move module or instance groups outside the core area.

Note: Descendant macros and standard cells can move with their ancestor modules when the
module is moved in and out of the core area.

September 2022 304 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Module Constraint Types
The entire design size is initially calculated during design import, and each module size is
calculated. The size of the modules is determined by either the core utilization or the core width and
height specifications. The imported design modules can have one of the following constraint types:

None

The module is not pre-placed in the core design area. The contents of the module are placed
without any constraints.

Guide

The module is preplaced in the core design area. A module guide represents the logical module
structure of the netlist. The purpose of a module guide is to guide placement to place the cells of the
module in the vicinity of the guide's location. The preplaced guide is a soft constraint, which is
discussed later in this section. After the design is imported, but before floorplanning, you can locate
module guides on the left side of the core area, which appear as pink objects (by default) in the
Floorplan view.
When a module is preplaced in the core design area, it snaps to a standard cell row in the vertical
direction and to a metal 2 pitch in the horizontal direction (the default). This default can be changed
to snap to the manufacture grid (in the Preferences form's Floorplan page).

Fence

The module is a hard constraint in the core design area. After specifying a hierarchical instance as
a partition, the constraint type status of a module guide is automatically changed to a fence. The
physical outline of a fence module is rigid, and the design for the module is self-contained within the
rigid outline. Only child instances must be contained within the partition physical outline; non-child
blocks or modules that do not belong to the partition are excluded, and should not be pre-placed
within another partition. This restriction is a hard restriction for third party back-end tools where the
placement file for a partition does not match the partition netlist.

To create a fence for a module, or a group that contains hierarchical instances, instances (leaf
instance), or other groups, use the createFence command or select Fence from the Attribute
Editor's Constraint Type pulldown menu.

Note: Fence groups can potentially cause overlaps that cannot be corrected because the Innovus
software cannot move the cells out of the group.

September 2022 305 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/createFence.html

Region

This constraint is the same as a fence constraint except that instances from other modules can be
placed within its physical outline by placement. A module guide is changed to a status of Region
when preplaced in the core design area.

To create a region for a module, or a group that contains hierarchical instances, instances (leaf
instance), or other groups, use the createRegion command or select Region from the Attribute
Editor's Constraint Type pulldown menu.

Note: Region groups can potentially cause overlaps that cannot be corrected because the Innovus
software cannot move the cells out of the group.

Soft Guide/Cluster

This constraint is similar to a guide constraint except there are no fixed locations. This provides
stronger grouping for the instances under the same soft guide. The soft guide constraint is not as
restrictive as a fence or a region constraint, so some instances might be placed further away if they
have connections to other modules. To create a soft guide for a module, or a group that contains
hierarchical instances, instances (leaf instance), or other groups, use the createSoftGuide
command or select SoftGuide from the Attribute Editor's Constraint Type pulldown menu.

Note: Soft guides are also called clusters.

Note: You can use the setPlaceMode -place_global_soft_guide_strength command to instruct
the placement engine to place those modules which have been specified as soft guide in the
floorplan file closer. The degree of closeness depends on the strength given. In case, there are
fixed/preplaced instances, the module placed gets affected by those fixed instances and therefore
placed close to them.

Note: Now the module constraints, guide, fence, region, and soft guide, are allowed to be out of
core area but must be in the die area.

Target Utilization Display
Module constraints display a target utilization (TU=%) value to represent their physical design size.
This is an estimation of module utilization for the given size of the module where only standard cell
and hard macro areas are considered; floorplan constraints, such as placement blockages, are not
considered. This value is calculated by the standard cells area plus the hard macros area, divided
by the module area. The initial TU values are calculated during design import.

The TU percentage helps judge the physical size of a module guide to customize the shape of the
module in the floorplan. For example, modules SH19 and SH7 have a TU values of 77.2%. If the

September 2022 306 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/createRegion.html
../innovusTCR/createSoftGuide.html
../innovusTCR/setPlaceMode.html

modules are reshaped with the same area, they retain their TU values, as shown in the following
figure:

You can place them in the core area so they are preplaced close to one another, as shown in the
following figure:

The position of the module guide is a placement constraint, and the final definition of the module is
determined by several factors. The most important factor – the highest priority of constraint – is the
connectivity between itself and other modules. Other floorplan constraints, such as neighboring
preplaced module guides, preplaced blocks, placement blockages, and routing blockages, are also
considered, but at a lower priority than connectivity.

Note: You can use a stronger constraint for keeping modules SH19 and SH7 close together using the
Group Instances form, and even a stronger constraint by saving the regrouped netlist.

Unlike module guides, the position of fences and regions is a hard placement constraint and are not
moved by the same factors.

September 2022 307 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Effective Utilization Display
For fences and regions, you can display the effective utilization (EU=%) value. The EU value takes
into account the actual cells and hard macros in the fence or region, placement or routing
blockages, partition cuts, and other floorplan constraints. It is a good practice to update the EU
value before running placement. Click the Query Area Density toolbar widget (the % button above
the design display area) to display the EU value for each fence and region, as shown in the
following figure.

Note: The displayed EU values are not automatically updated. You must click the Query Area
Density toolbar widget each time you want to display the updated EU value. This calculation could
be time consuming, especially for larger designs.

Note: If the EU value is at or exceeds 100% for a fence or region, placement changes the fence or
region to a guide. To avoid this, before you run placement, make sure to check and update the EU
value, if necessary.

Calculating Density
When specifying the floorplan, you can determine the core and module sizes by total density or
standard cell density using the Core Utilization or Cell Utilization options, respectively, in the
Specify Floorplan form. Core Utilization determines the initial size of the core area and the initial
size of the pink module guides off to the left of the die area. The total density is calculated as
follows:

Core Size = (standard cell area + macro area + halo) / core utilization

In determining the size of the core area and module guides, standard cells and hard macros are
treated the same. However, you can determine how densely objects can be packed by weighing the
standard cell density separately from the hard macro density. The standard cell density is
calculated as follows:
Core Size = (standard cell area / cell utilization) + macro area + halo

The size of the core is smaller once you specified your floorplan by using Cell Utilization.

September 2022 308 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Standard Row Spacing
To configure the rows, use the setFPlanRowSpacingAndType command, the createRow command or
the options from the Standard Cells Rows panel of the Specify Floorplan form.

The following row configurations are supported:

Example 1: Bottom R0 and flip/abut

createRow -limitInCore -site CORE -spacing 5.4

September 2022 309 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/setFPlanRowSpacingAndType.html
../innovusTCR/createRow.html

Example 2: Bottom R0

createRow -limitInCore –noAbut –noFlip -site CORE -spacing 5.4

September 2022 310 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Grouping Instances
Instance groups are used to create a new logical hierarchy unit, and normally all power domains
will associate with an instance group which always have a constraint fence. You can use
the createInstGroup command or the Group Instances form to create a new instance group, even
outside the core boundary.

Note: The constraint fence means standard cell belonging to this group cannot be placed outside
and only standard cell belong to this group can be placed inside. Cadence recommends that this
physical-logical coherence should not be violated. The coherence requirement does not only apply
for instance groups, but also pertains to all hinsts and instance groups as long as they have
constraint fence. In other words, if fence A belongs to fence B in logical, then fence A must be
placed inside fence B.

The hierarchy of the new instance group is formed at the common point of the modules and
submodules. The following example shows how the hierarchy is changed from the common point if
submodules B and F are added to a new group called group_A.

September 2022 311 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/createInstGroup.html

createInstGroup group_A -isPhyHier

addInstToInstGroup group_A B

addInstToInstGroup group_A F

createLogicHierarchy -commit -cell aa -newHinst group_A -objects {B F}

To delete an instance from an instance group use the deleteInstFromInstGroup command.
Alternatively, complete the following steps:

1. Choose Tools - Design Browser.

2. In the Design Browser, click on and highlight the module or submodule guide(s) to be deleted
from the instance group.

3. Click the Delete Group/Group Member icon.

To add an instance to an existing group name use the addInstToInstGroup command.
Alternatively, complete the following steps:

1. Click on and highlight the module or submodule guide(s) to be added to an instance group.

2. Choose the Floorplan - Instance Group submenu to select the group name.

September 2022 312 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/deleteInstFromInstGroup.html
../innovusTCR/addInstToInstGroup.html

Defining the Bounding Box
During floorplanning, you can use the setObjFPlanBox command to define a bounding box of a
specified object, and the setObjFPlanBoxList command to define rectilinear shape of an object,
which is comprised of two or more boxes. This section provides graphical information to illustrate
some of the command examples in the Floorplan Commands chapter of the Innovus Text
Command Reference.

setObjFPlanBox

The following command specifies a bounding box for Module abc at a lower left x coordinate of
100.0, a lower left y coordinate of 100.0, and upper right x coordinate of 400.0, and an upper right y
coordinate of 545.0:

setObjFPlanBox Module abc 100.0 100.0 400.0 545.0

 setObjFPlanBoxList

The following command defines a rectilinear boundary for Module xyz. The rectilinear boundary is
made up of two bounding boxes: (371.46, 537.60) (696.96, 754.35), and (412.5, 754.32) (696.96,
920.64):

setObjFPlanBoxList Module xyz 371.46 537.60 696.96 754.35 412.5 754.35 696.96 920.64

September 2022 313 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/setObjFPlanBox.html
../innovusTCR/setObjFPlanBoxList.html
../innovusTCR/Floorplan_Commands.html

Adding Logical Hierarchy Without Creating Additional Hierarchy
The Innovus software enables you to add logical hierarchy without creating additional hierarchy.
For example:

createInstGroup /TTT -isPhyHier

addInstToInstGroup /TTT U5

addInstToInstGroup /TTT U7

createLogicHierarchy -commit -cell aa -newHinst TTT -objects {U5 U7}

Note: The leading slash character (/) in /TTT is required for the software to create a temporary group
named /TTT.

After restructuring, the result looks like this:

Logical Hierarchy Manipulation
In addition to Adding Logical Hierarchy Without Creating Additional Hierarchy, you can also
manipulate the logical hierarchy as follows:

Moving Instances to a New Top Module

Moving Instances to an Existing Module

September 2022 314 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Moving Instances to a New Top Module
To move an instance to a new top module named TOP101, you can do the following:

createInstGroup TOP101 -isPhyHier
addInstToInstGroup TOP101 PMEMDSP/PRAMDLD/U10
addInstToInstGroup TOP101 PMEMDSP/PRAMDLD/U11
createLogicHierarchy -commit -cell aa -newHinst TOP101 -objects {PMEMDSP/PRAMDLD/U10
PMEMDSP/PRAMDLD/U11}

Moving Instances to an Existing Module
To move an instance to an existing module named DRAMDSP/DRAMDLD, you can do the following:

createInstGroup /DRAMDSP/DRAMDLD -isPhyHier
addInstToInstGroup /DRAMDSP/DRAMDLD DIFTOP/DIF/U13
addInstToInstGroup /DRAMDSP/DRAMDLD DIFTOP/DIF/U14
createLogicHierarchy -commit -cell aa -newHinst /DRAMDSP/DRAMDLD -objects

{DIFTOP/DIF/U13 DIFTOP/DIF/U14}

Note: The leading/(slash) is required for an existing module.

September 2022 315 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Creating and Editing Rows
You can create and edit rows in different regions. The following table lists the commands that you
can use to create and cut rows.

You can also use the following forms available in the Row submenu on the Floorplan menu:

Create Core Rows (Floorplan - Row - Create Core Row)

Cut Core Rows (Floorplan - Row - Cut Core Row)

Stretch Core Rows (Floorplan - Row - Stretch Core Row)

createRow Creates rows for the specified site. The row boundary can be defined by core
area or the area that you specify. This command supports the creation of
overlapping rows. This command can create only horizontal rows. By default, the
rows are flipped and abutted.

cutRow Cuts site rows that intersect with the specified area or object.

deleteRow Deletes the specified row(s).

stretchRows Stretches selected rows. For example, you can specify that the left edge of all
selected rows should be aligned to the left-most edge among all selected rows.

September 2022 316 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/createRow.html
../innovusTCR/cutRow.html
../innovusTCR/deleteRow.html
../innovusTCR/stretchRows.html

For more information, see the "Row" section of the Floorplan Menu chapter in the Menu Reference.

Using Vertical Rows
Note: Support for vertical rows is a beta feature. Usage and support of this beta feature are subject
to prior agreement with Cadence. Contact your Cadence representative if you have any questions.

In addition to horizontal rows, Innovus also supports vertical rows. You can import designs with
vertical rows and output design data containing the layout of vertical rows. Vertical rows appear
vertically in the display. You can select and query vertical rows and delete them with the delete key.
The commands that snap rows to row grid also support vertical rows. These commands are
snapFPlan, create_relative_floorplan, and the interactive move command.

Horizontal and vertical rows can co-exist, but at different layers of hierarchy. You cannot create
horizontal and vertical rows together on the same level of hierarchy.

The global variable fp_vertical_row is used to specify whether the rows are horizontal or vertical.
The variable can be set to 0 (for horizontal rows) or 1 (for vertical rows) as follows:
set fp_vertical_row {0|1}

The Innovus software generates vertical rows, provided the design data or the library meets the
following prerequisites:

Each SITE is stacked one above the other, when rows are created.

MY and R0 row orientations are supported.

The cells are stacked vertically, when they are placed and their power rails run vertically.

The preferred direction of Metal1 is vertical.

Example 1:

September 2022 317 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusMR/Floorplan_Menu.html
../innovusTCR/snapFPlan.html
../innovusTCR/create_relative_floorplan.html

Example 1:

SITE CORE
CLASS CORE;
SIZE 1.800 BY 28.800;
END CORE

Example 2:

September 2022 318 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Example 2:

SITE CORE
CLASS CORE;
SIZE 54.000 BY 28.800;
END CORE

Limitations

The following limitations apply to vertical rows:

Vertical rows cannot be created inside power domains.

Non-integer and multiple integer vertical rows are not supported.

Vertical rows cannot be created or edited directly. That is, the createRow, cutRow,
and stretchRows commands are not supported for vertical rows.
Note: You can, however, select rows to query, and delete rows with the delete key or
deleteRow command.

September 2022 319 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/createRow.html
../innovusTCR/cutRow.html
../innovusTCR/stretchRows.html
../innovusTCR/deleteRow.html

Using Multiple-height Rows
In many cases, designs contain cells with different standard cell heights. For example, a design
might utilize multiple standard cell libraries-possibly from different foundries or library vendors-
which might have different standard cell heights. Standard cell designers create multiple-height
standard cells for improving performance. Also, in a design with multiple power domains, standard
cells with different voltages will probably have different footprints and different heights.

The Innovus software supports multiple-height standard cells by supporting:

A combination of integer multiple-height rows

A combination of non-integer multiple-height rows

Using Integer Multiple-height Rows
The Innovus software automatically generates integer multiple-height rows overlapping the single-
height core rows provided the design data or the library meets the following prerequisites:

The LEF file contains integer multiple-height SITE definitions and MACROS that use the
SITE.

The netlist includes at least one instantiation of such an integer multiple-height cell.

After you import the design or specify the floorplan, the core area is automatically populated with
default rows and multiple-height rows are automatically generated.

Here is an extract from a sample LEF file that contains integer multiple-height SITE definitions and

September 2022 320 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

a MACRO that uses a SITE:

SITE coreSite
 SYMMETRY X Y;
 CLASS CORE;
 SIZE 0.660 BY 5.040;
END coreSite

SITE doubleHeightSite
 SYMMETRY X Y;
 CLASS CORE;
 SIZE 0.660 BY 10.080;
END doubleHeightSite

MACRO DFFX64
 CLASS CORE;
 FOREIGN DFFX64 0 0;
 ORIGIN 0 0;
SIZE 21.12 BY 10.080;
SYMMETRY X Y;
SITE doubleHeightSite;
...
END DFFX64

When you create integer multiple-height rows, the rows are automatically aligned with the single-
height row. You cannot create unaligned integer multiple-height rows.

For information on creating and editing rows, see Creating and Editing Rows

The following left figure illustrates a double-height row and the right figure illustrates a double-

September 2022 321 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following left figure illustrates a double-height row and the right figure illustrates a double-
height row flipped to align with the orientation of the single row.

SITE CORE
 CLASS CORE;
 SIZE 1.800 BY 28.800;
END CORE
SITE CORE_double
 CLASS CORE;
 SIZE 1.800 BY 57.600;
END CORE_double

The following left figure illustrates a triple-height row and the right figure illustrates a triple-height

September 2022 322 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following left figure illustrates a triple-height row and the right figure illustrates a triple-height
row flipped to align with the orientation of the single row.

SITE CORE
 CLASS CORE;
 SIZE 1.800 BY 28.800;
END CORE
SITE CORE_triple
 CLASS CORE;
 SIZE 1.800 BY 86.4;
END CORE_triple

Using Non-Integer Multiple-height Rows
You can also use non-integer multiple-height (NIMH) rows in your designs.

While creating NIMH rows, ensure the following:

NIMH rows must be created only in those areas that have power domains associated with
them.

Any newly created NIMH rows in an area must be an integer multiple of any existing rows in
the area.

Each hierarchical instance to be declared as a power domain can only have one type of NIMH
standard cells. In other words, NIMH rows inside any particular power domain must have the same
height. Multiple types of NIMH standard cells require multiple power domains to be created. For
example, if you want to use standard cells with heights that are respectively 2.5, 3.25, and 4.1 times
the height of a standard single-height cell, you should create three power domains, with each power
domain containing one type of NIMH row.

September 2022 323 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

When you create a power domain, Innovus automatically detects the site that is common to all the
cells and creates the rows inside the power domain.
The following diagram illustrates how rows are automatically generated within the power domain for
standard cells of the hierarchical instance.

The following diagram illustrates how the standard cells of the hierarchical instance are all placed

September 2022 324 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following diagram illustrates how the standard cells of the hierarchical instance are all placed
on the row inside the power domain.

The modules and/or instance groups can be moved outside the core boundary but within the die. As
new rows are not created automatically in this area, you can use the createRow command to create
new rows. Manual editing of rows might not be preserved by floorPlan, resizeFloorplan,
and initCoreRow commands. Innovus displays a warning message if you try to move a power
domain outside the core boundary, and snaps the power domain inside the core.

September 2022 325 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/createRow.html#createRow-createRow
../innovusTCR/floorPlan.html#floorPlan-floorPlan
../innovusTCR/resizeFloorplan.html
../innovusTCR/initCoreRow.html#initCoreRow-initCoreRow

Working with User-defined DEF Files that Contain NIMH Rows
or Unaligned Rows
In case of integer multiple-height rows, as long as the rows are overlapping the single-height rows,
standard cells will by default be legally placed on their corresponding site or row definition.
However, if you import a user-defined plan through a DEF file that contains NIMH rows and
unaligned rows, you need to define power domain(s) for each of these disjoint special row style.
Otherwise, these rows might not be correctly placed.
The following figure illustrates a user-defined floorplan brought in through a DEF file.

The following figure illustrates how placement without power domain association results in illegal

September 2022 326 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following figure illustrates how placement without power domain association results in illegal
placement.

The following figure illustrates how placement with the correct power domain association results in

September 2022 327 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following figure illustrates how placement with the correct power domain association results in
legal placement.

By default, when a power domain is moved or (re)located in the main core row area, rows are
initialized. To keep the rows brought in by the DEF file, you should pre-place and pre-size the
power domains that cover the NIMH rows and the unaligned rows.

Merging Hierarchical Floorplans from Partitions
While flattening partitions with the flattenPartition command, you can bring back row
information, including NIMH rows and unaligned rows, from an existing floorplan. You can then run
placement and routing to further improve the design performance. Use the
flattenPartition command can preserve the row information by default. The
flattenPartition command also supports rotated partitions.

Power domains are automatically created and associated with each of the partition that have NIMH
or unaligned rows. These automatically created power domain have the following characteristics:

September 2022 328 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/flattenPartition.html

The minGap value is the same as the placement halo defined for the partition at the full-chip
level.

The timing library is the same as that specified at the full-chip level.

The global net connection is the same as that for the full-chip level, which is the same as the
partition floorplan global net connection.

The value of the RouteSearchExt field is set to the default value of 0.0.

The core-to-edge distances are not preserved as an attribute of the power domain, but are
preserved in the merged floorplan.

Row parameters are not translated or detected.

The power domain is set to alwaysOn.

Use Model

The recommended use model for bringing back non-integer multiple-height rows or unaligned rows
is as follows:

Top-down flow

1. Create power domains at full-chip level design.

2. Specify the same hierarchical instance for power domain as defined for the partition.

Bottom-up flow

1. Create power domains at top-level design.

2. Create one PD for each of the partitions.

3. Assign instance blocks as a member of the created power domain.

For more information on the flattenPartition command, see the Text Command Reference.

The following figure shows a full-chip view with the partition halos specified.

September 2022 329 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/flattenPartition.html

The following figure shows a full-chip view with the partition halos specified.

The following figure illustrates the result when you use the flattenPartition command without
the -bringbackRow parameter.

The following figure illustrates the result with you use the flattenPartition command with the
-bringbackRow parameter. In this case, the NIMH rows and the unaligned rows are brought back to
the top-level inside the power domain.

September 2022 330 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/flattenPartition.html
../innovusTCR/flattenPartition.html

Performing I/O Row Based Pad Placement
In many cases, designs contain multiple-height I/O pads or asymmetric I/O rings, for example, a
design might have a single I/O ring on one side and double rings or no rings on the other side, or no
rings on part of a certain side. For such designs, the Innovus software enables you to create, edit,
save, and restore I/O rows and perform pad placement based on the I/O rows. You can create I/O
rows anywhere in the die – within the core or in the periphery and use the I/O row flow for both, pad
and area I/Os.

Prerequisites
1. LEF technology file should contain I/O SITE definition.

Before you begin the I/O row flow in Innovus, you must first define I/O SITE for each type of I/O
cell in the LEF I/O macro (LEF technology file).

2. Each I/O cell LEF must have correct CLASS and SITE type specified.
Consider the following examples that define LEF I/O SITE and CLASS PAD MACRO in the
I/O assignment file, each I/O CLASS PAD macro is referenced with the I/O SITE:

Example 1:
The I/O SITE IOPFC is referenced from the I/O CLASS PAD MACRO pnl_qdr_vp:
SITE IOPFCSYMMETRY y;
 CLASS PAD ;
 SIZE 0.1 BY 321.94 ;

September 2022 331 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

END IOPFC

MACRO pnl_qdr_vp CLASS PAD ;
 FOREIGN pnl_qdr_vp ;
 ORIGIN 0.000 0.000 ;
 SIZE 35.000 BY 321.940 ;
 SYMMETRY X Y R90 ;
 SITE IOPFC ;
 ...
END pnl_qdr_vp

Example 2:
The corner site, IOPFCCRNR, is referenced from the CLASS PAD MACRO pnl_qdr_iocrnr:
SITE IOPFCCRNR
 SYMMETRY y ;
 CLASS PAD ;
 SIZE 321.94 BY 321.94 ;
END IOPFCCRNR

MACRO pnl_qdr_iocrnr
 CLASS PAD ;
 FOREIGN pnl_qdr_iocrnr ;
 ORIGIN 0.000 0.000 ;
 SIZE 32.940 BY 321.940 ;
 SYMMETRY X Y R90 ;
 SITE IOPFCCRNR ;
 ...
END pnl_qdr_iocrnr
For more information, see "Generating the I/O Assignment File" in Data Preparation chapter of
the Innovus User Guide.

3. Each I/O cell LEF must have correct CLASS and SITE type specified. If the design contains
multiple I/O SITES, the gap between the core boundary and the die boundary must be greater
than the biggest I/O SITE; Otherwise, the Innovus software issues a warning and no I/O rows
are created. Innovus does not automatically expand the core or die boundary to accommodate

September 2022 332 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

all the I/O pads.

Enabling the I/O Row Flow in Innovus
To start using the I/O row flow in Innovus, you must enable the I/O row flow by doing one of the
following:

Specify setUserDataValue conf_use_io_row_flow 1 in the Innovus global variable file.

Select Use I/O Row for I/O Placement check box in the Floorplan - Specify Floorplan -
Advanced GUI form.

Set the setIoFlowFlag command to 1.

To stop using the I/O row flow in Innovus, you must disable it by setting
the setIoFlowFlag command to 0.

Note: By default, the I/O row flow is Off. Use the getIoFlowFlag command to check the current flow.
A value of "0" means traditional I/O flow where as a value of 1 means I/O row flow.

Use Models

Starting a new design

1. Import the design in Innovus

2. Set the I/O row flow by selecting the Use I/O Row for I/O Placement check box in the Specify
Floorplan - Advanced GUI form.

3. By default, one I/O row is created on each side of the chip, between the core boundary and
the die boundary. If the design has multiple I/O sites in the library, then rows are created for
each side based on the number of I/O sites used in the design.
By default, the I/O pads are placed randomly on the I/O rows.

4. In the resulting design, you can create I/O rows using the Create I/O Row form.

5. Edit (move/stretch/rotate/flip) the I/O rows using Floorplan - Row form or using the text
commands.

The text commands that can be used for creating and editing I/O rows are described in the following
table.

September 2022 333 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusMR/Floorplan_Menu.html#FloorplanMenu-SpecifyFloorplan-Advanced
../innovusTCR/setIoFlowFlag.html#setIoFlowFlag-setIoFlowFlag
../innovusTCR/setIoFlowFlag.html#setIoFlowFlag-setIoFlowFlag
../innovusTCR/getIoFlowFlag.html
../innovusMR/Floorplan_Menu.html#FloorplanMenu-SpecifyFloorplan-Advanced
../innovusMR/Floorplan_Menu.html#FloorplanMenu-CreateI/ORow

Optionally, you can specify the I/O row constraints in the I/O assignment file. For more information,
see "Generating the I/O Assignment File" in the Data Preparation chapter of the Innovus User
Guide.

Note: To add I/O filler cells to the new I/O rows, use the addIoRowFiller command. You can delete
the filler cells using deleteIoRowFiller command.

After designing the rows, save the design in a floorplan file (*.fp) using
the saveDesign or saveFPlan command.

Reading an old design

If you already have a design with placed pads, created using an earlier version of the software (v6.2
and above) and you want the design to be read into current version of Innovus to use the new I/O
row flow:

1. Restore the design with placed pads, using the restoreDesign command or load the
floorplan information from the file, using the Load FPlan File form or the loadFPlan command.
Optionally, load the I/O constraint file using the loadIoFile command.

2. Turn on the I/O row flow by setting the I/O flow flag (setIoFlowFlag) to 1.

3. Create the initial I/O rows using the createIoRow -deriveByCells command. This command

Commands Usage

createIoRow Creates an I/O row.

flipOrRotateObject Flips or rotates the selected objects.

stretchRows Stretches the selected I/O rows.

deleteRow Deletes the selected I/O row. You can also delete the row by selecting
the row and pressing the Del key on the keyboard.

setIoRowMargin Sets the distance from the die boundary edge to the I/O row starting edge
location. You can use this command for multiple I/O rows.

snapFPlanIO Snaps the I/O pads onto the correct side of the I/O rows if the pads are
not already on the rows.

spaceIoInst Spaces the selected I/O pads on the I/O rows, horizontally or vertically by
a specified distance value.

September 2022 334 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/createIoRow.html
../innovusTCR/flipOrRotateObject.html
../innovusTCR/stretchRows.html
../innovusTCR/deleteRow.html
../innovusTCR/setIoRowMargin.html
../innovusTCR/snapFPlanIO.html
../innovusTCR/spaceIoInst.html
../innovusTCR/addIoRowFiller.html
../innovusTCR/deleteIoRowFiller.html
../innovusTCR/saveDesign.html#saveDesign-saveDesign
../innovusTCR/saveFPlan.html#saveFPlan-saveFPlan
../innovusTCR/restoreDesign.html#restoreDesign-restoreDesign
../innovusTCR/loadFPlan.html#loadFPlan-loadFPlan
../innovusTCR/loadIoFile.html#loadIoFile-loadIoFile
../innovusTCR/setIoFlowFlag.html#setIoFlowFlag-setIoFlowFlag
../innovusTCR/createIoRow.html#createIoRow-createIoRow

creates I/O rows based on the existing pad placement. Once you have rows and pads placed
in the design, you can continue to create more rows or edit the rows.
Use the changeIoConstraints command to change the constraints of the I/O row read from
the I/O constraints file.You can also use the Attribute Editor to change the I/O pad location or
pad orientation from the GUI.

4. After editing the I/O rows and the I/O row constraints, run the snapFPlanIO command to snap
the I/O pads and area I/O's onto the legal sites/rows.

5. Save the design in a floorplan file (*.fp) using the saveDesign or saveFPlan command.

Resizing Rectilinear block-level floorplan
Given an initial rectilinear block-level floorplan, Innovus automatically resizes its bounding box by
enlarging or shrinking the edges of the box proportionally in the X and Y directions, ensuring that
the specified target utilization is met. During this process, to retain the original shape of the
rectilinear block-level floorplan, you must specify the -keepShape parameter in the floorPlan
command. Consider analog designs where you have digital blocks that need to be fit into the
analog chip and the shape of the block is already pre-defined. In such mixed-signal designs, you
can retain the block shape during resizing, and also meet the specified target utilization value by
shrinking or expanding the floorplan using the floorPlan -keepShape util, where util is the target
core utilization value.

Use Models

1. Import a DEF file or a floorplan file (*.fp) that contains a rectilinear block-level
floorplan boundary or you cut one corner of a rectangular block. This results in the core
utilization missing the target value.

2. Run the floorPlan -keepShape util command to automatically shrink or expand the block-
level floorplan boundary, proportionally, in the X and Y directions, trying to meet the specified
target core utilization.

3. Use the checkFPlan -reportUtil command to report the final core utilization.

Example:

Consider the following example of a rectilinear block-level floorplan whose current target core
utilization value is 0.75.

September 2022 335 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/changeIoConstraints.html#changeIoConstraints-changeIoConstraints
../innovusTCR/snapFPlanIO.html#snapFPlanIO-snapFPlanIO
../innovusTCR/saveDesign.html#saveDesign-saveDesign
../innovusTCR/saveFPlan.html#saveFPlan-saveFPlan
../innovusTCR/floorPlan.html

To meet a target core utilization of 0.55, expand the rectilinear block-level floorplan.

To meet a target core utilization of 0.95, shrink the rectilinear block-level floorplan.

In both the cases, the shape of the block-level floorplan is retained, and the required target core
utilization is met.

For I/O pins, prior to resize, Innovus saves the I/O file sequence internally and loads the file back
after resize. The side and sequence of the I/O pin remains the same as in the old block, but the pins
get distributed evenly. To redistribute the I/O pins, you must edit the pins manually in the resize
block.

Assumptions

September 2022 336 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The automatic resizing of rectilinear block-level floorplan is based on the following assumptions:

1. The rectilinear block-level floorplan are L-shaped.

2. The floorplan origin, (0,0) remains unchanged during the resize.

3. The instances inside the block move proportionally or stay fixed during the resize.

Results

The results of automatic resizing of rectilinear block-level floorplan are as follows:

1. The shape of the block-level floorplan is preserved during the resize.

2. Pre-placed macros are adjusted to the new size as much as possible.

3. Pre-routed wires are removed after the resize.

4. The core rows and block pins are automatically adjusted after the resize.

Editing Pins
This section describes how you can move and manipulate pins in your design. For information on
blackbox and partition pins, see the Assigning Pins section in the Partitioning the Design chapter of
the User Guide.

Pin Snapping on Resized Boundaries
As the boundary size increases, the pins maintain their exact horizontal and vertical coordinates,
depending on the modified edge. As the boundary size decreases, the pin snap retains its relative
position on the modified edge. This following figure illustrates this capability. For the size
decreasing example, pins A1 and A2 are both snapped to the upper right corner.

Note: This feature is limited to rectangular edges.

September 2022 337 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Moving Pins
To move a pins or a group pins, they should be at the same block and same side of the block. By
default, all pins will move together relatively and the layer will be changed to the appropriate layer if
the side was changed. For example, layer Metal2 is changed to Metal1 when moving pins from top
to left. Moving pins from top to bottom does not change the layer. To move a selected pin or group of
pins in the design display area from one edge to another edge (including rectilinear edges) on a
module, complete the following steps:

Note: For pin groups, this will preserve the relative position between pins.

1. Click the Move/Resize/Reshape widget.

2. Select (left-click) the pin in the design display area.
For a group of pins, press the Shift key to highlight each pin.

3. Left click on the pin(s) and move them to the new location.
Note: To zoom out on the design display area while dragging the pins, press the Shift-Z key
combination.

You can use the moveGroupPins command for moving the pin(s) to the new location.

Swapping Pins
You can swap pins using the swapPins command or the Swap Pins option in the design display
area by completing the following steps:

1. Select two pins of the same block.

2. With the cursor over one of the selected pins, right-click the mouse to bring up the context
menu.

3. Select Swap Instances.

Using the Pin Editor
You can use the Pin Editor to display and edit pins and pin groups. To open the Pin Editor,
choose Edit - Pin Editor. For information in the fields and options, see Pin Editor in the Edit
Menu chapter of the Menu Reference.

Here are the main features of the Pin Editor:

Works for all type of pins such as partition pins, blackbox pins, and I/O pins

When moving pins, associated pin geometry is moved or updated accordingly

September 2022 338 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/moveGroupPins.html
../innovusTCR/swapPins.html
../innovusMR/Edit_Menu.html

Can be used to move a single pin and/or a group of pins

Supports pin editing by various criteria such as location, layer, side/edge, and so on

Provides pin spreading capabilities. For more information, see Using the Pin-Spreading
Feature

Provides pin snapping capabilities such as to manufacturing grid, user grid, and layer track.

Supports non-preferred routing layers for all supported snapping grids.

Honors pin constraints at partition-level and pin-level, as well as constraints defined through
the GUI.

Supports pre-assigned pins.

Supports rectilinear edges (multiple edges per side).

The editPin command provides the equivalent functionality of the Pin Editor.

The following sections describes some of the features that you can use with the Pin Editor.

Using the Pin-Spreading Feature

The Pin Editor includes a utility to spread pins along the edges of a block. There are four different
methods of spreading pins:

Use a pin as the starting point (anchor) and provide a pin spacing distance.

Use the center of a side or edge as the starting point and provide a pin spacing distance.

Space the pins evenly along the side or edge, using the ends of the side or edge as the
starting and ending points. The Pin Editor calculates the pin spacing distance.

Space the pins evenly using explicit starting and ending points on the side or edge. The Pin
Editor calculates the pin spacing distance.

Basic Concepts for Pin Spreading

Two basic concepts underlie the pin-spreading functionality of the Pin Editor:

Pin ordering affects the starting point for pin spreading. Use the Pin Editor's Group Bus,
Reverse Order, or Reorder Pin List functions to specify the first pin in a group. The
coordinates of the first pin in a group provide the starting point from which to spread pins.

September 2022 339 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/editPin.html

Pin spacing distances can be expressed in either positive or negative values:

Positive spacing values spread pins to the right along a horizontal block edge, or up
along a vertical block edge.

Negative spacing values spread pins to the left along a horizontal block edge, or down
along a vertical block edge.

Note: You cannot specify pin spacing distances with spacing methods that rely on the Pin Editor to
determine the spacing.

Pin Spreading Methods Supported by the Pin Editor

The following sections provide details on the four pin-spreading methods supported by the Pin
Editor.

Using a Pin as the Starting Point for Spreading Pins

Using the Center of a Side or Edge as the Starting Point for Spreading Pins

Spacing Pins Evenly Along an Edge or Side

Spacing Pins Evenly Using Explicit Starting and Ending Points

Using a Pin as the Starting Point for Spreading Pins

For this method, you select a group of pins and sort them in the desired order. The first pin in the list
serves as the starting point (anchor) for spreading the other pins in the group. You must also
provide the pin spacing distance if you are spreading more than one pin. Assume that your design
contains four pins (A1, A2, A3, and A4) that are currently spaced 2.0 µm apart. You want to spread
the pins to the right with 3.0 µm spacing, using A1 as the starting point. To do this you must

1. Sort the pins so that A1 is the first pin in the list. The coordinates of A1 appear in Starting X/Y.

2. Select Spread - From Starting Point on the Pin Editor form. Specify a positive spacing value:
3.0.

The following figure illustrates this situation:

September 2022 340 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following figure shows how pins are spread from a pin as starting point in case of rectilinear
partitions for a side with multiple edges. In this case, the specified side is bottom, and the pins are
therefore spread along the edges of the bottom side.

Now assume that you want to spread the pins to the left with 4.0 µm spacing, using A4 as the
starting point. To do this you must:

1. Sort the pins so that A4 is the first pin in the list. The coordinates of A4 appear in the
Starting field of the Pin Editor form.

2. Specify a negative spacing value: -4.0.

The following figure illustrates this situation:

Using the Center of a Side or Edge as the Starting Point for Spreading Pins

For this method, you select a group of pins and sort them in the desired order. You must also
provide the pin spacing distance.

Assume that your design contains four pins (A1, A2, A3, and A4). You want to define new spacing
and then group the pins so that the group is centered on the midpoint of the block edge. To do this
you must

1. Sort the pins in the desired order (optional).

2. Select Spread - From Center on the Pin Editor form.

3. Specify a positive spacing value: 3.0.

September 2022 341 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following figure illustrates this situation:

The following figure shows how pins are spread from a center point in case of rectilinear partitions
where a side with multiple edges has been specified. In this case, the specified side is bottom, and
the pins are therefore spread from the center of the bottom side.

Spacing Pins Evenly Along an Edge or Side

For this method, you select a group of pins and sort them in the desired order. You do not specify a
pin spacing distance because the Pin Editor calculates the appropriate distance, based on the
length of the block edge or side, and spaces the pins evenly along the block edge or side.

Assume that one edge of your design contains four pins (A1, A2, A3, and A4). You want to spread
the pins evenly along the block edge. To do this you must

1. Sort the pins in the desired order (optional).

September 2022 342 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

2. Select Spread - Along Entire Edge on the Pin Editor form.

The following figure illustrates this situation:

The following figure shows how pins are spread along a side in case of rectilinear partitions where
a side with multiple edges has been specified. In this case, the specified side is bottom, and the
pins are, therefore, spread along the edges of the bottom side.

Spacing Pins Evenly Using Explicit Starting and Ending Points

For this method, you select a group of pins and sort them in the desired order. You do not specify a
pin spacing distance because the Pin Editor calculates the appropriate distance, based on the
specified starting and ending points, and spaces the pins evenly along the edge or side.

Assume that one edge of your design contains four pins (A1, A2, A3, and A4). You want to spread
the pins evenly along the block edge between two sets of coordinates. To do this you must

1. Sort the pins in the desired order (optional).

2. Select Spread - Between Points on the Pin Editor form.

3. Revise the starting and ending coordinates as desired.

The following figure illustrates this situation:

September 2022 343 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following two figures shows how pins are spread along a side in case of rectilinear partitions
where a side with multiple edges has been specified.
In the following case, the specified side is bottom, and the pins are, therefore, spread along the
edges of the bottom side.

In the following case, the specified side is right, and the pins are, therefore, spread along the edges

September 2022 344 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

In the following case, the specified side is right, and the pins are, therefore, spread along the edges
of the right side.

Spreading Floating Pins
Floating pins are spread across all edges over the whole partition. The number of pins on each
edge depends on the pin density. An edge with higher pin density will have lesser pins.

The following considerations are taken into account while spreading the floating pins:

If some bits of buses have connections and the rest are floating, then the floating pins are kept
together as a bus.

If a bus is floating then it is placed together. If not then its pins are placed on the same edge.

If some bits of a pin group have connections and the rest are floating, then the floating pins are
not spread and the order of the pin group is maintained.

In the master and clone scenario, both pair of nets (for pin connecting master and pin
connected clone) should be floating to consider it as a floating pin pair.

In the nested scenario, floating pins are not aligned across hierarchies.

September 2022 345 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Running Relative Floorplanning
This section describes how to use the Floorplan menu's Relative Floorplan form to capture and
define the placement relationship of floorplan objects independently from the actual coordinates in
a floorplan. The Relative Floorplan program provides a more flexible way to place objects, such as
modules, blocks, groups, blockages, pin guides, pre-routed wires, and power domains. Block I/O
pins can be used as reference objects but they cannot be relative objects. You can capture and
define the placement relationship of floorplan objects independently from the actual coordinates in
a floorplan. You can also resize a module or blackbox based on other floorplan objects, while
maintaining its current area based on a specified width and height, a given dimension (width or
height), and a target utilization value. You can also specify a wire's start or end point relative to the
reference object's reference corner, or specify a wire's start or end point directly.

Before relative floorplanning, the design must be loaded into the current Innovus session.

Orientation Key
The following table is a key to the orientation of placed objects:

Value Definition

R0
No rotation

MX
Mirror through X axis

MY
Mirror through Y axis

R180
Rotate counter-clockwise 180 degrees

MX90
Mirror through X axis and rotate counter-clockwise 90 degrees

R90
Rotate counter-clockwise 90 degrees

R270
Rotate counter-clockwise 270 degrees

MY90
Mirror through Y axis and rotate counter-clockwise 90 degrees

September 2022 346 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Instance Place Example
The following figure shows an example of instance placement

Saving and Restoring Relative Floorplan
The Innovus software automatically saves all the executed menu and text commands for the relative
floorplanning actions in the innovus.cmd file. To save all the relative floorplan commands that were
executed during a session, click the Save button on the Relative Floorplan form. This saves a script
that can be used later for updating or adjusting an existing floorplan based on the new blocks' size
and position.

Saving and Loading Floorplan Data
You can save and load floorplan data at any time during a session.

To save the floorplan information to a file, use the Save FPlan File form or the saveFPlan
command.

To load the floorplan information from a file, use the Load FPlan File form or the loadFPlan
command.

Note: You can save and load floorplan data in the XML format.

The saveFPlan command saves net attributes including non-default attributes of a net, like weight,
bottom preferred routing layer, or detour. This capability is especially useful in the prototyping flow
where you need to save out the state of the floorplan, and timing-driven proto_design sets net
weights to guide proto_design to a timing driven result. For large designs, as the designer iterates
through different versions of the floorplan, they often check-point by doing a saveFPlan. A saved .fp
file is also excellent for two people working separately on the same floorplan, so that .fp can be
passed on to another designer who has a slightly different netlist. By saving the net attributes
the saveFPlan and loadFPlan commands are able to bring back the entire prototyping/floorplanning
picture.

September 2022 347 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/saveFPlan.html
../innovusTCR/loadFPlan.html

Specific Floorplan Section TCL Export/Import
You can use the writeFPlanScript command to write out specified floorplan sections and source
the output file after init_design. With this command Innovus writes a file that you can examine, edit,
and then source to selectively (or completely) define your floorplan. The writeFPlanScript
command writes out a file with TCL commands to recreate the floorplan. It can optionally write out
specific floorplan sections listed with option -sections.

The benefit of this command is selective export/import of concise TCL for better command discovery
and easy partial export/import of a portion of a floorplan between two designs. The human readable
TCL floorplan file format completely captures the floorplan specification and is cut and paste
source-able.

Snapping the Floorplan
The snap floorplan feature enables you to snap objects to the grid. You can use the snapFPlan
command or alternatively use the Snap Loaded Floorplan form to align objects to the grid.
Additionally, you can use the snapFPlanIO command to snaps I/O cells to a user-defined grid.

In floorplan flow, after CCE (colorizeGeometry) assigns color to macro pins and other objects.
Using the snapFPlan -macroPin command you can snap macro pins to the correct color
track. The snapFPlan command only snaps signal pins and places a macro with macro pins on color
track. Innovus snaps the port on the lowest metal layer which is close to macro origin to the color
track.

In addition to the macro pin color-aware snapping, Innovus also checks that the pins have default
width and it uses the first default wide pin to snap. The non-default-width pin shapes are ignored
while snapping on colored tracks and only the pins with default width are snapped.

The checkFPlan command verifies if the macro pins are snapped to the correct color track. It reports
a violation if the macro placer cannot find legal location or when macro pins have color violation.

September 2022 348 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/writeFPlanScript.html
../innovusTCR/snapFPlan.html
../innovusTCR/snapFPlanIO.html
../innovusTCR/snapFPlan.html
../innovusTCR/checkFPlan.html

For min width pins, the checkFPlan command checks whether the pin center is snapped to the
routing track with the same color.

For fat pins, the checkFPlan command checks whether the pin center is snapped to the routing
track and decides if the pin center should snap to the same or opposite colored routing track.

Innovus chooses the result which saves maximum routing track. It reports an error if a pin is not
snapped to any track. It displays a warning if the fat pin snap is not correct. It gives details of:

The violated fat pin layer and shape.

The number of tracks the pin has occupied.

How to modify the LEF file to save routing track.

Resizing the Floorplan
The resize floorplan feature enables you to resize a floorplan while maintaining the relative
locations of the floorplan objects.

September 2022 349 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Normally, floorplan resizing is done

to reduce the die size on a finished floorplan.

to expand or shrink the die during floorplan creation, based on the full chip placement results.

You can set the global parameters for the resizeFloorplan command by using the
setResizeFPlanMode command. The parameters that you specify with the
setResizeFPlanMode command are then used automatically whenever you
run the resizeFloorplan command to resize the floorplan. Alternatively, you can use the use the
Floorplan - Resize Floorplan form in the Innovus GUI to perform the resize functions in the design.

Note: You can use the getResizeFPlanMode command to view the information about a specified
setResizeFPlanMode parameter in the Innovus log file and in the Innovus console.

Resize Floorplan Options
The space among floorplan objects can be resized in three ways:

Proportional Spacing

Distributes the space among floorplan objects proportionally (setResizeFPlanMode -proportional).
It can shrink or expand the space in both, X and/or Y directions. However, you cannot adjust pre-
routed wires using proportional spacing.

Shift-based Spacing

Shifts floorplan objects at the right/upper (x/y resize) sides of the resize line and keeps the location
of the rest of the floorplan objects (setResizeFPlanMode -shiftBased). You can perform automatic
resizing or resize the floorplan based on resize lines defined using the setResizeLine command.
The shift-based resize maintains the existing pre-routed wire topology and automatically adjusts
bus guides during resizing.

Congestion-based Spacing

Resizes and shifts the floorplan objects by estimating the congestion for the floorplan and
automatically deciding where to draw a resize line to avoid the congested area
(setResizeFPlanMode -congAware).

September 2022 350 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/resizeFloorplan.html
../innovusTCR/getResizeFPlanMode.html#getResizeFPlanMode-getResizeFPlanMode
../innovusTCR/setResizeFPlanMode.html
../innovusTCR/setResizeLine.html

For information on resizing a floorplan, see the Resize Floorplan section in theFloorplan
Menu chapter of the Menu Reference.

Setting Resize Lines
For performing shift-based resizing, you can specify one or multiple resize lines. You can use the
setResizeLine command to set the the resize lines for shift-based floorplan resize option of
the resizeFloorplan command. The resize lines can be non-continuous though they must be
orthogonal. If resize lines are specified, the floorplan will be resized between the area specified by
the resize lines (for shift-based floorplan resize). To shrink or expand the floorplan in the horizontal
direction, specify a vertical resize line. To shrink or expand the floorplan in the vertical direction,
specify a horizontal resize line.

Each resize line can have multiple segments (for example, horizontal, vertical, and again
horizontal) but it can only be applied to one direction. If you want to shrink or expand the floorplan in
both directions, specify resize lines for each direction. You can create multiple resize lines. The
resize lines are removed once the resizeFloorplan command is run.

Note: You can use the addSizeBlockage command to add a size blockage object that controls the
behavior of the resize line under a covered area. The object area prevents floorplan objects in this
area from being resized and maintains the alignment and minimum space between these objects
during floorplan resize.

Specifying Resize Directions
Resizing can be done in X and Y directions. Positive values mean expanding the space and
negative values indicate shrinking. However, Innovus does not support a scenario where resizing
line by expanding and shrinking, both occur on the same direction.

For example, the following command specifies a resize line in horizontal direction with a resize
width of 100 microns:
setResizeLine -direction H -width 100 (279.2845 555.443) (1030.896 555.443)

September 2022 351 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusMR/Floorplan_Menu.html
../innovusTCR/setResizeLine.html
../innovusTCR/resizeFloorplan.html
../innovusTCR/resizeFloorplan.html
../innovusTCR/addSizeBlockage.html

The following command again resizes the floorplan in the same X direction with a negative value of
-200 microns:
resizeFloorplan -xSize -200

Innovus displays a warning message in such a situation.

The following command resizes the floorplan in the same Y direction with the same positive value
of +100 microns:
resizeFloorplan -ySize +100

September 2022 352 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Snapping Resize Values
The resize values (shrink/expand) can be snapped to a multiple integer of the metal layer pitch.

Note: Specify the setResizeFPlanMode -snapToTrack option to snap resize values.

For example, if the horizontal metal pitch is 1.5 microns and you want to shrink the floorplan by 8
microns in y direction, the actual shrink value is 7.5 microns, the nearest multiple integer of the
metal pitch.

Viewing Resize Lines using Color Preferences
Once you specify the resize lines to perform shift-based resizing, you can display the resize lines in
Innovus by setting the Resize Line option in the Floorplan.

However, the resize lines disappear once you resize the floorplan.

Example: Setting a resize line before resizing the floorplan

September 2022 353 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Example: The resize line disappears after resizing the floorplan in shift based mode

Note: During resizing, the target size may not be achievable. You have to force resize to meet the
target size as much as possible, using the resizeFloorplan -forceResize option.

Distributing I/Os using Resize Floorplan
You can use the setResizeFPlanMode -ioproportional parameter to specify how I/Os are handled
during floorplan resize. When distributing the I/O's using resize floorplan,

September 2022 354 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The space between I/O pads can be adjusted evenly or proportionally. By default, the I/O's are
distributed proportionally.

The I/O side constraints and order constraints are honored.

The offset that exists between I/O's and the design boundary is preserved.

Resizing Floorplan Bounding Box in GUI
You can create a rectilinear floorplan by dragging edges of the bounding box. You can drag and
edit all edges of a floorplan including cutouts without moving the other objects. In case of new
violations, such as placed objects out of core or I/O pins out of core or routing grid, Innovus will
display a violation and suggest a solution to user.

Selecting and Dragging an Edge

You can change the top-cell bounding box and cutting rectangle floorplan to rectilinear shape.
IO box /die box/core box will be automatically updated after floorplan reshaping. Innovus cuts an
edge at the point you specify.

1. Innovus allows you to create/manipulate cutouts. You can cut rectangle floorplan to rectilinear
shape and Innovus will automatically cut an edge at the point specified by you. After cutting,

September 2022 355 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

the edge will be divided into two segments and the new segment is editable. You can drag
this segment to shrink or expand freely.

2. If you move the selected edge, you can make existing cutout to disappear or “reverse” edge
direction.

3. You can create cutouts and then specify the length of each new edge, the cutouts may
disappear you merge two edges as one.

You can drag any edge of the floorplan boundary and edit each edge to reshape the rectilinear
floorplan.

September 2022 356 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Moving Edge and Setting Length of the Specified Edge

Innovus displays the length of the selected edge in the ruler when you drag the edge to
reshape. This allows you to change the top-cell bounding box and cutting rectangle floorplan to
rectilinear shape. To set the length for an edge:

1. Specify a point at the boundary edge, and cut the edge to make a cutout.

2. The length of the new edge (vertical) in the figure below is 1.

3. You can select an edge and drag the edge to a new location. The length of the new edge
(horizontal) in the figure below is 0.5.

4. Using the ruler, you can drag the specified edge and set its length according to the ruler.

5. You can select another edge to edit and using the ruler, you can drag the specified edge and
set its length.

Movement of I/O Pins with Edge

When you move an edge while reshaping a floorplan, I/O pins are moved with the edge. Innovus
keeps the same position of the pin (like a rectilinear cut) on the new position of the edge (snapping
pin). Also, the side and the sequence of the I/O pin remains the same as in the old floorplan, while
the pins get distributed according to the new position of the edge.

September 2022 357 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Innovus does not honor pin constraints. The I/O pins which cannot find a legal location, after
floorplan is reshaped, are unplaced.

Automatic Checking

Innovus stops resizing when the cutout size gets lower than the predefined threshold.

September 2022 358 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

When you drag an edge of a floorplan, all objects remain untouched. You can shrink or expand the
edge. However, Innovus creates violations if the object is outside the floorplan boundary after
resizing. It issues a warning message to let you fix the violation. You can run checkFPlan
before/after and capture the delta.

Undo/redo Capability

You can always reverse your changes after reshaping a floorplan.

Checking the Floorplan
After creating the floorplan, you can check the floorplan to identify problems before a design is
passed to downstream tools. You can check the bus guide, routing grid, placement, pins, power
domains, partition clone alignment, feedthrough buffer insertion and narrow channel etc.

September 2022 359 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/checkFPlan.html

checkFPlan

Use the checkFPlan command to check the quality of the floorplan to detect potential problems
before the design is passed on to other tools. This highlights the cells in the design display area
with violation markers, where applicable. Use this command after specifying the floorplan data or
running an initial floorplan. Run the checkFPlan command on your final floorplan file. Alternatively,
you can use the Check Floorplan form.

checkDesign

Use the checkDesign -floorplan command to check the floorplan, generate error or warning
messages, and report the following information:

Off-grid horizontal and vertical tracks

Instances not snapped to row site

Unplaced I/O pins

Off Grid Power/Ground Pre-routes

Instances not on the manufacturing grid

Preroutes not on the manufacturing grid (error)

Regular preroutes not on tracks

check_design

Use the check_design command to check the preconditions for major flow steps before they are run.
It provides complete, actionable information about design problems that result in low quality or
incorrect results when you start the flow. You can use the check_design -type place command
option to check for macros that are not fixed prior to placement. The check_design command
displays a message and reports the macros that are not fixed. You must resolve the issue by
updating the place_status to fixed before running placement.

checkFPlanSpace

Use the checkFPlanSpace command to check the floorplan for spacing rule violations and save the
violation information in a report. A marker is displayed at each violation spot. Alternatively, use the
Check Floorplan Space form to check the floorplan for spacing rule violations.

September 2022 360 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/checkFPlan.html
../innovusTCR/checkDesign.html
../innovusTCR/check_design.html
../innovusTCR/checkFPlanSpace.html

adjustFPlanChannel

Use the adjustFPlanChannel command to automatically adjust the channel width between objects
to prevent potential routing congestion. You can use this command after importing the design,
loading a completed floorplan, and then running the place_design and
earlyGlobalRoute commands.

Finishing the Floorplan
Finishing the floorplan involves performing advanced placement-related refinements to a floorplan,
to produce a more polished floorplan. The finishFloorplan command, can be used on any
floorplan, including third-party generated floorplans. You can use the setFinishFPlanMode
command to set the active objects and specify the channel direction for
the finishFloorplan command to use. The setFinishFPlanMode command affects the behavior
the finishFloorplan command.

Note: You can use the getResizeFPlanMode command to return the current settings for
the setFinishFPlanMode command.

The following commands specify the region layer name list for creating a region layer for the
specified DRC region object:
setFinishFPlanMode -drcRegionObj macro

finishFloorplan -drcRegionLayer R1

FinFET Technology
FinFETs are 3D structures that rise above the planar substrate, giving them more volume than a
planar gate for the same planar area. Given the excellent control of the conducting channel by the
gate, which wraps around the channel, very little current is allowed to leak through the body when
the device is in the off state. This allows the use of lower threshold voltages, which results in
optimal switching speeds and power.

In a FinFET, the FET gate wraps around three sides of the diffusion fin as shown below. This forms
conducting channels on three sides of the vertical fin structure. This approach provides much more
control over channel current compared to planar transistors. Multiple fins can be used to provide
more current.

September 2022 361 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/adjustFPlanChannel.html
../innovusTCR/place_design.html
../innovusTCR/earlyGlobalRoute.html
../innovusTCR/finishFloorplan.html
../innovusTCR/getResizeFPlanMode.html

FinFETs also promise to alleviate problematic performance versus power tradeoffs. Designers can
run the transistors faster and use the same amount of power, compared to the planar equivalent, or
run them at the same performance using less power. This enables design teams to balance
throughput, performance and power to match the needs of each application.

FinFET Support in Innovus
Ideally origin of all placeable objects (standard cells, I/o pads and blocks) must be aligned to
FinFET girds to be manufacturable for the FinFET technology. FinFET library rules are used to
define FinPITCH in the technology LEF file to support the FinFET grid. The FinFET pitch is used to
define the legal Y/X values of the placement grid in a design. Innovus honors the FinFET grid and
automatically checks for the FinFET definition. If it detects a FinFET definition it enables support
and sets the placement grid as FinFET grid by default. It also displays a message informing you
about the pitch, offset, and the direction values.

Defining FinFET Rule using LEF 5.8

FinFET pitch can be defined in LEF 5.8 to support FinFET grid. User can define fin pitch, offset and
the direction of fin grid in PROPERTYDEFINITIONS of technology LEF file. The FinFET pitch is
used to define legal Y (or X) values of placement grid in a design, while the other placement grid is
typically derived from Metal1 grid. The FinFET grid must be a multiple of manufacture grid and one
FinFET grid per design.

You can define a FinFET rule using the following PROPERTYDEFINITIONS statement:

PROPERTYDEFINITIONS
LIBRARY LEF58_FINFET STRING
"FINFET
 PITCH pitch [OFFSET offset] {HORIZONTAL|VERTICAL}
 ;" ;

September 2022 362 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

END PROPERTYDEFINITIONS

Where:
FINFET
 PITCH pitch [OFFSET offset] {HORIZONTAL | VERTICAL}

Specifies the FinFET pitch to be pitch, which starts at the offset, if specified, or zero from the
origin of the design.

The HORIZONTAL/VERTICAL keywords mean that the FinFET pitch is used to define the legal
Y/X values of the placement grid that all cells, blocks, and IOs must align to (specifically, the origin
of every cell must be aligned to the legal Y/X values), in order to guarantee all the FinFETs inside
are aligned properly. The X/Y value of the placement grid is derived from the standard cell site
width and only applies to standard cells. The cell row height should typically be multiple of the
FinFET pitch.

Type: Floats, specified in microns

Note: [OFFSET offset] is not supported yet.

Finfet Rule Examples

The following example indicates that the FinFET y pitch is 0.108 µm:

PROPERTYDEFINITIONS
 LIBRARY LEF58_FINFET STRING "
 FINFET
 PITCH 0.108 HORIZONTAL ; ";
END PROPERTYDEFINITIONS

Snapping Physical and Floorplan Objects to FinFET Grid

With the introduction of FinFET grid, all of the placeable objects such as I/O pads, macros and
standard cells (cell rows) must be placed on the FinFET grid defined in technology LEF file. The
height of all placeable objects must be a multiple of FinFET grid and the origin of these objects
must be snapped to the FinFET grid. If FinFET PITCH is defined in technology LEF file, Innovus
sets the placement grid as FinFET grid by default and checks for any violations.

Note: The FinFET Grid options in available on the Layer Control bar. You can use it to control the
visibility of the FinFET grid. Additionally, you can specify the color preference for the FinFET grid
using the FinFET Grid option on the Color Preferences form.

The following floorplan commands support this functionality:

September 2022 363 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

snapFPlan

The snapFPlan command snaps blocks, I/O pads, and standard cells to FinFET grid. It honors user
specified snapping rule for x direction. For y direction, it honors the FinFET grid (when the FinFET
grid is horizontal in regular horizontal row design).

The SITE definition is as follows:

LIBRARY LEF58_FINFET STRING "
 FINFET
 PITCH 0.048 HORIZONTAL ; " ;
END PROPERTYDEFINITIONS

checkFPlan

The checkFPlan command checks that all supported objects (die box, core box, standard cell rows,
I/O rows, blocks, IO pads, and standard cells) are aligned with the FinFET grid and reports DRC
violations. All supported objects which are not aligned to FinFET grid are marked in the GUI and
reported in the Violation Browser.

September 2022 364 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/snapFPlan.html
../innovusTCR/checkFPlan.html

checkDesign

The checkDesign -floorplan command checks the floorplan and reports any objects not aligned
with the FinFET grid correctly.

Note: In a top-down flow, for any partition shape (example, fence and power domain), the height of
die box/core box must be a multiple of FinFET grid and all the corners of partition shape must be
snapped to the grids.

September 2022 365 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/checkDesign.html

Unified Floorplan Constraints
The Unified Floorplan Constraints (UFC) methodology is a powerful Innovus capability that can
define several rules on floorplan objects, check specified rules, and report the violations with rule
name as well as severity. The violations can be shown in the violation browser. UFC also provides
the ability to automatically fix specific violations. It can add routing blockages, snap macro location,
adjust core shape to fix corresponding violations. In addition, UFC also provides the ability to
exclude rules from checking for specified objects.

The UFC capability provides a method for you to easily detect floorplan geometries in the early
design stage so that they can be fixed accordingly. This helps to save the design runtime.

Recommended UFC Flow
The recommended UFC flow involves the following steps:

Loading the Design.

Creating a UFC file with floorplan rules.

Checking UFC rules.

Fixing reported violations.

September 2022 366 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Creating a UFC file with Floorplan Rules
A UFC file defines several rules set on floorplan objects using the supported UFC commands. A
UFC file is saved with the .ufc extension. You require the following to create a UFC file:

UFC Rules
These are rules that can be applied on floorplan objects. You can use the UFC commands for
setting the UFC rules with different rule names.
Note: For more information on the UFC commands that you can use to define UFC rules in a

September 2022 367 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

UFC file, see "Supported UFC Commands" section of the Syntax and Scripts chapter of
the Innovus User Guide.

Supported UFC Objects
The UFC rules are applied on supported objects that can be used as TCL commands. These
objects return shapes that are used by the UFC commands for checking rules.

Supported UFC Dimension Functions
The UFC rules are applied on the supported objects using specified dimension functions such
as max, min and so on.

After creating the UFC file with floorplan rules, you can use the check_ufc command to check the
specified rules and report the constraint violations. You can then use the fix_floorplan command
to fix the violations.

UFC Rules

The UFC commands allow you to set the following rules:

Rule
Name

Description UFC Command to Use

Area rule Specifies the area
constraints

set_area_rule

Width rule Specifies the width
constraints. These
constraints include
simple width, jog width,
edge width between
incorners, width
between two concave
corners.

set_width_rule

September 2022 368 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/check_ufc.html
../innovusTCR/fix_floorplan.html

Spacing
and
enclosure
rule

Specifies the spacing
constraints. These
constraints include
horizontal, vertical,
orthogonal spacing with
minimum parallel run
length, and any-angle
spacing. This rule can
honor cell orientation.

set_spacing_rule

Merge and
reshape
spacing
rule

Specifies spacing
between merged and
reshaped objects. This
rule is used to check the
spacing between
merged objects.

set_merge_and_reshape_spacing_rule

Halo rule Specifies the enclosure
of inner and outer edge
by side. The sides can
be all, vertical,
horizontal, top, bottom,
left, right. It also has the
capability to check if one
object always
surrounded by another
specified object. This
rule can honor cell
orientation.

set_halo_rule

Same
length site
rule

Specifies the min
number of continuous
poly stripes.

set_same_length_site_rule

Routing
track rule

Specifies the allowed
location of tracks with
specified layer, mask,
and direction.

set_track_rule

September 2022 369 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Note: For more information on the UFC commands that you can use to define UFC rules in a UFC
file, see "Supported UFC Commands" section of the Syntax and Scripts chapter of the Innovus User
Guide.

Supported UFC Objects

The UFC rules use supported objects that can be used as TCL commands. These objects return
shapes that are used by the UFC commands for checking rules.

Parallel run
length rule

Specifies the constraints
between objects with
parallel run length or
project length.

set_parallel_run_length_rule

White_area
extension
rule

Specifies the object
extension to calculate
white_area object. The
default white_area is the
core area except
available_sites and
macros.

set_white_area_extension_rule

Reshape
available
sites rule

Recalculates the
available_sites or
available_sites_no_abut
by skipping the
specified cells. It takes
the row sites under the
cells into account.

set_reshape_available_sites_rule

Dont use
libcell rule

Detects if the specified
libcell is used in the
design.

set_dont_use_base_cell_rule

Exclude
rule

Specifies that the rules
should excluded.

exclude_rule

September 2022 370 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The following are the objects supported by the UFC rules. These can be used as TCL commands:

Supported Object Corresponding TCL
command

Description

design_boundary dbGet top.fplan

get_db designs .boundary

Design
window

design_shape dbGet top.fplan.boxes Design shape

core_boundary dbGet top.fplan.coreBox Region to
place site/row.

core_shape Core shape

available_sites get_db rows .rect Sites able to
place standard
cells. Row site
areas will be
merged if
abutted.

available_sites_no_abut get_db rows .rect Sites able to
place standard
cells. Row site
area will not
be merged if
abutted.

insts get_db insts Instances.

phys_insts get_db phys_inst Physical
instances

base_cells get_db insts -if {.name

==

<base_cell_name_pattern>}

Specify the
instance by
their base cell
name.

macros get_db insts -if

{.base_cell.class ==

block*}

Hard macros.

September 2022 371 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The UFC methodology supports using commands with conditional expression to flit objects.

insts |base_cells | macros | available_sites | design_boundary | place_blockages |

route_blockages | …

-if {expression of <attribute> in DB Tcl format}

For example,

macros –if {.name==MEM256x*}

insts –if {.base_cell.class==block*}

route_blockages -if {[regexp Metal(2|4|6|8) .layer.name]}

available_sites {.width >= 20.0}

Note:

If there are two individual row site areas but they abut, the available_sites object takes them
as one row site area and the available_sites_no_abut object takes them as two row site area.
The available_sites object will merge abutted row site areas together. The following diagram
shows the difference between available_sites and available_sites_no abut.

place_blockages get_db place_blockages Placement
blockages.

route_blockages get_db route_blockages Blockage
preventing
specified
routing layer
existed in
covered area.

markers get_db markers OBS layer and
route blockage
on this layer

white_area Die area
except
available_sites
and macros

ios get_db io_constraints IO pads

September 2022 372 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

The rules specified on the base cells should be able to override the same rules on macros or
insts.

For example, consider two rules R0 and R1 were,

Rule R0 defines macro to macro spacing should ≥ 10

Rule R1 defines cell A to macro spacing should ≥ 5

When spacing from cell A (macro) to another macro is 6. R0 should not flag cell A.

The dimension constraints set using the supported UFC objects are handled using the
supported dimension functions. For more information, see Supported UFC Dimension
Functions

Supported UFC Dimension Functions

The UFC rules are applied on the supported objects using specified dimension functions such as
max, min and so on. The UFC checker supports the following dimension functions for checking
dimensions:

Supported
Function

Example Description Handler Convention

September 2022 373 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Note:

Minimum {.width > 10.0} Measured
dimension

Area: .area

Maximum {.width < 20.0}

Grid and

offset

{on_grid (.width

-

$offset,$pitch)}

Grid and
offset
denote the
dimension
must be:

$pitch*N +

$offset

where,
N can be
any integer
and N≥0

Forbidden

list

{!.width in

{10.0 20.0}}
TCL list of
forbidden
dimensions

Forbidden

zone

{!(71.0 <=

.width && .width

<=102.0)}

TCL list of
{min max}
pair of
forbidden
zone

White list {.width in {11.0

21.0}}
TCL list of
white
dimensions.

White zone {.width < 12.0

|| (71.0 <=

.width &&

.width <= 102.0}

|| 131.0 <=

.width)

TCL list of
{min max}
pair of white
zone

September 2022 374 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

For different rules, use different handlers. For example, .width refers to width, .spacing refers
to spacing, etc.

All values must be specified as float/real numbers.

Multiple constraint functions should be applied at the same time.

The White list and Forbidden list functions are mutually exclusive. They cannot be
applied together. Similarly, the White zone and Forbidden zone functions are also mutually
exclusive. However, the White list function can be used with the Forbidden zone function.

Sample UFC File
The following is a sample UFC file that defines several rules on floorplan objects. A UFC file can be
used to check rules and detect floorplan geometry violation in the early design stages.

DTMF.ufc

#set_area_rule

set_area_rule -name CORE.A.1 -obj [available_sites] {.area >= 8000} -severity

GUIDELINE\

 -description {The area of available sites should be greater than 8000.}

#set_width_rule

set_width_rule -name CORE.W.1 -obj [available_sites] -type simple \

 -direction horizontal {on_grid(.width-0.66,1.32)} -severity ERROR-01\

 -description {The simple width of available sites in horizontal direction must

be 1.32*n + 0.66.}

#set_spacing_rule

set_spacing_rule -name CORE.SP.1 -obj [available_sites] -ref [available_sites] -

direction vertical \

 -parallel_run_length -2.0 {on_grid(.spacing-0.66,1.32)} -severity ERROR-02\

 -description {The horizontal spacing between sites area must be 1.32*n + 0.66,

if their PRL is greater than -2.0}

#set_enclosure_rule

set_spacing_rule -enclosure -name CORE.EN.1 -obj [design_boundary] -ref

[available_sites] \

 -direction horizontal {on_grid(.spacing-0.66,1.32)} -severity ERROR-02\

 -description {The available sites to design boundary spacing in horizontal

direction must be 1.32*n + 0.66.}

September 2022 375 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

set_spacing_rule -enclosure -name MACRO.EN.1 -obj [design_boundary] -ref [macros] \

 -direction vertical {.spacing >=80.0} -severity ERROR-02\

 -description {The macro to design boundary spacing in vertical direction must be

greater than 80.0.}

#set_halo_rule

set_halo_rule -name MACRO.HALO.M4 -obj [route_blockages -if {.layer.name == Metal4}] -

ref [base_cells \

 -if {.name == ram*}] -type inner -side all -detect_ref_enclosed {.halo <= 10.0} -

severity ERROR-03 \

 -description {The inner distance of M4 routing halo on Metal4 enclosure ram in all

direction must be smaller than 10.0. }

#set_same_length_site_rule

set_same_length_site_rule -name CORE.SL.1 -min_site 20 -site_extension 0.5 -severity

ERROR-04 \

 -description {The same length site must be greater than 20 with 0.5 site

extension.}

Checking UFC rules
Checking the UFC rules involves checking the floorplan against the user specified UFC rules
defined in the UFC file and reporting violations. You can use the check_ufc command to check the
UFC rules. The reported violations can be seen in the Violation Browser.

Example:

The following command checks the floorplan based on the DMTB_ENC.ufc file that contains the
user specified UFC rules:
check_ufc DMTB_ENC.ufc

The input DMTB_ENC.ufc file:
set_area_rule -name CORE.A.1 -obj [available_sites] {.area < 500} \

 -description {The area of available sites should be lesser than 500}

set_width_rule -name CORE.W.1 -obj [available_sites] -direction horizontal -type simple

{.width > 200} \

 -description {The horizontal simple width of available sites must be larger than 200}

set_width_rule -name CORE.W.2 -obj [available_sites] -direction vertical -type simple

{.width > 100} \

September 2022 376 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/check_ufc.html

 -description {The vertical simple width of available sites must be larger than 100}

set_spacing_rule -name CORE.S.1 -obj [base_cells -if {.name ==ram_256x16A}] -ref

[base_cells -if {.name == rom_512x16A}] -direction vertical {on_grid (.spacing-

0.1,0.2)} \

 -description {The vertical spacing between macro ram_256x16A and rom_512x16A must be

0.2*n + 0.1}

set_spacing_rule -name CORE.S.2 -obj [base_cells -if {.name ==rom_512x16A}] -ref

[base_cells -if {.name == ram_128x16A}] -direction vertical {.spacing > 10} \

 -description {The vertical spacing between macro rom_512x16A and ram_128x16A must

larger than 10}

The report summary of UFC checking after running the check_ufc command:

--------------------------Summary of UFC Checking -------------------------------------

--

RuleName Count Description

 ViolatedObjects

........

CORE.A.1 1 The area of available sites should be lesser than 500

 available_sites

CORE.S.1 1 The vertical spacing between macro ram_256x16A and rom_512x16A must be

0.2*n + 0.1 DTMF_INST/RAM_256x16_TEST_INST/RAM_256x16_INST

CORE.W.1 4 The horizontal simple width of available sites must be larger than 200

 available_sites

CORE.W.2 3 The vertical simple width of available sites must be larger than 100

 available_sites

The violations can be seen in the Violation Browser:

September 2022 377 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Fixing reported violations
You can the fix_floorplan command to fix the detected violations as part of the UFC methodology.
It fixes violations by:

Adding routing blockages around macros

Snapping macro locations

Re-shaping core shapes

The UFC methodology also provides the capability to automatically fix the violations with imported
UFC rules.

September 2022 378 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

../innovusTCR/fix_floorplan.html

Note: The fix_floorplan command tries to fix all the detected floorplan violations by default,
however, it currently does not support fixing die size and core size violations. If a floorplan has rule
conflicts, then the results after the fix may not be perfect. Cadence recommends you ensure that the
rules used are not conflicting and that the die or core size satisfy the rules. Cadence also
recommends you contact your Cadence representative if your constraints file comes from a third
party, but you want to use the fix_floorplan command to fix the violations.

Example:

The following command fixes the ufc violations based on the rules defined in
the DMTB_ENC.ufc file and writes the report to the fix_cmds.tcl file.
fix_floorplan -type ufc -file DMTB_ENC.ufc -report_file fix_cmds.tcl

Fixing violations by adding routing blockages

The detected UFC violations for spacing and halo rules can be fixed by adding routing blockage.
The spacing rule uses the set_spacing_rule -enclosure and -detect_ref_enclosed options to
support the addition of routing blockages while the halo rule uses the set_halo_rule -
detect_ref_enclosed option.

Note: The enclosed/surrounded object is assumed to rectangular and the routing blockages are
added by legal value. The object is not removed or reshaped.

For spacing rules
For spacing rule violations, with the set_spacing_rule -enclosure and -
detect_ref_enclosed options defined, the fix_floorplan command creates the routing
blockages by minimum legal value. The created blockages follow the contouring of macros.

If no value is specified, set enclosure as 0.

If only {.spacing >= $min_value} rule exists, align enclosure with $min_value.

If only {on_grid(.spacing - $offset, $pitch)} rule exists, align enclosure with
$offset.

If both {.spacing >= $min_value} and {on_grid(.spacing-$offset,$pitch)} exist, then

If $min_value <= $offset, set enclosure as $offset.

If $min_value > $offset, search min integer N to satisfy $pitch*N+$offset >=

September 2022 379 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

$min_value, and then set enclosure as $pitch*N+$offset.

If only white list or white zone exist, use the min value inside white list or white zone as
inner distance.

Example:

When the rules are set as following:

set_spacing_rule -enclosure -name A -obj [route_blockages -if{.layer.name ==

Metal1}]\

 -ref [macros] -direction vertical -detect_ref_enclosed {.s >= 2.0}

set_spacing_rule -enclosure -name B -obj [route_blockages -if{.layer.name ==

Metal1}]\

 -ref [macros] -direction horizontal -detect_ref_enclosed {.s >= 2.0}

For halo rules

For halo rule violations, with the set_halo_rule-detect_ref_enclosed option defined, the
fix_floorplan command creates the routing blockages. The created blockages follow the
contouring of macros.

The inner distance of the created blockage should use maximum legal value.

The outer distance of the created blockage should use minimum legal value.

September 2022 380 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Fixing violations by snapping macro locations

The detected UFC violations for can be fixed by automatically snapping macro locations when the
following rule exists:

set_spacing_rule -obj [macros] {on_grid (.spacing-$offset,$pitch) }

Note: When multiple rules exist, the result of snapping must meet all rules. If the results so not meet
all the rules at the same time, an error is reported and snapping of macro locations is aborted.

Example:

When the rules are set as following:

set_spacing_rule -enclosure -name A -obj [design_boundary] -ref [macros] \

-direction vertical -detect_ref_enclosed {on_grid (.s-0.0,3.0)}

set_spacing_rule -enclosure -name B -obj [design_boundary] -ref [macros] \

-direction vertical -detect_ref_enclosed {on_grid (.s-0.0,4.0)}

September 2022 381 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Fixing violations by re-shaping available sites

The detected UFC violations for can be fixed by adjusting the shape of available sites when the
following rule existed and was violated:

set_width_rule on available_sites

set_spacing_rule for design boundary enclosure available_sites

set_spacing_rule between available_sites and macros

Note: If fixing is not available, then the location of violation is flagged.

Note: Even is all of dimensions white_list/white_zone/on_grid/min/max exist in the available_sites
rule, only on_grid/min/max are taken into account.

Example:

When the rules are set as following:

set_width_rule -name A -obj [available_sites] -width_type simple -direction horizontal

{on_grid (.w-6.0, 2.0.s >= 2.0)}

Example:

When the rules are set as following:

set_width_rule -name A -obj [available_sites] -ref[macros] -direction horizontal

{on_grid (s >= 4.0)}

September 2022 382 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

September 2022 383 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Using Structured Data Paths
Introduction to Structured Data Paths

Benefits of Using SDP

General SDP 2G Flow

SDP Placement Flow

Implementing SDP Capability

Setting SDP Options

SDP Online Editing

Converting Failed SDPs

Checking SDP Placement

Introduction to Structured Data Paths
Innovus™ Implementation System provides the Structured Data Path (SDP) capability, which
allows you to specify data path information to get better performance, power, and area. You can
specify data path information by either importing an SDP relative placement file or sourcing an SDP
TCL script. Correct SDP placement ensures uniform routing.

SDP capability should be used when:

Design is data path intensive. That is, the design contains standard cell columns and rows
that require alignment.

Performance increases are required.

Time to market does not allow for full custom flow.

SDP is a semi-custom methodology that requires manual intervention so you need to have detailed
design knowledge in order to get better speed, power, and area. The Innovus tool makes it easy for
you to try different SDP experiments and evaluate their impact on congestion, timing, and power.
However, the tool still relies on the relative placement information you specify for placing and
handling SDP elements.

Furthermore, currently Innovus does not identify SDP elements automatically. You must script them
based on naming conventions and detailed design knowledge.

September 2022 384 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Floorplanning the Design

Related Information

Benefits of Using SDP

General SDP 2G Flow

SDP Placement Flow

Implementing SDP Capability

Benefits of Using SDP
SDP provides a uniform environment for data path and control logic for placement, routing, and
timing analysis.

SDP cells can be placed concurrently with other standard cells to get the optimal placement

September 2022 385 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

The main advantage of this SDP placement is that it ensures uniform routing.

September 2022 386 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

Related Information

General SDP 2G Flow

SDP Placement Flow

Implementing SDP Capability

General SDP 2G Flow
The default SDP capability enables you to specify data path information to get better performance,
power and area. The Innovus 21.1 release introduces the SDP 2nd Generation (2G) flow, which
provides better handling of large scale of SDPs and more robust SDP legalization mechanism with
less runtime, as compared to the default SDP flow. The 2G flow is especially useful for low
advanced node designs. The 2G flow includes enhancements such as EEQ cell swapping, soft
alignment, and capabilities for honoring the dont_use attribute and base cell padding.

From the 22.10 release, the 2G flow is used by default during SDP placement.

Note: The old SDP flow has now been retired and is no longer supported.

The general SDP 2G flow is as follows:

September 2022 387 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

As shown in the above flow diagram, after importing the design, you can read in an SDP file to
define SDP constraints. Alternatively, you can source a TCL file that has SDP TCL commands,
such as createSdpGroup, addSdpGroupMember, setSdpMode, and so on to define relative SDP
placement. All SDP TCL commands can be used during the "Analyze SDP alignment, edit
columns, rows, etc." flow step.

After defining SDP constraints:

1. Run place_design -sdp to place SDP groups globally where the tool will find suitable
positions for SDP groups.

2. Next, run placeSdpGroup to detail place SDP groups such that all instances in SDP groups are
placed legally.

If some SDP groups could not be placed legally after placeSdpGroup, you should modify SDP
groups manually based on SDP analysis. If you do not want to modify the failed SDP groups
manually, the tool can also generate instGroups for such failed SDP groups.

Once SDP and standard cells have been placed, you can follow the normal flow.

September 2022 388 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

../innovusTCR/createSdpGroup.html
../innovusTCR/addSdpGroupMember.html

Related Information

SDP Placement Flow

Implementing SDP Capability

SDP Placement Flow

SDP placement is part of the Placement and Pre-CTS Optimization step. After importing the design
and hard macros placement, follow the general SDP 2G flow to place SDP groups. Note that in the
2G flow, SDP instances are set to fixed before place_opt_design. After the SDP and standard cells

September 2022 389 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

have been placed, you can follow the normal flow.

Related Information

General SDP 2G Flow

Implementing SDP Capability

Implementing SDP Capability
The SDP capability can be implemented using the SDP TCL commands, SDP browser, or SDP
relative placement file.

Using the SDP TCL Commands

Using the SDP Browser

Using the SDP Relative Placement File

Using the SDP TCL Commands

Innovus provides a number of TCL commands for defining and manipulating data path structures
and groups.

For example, you can use the createSdpGroup command to create an SDP group based on existing
cell placement as follows:

createSdpGroup -selected -name newSdp

You can then use the addSdpGroupMember command to add an object or member to the new SDP
group. The added object can be an instance or another SDP group. Use the -before or -
after parameter of the command to control whether the new group member is added before or after
the specified reference object. Note that the addSdpGroupMember command enables you to create a
structured data path using TCL commands. You do not need to learn SDP relative placement format
for creating a data path.

You can use the detachSdpGroup -detach command to detach an SDP object or group from its
parent if you want to regroup SDPs.

Note: When regrouping SDPs, Innovus only allows you to add a row to a column or vice versa. The
tool will report an error if you try to add a row to a row SDP or a column to a column SDP.

For more information, see the Structured Data Path Commands chapter of the Innovus Text

September 2022 390 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

../innovusTCR/createSdpGroup.html
../innovusTCR/addSdpGroupMember.html
../innovusTCR/detachSdpGroup.html
../innovusTCR/Structured_Data_Path_Commands.html

Command Reference.

In addition to TCL commands, Innovus also enables you to access SDP attributes through
database access commands. For example:

To determine the SDP group to which an instance belongs, use:
dbGet top.insts.sdp

To determine the parent SDP group to which an SDP object belongs, use:
dbGet top.fplan.topSdps.sdps.parent

To determine all tree instances in an SDP object, use:
dbGet top.fplan.topSdps.sdps.treeInsts

For example, consider the following SDP group definition:

datapath DP0 {

 origin 4.446 3.3

 row DP0_row0 {

 justifyBy SW

 column DP0_row0_col0 {

 justifyBy SW

 inst dp0_cpc

 inst dp0_lat1

 }

 }

}

Here:

set inst [dbGet -p1 top.insts.name dp0_cpc]

[dbGet $inst.sdp.name]
Returns DP0_row0_col0

[dbGet $inst.sdp.parent.name]
Returns DP0_row0

September 2022 391 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

https://top.insts.name
https://inst.sdp.name
https://inst.sdp.parent.name

Using the SDP Browser

Innovus also provides the Structured Data Path browser (SDP browser) to help you manipulate
SDP groups and/or elements and define data path and control logic using the graphical interface.
To launch the browser, select Floorplan - Structured Data Path from the menu bar.

You can easily create a SDP group based on the existing physical locations of the selected cells in
the GUI. To do so, select the required instances in the GUI, right-click to open the context menu,
and then choose the Create SDP Group option from the context menu. This opens the Create SDP
Group for Selected Instances form.

September 2022 392 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

Note: All selected cells must already have been placed.

The SDP browser also enables you to move around SDP rows and columns easily, simply by
dragging and dropping items in the tree view.

For instance, to move a column under a row, click the column to select it. Then, keeping the right
mouse button pressed, drag the column to the new position under the required row.

September 2022 393 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

Note: You cannot drag a column under another column or a row under another row.

For more information on using the SDP browser and related forms, see the "Structured Data Path"
section in the Floorplan Menu chapter of the Innovus Menu Reference.

Using the SDP Relative Placement File

You can bring SDP information into the Innovus environment through an SDP relative placement
file. The SDP file:

Specifies the relative placement information of data paths

Supports hierarchical constructs, such as rows within a column or columns within a row

Supports alignment, flipping, and orientation constraints

Supports creation of empty rows and columns

Supports wildcards (* and ?) for instance names

Supports numeric bus bit range as part of an instance name. For example, specifying
dataPath_reg[0:2] is equivalent to specifying:
dataPath_reg[0]

dataPath_reg[1]

dataPath_reg[2]

Similarly, specifying dataPath_reg<0:2> is equivalent to specifying:
dataPath_reg0

September 2022 394 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

../innovusMR/Floorplan_Menu.html

dataPath_reg1

dataPath_reg2

The SDP file format also supports bit order sequence. So, specifying dataPath_reg<2:0> is
equivalent to specifying:
dataPath_reg2

dataPath_reg1

dataPath_reg0

Allows pre-place location

After design import, you can define relative placement information by reading in an SDP relative
placement file using the readSdpFile command or by sourcing an SDP TCL script.

The SDP format provides you the ability to create rows or columns.

SDP File Examples

You can define an SDP group file in two ways. The first method is to select instances in the GUI
and create an SDP group for the selected instances. The second way is to write the SDP file
directly using TCL.

Here's an example for defining an SDP group in a file named sdp.tcl:

set insts {DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/acc_reg_31

 inst DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/acc_reg_30

 inst DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/acc_reg_29

 inst DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/acc_reg_28}

createSdpGroup -name col2 -inst $insts -justifyBy SW -type col

setSdpGroupAttribute -name col2 -origin {400 400}

You can then source the sdp.tcl file to read in the data paths defined in the file.

Following is an example of an SDP file for creating a column of rows:

September 2022 395 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

../innovusTCR/readSdpFile.html

SDP also supports hierarchical construction (SDP within SDP, rows within a column and vice
versa), as shown below.

datapath sdp {

column adder {

 justifyBy SW

 row inMux { … }

 row inFF { … }

 row leftShifter { … }

 row rightShifter { … }

 row outFF { … }

 row outMux { … }

}

}

September 2022 396 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

SDP File Format

The SDP relative placement file has the following format:

alias var1 var2

datapath name {

hierPath name

origin x y

row name {

datapath sdp_row {

row adder {

 justifyBy SW

 column inMux {

 inst m0

 inst m1

 inst m2

 inst m3

 inst m4

 inst m5

 inst m6

 inst m7 }

 column inFF { … }

 column leftShifter { … }

 column rightShifter { … }

 column outFF { … }

 column outMux { … }

}

}

September 2022 397 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

 [orient R0 | MX | MY | R180 | MX90 | R90 | R270 | MY90]

 [justifyBy NW | SW | SE | NE | W | E | N | S]

 [flip X | Y | XY]

 [skipSpace value [siteWidth siteName | micron]

| inst instanceName [orient R0|R90|..] [justifyBy ...] [flip X|Y|XY]

| column name { ... }]...

 [spreadGroup value instanceName [sideWidth siteName | micron]]

 }

}

datapath name {

hierPath name

origin x y

column name {

[orient R0 | MX | MY | R180 | MX90 | R90 | R270 | MY90]

[justifyBy NW | SW | SE | NE | W | E | N | S]

[flip X | Y | XY]

[skipSpace value [siteWidth siteName | micron]

| inst instanceName [orient R0|R90|..] [justifyBy ...] [flip X|Y|XY]

| row name { ... }]...

[spreadGroup value instanceName [sideWidth siteName | micron]]

}

}

 # is used for comment

 # Keywords like row, column can be redefined using the alias command.

The format uses the following keywords:

alias: Can be used to redefine keyword name of row, column, justifyBy, skipSpace,
hierPath, origin, flip, datapath, and inst.

September 2022 398 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

datapath: Specifies the name of a data path structure.

hierPath: Specifies the hierarchical path name of a data path structure.

origin: Specifies the lower left location of a data path structure.

row: Specifies the name of an SDP row group. The name should be unique within same data
path group or across different data path group. If the name is not unique, the tool automatically
adds an index to the specified name to make it unique. For example, if the specified name is
SdpGroup, the modified name will be SdpGroup_id.

orient: The orientation of an SDP group or an SDP element. Values can be R0, R90, MY, MX,
etc. If this orientation is specified at SDP group level, the orientation will be applied to
instances that belonged to this SDP group.

justifyBy: Specifies the anchor point that will be used for aligning a SDP group/element. If
the information is not specified then the default value SW will be used. If the justifyBy
constraint is not specified at that level, this constraint will be inherited from its parent level.
The following examples illustrate justifyBy.
Example 1:

datapath topGroup {

 origin 2.56 4.8

 row top {

 justifyBy SW

 column FILL_GAP_3 {

 justifyBy SW

 inst u1_<0:3>

 }

 ...

 }

 ...

 }

 ...

SDP topGroup has the origin at {2.56 4.8}. This topGroup SDP has more than one row with
anchor point for alignment is SW. First row is a column with anchor point for alignment is SW.

September 2022 399 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

flip: Flips the SDP group or an SDP instance element in vertical, horizontal, or both
directions. Possible values can be X, Y, or XY.

column: Specifies the name of an SDP column group. Name should be unique within same
data path group or across different data path group. If the name is not unique, the tool
automatically adds an index to the specified name to make it unique.

skipSpace: Specifies a space value to be skipped. By default if the skipSpace value is defined
in a column, then this value is for row skipping and represents the number of skipped rows. If
the skipSpace value is defined in a row, then this value is for column skipping and represents
the number of M2 tracks (pitch of first vertical layer). skipSpace value can also be specified in
micron units or as number of widths of a specified row site. However, row site width should be
specified only for an SDP row, and not for an SDP column.
Following is the example of skipSpace:
...

 column FILL_GAP_9 {

 justifyBy SW

 row main_5 {

 justifyBy SW
 column rp5_0 {
 justifyBy SW
 inst u5_0
 skipSpace 2 # Skip 2 rows
 inst u5_1
 }

September 2022 400 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

 skipspace 10 # skip 10 M2 tracks
 column rp5_1 {
 justifyBy SW
 inst u5_<2:5>
 }
 }
 }

 ...

siteWidth: Specifies the name of the tech site. Use the number of widths of the specified site
as skip unit in horizontal direction.

micron: Specifies that the specified skipSpace value is to be interpreted as distance in microns
(um).

inst: Specifies one or more instance names. Use this keyword if you want to create the SDP
group from specified instances.

spreadGroup: Inserts space between group of instances. If spreadGroup is specified in a
column, spacing will be the number of added rows. If spreadGroup is specified in a row,
spacing will be the number of placement grids added between the columns in that row.
spreadGroup value can also be specified in micron or number of widths of a specified site.

 In the following example, spreadGroup is defined inside a column SDP so that a row will be
skipped between specified instances:

 column sdp_grp1 {

September 2022 401 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

justifyBy SW

spreadGroup 1 reqPath/reg_busBit<0:17>

 }

 This is equivalent to:

 column sdp_grp1 {

justifyBy SW

reqPath/reg_busBit0

skipSpace 1

skipSpace 1

...

 }

 ...

Reusing SDP Instantiations

The SDP file format supports reuse capability. You must specify the data path macro definition with
the define keyword before it is used anywhere. The SDP macro definition can be specified in a
SDP file different than the data path that references it.The content of the macro definition must have
the same syntax as the existing row or column data path.

define SDP_macro_name {

normal_dataPath_syntax

}

Here:

normal_dataPath_syntax: Specifies a row or column data path:

row name {

[orient R0|R90 |...]

[justifyBy NW|SW|SE|NE|W|E|N|S]

[flip X|Y|XY]

[skipSpace rowVal x colVal

| inst instanceName [orient R0|R90|...] [justifyBy ...]

September 2022 402 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

[flip X|Y|XY]

| column name { ... }

| use SDP_macro_name column_name [hierPathName]]

}

Or

column name {

[orient R0|R90|..]

[justifyBy NW|SW|SE|NE|W|E|N|S]

[flip X|Y|XY]

[skipSpace rowVal x colVal

| inst instanceName [orient R0|R90|..] [justifyBy ..]

[flip X|Y|XY]

| row name { ... }

| use SDP_macro_name row_name [hierPathName]]

}

After a macro definition is specified, you can instantiate or use the macro definition in a data path
specification by using the use keyword:

use SDP_macro_name row_or_column_name [hierPathName]

Here:

SDP_macro_name: Specifies the name of a data path macro definition.

row_or_column_name: Specifies the user-specified name of the instantiated row or column. If a
column is instantiated inside a column, the SDP reader automatically creates a row between
these two columns and vice versa.

hierPathName: Specifies the path name. If a data path has specified the hierPath information,
then, this specified path name is concatenated to the data path hierarchical path.

From the 18.1 release, the flip attribute is supported in SDP instantiations. Using this attribute, you
can flip the instances in a child SDP as compared to the parent SDP group. See the second use
statement in entry2 in the example below.

The following example illustrates how data path instantiations can be reused.

September 2022 403 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

define entry1 {

row row_0 {

inst g1 orient R0

inst CKGA orient MY

}

}

define entry2 {

row row_1 {

inst CKGA_dcap0 orient MX

inst CKGA_dcap1 orient MX

column nested_col {

use entry1 row_0_1 inst1

use entry1 row_0_2 inst2 flip X

}

}

}

datapath DP_one {

hierPath PTN1

column col_arr {

justifyBy SW

skipSpace 1

inst trn_1 orient R0

use entry1 row_3_4 top0

use entry2 row_3_5 top_1

}

}

Here, data path DP_one is equivalent to:

September 2022 404 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

datapath DP_one {

hierPath PTN1

column col_arr {

justifyBy SW

skipSpace 1

inst trn_1 orient R0

row row_3_4 {

inst top0/g1 orient R0

inst top0/CKGA orient MY

}

row row_3_5 {

inst top_1/CKGA_dcap0 orient MX

inst top_1/CKGA_dcap1 orient MX

column nested_col {

row row_0_1{

inst top_1/inst1/g1 orient R0

inst top_1/inst1/CKGA orient MY

}

row row_0_2{

inst top_1/inst2/g1 orient R0

inst top_1/inst2/CKGA orient MY

}

}

}

}

}

September 2022 405 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

Related Information

Setting SDP Options

SDP Online Editing

Checking SDP Placement

Setting SDP Options

The setSdpMode command allows you to set SDP related sticky options before using place_design
-sdp and placeSdpGroup. You can use the setSdpMode command to:

Disable the extension of the core boundary
If you set setSdpMode -disable_extended_core to true before running
the placeSdpGroup command, the software does not adjust the core boundary to
accommodate all SDP placements. Instead, the software places the SDP elements outside
the core boundary if they do not fit within the boundary.

Resolve overlaps between SDP members and fixed objects

You can use setSdpMode -pre_fixed_cells_blockage_direction to specify spacing
constraints between fixed objects/placement blockages and SDP groups to keep SDPs at a
suitable distance from them.

Honor the dont_use attribute
Electrically equivalent (EEQ) cells that have the same functionality and size can be used to
replace failed SDP cells. By default, during EEQ cell swapping, the tool can use EEQ cells
that have the dont_use attribute defined. The setSdpMode -honor_dont_use option controls
whether or not to honor this attribute. You can set it to true if you do not want EEQ cells with
the dont_use attribute defined to be used for EEQ swapping.

Control the mechanism for legalizing SDP groups
In the 2G flow, the tool allows you to control the mechanism for legalizing SDP groups by
setting the legalization effort using the setSdpMode -legalization_effort parameter. The
higher the setting for this parameter, the more the iterations done to place and align the SDP
groups leading to more runtime.

Generate a detailed SDP placement report
If you specify setSdpMode -place_report file_name, the software generates a detailed SDP

September 2022 406 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

placement report on running placeSdpGroup.
The detailed SDP placement report contains the following information:

Standard output file header

Summary report at the end of the report file such as:

Total number of SDPs in the design

Total number of placed SDPs

Total number of unplaced SDPs

Number of overlapped SDPs.

Following is an example of an SDP placement report file:

##

Generated By: Cadence Innovus 18.10-b011_1

Generated on: Mon May 7 10:00:29 2018

HostName: noi-leenap1

Design: DTMF_CHIP

Command: placeSdpGroup

##

SDP Name Location

==

group1, (349.800, 649.040)

group2, (700.260, 649.040)

Total Number of SDPs: 2

Total Number of placed SDPs: 2

Total Number of Unplaced SDPs: 0

Note: You can use the getSdpMode command to retrieve the current values of setSdpMode command.

Related Information

SDP Online Editing

Checking SDP Placement

September 2022 407 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

SDP Online Editing
You can move an SDP to a preferred location from within the GUI. The SDP legalizer legalizes the
SDP placement, taking into account the following order for moving objects away from the preferred
location:

Fixed instances < SDP < Soft fixed instances < Placed instances

In other words:

Fixed instances stay in the preferred location. If an SDP is moved to overlap with fixed
instances at the preferred location, the SDP is either moved next to it or interleaved with these
instances.

Soft fixed instances are moved away.

If there are other SDP groups in the preferred location, the existing SDP groups at the location
may be moved away.

September 2022 408 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

You need to set the following modes in advance for SDP online editing:

setSdpMode -legalization {AUTO | SW}

setSdpMode -pre_fixed_cells_blockage_direction Y

To move an SDP to a preferred location, follow the steps given below:

September 2022 409 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

Note: If there are no legal placement locations for all SDP instances in the new location, some SDP
instances may not be aligned due to placement constraints.

Related Information

Setting SDP Options

Converting Failed SDPs

Checking SDP Placement

Converting Failed SDPs
In the 2G flow, the tool supports the conversion of failed top SDP groups to instGroups by using the
placeSdpGroup -create_inst_group parameter. This option works only on top SDPs. This means
the tool will convert the top SDPs to instGroups, irrespective of whether it was the top SDPs or child
SDPs that failed.

The instances in the instance groups are soft_fixed.

September 2022 410 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

../innovusTCR/placeSdpGroup.html

Related Information

SDP Online Editing

Checking SDP Placement

Checking SDP Placement

After you perform any manual editing and/or optimization step, you may want to check for any
resulting SDP violations before you move on to the next step in your flow. Innovus provides
the checkSdpGroup command that enables you to check current SDP placement against the SDP
constraints that you may have originally specified via an SDP relative placement file or a set of TCL
commands.

Using checkSdpGroup, you can check whether you need to resolve SDP overlapping or re-run SDP
placement before moving to the next step in the flow. checkSdpGroup checks the following:

SDP group/instance orientation

SDP group/instance justifyBy constraint

Alignment by pin name constraint

SDP group/instance flip constraint

Skip space constraint

SDP group/instance overlapping

Using the -file option of checkSdpGroup, you can generate a detailed report that contains the
following information for each of the above checking categories:

Total number of violations

List of SDP group/instance names that have that violation

By default, the report file name is designName.checkSdp.rpt.

You can view the checkSdpGroup violations in the Violations Browser (Tools -> Violation Browser).

September 2022 411 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

../innovusTCR/checkSdpGroup.html

September 2022 412 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

Related Information

Setting SDP Options

SDP Online Editing

Converting Failed SDPs

September 2022 413 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

Bus Planning
Overview

Bus Planning Flow in Innovus

Creating a Bus Guide

Using the Edit Bus Guide GUI

Drawing a Bus Guide

Using Text Commands

Example

Moving and Stretching a Bus Guide

Cutting, Splitting, and Merging Bus Guides

Customizing the Bus Guide Display

Highlighting and Dehighlighting the Bus Guide

Saving and Restoring Bus Guide Information

Limitations of Bus Planning

September 2022 414 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Using Structured Data Paths

Overview
The Bus Planning feature in the Innovus software enables you to plan and create bus guides which
are used to guide the path of busses for floorplanning, partition pin optimization, feedthrough
insertion, congestion prediction in early global routing, and final routing using the NanoRoute
router.

Most designs need bus planning for estimating the design size and routing channel widths. Without
bus guides, the routers do not route all the bus bits together on the desired path. Routing the bus
bits outside the desired path can have high cost implications. Hence it is very important to
accurately plan the bus guide layouts.

Bus planning is critical in the prototyping stage of the hierarchical flow. Use the bus planning
capability to guide the path of bus routing for feedthrough insertion, partition pin optimization, and
congestion prediction. If you are in the implementation stage, use bus planning to guide the path of
busses for detailed routing.

Bus Planning Flow in Innovus
For hierarchical designs, you create bus guides before or after assigning the partition/black box
pins. For flat or top-level designs, you create bus guides before routing. Normally, you create bus
guides before pin assignment.

The following steps describe the bus planning flow in Innovus:

1. Importing the design
Import the design into the Innovus environment.

2. Floorplanning the design
If the design is a partition design, then specify partitions. For more information, see
"Specifying Partitions and Blackboxes" section in the Partitioning the Design chapter of
the User Guide.

If it is a black box design then define black boxes and specify their sizes. You can manually
preplace black boxes/macros or run proto_design to place them automatically. Further, adjust
the floorplan if needed.

3. Defining net groups

Group the bus bit nets together as net groups using createNetGroup and/or addNetToNetGroup
commands.

4. Creating bus guides

Create bus guides associated with the net groups, to guide routing for all the nets of the

September 2022 415 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

../innovusTCR/proto_design.html
../innovusTCR/createNetGroup.html
../innovusTCR/addNetToNetGroup.html

specified net group. Bus guides can be created using the Edit Bus Guide form, which can be
accessed from the Edit Menu and/or the createBusGuide command. See Creating a Bus
Guide.

5. Placing the design

Place the standard cells. If you do not want the Innovus placer (place_design) to move your
macros and/or black boxes, set their placement status to fixed before running placement.

Note: This is an optional step for designs that do not have standard cells at full-chip level.

6. (Optional) Routing the design

Run earlyGlobalRoute to route the design.

7. (Optional) Inserting feedthrough buffers

Feedthrough can be inserted based on routing or placement. If earlyGlobalRoute was run
before this step, then feedthroughs are inserted based on routing. For more information, see
the "Inserting Routing Feedthroughs" section of the Partitioning the Design chapter of the
User Guide.

8. Assigning pins

Assign pins using the assignPtnPin command.

9. Committing partition

Commit partitions using the partition command.

10. Saving Partition

Save the partition information using the savePartition command.

11. Running NanoRoute at the top-level design
Perform detailed routing using the NanoRoute router at the top-level design.

Creating a Bus Guide
A bus guide consists of one or more overlapping segments. It must always be associated with a net
group. So, before creating a bus guide you must define a net group. Remember that a net group can
either be assigned to a bus guide or a pin guide, but not to both. For each bus guide segment that
you create, you must specify a layer or a layer range.

You can create a bus guide Using the Edit Bus Guide GUI and/or Using Text Commands.

September 2022 416 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

../innovusTCR/createBusGuide.html
../innovusTCR/place_design.html
../innovusTCR/earlyGlobalRoute.html
../innovusTCR/assignPtnPin.html
../innovusTCR/partition.html
../innovusTCR/savePartition.html

Using the Edit Bus Guide GUI
The bus guide editor in Innovus allows you to create bus guides before or after assigning the bus
pins. Using the Edit Bus Guide form, you can edit the bus guide properties and interactively create
the bus guide for a specific net group.

You can specify the net group associated with the bus guide you are creating in Associated Net
Group drop-down list. This is an editable drop-down list, which lists all net groups by default. You
can either select the required net group from the list or type the name of the net group in the box. As
you start typing the name of the net group, the drop-down list changes to show only the net group
names that match the pattern.

In addition to the net group, you can specify the layer or layer range on which the bus guide is to be
created and the width of the bus guide segment.

By default, the bus guide editor derives the default minimum guide width required to hold all the
nets assigned to the bus guide. If the bus guide connects to placed pins on block edges, the bus

September 2022 417 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

guide editor automatically adjusts the width of the guide segment to cover all the pins of nets in the
net group. The bus guide editor provides options to enable overlapping check for bus guides
created on a specific layer and display flight lines of nets in the net group, when creating the bus
guides.

By default, the bus guide is created as a soft constraint. If you specify Constraint Type as Hard, the
tool honors the bus routing guide when you run Early Global Route (eGR), NanoRoute (NR), or
NanoRoute High Frequency Router (NRHF). If you specify the Constraint Type as Soft, the bus
guide only guides the route path and the tool can route the net out of the bus guide during eGR, NR,
or NRHF routing.

The Edit Bus Guide form can also be used for net group to bus guide cross-probing:

Finding the net associated with the bus guide selected in the floorplan: Use the Get Selected (

) button to find the name of the net group associated with the bus guide segment selected
in the floorplan. When you click the Get Selected button, the Associated Net Group drop-down
list jumps to the net group of the selected bus guide segment.

Finding the bus guide of a specific net group: Use the new Zoom Selected () button to
zoom to the bus guide of the net group selected in the Associated Net Group drop-down
list. When you click the Zoom Selected button, the view window will zoom to fit the bus guide
of the net group.

For more information on the Edit Bus Guide form, see the Edit Menu chapter of the Menu
Reference.

Drawing a Bus Guide

To draw a bus guide in Innovus, you must first click the Edit Bus Guide icon in the toolbar.

Once you are in the bus planning mode, you can draw the bus guide segment by clicking the left
mouse button and dragging it along the points of center line for the guide segment. To end a bus
guide segment, double-click the left mouse button. By default, the bus guide extends half width for
the overlapping end of the created segment. However, if the guide segment overlaps with another
segment that has bigger or smaller width, the bus guide editor uses half the width of the other
segment for the extension of the overlapping end.

September 2022 418 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

../innovusMR/Edit_Menu.html

Note: All the segments of the bus guide should overlap to ensure continuity; Otherwise, the router
(nanoroute) may create routing problems or may take longer time to run.

You can specify a new segment connected to an existing segment as shown in the following image
where segment 4 overlaps with segment 1:

Figure 1

You can also draw a bus guide segment that connects to the placed pins of the associated net
group.

September 2022 419 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

Figure 2

If you click on the partition boundary side where the pins are placed, the bus guide editor
automatically snaps to these pins. If the width value specified in the bus guide editor is smaller than
the width required to fully cover all these pins, the bus guide editor derives new width for the guide
segment such that all the associated physical pin geometries are covered. If the width value is
bigger than the width that needs to cover all pins, the editor will use the current width value without
adjusting it.

In Figure 2, the width of the segment defined by the first and the second digitized points is derived
based on the placed pin information such that the segment width can fully cover the all the pins.
The width of the next segment (defined by second and third points) is the width that is specified in
the bus guide editor.

The snapping of bus guides to pins (partition or black box pins) occur at the start or at the end of the
bus guide, when you double-click to end the bus guide.

The following example illustrates the snapping behavior at the starting digitized point. The
snapping occurs before you specify the second point:

September 2022 420 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

The following example illustrates the snapping behavior at the end of a bus guide.

To view the attributes of a bus guide that you created, double-click the bus guide segment to
display the Attribute Editor form as shown in the following example:

September 2022 421 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

A bus guide gets deleted when you delete its associated net group.

Using Text Commands
You can create and edit bus guides using the following text commands:

Commands Use

createBusGuide To create a bus guide segment

September 2022 422 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

../innovusTCR/createBusGuide.html

For more information on the commands, see the "Bus Plan Commands " chapter in the Text
Command Reference.

The following example describes the steps to create bus guides using text commands.

Example
This sample script creates two bus guides for two bus nets, abcBusNet and cdeBusNet. The
abcBusNet bus has 32 bus bits and cdeBusNet has 100 bus bits. Two net groups, abcNetGroup and
cdeNetGroup are defined for abcBusNet and cdeBusNet busses, respectively. Two bus guides are
used to guide routing for these two busses for feedthrough insertion:

#Restore the bBoxFP.enc.dat design of top cell Test that is already being floorplanned

restoreDesign bBoxFP.enc.dat Test

#Create net groups for busses abcBusNet and cdeBusNet

createNetGroup abcNetGroup -net abcBus*

deleteBusGuide To delete a bus guide

Note: You can also delete a bus guide segment by selecting
the segment and pressing the Del key on the keyboard.

deselectBusGuide To deselect a bus guide segment

editCutWire To cut a bus guide segment

editMerge To merge two bus guide segments

editSplit To split a bus guide segment

selectBusGuide

selectBusGuideSegment

To select a bus guide segment.

You can also use selectBusGuideSegment to select a bus
guide segment with its specified bounding box.

update_bus_guide To modify the layer or width information of an existing bus
guide

September 2022 423 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

../innovusTCR/deleteBusGuide.html
../innovusTCR/deselectBusGuide.html
../innovusTCR/editCutWire.html
../innovusTCR/editMerge.html
../innovusTCR/editSplit.html
../innovusTCR/selectBusGuide.html
../innovusTCR/selectBusGuideSegment.html
../innovusTCR/selectBusGuideSegment.html
../innovusTCR/update_bus_guide.html
../innovusTCR/Bus_Plan_Commands.html

createNetGroup cdeNetGroup -net cdeBus*

#Create bus guide for bus net abcBusNet[0..31]. This bus guide has 4 segments.

createBusGuide -netGroup abcNetGroup -centerLine 4421.8 10749.36 4960.8 10749.36 -width

90 -layer Metal4:Metal8

createBusGuide -netGroup abcNetGroup -centerLine 4900.8 10809.36 4900.8 9470 -width 90

-layer Metal3:Metal7

createBusGuide -netGroup abcNetGroup -centerLine 4840.8 9530.0 11525.4 9530.0 -width 90

-layer Metal4:Metal8

createBusGuide -netGroup abcNetGroup -centerLine 11465.4 9590.0 11465.4 9203.5 -width

90 -layer Metal3:Metal7

#Create bus guide for net cdeBusNet[0..99] that has only one vertical segment.

createBusGuide -netGroup cdeNetGroup -centerLine 15300.7 7061 15300.7 11230 -width 300

-layer Metal5:Metal7

#Place the design since design has some top-level cells

placeDesign

#Run Early Global Router

earlyGlobalRoute

#Continue with the normal flow, invoking feedthrough insertion, pin assignment, and so

on...

The following figure displays the bus guide associated with the net group abcNetGroup, highlighted
in green, and the bus guide associated with the net group cdeNetGroup, highlighted in red:

After running createBusGuide to create 5 segments

September 2022 424 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

After running createBusGuide to create 5 segments

The following figure displays the routing of the bus abcBusNet[0...31], routed within the bus guide
area:
After running placeDesign and earlyGlobalRoute

September 2022 425 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

Moving and Stretching a Bus Guide

You can use the Move Wire () widget to move a bus guide segment, in the same way as you
move a wire. The bus guide connection is maintained while moving a segment. Similarly, you can

use the Stretch Wire () widget to stretch a bus guide. When you do so, it auto snaps to connect
fully with other segments in the bus guide.

Cutting, Splitting, and Merging Bus Guides
While editing bus guides, you might sometimes need to flip a corner of a bus guide or make a jog or
detour on the bus guide. Jogs and detours are needed when the bus guide runs into a obstruction
or you want to make a bus guide longer. To make jogs and detours, you would need to adjust bus
guides by cutting and merging bus guide segments. Cutting and merging bus guides is possible
through the editCutWire, editSplit , and editMerge wire edit commands. These commands
support cutting, splitting, and merging of bus guides by default, in addition to wires. You can also
use the Split Selected Bus Guides and Merge Selected Bus Guides buttons on the Edit Bus Guide
form to split and merge bus guides.

September 2022 426 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

September 2022 427 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

Customizing the Bus Guide Display
You can specify multiple colors for bus guide objects in the design, using the Bus Guide Color
Selection form. (Color Preferences -- Objects -- Bus Guide -- Bus Guide Color Selection)

Highlighting and Dehighlighting the Bus Guide
After specifying colors for bus guides, you can highlight the bus guides in the design using the Edit -
- Bus Guide -- Color menu command.

Alternatively, you can run the setBusGuideMultiColors command to color the bus guides and
resetBusGuideMultiColors command to clear the bus guide colors.

The following example displays the bus guides before you run
the setBusGuideMultiColors command:

September 2022 428 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

../innovusTCR/setBusGuideMultiColors.html
../innovusTCR/resetBusGuideMultiColors.html

The following example displays the bus guides after you run
the setBusGuideMultiColors command:

September 2022 429 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

Saving and Restoring Bus Guide Information
The bus guide data is stored in the floorplan spr file (.fp.spr file). You can save and restore this
information using the saveFPlan and loadFPlan commands.

Limitations of Bus Planning
Feedthrough insertion does not honor bus planning. Once you insert feedthroughs in the
design, the existing bus guides will no longer be valid.

The software currently does not provide checks to detect the following:

Overlapping bus guide segments on different layers

Complete bus guide coverage from source to sink

Complete coverage of placed pins

Enough room for routing.

September 2022 430 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

../innovusTCR/saveFPlan.html
../innovusTCR/loadFPlan.html

Power Planning and Routing

September 2022 431 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Bus Planning

Power Planning:

Use the addRing command to generate rings with the CORERING and BLOCKRING
shapes.

Use the addStripe command to generate stripes with the STRIPE shape. Use
the editPowerVia command after the addStripe command to drop vias within macro
power pins during stripe creation.

Power Routing: Use the sroute command to connect to the following patterns:

padPin, blockPin, and floatingStripe: Connected nets are generated with the IOWIRE,
BLOCKWIRE, and STRIPE shapes.

Standard cell pins and secondary power pins: Connected nets are generated with the
FOLLOWPIN (in row area) and COREWIRE shapes (outside the row for further
connection with other shapes).

padPin on left and right side of pad cells to generate padring: Connected nets are
generated with the PADRING shape.

VIAGEN Engine: Use it for special via insertion. The VIAGEN Engine:

Is called with the addRing, addStripe, and sroute commands to generate special vias.

Controls the behavior of special via editing command, editPowerVia.

Use Model of Power Planning and Routing Commands

The following table presents the use model of the power planning and routing commands:

Each action command has one or two mode setup command(s) to control their characteristics. For
non-default characteristics, you need to update/change the value of the mode setup command(s)
before applying the action command. For example:

setViaGenMode -viarule_preference {VIAGEN67 VIAGEN56} -optimize_cross_via 1

setAddStripeMode -stacked_via_bottom_layer M5 -stacked_via_top_layer M7

Action Command Mode Setup Command(s)

addRing setAddRingMode setViaGenMode

addStripe setAddStripeMode setViaGenMode

sroute setSrouteMode setViaGenMode

editPowerVia setViaGenMode

September 2022 432 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

../innovusTCR/addRing.html
../innovusTCR/addStripe.html
../innovusTCR/editPowerVia.html
../innovusTCR/sroute.html
../innovusTCR/addRing.html
../innovusTCR/addStripe.html
../innovusTCR/sroute.html
../innovusTCR/editPowerVia.html
../innovusTCR/addRing.html
../innovusTCR/setAddRingMode.html
../innovusTCR/setViaGenMode.html
../innovusTCR/addStripe.html
../innovusTCR/setAddStripeMode.html
../innovusTCR/setViaGenMode.html
../innovusTCR/sroute.html
../innovusTCR/setSrouteMode.html
../innovusTCR/setViaGenMode.html
../innovusTCR/editPowerVia.html
../innovusTCR/setViaGenMode.html

addStripe -nets VDD -width 0.144 -spacing 0.441 -set_to_set_distance 2.34 -layer M6 -

direction horizontal

Power Planning and Routing Flow

This section presents a real design as an example.

A floorplan design is shown below, where all PG pins or tie-hi/tie-low pins have been
connected with a global power/ground net:

An example of adding rings is presented below. In the figure below:

Core rings are added around the core area (excluding the PLL area) for the vdd_lp_s,
vss, and vdd nets.

September 2022 433 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Block rings are added around the block PLL for the Avss and Avdd nets.

Domain rings are added around non-default domain TDSP for the vdd_lp_s, vss, and
vdd nets.

You need to run the following commands for this example:

selectObject Group PLL

addRing -type core_rings -nets {vdd_lp_s vss vdd} -layer {top METAL7 bottom

METAL7 left METAL8 right METAL8} -offset 1 -width 8 -spacing 1.0 -

exclude_selected 1

deselectAll

September 2022 434 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

selectInst DTMF_INST/PLLCLK_INST

addRing -type block_rings -nets {Avss Avdd} -around selected -layer {top

METAL7 bottom METAL7 left METAL8 right METAL8} -width 5 -spacing 1 -offset 1

deselectAll

selectObject Group TDSPCore

addRing -type block_rings -nets {vdd_lp_s vss vdd} -around power_domain -

layer {top METAL7 bottom METAL7 left METAL8 right METAL8} -width 5 -spacing

1 -offset 1

deselectAll

Examples of adding stripes are the following:

In the figure below, domain stripes are added around the stripes over switch cell pins for
each different layer:

September 2022 435 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

You need to run the following commands for this example:

selectObject Group TDSPCore

setAddStripeMode -skip_via_on_pin {}

addStripe -over_pins 1 -nets vdd_lp_s -over_power_domain 1 -layer METAL4 -

width 8 -master HEAD16DM -pin_layer METAL2

addStripe -over_power_domain 1 -nets vss -direction vertical -layer METAL4 -

width 8 -set_to_set_distance 70 -start_from left -start_offset 43.46 -

spacing 1

addStripe -over_power_domain 1 -nets {vdd_lp_s vss} -direction horizontal -

layer METAL7 -width 8 -set_to_set_distance 70 -start_from bottom -

September 2022 436 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

start_offset 34.46 -spacing 1

addStripe -nets {vdd_lp_s vss} -over_power_domain 1 -layer METAL8 -width 8 -

set_to_set_distance 70 -start_from left -start_offset 34.46 -spacing 1

In the figure below, stripes are added in the core area for each different layer:

You need to run the following commands for this example:

addStripe -nets {vdd vss} -layer METAL4 -width 8 -set_to_set_distance 70 -

xleft_offset 37.9 -spacing 1

addStripe -nets {vdd vss} -direction horizontal -layer METAL7 -width 8 -

set_to_set_distance 70 -ybottom_offset 14 -spacing 1

September 2022 437 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

addStripe -nets {vdd vss} -layer METAL8 -width 8 -set_to_set_distance 70 -

xleft_offset 37.9 -spacing 1

In the figure below, standard cell pins are connected to form a followpin:

You need to run the following command for this example:

sroute -connect corePin

In the figure below, padpins are connected to rings:

September 2022 438 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

You need to run the following command for this example:

sroute -connect padPin

The following command is an example of using the saveDesign command:

saveDesign lab/dtmf_pwr.enc

Related Information

Generating Special Power Vias Using Viagen

Generating Default Special Via

Inserting Vias with a Specific Cutclass

September 2022 439 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

../innovusTCR/saveDesign.html

Inserting a Via from Specific Viarule

Trimming Redundant PG Stripes and Vias

Generating Special Power Vias Using Viagen
Defining Via and Viarule in LEF File

Refer to the following figure for understanding the definition of via and viarule in the LEF file. The
via and viarule definition is presented in the green outline box in the following figure. The LEF
section presented here does not contain the complete syntax, but helps in understanding the
necessary syntax including the following definitions:

Cut and routing layers

Fixed and generated vias

Predefined and generated viarules

September 2022 440 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Creating Auto Viarule

The special via engine, viagen, automatically creates ‘auto viarule’ internally for all the cutclasses
based on the cut layer information available in the LEF file. Mostly, there are two (SINGLE and
BAR), or at times three (SINGLE, BAR, and LARGE) cutclasses in each cut layer.

Following is an example of creating an auto viarule:

Cut layer definition:

 PROPERTY LEF58_CUTCLASS "

 CUTCLASS VSINGLECUT WIDTH 0.020 LENGTH 0.020 CUTS 1 ;

 CUTCLASS VDOUBLECUT WIDTH 0.020 LENGTH 0.050 CUTS 2 ;" ;

 PROPERTY LEF58_SPACINGTABLE "

September 2022 441 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

 SPACINGTABLE PRL -0.022 MAXXY

 CUTCLASS VSINGLECUT VDOUBLECUT SIDE

 VSINGLECUT 0.044 0.044 0.044 0.044

 VDOUBLECUT SIDE 0.044 0.044 0.044 0.044

 PROPERTY LEF58_ENCLOSURE "

 ENCLOSURE CUTCLASS VSINGLECUT BELOW 0.020 0.000 ;

 ENCLOSURE CUTCLASS VSINGLECUT ABOVE 0.030 0.000 ;

 ENCLOSURE CUTCLASS VDOUBLECUT BELOW END 0.030 SIDE 0.000 ;

 ENCLOSURE CUTCLASS VDOUBLECUT BELOW END 0.030 SIDE 0.003 WIDTH 0.026 ;

 …

Auto viarules are created for VSIGNLECUT and VDOUBLECUT, as shown below:

The database order of viarules is as follows:

1. Viarules in the LEF file’s order

2. Auto viarules; larger cut area first (cutclasses from LARGE to SINGLE)

Related Information

Power Planning and Routing

September 2022 442 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Generating Default Special Via
By default, the special via generation engine, viagen, uses only the viarule (including viarule
available in the LEF file and internally generated auto viarule) to generate vias. The new viarule
pickup criteria depends on the maximum total cut area for attaining the best connection and lowest
IR drop.

To generate a default special via:

1. Find the crossover of two same-net special segments.

2. Go through all the vias generated by the various viarules generated in the database, including
the LEF file viarule and auto viarule.

3. Pick up a viarule that generates a via with the maximum total cut area, and use it. Refer to the
following examples:

Example 1: non-cross via, 2-bar-cut via wins 3-square-cut via

Example 2: cross via, 6-square-cut via wins 2-bar-cut via

September 2022 443 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

If different viarules generate same cut-area via at a specific intersection, the viarule in the front
of the database is used. So as per the LEF file order, the LEF viarule is used first, followed by
auto viarule (LARGE-> BAR -> SQUARE). Refer to the following example:

Example 3: A via with various cutclasses has the same total cut area, the 6-square-cut via
from viarule list over the 3-bar-cut via from viarule list, as presented below:

4. Once a viarule is determined, viagen gets parameters from the viarule as a soft guide, and the
technical definition in cut/metal layer as the hard guide for generating vias. By default, the
enclosure defined in the LEF viarule is ignored and the cut layer enclosure value is used. This
option is controlled by running the following command:

setViaGenMode -ignore_viarule_enclosure {true | false}

Default: true

September 2022 444 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Related Information

Power Planning and Routing

Inserting Vias with a Specific Cutclass
Mostly, there are two (SINGLE and BAR), or at times three (SINGLE, BAR, and LARGE) cutclasses
in each cut layer; refer to the LEF syntax. The following topics are covered under this section:

Inserting Vias with the Preferred Cutclass

Distinguishing Cutclasses Internally

Inserting Vias with the Preferred Cutclass

Use the following command parameter to insert a via with a specific cutclass:

setViaGenMode -cutclass_preference {default | {[square] [bar] [large]}

| cutclass_name_list | file_name}

Default: default

The following table illustrates the behavior of each of the above mentioned parameter values. If a
specified cutclass cannot generate a DRC-clean via, the intersection remains OPEN.

Parameter
Value

Description Next
Preference,
if Violation

Exists

default Specifies the viarule with the cutclass that has the maximum
total cut area

Next
maximum
total cut
area

square Uses the viarules with the SIGNLE cutclass (the cut width and
length are the same and the smallest in that layer, for example,
0.032 by 0.032).

OPEN

bar Uses the viarules with the DOUBLE cutclass (the cut width is
the smallest; For example, 0.032 by 0.08, is equal to two
SINGLE cutclasses in the LEF definition).

large Uses the viarules with LARGE cutclass (neither the cut width,
nor the length, are smallest; For example, 0.08 by 0.08, is equal
to 4 SINGLE cutclasses in the LEF definition).

September 2022 445 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

The option setting does not support incremental specification. The last cutclass preference setting
is used.

Distinguishing Cutclasses Internally

To differentiate cutclasses, the area of cut is used. For example, there are three cutclasses, the
minimum size cut is ‘square’, the medium size is ‘bar’, and the maximum size is ‘large’; There are
two cutclasses, the smaller size cut is ‘square’, the bigger size cut is ‘bar’.

When you specify ‘{[square] [bar] [large]}’, there should be two or three cutclasses defined in the
LEF file. If the tool detects that there are more than three or less than two cutclasses, the setting is
ignored.

Related Information

Power Planning and Routing

Inserting a Via from Specific Viarule
To insert the exact via or viarule defined in the LEF file, run the following command before the
commands used for inserting an issued via:

setViaGenMode -viarule_preference {default | predefined | generated | list of via

rule/cell names | file name}

Default: default

The above command changes the priority of via or viarule to be considered by viagen, as
mentioned in the following table. If a specified via or viarule cannot generate a DRC-clean via, the
intersection remains OPEN.

cutclass_list Uses the viarules with the specified cutclass, by the order of the
bigger to smaller total cut area.

OPEN

file_name Uses the viarules with the cutclass written in a specified file, by
the order of bigger to smaller total cut area. Various arguments
can be separated by space or line break.

OPEN

Parameter
Value

Description Next
Preference,
if Violation

Exists

September 2022 446 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

The option setting supports incremental specification. All the specified vias and viarules in various
commands are ranked with vias with higher priority. Refer to the following example:

default Specifies the viarule that generates vias with the maximum total
cut area.

Next
maximum
total cut
area

predefined Uses predefined via rules, by the order of total cut area (viarule
without keyword).

OPEN

generated Uses generated via rules (viarule with keyword GENERATE). OPEN

list of

via

rule/cell

names

Uses the list of specific via rules and/or via cells specified in the
parameter. If via cells and rules are listed, viagen ranks vias with
higher priority and uses the one-fit principle; ranks viarules with
lower priority than vias, and uses the maximum total cut area
principle. Refer to the following example:

setViaGenMode -viarule_preference {via23_1 viarule23_a

via23_2 viarule23_b}

In this case, the specified vias and viarules are arranged in the
following priority:

1. Priority: via23_1 > via23_2 > viarule23_a > viarule23_b

2. The tool tries via23_1 first; If no violation occurs, it uses via23_1
(one-fit principle).

3. If it fails, it tries via23_2; If no violation occurs, it uses via23_2;

4. If it fails, it tries the viarule between viarule23_a and
viarule23_b, which generates the via with the bigger total cut
area.

5. If it fails, it tries the viarule between viarule23_a and
viarule23_b, which generates the via with the smaller total cut
area.

6. If it fails, the intersection remains OPEN.

OPEN

file name Uses the vias and/or via rules listed in the LEF file. It uses the
same principle as that used for the list of via rule/cell names.

OPEN

September 2022 447 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

setViaGenMode -viarule_preference {via23_1 viarule23_a via23_2 viarule23_b}

setViaGenMode -viarule_preference {viarule23_c via23_3}

In this case, the specified vias and viarules are arranged in the following priority:

1. via23_1 > via23_2 > via23_3 > viarule23_a > viarule23_b > viarule23_c

2. The tool tries via23_1 via23_2 via23_3 with the one-fit principle.

3. If all the vias fail, it tries viarule23_a viarule23_b viarule23_c in the order of generating the
bigger total cut area first, followed by the smallest total cut area at the last.

4. If all the vias and viarules fail, the intersection remains OPEN.

Note: It is not recommended to set both
the -cutclass_preference and -viarule_preference parameters at the same time. Still if it
happens, -cutclass_preference has higher priority. It means that the specified cutclass
in -viarule_preference is attempted first, then the specified cutclass in LEF viarules and auto
viarules; and then other vias and viarules in -viarule_preference.

Related Information

Power Planning and Routing

Trimming Redundant PG Stripes and Vias
You may trim redundant PG stripes and vias using an existing power grid pattern based on IR drop
analysis reports. You the following command to trim the redundant PG stripes and vias:

trim_pg

This eliminates the need to manually adjust the power structure to reduce power grid pessimism for
area/timing/power improvement in a design.

To trim a stripe:

1. Use trim_pg -type stripe.

2. Specify only one LEF layer name with the -layer parameter.

3. Specify only one string with the -pattern parameter. If more than one values are specified, the
command displays an error.

For example, the following command trims 50% of the VDD stripes on a M6 metal layer inside a {0 0
500 500} box:

trim_pg -net VDD -type stripe -layer M6 -area {0 0 500 500} -pattern 10

September 2022 448 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

../innovusTCR/trim_pg.html

To trim a via (stack):

1. Use trim_pg -type via.

2. Specify two LEF layer names with the -layer parameter. The first layer stripe is used as the
pattern reference.

3. Specify one or more strings with the -pattern parameter to indicate the via trip pattern.

For example, the following command trims a via (stack) along with half of the M9 VDD stripes, and
one-third of its stack vias between the M9 and M6 metal layers:
trim_pg -net VDD -type via -layer {M9 M6} -area {0 0 500 500} -pattern {110 1}

Trimming Stripes

You need to specify a box for trimming a stripe. In some cases, the specifies box area also contains
some local PG grid. You may keep the local grid or trim them separately using a different pattern
with a combination of the following three parameters:

-area {x1 y1 x2 y2}: Specifies the trimming area. It defines the stripes and vias to be
trimmed. The stripe overlapped with the box defined by -area is trimmed. By default, the entire
core area is trimmed.

-exclude {{lx1 ly1 ux1 uy1} {lx2 ly2 ux2 uy2}...}: Excludes the box areas for the
stripes and vias in which the part of stripes need not to be trimmed. This parameter is used
along with the -area parameter to specify the exclusion areas. If a stripe partially overlaps with
the exclusion area, the overlapping segment of the stripe is not trimmed. The exclusion box
can partially overlap the -area box.

-exclude_local_grid {{lx1 ly1 ux1 uy1} {lx2 ly2 ux2 uy2}...}: Excludes the areas in
which the whole stripes are skipped for trimming. If a stripe is completely inside one of the -
exclude_local_grid box (can touch the boundary), it is excluded from the trim candidates and
is not counted when applying the trim pattern. It is useful when trimming is done on a large
area but there are local stripes in this area, which could affect the global trim pattern. The
exclusion box can partially overlap the -area box.

For example, if you want to trim 50% of the stripes inside an area. But there are some local stripes
over a hard macro in this area. If you use -exclude, the local stripes are be trimmed. But they are
counted when applying the 10 pattern. Through this, the long stripes are not trimmed. Refer to the
command below:

trim_pg -net VDD -type stripe -layer M6 -area {x1 y1 x2 y2}

\

-exclude {x3 y3 x4 y4 x5 y5 x6 y6} -pattern 10

September 2022 449 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Following is the output:

For trimming the long stripes, use the -exclude_local_grid parameter. It prevents the local stripes
from being counted in pattern and ensure that the desired pattern applied to the global stripes. You
may also use it with the -area and -exclude parameters, as shown below:

trim_pg -net VDD -type stripe -layer M6 -area {x1 y1 x2 y2} \ -exclude_local_grid {x3

y3 x4 y4 x5 y5 x6 y6} -pattern 10

Following is the output:

Sorting Stripes

You may sort stripes before trimming a pattern. You may select stripes as trimming candidates by
sorting the -area and -exclude_local_grid parameters using the following steps:

1. Determine the running direction of most of the stripes by comparing the length of the vertical

September 2022 450 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

and horizontal edges of the stripe (vertical direction in the example below).

2. Sort the stripes based on their center point, by the direction derived from the previous step.

3. Sort stripes in the orthogonal direction (horizontal direction in the example below).

Refer to the example below:

Trimming a Pattern

You may trim a pattern using a sequence of 0 and 1, where 0 signifies to trim the stripe and 1 to
keep the stripe. Follow the steps below:

1. Starting from the first stripe in the sorted queue, trim or keep it according to the pattern.

2. Repeat the pattern till the last stripe in the queue.

Refer to the example below:

trim_pg -net VDD -type stripe -layer M6 -area {0 0 500 500} -pattern 1100

Following is the output:

Setting-up Threshold for Stripe Merging

September 2022 451 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

In some cases, a long stripe is broken-up in to multiple segments such as through hard macro and
power domain. The complexity of a real design power grid can also have the abut, overlapping, or
slightly misaligned stripes. While trimming a PG pattern, you may consider it as a single stripe
rather than multiple segments. You may define a spacing threshold along with the secondary sort
direction. If the centerline spacing between two or more stripes is smaller than the value provided
by the -threshold parameter, they are treated as a single stripe while trimming or keeping the
stripe.

Refer to the example below:

You may sort the spacing between the adjacent stripes as below:

-d6 < d3 < d5 < Threshold < d7 = d4 < d2 < d1 = d8

While grouping, start from two adjacent stripes with the smallest spacing, if those are lesses than
the threshold, group them. In this example, the smallest spacing is d6 between C and H, and is
lesser than the threshold. So C and H are grouped. Then continue with the next smallest spacing. In
this example, it is d5. But C is already grouped with H, measure the spacing between G and H.
However d5+d6 is greater than the threshold. So G will not be grouped with C and H. Refer to the
final grouping below:

Avoiding New DRCs

While trimming stripes, you need to avoid creation of new DRCs. Otherwise, trimming will be
continued on the new DRCs created. For example, the stripe segments highlighted in the red
circles below are also trimmed, if new DRCs are created after trimming the stripe segments in the
specified area:

September 2022 452 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Keeping Dangling Vias While Trimming Stripes

While trimming a stripe, if the connecting via (including stack via) becomes dangling, it is also be
trimmed, by default. Use the -keep_dangling_via parameter to keep the dangling vias while
trimming stripes. It searchs the stack vias before trimming stripe. For example, while trimming the
following pattern:

 M7 stripe – V7/V8 – M9 stripe – V9 – M10 stripe

After trimming the M9 stripe, M7 and M10 are still connected through the V7/V8/V9 stack. But as this
stack is actually formed by the previous V7/V8 and V9, so you need to check dangling for V7/V8 and
V9 respectively.

The stack via formed after trimming is not treated as a stack via. For example, after trimming the M7
stripe, M5 and M9 are still connected through the V5~V8 stack. But keeping dangling vias while
trimming checks the stack vias before trimming. So the V7/V8 and V5/V6 stacks will be removed by
default.

September 2022 453 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Trimming Vias

Power vias, especially the stack vias, connecting low and high layer stripes often occupy lots of
routing tracks, and brings congestions and routing difficulties to the signal routing. So you need to
remove some of the stack vias on the power grid to save more routing resource. In such cases, trim
the power vias and keep the stripes.

Use the trim_pg -layer parameter to accept one or two metal layers for stripe and via trimming.
While trimming a stripe, specify layer_name_1 on which the stripes are to be trimmed. While
trimming via, specify layer_name_2 between which the stack vias are to be trimmed. The first layer
is used as the reference while applying the via trim pattern. For instance, trim_pg -layer M9 means
to trim M9 stripes.

When two layer names specified, it means to trim via that connects the stripe on the two layers. The
first layer stripe is used as the pattern reference, because two-dimensional pattern is needed for via.
For einstance, trim_pg -layer {M9 M6} means to trim stack via between the M9 and M6 stripes, with
M9 stripe as the pattern reference.

Use the trim_pg -pattern parameter to accept one or multiple strings.

While trimming one string pattern, trim_pg -pattern 10 means to trim every other stripe.

While trimming via, both one and multiple string patterns are allowed. trim_pg -pattern {10
11} means to trim every other via along number 1, 3, 5, 7, … of the reference stripe, and
keep all the vias along 2, 4, 6, 8, … stripes.

Examples

Following is an example of trimming stack via between the M9 and M6 stripes:

September 2022 454 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Following is an example of trimming stack via between the M9 and M6 stripes with checker
board pattern:

September 2022 455 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Following is an example of trimming stack via between parallel stripes on M7 and M9:

September 2022 456 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Following is an example of trimming only the stack via that connects the stripes on the two
specified layers, which are the candidates for trimming (here, V5~V8 stack are candidates, the
V5 via that connects the M5 and M6 stripes, is not the candidate):

September 2022 457 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

Related Information

Power Planning and Routing

September 2022 458 Product Version 22.10

 Innovus User Guide
Design Planning Capabilities--Power Planning and Routing

5

Design Implementation Capabilities

Using the Mixed Placer

Low Power Design

Placing the Design

Clock Tree Synthesis

Optimizing Timing

Using the NanoRoute Router

Optimizing Metal Density

Flip Chip Methodologies

September 2022 459 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities

../TCRcom/create_place_blockage.html
../TCRcom/check_place.html
../TCRcom/add_decaps.html

Using the Mixed Placer
Mixed Placer Overview

Recommended Mixed Placement Flow

License Requirement

Using the Mixed Placer Flow

Use Model

Tuning the Design Using Incremental Flow

Using the ECO Flow for the New Netlist

Cadence Placement Guidance (CPG) Flow

Multiple Supply Voltage flow (MSV)

Supported Design Styles

Best Design Configuration

Design Limitations

Mixed Place Constraints

Macro Array Constraints

Group Constraints

Spacing Constraints

Macro-to-core-boundaries

Macro-to-macro-boundaries

Macro Orientation Constraints

Maximum Stacking Length

Fixed Macro Location

I/O Pin Keep-out

Macro Placement Halo

Example

Mixed Place Constraints Support List

September 2022 460 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

Mixed Placer Overview
In the traditional digital backend implementation flow, creating a floorplan is the first stage and the main target is to place those
macros that can get a routable floorplan with minimized wire-length and good timing. It always takes design engineers a lot of effort
to achieve these tasks and many design iterations are needed, which are trial-and-error approaches. Especially in advanced
technology nodes, a good floorplan is important and critical to ensure the QoR convergence. In manual macro placement, many
time-consuming iterations are required.

Increasing design size and complexity results in hundreds of macros that are difficult to place manually within reasonable time.
The manual macro placement results in non-optimal placement. The GigaPlace GXL mixed standard cell and macros placement on
the other hand ensures optimal location for all cells. In the mixed placement implementation flow, the macros and standard cells are
placed concurrently by a powerful engine, which is driven by congestion, wire-length and timing. It reduces a lot of manual work and
effort to achieve faster TAT with comparable or better QoR than the traditional flow.

Recommended Mixed Placement Flow
In the mixed placement implementation flow, the floorplanning stage is integrated with the placement stage, while the other stages
are the same as the traditional flow. Below is a diagram showing the steps in the mixed placement implementation flow:

September 2022 461 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

License Requirement
To run the mixed placement implementation flow, you require the following license:

GigaPlace GXL

Using the Mixed Placer Flow
The mixed placement implementation flow enables you to place macros and standard cells concurrently and define constraints. The
ideal design candidate for using the concurrent macro placer is a design with a large number of macros, a rectangular design shape
and a Macro Area versus Total Area ratio less than 60 percent. The benefit of this flow are:

Improved TAT for placing macros.

Wire-length reduction

Power improvement

Lower congestion

Note: Large macros have a significant impact on the floorplan feasibility. It is recommended to pre-place them manually (and set a
FIXED attribute).

For more information on the supported design styles, best design configuration, and limitations, see Supported Design Styles.

September 2022 462 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

Use Model

1. For using the mixed placer, you can start with or without a reference floorplan.

Starting with a Reference Floorplan: Lets you extract the power routing density file before cleaning the floorplan and
running the mixed placer. This file is used to generate a better congestion and wire-length modeling while placing the
macros.

Starting without a Reference Floorplan: Requires you to push all the macros inside the core and do power routing
insertion by creating power stripes for density modeling extraction.

2. Extract the power routing density modeling information. You can use the create_pg_model_for_macro_place command
to create PG models for the concurrent macro placement. This command saves PG modeling information to a Tcl file from the
existing floorplan.

3. Floorplan Cleanup: Remove all the floorplan objects. Remove all the routing blockages, placement blockages,
relative_floorplan constraints, placed instances, routing wires, boundary_constraints, and delete physical instances. Before
proceeding with the macro placement, ensure that you generate the power mesh mimic file.

4. Set the constraints for macro placement. You can use the set_macro_place_constraint command to specify the constraints
for placing the macros and standard cells concurrently. You can use this command to specify:

Macro Array Constraints

September 2022 463 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/create_pg_model_for_macro_place.html
../innovusTCR/set_macro_place_constraint.html

Group Constraints

Spacing Constraints

Macro Orientation Constraints

Maximum Stacking Length

Fixed Macro Location

I/O Pin Keep-out

Macro Placement Halo
The recommended modeling is to increase macro halos to “reserve some space” for the physical cells before the mixed
placement and come back to a regular halo distance before the placement.
For example, the following command adds additional halos to model physical insts before placement:
addHaloToBlock -allBlock {2 2 2 2}

The following command resets the macro halo to the regular size after place_design -concurrent_macros:
addHaloToBlock -allBlock {1 1 1 1}

For more information on mixed placer constraints, see Mixed Place Constraints.

5. Concurrent Macro Placement: Place macros and standard cells concurrently and legalize the macros to honor constraints and
rules. You can use the place_design –concurrent_macros command for concurrent timing driven placement of macros and
standard cells. The refine_macro_place command MUST then be used to legalize the macros.
Note: When place_design –concurrent_macros is run, it sets the value of setPlaceMode –
place_opt_run_global_place to seed. With the seed option, the place_opt_design command uses seed placement from
concurrent macro placement or other sources, runs incremental standard cell placement, then runs preCTS optimization.

Flow usage is as follows:
place_design –concurrent_macros

saveDesign concurrentMacro.enc

refine_macro_place

…

place_opt_design

6. Post Macro Placement Process: The refine_macro_place command is used to legalize the macros based on constraints such
as halo and blockages, forbidden spacing, min-space, and so on.
Note: The setPlaceMode -place_design_refine_macro parameter is disabled by default to have a database saved before
using the refine_macro_place command in order to see the macro placement just after the mixed placement. This helps in
debugging. Having a saved database can also be useful just before calling the refine_macro_place command if you want to
do several trials with different constraints (by set_macro_place_constraint).

place_design -concurrent_macros

saveDesign concurrentMacro.enc

refine_macro_place

When the setPlaceMode -place_design_refine_macro parameter is enabled, the refine_macro_place command is
automatically called after place_design -concurrent_macro.

Note: When the -place_global_place_io_pins parameter of the setPlaceMode command is set to true, the
place_design –concurrent_macros command places the placed and unplaced I/O pins in the mixed placer flow and
optimize their locations to reduce wire length and congestion.

This support is a limited-access feature in this release. It is enabled by a variable specified using the
setLimitedAccessFeature command. To use this feature, contact your Cadence representative to explain your usage
requirements, and make sure this feature meets your needs before deploying it widely.

September 2022 464 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/place_design.html
../innovusTCR/refine_macro_place.html
../innovusTCR/setPlaceMode.html
../innovusTCR/setLimitedAccessFeature.html
../innovusTCR/refine_macro_place.html
../innovusTCR/setPlaceMode.html
../innovusTCR/set_macro_place_constraint.html
../innovusTCR/setPlaceMode.html

setPlaceMode -place_design_refine_macro false

Note: If you (do) want the refine_macro_place command to be automatically called just after place_design -concurrent_macro
command, you can enable the setPlaceMode -place_design_refine_macro parameter. This however is NOT the
recommended flow.

7. Physical Cell Insertion and Power Routing: When all macros are placed in legal locations (after refine_macro_place) and fixed
in the floorplan, it is time to insert physical cells and create power stripes. For more information,
see addEndCap, addWellTap, addPowerSwitch, addStripe, editPowerVia, etc.

For example, the following command adds stripes in the vertical direction for the vdd and gnd nets:
addStripe -direction vertical -nets {vdd gnd} -width 10 -spacing 1 -layer METAL6 -start_offset 50 -

set_to_set_distance 50

8. Incremental Standard Cell Placement: At the end of the mixed placement (place_design -concurrent_macro) the standard
cells have been placed (global placement) but they are not in legal positions yet. With the set_place_mode -
place_opt_run_global_place set to seed automatically by the mixed placer, the place_opt_design command will start by an
incremental placement to find a legal location for all the stdcells before calling the optimization.

9. PreCTS Optimization: The place_opt_design command will perform a PreCTS optimization to do more interleaving between
placement and congestion. It leads to better timing and congestion QOR because placement is more aware of timing and
congestion critical areas. For more information on optimizing the design, refer to the Optimizing Timing chapter in
the Innovus User Guide.

Note: For large and complex designs containing hundreds of macros, the mixed placement flow cannot guarantee the perfect
floorplan in one pass. Sometimes, a few iterations are needed.

Note: To check if the mixed placement result is good, a first analysis can be done at the end of the place_opt_design command. If
timing or congestion is bad and it confirms that the root cause is a non-optimal macro placement, the recommendation is to refine the
constraints (set_macro_place_constraint, setPlaceMode, setRouteMode, and so on) and restart the flow. If only a few macros must be
refined, an incremental flow can be used.

Tuning the Design Using Incremental Flow
If the result from the place_opt_design step is good, but you think that it can be bettered by tuning the placement by significant
moves (movement of at least the size of the macro) of a few macros, you can use the incremental flow. Starting from the mixed place
DB, do the following:

Unfix ALL macros by using the dbGet command or through the Attribute Editor (GUI).

Why all macros?
The macros which have been moved manually can have a bigger impact that we think on the rest of the design. That is
why it is recommended to unfix all macros to give more flexibility to the mixed placer to tune the floorplan.

Update the constraints using the set_macro_place_constraint and setPlaceMode commands.

Do incremental concurrent macro placement using the following command:
place_design -concurrent_macros -incremental

This incremental flow can be called several times if needed. Manual placement tuning can help for some corner cases. After this
macro placement tuning, you can go back to the “physical cell insertion and power routing” stage of the main flow as described in the
following flowchart:

September 2022 465 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/setPlaceMode.html
../innovusTCR/addEndCap.html
../innovusTCR/addWellTap.html
../innovusTCR/addPowerSwitch.html
../innovusTCR/addStripe.html
../innovusTCR/editPowerVia.html
../innovusTCR/place_opt_design.html
../innovusTCR/dbGet.html

Using the ECO Flow for the New Netlist
The ECO flow can be used for an updated Verilog netlist with small changes and few impact on timing paths. The idea is to keep the
floorplan elaborated using the previous netlist so that you do not need to redo the macro placement and the power routing. The DB
containing the previous floorplan comes from the intermediate DB saved during the place_opt_design command.

Depending of the impact of this new netlist on the critical timing paths, the -place_opt_run_global_place parameter of
the setPlaceMode command must be set differently. The -place_opt_run_global_place parameter changes the global placement
behavior inside place_opt_design.

setPlaceMode -place_opt_run_global_place none

Skips place_design and runs only preCTS Optimization inside place_opt_design. With “none”, if the critical timing paths have
not been modified, the new standard cells will be placed directly during ecoPlace.

setPlaceMode -place_opt_run_global_place seed

Uses seed placement from Concurrent Macro Placement or other sources and runs incremental standard cell placement, then
runs preCTS optimization. With “seed”, if critical timing paths have been modified, the new standard cells will be placed
incrementally by the place_opt_design command.

September 2022 466 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

If the new netlist size is increased significantly or impacts a lot of critical paths, the recommendation is to rerun the full mixed
placement flow or run the CPG flow.

Cadence Placement Guidance (CPG) Flow
Generally, the more the netlist changes, the more different the mixed placement result can be. For very small changes the ECO flow
that does not touch the floorplan is a good approach to consider. For significant netlist changes if you want to get a similar floorplan
as with the previous netlist, the CPG flow is a potential solution.

The idea of this flow is to keep the macro placement of the previous floorplan (through a guide file) as much as possible but let the
tool move the macros, if necessary, to solve any new congestion or timing issue. A typical usage of the CPG flow is to support the
insertion of DFT modules inside the netlist, assuming the DFT has been elaborated considering the macro placement of the pre-DFT
floorplan. If the netlist change is due to new critical modules or functions, the CPG flow is not recommended. A new mixed placement
flow from scratch is expected to provide better results.

To run the CPG flow, you must save a guide file from the old version DB and read it during the mixed placement flow on the new
version netlist. Take the pre-DFT and post-DFT netlists for exampl. You have already run a mixed placement flow on the pre-DFT
netlist and pushed the QoR to be converged. When receiving the post-DFT netlist, you can run the CPG flow as follows:

Innovus Session 1

1. Restore the placement DB for pre-DFT.

September 2022 467 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

2. Use the write_macro_place_constraint command to write the constraints into a Tcl format file from the database:
write_macro_place_constraint -sections {cpg} -cpg_scope {macro_only} -out_file macroLocs.tcl

Example of what you can see inside this file:
set_macro_place_constraint -cpg {instName x y orientation}

Innovus Session 2

1. Restore the initial DB for post-DFT.

2. Specify the CPG guide file using the -place_global_cpg_file parameter. When this option is specified, the CPG flow is
turned ON automatically.
setPlaceMode -place_global_cpg_file macroLocs.tcl

3. Do concurrent macro placement using the following command:
place_design -concurrent_macros

The other settings are the same as the default mixed placement flow.

Note: The refine_macro_place command does not honor the CPG guide. It is recommended to keep the same setting of macro
placement constraints as the old version DB when running the CPG flow.

September 2022 468 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

Multiple Supply Voltage flow (MSV)
The Concurrent Macro Placement capability supports designs with MSV. If the power domain fences are already defined, each
macro will be placed respectively in its power domain fence as expected. If the power domain fences are not defined, the mixed
placement flow can be used so it can help you define them. The placement of the macros will give the first idea where each power
domain should be placed inside the floorplan. From this placement, you can then draw the power domain fences manually. For more
information, refer to Floorplanning the Design chapter of Innovus User Guide.
The power switching cells are inserted in the flow simultaneously with physical cells and power stripes. Isolation cells are placed by
the incremental standard cell placement. Once the power domain fences are defined, the user can rerun the mixed placement to
place each macro in their power domain fences.

Supported Design Styles
The Concurrent Macro Placement capability supports the following design styles:

Flat designs

MSV (Multiple Supply Voltage) designs with fences defined
For more information, see Multiple Supply Voltage flow (MSV)

ILM designs
The Concurrent Macro Placement capability supports ILM designs, but has the following limitations:

It cannot move ILM blocks.

If there are too many fixed ILM blocks, the flow will have trouble to legalize macros and the placement result is
compromised.

September 2022 469 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

Note: The Concurrent Macro Placement capability does not support the hierarchical flow.

Best Design Configuration
The design style can also be different depending on many other parameters like the boundary shape, the macros shape and size,
the density, the number of layers, and others. Following are the best design configurations supported:

Designs with rectangular boundary

Designs that do not have large sized macros.

Designs with almost uniform sized macros.

Designs where the macro density (macro area / design area) is less than 60 percent

Designs with enough routing resources over macros (at least two routing layers for H and V)

The Concurrent Macro Placement capability may be ideal for GPU, networking, smart phones, AI chips.

Design Limitations
Macro Density
The QoR may be degraded when the density becomes larger than 60 percent. In this case, some iterations may be necessary
to improve it. When macro density is more than 80%, it is quite complicated to get a good QoR. When running the mixed
placement flow, macro density is printed in the log file for information.
Example: Average macro density = 0.25 (means a macro density of 25 percent)

Large Sized Macros
Large macros have a significant impact on the floorplan feasibility. If the design has a few large macros, it is recommended to
preplace the large macros manually. The macros that are considered large sized, have:

Area larger than 20 percent of the total design area.

Width or height longer than 50 percent of the design’s width or height.

Limited Routing Resources over Macros
This flow may place the macros in the middle of the design like stand cells to get an optimal QoR. With this placement, the wire
length is optimized as much as possible and is usually much better compared to the placement with the macro placement close
to the design boundary. To handle long nets more easily, which could cross partially, the design would need to have nets
routed over the macros. It is preferred to have at least two free routing layers per direction over the macros. If two free routing
layers are not available, you need to push the macros to the design boundary after completing the mixed placement flow.

Rectilinear Shaped Designs
It can support different shapes of designs such as rectangle and simple L shape, without long 90 degrees outside corner
edges, and so on. But it is difficult to support a complex shape of the design with more than six inner corners, for example, a U
shape design with very long 90 degrees outside corner edges, where QoR may not be optimal.

Rectilinear Shaped Macros
Rectilinear macros are not fully supported. It is recommended to preplace them if there are only a few such macros.

Mixed Place Constraints
You can use the set_macro_place_constraint command to specify the following constraints for placing the macros and standard
cells concurrently.

Macro Array Constraints

September 2022 470 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/set_macro_place_constraint.html

Group Constraints

Spacing Constraints

Macro Orientation Constraints

Maximum Stacking Length

Fixed Macro Location

I/O Pin Keep-out

Macro Placement Halo

Macro Array Constraints
Macro array constraints can be used while placing macros in an array (or matrix) and define the relative placement of each macro.
The whole array, treated like one macro, can be flipped or mirrored (R0, MX, MY, R180). You can use the -array parameter of
the set_macro_place_constraint command to specify the name of the macro array followed by the array_elements containing the
instance members information of a row or column of the array in the following format:

inst_name:orientation [spacing inst_name:orientation] +

Note: The array_elements should be specified with the -array parameter.

Example:

The following command creates a macro array, ram_array, and defines it constraints.
set_macro_place_constraint -array ram_array {{ip1/dma/r0_irx:R0 4.66 ip1/dma/r1_irx:MY 8.0 ip1/dma/r2_irx:MY} 2.33

{ip1/dma/r3_irx:R0 4.66 ip1/dma/r_irx:MY}} -valid_group_orientations {R0 MY}

Group Constraints
The group constraints are used to specify:

The macros that should be placed close to each other as part of a macro group (so without specifying relative placement)

The soft and hard constraints for macro groups

September 2022 471 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/set_macro_place_constraint.html

The macros that are to be aligned as a group

For defining the group constraints, use the following:

Guide/Region/Fence: These three constraints are same as the traditional flow. Fixed bounding box is needed by user input.

Soft Constraints: The macros inside a group will be placed closely. No bounding box is defined.
For example, the following commands create a new instance group, pipe1 as a soft guide constraint and adds macros to this
group.
createInstGroup pipe1 –softGuide

addInstToInstGroup pipe1 {ip1/regbank1 ip1/dma/ramI2 ip1/alu/adderI3}

Align Group: Specifies the macros that are to be aligned as a group. The group elements should only be macros with the same
size. The alignment will be automatically done by the tool with soft constraint.
For example, the following command specifies that the macros of group1 should be aligned as a group.
set_macro_place_constraint -align_group group1 {ip2/dma/ram2A ip2/dma/ram2B}

Spacing Constraints
The spacing constraints are used to specify the minimum spacing and forbidden spacing of macro-to-macro and macro-to-core-
boundaries. These spacing constraints are honored during "refine_macro_place".

Macro-to-core-boundaries

You can use the following parameters of the set_macro_place_constraint command to specify the minimum spacing and forbidden
spacing of macro-to-core-boundaries:

-forbidden_space_to_core value

Specifies the value for the forbidden spacing between the macro to core boundary. If the space between the macro and core is
smaller than this value, then the macro is abutted to the core. The minimum spacing value can be 0 and the maximum can be
100000. For example, if the specified value is 2 then any macro-to-core spacing between 0 to 2 is reduced to 0.

Note: In case the -min_space_to_core parameter has been specified, then the value specified for the -
forbidden_space_to_core parameter should be less than the value specified for the -min_space_to_core parameter.

-min_space_to_core value

Specifies the value for the minimum spacing between macro and core boundary. If the space between the macro and core is
smaller than this value and larger than the forbidden space, then the macros are pushed away from the core to the minimum
space. The minimum spacing value can be 0 and the maximum can be 100000.

Example:

The following command specifies the minimum space between macro-to-core boundary as 5 and the forbidden space between
macro-to-core boundary as 2.
set_macro_place_constraint -forbidden_space_to_core 2 -min_space_to_core 5

refine_macro_place

September 2022 472 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/set_macro_place_constraint.html

Macro-to-macro-boundaries

You can use the following parameters of the set_macro_place_constraint command to specify the minimum spacing and forbidden
spacing of macro-to-macro-boundaries:

-forbidden_space_to_macro value

Specifies the value for the forbidden spacing between the macro-to-macro boundary. If the space between the macros is
smaller than this value, then the macros are abutted. The minimum spacing value can be 0 and the maximum can be 100000.
For example, if the specified value is 2 then any macro-to-macro spacing between 0 to 2 is reduced to 0.

Note: In case the -min_space_to_macro parameter has been specified, then the value specified for the -
forbidden_space_to_macro parameter should be less than the value specified for the -min_space_to_macro parameter.

-min_space_to_macro value

Specifies the value for the minimum spacing between the macro-to-macro boundary. If the space between the macros is less
than this value, then the macros are aligned. The minimum spacing value can be 0 and the maximum can be 100000.

Example:

The following command specifies the minimum space between the macro-to-core boundary as 5 and the forbidden space between
macro-to-core boundary as 2.
set_macro_place_constraint -parallel_run_length 3 -forbidden_space_to_macro 2 –min_space_to_macro 5

refine_macro_place

September 2022 473 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/set_macro_place_constraint.html

Notes:

Macro-to-macro space checking is enabled only when the real parallel run length of macro is bigger or equal to the user
specified "prl" setting (default : 0)

By default, if at least one edge of the 2 macro edges facing each other has pins, the macros are not abutted (the parameter -
avoid_abut_macro_edges_with_pins = true by default).

Macro Orientation Constraints
The macro orientation constraints are used to specify the legal orientations for macro instances. It is a local restriction to refine the
solution and is stricter than LEF symmetry definition. You can use the -orientation parameter of
the set_macro_place_constraint command to specify the allowed orientations (R0, MX, MY, R180, R90, MX90, MY90, R270) for the
macros. The specified orientations should be legal in LEF.

Note: The specified orientation overwrites the previous definition.

Note: This constraint is instance-based and not cell-based.

Example:

The following command specifies the macros and their orientations.
set_macro_place_constraint –insts {ip2/dma/ram2A ip2/dma/ram2B} –orientation {R0 MX}

Maximum Stacking Length
The purpose here is to split a big macro stack into smaller stacks of macros in order allow buffering or for IR drop purposes. When
long nets travel across the stacking macros, the optimizer cannot add buffers to fix DRV or timing violations if there are no channels
between them. You can use the -horizontal_stacking parameter to specify the maximum horizontal stack depth and the minimum
horizontal spacing between stacks.

Example:
set_macro_place_constraint –horizontal_stacking {max_macro_stack_length min_space_between_macro_stack

max_space_between_macros} -parallel_run_length {prl}

max_macro_stack_length: Specifies that the macro stacking length should not be more than the specified value.

min_space_between_macro_stack: Specifies the spacing between different macro stacks.

max_space_between_macro: This parameter is an input which specifies the maximum space between macros to consider these
macros in the same initial stack. When the macro spacing is less than the specified value, the macros are counted in the

September 2022 474 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/set_macro_place_constraint.html

stacking length. For example, if the max_space_between_macro value is 9 then the macros will be considered as stacked if
the space between the macros is between 0 and 9, however, if the real space is 10 then nothing will happened.

Note: refine_macro_place starts by spacing the macros considering the forbidden/min_space_to_macro. At the end of this first
spacing, if most of the space between macros are equal to the min_space_to_macro, the use of the -horizontal/vertical_stacking
option will be effective only if the max_space_between_macro parameter is larger than the -min_space_to_macro parameter.

Note: Specifying the parallel_run_length is mandatory for checking the stacking constraint. The macros are not considered to be
stacked when the PRL is less than or equal to 0, since there is no channel-less problem. When the -parallel_run_length parameter
is specified along with the -horizontal_stacking parameters, only the macros with the parallel run length greater than and equal to
the specified value will be counted in the stacking length.

Fixed Macro Location
If you want to fix the macro location and not allow the placer to move it, the solution is to preplace the instance and change the status
to fixed. You can use the placeInstance command to place an instance and use the setInstancePlacementStatus command
to change its placement attributes status to fixed. The fixed component has a location and cannot be moved by automatic tools but
can be moved using interactive commands.

Example:

The following command places the instance my/ip1/rom_512i2 with mirrored through Y axis orientation at location 102.33,
2022.39 in the floorplan. The placement status of instance my/ip1/rom_512i2 is set to the fixed status and the macro placer will not
move this instance later:
placeInstance my/ip1/rom_512i2 102.33 2022.39 MY

setInstancePlacementStatus -name my/ip1/rom_512i2 –status fixed

I/O Pin Keep-out
This constraint is used to prevent macros from being placed near I/O pins. You can use the -max_io_pin_group_keep_out parameter
of the set_macro_place_constraint command to specify the maximum size of the macro-only blockages which will be placed
automatically in front of the most important group of IO pins (number and density are considered) and reserve the keep-out space for
pin routing. The size of the macro-only blockage for the other groups of IOs is calculated automatically.

Example:

The following command specifies the maximum height or width of 20um for adding macro-only blockages to IO pins.

set_macro_place_constraint -max_io_pin_group_keep_out 20

September 2022 475 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/placeInstance.html
../innovusTCR/setInstancePlacementStatus.html
../innovusTCR/set_macro_place_constraint.html

Macro Placement Halo
 A halo is an area that prevents the placement of blocks and standard cells within the specified halo distance, measured from the
edges of a hard macro to reduce congestion. This constraint is used to keep the instance-based macro spacing and model EndCap,
WellTap, and PSW cell areas at the mixed placement stage.

Adds a halo to a block. A halo is an area that prevents the placement of blocks and standard cells within the specified halo distance
from the edges of a hard macro, black box, or committed partition to reduce congestion. A block halo value is specified based on the
current block orientation.

Example

The following command adds a halo around cells ram1 and ram2 in a R0 orientation that is 10.0µm from the left edge, 20.0µm from
the right edge, and 40.0µm from the bottom and and 3.0µm from the top edge:
addHaloToBlock {10.0 20.0 40.0 30.0} –cell {ram1 ram2} –ori R0

Mixed Place Constraints Support List
The following table lists the mixed place constraints supported by the place_design, refine_macro_place,
and check_macro_place_constraint commands.

September 2022 476 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

../innovusTCR/place_design.html
../innovusTCR/refine_macro_place.html
../innovusTCR/check_macro_place_constraint.html

place_design
-

concurrent_macro

refine_macro_place check_macro_place_constraint

1 Macro Array Constraints Yes Yes No

2 Group
Constraints

align_group Yes No No

softGuide Yes No No

Guide/Region/Fence Yes Yes Check Region/Fence

3 Spacing Constraints No Yes Yes

4 Macro Orientation Constraints Yes No Yes

5 Over Macro Power Routing Modeling Yes No No

6 Maximum Stacking Length No Yes Yes

7 Fixed Location Yes Yes No

8 I/O Pin Keep-out Yes Yes No

9 Macro Placement Halo Yes Yes Check overlap

September 2022 477 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the Mixed Placer

Low Power Design
Overview

Power Domain Shutdown and Scaling

Support for the Common Power Format (CPF)

CPF Version Support

Innovus Commands Supporting CPF

Loading and Committing a CPF File

Loading the Design (init_design)

CPF Documentation

Support for IEEE1801

Low Power Cell Definition

Timing Information

Load the Design for IEEE1801 Using the init_design Command

Innovus IEEE1801 Low Power Flow

Innovus IEEE1801 Command Set Support

IEEE1801 Documentation

Flow Special Handling for Low Power

Low Power Cells and Usage

Specifying Power Intent

The Innovus Low Power Flow

Low Power Planning and Routing

Low Power Optimization

Low Power Design Verification

Low Power Debugging Commands

Multiple Supply Voltage Top-Down Hierarchical Flow

Overview

Always-On Feedthrough Handling

Chip Partitioning

Block-level CPF Generation

Top-Level CPF Generation

Block-Level Implementation

Top-Level Implementation

Chip Assembly

Example of Block-Level CPF Generated by Innovus

Example of Top-Level CPF Generated by Innovus

September 2022 478 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Multiple Supply Voltage Bottom-Up Hierarchical Flow

Block-Level Implementation

Top-Level Implementation

Chip Assembly

Leakage Power Optimization Techniques

Multi-Vth Optimization

Substrate Biasing

Power Shutdown Techniques

Data Preparation

Buffer Styles

Adding Column Switches

Attaching the Acknowledge Receiver Pin

Enable Chaining

Controlling the Maximum Enable Chain Depth

Synthesizing Acknowledge Trees

Adding Power Switch Rings

Ring Conventions

Using Pitch Control and Offsets

Power Switch Prototyping

Power Domain Parameters and Specification

Options Summary - Switch and Power Domain

Options Summary - Prototyping Features

Chain Style Impacts on Ramp Up Time and Rush Current

Prototyping Results

Optimal Switch Results

Switch Number Enumeration Results

Ramp Up Switch Enumeration Results

Number of Switches Given Current Maximum Ramp Up

Switch Delay Given Current Maximum Ramp Up Current

Ramp Up Time

September 2022 479 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Overview
This chapter describes how the multiple supply voltage (MSV) feature can help you save power in your design.

There are two types of MSV designs:

Multiple Supply Single Voltage (MSSV)
Core logic runs at a single voltage, but some portions of the logic are isolated on their own power supply.

Multiple Supply Multiple Voltage (MSMV)
Supplies of different voltages are used for core logic.

A power domain (also known as voltage island) is a floorplan object in the Innovus™ Implementation System (Innovus) software. A
non default and non virtual power domain has a fence constraintant physically; each power domain has a specific library (.lib, .lef)
associated with it. Standard cell Instances that belong to a power domain can be placed only within that power domain. The
exception to this rule is Macros, IP blocks and IOs. By constraining the design this way, a complete place and route flow can be used
on an MSV design. You can automatically place level shifters, perform timing optimization, run clock tree synthesis (CTS) across
domain boundaries, and obtain DRC-clean power routing.

Power Domain Shutdown and Scaling
You can reduce power consumption either by shutting down a power domain or operating it at a reduced voltage (voltage scaling).

Power domain shutdown is a technique in which an entire power domain is shut down during a specific mode of operation. This
results in both leakage power and dynamic power savings because the transistors are isolated from the supply and ground lines.
You must use isolation cells when shutting down domains in order to drive the interface signals to predetermined known states. In
many cases, a design in the shutdown mode operates at a single voltage throughout the design (an MSV design); however, the
portion of the design that is shut off must be in a different power domain. This is necessary because this portion must be isolated
from the rest of the system so that it can be shut off independently from the rest of the core logic. For more information on power
shutdown, see Power Shutdown Techniques.

In power domain scaling (also known as voltage scaling), one or more domains operate at a lower voltage than that of the other core
logic. Power domain scaling provides dynamic power savings, and can provide leakage power savings, depending the on the
threshold characteristics of the library for the scaled domain.

Note: These techniques can be used separately or together in the same design.

The following figure shows three power domains: RTC, PD1, and the default power domain, which contains PD1 and RTC.

PD1 and default domains can share libraries since PD1 and default domains operate at the same voltage.

Power switches enable PD1 to shut down.

Power domain RTC operates at a different voltage than PD1 and the default domain.

RTC can remain always on.

September 2022 480 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

You must insert voltage level shifters between the default domain and RTC, and between PD1 and RTC.

Isolation cells (clamps) drive outputs of a power domain to known states when that power domain is shut down.

Support for the Common Power Format (CPF)
Cadence provides a Common Power Format (CPF) that enables you to freely exchange data between Cadence tools supporting the
low-power design flows, and most importantly, capture low power design intent early in the design process rather than late in the
back-end cycle. A CPF file captures all design and technology-related power constraints, which can be used throughout the design
flow. Users need to create CPF file for their power constraint and read it in to Innovus for the low power design.

CPF commands perform functions such as the following:

Creating power domains and specifying their power/ground connections

Specifying timing libraries (Optional; users can define timing libraries in Innovus viewDefinition.tcl)

Creating analysis view and defining library set for each power domain (Optional: users can define them in
Innovus viewDefinition.tcl)

Defining operating conditions (Optional; users can define them in Innovus viewDefinition.tcl)

Defining low power cells

Creating low power rules: isolation rules, level shifter rules, SRPG rules, power switch rules)

Note: If there is a minor CPF change during the flow, you can either perform CPF ECO (requiring CLP license) or a view-related
update during the flow, without running the flow from the beginning.

CPF Version Support
The Innovus software supports the following versions of CPF:

CPF 1.0

CPF 1.0e

CPF 1.1 (default)

CPF 2.0

Innovus Commands Supporting CPF
read_power_intent -cpf

commit_power_intent

write_power_intent -cpf

Loading and Committing a CPF File
A GUI enables you to load and commit a CPF file:

Power - Multiple Supply Voltage - Load/Commit CPF

This GUI corresponds to the following text commands:

read_power_intent -cpf

Reads a CPF file into Innovus for error checking

September 2022 481 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/read_power_intent.html
../innovusTCR/commit_power_intent.html
../innovusTCR/write_power_intent.html
../innovusTCR/read_power_intent.html

commit_power_intent

Executes (commits) the CPF commands within the Innovus environment

Loading the Design (init_design)
The design data is read through the init_design procedure. In case of CPF, init_design calls a special read_power_intent -cpf to
generate the view definition file. The init_design then loads the libraries and sets up MMMC based on the viewDefinition.tcl. Since
there is no minimum/maximum analysis, the CPF creates the analysis view. Also, since there is no analysis view in CPF, does not
generate the script viewdefinition.tcl and init_design gives an error.

The command init_design works as follows:

If there is a viewDefinition.tcl for Low Power design, init_design does not call special read_power_intent -cpf to re-
generate viewDefinition.tcl.

If there is no viewDefinition.tcl for Low Power design, init_design calls a special read_power_intent -cpf to
generate viewDefinition.tcl based on the CPF.

If both veiwDefinition.tcl and CPF are provided and viewDefinition.tcl has higher priority, init_design does not call the
special read_power_intent -cpf.

If there is no viewDefinition.tcl and CPF does not define analysis view, init_design gives an error.

For design portability, you can set the Library Primary Path in tcl. For example,

set libDir "libs/";

viewDefinition.tcl will refer to the tcl variable (libDir)

For all the library specifications like: create_library_set -library $libDir/…

If there is any network change, you can re-define the Library Primary Path and do not need to change anything else. To do this, the
special read_power_intent -cpf generates the viewDefinition.tcl.

Note: Since 11.1 release of the software supports only MMMC, Low Power supports only the MMMC Flow.

If design does not have viewdefinition.tcl, CPF should contain create_analysis_view.

If design has viewDefinition.tcl, CPF does not require timing library information. The CPF is library-less, and only specifies
the Power intent. All the timing information is specified in viewDefinition.tcl. This setting is recommended from 14.1 and
above releases of the software.

If CPF does not have and design does not have viewdefinition.tcl, commit_power_intent gives an error.

CPF Documentation
For more information about CPF, see the following documents:

Innovus Text Command Reference

Documents the following Innovus commands supporting the CPF flow. Descriptions on obsolete native Innovus commands are
provided.

Menu Reference

Documents the read_power_intent -cpf/write_power_intent -cpf GUI.

User Guide

Provides a list of supported CPF 1.0 commands in the Supported CPF 1.0 Commands chapter.

September 2022 482 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/commit_power_intent.html
../innovusTCR/init_design.html
../innovusTCR/read_power_intent.html
../innovusTCR/init_design.html
../innovusTCR/commit_power_intent.html
../innovusTCR/init_design.html
../innovusTCR/init_design.html
../innovusTCR/init_design.html
../innovusTCR/read_power_intent.html
../innovusTCR/init_design.html
../innovusTCR/read_power_intent.html
../innovusTCR/init_design.html
../innovusTCR/read_power_intent.html
../innovusTCR/init_design.html
../innovusTCR/read_power_intent.html
../innovusTCR/create_analysis_view.html
../innovusTCR/commit_power_intent.html
../innovusTCR/innovusTCRTOC.html
../innovusTCR/read_power_intent.html
../innovusTCR/write_power_intent.html

Provides a list of supported CPF 1.0e commands in the Supported CPF 1.0e Commands chapter

Provides a list of supported CPF 1.1 commands in the Supported CPF 1.1 Commands chapter

Provides a sample CPF 1.0 script in the CPF 1.0 Script Example chapter

Provides a sample CPF 1.0e script in the CPF 1.0e Script Example chapter.

Provides a sample CPF 1.1 script in the CPF 1.1 Script Example chapter.

Support for IEEE1801
The IEEE1801 standard is supported from 13.2 and above releases of the software to specify the design's power intent.

Low Power Cell Definition
All the LP cells and related power pin information need to be defined in the Liberty file with the Liberty LP attributes.

Timing Information
For defining the timing information in the Innovus MMMC viewDefinition.tcl file and specify MMMC timing information, use the
following command:

set init_mmmc_file viewDefinition.tcl

Note: The power domain library binding must be specified through the update_delay_corner command for each power domain
before defining the timing information.

Load the Design for IEEE1801 Using the init_design Command
IEEE1801 specifies only the power intent like library-less CPF. All the timing information is specified in the viewDefinition.tcl file.

Innovus IEEE1801 Low Power Flow
Innovus IEEE1801 low power flow is similar to the Innovus CPF low power flow. All the Innovus implementation steps such as
floorplan, placement, optimization, clock tree synthesis and routing have been enhanced to handle IEEE1801 so that the IEEE1801
low power flow can run smoothly. The IEEE1801 flow looks like:

init_design #use “set init_mmmc_file viewDefinition.tcl” to specify mmmc setting

read_power_intent -1801 IEEE1801File

commit_power_intent

The rest of IEEE1801 low power flow (same as CPF low power flow).

Innovus IEEE1801 Command Set Support
Innovus mainly supports a selected set of IEEE1801 2.0 commands and options. For the compatibility purpose of users, Innovus also
supports some IEEE1801 1.0 and IEEE1801 2.1 commands and options.

Currently, the following IEEE commands/options are supported.

IEEE1801 Commands/Options IEEE Version

September 2022 483 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/update_delay_corner.html

add_port_state port_name

{-state {name <nom | min max | min nom max | off>}}*
1.0

add_power_state object_name

{-state state_name {

[-supply_expr {boolean_function}]

[-logic_expr {boolean_function}]

[-update]

2.0

apply_power_model power_model_name

[-elements instance_list]

[-supply_map {{lower_scope_handle upper_scope_supply_set}}]

2.1

add_pst_state state_name

-pst table_name

-state supply_states

1.0

associate_supply_set supply_set_ref

-handle supply_set_handle
2.0

begin_power_model power_model_name

[-for model_list]
2.1

connect_logic_net net_name

-ports port_list
2.0

connect_supply_net net_name

[-ports list]

[-pg_type {pg_type_list element_list}]*

[-pins list]

[-domain domain_name]

1.0

connect_supply_set supply_set_ref

{-connect {supply_function {pg_type_list}}}*
2.0

create_logic_net net_name 2.0

create_logic_port port_name

[-direction <in | out | inout>]
2.0

create_power_domain domain_name

[-elements element_list]

[-exclude_elements exclude_list]

[-include_scope]

[-supply {supply_set_handle [supply_set_ref]}*]

[-update]

[-available_supplies {supply_set_ref}

1.0

2.1

create_power_switch switch_name

{-ack_port {port_name [net_name]}

{-output_supply_port {port_name}}

{-input_supply_port {port_name}}

{-control_port {port_name [net_name]}}

{-on_state {state_name input_supply_port {boolean_expression}}}*

[-domain domain_name]

1.0

create_pst table_name

-supplies list
1.0

September 2022 484 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

create_supply_net net_name

-domain
1.0

create_supply_port port_name

[-domain domain_name]

[-direction <in |out>]

1.0

create_supply_set set_name

[-function {func_name [net_name]}]*

[-update]

2.0

end_power_model 2.1

load_upf upf_file_name

[-scope instance_name]

map_isolation_cell isolation_name

-domain domain_name

-lib_cells lib_cell_list

1.0

map_level_shifter_cell level_shifter_name

-domain domain_name

-lib_cells lib_cell_list

1.0

map_power_switch switch_name

-domain domain_name

-lib_cells lib_cell_list

1.0

map_retention_cell retention_name_list

-domain domain_name

[-lib_cells lib_cell_list]

[-lib_cell_type lib_cel_type]

1.0

name_format

[-isolation_prefix string]

[-level_shifter_prefix string]

1.0

set_scope instance 2.0

set_domain_supply_net domain_name

-primary_power_net supply_net_name

-primary_ground_net supply_net_name

1.0

September 2022 485 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

set_isolation isolation_name

-domain ref_domain_name

[-elements element_list]

[-source source_supply_ref]

[-sink sink_supply_ref]

[-applies_to <inputs | outputs | both>]

[-isolation_power_net net_name]

[-isolation_ground_net net_name]

[-no_isolation]

[-isolation_supply_set supply_set_list]

[-isolation_signal signal_list]

[-isolation_sense {<high | low>*}]

[-name_prefix string]

[-clamp_value {<0 | 1 | any | Z | latch | value>]*}]

[-location <automatic | self | other | parent>]

[-diff_supply_only <TRUE | FALSE>]

[-update]

[-exclude_elements]

2.0
2.0
2.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

2.1

set_isolation_control isolation_name

-domain domain_name

-isolation_signal signal_name

[-isolation_sense <high|low>]

[-location <automatic | self | other | parent>]

1.0

set_level_shifter level_shifter_name

-domain domain_name

[-elements element_list]

[-no_shift]

[-source source_domain]

[-sink sink_domain]

[-applies_to <inputs|outputs|both>]

[-rule <low_to_high|high_to_low|both>]

[-location <automatic | self | other | parent>]

[-name_prefix string]

[-input_supply_set supply_set_name]

[-output_supply_set supply_set_name]

[-update]

[-exclude_element]

2.0
2.0

2.0
2.0
2.0

2.1

set_pin_related_supply library_cell

-pins list

-related_power_pin supply_pin

-related_ground_pin supply_pin

1.0

set_port_attributes

[-ports {port_list}] [-exclude_ports {port_list}]

[-receiver_supply supply_set_ref]

[-driver_supply supply_set_ref]

2.0

September 2022 486 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

IEEE1801 Documentation
For more information about IEEE1801, see the following documents:

Innovus Text Command Reference

Documents the Innovus commands supporting the IEEE1801 flow. Descriptions on native Innovus commands are provided.

Flow Special Handling for Low Power

Low Power Cells and Usage
In the low power design, several different types of Low Power cells are required and used. These cells are defined in CPF or Liberty.
A brief description of each type of cell is as below:

set_retention retention_name

-domain domain_name

[-elements element_list]

[-exclude_elements [-retention_power_net net_name]exclude_list]

[-retention_power_net net_name]

[-retention_ground_net net_name]

[-retention_supply_set ret_supply_set]

[-no_retention]

[-save_signal logic_net <high | low | posedge |

[-restore_signal logic_net <high | low | posedge |

[-update]

1.0

2.0

2.0
2.0
2.0
2.0

set_retention_control retention_name

-domain domain_name

[-save_signal net_name

[-restore_signal net_name

1.0

upf_version [string] 1.0

use_interface_cell interface_implementation_name

[-strategy list_of_isolation_level_shifter_strategies]

[-lib_cells lib_cell_list]

2.0

find_objects scope

-pattern search_pattern

[-object_type <inst | port | net | process>]

[-direction <in | out | inout>]

[-transitive <TRUE | FALSE>]

[-non_leaf|-leaf_only]

2.0

set_related_supply_net power_net

[object_list]

[-ground]

[-power]

SNPS Special

September 2022 487 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/innovusTCRTOC.html

Isolation Cell

Isolation cell is inserted between two domains to prevent signals from floating when the driving domain is powered off. The Isolation
logic types can be high, low or keep last value.

Always-On Cell

The Always-On cell is powered by its second power pin. If it is in a switchable power domain and powered by always-on power, it
can stay on when switchable power domain is off.

State Retention DFF

A special flop in a switchable domain that can retain its state value when the switchable domain’s power supply is turned off. It has
secondary power pin to power the retention logic.

Power Gate or Power Switch Cell

This is a cell used to turn on/off the power supply of a domain.

Level Shifter Cell

The Level Shifter cell shifts mainly from lower voltage signal to higher voltage signal or from higher voltage signal to lower voltage
signal. It may have a significant delay impact.

September 2022 488 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Level Shifter/Isolation Combo Cell

This is a combination of level shifter and isolation cell and is commonly used in designs having both MSV and PSO.

Voltage Regulator Cell (Optional on-chip)

This provides different voltage supply on a chip. Factors like Area, IR-drop and noise need special handling.

Specifying Power Intent
As the low power design becomes more and more complex, the Power Intent File is required to capture the low power information
such as power domain and low power cell usages.

Power Intent File

The Power Intent File mainly specifies the following in TCL-based CPF or IEEE1801:

Definition of Low Power cells (Can also be defined in Liberty)

Definition of power nets and nominal condition (PD working voltage)

Creation and updation of power domains

Creation and updation of power modes/power state table

Creation and updation of rules such as iso/ls rule, srpg and power switch rules

The Innovus Low Power Flow
The Low Power flow mainly includes the following steps:

September 2022 489 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Write power intent file in either CPF or IEEE1801Setting up the Low Power Flow

Separate MMMC from Power Intent file

Write Innovus MMMC (viewDefinition.tcl) separately
Make sure each power domain has library binding

Example

Innovus viewDefinition.tcl

create_library_set -name wc_0v81\

-timing\

[list ./timing/tcbn45gsbwpwc.lib\

./timing/tcbn45lpbwp_c070208wc0d720d9_modified.lib\

./timing/tcbn45lpbwp_c070208wc0d90d9_modified.lib\

./timing/tcbn45lpbwp_c070208wc_modified.lib\

./timing/tpzn65lpgv2wc.lib]

create_library_set -name wc_0v81_1\

-timing\

[list ./timing/tcbn45gsbwpwc_1.lib\

list ./timing/tcbn45lpbwp_c070208wc0d90d9_modified.lib]

create_library_set -name bc_0v81\

-timing\

[list ./timing/tcbn45gsbwpbc.lib\

./timing/tcbn45lpbwp_c070208bc0d881d1_modified.lib\

./timing/tcbn45lpbwp_c070208bc1d11d1_modified.lib\

./timing/tcbn45lpbwp_c070208bc_modified.lib\

./timing/tpzn65lpgv2bc.lib]

create_op_cond -name PM_wc_virtual -library_file \

./timing/tcbn45gsbwpwc.lib -P 1 -V 0.81 -T 125

create_op_cond -name PM_bc_virtual -library_file \

./timing/tcbn45gsbwpbc.lib -P 1 -V 0.99 -T 0

 create_rc_corner -name rc_cworst \

-cap_table worst.CapTbl

create_delay_corner -name AV_PM_on_dc\

-library_set wc_0v81\

-opcond_library tcbn45gsbwpwc\

-opcond PM_wc_virtual -rc_corner rc_cworst

update_delay_corner -name AV_PM_on_dc -power_domain PDdefault\

September 2022 490 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

-library_set wc_0v81_1\

-opcond_library tcbn45gsbwpwc\

-opcond PM_wc_virtual

update_delay_corner -name AV_PM_on_dc -power_domain PD1\

-library_set wc_0v81\

-opcond_library tcbn45gsbwpwc\

-opcond PM_wc_virtual

update_delay_corner -name AV_PM_on_dc -power_domain PD2\

-library_set wc_0v81\

-opcond_library tcbn45gsbwpwc\

-opcond PM_wc_virtual

update_delay_corner -name AV_PM_on_dc -power_domain PD3\

-library_set wc_0v81_1\

-opcond_library tcbn45gsbwpwc\

-opcond PM_wc_virtual

Note: Specify each domain binding by the update_delay_corner -power_domain command.

Low Power DB and ENV Creation

read_power_intent -cpf or -1801/commit_power_intent mainly does the following:

Check the CPF/IEEE1801 syntax

Create power domains (groups) and site list for each domain

Read and commit CPF/IEEE1801 rules (if required)

Synthesize the simple logic for low power enabled signals

Generate global and tie connection specifications

Create the implicit ISO/LS rules for optimization/CTS/verifyPowerDomain

Once the above is done, Lower power DB (called *.cpfdb), is generated to keep the low power information such as power domain,
PG nets and low power rules. The DB is saved by saveDesign and can be restored by restoreDesign.

Pin/Term Power Domain Assignment

Each LEAF signal pin/term and boundary port are assigned to a power domain based on its location, or its related PG pin, or its
driving instance, or the definition in CPF/IEEE1801.

The Low Power cell enable pin is assigned to its driving pin domain. Low Power cells and Macros signal pins are assigned
according to its “related PG pin”. Some signal pins can also be assigned in CPF or IEEE1801. Regular standard cell leaf instance
pin/or pin without “related PG pin” is assigned to its instance power domain (location domain).

In the following diagram, locPD is the location power domain. effPD is the pin's effective power domain whose primary PG nets drive
the pin in reality. locPD can be different from effPD.

The pin’s effective power domain is used to determine if there is domain crossing from the driver to receiver during low power cell
insertion, optimization, CCOPT, and verifyPowerDomain.

September 2022 491 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/update_delay_corner.html
../innovusTCR/read_power_intent.html
../innovusTCR/commit_power_intent.html
../innovusTCR/verifyPowerDomain.html
../innovusTCR/saveDesign.html
../innovusTCR/restoreDesign.html
../innovusTCR/verifyPowerDomain.html

Logical vs. Physical Power Domain

Apart from logical power domain definition in CPF or IEEE1801, power domain in Innovus also means that all of the standard cells
(members) in the same domain share the same follow-pin net and standard cell row structure.

In the above example, LEF’s “Site” is used to control which cells are allowed in this row. Note that different power domain may have
different standard cell height, and the non-default power domain with standard cell members has fence constraint.

Complex Power Domain Floorplan

Innovus supports various types of the power domain fence shapes such as rectangular, rectilinear, donut and disjoint.

September 2022 492 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Ring shape power domain (PD1); Non-default power domain in the middle

Donut shape power domain (PD2)

Nested power domain (PD3): It can be either physically nested (PD2), or logically nested, or both

Disjoint power domain (PD3)

Power Domain Floorplanning Guideline

The power domain floorplan (size, shape and location) greatly affects the Cell and ISO/LS placement QoR, Optimization QoR
and Routing congestion.

You should try to create the rectangular or simple rectilinear shapes with mini PD boundary edges. This will minimize the
crossing-PD route patterns and help ISO/LS placement.

Avoid dividing/blocking power domain fence into pieces, avoid creating the narrow channel between domains or abutted
domain.

Example

Minimize the number of PD boundary edges

Reduce the feedthrough routes

Help ISO/LS placement

Example

Avoid narrow channel

Reduce the feedthrough routes and congestion in the channel

September 2022 493 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Low Power Planning and Routing

Power planning

In the Power Planning process, you need to plan power stripes for AO feedthrough bufferring inside the power domain. It is better to
create PG rings for power domain to reduce IR drop.

Power routing

In the Power Routing process, you need to use addStripe command to route power switch always-on power over the switches, and
the routePGPinUseSignalRoute command to route secondary PG pins of the Low Power cells such as AO, SRPG, isolation and level
shifter.

For more information on adding stripes, see addStripe.

Cell and ISO/LS placement

The cell placement is Power Domain (PD) aware and honors the PD fence constraints.

The goal of ISO/LS placement is to increase the chance that optimization can buffer either input or output net using as many regular
buffers as possible. The placement needs to place ISO/LS close to power domain boundary or near its driver/receiver.

You can control ISO/LS placement or fix ISO/LS by using setPlaceMode, creating ISO/LS group constraints, setting the ISO/LS cell

September 2022 494 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/addStripe.html
../innovusTCR/routePGPinUseSignalRoute.html
../innovusTCR/addStripe.html
../innovusTCR/setPlaceMode.html

padding, creating the routing blockage along domain boundary and creating the pin guide.

Low Power Optimization
optDesign is Power Domain (PD) aware and inserts buffers along the route

Extra physical and logic constraints must be applied in LP Optimization

Physical constraint: Buffers needs to be placed in its domain fence

Logic constraint: Buffer needs to be pushed down/pulled up to its domain logic hierarchy

Example

Regular buffer insertion

Determine the location: Green

Get the location PD: PD2

Power (domain) coverage analysis

Can PD1 drive PD2 and PD2 drive PD4 (no off->on or low->high)

Yes, Use Reg buffer

Pick up Reg buffer from PD2 lib binding; insert it into PD2 logic hierarchy

Example

Always On (AO) buffer insertion

Determine the location: Green

Get the location PD: PD2

Power (domain) coverage analysis

Can PD1 drives PD2 and PD2 drives PD4 (no off->on or low->high)

September 2022 495 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/optDesign.html

No, Use AO buffer

Pick up AO buffer from PD2 lib binding; insert it into PD2 logic hierarchy

Connect AO 2nd power pin to PD4’s power

Assign AO input and output pin to PD4

LP Optimization Using Always-on Buffers

Always-on (AO) buffer is a buffer with two power/ground pins where the secondary power pin is used to supply the power for the
always-on buffer. The cell can be mixed into a switched power domain because its primary power pin is compatible with the row’s
power rail (follow pins), has built-in Nwell for secondary and primary, powers for abutment with other cell. AO Buffers are required to
maintain power domain compatibility when the local power domain is not compatible with its sink or receiver.

Feedthrough Net

The subnet between ISO/LS input/output pin and domain boundary

September 2022 496 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

AO net in switchable domain such as ISO, PS and SRPG enabled

Disable AO Buffering Based On The Unavailable Power Nets In The Specific Domain

CPF Command:
update_power_domain –name PD_C –user_attribute {{disable_secondary_domains {PD_TOP}}}

September 2022 497 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Enable AO Buffering Based On The Available Power Nets In The Specific Domain

CPF Command:
update_power_domain –name PD_A –user_attribute {{enable_secondary_domains {PD_TOP}}}

PD_A can ONLY insert AO with its second power pin connected to PD_TOP’s power

IEEE1801 Command:
create_power_domain PD_A -available_supplies <PD_TOP’s supply set>

PD_A can ONLY insert AO with its 2nd power pin connected to PD_TOP’s power

Regular Buffer versus AO buffer (cost-based buffering)

Minimize the number of AO buffering. The AO buffer is set at a higher cost.

Optimization is able to generate different topologies/routes for regular or AO buffering. It can choose which topologies/route for
buffering according to a pre-defined cost function.

ecoAddRepeater - A Handy Interactive Command

The ecoAddRepeater command provides flexibility to buffer the crossing domain nets or build buffer trees in any arbitrary logic
hierarchy.

Secondary Power Pin Routing

The following LP cells have the secondary power pins:

Always-on buffers, SRPG, Level Shifters, Isolation Cells, Comb Cell and Power Switch Cell

The cell’s secondary power pin is defined in the CPF or *lib

The second power pin connection is defined in CPF or IEEE1801 or floorplan file

September 2022 498 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/ecoAddRepeater.html

This command can be used after Low Power cells are inserted and placed

Route second power pin

The power switch second power pin is routed by power planning command addStripe

The second power pins for the other cells are routed by nanoroute
commands routePGPinUseSignalRoute and setNanoRouteMode

Power planning for second power pin route

Must add the second power stripes for the switchable domain

Need to add some other power stripes for the feedthrough AO buffering

ECO routing in optDesign -postRoute can automatically do secondary power pin ECO route. ECO routes for the cells and pins
are defined in setPGPinUseSignalRoute cell1:pin1 cell2:pin2

Route secondary power pins before signal route

Low Power Design Verification
The design must match the power intent such as:

Isolation cell is required from Off to On

Level shifter is required from Low to High

To verify Low Power design against CPF/IEEE1801 by CPF/IEEE1801 rules, use the low Power verification
command verifyPowerDomain

To verify Low Power design against CPF/IEEE1801 by tracing PG connection in the physical netlist, use the
command runCLP (physical)

Low Power Debugging Commands
Run the following command to get information about driver/receiver domain, domain coverage, pin power domain, related pg pin:

reportPowerDomain -inst |-net|-pin|-powerDomain -verbose

Tcl db access:
dbGet top.pds.??

September 2022 499 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/addStripe.html
../innovusTCR/routePGPinUseSignalRoute.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/optDesign.html
../innovusTCR/setPGPinUseSignalRoute.html
../innovusTCR/verifyPowerDomain.html
../innovusTCR/runCLP.html
../innovusTCR/reportPowerDomain.html

Low Power GUI Debugger

Design Browser

September 2022 500 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Violation browser and Schematic Viewer Screen Capture

Multiple Supply Voltage Top-Down Hierarchical Flow
This section discusses the following topics:

September 2022 501 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Overview

Always-On Feedthrough Handling

Chip Partitioning

Block-level CPF Generation

Top-Level CPF Generation

Transition to OpenAccess for Low Power Flow

Block-Level Implementation

Top-Level Implementation

Chip Assembly

Overview
The Innovus tool supports the low power top-down CPF-based hierarchical flow built on the regular Innovus hierarchical flow. The
difference is that, in the CPF-based hierarchical flow, you partition the chip-level CPF file into block-level CPF files and a top-level
CPF file. You then use those CPF files to implement the block level and top level designs.

The CPF-based hierarchical flow supports the following scenarios:

The partition is physically the same as the power domain. The hierarchical instance is logically the same for power domain and
partition.

The power domain is physically inside partition. The power domain hierarchical instance is logically a sub hierarchical
instance of partition.

Partition is physically inside power domain. The partition hierarchical instance is logically one (and only one) of the
hierarchical instances of power domain.

Always-On Feedthrough Handling
In the low power flow, the tool can insert a feedthrough buffer in a partition that resides in a shut-off power domain.

September 2022 502 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

If a feedthrough already exists in an input netlist (for example, a netlist for some reused blocks), the feedthrough may use the assign
statements and regular buffers. The tool identifies the always-on feedthroughs and replaces the regular buffers or assign statements
with always-on buffers defined in the chip-level CPF when you commit the CPF file.

If you use insertPtnFeedthrough to insert a feedthrough in the hierarchical flow, the tool can pick up always-on buffers defined in
CPF for the scenario shown in the following figure:

Chip Partitioning
Low power hierarchical partitioning with CPF is a combination of the Multi-Mode Multi-Corner (MMMC) and CPF flows. Do the
following:

1. Derive the MMMC timing budget. For more information, see the Timing Budgeting chapter of the Innovus User Guide.

Note: Use the deriveTimingbudget and saveTimingBudget commands for deriving the MMMC timing budget.

2. Use savePartition to generates CPF files for each block-level design (partition), and a top-level CPF file for top-level design.

3. (Optional) If the power domain is inside the partition, save the floorplan file for chip assembly.

September 2022 503 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/insertPtnFeedthrough.html
../innovusTCR/savePartition.html

Block-level CPF Generation
Block-level CPF is used to implement block-level design and determine the power domain attribute for the partition boundary pin at
top-level implementation. When you commit CPF, the tool generates block-level CPF from the chip-level CPF file as follows:

Low power information in CPF

Pushes down naming style, hierarchy separator, CPF version, and library set definitions

Pushes down low power cell definitions

Creates the power domains referenced by the block-level CPF files

Creates the power domains' power/ground nets and connections

Pushes down the scope-related rules or commands such as state retention rules, power switch rules, and
identify_always_on_driver rules

For level shifter and isolation rules:

If the rules specify the shifter and isolation are added into a block, the tool pushes down those rules into block-level
CPF

If the rules specify the shifter and isolation are added outside a block, the tool does not push down those rules into
block-level CPF.

Assigns the power domain attribute to each partition boundary pin

Pushes down all the nominal conditions and power modes

Creates virtual ports to control low power logic by using set_design -ports

Note: Virtual ports do not exist in the netlist, but are needed to enable power switch, isolation, state-retention logic, and
so on, in the block level

MMMC information in CPF
The analysis views, operating conditions and power domain library binding are written into the viewdefinition.tcl file by
timing budget commands as part of MMMC setup. Block-level CPF does not include this information.

The tool marks the partition boundary pin power domain attribute that will determine whether there is a domain-crossing for
the net connecting to the pin. The following example shows how the tool marks the power domain attribute for the partition
boundary pin and determines whether to push down the isolation rule:

September 2022 504 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

For always-on feedthroughs, the tool automatically traces through the feedthrough and assigns both the input and output pins of the
feedthrough as always on.

For the net connecting to the partition boundary pin without an isolation or level shifter cell, the tool assigns the pin to the power
domain of its driver domain.

Top-Level CPF Generation
The tool generates top-level CPF from the chip-level CPF file as follows:

Define each block-level boundary power domain information through create_power_domain -boundary_ports.

Retains isolation or level shifter rules when the isolation or level shifter is inserted at top level.

Discards rules in block-level scope such as state retention and power switch rules.

Retains library sets, cell definitions, nominal condition, power mode and MMMC views at the chip level.

Block-Level Implementation
1. Implement the block-level design with an MMMC flow, using the block-level CPF file generated at the partitioning step and

the viewdefinition.tcl file created by deriveTimingBudget.

2. After completing block-level implementation, use saveDesign -def to save the block-level design in def format for chip
assembly.

Top-Level Implementation
1. Implement the top-level design with an MMMC flow, using the top-level CPF file generated at the partition step and

the viewdefinition.tcl file created by deriveTimingBudget.

2. After completing top-level implementation, use saveDesign -def to save the top-level design in def format for chip assembly.

Chip Assembly
Chip assembly assembles the physical data you generated at the block level and block level.

1. If there is a power domain inside partition, specify the chip-level floorplan with assembleDesign -cpfFile.

September 2022 505 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/deriveTimingBudget.html
../innovusTCR/saveDesign.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/saveDesign.html
../innovusTCR/assembleDesign.html

2. Load the chip-level CPF after the assembly to restore the low power settings and continue to chip-level verification and chip
finishing.

Example of Block-Level CPF Generated by Innovus
Note: A special construct is used to avoid duplicate definition for timing-related CPF files when sourced by top-level CPF. If the
[set_instance]==[set_hierarchy_separator] condition is true, then the tool recognizes the implementation is at the block level,
and loads the related timing information. If the condition is False, then the tools sources the block-level CPF file at top level, and
does not load the timing-related information.

set_design tdsp_core \

-ports {n_41}

set_hierarchy_separator "/"

create_power_domain -name TDSPCore -default \

-shutoff_condition {n_41}

create_power_nets -nets VDD_TDSPCore \

-voltage 0.792 \

-internal

update_power_domain -name TDSPCore \

-internal_power_net {VDD_TDSPCore}

create_power_nets -nets VDD_TDSPCore_R \

-voltage 0.792

create_global_connection -net VDD_TDSPCore_R \

-domain TDSPCore \

-pins TVDD

create_global_connection -net VDD_TDSPCore \

-domain TDSPCore \

-pins VDD

create_ground_nets -nets VSS

create_global_connection -net VSS \

-domain TDSPCore \

-pins VSS

create_power_domain -name AO

-boundary_ports { clk reset SRPG_PG_in SRPG_PG_in_1 DFT_sen n_41,…}

create_power_nets -nets VDD -voltage 0.792

update_power_domain -name AO -internal_power_net {VDD}

if {[set_instance]==[set_hierarchy_separator]} {

define_library_set -name ao_wc_0v99

-libraries { ../../LIBS/N45/timing/wc.lib}

define_library_set -name ao_wc_0v792 \

-libraries { ../../LIBS/N45/timing/AOwc0d72.lib}

define_library_set -name tdsp_wc_0v792 \

-libraries { ../../LIBS/N45/timing/wc0d72.lib}

create_operating_corner -name WC08COM_AO \

-voltage 0.792 \

-process 1 \

September 2022 506 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

-temperature 125 \

-library_set ao_wc_0v792

create_operating_corner -name WC08COM_TDSP \

-voltage 0.792 \

-process 1 \

-temperature 125 \

-library_set tdsp_wc_0v792

create_nominal_condition -name low_ao -voltage 0.792

update_nominal_condition -name low_ao -library_set ao_wc_0v792

create_nominal_condition -name off -voltage 0

create_power_mode -name PM_LO_FUNC \

-domain_conditions { AO@low_ao TDSPCore@off} \

-default

update_power_mode -name PM_LO_FUNC \

-sdc_files {../../RELEASE/mmmc/dtmf_recvr_core_dull.sdc}

create_analysis_view -name AV_LO_FUNC_MAX_RC1 \

-mode PM_LO_FUNC \

-domain_corners { AO@WC08COM_AO TDSPCore@WC08COM_TDSP}

}

define_isolation_cell -cells {LVLLH} \

-ground {VSS} \

-enable {NSLEEP} \

-valid_location {to} \

-power {VDD}

define_level_shifter_cell -cells {LVLH} -valid_location {to} \

-output_power_pin {VDD} \

-input_voltage_range {0.792:0.99:0.099} \

-output_voltage_range {0.792:0.99:0.099}

-ground {VSS} -direction {down}

define_level_shifter_cell -cells {PTLVLH} \

-valid_location {to} \

-direction {down} \

-output_power_pin {TVDD} \

-output_voltage_range {0.792:0.99:0.099} \

-ground {VSS} -input_voltage_range {0.792:0.99:0.099}

define_level_shifter_cell -cells {LVLLH} \

-valid_location {to} \

-input_power_pin {VDDL} \

-output_power_pin {VDD}

-input_voltage_range {0.792:0.99:0.099} \

-output_voltage_range {0.792:0.99:0.099} \

-output_voltage_input_pin {NSLEEP}\

-ground {VSS} \

-direction {up}

define_level_shifter_cell -cells {LVLLHD} \

-input_voltage_range {0.792:0.99:0.099} \

-valid_location {to} \

-direction {up} \

-output_power_pin {VDD} \

-output_voltage_range {0.792:0.99:0.099} \

-ground {VSS} \

September 2022 507 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

-input_power_pin {VDDL}

define_state_retention_cell -cells {RSDF} \

-ground {VSS} \

-save_function {SAVE} -power {TVDD} \

-restore_function {!NRESTORE} \

-clock_pin {CP} \

-power_switchable {VDD}

define_power_switch_cell -cells {HDRDID HDRDIA}

-stage_2_enable {!NSLEEPIN2} \

-stage_1_output {NSLEEPOUT1} \

-power {TVDD} \

-stage_2_output {NSLEEPOUT2} \

-power_switchable {VDD} \

-stage_1_enable {!NSLEEPIN1} \

-type {header}

define_always_on_cell -cells {PTBUFF PTLVLH} \

-ground {VSS} \

-power {TVDD} \

-power_switchable {VDD}

create_level_shifter_rule -name LSRULE_H2L \

-to {TDSPCore} \

-from {AO} \

-exclude {n_41 SRPG_PG_in SRPG_PG_in_1}

update_level_shifter_rules -names LSRULE_H2L \

-cells {LVLH} \

-location {to}

create_level_shifter_rule -name LSRULE_H2L_AO

-from {AO} \

-to {TDSPCore} \

-pins {n_41 SRPG_PG_in SRPG_PG_in_1}

update_level_shifter_rules -names LSRULE_H2L_AO

-location {to} \

-cells {PTLVLH}

create_state_retention_rule -name SRPG_TDSP \

-save_edge {SRPG_PG_in} \

-domain {TDSPCore} \

-restore_edge {!SRPG_PG_in_1}

update_state_retention_rules -names SRPG_TDSP \

-cell {RSDF} \

-library_set {tdsp_wc_0v792}

create_power_switch_rule -name TDSPCore_SW \

-domain {TDSPCore} \

-external_power_net {VDD_TDSPCore_R}

update_power_switch_rule -name TDSPCore_SW \

-prefix {CDN_SW_} \

-cells {HDRDID} \

-acknowledge_receiver {switch_en_out}

end_design

September 2022 508 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Example of Top-Level CPF Generated by Innovus
set_cpf_version 1.0

set_design dtmf_recvr_core

set_hierarchy_separator "/"

create_ground_nets -nets Avss

create_ground_nets -nets VSS

create_power_nets -nets VDD \

-voltage 0.792

create_power_nets -nets Avdd \

-voltage 0.990

create_power_nets -nets VDD_TDSPCore_R \

-voltage 0.792

create_power_nets -nets VDD_TDSPCore \

-voltage 0.792 \

-internal

define_library_set -name ao_wc_0v99 \

-libraries { ../LIBS/N45/timing/tcbn45lpbwp_c060907wc.lib}

define_library_set -name ao_wc_0v792 \

-libraries { ../LIBS/N45/timing/tcbn45lpbwp_c060907wc0d72.lib}

define_library_set -name tdsp_wc_0v792 \

-libraries { ../LIBS/N45/timing/tcbn45lpbwp_c060907wc0d72.lib}

source cpf_1.0_hierarchical_PD.tcl

set_instance TDSP_CORE_INST \

-port_mapping { {n_41 PM_INST/power_switch_enable}} \

-domain_mapping { {TDSPCore TDSPCore} {AO AO}}

source TDSP_CORE_INST.cpf

create_power_domain -name TDSPCore \

-shutoff_condition {PM_INST/power_switch_enable}

create_global_connection -net VDD_TDSPCore_R \

-domain TDSPCore \

-pins TVDD

create_global_connection -net VDD_TDSPCore \

-domain TDSPCore \

-pins VDD

create_global_connection -net VSS \

-domain TDSPCore \

-pins VSS

create_power_domain -name AO \

-default

update_power_domain -name AO \

-internal_power_net {VDD}

create_global_connection -net VDD_TDSPCore \

-domain AO \

-pins VDDL

September 2022 509 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

create_global_connection -net VDD \

-domain AO \

-pins VDD

create_global_connection -net VSS \

-domain AO \

-pins VSS

create_power_domain -name PLL \

-instances { PLLCLK_INST}

update_power_domain -name PLL \

-internal_power_net {Avdd}

create_global_connection -net VDD \

-domain PLL \

-pins VDDL

create_global_connection -net Avdd \

-domain PLL \

-pins avdd!

create_global_connection -net Avdd \

-domain PLL \

-pins VDD

create_global_connection -net Avss \

-domain PLL \

-pins VSS

create_global_connection -net Avss \

-domain PLL \

-pins agnd!

create_operating_corner -name WC08COM_AO \

-voltage 0.792 \

-process 1 \

-temperature 125 \

-library_set ao_wc_0v792

create_operating_corner -name WC08COM_TDSP \

-voltage 0.792 \

-process 1 \

-temperature 125 \

-library_set tdsp_wc_0v792

create_nominal_condition -name low_ao \

-voltage 0.792

update_nominal_condition -name low_ao \

-library_set ao_wc_0v792

create_nominal_condition -name off -voltage 0

create_power_mode -name PM_LO_FUNC \

-domain_conditions { AO@low_ao PLL@high_ao TDSPCore@off}

update_power_mode -name PM_LO_FUNC \

-sdc_files {../RELEASE/mmmc/dtmf_recvr_core_dull.sdc

create_analysis_view -name AV_LO_FUNC_MAX_RC1 \

-mode PM_LO_FUNC \

-domain_corners { AO@WC08COM_AO PLL@WCCOM_AO TDSPCore@WC08COM_TDSP}

define_isolation_cell -cells {LVLLH} \

September 2022 510 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

-ground {VSS} \

-enable {NSLEEP} \

-valid_location {to} \

-power {VDD}

define_level_shifter_cell -cells {LVLH} \

-valid_location {to} \

-output_power_pin {VDD} \

-input_voltage_range {0.792:0.99:0.099} \

-output_voltage_range {0.792:0.99:0.099} \

-ground {VSS} \

-direction {down}

define_level_shifter_cell -cells {PTLVLH} \

-valid_location {to} \

-direction {down} \

-output_power_pin {TVDD} \

-output_voltage_range {0.792:0.99:0.099} \

-ground {VSS} \

-input_voltage_range {0.792:0.99:0.099}

define_level_shifter_cell -cells {LVLLH} \

-valid_location {to} \

-input_power_pin {VDDL} \

-output_power_pin {VDD} \

-input_voltage_range {0.792:0.99:0.099} \

-output_voltage_range {0.792:0.99:0.099} \

-output_voltage_input_pin {NSLEEP} \

-ground {VSS} -direction {up}

define_level_shifter_cell -cells {LVLLHD} \

-input_voltage_range {0.792:0.99:0.099} \

-valid_location {to} \

-direction {up} \

-output_power_pin {VDD} \

-output_voltage_range {0.792:0.99:0.099} \

-ground {VSS} \

-input_power_pin {VDDL}

define_state_retention_cell -cells {RSDF} \

-ground {VSS} \

-save_function {SAVE} \

-power {TVDD} \

-restore_function {!NRESTORE} \

-clock_pin {CP} -power_switchable {

define_power_switch_cell \

-cells {HDRDID HDRDIAO} \

-stage_2_enable {!NSLEEPIN2} \

-stage_1_output {NSLEEPOUT1} \

-power {TVDD} \

-stage_2_output {NSLEEPOUT2} \

-power_switchable {VDD} \

-stage_1_enable {!NSLEEPIN1} \

-type {header}

define_always_on_cell -cells {PTBUFF PTLVLH} \

-ground {VSS} \

-power {TVDD} \

-power_switchable {VDD}

September 2022 511 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

create_isolation_rule -name ISORULE \

-from {TDSPCore} \

-isolation_condition {!PM_INST/isolation_enable} \

-isolation_output {high}

update_isolation_rules -names ISORULE \

-location {to} \

-cells {LVLLH}

create_level_shifter_rule \

-name LSRULE_H2L_PLL \

-from {PLL} \

-to {AO}

update_level_shifter_rules -names LSRULE_H2L_PLL \

-location {to} \

-cells {LVLHLD}

end_design

Multiple Supply Voltage Bottom-Up Hierarchical Flow
This section discusses the following topics:

Block-Level Implementation

Top-Level Implementation

Chip Assembly

The Innovus tool supports the low power bottom-up CPF-based hierarchical flow built on the regular Innovus bottom-up hierarchical
flow. The difference is that you use the existing block-level CPF files to construct the top-level hierarchical CPF file, and implement
the design using the CPF flow.

September 2022 512 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Block-Level Implementation
You can use any combination of hard and soft blocks.

For the hard blocks (that are already implemented), place the blocks in top-level floorplan.

For the soft blocks,

Load and commit the block-level CPF files.

Implement the blocks using the block-level CPF implementation flow.

After completing block-level implementation,

Save the block-level design in def format for chip assembly.

saveDesign -def

If a power domain exists inside a block, use the following command to obtain the physical information about the power domain:

write_power_intent -cpf tmp.cpf

The tool restores the physical information for the power domain inside block (partition) after chip assembly.

Top-Level Implementation
Before top-level implementation, manually build the top-level CPF file by reusing the block-level CPF files as follows:
Set_instance HinstOfBlock -domain_mapping { {..} } -port_mapping { {..} }

Source block.cpf

The CPF file you create contains the same type of information as in the previous example file: Example of Top-Level CPF Generated
by Innovus

To implement the design, use the CPF implementation flow using the hierarchical top-level CPF file.

After completing top-level implementation, use the following command to save the top-level design in DEF format:

saveDesign -def

Chip Assembly
To assemble the design's physical data, use the following command:

assembleDesign

After chip assembly,

To restore the lower power setup for chip-level verification and chip finishing, load and commit the top-level hierarchical CPF
file.

(Optional) Update power domain physical information inside block.

To update power domain shape, use the following command:

setObjFPlanBox

To update the power domain attribute, use the following command:

modifyPowerDomainAttr

September 2022 513 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/saveDesign.html
../innovusTCR/write_power_intent.html
../innovusTCR/saveDesign.html
../innovusTCR/assembleDesign.html
../innovusTCR/setObjFPlanBox.html
../innovusTCR/modifyPowerDomainAttr.html

Note: These steps are necessary only if you have a power domain inside a partition.

To update the library set, use the following command:

update_library_set -name -timing {..}

To apply chip-level timing constraints (sdc files), use the following command:

update_constraint_mode -name -sdc_files

Proceed to design verification.

Leakage Power Optimization Techniques
Multi-Vth Optimization

Substrate Biasing

Multi-Vth Optimization
You can optimize non-critical path logic for leakage, while preserving the critical timing slack (WNS).

Note: Run multi-Vth optimization only after your design meets timing.

Report the total leakage power in the design using the following command:

report_power -leakage

If you want to obtain a report file, run report_power -leakage with the -outfile fileName option.

The following example is a leakage report showing the total leakage power in microwatts, along with cell usage statistics. For each
library, the number of cells used in the design and the total leakage power dissipated by the cells are listed.

Total leakage power = 785.079708uW

Cell usage statistics:

Library normalVt, 49265 cells (64.855650%), 733.007529uW (93.367269%)

Library highVt, 26696 cells (35.144350%), 52.072179uW (6.632725%)

Optimize leakage power.

optPower

This command resizes low voltage threshold gates in the design to gates with a higher voltage threshold, while maintaining timing.
This command only resizes cells that have positive slack. Cells that belong to any library are candidates for swapping.

The -highEffort parameter overrides effort levels set by setOptMode.

Note: optPower is a standalone command that can be used when a netlist is already optimized in timing and on which you want to
reclaim as much leakage power as possible. It is recommended that you use optPower without any options.

After running the optPower command, create a new leakage power report to view results.

report_power -leakage -outfile fileName

Optimizing Leakage Power While Running optDesign (Recommended)

You can optimize non-critical path logic for leakage power by using the setOptMode command in the following ways:

If leakage power optimization is a second priority after timing convergence, then use setOptMode -powerEffort
low after place_design along with the default setting of –leakageToDynamicRatio 1.0. The leakage power optimization is
automatically done by optDesign.

September 2022 514 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/update_library_set.html
../innovusTCR/update_constraint_mode.html
../innovusTCR/report_power.html
../innovusTCR/report_power.html
../innovusTCR/optPower.html
../innovusTCR/setOptMode.html
../innovusTCR/optPower.html
../innovusTCR/optPower.html
../innovusTCR/optPower.html
../innovusTCR/report_power.html
../innovusTCR/setOptMode.html
../innovusTCR/place_design.html
../innovusTCR/optDesign.html

If leakage power optimization is as critical as timing convergence, then
use setOptMode -powerEffort high after place_design along with the default setting of –leakageToDynamicRatio 1.0. The
leakage power optimization is done by each optDesign step in high-effort mode.

Note: When setOptMode -powerEffort is set to low or high, the hold fixing steps ensure that no low-voltage threshold gates are
inserted. Only high-voltage threshold gates are used to fix the hold-time violations.

Substrate Biasing
Substrate biasing is another technique for reducing leakage power. Changing the body voltage of the field effect transistor (FET)
affects both the threshold voltage and the static leakage current.

To bias the substrate, insert biasing cells into a region of the design. In Innovus, you can do this in either of two ways:

Use the addWellTap command to add bias cells at regular intervals.
addWellTap -maxGap

Add well taps in a checkerboard configuration; for example,
addWellTap -cellFILL1 -maxGap 20 -checkerBoard -fixedGap

addWellTap -cellFILL2 -maxGap 20 -powerDomain PD -checkerBoard -fixedGap

These commands produce results such as those shown in the following figure:

For well tap cells, you must add stripes to connect the secondary power/ground pins in the vertical or horizontal direction.

1. Select Floorplan - Custom Power Planning - Add Stripes.

2. On the Basic page, select Over P/G pins.

3. Click on Master Name.

4. Type the master name of the standard cell.

5. Select Pin Layer.

The top layer is the default.

The following figures show how well tap cells are connected. The software connects the secondary power/ground pins vertically or
horizontally to the nearest secondary power/ground pins, regardless of whether the pins extend fully across the cell.

September 2022 515 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/place_design.html
../innovusTCR/optDesign.html
../innovusTCR/addWellTap.html

Power Shutdown Techniques
Power shutdown is a coarse-grain methodology for performing power gating. This technique shuts off a specific power domain under
certain conditions. There are two styles of this methodology:

Ring style: All switches are inserted outside the domain.

Column style: All switches are inserted inside the power domain.

Data Preparation
For ring-style switch insertion, prepare the data as follows:

September 2022 516 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Assign CLASS RING to the power switch cell in the LEF file (SYMMETRY X Y R90) . This is recommended, but not required
for switch cells. No SITE information is required.

Ensure that there are enable nets to drive the buffer inside of the power switch cell, and acknowledge nets to exit the power
switch cell. These nets are used as input to the -enableNetIn and -enableNetOut options to addPowerSwitch.

Specify the power/ground net and pin connects of the power switch cell.

For column-style switch insertion, prepare the data as follows:

Assign CLASS CORE and the correct SITE definition for the switch cell in the LEF file.

Specify the power/ground net and pin connections of the power switch cell.

Specify the distance between the columns and switches in microns (horizontal pitch value).

For ring style, you need to know the following:

For power planning, to ensure that the power stripes connect to the power switch cell

NanoRoute connects enable signals. Abutment depends on the physical layout of the power switch cell.

For column style, you need to know the following:

In the addPowerSwitch command, the -enableNetOut option can only specify one net name, which will be the net base name.
The tool adds the suffix _columnNumber.

The dimension of the power switch cells must be an integer multiple of a single-height standard cell.

Buffer Styles
The following figure shows column switch cell, which contains a buffer. This cell has a height of two times the standard cell height.

The following figure shows a ring switch cell, which contains a buffer. The cell has the same height as a standard cell. Ring switch
cells can also contain two buffers with different directions.

Adding Column Switches
The column switch methodology adds power switches entirely within the power domain. The following figure shows an example of
column switches within a power domain:

September 2022 517 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/addPowerSwitch.html
../innovusTCR/addPowerSwitch.html

To add column switches, use the following command:

addPowerSwitch -column

The following parameters are required:

-powerDomain

-enablePinIn

-enablePinOut

-enableNetIn

-enableNetOut

-globalSwitchCellName

Optionally, you can specify the following:

Offsets from the top, bottom, right, and/or left side of the power domain.

Area in which the tool can place switches.

Power/ground pin connections.

Many other options.

Instead of using the text command, you could use the menu command as follows:

From the main Innovus window, choose Power - Multiple Supply Voltage - Power Switch Insertion, then click on the Column
button.

With the text command, you can place the switches in a checkerboard pattern as follows:
addPowerSwitch -column -checkerBoard

This command allows you to reserve space for other uses or reduce the number of switches, for example, and possibly reduce
leakage power.

September 2022 518 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Attaching the Acknowledge Receiver Pin
In CPF, you can specify an input pin that must be connected to an output pin of the last power switch in the chain. This information is
specified in CPF as follows:

update_power_switch_rule -name string

-acknowledge_receiver pin ...

The addPowerSwitch command can connect the output pin of the last switch cell to the acknowledge pin specified
by update_power_switch_rule.

The following figure shows -enableNetOut PD1_C_A connected to Inst_D as specified in CPF:

Example

In the CPF file:

create_power_switch_rule -name sw1 -domain PD1 -external_power_net VDDH

update_power_switch_rule -name sw1 -cells COLUMN_SW -acknowledge_receiver Inst_D/A

Power switch insertion command:

addPowerSwitch -column -powerDomain PD1 -enablePinIn SWIN -enablePinOut SWOUT -enableNetIn PSO1_1

-globalSwitchCellName COLUMN_SW -leftOffset 3 -horizontalPitch 100

Verilog file after addPowerSwitch is run:

BUFXH Inst_D (.Y(switch_out), .A(PD1_C_A));

...

COLUMN_SW pso1_PD1_1_COLUMN_SW_9_52_3 (.SWOUT(PD1_C_A),

.SWIN(psoPSI_PD1_EnNet_1_3_9_49_0));

Inst_D/A is connected to the PD1_C_A net and is connected to the SWOUT pin of the last switch.

Do not specify -enableNetOut because this setting interferes with and overrides the -acknowledge_receiver specification.

September 2022 519 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/addPowerSwitch.html
../innovusTCR/addPowerSwitch.html

Enable Chaining
By default, the -enableNetIn is connected to the bottom of each column and the -enableNetOut exits from the top of each column, in
parallel. The following commands let you create a columns with daisy-chain enables:

-backToBackChain
Connects the -enableNetOut at the top of a column to the -enableNetIn at the top of the next column, and connects
the -enableNetOut at the bottom of a column to the -enableNetIn at the bottom of the next column.

The following figure shows -backToBackChain with the LtoR (left-to-right) option:

The following figure shows -backToBackChain with the RtoL (right-to-left) option:

September 2022 520 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Example:
addPowerSwitch \

-column \

-powerDomain DSP \

-switchModuleInstance dummy_dsp_1 \

-enablePinIn {NSLEEPIN2} \

-enablePinOut {NSLEEPOUT2} \

-enableNetIn {UNCONNECTED249} \

-globalSwitchCellName HDRDIHVTD2 \

-enableNetOut {power_out_ack} \

-leftOffset 15.0 \

-bottomOffset 0.0

-horizontalPitch 150.0 \

-backToBackChain RtoL

-loopbackAtEnd
Connects the enablePinOut of the last cell in the chain to the enablePinIn of the same cell.
In the following example, two -enablePinIn and -enablePinOut pins are specified, so you can use -loopbackAtEnd:
addPowerSwitch \

-column \

-powerDomain DSP \

-switchModuleInstance dummy_dsp_1 \

-enablePinIn {NSLEEPIN2 NSLEEPIN1} \

-enablePinOut {NSLEEPOUT2 NSLEEPOUT1} \

-enableNetIn {UNCONNECTED249} \

-globalSwitchCellName HDRDIHVTD2 \

-enableNetOut {power_out_ack} \

-leftOffset 15.0 \

-bottomOffset 0.0 \

-horizontalPitch 150.0 \

-topDown \

-backToBackChain RtoL \

-loopbackAtEnd

Controlling the Maximum Enable Chain Depth
You can control the ramp-up time for the power domain by specifying the number of column switches are allowed in an enable chain
before a new chain is started. To control the maximum number of switches in an enable chain, use the following parameter:
-maxChainDepth integer

The software then starts a new enable chain at the next switch, as shown in the following figure:

addPowerSwitch -powerDomain PD1 -maxChainDepth 4

September 2022 521 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

In the first part of the figure, no -maxChainDepth specified. In the second part, -maxChainDepth = 4, this stops the chain at four
switches.

Synthesizing Acknowledge Trees
The Innovus tool can automatically create acknowledge trees that you would otherwise build manually. The acknowledge tree
collects enable signals exiting the power domain and funnels them to an acknowledge receiver pin.

Use the following parameters to create the acknowledge tree:
-acknowledgeTreeCell

-acknowledgeTreeHierInstance

If you do not specify -acknowledgeTreeHierInstance, the tool places the cells in the top module.

The following figure shows an acknowledge tree built from cells of type Cell, placed in hierarchical instance HInst.

enableNetIn

Adding Power Switch Rings
You can add power switches in a ring entirely outside the boundary of the power domain as shown below.

September 2022 522 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

In this figure, the switches abut and connect to the next switch. Because the switches in this example contain two built-in buffers with
different directions, the enable net loops around the inner side of the ring, connects at the corner, and loops back around to where it
becomes the enable net out.

This technique is useful when the power domain is a pre-designed macro.

To create a power switch ring, use the following command:

addPowerSwitch -ring

The following parameters are required:
-powerDomain

-enablePinIn

-enablePinOut

-enableNetIn

-enableNetOut

By default, the tool distributes cells evenly in the ring. To stack cells instead, use the following command:
addPowerSwitch -ring -distribute 0

Instead of using the text command, you could use the menu command as follows:
From the main Innovus window, select Power- Multiple Supply Voltage - Add Power Switch, then click on the Ring tab. Select
Distribute Switches on the Switch Cell Count form.

With ring options, you have many ways of configuring the switch ring. Among many possibilities, you can do the following:

Control how switches are distributed around the ring

Choose the sides on which you want to add switch cells

Specify the breaker, buffer, filler, switch, and corner cells you want to use on specified sides

Specify the distance between the power domain and each side of the ring

Choose the orientation of cells on specified sides

Arrange the buffer, breaker, filler, and switch cells in a pattern

September 2022 523 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Creating Patterns

When you create rings, you can specify a pattern that customizes switch placement. If you do not specify a pattern, the software adds
switches evenly around the power domain.

The following command shows a pattern of cells that repeats on all sides:

addPowerSwitch -ring \

-powerDomain TDSP2 \

-enablePinIn {A0} -enablePinOut {Z0} \

enableNetIn swcontrol_2 -enableNetOut swack_2

-specifySideList {1 1 1 1 1 1 1 1}

-sideOffsetList {3 3 3 3 3 3 3 3 }

-globalSwitchCellName {{CDN_RING_SW S} {CDN_RING_SW_1 D} {CDS_RING_SW_2 G}}\

-cornerCellList CDN_RING_CORNER_UL \

-globalFillerCellName {{CDN_RING_FILLER F}}

-insideCornerCellList CDN_RING_CORNER_InCell \

-globalPattern {S S D D G G F}

In this example, the command adds power switches in the following pattern:

CDN_RING_SW CDN_RING_SW CDN_RING_SW_1 CDN_RING_SW_1 CDN_RING_SW_2 CND_RING_SW_2 CDN_RING_FILLER

The command repeats the pattern on each side. If you want to continue the pattern on the next side or edge, use the -
continuePattern parameter.

Ring Conventions
The Innovus software supports rectilinear power domains, such as the 20-sided power domain shown below:

The default side/corner numbering is clockwise from the starting corner (Corner 0), which is always the lower left corner of the power
domain.

Corner numbering starts with 0. Side numbering starts with 1.

Specifying Sides in a Switch Ring

Use addPowerSwitch -specifySideList to add switches around a power domain of any number of sides.

Each value provided in the -specifySideList parameter corresponds to a side of the power domain. The 1 value indicates that the
tool should add switches on a side, and 0 indicates that it should not. For example, for switches on all sides of a 4-sided power
domain, use -specifySideList {1 1 1 1}. By default, the tool adds switches on all sides.

The following example shows how you can place switches on every other side of the 20-sided power domain.

addPowerSwitch -ring -specifySideList {1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

September 2022 524 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

../innovusTCR/addPowerSwitch.html

0}

Starting the Enable Chain at a Different Corner

By default, the enable net enters at Corner 0. To select the corner at which you want the enable net to enter, use
the -startEnableChainAtCorner. This example does the following:

Adds power switches on sides 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19

Starts the enable corner to corner 4.

addPowerSwitch -ring -specifySideList {1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0} -startEnableChainAtCorner 4

Counter-Clockwise

The -counterclockwise option reverses the corner/side numbering from Corner 0. What was side 20 in the previous example
becomes side 1 in this example.

addPowerSwitch -ring -specifySideList {1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0} -counterclockwise

September 2022 525 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

In the following example, side/corner numbering is counterclockwise, and the enable net enters at Corner 4. Note how location of the
specified corner differs from the location of the corner specified without the -counterclockwise parameter.

addPowerSwitch -ring -specifySideList {1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0} -counterclockwise -startEnableChainAtCorner 4

Left Sides

The following command adds switches only to the left sides of the power domain: Sides 1, 3, 5, 9, 17.

addPowerSwitch -ring -leftSide 1

Right Sides

The following command adds switches only to the right sides of the power domain: Sides 7, 11, 13, 15, and 19.

addPowerSwitch -ring -rightSide 1

Horizontal Sides

The following command adds switches only to the horizontal sides of the power domain: Sides 2, 4, 6, 8, 10, 12, 14, 16, and 18.

addPowerSwitch -ring -horizontalSide 1

September 2022 526 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Vertical Sides

The following command adds switches only to the vertical sides of the power domain: Sides 1, 3, 5, 7, 9, 11, 13, 15, and 19.

addPowerSwitch -ring -verticalSide 1

Top Sides

The following command adds switches only to the top sides of the power domain: Sides 2, 6, 8, 10, and 14.

addPowerSwitch -ring -topSide 1

Bottom Sides

The following command adds switches only to the bottom sides of the power domain: Sides 4, 12, 16, 18, and 20.

addPowerSwitch -ring -bottomSide 1

September 2022 527 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Using Pitch Control and Offsets
You can control switch placement by using the following parameters:

-globalOffset

-bottomOffset

-topOffset

-leftOffset

-rightOffset

-horizontalOffset

-verticalOffset

-sideOffsetList {value ...}

-startOffset

-startOffsetBottom_bottom

-startOffsetTop_top

-startOffsetLeft_left

-startOffsetRight_right

-startOffsetHorizontal_horizontal

-startOffsetVertical_vertical

-sideStartOffsetListside__list {value...}

-endOffset

-endOffsetBottom_bottom

-endOffsetTop_top

-endOffsetLeft_left

-endOffsetRight_right

-endOffsetHorizontal_horizontal

-endOffsetVertical_vertical

-sideEndOffsetListside__list {value...}

-forceOffset [0|1]

September 2022 528 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

-switchPitch

-switchPitchBottom_bottom

-switchPitchHorizontal_horizontal

-switchPitchLeft_left

-switchPitchRight_right

-switchPitchTop_top

-switchPitchVertical_vertical

-switchPitchSideList_side_list {value...}

Forcing Offsets

Offsets you specify are the minimum offsets you require to complete the power switch ring. Resulting offsets could be quite different
from the ones you specify. To force the tool to comply as much as possible to the offset values, specify -forceOffset 1.

Setting the Global Offset

Instead of placing switches against the power domain boundaries, you can place them away from the boundaries by the specified
distances. To specify the same offset for all sides, use the -globalOffset parameter.

The default offset value is 0 (no offset).

The following figure shows equal offsets for a rectangular power domain if -forceOffset 1 is specified:

The following figure shows global offsets for a rectilinear power domain:

September 2022 529 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Setting Different Offsets for Different Sides
To specify different offsets for different sides, use the -leftOffset, -rightOffset, -bottomOffset, and/or -topOffset parameters.

The following example shows a different offset for each side if -forceOffset is specified:

To specify offsets for the top and bottom, use the -horizontalOffset parameter.

To specify offsets for the left and right sides, use the -verticalOffset parameter.

The following figure shows how -leftOffset, -rightOffset, -bottomOffset, -topOffset parameters affects rectilinear power
domains:

September 2022 530 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

To specify offsets for the horizontal sides, use the -horizontalOffset parameter.

To specify offsets for the vertical sides, use the -verticalOffset parameter.

Specifying Switch Location

You can choose the location for placing the first and/or last cell in a power switch row, and the spacing between switches in a row.
Use the following parameters:

-startOffset*: Places the first cell instance on a side a specified distance from the nearest left, right, top bottom, vertical or
horizontal offset (if specified) or the nearest power domain edge.

-endOffset*: Places the last cell a specified distance from the nearest *Offset (if specified) or the nearest power domain
boundary at the end of the side.

-switchPitch*: Specifies the distance from switch to switch (not the spacing between switches).

The following table shows the start, end, and pitch parameters:

Start Offset End Offset Switch Pitch Applies
To

-sideStartOffsetListside__list -sideEndOffsetListside__list -switchPitchSideList_side_list Specified
side(s)

-startOffsetBottom_bottom -endOffsetBottom_bottom -switchPitchBottom_bottom Bottom
side(s)

-startOffsetTop_top -endOffsetTop_top -switchPitchTop_top Top
side(s)

-startOffsetRight_right -endOffsetRight_right -switchPitchRight_right Right
side(s)

-startOffsetLeft_left -endOffsetLeft_left -switchPitchLeft_left Left
side(s)

September 2022 531 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

You can omit offsets because the default values are 0. You can omit pitch because, by default, the cells abut. The software starts
placing cells at corner 0.

You can combine the following:

-startOffset with other -startOffset* parameters

-endOffset with other -endOffset* parameters

-switchPitch with other -switchPitch* parameters
If there is more than one start or end offset, or switch pitch, on a side, the software always uses the most specific
parameter for the side.
For example, if both -startOffset and -startOffsetRight_right are specified, the tool uses
the -startOffsetRight_right value for the right side.

You can combine the global offsets and pitch with side-specific offsets and pitch.

For example, for a rectangular power domain:
-startOffsetTop_top 1 -endOffsetLeft_left -2 -switchPitch 3

For example, for a rectilinear power domain:
-startOffset -1 -switchPitchSideList_side_list {3, 4, 3, 0, 0, 0, 0, 0, 0, 0}

You can combine any side-specific parameters.

For example, for a rectangular power domain:
-startOffsetLeft_left 1 -startOffsetRight_right 2 -endOffsetTop_top -2 -switchPitch 3

For example, for a rectilinear power domain:
-startOffsetRight_right -1 -switchPitchSideList_side_list {3, 3, 3, 2, 2, 2, 1, 1, 1, 3}

Note: All -startOffset and -endOffset values can be positive or negative, which affect cell placement toward or away from the
center of the side. Pitch values can be positive only.

Example of Offsets

The following example shows a clockwise switch ring with the following parameters:

-leftOffset

-bottomOffset

-startOffsetLeft_left

-startOffsetBottom_bottom

-endOffsetLeft_left

-endOffsetBottom_bottom

-switchPitchLeft_left

-startOffsetHorizontal_horizontal -endOffsetHorizontal_horizontal -switchPitchHorizontal_horizontal Horizontal
side(s)

-startOffsetVertical_vertical -endOffsetVertical_vertical -switchPitchVertical_vertical Vertical
side(s)

-startOffset -endOffset -switchPitch All sides
equally

September 2022 532 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

-switchPitchBottom_bottom

Different switch pitches are specified for the left and bottom sides, and the start and end offsets are positive or negative.

The first switch on the left side is placed a distance -startOffsetLeft_left from the edge of the -bottomOffset boundary.

The second switch on the left side is placed a distance -switchPitchLeft_left from the bottom edge of the first switch on the
side.

The last switch on the left side is placed a distance -endOffsetLeft_left above the -topOffset because
the -endOffsetLeft_left value is negative. In this case, the -topOffset is 0, so the last switch is placed above the top power
domain boundary.

The first switch on the bottom side is placed a distance -startOffsetBottom_bottom from the right edge of the power domain.
There is no -rightOffset or -topOffset specified.

The second switch on the bottom side is placed a distance -switchPitchBottom_bottom from the right edge of the first switch
on the side.

The last switch on the bottom side is placed -endOffsetBottom_bottom to the right of the -leftOffset edge.
The -endOffsetBottom_bottom parameter has a positive value.

Power Switch Prototyping
Innovus provides the facility for prototyping power switches. Power switch prototyping enables you to:

September 2022 533 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Find optimal number of switches

Sweep (Enumerate) number of switches

Given the ramp up time, find optimal number of ramp up switches

Given number of ramp up switches, find ramp up time

Sweep (Enumerate) number of ramp up switches

Find number of ramp up switches constrained by maximum ramp up current

Find best switch delay constrained by maximum ramp up current

In this section we will cover:

Power Domain Parameters and Specification

Options Summary - Switch and Power Domain

Options Summary - Prototyping Features

Chain Style Impacts on Ramp Up Time and Rush Current

Prototyping Results

Power Domain Parameters and Specification
The following diagram and description outlines the power domain parameters and specifications:

September 2022 534 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Attribute for the domain power:

Total power: 1.0 mW

Domain voltage: 1.0 V

Max switch IR tolerance: 10 mV

Max domain leakage current allowed: 2 uA

Domain capacitance: 1 uF

Package inductance: 0.1 nH

Attributes for the switch cells:

Idsat: 1 mA

Ron: 800 Ohm

Ileak: 10 nA

Switch buffer delay: 100ps

Options Summary - Switch and Power Domain
The following is summary of switch and power domains:

September 2022 535 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Switch Cell Characterization

-Idsat

-Ileak

-rOn

-BufferDelay

-CellEM

-readPowerSwitchCell filename

Power Domain Specification

-totalPower

-voltage

-maxSwitchIR

-maxLeakageCurrent

-loadCapacitance

-pgCapacitance

-pgInductance

-rampUpRailVoltagePercent (0+..100-)

-numberSimultaneousRampUpChain num

Options Summary - Prototyping Features
The following is the summary of prototyping features:

To find optimal number of switches enter:
-prototypeNumberSwitches 0|1

To find Sweep/Enumerate number of switches enter:
-prototypeSweepSwitchNumber min max incremental

To find Sweep/Enumerate number of ramp up switches enter:
-prototypeSweepChainDepth min max incremental

To find min/max number of ramp up switches given ramp up time enter:
-prototypeChainDepth 0|1

-prototypeMinChainDepth 0|1

-prototypeMaxChainDepth 0|1

-rampUpTime min max

To find ramp up time given number of ramp up switches enter:
-rampUpTime 0|1

-rampUpChainDepth num

To find number of ramp up switches constrained by current maximum ramp up enter:
-prototypeChainDepthGivenRampUpCurrent 0|1

-maxRampUpCurrent float

September 2022 536 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Find optimal switch delay constrained by current maximum ramp up:
-prototypeDelayGivenRampUpCurrent 0|1

-maxRampUpCurrent float

-rampUpChainDepth num

To find miscellaneous enter:
-protoReportFile filename

-commitPrototype 0|1

-maxLeakagePercent percent

-maxIrPercent percent

Chain Style Impacts on Ramp Up Time and Rush Current
The following is the impact of chain style power domains on ramp up time and rush current, per category:

More simultaneous chain:

Smaller resistance per time step

Shorter ramp up time

Larger rush current

Longer Chain Depth:

Longer time to turn on all switches

Longer ramp up time

Smaller rush current

Ideal:

Balance chain depth and simultaneous chain for optimal rush current control versus ramp up time

Prototyping Results
The following results are covered in this section:

Optimal Switch Results

Switch Number Enumeration Results

Ramp Up Switch Enumeration Results

Number of Switches Given Current Maximum Ramp Up

Switch Delay Given Current Maximum Ramp Up Current

Ramp Up Time

September 2022 537 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Optimal Switch Results
To find optimal switch results, enter:
addPowerSwitch -column -powerDomain PD -globalSwitchCellName HEADER \

-prototypeNumberSwitches 1

The following type of result is displayed:

Switch Number Enumeration Results
To find the switch number results, enter:

addPowerSwitch -prototypeSweepSwitchNumber {100 200 10} {min max increment}

The following type of result is displayed:

September 2022 538 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Ramp Up Switch Enumeration Results
To find ramp up switch enumeration results, enter:

addPowerSwitch -prototypeSweepChainDepth {100 200 10} {min max increment}

The following type of result is displayed:

Number of Switches Given Current Maximum Ramp Up
To find number of switches given the current maximum ramp us, enter:

addPowerSwitch -prototypeChainDepthGivenRampUpCurrent 1 -maxRampUpCurrent 0.088

The following type of result is displayed:

Switch Delay Given Current Maximum Ramp Up Current
To find switch delay given current maximum ramp up, enter:

addPowerSwitch -column -prototypeDelayGivenRampUpCurrent 1 -maxRampUpCurrent\ 0.088 -rampUpChainDepth 10

The following type of result is displayed:

September 2022 539 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Ramp Up Time
To find ramp up time:

addPowerSwitch -column -prototypeRampUpTime 1 -rampUpChainDepth 10

The following type of result is displayed:

September 2022 540 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Low Power Design

Placing the Design
Overview

Loading a Design

Preparing for Placement

Guiding Placement With Blockages

Placement Treatment of Preroutes

Adding Well-Tap Cells

Controlling the Distance Between Well-Tap Cells

Adding Well-Tap Cells to MSV Designs

Deleting Well-Tap Cells

Adding End-Cap Cells

Adding End Cap Cells to MSV Designs

Adding Different Kinds of End Cap Cells

Deleting End-Cap Cells

Placing Spare Cells and Spare Modules

Placing Spare Cells That Are Included in the Netlist

Placing Spare Cells That Are Not Included in the Netlist

Spare Cell Placement Behavior

Running Hierarchy-Aware Spare Cell Placement

Adding Padding

Adding Instance or Module Padding

Adding Cell Padding

Placing Standard Cells

Running Placement in Multi-CPU Mode

Multi-Threading Placement Steps

Checking Placement

Using the Amoeba View

Using the Density Map

Adding Filler Cells

Adding Fillers to MSV Designs

Deleting Filler Cells

Placing Gate Array Style Filler Cells for Post-Mask ECO

Adding Decoupling Capacitance

Deleting Decoupling Capacitance

September 2022 541 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

Adding Logical Tie-Off Cells

Saving Placement Data

Specifying and Placing JTAG and Other Cells Close to the I/Os

Optimizing and Reordering Scan Chains

Specifying Scan Cells

About Scan Chains

Reordering Scan Chains

September 2022 542 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

 Overview
After floorplanning, place the cells in the design. Placement considers the modules that were placed during floorplanning and takes
into account the hierarchy and connectivity of the design. It honors floorplanning constraints, including guides, regions, and fences.
For descriptions of the constraint types, see "Module Constraint Types" section in the Floorplanning the Design chapter of
the Innovus User Guide.

Placement also follows legalization rules, such as cells cannot overlap each other and takes into account short and spacing DRC
rules required by routing.

After the cells are legally placed, next step is preCTS optimization.

Loading a Design
Load a design by using the restoreDesign command or the init_design command

For more information, see

Design Import and Export in Stylus chapter of the Innovus Stylus Common UI User Guide.

restoreDesign

init_design

Preparing for Placement
Before placement, run the following commands and correct problems. Some of these commands generate reports that you can use
as a baseline for comparisons later in the flow.

Run checkDesign to check the integrity of the library and design data. For more information, see checkDesign in the "Import
and Export Commands" chapter of the Innovus Text Command Reference.

Run timeDesign -prePlace to get an idea of Zero Wire Load timing of the design. For more information, see timeDesign in the
"Timing Analysis (Common Timing Engine) Commands" chapter of the Innovus Text Command Reference.

Run to create blockages (this is usually done during floorplanning). For more information see "Guiding Placement With
Blockages" or in the "Floorplan Commands" chapter of the Innovus Text Command Reference.

Use one of the following methods to place and fix hard blocks.

Run . For information, see in the "Floorplan Commands" chapter of the Innovus Text Command Reference.

Manually place and fix hard blocks.

Run checkPlace (or checkDesign -place) or use the Violation Browser to check for violations caused by preplaced cells or
blocks. For more information, see checkPlace in the "Placement Commands" chapter of the Innovus Text Command
Reference.

For more information on preparing the design for placement, see Data Preparation.

Guiding Placement With Blockages
Use placement blockages to help guide placement.

Create the blockages during the floorplanning session by using the following command:

createPlaceBlockage

September 2022 543 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/restoreDesign.html
../innovusTCR/init_design.html
../UGcom/UGcomTOC.html
../innovusTCR/checkDesign.html
../innovusTCR/timeDesign.html
../innovusTCR/checkPlace.html

After creating a blockage, assign an attribute to it by using the Attribute Editor.

Alternatively, you can create placement blockages using the Set Placement Blockage Options form.

For more information, see Create Placement Blockage in the "Floorplan Menu" chapter of the Innovus Menu Reference.

A placement blockage has one of the following attributes:

For more information, see

createPlaceBlockage in the "Floorplan Commands" chapter of the Innovus Text Command Reference.

Placement Treatment of Preroutes
Placement treats preroutes the same way it treats routing blockages: It places standard cell instances at legal locations where there
should not be any DRC violations against preroutes or routing blockages.

Typically, you use preroutes for special nets that are floorplanned (pre-designed) before placement, such as power, ground, and
clock mesh nets, where you do not want any standard cells placed underneath. Instances placed next to power and ground stripes
honor the design spacing rule. Instances placed next to routing blockage objects are set adjoined.

By default, the Innovus placement honors preroutes and routing blockages on metal2 for a three-metal layer process and on metal2
and metal3 for a four or more metal layer process.

You can change this behavior by using the following command before running placement:

setPlaceMode -place_detail_preroute_as_obs true

For more information, see setPlaceMode in the "Placement Commands" chapter of the Innovus Text Command Reference.

Hard The area cannot be used to place blocks or cells. By default, createPlaceBlockage
creates blockages with this attribute.

Soft Soft blockages accept:

any cell with <= 2 pins (buffers, inverters)

any cell with a CTS clock halo (regardless of pin count) - this includes clock logic
and clock gates

Partial Sets a percentage of the area that is available for placement.

For example, a partial placement percentage of 75 percent means that up to 75
percent of placement density is allowed in the area.

Note: A partial blockage of 100 percent behaves as no placement blockage.

Macro-
Only

The area cannot be used to place blocks but can be used to place standard cells as
a free area.

If the design has routing congestion issues in the small channels between hard blocks, consider using the setPlaceMode -
place_global_auto_blockage_in_channel true which automatically adds soft placement blockages in these areas. Although
the blockages obstruct standard cells during placement step, they do not obstruct standard cells during optimization
operations. Using soft blockages can help improve both timing and routability.

September 2022 544 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/setPlaceMode.html
../innovusTCR/createPlaceBlockage.html
../innovusTCR/setPlaceMode.html

Adding Well-Tap Cells
Well taps are physical-only filler cells that are required by some technology libraries to limit resistance between power or ground
connections and wells of the substrate. Well-tap cells are placed in a preplaced status, so future placement commands do not move
them.

The following diagram shows an example of well-tap cell placement. In this diagram, the cells are staggered in the site rows.

Add well taps after the floorplan is fixed and hard blocks are placed, but before placing standard cells.

Use one of the following methods to add well-tap cells:

Add Well Tap Instances form

addWellTap command

Controlling the Distance Between Well-Tap Cells
Use the addWellTap -cellInterval parameter to specify the maximum distance between well-tap cells in the same row.

-cellInterval measures the distance from the center of one well-tap cell to the center of the next well-tap cell in the same row.

By default, the software always leaves a distance that is at least 45 percent of the specified maximum distance between well-tap
cells in the same row. For example, if the specified maximum distance between same-row well-tap cells is 48.0 microns, the default
minimum distance would be 21.6 microns.

Adding Well-Tap Cells to MSV Designs
In cases where there are different voltages in the same design, also known as a multi-voltage (MSV) design, specify the power
domain in which to insert the well-tap cells by using the following command:

addWellTap -powerDomain

Deleting Well-Tap Cells
To remove added well-tap cells, use the Delete Instances form or the deleteFiller command. If you specify an area,
the deleteFiller command deletes only well-tap cells that are completely contained within the area; it does not delete well-tap cells
that cross the area boundary.

For more information see the following topics:

addWellTap and deleteFiller in the "Placement Commands" chapter of the Innovus Text Command Reference.

September 2022 545 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/addWellTap.html
../innovusTCR/deleteFiller.html

Adding End-Cap Cells
End-cap cells are preplaced physical-only cells that are required to meet certain design rules. They are placed at the ends of the site
rows, and are used in some technologies for power distribution. Besides of inserting the end-cap cells at the row ends, addEndCap
also supports to place the end-cap cells at the top and bottom row to constitute an enclosed end-cap ring around the core area,
placement blockage and hard macros. End-cap cells are placed in a preplaced status, so future placement commands do not move
them. Add end-cap cells to the design before any other standard cells are placed, but after hard blocks are placed in the floorplan.

The following diagram shows an example of end-cap cell placement. The cells are placed at the ends of each site row.

To add end-cap cells, use the Add End Cap Instances form or the addEndCap command.

Adding End Cap Cells to MSV Designs
In cases where there are different voltages in the same design, specify the power domain in which to insert the end cap cells by
using the following command:

addEndCap -powerDomain

Adding Different Kinds of End Cap Cells
You can add different kinds of end cap as per the site numbers between core or placement blockage or hard macro using the
setEndCapMode command. There are two kinds of single-height end cap cells for left/right boundaries, for example, A type and B
type. If the site number is odd, the end cap type on both sides of the core will be different. This means AB or BA end caps are placed
on left/right boundaries. If the site number is even, the end cap type on both sides should be the same. This means AA or BB end
caps are placed on left/right boundaries.

In the inner corner of core or blockage, double-height end cap cell is required. The double-height cells are also placed the same way
as single-height cells. For A type or B type double-height cell, two kinds of power rail should be defined: VSS-VDD-VSS, VDD-VSS-
VDD. So there are 4 types of double-height cell: A(VSS-VDD-VSS), A(VDD-VSS-VDD), B(VSS-VDD-VSS), B(VDD-VSS-VDD).
Accordingly, two kinds of double-height sites should be defined: VSS-VDD-VSS and VDD-VSS-VDD. All those end cap cells and
sites must be pre-defined in LEF.

Before end cap insertion, you need specify all the end cap cells for each boundary in setEndCapMode to constitute an enclosed end
cap ring around the core area, placement blockage, and hard macros. For this, you use the following options of setEndCapMode.

-leftBottomCornerEven

-leftBottomCornerOdd

-leftBottomEdgeEven

-leftBottomEdgeOdd

-leftEdgeEven

-leftEdgeOdd

-leftTopCornerEven

September 2022 546 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/addEndCap.html
../innovusTCR/setEndCapMode.html

-leftTopCornerOdd

-leftTopEdgeEven

-leftTopEdgeOdd

-rightBottomCornerEven

-rightBottomCornerOdd

-rightBottomEdgeEven

-rightBottomEdgeOdd

-rightEdgeEven

-rightEdgeOdd

-rightTopCornerEven

-rightTopCornerOdd

-rightTopEdgeEven

-rightTopEdgeOdd

The addEndCap command will honor these settings. Therefore, it is important to specify the correct end cap cell type, especially for
the double-height cells.

Deleting End-Cap Cells
To remove end-cap cells, use the Delete Instances form or the deleteFiller command. If you specify an area,
the deleteFiller command deletes end-cap cells that are completely contained within the area; it does not delete end-cap cells that
cross the area boundary.

For more information see

addEndCap and deleteFiller in the "Placement Commands" chapter of the Innovus Text Command Reference

 Placing Spare Cells and Spare Modules

Placing Spare Cells That Are Included in the Netlist
If spare cell instances are included in the gate-level netlist, the software places them during preplacement processing; however, you
must specify them during the floorplanning session.

1. Specify the spare cells by using the following command:
specifySpareGate

Use the following parameter to identify the module whose hierarchy contains the spare cell instances:
-hinst

Cadence recommends that you place clusters of spare cells at different locations within the core area to allow easy access to
the cells from different parts of the core.

September 2022 547 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/addEndCap.html
../innovusTCR/addEndCap.html
../innovusTCR/deleteFiller.html

2. If the design contains hierarchical modules, specify the following setPlaceMode parameter to ensure that the spare cells within
the modules are kept within bounds of the hierarchy, even if no constraint is set on it:

-place_global_module_aware_spare

For more information on using this parameter, see "Running Hierarchy-Aware Spare Cell Placement".
Note: In the GUI, select the Hierarchy Aware Spare Cell Placement option on the Design - Mode Setup - Placement form.

Related Topics

For more information, see the following commands in the "Placement Commands" chapter of the Innovus Text Command Reference:

setPlaceMode

specifySpareGate

Placing Spare Cells That Are Not Included in the Netlist
If the netlist does not include spare cell instances, you must create a spare module and place it before you place the standard cells.

1. Use the following command to create a spare module:
createSpareModule

2. Use the following command to place the module:
placeSpareModule

To delete a spare module, use the following command:

deleteSpareModule

For more information, see the following commands in the "Placement Commands" chapter of the Innovus Text Command Reference:

createSpareModule

placeSpareModule

deleteSpareModule

Spare Cell Placement Behavior
If there are no floorplanning constraints, or if the design has not been floorplanned, the software places spare cell instances
randomly in the core area.

If a spare cell instance is contained in a fence or a region, the software places the instance randomly in the fence or region that
includes the instance.

If spare cell instances in the netlist are grouped into modules, the software places the modules in a grid fashion in the core
area.

Note: For information on controlling spare cell placement when hierarchy is an issue, see "Running Hierarchy-Aware Spare
Cell Placement"

Spare cell distribution is dependent upon the way spare cells are connected.

September 2022 548 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/setPlaceMode.html
../innovusTCR/specifySpareGate.html
../innovusTCR/createSpareModule.html
../innovusTCR/placeSpareModule.html
../innovusTCR/deleteSpareModule.html

If the spare cells are floating (that is, if they are not connected) or they are connected to power or ground, they are evenly
distributed in the placement area.

If the spare cells have connections to other spare cells, they are treated as a spare cell group and are placed close to one
another in the placement area.

If the spare cells, or a group of spare cells, have a connection to a non-spare cell instance, they are placed close to that
instance.

To instruct the software to disregard spare cell connections and distribute the cells evenly in the placement area, complete one of the
following steps before running placement:

Specify the following command:
setPlaceMode -place_global_ignore_spare true

Select the Ignore Spare Cell Connections option on the Placement page of the Design - Mode Setup form.

For more information, see setPlaceMode in the "Placement Commands" chapter of the Innovus Text Command Reference.

Running Hierarchy-Aware Spare Cell Placement
To control placement of spare cells or modules in the netlist when hierarchy is an issue, use the following commands:

specifySpareGate { -hinst | -inst}

setPlaceMode -place_global_module_aware_spare {true | false}

The following examples and figures show how these commands affect placement.

specifySpareGate -inst blk1/spare_1/*

Works also for specifySpareGate -hinst

setPlaceMode -place_global_module_aware_spare true

place_design

To place the spare cells evenly in the core, without binding them to the lt_top_0_i hierarchy, use the following commands:

for {set x 0} {$x <6} {incr x 1} {

specifySpareGate -inst lt_top_0_i/spare_${x}i/*

}

place_design

Though spare gates in the netlist are under a particular hierarchy, they get evenly spread across the core area by default and are not
restricted to hierarchy bounds. In the figure below, the instances highlighted in white belong to the same module. The red instances
(enclosed in white) are the spare gates associated with the module. They are spread throughout by default.

September 2022 549 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/setPlaceMode.html

The log file, before Iteration 1, contains the following information: Identified 240 spare or floating instances, with no
clusters.

To place the spare cells within the bounds of the lt_top_0_i hierarchy, using the following commands:

for {set x 0} {$x <6} {incr x 1} {

specifySpareGate -inst lt_top_0_i/spare_${x}i/*

}

setPlaceMode -place_global_module_aware_spare true

place_design

The following figure shows the spare gates (red) spread only within the bounds of the same module.

September 2022 550 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

The log file, before Iteration 1, contains the following information: Identified 240 spares within logical modules.

To spread out the spare cells evenly as six clusters in the core, without binding them to the lt_top_0_i hierarchy, use the following
commands:

for {set x 0} {$x <6} {incr x 1} {

specifySpareGate -hinst lt_top_0_i/spare_${x}i/*

}

place_design

September 2022 551 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

The log file, before Iteration 1, contains the following information: Identified 240 spares or floating instances, where some
are grouped into 6 clusters.

To place the spare cells within the bounds of the lt_top_0_i hierarchy, use the following commands:

for {set x 0} {$x <6} {incr x 1} {

specifySpareGate -hinst lt_top_0_i/spare_${x}i/*

}

setPlaceMode -place_global_module_aware_spare true

place_opt_design

September 2022 552 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

The log file, before Iteration 1, contains the following information: Identified 240 spares within logical modules, of which 240
are in 6 spare-only modules.

Adding Padding
Add padding to reserve placement space for cells or routing added after placement, for example, to make sure there is room to insert
clock buffers when running Clock Tree Synthesis (CTS) on a highly localized clock. The software adds the padding on the right side
of placed instances at a default metal2 pitch dimension.

You can add padding to instances, leaf cells, and hierarchical modules.

Adding Instance or Module Padding
Instance padding and module padding reserve space during global placement so it can be used later in the design flow, for cells
added during placement legalization, Clock Tree Synthesis (CTS), or timing optimization.

Note: Cell padding is ignored by refinePlace if instances are fixed. Use setPlaceMode [-place_detail_pad_fixed_insts {true |
false}] if cell padding needs to be honored for fixed instances. For more information, see setPlaceMode .

If the clock in your design is concentrated in a tight area, reserve three to five percent of the targeted final utilization to add
clock buffers. If your initial settings do not provide sufficient space for the buffers, add more padding and rerun placement after
CTS or placement optimization.

September 2022 553 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/setPlaceMode.html

Adding Instance Padding

Instance padding is specified in terms of the number of sites occupied by each instance. For example, if a row fits 30 single-site
instances without padding, you can specify padding of two sites for each instance in the row. In this case, each instance in the row
will then occupy three sites, and the row will fit only 10 instances.

1. Specify the following command:
specifyInstPad

2. (Optional) Report instance padding by using the following command:
reportInstPad

To delete instance padding, use the following command:
deleteInstPad

For more information, see the following commands in the "Placement Commands" chapter of the Innovus User Guide:

specifyInstPad

reportInstPad

deleteInstPad

Adding Module Padding

To reduce localized congestion, add module padding.

1. Specify the following command:
setPlaceMode -place_global_module_padding module factor

This command adds padding within hierarchical modules by spreading out the standard cell instances within the modules. The
padding is specified in terms of a factor that is applied to the instance area of all the cells within the module. For example, a
factor of 1.2 increases the area by 20 percent.

Note: The software ignores factors that are less than 1.0.

2. Run standard cell placement.

For more information, see setPlaceMode in the "Placement Commands" chapter of the Innovus User Guide.

Adding Cell Padding
Cell padding adds hard constraints to placement. The constraints are honored by cell legalization, CTS, and timing optimization,
unless the padding is reset after placement so those operations can use the reserved space. You can use cell padding to reserve
space for routing.

Specify the following command:
specifyCellPad

This command adds padding on the right side of library cells during placement. (Padding location is dependent on the
orientation of the cell. For example, if the library cell is flipped when it is instantiated, the padding is on the left side.) The
padding is specified in unit of placement SITE. For example, if you specify a value 2, the software ensures that there is
additional clearance of two placement SITES on the right side of the specified cells.

To delete cell padding, use the following command:

September 2022 554 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/specifyInstPad.html
../innovusTCR/reportInstPad.html
../innovusTCR/deleteInstPad.html
../innovusTCR/setPlaceMode.html
../innovusTCR/setPlaceMode.html

deleteAllCellPad

For more information, see the following commands in the "Placement Commands" chapter of the Text Command Reference:

specifyCellPad

deleteAllCellPad

 Placing Standard Cells
Place standard cells with the place_opt_design command. By default, the command runs preplacement optimization and standard
cell placement. It also assigns or reassigns IO pins that are not in preplaced status and executes preCTS flow with both placement
and preCTS optimization.

If you specified SDC timing constraints, it runs in timing-driven mode by default. If you specified scan information, it performs scan
tracing and reordering by default.

This command was designed as a super command; that is, with some exceptions, you can use it to place standard cells without
specifying any placement options for your initial placement.

To reduce to switching power on power-critical nets, consider running the following command before placing standard cells:
setPlaceMode -place_global_clock_power_driven true

Tune the initial placement by trying the following techniques:

If the design is congested, try the following command, then rerun placement:
setPlaceMode -place_global_cong_effort high

If the design has local congestion, try the following command, then rerun placement:
setPlaceMode -place_global_module_padding module factor

Related Topics

place_design and setPlaceMode in the "Placement Commands" chapter of the Text Command Reference

Running Placement in Multi-CPU Mode
The place_opt_design command and the addFiller command supports multi-threading. Multi-threading accelerates placement by
splitting a job into two or more tasks that run concurrently on a single machine that has multiple processors. The placement
acceleration is not linear, however, because some set-up and synchronization time is required.

Multi-threading requires additional licenses. The number of additional licenses required is dependent on the "base" Innovus Digital
Implementation System license (the base license is the license used to invoke the software) and the number of threads you want to
use.

If place_opt_design does not place the standard cells, for example if all instances are fixed or if there is no placeable area,
then place_opt_design also skips I/O pin assignment.

September 2022 555 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/specifyCellPad.html
../innovusTCR/deleteAllCellPad.html
../innovusTCR/place_design.html
../innovusTCR/setPlaceMode.html

Multi-Threading Placement Steps
To run multi-threading placement, complete the following steps. You can complete these steps before running any commands that
run multiple-CPU processing, or before running placement. Because the Innovus software has a common interface for multiple-CPU
processing (multi-threading or distributed processing), you need specify these commands only once per session, and any
application that can run in multiple-CPU processing mode can use the additional licenses and processors.

1. (optional) Use the following command to specify the number of multiple-CPU licenses to check out and the license check-out
order:

setMultiCpuUsage [-acquireLicense integer] [-localCpu {integer | max}]\
[-licenseList licenses]

If you do not use this command, the software runs it automatically, using a default check-out order and requesting the
appropriate number of licenses based on the parameters you set for setMultiCpuUsage.

2. Use the following command to specify the maximum number of threads to use:

setMultiCpuUsage -localCpu {integer | max}

If you request more threads than are available, the software uses the maximum number that are available.

Note: It is generally not a good idea to request more threads than the number of CPUs in your machine, as it will slow down
the machine and waste licenses.

3. (optional) Use the following command to release the additional licenses after global placement:

setMultiCpuUsage -keepLicense true

setMultiCpuUsage -releaseLicense

4. Run global placement.

The log file reports the number of threads used for multi-threading placement just before it shows the global placement
iterations, for example:
Placement running 2 threads

5. (optional) Check the run-time information at the end of the place_opt_design section of the log file.
(cpu for global=1:25:08) real=0:50:32***
Placement multithread real runtime: 0:50:32 with 2 threads.
Core Placement runtime cpu: 1:14:24 real: 0:41:42
Starting refinePlace ...

To get the greatest benefit from multi-threading, your placement job should be the only job running on your machine. You
should avoid all other tasks, even a regular system backup. For example, a machine with four CPUs that is running backup or
other system tasks that occupy one CPU might show less speed-up with four threads than a machine running no system tasks
that is running global placement with three threads.

Alternatively, run the following command after placement to release the additional licenses immediately:

September 2022 556 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

The number to look for in the log is Placement multithread real runtime. In the preceding example, the Placement
multithread real runtime is 0:50:32.

Calculating Multi-Thread Speed-Up

The amount of time used for global placement is calculated by using the following formula:

Global Placement = Core Placement + Timing Analysis + Congestion Analysis

In some designs, when timing and congestion analysis consume a high percentage of run time, the speed-up factor from multi-
threading is not significant.

In the preceding example, if only one thread were used, the log would have reported the following:

.log

Finished Global Placement (cpu=0:00:18.3, real=0:00:18.0, mem=1559.9M)

*** Starting place_detail (0:03:42 mem=1545.7M) ***

.logv

Finished Global Placement (cpu=0:00:18.3, real=0:00:18.0, mem=1559.9M)

Solver runtime cpu: 0:00:13.0 real: 0:00:13.1

Core Placement runtime cpu: 0:00:18.0 real: 0:00:18.0

Starting place_detail (0:03:42 mem=1545.7M) ***

For multithreading, the log would have reported the following:

.log:

Finished Global Placement (cpu=0:00:25.6, real=0:00:13.0, mem=1339.6M)

*** Starting place_detail (0:00:51.1 mem=1295.4M) ***

.logv

MT:

Finished Global Placement (cpu=0:00:25.6, real=0:00:13.0, mem=1339.6M)

Placement multithread real runtime: 0:00:13.0 with 8 threads.

Solver runtime cpu: 0:00:18.6 real: 0:00:06.3

Core Placement runtime cpu: 0:00:25.2 real: 0:00:12.0

*** Starting place_detail (0:00:51.1 mem=1295.4M) ***

Comparing the times from the two log segments gives the following calculations:

real time (1 thread) = 1:15:09 = 4509 seconds

real time (2 threads) = 0:50:32 = 3032 seconds

4509 / 3032 = 1.49

If other jobs are running during multi-threading placement, the real time includes the run time for those jobs, so you do not get
an accurate speed-up comparison.

September 2022 557 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

Related Topics

Accelerating the Design Process By Using Multiple-CPU Processing

Multiple-CPU Processing Commands chapter in the Text Command Reference.

Checking Placement
Use the following methods to check placement:

Amoeba view
For more information, see The Main Window chapter in the Innovus Menu Reference.

checkPlace command

For more information, see checkPlace in the "Placement Commands" chapter of the Innovus Text Command Reference.

Placement density map
For information, see the following references:

"Placement Commands" chapter of the Innovus Text Command Reference

getDensityMapMode

reportDensityMap

setDensityMapMode

"Placement Menu" chapter of the Innovus Menu Reference

 Display Density Map

Violation Browser

Note: The Violation Browser does not indicate the layer on which a placement violation occurs.

Using the Amoeba View
Use the Amoeba view to see the placement of modules and blocks. For example, in the following figure you can see the outlines of
the hard blocks and the modules, and that the instances in each of the modules are placed closely together.

September 2022 558 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/Multiple-CPU_Processing_Commands.html
../innovusMR/The_Main_Window.html
../innovusTCR/checkPlace.html
../innovusTCR/getDensityMapMode.html
../innovusTCR/reportDensityMap.html
../innovusTCR/setDensityMapMode.html

To display the Amoeba view, select the Amoeba view widget from the Views panel in the main Innovus window.

For more information, see The Main Window chapter in the Innovus Menu Reference.

Using the Density Map
Use one of the following methods to turn the display of the density map on or off:

Select Density Map on the list of Visibility toggles in the main Innovus window.

Clock the All Colors button to open the Color Preferences form, then select the View Only tab, and select Density Map, in the
Multi-Color Layers section.

Adding Filler Cells
The software uses filler cells to fill the gaps between standard cell instances. Filler cells also provide decoupling capacitance to
complete the power connections in the standard cell rows and extend N-well and P-well regions. The reason to add them as the last
placement step is that you cannot run in-place optimization after they are added. If filler cells are added after routing, the software
checks for DRC violations between regular nets and the filler cells.

To add filler cells, use the addFiller command.

Add Filler recognizes whether a filler cell has implant layer geometries and attempts to add fillers that honor the implant layers' width,
spacing and minimum area rules. By judicious selection of filler cells, the software can correct implant layers' minimum
spacing errors by putting in same voltage threshold implant layer fillers in spaces between two same implant layer cells. Add Filler
also avoids creating implant layer minimum width and minimum area errors by abutting fillers of same implant layer as the adjacent
cells, thus extending the implant layer width.

Provide a list of filler cells so that at least one filler cell can be used to fill the space without causing DRC violations.

September 2022 559 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusMR/The_Main_Window.html
../innovusTCR/addFiller.html

Adding Fillers to MSV Designs
In cases where there are different voltages in the same design, also known as a multi-voltage (MSV) design, you might need to
specify the power domain in which the fillers are to be inserted using the -powerDomain parameter of the addFiller command.

Default: If this parameter is not specified, and a list of filler cells is specified with the -cell parameter, the addFiller command tries
to add fillers to all power domains.

Deleting Filler Cells
To remove added filler cells, use the deleteFiller command. If you specify an area, the deleteFiller command deletes only filler
cells that are completely contained within the area; it does not delete filler cells that cross the area boundary.

Placing Gate Array Style Filler Cells for Post-Mask ECO
You can use pre-existing Gate Array (GA) style filler cells in regular CORE sites during a post-mask ECO flow. As such, the placer can
add GA fillers at any grid location, rather than in a GA CORE grid.

Specify the following command:
ecoPlace -useGAFillerCells GAFillerCells

The placer first finds the optimal location each instance based on its connectivity, then searches for the nearest GA filler cell that is
equal to or larger in size. A GA cell is placed at the GA filler location, and the original GA filler is deleted.

If the GA filler is larger than the GA cell, the placer creates a new GA filler instance using the list of GA filler cells you provide and
places the filler in the gap.

Add Filler expects to be provided with cells of all types of implant layers to be able to completely fill the design's core area
with fillers. For example, if only a low-voltage implant layer filler is provided, and the abutting logical cell has a high-voltage
implant layer, then Add Filler places the provided low-voltage implant filler only if its width satisfies the minimum width rule for
that implant layer.

September 2022 560 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/addFiller.html
../innovusTCR/deleteFiller.html

The ecoPlace command also contains options that let you map unplaced standard cells to spare cells, and map GA cells to GA core
sites. You can specify that instances that are PLACED cannot be moved.

For more information, see the following command in the Innovus Text Command Reference:

ecoPlace in the "Interactive ECO Commands" chapter

Adding Decoupling Capacitance
Adding decoupling capacitance to a design can help maintain a stable voltage between power and ground when signal nets switch.
This can reduce IR drop for power nets and limit bouncing on ground nets.

The Innovus software adds decoupling capacitance by choosing from the specified available decoupling capacitance cell
candidates, and adding enough cells until their combined total capacitance value equals the user-specified value. You can insert
decoupling capacitance homogeneously inside a specified area, or based on the peak current density of the instances in the area.

1. To define the cells to use for decoupling capacitance insertion, use the addDeCapCellCandidates command.
For example, the following commands define two decoupling capacitance cell candidates:
DECAP10 has a capacitance value of 10fF, and DECAP8 has a capacitance value of 15fF.

addDeCapCellCandidates DECAP10 10
addDeCapCellCandidates DECAP8 5

2. To add the specified total decoupling capacitance to the design, use the addDeCap command.
For example, the following command adds 1000 fF of capacitance to the design using DECAP10 and DECAP8 cells:
addDeCap 1000 -cells DECAP10 DECAP8

Deleting Decoupling Capacitance
To clear all available decoupling cell candidates, use the clearDeCapCellCandidates command.

To delete all of the decoupling capacitance cells in a design, use the deleteDeCap command.

 Adding Logical Tie-Off Cells
Tie-off cell instances provide connectivity between the tie-hi and tie-lo logical input pins of the netlist instances to power and ground.
This connectivity does not cross the hierarchy module boundaries. The number of tie-off instances added can be controlled by
setting the distance and fanout constraints using the setTieHiLoMode command.

To add logical tie-off cells to the design after placing the netlist, use the Place Menu - Add Tie Hi/Lo form or the addTieHiLo

September 2022 561 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/ecoPlace.html
../innovusTCR/addDeCapCellCandidates.html
../innovusTCR/addDeCap.html
../innovusTCR/clearDeCapCellCandidates.html
../innovusTCR/deleteDeCap.html
../innovusTCR/setTieHiLoMode.html
../MRcom/Place_Menu.html
../innovusTCR/addTieHiLo.html

 command. To remove added logical tie-off cell instances, you can use the deleteTieHiLo command.

Saving Placement Data
You can save placement data in the Innovus place format or in DEF and PDEF placement data formats. This can be done at any
time after running placement. To save placement data, use the saveDesign command.

 Specifying and Placing JTAG and Other Cells Close to the I/Os
You can constrain the placement of JTAG cells and other cells so they are placed close to the outer core area. Place these cells
before you run placement in the rest of the design.

When the software runs JTAG placement, it creates a temporary blockage over the area where the cells must not be placed and
removes it after the placement.

You can constrain the placement of instances, hierarchical instances, or cells.

1. Use the following command to constrain placement:
specifyJtag

To include instances or cells other than JTAG cells, you must identify them with the specifyJtag command.

To undo the specification, use the following command:
unspecifyJtag

2. To place the instances or cells, use the following command:
placeJtag

3. (optional) To generate a report of the JTAG placement, use the following command:
reportJtagInst

To undo JTAG placement, use the following command:

unplaceJtag

Related Topics

For more information, see the following commands in the "Placement Commands" chapter of the Innovus User Guide:

specifyJtag

unspecifyJtag

placeJtag

reportJtagInst

unplaceJtag

traceJtag

If you do not want to place regular instances in the JTAG outer core area after running JTAG placement, specify a placement
blockage prior to running placement.

September 2022 562 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/deleteTieHiLo.html
../innovusTCR/saveDesign.html
../innovusTCR/unplaceJtag.html
../innovusTCR/specifyJtag.html
../innovusTCR/unspecifyJtag.html
../innovusTCR/placeJtag.html
../innovusTCR/reportJtagInst.html
../innovusTCR/unplaceJtag.html
../innovusTCR/traceJtag.html

Optimizing and Reordering Scan Chains
The place_opt_design command reorders scan chains by default, unless it is in prototyping mode. If you decide not to reorder scan
cells with place_opt_design but run standalone scan chain reorder flow, use the information provided in this section.

Related Topics

To see this step in the design flow, see "Place the Design and Run PreCTS Optimization" in the Innovus Foundation Flows: Flat
Implementation Flow Guide.

 Specifying Scan Cells
Scan cells are usually identified and read automatically from the timing library during design import. Use the specifyScanCell
 command to define scan cells that the software cannot retrieve from the library.

You can specify scan chains in a design by defining them in a DEF file, or by using the specifyScanChain command.

If scan chains are specified by reading in a DEF file, the software does a native scan trace. The scan DEF file is stored in the
database and, when the scanReorder command runs, the software matches the scans and honors the ordered segments.
However, if you run specify setPlaceMode -place_global_reorder_scan false, the software does not perform scan chain
reordering, so the DEF file will not include the + ORDERED statement in the SCANCHAINS section.

 About Scan Chains
If you do not need to retain the scan chain order in your design, you can change the order of the scan flip-flop connections along any
or all scan chains. Changing the connection order eases connection constraints on the scan cells, but does not constrain their
placement.

To facilitate reordering of the scan nets, uniquify the incoming netlist and make sure that it does not contain Verilog assignment
statements involving scan nets. A scan net is a net that resides along the scan datapath--that is, a net that connects the scan flip-
flops in a scan chain.

When the Innovus software reads the netlist, it outputs the following messages:

Reading netlist ...

Reading verilog netlist ". fileName "

Inserting temporary buffers to remove assignment statements.

Reordering Scan Chains
Use one of the following approaches to scan chain reordering:

Native scan reordering

Use this approach in the following conditions:

Single-clock domain, single-edge chains

Multiple clock domain chain segments separated by data lockup elements

Shared functional output signal chains

ScanDEF-based reordering

September 2022 563 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/specifyScanCell.html
../innovusTCR/specifyScanChain.html
../innovusTCR/scanReorder.html
../innovusTCR/setPlaceMode.html

Use this approach in the following conditions:

All simple scan chain architectures (handled by the native approach)

Implied domain transition scan chains (without data lockup elements)

Scan chains with ordered segments

Scan chains generated by LogicVision software

After reordering scan chains, save a netlist of the design using one of the following methods:

Save - Netlist form (Design - Save - Netlist)

saveNetlist command

Native Scan Reordering Approach

Use the native approach to scan chain reordering when you do not have a scanDEF file.

This approach requires that you use the specifyScanChain command to identify the START and STOP signals of the top-level chains, or
chain segments, in the netlist. Using this information, the software identifies the scan flip-flops along the scan chain when running
the scanTrace command to analyze the scan flip-flop connections. You can also auto-detect data lockup latch elements using
the scanTrace -lockup command.

If the scan cells are not listed in the timing library, you must specify them before tracing the scan chains. You can identify scan cells
with the specifyScanCell command.

After scanTrace has identified the elements along the chain, complete the following steps:

1. (Optional) Ignore the scan connections:
setPlaceMode -place_global_ignore_scan true

2. (Optional) Set scan reorder options:
setScanReorderMode -skipMode [skipNone | skipBuffer | skipFloatingBuffer]

3. Run placement:
place_opt_design

The recommended flow for scan chains that have data lockup latches is as follows:

1. Specify a scan chain in the design:
specifyScanChain

2. Trace the scan chain connection with the automatic detection lockup latch elements:
scanTrace -lockup [-verbose]

3. (Optional) Ignore the scan connections:
setPlaceMode -place_global_ignore_scan true

4. (Optional) Set scan reorder options:
setScanReorderMode -skipMode [skipNone | skipBuffer | skipFloatingBuffer]

5. Run placement:

September 2022 564 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/saveNetlist.html

place_opt_design

The recommended flow for scan chains that have data lockup flip-flops is as follows

1. Specify a scan chain in the design:
specifyScanChain ...

2. Specify a cell or instance as a lockup flip-flop element:
specifyLockupElement ...

3. (Optional) Ignore the scan connections:
setPlaceMode -place_global_ignore_scan true

4. (Optional) Set scan reorder options:
setScanReorderMode -skipMode [skipNone | skipBuffer | skipFloatingBuffer]

5. Run placement:
place_opt_design

Note: The scanReorder command automatically calls scanTrace internally if you have not previously run scanTrace. By default, this
internal scanTrace run specifies that the tracing will not detect lockup elements (-noLockup); therefore, if you have lockup latches,
Cadence recommends using the scanTrace -lockup command before scanReorder, or specifyLockupElement prior to
running scanReorder.

Valid Design Types

You can use the native approach to scan chain reordering on designs comprising a simple scan chain architecture with the following
characteristics:

Single-clock domain, single-edge chains
In the following figure, all foo_reg scan flip-flops are triggered by the same clock domain and phase.

foo_reg_1, foo_reg_2, and foo_reg_2 scan flip-flops are triggered by clk1 (positive edge).

specifyScanChain chain1 -start SI -stop SO

scanTrace [-verbose]

Multiple clock domain chain segments separated by data lockup elements
In the following figure, all domain or edge transitions are separated by a data lockup element.

September 2022 565 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

foo_reg_1 and foo_reg_2 scan flip-flops are triggered by clk1 (positive edge).

foo_reg_3 and foo_reg_4 scan flip-flops are triggered by clk2 (positive edge).

LU represents a data lockup element of type latch.

specifyScanChain chain1 -start SI -stop SO

scanTrace -lockup [-verbose]

All elements along the scan chain are assumed reorderable from the specified START and STOP signals unless there is a
data lockup element in the scan data path. The presence of a data lockup element works as a boundary so that the chain
segments on either side of the lockup element are individually reordered. For this example, the top-level chain is
reordered as two individual scan chain segments:

reorderable segment 1: SI > LU/D

reorderable segment 2: LU/Q > SO

Shared functional output signal chains

If the STOP signal of the scan chain is also a shared functional output, the endpoint of the scan chain must be specified to the
scan input (SI) pin of the last register in the scan chain, or to the data input pin of the multiplexer (MUX), which drives the
shared functional output signal. This is necessary because scanTrace does not perform the forward trace from the last flip-flop
in the scan chain through the MUX instance. The following figure is an example of shared functional output:

The following command sequence performs the forward trace from the last flip-flop in the scan chain to the MUX instance:

specifyScanChain chain1 -start in[0] -stop MUX/B

scanTrace -lockup [-verbose]

The following command sequence does not perform the forward trace from the last flip-flop through the MUX
instance; scanTrace will not succeed:

specifyScanChain chain1 -start in[0] -stop out[0]

scanTrace -lockup [-verbose]

September 2022 566 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

Scan Chains with Two-Pin Logic Cells

Scan chains often contain two-pin logic cells, usually buffers. The scan tracing algorithm always recognizes and traces through two-
pin cells. The scanReorder command parameters control whether two-pin cells remain in the scan chain after scan reordering.

In the following scan chain example, buffer A is in the scan chain, but not part of the functional logic of the design, and therefore can
be deleted. Buffer B is part of the functional logic, and must not be deleted.

The scanReorder -skipMode skipNone command retains all two-pin cells in the scan chain, and reordering changes only the
connections to the two-pin cells' outputs. The nets connected to the two-pin cells' inputs will not be modified. In the preceding
example, both buffers A and B would be retained, and scan reordering would be performed by rearranging the scan input pin
connected to their output nets.

The scanReorder -skipMode skipBuffer command reconnects the scan chain so that buffers (as defined by setBufFootPrint) are
skipped. Buffers that are not part of the functional logic are deleted. This disconnects scan inputs and reconnects them directly to a
scan output pin, skipping all buffers. Any two-pin cells that are not buffers are retained in the scan chain in the same manner
as skipNone.

In the preceding example, buffer A would be deleted and functional buffer B would be retained in the netlist. Scan reordering would
disconnect the scan input pin from the output of buffer B, and reconnect some other scan input pin to the input net of buffer B, so
buffer B would no longer be in the scan chain.

The scanReorder -skipMode skip_floating_buffer command works the same as scanReorder -skipMode skipBuffer, except that
it is not limited to buffers. Any two-pin cell will be treated as skipBuffer would treat a buffer.

Because scanReorder -skipMode skip_floating_buffer does not consider the functionality of cells that it removes from the
scan chain, it can change the scan chain in unpredictable ways. For example, if buffer A in the preceding example was an
inverter, it would be removed, and the test pattern would have to be changed to account for the loss of inversion.

September 2022 567 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

scanDEF-Based Reordering Approach

If you have a scanDEF file that describes the set of reorderable scan chains in the design, Cadence recommends using the
scanDEF approach. To reorder scan chains with the scanDEF approach, complete the following steps:

1. Read in the scanDEF file:
defIn -scanChain
Note: In the case where a DEF file contains a SCANCHAIN section, the defIn command automatically reads in
the scanDEF file, so the -scanChain parameter is not necessary.

2. Run placement:
place_opt_design

Using the scanReorder Command

When running the scanReorder command, the Innovus software uses the begin and endpoints from the scanDEF chains to trace the
connectivity of the scan chains in the netlist. This check verifies whether the elements in the netlist scan chains are represented as
elements in their respective scanDEF chains. As a result of this check, an internal representation of each scanDEF chain is created
in the Innovus database.

When a netlist-to-scanDEF file mismatch occurs, for each instance mismatched, scanReorder issues the following WARNING
message:

WARNING (SOCSC-5003): The scan chain was found to pass through instance <inst> in the netlist, but this instance

does not appear in the DEF scan chain.

Mismatches of combinational components (buffers or inverters) in the scan data path can be expected if the netlist has undergone
pre-placement optimization, or if the scanDEF file is not properly formatted, as described in Netlist-to-scanDEF mismatch section.
Sequential mismatches are tolerated if the mismatch occurs for a scan flop from the FLOATING section only of the scanDEF chain.
However, sequential mismatches are not expected and indicate a discrepancy between the scan chains in the netlist, and the
scanDEF chains. You should investigate the source of the discrepancy before proceeding with reordering. If necessary, revise the
scanDEF description of the scan chains.

Using the internal representation of the scanDEF chains, Innovus issues the following message prior to reordering the chains in the
netlist:

INFO: Scan reorder based on traced netlist chains.

INFO: Medium effort Scan reorder

INFO: Reordering scan chain <chainName>

Netlist-to-scanDEF Mismatch

Netlist-to-scanDEF mismatches can occur if a driving scan flip-flop is buffered (or inverted) to the SI pin of the next scan flip-flop in
the scan chain. In this situation, the driving scan flop and buffer (or inverter) should be captured to the scanDEF file as an ORDERED
segment, rather than capturing the driving scan flip-flop as a freely reorderable element in the FLOATING section of the scanDEF
chain. The correct syntax for the FLOATING and ORDERED sections of the scanDEF file is as follows:

- chain X

 + START PIN

 + FLOATING

 next_scan_flop_reg (IN SI) (OUT SO)

 + ORDERED

 driving_scan_flop_reg (IN SI) (OUT SO)

 buf_instance (IN A) (OUT Y)

 + STOP

September 2022 568 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

In previous releases of Innovus, when a scanDEF to netlist mismatch occurred, scan reorder would abort. If the mismatches were
due to combinational components (buffers or inverters) in the scan data path, tool would automatically correct scan connection:

For backward compatibility, these options are maintained in this release of the tool. However, in order to leverage the new netlist-to-
scanDEF tracing feature, you should remove these parameters from the scanReorder command

scanDEF File Format

The scanDEF file follows a pin-based format that describes the set of scan chains or chain segments which are reorderable in the
design. The syntax is as follows:

SCANCHAINS numScanChains ;

 [- chainName

 [+ COMMONSCANPINS [(IN pin)][(OUT pin)]]

 [+ START {fixedInComp | PIN} [outPin]]

 {+ FLOATING {floatingComp [(IN pin)] [(OUT pin)]}...}

 [+ ORDERED

 {fixedComp [(IN pin)] [(OUT pin)]

 fixedComp [(IN pin)] [(OUT pin)]}

 [fixedComp [(IN pin)] [(OUT pin)]]...]

 [+ STOP {fixedOutComp | PIN} [inPin]] ;]...

END SCANCHAINS

The logic synthesis tool writes the input scanDEF file after the top-level scan chains are created in the design. Each top-level scan
chain can be segmented into multiple scanDEF chains because the elements along each scanDEF chain must belong to the same
clock domain, and be triggered by the same active edge of clock. Scan flip-flops that are freely reorderable along the scan chain are
captured to the FLOATING section. Fixed segments (a set of connected elements), which are reordered as a fixed entity along the scan
chain, are captured to the ORDERED section. Each scan chain must also have a START and STOP signal that defines the reordering start
and end points of the scan chain.

Note: You can use the following Genus command: write_scandef > fileName

Valid Design Types

You can use the scanDEF approach to reorder top-level scan chains. This section provides a reordering example for implied domain
transition scan chains, and an example of scan chains with fixed-ordered segments. You can also use this approach with all simple
scan chain architectures that can use the native approach, as well as scan chains generated by LogicVision software.

Implied domain transition scan chains
The scan flip-flops are triggered by alternate active edges of the same clock domain. The negative (positive) edge triggered
segment precedes the positive (negative) edge triggered segments, respectively. In the following example, the implied domain
transition occurs at neg2_reg to pos1_reg:

In this example, the two scan chain segments are as follows:

clk1 (negative edge) consisting of elements neg1_reg and neg2_reg

clk1 (positive edge) consisting of elements pos1_reg, pos2_reg, pos3_reg, and pos4_reg
Because the domain transition is done implicitly (without a data lockup element), the scan chain must be segmented

September 2022 569 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

../innovusTCR/scanReorder.html

to be properly reordered. In the scanDEF format, the top-level chain becomes two scanDEF chains, segmented by
clock domain and clock edge; the pos1_reg scan flip-flop is sacrificed to anchor the domain transition. This register
becomes an internal end and internal being point of scan DEF chains (chain1 and chain2 respectively):

SCANCHAINS 2 ;
- chain1

+ START pin in

+ FLOATING

 neg1_reg (IN SI) (OUT Q)

 neg2_reg (IN SI) (OUT Q)

+ STOP pos1_reg SI

;

- chain2

+ START pos1_reg Q

+ FLOATING

 pos2_reg (IN SI) (OUT Q)

 pos3_reg (IN SI) (OUT Q)

+ STOP pos4_reg SI

;

END SCANCHAINS

Note: The shared functional output signal (out) is not the STOP signal of the second scan chain segment. Instead, the
scan chain is terminated to the IN pin of the last scan flop in the positive-edge triggered segment (BuildGates/PKS), or
terminated to the data input pin of the MUX (other third-party tools).

Scan chains with ORDERED segments
An order segment is a set of connected elements that can be reconnected along the scan chain based on its placement.
Reconnection to the fixed segment occurs using the IN pin of the first element and the OUT pin of the last element of the
ordered segment. The connections of the other elements in the ordered segment are presumed connected and remain as
intact connections. When an ORDERED segment is reconnected in the scan chain, the location of the ORDERED segment
appears as a comment in the FLOATING section and again in the ORDERED section in order to correlate the segment to its
location in the FLOATING section. The notation is as follows:

ORDERED segment integer ;
The integer corresponds to as many ORDERED segments as defined in the original scan chain. For example, a scanDEF
chain with one ORDERED segment is as follows:

SCANCHAINS 1 ;

- chain0

 + START PIN scan_in

 + FLOATING

 out_reg_0 (IN SI) (OUT Q)

 out_reg_1 (IN SI) (OUT Q)

 out_reg_2 (IN SI) (OUT Q)

 out_reg_3 (IN SI) (OUT Q)

 + ORDERED

 out_reg_4 (IN SI) (OUT Q)

 u_buf (IN A) (OUT Y)

 + STOP PIN scan_out ;

END SCANCHAINS

After reordering the output, the scanDEF file is as follows:

SCANCHAINS 1 ;

- chain0

 + START PIN scan_in

September 2022 570 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

 + FLOATING

 out_reg_2 (IN SI) (OUT Q)

 out_reg_1 (IN SI) (OUT Q)

 # ORDERED segment 1

 out_reg_3 (IN SI) (OUT Q)

 out_reg_0 (IN SI) (OUT Q)

 + ORDERED

 # ORDERED segment 1

 out_reg_4 (IN SI) (OUT Q)

 u_buf (IN A) (OUT Y)

 + STOP PIN scan_out ;

END SCANCHAINS

Therefore, the connectivity of the elements along the reordered scan chain is as follows:

Saving Scan Files

After scan reorder is run, save a DEF file using the following command:

defOutBySection -noNets -noComps -scanChains

With this command, you can view the new order of elements along the scan chain.

To save scan files, use the Save DEF form or the defOut command.

Loading Scan Files

To load scan files in DEF format, use the Load DEF File form. For DEF, use the defIn command.

September 2022 571 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Placing the Design

Clock Tree Synthesis
Overview

Flow and Quick Start

Quick Start Example

Early Clock Flow

Use Model

Configuration and Method

CCOpt Properties

Route Types

Library Cells

Transition Target

Skew Target

Creating the Clock Tree Specification

Configuration Check

Controlling Useful Skew Effort in CCOpt

Common Specification Modifications

Restricting CCOpt Skew Scheduling

Method

Flexible H-Tree and Multi-Tap Clock Flow

Concepts and Clock Tree Specification

Graph-Based CTS

Clock Trees and Skew Groups

Pin Insertion Delays

Automatic Clock Tree Specification Creation

Manual Setup and Adjustment of the Clock Specification

Deleting the Clock Tree Specification

Chains

Reporting

Skew Groups

Including Non-Reporting Skews in Reports

Clock Trees

Clock Tree Network Structure

Pin Insertion Delays

Timing Data for CTS-Specific Reports

Worst Chain

September 2022 572 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Halo Violations

Cell Name Information

Clock Tree Convergence

Cell Filtering Reasons

Retrieving Information using Get Commands

Applying Library Cell Halos

Setting Cell Halos

Examples and Idiosyncrasies of the Clock Halo Properties

Clock Halo Priority Rules

Effective Clock Halos

Density Halos and Large Cells

Clock Halos and Siteless Cells

Clock Halo Sum Mode

Enabling Timing Connectivity-Based Skew Groups

Default Balancing Constraints

Timing Connectivity-Based Skew Groups

Balancing Ultimate Master Clocks

The Clock/Clock Balancing Relationships Report

Related Properties

CCOpt Clock Tree Debugger

Launching the CCOpt CTD

Key Features of the CTD

Additional Topics

Source Latency Update

Converting Library Path Delays to Clock Latencies

Debugging Unresolvable Skew Targets

Updating Annotations After Clock Tree Specification Creation

Preserving Components in the Clock Tree

Power Management

Shared Clock and Data Concerns

Inverting Clock Gates (ICG) CTS Transforms

CCOpt Property System

Setting Properties

Getting Properties

September 2022 573 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Overview
The Innovus™ Implementation System (Innovus) offers Clock Tree Synthesis (CTS) as part of full Clock Concurrent Optimization
(CCOpt) and as a stand-alone function. To invoke full CCOpt, which always includes CTS, use the ccopt_design command . To
invoke CTS as a stand-alone function, use the command, ccopt_design –cts.

CCOpt extends CCOpt-CTS to replace traditional global skew balancing with a combination of CTS, timing driven useful skew, and
datapath optimization. In traditional CTS flows, an ideal clock model is used before CTS to simplify clock timing analysis. With the
ideal clock model, launch and capture clock paths are assumed to have the same delay. After CTS, the ideal clock model is replaced
by a propagated clock model that takes account of actual delays along clock launch and capture paths. In traditional CTS, global
skew balancing attempts to make the propagated clock timing match the ideal mode clock timing by balancing the insertion delay
(clock latency) between all sinks. However, a number of factors combine such that skew balancing does not lead to timing closure.
These include:

OCV – On-chip variation means that skew, measured using a single metric such as the ‘late’ configuration of a delay corner, no
longer directly corresponds to timing impact because launch and capture paths have differing timing derates. In addition,
Common Path Pessimism Removal (CPPR) and per-library cell timing derates mean that it is not possible to accurately
estimate clock or datapath timing without synthesizing a clock tree. Advanced OCV (AOCV) further complicates this by adding
path and bounding box dependent factors.

Clock gating – Clock gating uses datapath signals to inhibit or permit clock edges to propagate from a clock source to clock
sinks. The clock arrival time at a clock gating cell is unknown prior to CTS and this arrival time determines the required time for
the datapath control signal to reach the clock gating cell enable input. Therefore, the setup slack at a clock gating enable input
is hard to predict preCTS. In addition, clock gating cells have an earlier clock arrival time than regular sinks and are, therefore,
often timing critical. Typically, the fan-in registers controlling clock gating may need to have an earlier clock arrival time than
regular sinks in order to avoid a clock gating slack violation – which means the fan-in registers need to be skewed early.

Unequal datapath delays – Front end logic synthesis will attempt to ensure that logic between registers is roughly delay-
balanced to optimize the target clock frequency. However, with wire delay dominating many datapath stages, it is likely that
after placement and preCTS optimization there will exist some combinational paths with unavoidably longer delays than
others. Useful skew clock scheduling permits slack to be moved between register stages to increase clock frequency. In
contrast, global skew balancing is independent of timing slack. In addition, CCOpt useful skew scheduling can avoid
unnecessary balancing of sinks where there is excess slack in order to reduce clock area and clock power.

CCOpt treats clock launch, clock capture, and datapath delays as flexible parameters that can be manipulated to optimize timing.
This is illustrated below.

Manipulating Clock Delays and Logic Delays

September 2022 574 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/ccopt_design.html

Manipulating Clock Delays and Logic Delays

At each clock sink (flip-flop) in the design, CCOpt can adjust both datapath and clock delays in order to improve negative setup
timing slack – specifically the high-effort path group(s) WNS. This is performed using the propagated clock timing model at all times.

For detailed information about the concept of moving slack between register stages and the concept of worst chains, see the
Chains section.

Flow and Quick Start
The diagram below highlights the CCOpt and CCOpt-CTS steps as part of the standard Innovus block implementation flow. In the
CCOpt flow, postCTS optimization is not required because ccopt_design includes postCTS style optimization both as part of CCOpt
and as a further final internal optimization step.

CCOpt and CCOpt-CTS in the Design Flow

September 2022 575 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

An important consideration for the CCOpt and CCOpt-CTS flows is the need for high quality multi-mode timing constraints. The best
strategy is to use postCTS timing constraints but with clocks in ideal clocking mode.

CTS is normally configured with multi-mode SDC constraints. This is recommended to get a complete clock tree network for CTS
and eliminate the need for multi-pass CTS flows. It also becomes critical when global timing optimization with CCOpt useful skew
scheduling is used for timing closure.

However, early clock tree feasibility and refinement of CTS strategy, flow, and settings can still be done with a limited constraint set.
When certain mode constraints are not yet available or complete, you can choose to do the following:

Continue CTS using the available modes - in early design stages only functional constraints may be available.

Use CCOpt commands to define clock trees and skew groups for modes where the SDC may not be ready.

Note: Avoid using ‘CTS-specific’ SDC, which may be used in other tools or inherited from older FE-CTS based flows.

Define the set of analysis views for CTS along with the constraint modes, depending on the maturity of the design and constraints
and what you need to achieve at this stage of the design.

Final tape out runs typically include multiple setup views and hold views. Earliest CTS feasibility is possible with one setup view.

CCOpt uses a “primary CTS delay corner” as the dominant corner for CTS construction and applies the global max_trans and skew
constraints in this delay corner. If not specified, the last specified setup corner from the SDC constraints is used. When using multiple
setup delay corners, it is recommended to explicitly set this to avoid changes to SDC or the order of constraint mode loading
accidentally changing this setting:

set_ccopt_property primary_delay_corner <chosen setup delay_corner>

To determine the number of views that are sufficient for CTS, follow these recommendations:

For early runs - one setup view may be sufficient

For robust clock tree implementation (DRV and so on) - sufficient rc_corners, for example, Cmax and RCmax or equivalent
views

September 2022 576 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

For setup timing optimization - all dominant setup views, which are typically one or two views

For hold fixing - all dominant hold views, which are typically one to three views

For final DRV checks - all necessary corners, but this checking can also be done later, for example, in Tempus

The diagram below summarizes the key configuration steps.

CCOpt and CCOpt-CTS Configuration Steps

It is important to apply the intended postCTS configuration before invoking CCOpt but with clocks still in ideal timing mode. This is
also recommended for use with CCOpt-CTS.

Switch to propagated timing model – CCOpt and CCOpt-CTS switch clocks to propagated mode and update source latencies of
clock root pins such that the average arrival time of clocks after CTS matches the before CTS ideal mode arrival times. This process
does not happen for clocks that are initially in propagated mode. The source latency update is important so that optimization of inter-
clock and I/O boundary paths during ccopt_design operates with correct timing. In contrast, in a traditional flow this would be done as
a separate flow step. For detailed information about the source latency update scheme, see the Source Latency Update section.

PostCTS configuration – CCOpt combines CTS with datapath optimization, replacing the need for a separate postCTS setup
timing optimization step. Before running CCOpt the session should be configured with postCTS uncertainties, CPPR enabled, OCV
timing derates or AOCV enabled, active analysis views, and all other settings appropriate for postCTS optimization. The
update_constraint_mode , setAnalysisMode , and setOptMode commands are most commonly used for configuring relevant
settings.

The example below illustrates a typical CCOpt/CCOpt-CTS configuration and run script. Some of these settings may also be
configured via the Foundation Flow environment.

September 2022 577 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/update_constraint_mode.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/setOptMode.html

Quick Start Example
Load postCTS timing constraints. This example loads functional mode and scan mode constraints intended for postCTS use. You
should ensure that clocks are not switched to propagated mode in these SDC files.

update_constraint_mode -name func -sdc_files func_postcts_no_prop_clock.sdc

update_constraint_mode -name scan -sdc_files scan_postcts_no_prop_clock.sdc

Declare the analysis views to be used during ccopt_design.

set_analysis_view -setup {func_max_setup scan_max_setup} -hold {func_min_hold scan_min_hold}

Define route types. A route type binds a non-default routing rule and preferred routing layers. NDRs can be defined via LEF or using
the add_ndr command.

create_route_type -name leaf_rule -non_default_rule CTS_2W1S -top_preferred_layer M5 -bottom_preferred_layer M4

create_route_type -name trunk_rule -non_default_rule CTS_2W2S -top_preferred_layer M7 -bottom_preferred_layer M6 -
shield_net VSS

create_route_type -name top_rule -non_default_rule CTS_2W2S -top_preferred_layer M9 -bottomf_preferred_layer M8 -
shield_net VSS

Specify that the route types defined above will be used for leaf, trunk, and top nets, respectively. Note that top routing rules will not be
used unless the routing_top_min_fanout property is also set.

set_ccopt_property -net_type leaf route_type leaf_rule

set_ccopt_property -net_type trunk route_type trunk_rule

set_ccopt_property -net_type top route_type top_rule

set_ccopt_property routing_top_min_fanout 10000

Specify that top routing rules will be used for any clock tree net with a transitive sink fanout count of over 10000.

Configure library cells for CTS to use. In this example, the logic_cells property is not defined so when resizing existing logic cell
instances CTS will use matching family cells which are not dont_use. The specification of a library cell overrides
any dont_use setting for that library cell.

set_ccopt_property buffer_cells {BUFX12 BUFX8 BUFX6 BUFX4 BUFX2}

set_ccopt_property inverter_cells {INVX12 INVX8 INVX6 INVX4 INVX2}

set_ccopt_property clock_gating_cells {PREICGX12 PREICG8 PREICGX6 PREICGX4}

Include this setting to use inverters in preference to buffers.

set_ccopt_property use_inverters true

Configure the maximum transition target.

set_ccopt_property target_max_trans 100ps

Configure a skew target for CCOpt-CTS (ccopt_design -cts). This is ignored by CCOpt (ccopt_design).

set_ccopt_property target_skew 50ps

Create a clock tree specification by analyzing the timing graph structure of all active setup and hold analysis views. The clock tree
specification contains clock_tree, skew_group, and property settings.

Alternatively, the specification can be written to a file for inspection or debugging purposes and then loaded.

create_ccopt_clock_tree_spec #create_ccopt_clock_tree_spec -file ccopt.spec
#source ccopt.spec

Run CCOpt or CCOpt-CTS

ccopt_design
#ccopt_design –cts

September 2022 578 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/update_constraint_mode.html
../innovusTCR/set_analysis_view.html
../innovusTCR/add_ndr.html
../innovusTCR/create_route_type.html

Report on timing

timeDesign –postCTS -expandedViews -outDir

Report on clock trees to check area and other statistics.

report_ccopt_clock_trees -file clock_trees.rpt

Report on skew groups to check insertion delay and, if applicable, skew.

report_ccopt_skew_groups -file skew_groups.rpt

Open the CCOpt Clock Tree Debugger Window. Alternatively, use the “CCOpt Clock Tree Debugger” entry in the main Clock menu.

ctd_win

For a more detailed explanation and recommendation on each of the above settings, see the Configuration and Method section. For
details of the clock tree specification system, see the Concepts and Clock Tree Specification section.

Early Clock Flow
The setDesignMode -earlyClockFlow true setting enables the early clock flow inside place_opt_design .

When this feature is enabled, CCOpt creates clock trees during place_opt_design , based on an initial clustering, and annotates
clock latencies for timing optimization. The flow also enables CCOpt ideal mode useful skew during the WNS/TNS fixing step
inside place_opt_design. The high-level flow is shown in the diagram below.

Note:

To use the early clock flow, the CTS configuration must be set up before running the place_opt_design command. For details,
see the Flow and Quick Start section.

Early clock flow mode place_opt_design -incremental reuses the existing early clock flow clock tree without any logical
or physical modification and makes adjustments only to useful skew using virtual delays. It is also essential to note that the
CCOpt clock tree spec must not be deleted between the original and incremental place_opt_design steps, just like it must not
be done between place_opt_design and ccopt_design, otherwise any useful skew will be lost.

Early Clock Flow

September 2022 579 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/timeDesign.html
../innovusTCR/report_ccopt_clock_trees.html
../innovusTCR/report_ccopt_skew_groups.html
../innovusTCR/setDesignMode.html
../innovusTCR/place_opt_design.html
../innovusTCR/place_opt_design.html

Use Model
Use the following commands to enable the early clock flow:

The setDesignMode -earlyClockFlow is set to true. By default it is set to false.

The table below outlines the combination of settings for early clock flow and useful skew CTS and the impact on place_opt_design
behavior as a result.

earlyClockFlow

usefulSkewPreCTS

Behavior in place_opt_design

false (default) false No clock tree building
No preCTS useful skew

false (default) true (default) No clock tree building
PreCTS useful skew (skewClock)

true false Clock tree clustering
No useful skew

true true Clock tree clustering
CCOpt ideal mode useful skew

September 2022 580 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/setDesignMode.html

Configuration and Method

CCOpt Properties
Configuration of CCOpt-CTS and CCOpt is performed using a combination of the clock tree specification and CCOpt properties.

To set a property:
set_ccopt_property [-object_type <object>] <property name> <property value>

To get a property:
get_ccopt_property [-<object_type> <object>] <property name>

To obtain help on a property, or to find properties matching a wildcard pattern:
get_ccopt_property –help <property name or pattern>

To obtain a list of all available properties use this command:
get_ccopt_property –help *

The help for each property indicates which object type(s) the property applies to. Many properties are global properties for which an
object type is not specified, but there are also properties that are applicable to specific object types including pins, skew groups,
clock trees, and types of nets.

For example:
get_ccopt_property –help target_max_trans
...
Optional applicable arguments: "-delay_corner name", "-clock_tree name", "-net_type name", "-early" and "-late".

For a summary of all parameters of the get_ccopt_property and set_ccopt_property commands, see the Innovus Text
Command Reference. You can also use the man command, for example: man get_ccopt_property

Note that some properties are read-only and can not be set. For further details of property manipulation, see the CCOpt Property
System section.

For descriptions of all public CCOpt properties, see the CCOpt Properties chapter.

Route Types
CCOpt-CTS and CCOpt use the concept of top, trunk, and leaf net types as illustrated below.

Clock Tree Net Types

Leaf nets – Any net that is connected to one or more clock tree sinks is a leaf net. By default, CCOpt-CTS and CCOpt will
insert buffers so that no buffer drives both sinks and internal nodes.

September 2022 581 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/get_ccopt_property.html
../innovusTCR/set_ccopt_property.html

Trunk nets – Any net that is not a leaf net is by default a trunk net.

Top nets – If you configure the routing_top_min_fanout property, then any trunk net which has a transitive fanout sink count
higher than the configured count threshold will instead be a top net. For example, if the property is set to 10,000, then any trunk
net that is above (in the clock tree fan-in cone) 10,000 or more sinks will be a top net.

You can define route types. A route type binds together a non-default routing rule (NDR), preferred routing layers, and a shielding
specification. For each net type (leaf, trunk, and optionally top) you can specify the route type that should be used. Non-default
routing rules can be defined via LEF or using the add_ndr command.

For example, the following command creates a route type with the name trunk_type that uses the CTS_2W2S non-default rule, with
preferred routing layers M6 and M7.

create_route_type -name trunk_type -non_default_rule CTS_2W2S
-top_preferred_layer M7 -bottom_preferred_layer M6
-shield_net VSS

The following command specifies that the trunk_type route type should be used for the trunk net type:

set_ccopt_property -net_type trunk route_type trunk_type

Top Net Configuration

As discussed above, the routing_top_min_fanout property can be configured with a sink count threshold to determine which nets
are considered top nets instead of trunk nets. For example:

set_ccopt_property -clock_tree clk500m routing_top_min_fanout 10000

By default, each clock tree sink counts as ‘1’ for the purposes of top net thresholds. For macro clock input pins it may be desirable to
treat the clock input pin as having a higher count, for example representing the number of internal state elements.
The routing_top_fanout_count property can be used to configure this.

For example, to specify that the clock input mem0/clkin to a memory should count as 1000 sinks, use the following command:
set_ccopt_property –pin mem0/clkin routing_top_fanout_count 1000

Routing Rule Recommendations

Clock net routing rules are crucial to obtaining low insertion delay and avoiding signal integrity problems. Especially for small
geometry process nodes, the following recommendations should be considered:

Configure the trunk net type to use double width double spacing and shielding. Prefer middle to higher layers subject to the
power grid pattern. Double width is recommended to reduce resistance and permit use of bar shape vias, with double spacing
to reduce the capacitance impact of shielding. Shielding is essential to avoid aggressors impacting clock trunk net timing, as
impact on clock trunk timing is often significant for both WNS and TNS.

Configure the leaf net type to use double width and prefer middle layers. Double width is recommended to reduce resistance.
Extra spacing is desirable, but extra spacing and/or shielding may consume too much routing resource.

Try to arrange for each net type (leaf, trunk, top) to use a single layer pair, one horizontal and one vertical, which have the same
pitch, width, and spacing. This increases the correlation accuracy between routing estimates before clock nets are routed and
actual routed nets.

September 2022 582 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/add_ndr.html

Library Cells
The library cells used by CCOpt-CTS and CCOpt are configured with the properties listed below. These cell lists may be configured
per-power domain and per-clock tree by using the -power_domain and -clock_tree keys for these properties, respectively.

To view detailed information about above properties, run the following command:

get_ccopt_property -help propertyname

For example:

get_ccopt_property -help buffer_cells

A Tcl list of symmetric buffer cells. All buffers created in the clock tree under a power domain will be instances of these cells.

Set the global property to specify buffer cells for all clock trees and all power domains:

set_ccopt_property buffer_cells {bufA bufB bufC}

Set the per-clock tree/power domain property to specify buffer cells for a particular clock tree and ALL power domains:

set_ccopt_property buffer_cells {bufX bufY} -clock_tree clk

Set the per-clock tree /power domain property to specify buffer cells for a particular clock tree and power domain:

set_ccopt_property buffer_cells {bufX bufY} -clock_tree clk -power_domain pd

By default CCOpt automatically selects appropriate cells.

Valid values: list lib_cell

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

The Quick Start Example illustrates commands to configure library cells. Specifying that CTS can use a library cell overrides any
user or library dont_use setting for that library cell.

The following are some recommendations:

Always specify library cells for buffers, inverters and clock gating.

Use low voltage threshold (LVT) cells. The resulting insertion delay will be lower leading to less impact of OCV timing derates,
therefore reducing the datapath dynamic and leakage power increase from timing optimization.

For many, but not all, low geometry processes inverters result in lower insertion delay and lower power than buffers. In older
technologies, buffers may be more efficient. The exact preference here is technology, library, and design target dependent.

Permitting the largest library cells to be used may be undesirable for electromigration reasons and can increase clock power.

Very weak cells, for example, X3 and below in many libraries, are usually undesirable due to poor cross-corner scaling
characteristics and are sensitive to detailed routing jogs and changes.

Limiting the number of library cells to no more than 5 per cell type may help reduce run time.

Note: Starting with the Innovus 16.2 version, the library cell list will be pre-screened at the start of CTS, and only those cells with
the best drive strength and area characteristics will be used during CTS.

buffer_cells
inverter_cells
clock_gating_cells

Specifies buffer, inverter, and clock gating cells. It is recommended to explicitly configure buffer, inverter,
and clock gating cells.

logic_cells Specifies logic cells. If logic cells are not specified, CTS will use any library cell which has the same logic
function and is not dont_use when resizing existing logic cell instances.

use_inverters Specifies that CTS should prefer inverters to buffers.

September 2022 583 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Do not exclude small cells, such as X4, as otherwise CTS will be forced to use larger more power and area consuming cells to
balance skew or implement the useful skew schedule.

Include always-on buffers and inverters in designs with multiple power domains.

Transition Target
The maximum transition target to CCOpt is specified using the following command:

set_ccopt_property target_max_trans value

The value can be specified in library units, for example “100”, or specified in explicit units for example “100ps”, “0.1ns”.

The transition target can be specified by net type, clock tree and per power domain. For example, it may be desirable to have a
tighter transition target at sink pins to improve flop CK->Q arc timing, but relax the transition target in trunk nets to reduce clock area
and power. Shielding and extra spacing could be used for trunk nets to further reduce clock power whilst avoiding signal integrity
problems. This example configures trunk nets to have a 150ps transition target whilst leaf nets have a 100ps transition target:

set_ccopt_property -net_type trunk target_max_trans 150ps
set_ccopt_property –net_type leaf target_max_trans 100ps

You can set transition targets per power domain. CTS deals with power contexts, which is a combination of a location power domain
- the domain that the cell is physically in - and effective power domain - the logical domain. These are often the same, but may not be
in the case of always-on buffering, for example. Transition targets apply to the effective power domain, while any per-domain cell
lists apply to the location domain. In the case where multiple power contexts share the same effective domain, the maximum target
over all relevant power contexts is used.

If a target max transition is not specified, CCOpt-CTS and CCOpt will examine the target_max_trans_sdc property (see the SDC
Transition Targets section), and if that is not defined then an automatically generated target is chosen. It is recommended to set a
transition target unless intentionally using settings that are to be obtained from the SDC constraints.

Note: Setting a max transition target that is either too low or too high can lead to poor tool runtime and quality of results. The
command check_design -type cts provides extensive cross-checking of user transition targets.

Skew Target
A global skew target for CTS can be set using the following:

set_ccopt_property target_skew value

This will be applied in the primary CTS delay corner.

Additionally, per-skew group (and per-delay corner) skew targets can be set, for example:

set_ccopt_property –skew_group ck200m/func target_skew 0.1ns

CTS will auto-generate skew targets where none are specified. These may not be optimal for all designs. Note that extreme-effort
CTS will ignore skew targets, except where skew groups have been explicitly configured to restrict useful skew.

Creating the Clock Tree Specification
The recommended method for generating a clock tree specification is to use the command create_ccopt_clock_tree_spec . This
will analyze the timing graph of all active setup and active hold analysis views and create the specification. For details on how the
specification creation process operates and the commands used in the specification, see the Concepts and Clock Tree
Specification section.

To write the specification to a file, instead of just applying it immediately in memory, add the -file parameter. This example writes
the specification to a file and then loads the specification.
create_ccopt_clock_tree_spec -file ccopt.spec

September 2022 584 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/check_design.html
../innovusTCR/create_ccopt_clock_tree_spec.html

source ccopt.spec

The specification file that is generated records the reasons for the constraint settings and provides information about which
constraints result in which settings. This information is useful for analyzing the specification later, if required. In case the -file
 parameter is not specified, no information about the reasons for constraint settings will be stored.

Configuration Check
The command, ccopt_design -check_prerequisites can be used to perform setup, library, and design validation checks without
running CTS. It is otherwise identical to the checks normally performed near the start of ccopt_design.

When ccopt_design cannot run because to some configuration problems, the software prints out tables listing the problems. An
example output for a scenario when there are both design and clock tree configuration problems is shown below.

Generated by: Cadence Innovus <version>
OS: <OS>
Generated on: Thu Sep 21 12:12:27 2017
Design: nastyclock
Command: ccopt_design
###

CCOpt configuration status: cannot run ccopt_design.
Check the log for details of problem(s) found:

Design configuration problems

Maximum source to sink net length is too small
One or more clock trees have configuration problems
Too many clock tree insts are locked

Clock tree configuration problems:

--
Clock tree Problem
--
divclk2 The maximum transition target is too low
divclk2 The selected drivers are too weak
--
divclk The maximum transition target is too low
divclk The selected drivers are too weak
--
clk The selected drivers are too weak
--
clk4 The selected drivers are too weak

Controlling Useful Skew Effort in CCOpt
The -opt_skew_ccopt parameter of setOptMode specifies the level of useful skew effort applied during the ccopt_design or optDesign
-postCTS commands. The possible settings are:

none: No useful skew is allowed.

standard: Allows local modifications to the clock tree network during post-CTS optimization. This is the default setting when

September 2022 585 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/setOptMode.html
../innovusTCR/ccopt_design.html
../innovusTCR/optDesign.html

setDesignMode-flowEffort is set to standard.

extreme: Enables concurrent optimization of the clock tree and datapath to improve setup time, in addition to the standard effort
modifications. This is the default when setDesignMode -flowEffort is set to extreme.

Note: Useful skew effort level extreme is only available in the ccopt_design command. Invoking effort level extreme will significantly
increase the overall runtime. Before invoking effort level extreme, ensure that you have achieved good ideal mode timing results. It is
recommended that you deploy the Early Clock Flow before invoking effort level extreme.

Common Specification Modifications

Stop and Ignore Pins

Stop pins and ignore pins both stop the clock tree specification process from tracing beyond a pin. A stop pin is treated as a sink to
be balanced whereas an ignore pin is not balanced. For details about stop and ignore pins, see the Clock Tree Sink Pin
Types section.

Macro Clock Input Pins

The clock input pins of macros (.lib model) must usually be earlier than other sinks, which means they will have a lesser clock arrival
time to take account of the internal clock path inside the macro. If this is represented by a pin specific network latency,
set_clock_latency, command in the SDC timing constraints then the automatically-generated clock tree specification will take this
into account. This is discussed further in the Network Latencies section.

If the clock offset at a macro clock pin is not captured in the timing constraints, then you must add this. For example:

set_ccopt_property –pin mem1/CK insertion_delay 1.2ns

Note that the property setting is the delay to be assumed inside the macro. Positive numbers will reduce the clock arrival time at the
pin, negative numbers will increase it. This is illustrated in the following diagram, where X represents the property setting value.

Pin Insertion Delay

It is possible to set a pin insertion delay at any clock sink to adjust the skew of the sink relative to other sinks without such a setting.
This can be used to implement manual or preCTS useful skew. Note that setting a pin insertion delay on large number of pins is not
recommended and may increase clock area and power.

September 2022 586 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/setDesignMode.html
../innovusTCR/set_clock_latency.html

Architectural Clock Gates

An architectural clock gate is a clock gate typically very early (small insertion delay) in a clock tree that is used to enable and disable
entire functions or logical partitions of a design. The flops controlling such a clock gate may also need to be scheduled early to avoid
setup slack violations at the clock gate enable input. This can be achieved by adding an additional skew group to balance the flops
with the clock gate. For an example of this, refer to the example, Balancing flops with a clock gate, in the Modifying Skew
Groups section. Such additional configuration for architectural clock gates is frequently recommend with CCOpt, and will be
essential for timing closure with CCOpt-CTS.

Restricting CCOpt Skew Scheduling
CCOpt will initially compute the maximum insertion delay over all skew groups. By default, CCOpt skew scheduling is restricted
such that the insertion delay of any sink may not exceed some factor multiplied by the initially computed maximum insertion delay.
This factor is set by the property, auto_limit_insertion_delay_factor, which defaults to 1.5. This permits useful skew scheduling to
increase the global maximum insertion delay by up to 50%. Useful skew scheduling is unrestricted by how much it can decrease the
insertion delay to a sink.

To change this restriction on late useful skew set the property. For example to lower the restriction to a 20% insertion delay increase:

set_ccopt_property auto_limit_insertion_delay_factor 1.2

To restrict the skew of a given skew group in CCOpt set the target_skew property on the skew group and set the constrains property
of the skew group to include the keyword ‘ccopt’. For syntax details, see the Defining Skew Groups section. For example, to place a
hard limit on the skew of all skew groups to 400ps, irrespective of the impact on timing closure, use the following commands:

foreach sg [get_ccopt_skew_groups *] {
set_ccopt_property target_skew 400ps –skew_group $sg
set_ccopt_property constrains all –skew_group $sg
}

September 2022 587 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Method
The recommended method for setting up CCOpt or CCOpt-CTS on a new design is to use the following steps:

1. Configure and create the clock tree specification as per the Quick Start Example and configuration instructions above.

2. Before invoking the ccopt_design command use the CCOpt Clock Tree Debugger in unit delay mode to inspect the clock tree.
This will permit examination of the clock tree structure. For more information, see the Unit Delay section.

3. Invoke only the clustering step of CCOpt or CCOpt-CTS which performs buffering to meet design rule constraints but does not
perform skew balancing or timing optimization. Check the maximum insertion delay path looks sensible in the CCOpt Clock
Tree Debugger. For designs with narrow channels, many blockages, or complex power domain geometries this is a good time
to check for large transition violations caused by floorplan issues. The screenshot, "Cluster Maximum Insertion Delay", below
shows the placement view (left) and the CCOpt Clock Tree Debugger view (right) with the maximum insertion path delay
highlighted in green.

4. For a CCOpt flow with a simple clock tree, for example a CPU core, switch to using full ccopt_design. For a design with a
complex clocking architecture consider using trial mode, which will perform clustering and then balancing using virtual delays.
The trial balancing can be inspected to look for large skew or insertion delay increases due to conflicting skew group
constraints. The design can be timed using timeDesign -postCTS to check for large timing slack violations, for example, due to
incorrect balancing constraints. Virtual delays will appear in timing reports as additional arrival time increments.

5. Run full ccopt_design. Inspect the log file for errors and warnings. For CCOpt, a summary table of timing slack and other
metrics at each stage of the ccopt_design internal flow is reported.

6. For CCOpt, check the worst chain report in the log. Note that there may be multiple worst chain reports in the log. It is
recommend to look at the worst chain report after the last occurrence of skew adjustment before any re-clustering steps in the
log, this is usually the second last chain report. This report will indicate if useful skew scheduling has hit constraint limits that
are limiting optimization. For more information on the worst chain report, see the Worst Chain section .

7. Report on clock trees and skew groups. For example, it is recommended to check skew group maximum insertion delay and
clock tree area even if setup timing slack is closed. For more information, see the Reporting section.

As mentioned above, CCOpt and CCOpt-CTS can be configured between cluster, trial, or full mode using the balance_mode
CCOpt property.
set_ccopt_property balance_mode cluster | trial | full
ccopt_design -cts

The default is full mode. The concepts of clustering and trial virtual delay balancing are detailed further in the Graph-Based
CTS section.

Cluster Maximum Insertion Delay

September 2022 588 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Cluster Maximum Insertion Delay

Flexible H-Tree and Multi-Tap Clock Flow
A structured top of tree clock distribution scheme is typically deployed to improve cross-corner scaling in combination with large
drivers and top of stack low RC delay routing layers to reduce clock latency. The most common such structure is an H-tree. The
Innovus flexible H-tree feature provides the electrically symmetric buffering and balanced wire length benefits of an H-tree, but
relaxes the requirement to be geometrically symmetric, therefore, enabling automated synthesis even in floorplans with placement
restrictions. Multi-Tap Clock Tree Synthesis, also known as Multi-Source Clock Tree Synthesis, is fully integrated with the flexible H-
tree feature and extends regular clock synthesis to provide local buffering and balancing between the structured top of tree and the
clock sinks.

The flexible H-trees are mostly created and synthesized using the following two-step flow:

Create each H-Tree one at a time with the create_ccopt_flexible_htree command.

Synthesize all created H-Trees with the synthesize_ccopt_flexible_htrees command. H-Tree synthesis includes adding all
H-Tree instances to the netlist, placing them, and performing detailed routing of all H-Tree nets. Some of you may want to
customize the design – typically by adding or widening power/ground wires – after the H-Tree instances are placed but before
the H-Tree nets are detail routed. To do this, you can deploy the following three-step flow:

1. Create each H-Tree one at a time with the create_ccopt_flexible_htree command.

2. Synthesize all created H-Trees with estimated routes using synthesize_ccopt_flexible_htrees -
use_estimated_routes.

3. Perform detailed routing of all H-Tree nets with the route_ccopt_flexible_htrees command.

Note: When using the route_ccopt_flexible_htrees command, the software expects the input routes of nets in the flexible H-tree to
be fully connected, as it is the case for routes generated by synthesize_ccopt_flexible_htrees -use_estimated_routes. If this
expectation is not met, then unexpected results such as open nets may occur and you should check for connectivity-related warnings
in the log file.

For details of the use model for this feature, see the Flexible H-tree and Multi-Tap Clock Flow in Innovus Application Note on
the Cadence Online Support website.

September 2022 589 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/create_ccopt_flexible_htree.html
../innovusTCR/synthesize_ccopt_flexible_htrees.html
../innovusTCR/route_ccopt_flexible_htrees.html
https://support.cadence.com/apex/ArticleAttachmentPortal?pageName=ArticleContent&id=a1O0V000006798iUAA
https://support.cadence.com/

Concepts and Clock Tree Specification

Graph-Based CTS
CCOpt-CTS and CCOpt use a graph-based CTS algorithm to perform skew balancing (CCOpt-CTS) or initial seed balancing
(CCOpt). The main internal steps in this are as follows:

Clustering – This step groups nearby clock sinks into clusters and buffers clock trees to meet maximum transition,
capacitance, and length constraints, such as DRV (Design Rule Violation) constraints. After clustering, the maximum insertion
delay is approximately known.

Constraints analysis and virtual delay balancing – Constraints analysis identifies how the balancing constraints (skew and
insertion delay constraints) interact and identifies where delay should be added to the clock graph to best meet these
constraints. For example, a common scenario is identifying where to add delay to balance test mode clock skew without
impacting functional mode clock insertion delay. This happens automatically without any user intervention or need for user-
driven sequential steps. Virtual delay balancing is simply the process of annotating clock nodes in the timing graph with
additional delay that is added to the propagated clock arrival time to achieve the solution found by constraints analysis. CCOpt
uses both clustering and virtual delays to initially balance clocks to obtain initial propagated mode timing and to permit run-time
efficient what-if style analysis during useful skew scheduling.

Implementation – This step synthesizes virtual delays using real physical cells. It is followed by a refinement process to
account for the difference between virtual delays and those achievable with physical cells. For CCOpt-CTS, this is essentially
the last step. For CCOpt, further post-CTS style datapath optimization is performed.

The use of this graph-based CTS approach, combined with the multi-mode clock specification generated by
the create_ccopt_clock_tree_spec command enables CCOpt-CTS and CCOpt to cope with large complex clock structures,
typically, with zero or minimal user intervention.

Clock Trees and Skew Groups

Clock trees and skew groups are the two key object types used in the CCOpt clock specification. The term object is used here
because clock tree and skew group objects can be defined, modified, and deleted using commands. For example,
create_ccopt_clock_tree , create_ccopt_skew_group , modify_ccopt_skew_group , and delete_ccopt_skew_groups .

Properties can be set per skew group or clock tree instead of globally.

For example,

set_ccopt_property –skew_group name target_skew value

The report_ccopt_clock_trees and report_ccopt_skew_groups commands can be used to generate reports on clock trees and
skew groups. For more information, see the Reporting section.

Clock Trees

The union of all clock trees specifies the subset of the circuit graph that CTS will buffer. The circuit subset covered by clock tree
definitions is best referred to as a clock tree graph since clock trees may interact, for example via clock logic cells. The clock
tree graph is a single physical graph even in a multi-mode timing environment.

Maximum transition times, route types and other physical properties are associated with the clock tree graph or with individual
trees in the clock tree graph.

September 2022 590 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/create_ccopt_clock_tree.html
../innovusTCR/create_ccopt_skew_group.html
../innovusTCR/modify_ccopt_skew_group.html
../innovusTCR/delete_ccopt_skew_groups.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/report_ccopt_clock_trees.html
../innovusTCR/report_ccopt_skew_groups.html

In all but rare exceptional circumstances, the clock tree definitions created by create_ccopt_clock_tree_spec do not require
user modification.

Skew Groups

A skew group represents a balancing constraint and is the CTS equivalent of an SDC clock. The automatically generated clock
tree specification will create one skew group per SDC clock per mode.

Each skew group has one or more sources and a number of sinks. Among other properties, a skew target and insertion delay
target can be set per skew group. Any pin in the clock tree graph can be a skew group source or sink and pins can be
designated a skew group specific ignore pin such that the specific skew group does not propagate beyond the pin.

CCOpt-CTS global skew balancing aims to achieve an equal delay, subject to the skew target, from all sources to all sinks
within each skew group. CCOpt virtually balances skew groups to zero skew to determine initial clock tree timing with
propagated clocks before optimization starts.

A skew group can be viewed as a subset of the clock tree graph superimposed on top of the clock tree graph. Skew groups can
overlap, share sources, and/or sinks.

In complex cases or with CCOpt-CTS where the SDC timing constraints do not fully capture the balancing requirements, user
adjustment to the skew group configuration may be required and/or additional skew groups can be defined.

The diagram below illustrates the relationship between the clock tree graph and skew groups. Note the path to the data input of a
flip-flop at the right hand side, the clock tree graph is ‘pruned back’ to exclude this path, the input to the right most buffer will be an
ignore pin – clock pin types are discussed later.
Clock Tree Graph and Skew Groups

Pin Insertion Delays
A pin insertion delay (PID) is a skew group balancing constraint that is asserted at some clock pin. The PID value affects how skew
group paths that sink at that pin are timed by the CTS clock timer. A given PID value only has influence if it is asserted against the
sink of some skew group. A PID value that is not present at the sink of a skew group has no effect on the clock timer.

September 2022 591 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Pin Insertion Delay Keys

The full qualification of a PID value is as follows:

The pin against which it is asserted

The timing half corner that is applicable, commonly the CTS primary half corner

The clock edge: usually both rise and fall edges

An additional element to the key is the category that will allow you to record the origin of the various PID values present at a given
pin.

When computing the latency of a given skew group sink, the clock timer will search for a PID value with matching qualification. If one
is found, it is incorporated into the latency calculation.

Pin Insertion Delay Categories

A given pin may have its PID changed by multiple factors. Therefore, it is not sufficient to record a category alongside the PID value.
Instead, different portions of the PID value must be allotted to different categories. Each factor will manipulate only the relevant
portion of the PID. The total PID will be computed as an algebraic sum of the constituent portions. The total PID is what the clock
timer will use.

The software allows categorization of the PID at a pin, tagging portions of the PID values by their origin (for example, user, SDC,
useful skew, and so on).

The following categories of PID have been defined:

user: The PID value was asserted by user Tcl scripting or has been restored from a saved CCOpt state. This is the default
category. This means that if a PID value is configured and that value is not expressly categorized, it should appear under the
user category.

sdc: The PID value was extracted from the SDC set_clock_latency by spec creation.

ilm: The pin carrying this PID value has been identified as an “ILM stop pin” by spec creation. The PID value records the mean
clock latency inside the ILM.

useful_skew: A PID value generated by pre-CTS early clock flow (ECF) useful skewing.

total: The overall PID value that is presented to the clock timer. It is the formal sum of the PID values from the other categories.

Properties for Pin Categorization

PID categorization is reflected through the following pin property that exposes the categorization as a Tcl dictionary:

insertion_delay_sources

It specifies the amount of insertion delay under this pin, broken down by the source of the PID. The value of this property is a Tcl
dictionary of PID values, keyed on the source of that PID. This provides an 'exploded' view into the total PID that is present,
categorizing the various contributions by their origin.

For detailed description of the property in the software, use the following command:

get_ccopt_property -help insertion_delay_sources

The key for this property is identical to that of the insertion_delay property; it will have exploded names that allow for qualification
by early/late rise/fall and total/wire. Each member of the family will be indexed on delay corner. This property is used to manipulate
the global (current skew group mode) PID values for the given pin.

The insertion_delay property operates on the “total” PID value.

September 2022 592 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Querying the insertion_delay property returns the total PID value. Setting the insertion_delay property sets the total PID to the
specified value. To accomplish this:

All categories are reset to auto.

The user category is updated with the specified value.

The total PID value is recalculated.

For details of the properties, see CCOpt Properties.

Reporting for Specific PID Categories

When report_ccopt_pin_insertion_delays -sources {string1 string2 ...} parameter is specified, it restricts the PID report to
those skew group sink pins that have a PID value from one of the listed sources. This -sources list of categories takes wildcard
values that are expanded to matching categories.

For example:

report_ccopt_pin_insertion_delays -sources u*

This is equivalent to:

report_ccopt_pin_insertion_delays -sources {useful_skew user}

Automatic Clock Tree Specification Creation

Single Mode Example

The diagram below shows a single constraint mode example with two clocks, some multiplexers, and two clock dividers. The SDC
clock definitions are illustrated.

Note the precise definitions of the generated clocks carefully.
Single Mode Example – SDC Clock Definitions

On the left side, the generated clock gck1 refers to master ck1 such that ck2 does not propagate to f1 or f2. On the right side, the
definition of gck2 is such that the path from d2/CK to m3/Y is considered part of the clock generator circuit. Both these points have
implications for the resulting clock tree specification output that is annotated in the diagram below.

Single Mode Example – Clock Tree Specification

September 2022 593 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_pin_insertion_delays.html

Single Mode Example – Clock Tree Specification

In the generated specification, a clock tree is defined at each of the primary inputs ck1 and ck2.

On the left side, a generated clock tree is defined at the output of divider d1 to distinguish d1 as a sequential element in the clock
graph. Without this generated clock tree definition CTS would treat d1 as a regular sink. Additionally, at the output of divider d1 a
skew group gck1/func is defined, but note that this skew group is non-constraining so does not influence CTS. It is present purely for
reporting purposes. Sinks f1 and f2 are balanced together by skew group ck1/func. Skew group ck2/func is ignored at the input to
d1, this corresponds to the master_clock specification in the SDC.

On the right side, no generated clock tree is defined at the output of multiplexer m3, since m3 is a combinational cell. However, a
non-constraining skew group is defined at the output of multiplexer m3 for reporting purposes. So that CTS does not treat divider d2
as a regular clock sink and so that the path from d2 to m3 is included in the clock tree graph, a generated clock tree is defined at the
output of d2.

Key lines from the output of create_ccopt_clock_tree_spec -file ccopt.spec for the example are given below.

Single Mode Example – create_ccopt_clock_tree_spec Output

create_ccopt_clock_tree -name ck2 -source ck2 -no_skew_group

create_ccopt_generated_clock_tree -name ck2_generator_for_ck2<1> -source d2/Q -generated_by d2/CK

create_ccopt_clock_tree -name ck1 -source ck1 -no_skew_group

create_ccopt_generated_clock_tree -name gck1 -source d1/Q -generated_by d1/CK

create_ccopt_skew_group -name ck1/func -sources ck1 -auto_sinks

create_ccopt_skew_group -name ck2/func -sources ck2 -auto_sinks

modify_ccopt_skew_group -skew_group ck2/func -add_ignore_pins d1/CK

create_ccopt_skew_group -name gck1/func -sources d1/Q -auto_sinks

set_ccopt_property constrains -skew_group gck1/func none

create_ccopt_skew_group -name gck2/func -sources m3/Y -auto_sinks

set_ccopt_property constrains -skew_group gck2/func none

Multi-Mode Example

The diagram below shows a simple multi-mode example annotated with SDC constraints and skew group information.

September 2022 594 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

The resulting specification contains the following:

Two clock trees, ck and gck. The clock tree definitions tell CTS which parts of the circuit are included in the clock tree graph
and are not mode specific.

Two skew groups, ck/mode0 and ck/mode1. The skew groups tell CTS how to perform balancing.

Each skew group has an ignore pin defined at the appropriate multiplexer input. This represents the fact that there is no need to
balance the direct clock path with the divided clock path as the paths are never active in the same mode at the same time.

Key commands from the specification are listed below. Some details have been omitted for clarity.

Multi-Mode Example – create_ccopt_clock_tree_spec Output

create_ccopt_clock_tree -name ck -source ck –no_skew_group
create_ccopt_generated_clock_tree -name gck -source d1/Q -generated_by d1/CK
create_ccopt_skew_group -name ck/mode0 -sources ck -auto_sinks
create_ccopt_skew_group -name ck/mode1 -sources ck -auto_sinks
modify_ccopt_skew_group -skew_group ck/mode0 -add_ignore_pins mux/I1
modify_ccopt_skew_group -skew_group ck/mode1 -add_ignore_pins mux/I0
create_ccopt_skew_group -name gck/mode0 -sources d1/Q -auto_sinks
set_ccopt_property constrains -skew_group gck/mode0 none

create_ccopt_skew_group -name gck/mode1 -sources d1/Q -auto_sinks
set_ccopt_property constrains -skew_group gck/mode1 none

SDC Transition Targets

The create_ccopt_clock_tree_spec command will translate set_max_transition constraints. For example, consider the SDC
constraint “set_max_transition 0.123 [get_clocks {ck1}]”.

The automatically generated specification will contain the following line:

set_ccopt_property target_max_trans_sdc –clock_tree ck1 0.123

CCOpt-CTS and CCOpt will look at the target_max_trans property. If this is set to the default value of auto, then
the target_max_trans_sdc will be inspected. If target_max_trans_sdc is not set, then an automatic default will be computed.

September 2022 595 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Network Latencies

The create_ccopt_clock_tree_spec command will translate clock network latency settings to an insertion delay target on the
corresponding skew group. For example, consider the functional mode SDC constraint, “set_clock_latency 1.456 [get_clocks
{ck1}]”. The automatically generated specification will contain the following line:

set_ccopt_property target_insertion_delay -skew_group ck1/func 1.456

Similarly, pin network latency settings are translated to the insertion_delay property of a pin. This property is often referred to as a
pin insertion delay. A pin insertion delay represents the delay ‘underneath’ a clock sink. For example, for a macro clock input pin, the
pin insertion delay would represent the internal clock path delay inside the macro. Continuing the above example, add the constraint
“ set_clock_latency 0.234 [get_pins {mem1/CK}] ”. The automatically generated specification will additionally contain the
following line:

set_ccopt_property insertion_delay –pin mem1/CK 1.222

The property setting indicates that the delay internal to the macro clock input mem1/CK is 1.222 . The value 1.222 is computed as
the difference between the clock latency of 1.456 and the pin latency of 0.234 . Note that SDC pin-specific latencies override clock
latencies, which means they are not added together.

Clock Tree Convergence

In some circumstances, the clock tree graph undesirably propagates into datapath and includes what should be datapath as part of
the clock tree graph. For example, this can happen due to missing set_case_analysis or other incorrect SDC constraints. Including
significant datapath logic as part of the clock tree graph can result in excessive CCOpt or CCOpt-CTS run time due to large numbers
of paths existing between a skew group source and sink due to multiple levels of re-convergent logic. Additionally, such paths would
not be optimized by datapath optimization.

To help detect cases where run time would be adversely affected, the automatically generated clock tree specification includes an
invocation of the check_ccopt_clock_tree_convergence command. This command traces the number of paths to every sink and
issues a warning if the number of clock paths to any sink is greater than a default threshold of 100 paths. The
report_ccopt_clock_tree_convergence command can be used to report sinks with large numbers of clock paths.

To remedy this situation, either correct the SDC constraints, for example by adding set_case_analysis , set_clock_sense –
stop_propagation or other suitable commands, or use a clock tree stop, ignore, or exclude pin as appropriate. These pins are
described in the next section.

September 2022 596 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../TCRcom/check_clock_tree_convergence.html
../TCRcom/report_clock_tree_convergence.html
../TCRcom/set_case_analysis.html
../TCRcom/set_clock_sense.html

Clock Tree Sink Pin Types

Clock tree sink pin types can be manually overridden before invoking the create_ccopt_clock_tree_spec command with the
following property setting:
set_ccopt_property –pin pin_name sink_type ignore | stop | exclude

Note: Set the sink_type property before creating the clock tree specification, otherwise it will not take effect.

Adding an ignore pin before the clock tree specification stops clock tree propagation through the pin and removes the pin from skew
balancing. If this pin is not considered a clock tree sink, the [transitive fanout] clock tree below this pin will not be defined and build
as a clock tree.

However, adding the same ignore pin after creating the clock tree specification will only mark the pin as an ignore pin and if this pin
is not considered a clock tree sink, the clock tree below this pin will remain and be build as a clock tree.

For more information, see the following troubleshooting article at http://support.cadence.com:

Should I define ignore, exclude and stop pins before or after creating my CCOpt spec

Ignore pin (ignore)

An ignore pin is considered as a part of the clock tree graph. CTS will perform DRV buffering up to the pin, but the pin will not be
considered as a sink in any skew group, which means the latency to an ignore pin is not important. Tracing through and beyond the
pin will be disabled. Sometimes such a pin is referred to as a clock tree ignore pin. An alternative strategy to deploying an ignore pin
would be to use the SDC constraint, set_clock_sense –stop_propagation. This may be preferable since it would keep the timing
model in synchronization with the CTS configuration.

Note: If an ignore pin is added beyond the pins where clock phases would propagate, clock tree spec creation attempts to find an
unbroken timing path to the ignore pin and extend the clock tree network to the pin, which means the software ignores the SDC such
as set_clock_sense -stop_propagation. If these downstream sink_type settings are removed, the software stops the clock tree
where CTE says the SDC clock stops.

Stop pin (stop)

A stop pin is considered as a part of the clock tree graph. CTS will perform DRV buffering up to the pin and by default the pin will be
considered a sink to be balanced in any skew group that reaches the stop pin. Tracing through and beyond the pin will be disabled.

Note: If a stop pin is added beyond the pins where clock phases would propagate, clock tree spec creation attempts to find an
unbroken timing path to the stop pin and extend the clock tree network to the pin, which means the software ignores the SDC such
as set_clock_sense -stop_propagation. If these downstream sink_type settings are removed, the software stops the clock tree
where CTE says the SDC clock stops.

Exclude pin (exclude)

An exclude pin is a pin that is not part of the clock tree graph but might still be connected to a clock net anyway if the same net has
other clock fanout. Specifically, the clock tree graph must not extend beyond an exclude pin but it can be pruned back from an
exclude pin. The create_ccopt_clock_tree_spec command will prune back from an exclude pin and, if possible, specify an ignore
pin earlier in the fanin cone. The Shared Clock and Data Concerns section discusses how to add buffers to disconnect exclude pins
from any clock tree nets they may be connected to. This can be important where clock and datapath overlap.

Note: In addition to the above pin types, it is possible to make any pin that is within the clock tree graph a skew group specific ignore
or sink pin. This is discussed in the subsequent sections.

September 2022 597 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

https://support.cadence.com/
https://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:ViewSolution;solutionNumber=20489854
../innovusTCR/set_clock_sense.html

Manual Setup and Adjustment of the Clock Specification
Following are some important recommendations for setting up and adjusting the clock tree specification:

It is recommended that the create_ccopt_clock_tree_spec command is used to create the clock tree specification.

It is not recommended to edit the specification file generated by the create_ccopt_clock_tree_spec -file filename
 command. A more stable flow is obtainable either by adjusting the SDC, configuring CCOpt properties, setting clock tree sink
pin types before generating the specification, or making skew group adjustments after loading the specification.

Consider making adjustments to the SDC timing constraints instead of the CTS specification, if applicable. This will ensure that
timing analysis uses a clock propagation model consistent with the CTS configuration. For example, setting a clock logic
instance input pin to be a clock tree ignore pin will stop CTS tracing through the pin, but will not stop report_timing from
propagating a clock through the pin. The create_ccopt_clock_tree_spec command has been engineered to create a clock tree
specification consistent with the active timing constraints.

The table below shows commonly used commands for manipulating clock trees and skew groups:

Note: The above commands do not modify the design or perform any CTS but manipulate the in-memory clock tree specification.

Defining Clock Trees

Clock trees are defined using the create_ccopt_clock_tree and create_ccopt_generated_clock_tree commands. For example:

create_ccopt_clock_tree -name ck -source ck -no_skew_group
create_ccopt_generated_clock_tree -name gck -source d1/Q -generated_by d1/CK

The optional -name parameter can be used to specify the name of the clock tree. Alternatively, the source pin name will be used as
the clock tree name. The mandatory -source parameter specifies the clock tree root pin from which clock tree tracing will be
performed. The -no_skew_group parameter disables the automatic creation of a corresponding skew group, otherwise a skew group
with the same name as the clock tree is automatically created. In addition, the definition of a generated clock tree requires the -
generated_by parameter to specify the input side of the clock generator, which is typically the clock input pin of a divider flip-flop.

When a clock tree is defined, CCOpt traces the circuit connectivity from the specified source pin, adding the nets and cell instances it
encounters to the clock tree graph. Tracing continues until encountering a clock pin (such as a flip-flop, latch, or macro input), a user-
defined stop, ignore, or exclude pin. A generated clock tree definition must normally be used at the output of a sequential cell to
continue tracing.

Command Name Usage

create_ccopt_clock_tree Adds a new clock tree definition into the in memory clock tree specification.

delete_ccopt_clock_trees Removes a clock tree definition from the in memory clock tree specification.

create_ccopt_skew_group Adds a new skew group definition into the in memory clock tree specification.

delete_ccopt_skew_groups Removes a skew group definition from the in memory clock tree specification.

modify_ccopt_skew_group Permits adjustment to sinks and ignore pins of a skew group.

set_ccopt_property –skew_group

skew_group_name property_name value
Adjusts skew group specific properties. The most commonly adjusted
properties are target_skew and target_insertion_delay .

September 2022 598 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/create_ccopt_clock_tree_spec.html
../innovusTCR/report_timing.html
../innovusTCR/create_ccopt_clock_tree.html
../innovusTCR/delete_ccopt_clock_trees.html
../innovusTCR/create_ccopt_skew_group.html
../innovusTCR/delete_ccopt_skew_groups.html
../innovusTCR/modify_ccopt_skew_group.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/create_ccopt_generated_clock_tree.html

Defining Skew Groups

Skew groups are defined using the create_ccopt_skew_group command. The complete syntax of this command is detailed below:

create_ccopt_skew_group
[-help]
[-constrains cts | ccopt_initial | ccopt | subset_of_values | all | none]
[-from_clocks clock_names]
[-from_constraint_modes constraint_mode_names]
[-from_delay_corners delay_corner_names]
-name skew_group_name
[-rank rank]
[-sinks pins | -shared_sinks pins | -exclusive_sinks pins | -auto_sinks | -filtered_auto_sinks pins | -

balance_skew_groups skew_groups]
[-sources pins | -balance_skew_groups skew_groups]
[-target_insertion_delay value]
[-target_skew value]

Note: The parameters taking a list of pins operate with either a plain TCL list of hierarchical pin names or with a collection of pins
obtained from the get_pins command.

Skew Group Rank

The rank of a skew group determines whether a sink pin is an active sink in that skew group or not. A pin is only an active sink in the
skew group(s) with the highest rank out of all the skew groups to which the pin belongs. An active sink is a pin that will be balanced
against other active sinks in the same skew group.

For example, consider the following sequence of commands:

create_ccopt_skew_group -name SG1 -sources get_pins top -shared_sinks [get_pins */D]
create_ccopt_skew_group -name SG2 -sources get_pins top -exclusive_sinks [get_pins *XYZ*/D]
create_ccopt_skew_group -name SG3 -sources get_pins top -exclusive_sinks [get_pins *XYZ_01*/D]

The rank of a skew group can be accessed via the exclusive_sinks_rank property.

September 2022 599 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/create_ccopt_skew_group.html
../innovusTCR/get_pins.html

Finding Active Skew Group Sinks

Use the following command to find all the sink members of a skew group:

get_ccopt_property –skew_group name sinks

Use the following command to find all the active sink members of a skew group:

get_ccopt_property –skew_group name sinks_active

Use the following command to find all the skew groups for which a pin is a sink member:

get_ccopt_property –pin name skew_groups_sink

Use the following command to find all the skew groups for which the pin is an active sink:

get_ccopt_property –pin name skew_groups_active_sink

Use the following command to find all the skew groups which are active at a pin, either passing through the pin or for which the pin is
an active sink:

get_ccopt_property –pin name skew_groups_active

Note : In debugging CCOpt-CTS skew or CCOpt initial balancing, the ‘active’ properties above should be used, since these reflect
the constraints CTS will respect. For example, if a pin is configured as a sink of skew group but the skew group does not propagate
to the pin due to a lack of connectivity, the pin will not be an active sink of the skew group. After defining skew groups or modifying
existing skew groups it is recommended to invoke the report_ccopt_skew_groups or ccopt_design command to ensure that the
CTS timer is updated before checking the active sinks properties.

Modifying Skew Groups

The modify_ccopt_skew_group command is used to make changes to the sink and ignore pins associated with a skew group. The
syntax of the command is provided below.

modify_ccopt_skew_group
[-help]

[-make_exclusive]

-skew_group skew_group_name

[-add_sinks pins | -remove_sinks pins]
[-add_ignore_pins pins | -remove_ignore_pins pins]

The -add_sinks and -remove_sinks parameters are used to add and remove sinks. The -add_ignore_pins and -
remove_ignore_pins parameters are used to add and remove ignore pins, and are discussed below.

The set_ccopt_property command can be used to modify properties of a skew group, including
the target_insertion_delay, target_skew, and constrains properties.

Skew Group Ignore Pins

Specifying a pin as an ignore pin of a skew group stops CTS from considering the latency to that pin in that specific skew group, and
stops that specific skew group propagating through and beyond that pin. Other skew groups at the pin are not affected. Skew group
ignore pins are always applicable regardless of the skew group rank.

For example, if a leaf flip-flop clock pin is specified as a skew group ignore pin, CTS will not balance that flip-flop with other sinks for
the same skew group. Balancing of other skew groups, possibly involving the same pins, would not be affected.

If a non-leaf pin is specified as a skew group ignore pin, for example a multiplexer input, CTS will ignore both the latency to and

September 2022 600 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_skew_groups.html
../innovusTCR/ccopt_design.html
../innovusTCR/modify_ccopt_skew_group.html

through that multiplexer input in the given skew group. Other skew groups passing through the same multiplexer input would not be
affected. In such an example, any flip-flops in the fanout of the multiplexer would cease to be active sinks of the skew group.

Example – Overlapping Skew Groups

The diagram below illustrates an example with two clock trees, A and B, with corresponding skew groups, SG1 and SG2. The sink
Y is an active sink of both skew group SG1 and skew group SG2. Sink X and Y are balanced together and sink Y and Z are
balanced together. The insertion delay difference between X and Z is not constrained. Constraint analysis during CTS will identify
the most efficient place to put this delay, which in may be at the multiplexer inputs. For example, to add delay to balance the B-Y path
with the B-Z path, delay can be added at the right hand multiplexer input without increasing the insertion delay of the A-Y path.

Example – Balancing Independent Clock Trees

The next example below again has two clock trees, A and B, but with a single skew group, SG_AB. The skew group has two sources
and all the sinks of clock tree A and clock tree B. CTS will balance all paths from A to the sinks and all paths from B to the sinks
together.

A variant of the above example would also have skew group, SG_A and skew group, SG_B corresponding to each of the two clock
trees, which would be the default behavior of automatic clock tree specification. The user could then use create_ccopt_skew_group
–name SG_AB –balance_skew_groups {SG_A SG_B} to create a combined skew group.

September 2022 601 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Example – Balancing Flops with a Clock Gate

When using CCOpt-CTS it may be necessary to reduce the clock insertion delay to sinks at the source of paths to a clock gate to
avoid a setup violation at the clock gate enable input. In the example below, this is done by creating an additional skew group, SG1,
to balance the flip-flop pin X with the clock gate pin CG as follows:

create_ccopt_skew_group –name SG1 –sources RA –exclusive_sinks {X CG}

The pins, X and CG, are made exclusive sinks so that X is no longer an active sink in other existing skew groups.

With CCOpt, rather than CCOpt-CTS, an additional user skew group would not normally be required to do this as useful skew
scheduling will automatically adjust the insertion delay of X and CG to optimize the setup slack at the clock gate enable input.

Deleting the Clock Tree Specification
The delete_ccopt_clock_tree_spec command can be used to remove all skew groups, clock trees, and associated data. However,
this command does not reset property settings on pins, instances and other database entities. The reset_ccopt_config command
can be used to remove both the clock tree specification and all CCOpt property settings. However, you can preserve the pin insertion
delays on clock tree sinks by specifying the -preserve_sink_insertion_delays parameter provided in both these commands.

Chains
CCOpt uses useful skew to adjust clock delays, therefore, moving slack between datapath stages. The limit of WNS optimization is
not determined by a single flop-to-flop datapath stage but a chain of such paths. At each flop slack can be shifted from the capture or
launch side as illustrated below.

Moving Slack between Datapath Stages

September 2022 602 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/delete_ccopt_clock_tree_spec.html
../innovusTCR/reset_ccopt_config.html

In the example above, CCOpt moves 150ps of slack from the F1→F2 path and moves it to the F2→F3 path to address the negative
slack of -100ps. This is done by reducing the delay on the F2 clock path, illustrated by the removal of a buffer in the above simplified
diagram. However, the ability to move slack between datapath stages is not unlimited. It must stop when the chain of paths either
loops back on itself or reaches an input or output port. This gives rise to different types of chains:

Input-to-output chain – a chain of flops starting at an input pin and ending at an output pin

Input-to-loop chain – a chain of flops starting at an input pin and ending at a looped path

Loop-to-output chain – a chain of flops starting at a looped path and ending at an output pin

Looping chain – a chain of flops starting and ending at a looped path

The different types of chains are shown below.

A variant of the input and output chains is a chain containing a flop which either does not launch or does not capture paths, for
example if such paths are subject to set_false_path exception.
Chains can contain clock gates as illustrated below. CCOpt can adjust the clock insertion delay both to the clock gate and the flops
during useful skew scheduling. Adjusting the clock insertion delay to a clock gate may impact the insertion delay to the gated flops,
which in turn impacts the slack of timing paths launched by those flops.

Clock Gate in a Chain

September 2022 603 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/set_false_path.html

Clock Gate in a Chain

The design worst chain is the chain constructed by taking the global WNS path and expanding the chain around this path such that
each path within the chain is a local WNS path. The worst chain is reported in the log during ccopt_design, and the format of this
chain report is discussed further in the "Worst Chain" section.

Disjoint Chains

The worst chain may pass through an ILM partition or “.lib” macro. The example below illustrates an ILM partition in which a single
clock input clocks both an input register and an output register inside the ILM. The example contains two timing paths, in-to-f1 and f2-
to-out. CCOpt cannot independently adjust the insertion delay of flop f1 and flop f2 because the ILM contents are read-only.

Partition or Macro in a Disjoint Chain

Constraint Windows

CCOpt determines a delay constraint window for every sink representing the minimum and maximum clock insertion delay (clock
arrival time) for the sink. This is illustrated below.

Constraint Windows

September 2022 604 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

When calculating delay constraint windows, CCOpt considers all the constraints applicable to a particular sink including physical
constraints, for example the minimum buffering delay from the clustering step, skew group constraints and insertion delay limit.
Useful skew can, therefore, only take place if permitted by the delay constraint window. Consider the example below.

Skew Scheduling within Constraint Windows

In this example, flop F2 needs to be scheduled later than flop F1 to improve the negative slack of -100ps. To achieve this, CCOpt
could decrease the insertion delay to flop F1 but F1 is already close to the top of the delay constraint window. Alternatively,
increasing the insertion delay to flop F2, which is in the middle of its delay constraint window, permits the movement of 150ps of
slack from launch side to the capture side of F2.

However, consider the same situation with different constraints and, therefore, different delay constraint windows. In the example
below, CCOpt is unable to fix negative slack because of the delay constraint windows.

Skew Scheduling Restricted by Constraint Windows

September 2022 605 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Skew Scheduling Restricted by Constraint Windows

CCOpt is unable to reduce the insertion delay to flop F1 because it is already at the top of its delay window. Similarly, CCOpt is
unable to increase the insertion delay to flop F2 because it is already at the bottom of its delay window. Therefore, the negative slack
between F1 and F2 cannot be fixed by useful skew. It might be possible to optimize the datapath between F1 and F2 further, but note
that CCOpt will typically only skew clock sinks when datapath optimization is unable to progress.

Timing Windows

Further window types are the "chosen window" that appears in worst chain reports and "timing windows" that are viewable in the
CCOpt Clock Tree Debugger. The chosen window represents an insertion delay range that useful skew scheduling would like a sink
to be within, in order to progress timing optimization.

The timing window represents the final window used by the implementation step. Each sink is assigned a timing window such that
so long as the sink is within the timing window the sink will not be at risk of degrading the high effort path group(s) WNS and will not
adversely impact hold timing. Implementation is able to group sinks together that are physically nearby with overlapping timing
windows such that clock tree area and power is reduced by avoiding the need to strictly balance less critical sinks.

For more information on worst chain reporting, both in the log and via the report_ccopt_worst_chain command, see the Worst
Chain section.

Reporting
There are several commands available for generating reports in CTS. The table below provides a snapshot of the information being
sought, the reporting commands for writing out the reports including this information, and the alternative methods that can be used for
obtaining the information.

Information Reporting Command Alternatives

CTS QoR

(clock tree area, cell/wire capacitance, wirelength,
max_trans, net segment length)

report_ccopt_clock_trees DAG stats in log file
Clock tree debugger
(CTD) (ctd_win)
get_ccopt_clock_tree_*

commands

September 2022 606 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_worst_chain.html
../innovusTCR/report_ccopt_clock_trees.html

Skew Groups
The report_ccopt_skew_groups -file filename command creates a report including a summary of all defined skew groups with
insertion delay data per delay corner and the maximum and minimum insertion delay paths per skew group and delay corner. The
optional –histograms parameter can be used to include an insertion delay histogram per delay corner.

The main sections in the skew group report are:

Skew group structure summary indicating number of active sinks

Skew group summary indicating maximum and minimum insertion delay per skew group per late/early conditions of each delay
corner

Table of skew group minimum and maximum insertion delay paths per skew group and delay corner with sink pin names. Each
path is given an ID number.

Detailed path listings, using the same path ID number

An example of the skew group summary is illustrated below.

Skew window occupancy column is defined as the percentage of sinks in the skew group that fall within the user defined skew
target. It is computed by finding a min and max latency window in which the largest proportion of sinks fall. The intent of this column
is to indicate, when the skew target is not met, some measure of how badly it has not been met by showing the largest proportion of
sinks that occupy the desired skew target.

A ‘*’ indicates that a target insertion delay or skew target was not met.

CTS QoR Violations

(max_trans, capacitance, net segment length
violations)

report_ccopt_clock_trees Log file (IMPCCOPT
messages)
CTD

Balancing

insertion delay, skew, skew window occupancy, skew
histograms, skew group sizes

report_ccopt_skew_groups Log file
CTD
get_ccopt_skew_group_*

commands

Logical Clock Tree Structure report_ccopt_clock_tree_structure Unit delay mode CTD

Clock Tree Convergence report_ccopt_clock_tree_convergence CTD

Don’t Touch Ports report_ccopt_preserved_clock_tree_ports Unit delay mode CTD

Library Cell Filtering

CTS cell list auto-trimming

report_ccopt_cell_filtering_reasons Log file

Cell Halo Violations report_ccopt_cell_halo_violations Log file
Violation Browser within
the GUI

Pin Insertion Delays
user and useful skews

report_ccopt_pin_insertion_delays Log file
CTD

Worst Chain

Setup (optionally hold)

report_ccopt_worst_chain Log file

Clock EM Violations verifyACLimit None

September 2022 607 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_skew_groups.html
../innovusTCR/report_ccopt_clock_tree_structure.html
../innovusTCR/report_ccopt_clock_tree_convergence.html
../innovusTCR/report_ccopt_preserved_clock_tree_ports.html
../innovusTCR/report_ccopt_cell_filtering_reasons.html
../innovusTCR/report_ccopt_cell_halo_violations.html
../innovusTCR/report_ccopt_pin_insertion_delays.html
../innovusTCR/report_ccopt_worst_chain.html
../innovusTCR/verifyACLimit.html
../innovusTCR/report_ccopt_skew_groups.html

The report_ccopt_skew_groups command accepts various parameters to restrict the reporting to specified skew groups or delay
corners, or to restrict to particular paths using -through and -to in a similar manner to the report_timing command. The –
summary parameter can be used just to report the summary. For more details, see the Innovus Text Command Reference.

Note that the skew group report uses the same timing model as the CCOpt-CTS engine. To report on timing clocks, use the
report_clock_timing command.

Including Non-Reporting Skews in Reports
The create_ccopt_clock_tree_spec command, by default, creates reporting-only skew groups for generated clocks. A reporting-only
skew group is a skew group whose constrains property is set to none. Such a skew group imposes no clock balancing constraint
and will not be considered by CTS. You can choose to not include the reporting-only skew groups in the reports and the log file by
default.

The parameter, -include_reporting_only_skew_groups provided in below commands is used to specify that the report should
include reporting-only skews.

report_ccopt_clock_tree_structure

report_ccopt_pin_insertion_delays

report_ccopt_skew_groups

By default, the reporting-only skew groups are not included in the report. If a reporting-only skew group is explicitly specified using

September 2022 608 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_timing.html
../innovusTCR/report_clock_timing.html
../innovusTCR/create_ccopt_clock_tree_spec.html
../innovusTCR/report_ccopt_clock_tree_structure.html
../innovusTCR/report_ccopt_pin_insertion_delays.html
../innovusTCR/report_ccopt_skew_groups.html

the -skew_groups parameter, then that skew group is always included in the report output. However, if both -
include_reporting_only_skew_groups and -skew_groups parameters are specified together, the software errors out.

The corresponding property, spec_config_create_reporting_only_skew_groups can also be used to control whether spec creation
will synthesize reporting-only skew groups. When this property is set to false, reporting-only skew groups are completely omitted
from the generated spec. When set to true, reporting-only skew groups are included in the generated spec but are marked with
the constrains property set to none. Either way, they impose no balancing constraint.

For details about the property, see CCOpt Properties.

In the GUI also, you can control whether or not the reporting-only skew groups are displayed in the CTD. Use the -
include_reporting_only_skew_groups parameter of the ctd_win command. When this parameter is specified, the GUI displays the
reporting-only skew groups. By default, this setting if off, which means the reporting-only skew groups are omitted from the CTD
display.

Clock Trees
The report_ccopt_clock_trees -file file command creates a report including statistics per clock tree and statistics over all clock
trees, including transition violations. The –histograms parameter can be used to enable histograms of various data and the –
list_special_pins parameter will add a detailed listing of clock tree stop and ignore pins. The clock tree report also shows more
details of special pin types. Parts of a sample report are shown below.

Example1: Clock Timing Summary table

Clock Timing Summary:

=====================

Target and measured clock slews (in ns):

--

Clock tree Timing Corner Worst Rising Worst Falling Worst Rising Worst Falling Leaf Slew Leaf

Slew Trunk Slew Trunk Slew

 Leaf Slew Leaf Slew Trunk Slew Trunk Slew TargetType Target

 TargetType Target

--

m_clk AV_HL_FUNC_MAX_RC1_dc:setup.early 9.692 11.003 9.687 10.997 ignored -

 ignored -

m_clk AV_HL_FUNC_MAX_RC1_dc:setup.late 9.725 11.014 9.720 11.008 auto computed -

 auto computed -

m_clk AV_HL_FUNC_MIN_RC1_dc:hold.early 4.365 4.330 4.353 4.314 ignored -

 ignored -

m_clk AV_HL_FUNC_MIN_RC1_dc:hold.late 4.384 4.333 4.372 4.317 ignored -

 ignored -

--

* - indicates that target was not met.

auto extracted - target was extracted from SDC.

auto computed - target was computed when balancing trees.

Example2: Fanout Histogram for all Trees

Fanout histogram across all clock trees:

September 2022 609 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/ctd_win.html
../innovusTCR/report_ccopt_clock_trees.html

Fanout Non-leaf Leaf

 nets nets

1 18 3

2 0 1

5 0 1

6 0 2

8 0 7

9 0 4

11 1 0

12 0 1

16 0 14

20 0 1

24 0 1

32 0 3

58 0 1

Example3: Clock Tree Special Pins

Clock tree special pins:

--

Pin Type

--

TDSP_DS_CS_INST/g395/A1 explicit ignore

--

Clock Tree Network Structure
The report_ccopt_clock_tree_structure command reports the structure of the clock network as a text report. The syntax of the
command is as follows:

[-help]

[-check_type {setup | hold}]

[-clock_trees {string1 string2 ...}]

[-delay_corner corner_name]

[-delay_type {early | late}]

[-expand_below_logic]

[-expand_generated_clock_trees {independently | inline | independently_and_inline}]

[-file file_name]

[-include_reporting_only_skew_groups]

[-show_sinks]

[-update_timing]

The parameters, -expand_below_logic and -expand_generated_clock_trees control how the report addresses clock
convergence/reconvergence at clock logic cells and at clock generator paths, which are instances with more than one clock input.
Such a multi-input instance will appear multiple times in the report. By default, the command aims for brevity, and will therefore emit
the subtree below the multi-input instance once, at the first occurrence; and at subsequent occurrences will simply indicate that the
fanout has been omitted. However, this behavior can be modified by specifying the -expand_below_logic and -
expand_generated_clock_trees parameters.

When the -expand_below_logic parameter is specified, the subtree below each multi-input logic will be printed.

when the -expand_generated_clock_trees parameter is specified, you can choose how generated clock trees should be displayed.
The following options are available:

September 2022 610 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_clock_tree_structure.html

independently: display generated clock trees at the top level. This is the default display.

inline : display generated clock trees as fanout of their generator inputs

independently_and_inline: display generated clock trees both at the top level and as fanout of their generator inputs

The report can be customized to include or exclude the skew-group latencies at each sink. for this, you can use the -
show_sinks parameter. By default, the clock sink networks, which are the non-generator flops/latches are not included in the
report. Instead, a count of the number of sinks is displayed,for example. "... 209 sinks omitted". However, when this parameter is
specified, per-skew group latencies for each sink are included.

The report identifies macros in the clock tree. This means that if your clock sink is a macro, the report will show “macro sink” instead
of just “sink”.

When the -update_timing parameter is specified, the report includes detailed timing information including pin slew, capacitance,
and location along with the clock tree structure. When the command is run without specfying the -update_timing parameter, the
report format is as follows:

The summary information is added below the name of the clock tree

The slew, capacitance, and co-ordinate information is not included

The input and output pin information is merged in a single line

When the -include_reporting_only_skew_groups parameter is specified, the report additionally includes the reporting-only skew
groups. By default, the reporting-only skew groups are not included in the report.

Sample reports are shown below.

Sample 1: Clock Tree Structure report for clock trees, m_clk and m_digit_clk: .

report_ccopt_clock_tree_structure -clock_trees {m_clk m_digit_clk}

Clock tree m_clk:

Total FF: 115
Max Level: 5

 (L1) TEST_CONTROL_INST/g137/ZN (ND2D1BWP)

 _ (L1) port TEST_CONTROL_INST/m_clk

 _ ... (21 sinks omitted)

 _ (L2) DMA_INST/CPF_LS_158_m_clk/I -> Z (LVLHLD2BWP)

 | _ ... (8 sinks omitted)

 | _ (L3) DMA_INST/RC_CG_HIER_INST0/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | _ ... (8 sinks omitted)

 _ (L2) RESULTS_CONV_INST/CPF_LS_159_m_clk/I -> Z (LVLHLD2BWP)

 | _ ... (15 sinks omitted)

 | _ (L3) RESULTS_CONV_INST/RC_CG_HIER_INST1/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | | _ ... (9 sinks omitted)

 | _ (L3) RESULTS_CONV_INST/RC_CG_HIER_INST2/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | | _ ... (16 sinks omitted)

...................................

Clock tree m_digit_clk:

 Total FF: 9

 Max Level: 3
 (L1) TEST_CONTROL_INST/g141/ZN (IOA21D1BWP)
 _ (L1) port TEST_CONTROL_INST/m_digit_clk
 _ ... (9 sinks omitted)

Sample 2: Clock Tree Structure report for clock tree, m_clk when the -update_timing parameter is specified.

report_ccopt_clock_tree_structure -clock_trees {m_clk} -update_timing

September 2022 611 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Clock tree m_clk:
TEST_CONTROL_INST/g137/ZN root output at (273.210,301.000), lib_cell ND2D1BWP, level 1, slew 9.724ns, wire_cap

0.096pF, load_cap 0.452pF
_ ... (21 sinks omitted)
_ DMA_INST/CPF_LS_158_m_clk/I logic input at (169.210,300.720), lib_cell LVLHLD2BWP, level 2, slew 9.725ns
| DMA_INST/CPF_LS_158_m_clk/Z logic output at (169.770,300.860), lib_cell LVLHLD2BWP, level 2, slew 0.449ns,

wire_cap 0.010pF, load_cap 0.006pF
| _ ... (8 sinks omitted)
| _ DMA_INST/RC_CG_HIER_INST0/RC_CGIC_INST/CP cgate input at (115.450,305.760), lib_cell CKLNQD1BWP, level 3, slew

0.449ns
| DMA_INST/RC_CG_HIER_INST0/RC_CGIC_INST/Q cgate output at (116.290,305.900), lib_cell CKLNQD1BWP, level 3, slew

0.320ns, wire_cap 0.004pF, load_cap 0.005pF
| _ ... (8 sinks omitted)
_CONV_INST/CPF_LS_159_m_clk/I logic input at (199.170,320.880), lib_cell LVLHLD2BWP, level 2, slew 9.724ns
| CONV_INST/CPF_LS_159_m_clk/Z logic output at (199.730,321.020), lib_cell LVLHLD2BWP, level 2, slew 0.864ns,

wire_cap 0.030pF, load_cap 0.015pF
| _ ... (15 sinks omitted)
| _ CONV_INST/RC_CG_HIER_INST1/RC_CGIC_INST/CP cgate input at (110.130,313.320), lib_cell CKLNQD1BWP, level 3, slew

0.865ns
| | CONV_INST/RC_CG_HIER_INST1/RC_CGIC_INST/Q cgate output at (109.290,313.460), lib_cell CKLNQD1BWP, level 3, slew

0.338ns, wire_cap 0.004pF, load_cap 0.006pF
| | _ ... (9 sinks omitted)
| _ RESULTS_CONV_INST/RC_CG_HIER_INST2/RC_CGIC_INST/CP cgate input at (155.490,341.040), lib_cell CKLNQD1BWP, level

3, slew 0.865ns
| | RESULTS_CONV_INST/RC_CG_HIER_INST2/RC_CGIC_INST/Q cgate output at (156.330,341.180), lib_cell CKLNQD1BWP, level

3, slew 0.668ns, wire_cap 0.011pF, load_cap 0.010pF
| | _ ... (16 sinks omitted)
| _ CONV_INST/RC_CG_HIER_INST3/RC_CGIC_INST/CP cgate input at (154.650,354.760), lib_cell CKLNQD1BWP, level 3, slew

0.865ns
| | CONV_INST/RC_CG_HIER_INST3/RC_CGIC_INST/Q cgate output at (155.490,354.620), lib_cell CKLNQD1BWP, level 3, slew

0.636ns, wire_cap 0.010pF, load_cap 0.010pF
| | _ ... (16 sinks omitted)
| _ CONV_INST/RC_CG_HIER_INST6/RC_CGIC_INST/CP cgate input at (111.110,338.520), lib_cell CKLNQD1BWP, level 3, slew

0.865ns
| | CONV_INST/RC_CG_HIER_INST6/RC_CGIC_INST/Q cgate output at (110.270,338.660), lib_cell CKLNQD1BWP, level 3, slew

0.246ns, wire_cap 0.003pF, load_cap 0.004pF
| | _ ... (6 sinks omitted)
| _ CONV_INST/RC_CG_HIER_INST7/RC_CGIC_INST/CP cgate input at (112.790,324.520), lib_cell CKLNQD1BWP, level 3, slew

0.865ns
| CONV_INST/RC_CG_HIER_INST7/RC_CGIC_INST/Q cgate output at (111.950,324.380), lib_cell CKLNQD1BWP, level 3, slew

0.349ns, wire_cap 0.005pF, load_cap 0.005pF
| _ ... (8 sinks omitted)
_ SPI_INST/RC_CG_HIER_INST17/RC_CGIC_INST/CP cgate input at (133.630,125.440), lib_cell CKLNQD1BWP, level 2, slew

9.725ns
 SPI_INST/RC_CG_HIER_INST17/RC_CGIC_INST/Q cgate output at (134.470,125.300), lib_cell CKLNQD1BWP, level 2, slew

0.335ns, wire_cap 0.010pF, load_cap 0.005pF
 _ ... (8 sinks omitted)

Sample 3: Clock Tree Structure for clock tree, m_clk to include skew-group latencies.

report_ccopt_clock_tree_structure -clock_trees {m_clk m_digit_clk} -expand_generated_clock_trees inline

Clock tree m_clk:

September 2022 612 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Total FF: 115

Max Level: 5

(L1) TEST_CONTROL_INST/g137/ZN (ND2D1BWP)

_ (L1) port TEST_CONTROL_INST/m_clk

 _ ... (21 sinks omitted)

 _ (L2) DMA_INST/CPF_LS_158_m_clk/I -> Z (LVLHLD2BWP)

 | _ ... (8 sinks omitted)

 | _ (L3) DMA_INST/RC_CG_HIER_INST0/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | _ ... (8 sinks omitted)

 _ (L2) RESULTS_CONV_INST/CPF_LS_159_m_clk/I -> Z (LVLHLD2BWP)

 | _ ... (15 sinks omitted)

 | _ (L3) RESULTS_CONV_INST/RC_CG_HIER_INST1/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | | _ ... (9 sinks omitted)

 | _ (L3) RESULTS_CONV_INST/RC_CG_HIER_INST2/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | | _ ... (16 sinks omitted)

 | _ (L3) RESULTS_CONV_INST/RC_CG_HIER_INST3/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | | _ ... (16 sinks omitted)

 | _ (L3) RESULTS_CONV_INST/RC_CG_HIER_INST6/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | | _ ... (6 sinks omitted)

 | _ (L3) RESULTS_CONV_INST/RC_CG_HIER_INST7/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 | _ ... (8 sinks omitted)

 _ (L2) SPI_INST/RC_CG_HIER_INST17/RC_CGIC_INST/CP -> Q (CKLNQD1BWP)

 _ ... (8 sinks omitted)

Clock tree m_digit_clk:

Total FF: 9

Max Level: 3

(L1) TEST_CONTROL_INST/g141/ZN (IOA21D1BWP)

_ (L1) port TEST_CONTROL_INST/m_digit_clk

 _ ... (9 sinks omitted)

Pin Insertion Delays
The report_ccopt_pin_insertion_delays command reports pin insertion delays at clock tree sinks. The report provides a quick
overview of the distribution and nature of the pin insertion delays found, which can be used to identify the problem areas such as
excessively large skews, surprisingly numerous skews, or large numbers of small skews, and so on. The syntax of the command is
as follows:

[-help]

[-bin_size string]

[-check_type {setup | hold}]

[-clock_trees {string1 string2 ...}]

[-delay_corner delay_corner_name]

[-delay_type {early | late}]

[-file file_name]

[-skew_groups {string1 string2 ...} | -include_reporting_only_skew_groups]

[-sources {string1 string2 ...}]

The -clock_trees and -skew_groups parameters are used to restrict the scope of the report as a subset of the clock tree sinks, which
means that when the -clock_trees parameter is specified, only those sinks that are under the listed clock trees are selected.
The -include_reporting_only_skew_groups parameter is used to include the reporting-only skew groups in the report. By default,
the reporting-only skew groups are not included in the report. The -skew_groups parameter restricts the report to the specified skew
groups. This means that only those sinks that are under the specified skew groups are selected for reporting. The -
include_reporting_only_skew_groups and -skew_groups parameters are mutually exclusive. If both these parameters are specified
together, the software errors out. By default, the report analyzes the pin insertion delays that are found under the CCOpt primary half
corner. The -delay_corner, -check_type, and -delay_type parameters permit the selection of another half corner to report against.

September 2022 613 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_pin_insertion_delays.html

The -bin_size parameter specifies a bin (bucket) size for the report histograms. By default the software uses the histogram bin size
specified using the CCOpt property, pin_insertion_delay_histogram_bin_size.

Example

The following command reports the pin insertion delays at all clock tree sinks.

report_ccopt_pin_insertion_delays

Note: The CCOpt pin insertion delays are +ve valued if they produce an advance, and -ve valued if they produce a delay. This can
be viewed in the report output shown below.

Positive (advancing) pin insertion delays
==

Found 1 advances (2.041% of 49 clock tree sinks)

--
From (ns) To (ns) Count
--
0.000 0.010 1
--

Mean : 0.006ns
Std.Dev : 0.000ns

Smallest advance : 0.006ns at d2211a/CK
Largest advance : 0.006ns at d2211a/CK

Negative (delaying) pin insertion delays
==

Found 23 delays (46.939% of 49 clock tree sinks)

--
From (ns) To (ns) Count
--
-0.120 -0.110 1
-0.110 -0.100 0
-0.100 -0.090 1
-0.090 -0.080 2
-0.080 -0.070 3
-0.070 -0.060 2
-0.060 -0.050 4
-0.050 -0.040 4
-0.040 -0.030 3
-0.030 -0.020 1
-0.020 -0.010 2

Mean : -0.056ns
Std.Dev : 0.025ns

Smallest delay : -0.014ns at d3211a/CK
Largest delay : -0.110ns at d1111d/CK

September 2022 614 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Timing Data for CTS-Specific Reports
For CTS-specific reports, the clock tree timing engine (CTS timing engine) is used to calculate the timing data that is displayed in the
clock tree and skew group reports. By default, the clock tree timing engine is invalidated when you generate the reports, so all the
timing data is recalculated. This increases the time taken to generate the reports. Use the -no_invalidate parameter of the
reporting commands to specify that the clock tree timing engine should not be invalidated and that the existing timing data, if any,
should be used in the reports.

As with CTS itself, these reports place priority on the late half of the CTS primary delay corner. For example, when timing data is
included in the report_ccopt_clock_tree_structure command, it includes timing data only from the CTS primary half corner.

Worst Chain
For an explanation about the concept of chains, see the Chains section.

The worst chain is reported from time to time in the log during CCOpt and an examination of the log may help identify reasons
limiting timing optimization. In addition, the report_ccopt_worst_chain command can be used to report the worst timing chain after
ccopt_design has completed, but note that this will reflect the current worst chain, not the worst chain during optimization.

The illustration below shows a perfectly balanced worst chain. Each sequential element in the chain is identified by a “cell:name”
line with ASCII art on the left representing the chain connectivity. In this example, there is a loop between flops A and B. The data
between each sequential element summarizes the combinational path between adjacent sequential elements. For example, the
timing slack is identified, and the WNS marked with “*WNS*”. In this example, the slack between each stage is identical suggesting
that it is not possible to further move slack between stages. Such a chain is balanced.
Example of Worst Chain

The two diagrams below label the various fields in the worst chain report.

Worst Chain Data - Diagram 1

September 2022 615 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_clock_tree_structure.html
../innovusTCR/report_ccopt_worst_chain.html
../innovusTCR/ccopt_design.html

Worst Chain Data - Diagram 1

Worst Chain Data - Diagram 2

The above labels are described in detail in the table below.

Filed
Name

Description

Constraint
window

The constraint window is the range of permissible insertion delay modification subject to the minimum buffering
delay from the clustering step, the automatic insertion delay limit and optional user skew constraints. For more
information, see the Constraint Windows section. In this example, the -226ps indicates that the sink insertion delay
can be scheduled up to 226ps earlier and the +379ps indicates that the sink can be scheduled up to 379ps later.

Chosen
window

The chosen window represents the insertion delay range, relative to the current insertion delay, within which useful
skew scheduling desires to place the sink.

Slack The datapath slack between two sequential elements in the chain.

Delay
under
fragment

This is an internal number representing the delay between the non-buffer parent of a sink and the sink.

Pin
location

The placement coordinate of the sink pin.

Clock Pin
transition

The transition time at the sink pin, both for launch and for capture.

September 2022 616 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

The example below illustrates a worst chain report where the slacks on either side of flopB are unequal. To further improve the WNS,
it is desirable to move slack from the launch side of flopB to the capture side of flopB. To do this would require the insertion delay of
flopB to be increased but this is not possible because flopB is at the bottom of the constraint window. The source of such a limit is the
automatic insertion delay limit as discussed in the Restricting CCOpt Skew Scheduling section.
Example of Worst Chain – sink at bottom of constraint window

Clock
launch
path
delay

The launch clock arrival time.

Data path
delay

The datapath delay.

Total path
length

The physical length of the path obtained by summing the distance between each pin pair along the path.

Clock
capture
path
delay

The capture clock arrival time.

Path
group
name

The name of the path group for each path.

September 2022 617 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Halo Violations
Clock cell halo violations can be reported with the report_ccopt_cell_halo_violations command. The report can be viewed as a
text file and in the Violation Browser within the GUI.

Use the following set of commands to view the clock halo violations in the Violation Browser.

Create cell halo violations using the following property:
set_ccopt_property cell_halo_x 3

Use the following command to add the detected clock halo violations to the Violation Browser and display them in the GUI:
report_ccopt_cell_halo_violations -add_markers

You will see the following:

Use the following command to clear the clock halo violations in the Violation Browser and delete markers in the GUI:
report_ccopt_cell_halo_violations -clear_markers

You will see the following:

For more information about cell halos, see the Cell Halos section.

Cell Name Information
All new cell instances created by CCOpt have an identifying code in their name to let you determine why that cell was created. For
example, some common instance name prefixes are:

September 2022 618 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_cell_halo_violations.html

ccl Cts: Created by the clustering process to meet the slew target

ccl_a Cts: Created during clustering by the agglom clustering algorithm.

cdb Cts: Created by CTS to balance the delays in the clock tree.

cdc Cts: A clock driver created by adding driver cell process for property add_driver_cell.

cpc_drv Cts: A clock driver created by post conditioning.

cpc_sk Cts: A clock driver created by post conditioning....

To view all the available instance name prefixes and their descriptions, run the show_ccopt_cell_name_info command.

Clock Tree Convergence
The report_ccopt_clock_tree_convergence command reports statistics on the number of paths leading to clock tree sinks, and a
list of the top 10 sinks with the most paths. In the example report below, 5 design IOs (primary input/outputs) have 1400 clock paths
leading to them. These sinks are likely to be problematic and need further investigation. For details, see the Clock Tree
Convergence section.

Convergence above clock sinks

=============================

--
Number of paths to sink PIOs DFFs Other sinks Total
--
1 1 10118 0 10119
8 54 2134 183 2371
16 13 311 18 342
32 2 0 0 2
700 3 164 5 172
1400 5 0 0 5
--

Sinks with most paths leading to them
=======================================

Sink Number of paths

Owest/nout[0] 1400
Owest/nout[1] 1400
Owest/nout[2] 1400
Owest/nout[3] 1400
Owest/nout[4] 1400

September 2022 619 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/show_ccopt_cell_name_info.html
../innovusTCR/report_ccopt_clock_tree_convergence.html

Cell Filtering Reasons
The report_ccopt_cell_filtering_reasons command reports the reasons for filtering the specified cell types. The syntax of the
command is as follows:

[-help]

[-cell_type buffer | inverter | logic | delay | clock_gate]

[-clock_trees {string1 string2 ...}]

[-file file_name]

[-power_domain string]

[-tcl_list]

The report can be saved as a file by specifying the -file parameter of the command or it can be viewed as a Tcl list by specifying
the -tcl_list parameter. The output of the command is also included in the log.

In the report, "all" is used for the Clock tree names where the reason is common to all clock_trees. Some of the reasons for filtering
that are reported and their brief descriptions are provided below:

Unbalanced rise/fall delays : The difference between rise and fall delays for the cell is bigger than 20%; or any of rise or fall
timing arcs is missing in the library.

Too tall: The cell height is bigger than the maximum cell height specified using the max_cell_height property.

Wrong power context : The cell does not match the power context requirements. For example, do not have same power context
on all pins.

Not available in all views : The cell is not available in all analysis views because the library does not contain all the
specified views (corner cases) in the design for that specific cell. To avoid this filtering, check the libraries and the MMMC
configuration to see why the cell is not available in some views.

Always on but not in cpf: The cell is marked as always on but does not match the CPF description. You can avoid this
filtering by checking/updating the CPF.

Weak max cap cell: The cell is unable to drive enough capacitance at certain clock frequencies. This check is controlled by the
CCOpt property, frequency_dependent_max_cap_usability_check_max_cap_fanout_factor. The default value of this property
is 4. The cells that cannot drive four instances of that cell are filtered. You can reduce this value to avoid the filtering, for
example, by relaxing the requirement so that the cell only has to be able to drive one or two instances. Alternatively, since this
is controlled by the period on the clock_tree, you can check the effective_clock_period property to see if those are correct.

Library trimming: The cell was removed automatically because it is an inefficient cell. The cell was removed as an inefficient
cell to reduce the library size and save runtime. To avoid removing such cells, disable library trimming.

Can't use due to library mismatch: Check the library data for the cell - both timing and physical data for the cell are needed.
There is a mismatch between LEF and liberty libraries because the cell is missing in one of them.

Invalid for balancing: The cell is filtered out because it does not match several predefined properties for balancing, such as:
1) cell delay is too small; 2)cell has an invalid (rise/fall) timing arc.

No test enable signal: The clock gate cell is filtered out because it does not have a test enable input.

Has test enable signal: The clock gate cell is filtered out because it has a test enable input.
Note: The above two cell filtering reasons are context dependent. The software filters all clock gates, reporting the clock gates
with test enables as one set and the clock gates without test enables as another set. A clock gate either has a test enable or it
does not have one, so all clock gates are listed in one of the two sets. However, if you need a clock gate with no test enable
signal, but there are no such clock gates, you can use a clock gate that has a test enable signal. But the other way around is
not possible, which means if you need a clock gate with test enable signal but there is no such clock gate, you cannot use one
that does not have a test enable signal.

September 2022 620 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_cell_filtering_reasons.html

Has observable output: Clock gates without observability outputs are preferred, if they are available. Normally any cells with
observability outputs will be filtered out. But if all the available cells have observability outputs they will not be filtered.

Edge sensitive: The clock gate cell is filtered out because it is not positive edge sensitive.

Cannot be legalized: The cell is filtered because it cannot physically be legalized in the power domain.

Sample Report

report_ccopt_cell_filtering_reasons -cell_type buffer

Filtering reasons for cell type: buffer
=======================================

Clock trees Power domain Reason Library cells

all AO Library trimming { BUFFD12BWP BUFFD2BWP BUFFD3BWP

 BUFFD4BWP BUFFD6BWP BUFFD8BWP

 PTBUFFD2BWP }
all PLL Unbalanced { BUFFD12BWP BUFFD2BWP BUFFD3BWP

 rise/fall delays BUFFD4BWP BUFFD6BWP BUFFD8BWP

 PTBUFFD2BWP }

Retrieving Information using Get Commands
In addition to the reporting commands described above, there are several get_ccopt_* commands that aid TCL scripting and
combined with get_ccopt_property and other Innovus commands, for example dbGet, aid the generation of custom checks and
reports. The most commonly used get_ccopt_* commands are listed below. For each command, additional parameters may be
necessary. For details of these commands, refer to the Innovus Text Command Reference.

Command Name Usage

get_ccopt_clock_tree_cells Returns all cells which are part of the clock tree graph. Cells that are leaf sinks are
excluded.

get_ccopt_clock_spines Returns a list of clock spines whose names match the specified pattern.

get_ccopt_clock_tree_capacitance Retrieves the capacitance on the specified pin.

get_ccopt_clock_tree_nets Returns all nets that are part of the clock tree graph.

get_ccopt_clock_tree_sinks Returns all clock tree sinks, that is automatically determined sinks, stop pins, ignore
pins which are part of the clock tree graph.

get_ccopt_clock_trees Returns all clock trees.

This command is part of CCOpt spine functionality, which is a limited-access
feature in this release. It is enabled by a variable specified through the
setLimitedAccessFeature command.

To use this feature, contact your Cadence representative to explain your usage
requirements, and make sure this feature meets your needs before deploying it
widely.

September 2022 621 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/get_ccopt_property.html
../innovusTCR/dbGet.html
../innovusTCR/get_ccopt_clock_tree_cells.html
../innovusTCR/get_ccopt_clock_spines.html
../innovusTCR/setLimitedAccessFeature.html
../innovusTCR/get_ccopt_clock_tree_capacitance.html
../innovusTCR/get_ccopt_clock_tree_nets.html
../innovusTCR/get_ccopt_clock_tree_sinks.html
../innovusTCR/get_ccopt_clock_trees.html

Applying Library Cell Halos

Setting Cell Halos
CTS uses clock halos to enforce a minimum separation between clock instances in the design. CTS has two independent sets of
properties to determine the x and y halos. The following properties can be used to define the x direction clock halos within CTS:

cell_halo_x

cell_density

cell_halo_sites

The following properties can be used to define the y direction clock halos within CTS:

cell_halo_y

adjacent_rows_legal

cell_halo_rows

By default, you will get halos associated with the cell_density (default = 0.75) and adjacent_rows_legal (default = false)
properties. The halo value will be equal to 1/3 cell width in the x direction and 1 row high in the y direction.

For details about these properties, see CCOpt Properties.

get_ccopt_dag_traversal Traverses the clock tree network DAG, starting at the specified pins and traversing to
their fanin or fanout, returning a list of the resulting pins.

get_ccopt_delay_corner Returns the name of the CCOpt primary-half delay corner, which is the main corner
that CTS uses for balancing clock trees.

get_ccopt_flexible_htrees Returns the names of the flexible H-trees whose names match the specified pattern.

get_ccopt_effective_max_capacitance Returns the value of the frequency-dependent effective maximum capacitance
constraint that the software will apply at a given pin in the clock tree.

get_ccopt_clock_tree_slew Returns the slew information for the user-specified pin.

get_ccopt_skew_group_delay Returns the insertion delay for a particular skew group or sink within a skew group.

get_ccopt_skew_group_path Returns a path for a particular skew group or sink within a skew group.

get_ccopt_skew_groups Returns all skew groups.

get_ccopt_clock_tree_source_groups Returns a list of clock tree source group objects matching the supplied pattern.

get_ccopt_preferred_cell_stripe Returns a list of preferred cell stripes objects matching the supplied pattern.

September 2022 622 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/get_ccopt_dag_traversal.html
../innovusTCR/get_ccopt_delay_corner.html
../innovusTCR/get_ccopt_flexible_htrees.html
../innovusTCR/get_ccopt_effective_max_capacitance.html
../innovusTCR/get_ccopt_clock_tree_slew.html
../innovusTCR/get_ccopt_skew_group_delay.html
../innovusTCR/get_ccopt_skew_group_path.html
../innovusTCR/get_ccopt_skew_groups.html
../innovusTCR/get_ccopt_clock_tree_source_groups.html
../innovusTCR/get_ccopt_preferred_cell_stripe.html

Examples and Idiosyncrasies of the Clock Halo Properties
cell_halo_x and cell_halo_y can be used to specify the clock halo for all cells, clock trees and power domains via:
set_ccopt_property cell_halo_x 0.25

set_ccopt_property cell_halo_y 0.2

The default units for both cell_halo_x and cell_halo_y is microns.

cell_halo_x and cell_halo_y can also be used to specify a clock halo for a particular cell type, clock tree and power domain
via:
set_ccopt_property -cell CKBD6BWP24P90ULVT -power_domain PD1 -clock_tree CLK cell_halo_x 0.5

set_ccopt_property -cell CKBD6BWP24P90ULVT -power_domain PD1 -clock_tree CLK cell_halo_y 0

cell_halo_x and cell_halo_y are the only halo properties that can specify the clock halo per clock tree, cell type, and power
domain in this way.

Any x direction clock halo set by cell_density scales linearly with cell width. The halo is defined by formula halo_x = (1/a-
1)*cell_width, where a is the setting. Below are some examples:

set_ccopt_property cell_density 0.25 sets the x direction clock halo equal to 3 * cell width.

set_ccopt_property cell_density 0.5 sets the x direction clock halo equal to cell width.

set_ccopt_property cell_density 0.75 sets the x direction clock halo equal to 1/3 * cell width.

set_ccopt_property cell_density 1 sets the x direction clock halo equal to zero.

Any y direction clock halo defined by adjacent_rows_legal is either zero or one row high. The following sets the clock halo in
the y direction to one row high:
set_ccopt_property adjacent_rows_legal false

The following sets the clock halo in the y direction to zero:
set_ccopt_property adjacent_rows_legal true

The properties, cell_halo_sites and cell_halo_rows simply specify the clock halo in sites (for x direction) and rows for the y
direction. For example, the following sets the clock halo to be 15 sites in the x direction and 2 rows in the y direction:
set_ccopt_property cell_halo_sites 15

set_ccopt_property cell_halo_rows 2

Clock Halo Priority Rules
Only one of these properties is used to determine the clock halo in the x direction. The following rules determine which one:

If cell_halo_x (default is auto) is set to a non-auto value, then this defines the x direction clock halo. The properties
cell_density and cell_halo_sites have no effect.

If cell_halo_x is set to auto (default) and cell_density (default is 0.75) is set to a non-auto value, then cell_density defines
the clock halo in the x direction. The property, cell_halo_sites has no effect.

If both cell_halo_x (default is auto) and cell_density (default is 0.75) are set to auto then cell_halo_sites defines the clock
halo in the x direction.

Only one of these properties is used to determine the clock halo in the y direction. The following rules determine which:

If cell_halo_y (default is auto) is set to a non-auto value, then this defines the y direction clock halo. The properties,
adjacent_rows_legal and cell_halo_rows have no effect.

September 2022 623 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

If cell_halo_y is set to auto (default) and adjacent_rows_legal (default is false) is set to a non-auto value, then
adjacent_rows_legal defines the clock halo in the y direction. The property, cell_halo_rows has no effect.

If both cell_halo_y (default) and adjacent_rows_legal (default is false) are set to auto then cell_halo_rows defines the clock
halo in the y direction.

Effective Clock Halos
There are four read only properties to output the clock halo in microns and which property defined it. These are:

effective_clock_halo_x

effective_clock_halo_y

effective_clock_halo_x_source

effective_clock_halo_y_source

Examples

get_ccopt_property -inst CTS_ccl_1234 effective_clock_halo_x

0.720

get_ccopt_property -inst CTS_ccl_1234 effective_clock_halo_x_source

cell_density

get_ccopt_property -inst CTS_ccl_1234 effective_clock_halo_y_source

adjacent_rows_legal

Density Halos and Large Cells
As stated above “Any x direction clock halo defined by cts_cell_density scales linearly with cell width”. When the x direction halo is
defined in this way and is applied to large cells this can create correspondingly large halos. Such halos on crowded floorplans can
result in legalization problems.

For this reason, CTS internally disables halos on large cells defined using the attributes cts_cell_density and
cts_adjacent_rows_legal. Upon disabling a halo the following log message will be issued:

**WARN: (IMPCCOPT-2406): Clock halo disabled on instance 'NAME'. Clock halo defined by properties 'cell_density' and

'adjacent_rows_legal'. Physical cell width = '36.000um' and height = '57.600um'. To avoid this please specify clock

halo via the property pairs (cell_halo_x and cell_halo_y) or (cell_halo_sites and cell_halo_rows).

As suggested in the message clock halos defined by other properties are never disabled.

Clock Halos and Siteless Cells
Clock halos are not assigned to instances corresponding to cell types without a site.

Clock Halo Sum Mode
The property, cell_halo_mode defines how clock halos are used to determine the minimum legal separation between a pair of clock
instances. There are two possible modes; max and sum. When set to max the minimum legal separation is the larger of the two clock
halos. When set to sum the minimum legal separation is the sum of the two clock halos.

The default setting is max.

September 2022 624 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Note: Reporting of clock halo compliance (when halos are defined by cell_halo_x and cell_halo_y) is available via
the report_ccopt_cell_halo_violations command. For more information, see the Halo Violations section.

Enabling Timing Connectivity-Based Skew Groups
This feature deals with whether and how CTS should balance flops that are clocked by different SDC clocks. Balancing constraints
are specified to CTS by means of skew groups. This feature controls the structure of the skew groups that are synthesized by spec
creation.

Default Balancing Constraints
Default balancing constraints are used when the timing connectivity-based skew groups feature is disabled. By default, a fixed set of
rules are used to determine which flops need to balance together.

All clocks derived from the same ultimate master clock (i.e. non-generated clock) are synchronous. Flops that share the same
ultimate master clock need to be balanced together.

Clocks that are derived from different ultimate master clocks are asynchronous. Flops that do not share the same ultimate
master clock do not need to be balanced together.

These rules are used to produce a set of balancing constraints to CTS: namely a set of skew groups. The default balancing
constraints are as follows:

Spec creation produces one skew group for each SDC clock.

The skew group for a given SDC clock is shaped so that it spans the domain of that clock, and the domain of every clock
derived from it, both directly and indirectly. This structure constrains CTS to balance the flops of all these clocks together.

To remove redundant constraints, spec creation marks the skew group of each generated clock as constrains none.

Example of Default Balancing Constraints

The figure below illustrates default balancing constraints.

Default Balancing Constraints

In this clock network, a collection of SDC clocks is labelled from a to k. Clocks a, f, and i are non-generated clocks. The rest are
derived clocks: b is generated by a, e is generated by c, and so on.
Given this clock structure, and using the default balancing constraints, spec creation produces eleven skew groups, one for each
clock. However, almost all of them are constrains none. Only the skew groups for a, f ,and i will constrain CTS.

September 2022 625 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/report_ccopt_cell_halo_violations.html
https://dsmpubs/icd_pubs_website/encounter/past_releases/20.1/innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-HaloViolations

The skew group for clock a will source at the root pin of a. It will span the domain of clocks a, b, c, d, and e. Its sinks will comprise
the flops s_a, s_b, s_c, s_d, and s_eg. All these flops will be balanced together.

Similarly, the skew group for clock f will source at the root pin of clock f. It will span the domain of clocks f, g, and h. It will sink on
s_eg, s_g, and s_h, which will be balanced together. Note that flops s_eg appear in two constraining skew groups: those for a and f.
This overlapping constraint arises from the clock mux that drives s_eg. Since these two skew groups overlap, their balancing
constraints are inter-related. CTS will need to find a balancing solution that satisfies their constraints simultaneously.

Lastly, the skew group for clock i will source at the root pin of i and will span the domain of clocks i, j, and k. It will sink on s_i,
s_j, and s_k, and these will be balanced together.

Timing Connectivity-Based Skew Groups
In the presence of set_clock_group and clock/clock set_false_path, the default balancing constraints can be needlessly restrictive.
Such SDC constraints can false out the timing paths between a given pair of SDC clocks. In such cases, there is no need to balance
their flops to the same insertion delay: slack is not affected by the relative clock path arrival times.

This is where timing connectivity-based skew groups come in. When this feature is enabled using the
timing_connectivity_based_skew_groups property, spec creation analyzes the clock/clock false pathing, and identifies clocks and,
therefore, flops that need not be balanced together. Spec creation then adjusts the skew groups that are produced to reflect these
relaxed balancing constraints.

To do this, spec creation computes a balancing relationship for every pair of clocks:

Two clocks "direct balance" if there are active (slack-generating; not falsed out) timing paths between them.

Two clocks "indirect balance" if there are no active timing paths between them, but they each direct balance with some
common third-party clock(s), which means they are forced to balance because of the transitive closure over direct balancing.

Two clocks are in a "need not balance" relationship if they neither directly nor indirectly balance.

After analyzing the above, spec creation then adjusts the skew groups that it produces, relaxing the constraints between clocks that
need not balance together:

Spec creation identifies that a generated clock need not balance with its master clock. To implement this, spec creation adds
one or more ignore pins to the skew group of the master clock so that it does not span the domain of the generated clock.

The skew group of a generated clock may no longer be a redundant constraint. In such a case it is not marked as “constrains
none”.

Additional clock group skew groups may be added to ensure balancing constraints between sibling-generated clocks are
maintained.

The generated spec includes configuration of the timing_connectivity_info property to record the clock/clock balancing
relationships that were determined by spec creation. This includes details of the third-party clocks that produce “indirect
balance” relationships.

The generated spec, if written to Tcl file, includes a comment reporting on the clock/clock balancing relationships that were
determined by spec creation, again including details of the third-party clocks involved in “indirect balance” relationships.

Note: Spec creation continues to assume that flops with differing ultimate master clocks do not need to be balanced together. In
other words: enabling timing connectivity-based skew groups only relaxes balancing constraints between flops, it does not impose
any new balancing constraints. This behavior can be controlled. See example below.

Example

The figure below shows a clock network. In this network, some set_clock_group and clock/clock set_false_path assertions are
added, and timing connectivity-based skew groups are enabled. This change affects the skew groups produced by spec creation.

Clock False Paths

September 2022 626 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

set_clock_groups -asynchronous -group {a b} -group {c d e g} -group {f h i} –group {j k}

set_false_path -from [get_clocks {a}] -to [get_clocks {b}]

set_false_path -from [get_clocks {b}] -to [get_clocks {a}]

set_ccopt_property timing_connectivity_based_skew_groups clock_false_path

set_ccopt_property timing_connectivity_based_skew_groups_balance_master_clocks false

create_ccopt_clock_tree_spec

The understand the changes, see the default balancing constraints illustrated in previous figure. Relaxations are added to these
constraints based on the SDC assertions.

Under the default balancing constraints, clocks a, b, c, d, and e would be balanced together under the skew group for clock a.
However, the clock/clock set_false_path assertions mean that you no longer need to balance a with b. Furthermore, the
set_clock_group assertion groups clocks, a and b separately from c, d, and e. Since c, d, and e are members of the same clock
group, they must still balance together. However, none of them need to balance with a, and none of them need to balance with b.

You can continue in this way, analyzing the clocks into the five groups shown. Clocks in different groups need not balance together.
For each pair of “need not balance” clocks, you can relax the skew group constraints in the produced spec.

For example, in the default balancing constraints there is a single skew group, a that balanced together flops s_a, s_b, s_c, s_d,
and s_seg. However, clock a need not balance with any other clock. Therefore, you can adjust its skew group so that the flops s_a
are balanced separately from all the other flops. A similar observation holds for clock b. Conversely, clocks c, d, and e must
continue to balance together.

To implement these relaxations, following changes are made to the spec:

Add ignore pins to the skew group for clock a at the generator inputs to clocks b and c. The skew group for clock a now only
spans the domain of a, sinking at s_a only.

The skew group for clock b is no longer marked constrains none.

The skew groups for the other clocks are left unchanged.

A special “clock group 2” skew group is synthesized to span clocks c, d, e, and g. This skew group is sourced on a, f and
sinks on s_c, s_d, s_eg only: ignore pins are added to ensure it goes nowhere else.

The purpose of clock group 2 skew group is to impose a missing total path constraint. Note that the flops of c, d, e, g must balance
together. This is true even though g belongs to a different ultimate master. This is because g shares flops in common with e. Notice
that the insertion delay to the sources c and g is only constrained by the clock group skew group: no other skew group does this.
Without the clock group 2 skew group you cannot ensure that all paths to the flops of c, d, e, and g are balanced.

September 2022 627 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/set_clock_groups.html
../innovusTCR/set_false_path.html
../innovusTCR/create_ccopt_clock_tree_spec.html

Similarly, a clock group skew group for clocks j and k is needed. They must balance together, but need not balance with i, their
master clock. The skew groups for j and k alone do not span all the paths you need to balance together. A clock group skew group is
to be added to span both of j and k.

A clock group skew group is not always required. For example, b needs no such skew group: the latency to the source of b does not
affect the balancing of the flops within b.

Balancing Ultimate Master Clocks
As detailed above, spec creation assumes that flops with differing ultimate master clocks do not need to be balanced together. This
is true even when the timing connectivity-based skew groups feature is enabled. This behavior can be overridden with the
timing_connectivity_based_skew_groups_balance_master_clocks property.

When this property is set to true, the default balancing constraints are changed. This is true regardless of the value of the
timing_connectivity_based_skew_groups property.

The effect of this property on the default balancing relationships is illustrated in below figure.

Balance Master Clocks

set_ccopt_property timing_connectivity_based_skew_groups_balance_master_clocks true

create_ccopt_clock_tree_spec

All clocks are treated as synchronous, and as such they must be balanced together. To implement this, spec creation synthesizes a
clock group skew group spanning the entire clock network, sourcing on a, f, i and sinking at every flop.

This is a restrictive constraint and is typically not required when using the default balancing constraints. It has more use when timing
connectivity-based skew groups are enabled. This is illustrated in below figure.

Balance Master Clocks and Clock False Paths

September 2022 628 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

set_clock_groups -asynchronous -group {a b} -group {c d e g} -group {f h i} –group {j k}

set_false_path -from [get_clocks {a}] -to [get_clocks {b}]

set_false_path -from [get_clocks {b}] -to [get_clocks {a}]

set_ccopt_property timing_connectivity_based_skew_groups clock_false_path

set_ccopt_property timing_connectivity_based_skew_groups_balance_master_clocks true

create_ccopt_clock_tree_spec

In this case, some structural changes are made to the clock group skew groups that reflect spec creation starting from the assumption
that all clocks are synchronous. You can manage the balancing relationships imposed on CTS by means of the SDC clock/clock
set_false_path and set_clock_group assertions.

The Clock/Clock Balancing Relationships Report
This report is only generated if timing connectivity-based skew groups are enabled. The report appears as a comment in the
generated spec when it is written to the Tcl file.

The balancing report is divided into sections, one for each constraint mode. Within each section are reported, the inferred balancing
relationships between the SDC clocks in that constraint mode. For each clock, the report displays its relationship with the other
clocks in the mode, partitioning the other clocks into three categories depending on the relationship determined: direct balance;
indirect balance; and need not balance.

This report is also written to the timing_connectivity_info property so that it can be queried from the command prompt and Tcl
scripts.

Related Properties
This feature is implemented using the following CCOpt properties:

timing_connectivity_based_skew_groups: Specifies whether SDC assertions are considered when creating the skew groups.
When set to off the software uses the default balancing constraints. When set to clock_false_path, the clock/clock
set_false_path and set_clock_group assertions are considered and used to shape the spec-generated skew groups.

timing_connectivity_based_skew_groups_balance_master_clocks: Controls how CCOpt will address the synchrony of disjoint
(i.e. non-overlapping) ultimate master SDC clocks. When set to false, all disjoint master clocks are assumed to be mutually
asynchronous. When set to true, the synchrony of disjoint master clocks is determined by consulting the SDC assertions in

September 2022 629 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

accordance with the value of property, timing_connectivity_based_skew_groups.

timing_connectivity_info: This property is populated by spec creation to record the clock/clock balancing relationships that
were determined for the production of timing connectivity based skew groups. This property is documenting only.

For detailed information about these properties, see CCOpt Properties.

CCOpt Clock Tree Debugger
The CCOpt Clock Tree Debugger (CTD) provides a graphical interface to explore clock trees and provides debugging capabilities to
aid understanding of CCOpt-CTS and CCOpt results. The interface is based on a top-down tree view of all defined clock trees with
the vertical axis representing insertion delay. Cells and nets can be colored by various attributes, sections of the clock tree graph can
be hidden and unhidden to facilitate navigation of complex clock architectures, and cross probing with the layout view is supported.

Many of the features of the debugger, for example, coloring are self-explanatory from exploring the interface. This section discusses
some of the more in-depth features. For details of the CCOpt Clock Tree Debugger, see the "CCOpt Clock Tree
Debugger" section in the Clock Menu chapter in Innovus Menu Reference.

Launching the CCOpt CTD
The tool can be accessed from the Clock Menu of Innovus. Choose Clock < CCOpt Clock Tree Debugger.

Note: Deleting any clock tree or skew group definitions will automatically close all open CTD windows. Multiple windows may be
opened, and the following commands permit manipulation of the CTD windows:

Command Name Usage

ctd_win Open a debugger window. An ID and title can be optionally specified. The ID is used to identify this
particular window when using the other commands below.

ctd_save_histogram Saves the CTD histogram to a file.

ctd_save_view Saves the current snapshot of the clock tree viewer into a file.

close_ctd_win Closes either the specified window by ID, all windows, or the most recently active window.

get_ctd_win_id Get the ID of the most recently active window or the IDs of all open windows.

get_ctd_win_title Get the title if the specified window by ID, or the titles of all open windows.

set_ctd_win_title Set the title of the most recently active window or the specified window by ID.

September 2022 630 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusMR/Clock_Menu.html
../innovusTCR/ctd_win.html
../innovusTCR/ctd_save_histogram.html
../innovusTCR/ctd_save_view.html
../innovusTCR/close_ctd_win.html
../innovusTCR/get_ctd_win_id.html
../innovusTCR/get_ctd_win_title.html
../innovusTCR/set_ctd_win_title.html

The main components in the CTD window are shown below.
CCOpt CTD – Main Window Components

Clock Tree Viewer – Displays a top-down tree view of clock trees.

World Viewer – Provides an overview even whilst the Clock Tree Viewer is zoomed in on a smaller region. Clicking in the
world viewer will navigate to that area.

Control Panel – Contains controls to determine visibility of different object types and coloring. Additional controls are available
via the View, Visibility, and Color by menu items.

Key Panel – A reference key indicating symbols and/or coloring used within the Clock Tree Viewer.

The Path Browser, which displays skew group path summary data in a table is available from the View menu of the CTD. It opens in
a separate window as shown below.

Double-clicking on a row or using the right-click context menu permits opening the Clock Path Analyzer window. By default, the Path
Browser opens at the bottom of the window. The Clock Path Analyzer, when invoked, replaces the Clock Path Browser.

By default, the Control Panel and Key Panel are hidden. These panels can be exposed or hidden as illustrated below.

CCOpt CTD – Opening the Key and Control Panel

ctd_trace Highlight the path to a sink in the active debugger window.

gui_zoom_ctd Zooms into or out of the CTD window.

September 2022 631 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/ctd_trace.html
../innovusTCR/gui_zoom_ctd.html

CCOpt CTD – Opening the Key and Control Panel

Key Features of the CTD
The key features of the CTD are briefly explained in the subsequent sections.

For details of the CCOpt Clock Tree Debugger, see the "CCOpt Clock Tree Debugger" section in the Clock Menu chapter in
Innovus Menu Reference .

Clock Tree Representation

Clock trees are drawn in a top-down tree like manner with the vertical axis representing insertion delay. Different symbols are used
for differing cell types, for example buffers, inverters, clock gates, logic and sinks. Gate and wire delay are separately represented, as
illustrated below.

Gate and Wire Delay

Expanding and Collapsing Sub-trees

Any node in the tree may be either expanded or collapsed. The sub-trees of collapsed nodes are shown as a vertical summary bar
indicating the maximum and minimum insertion delay below the node, and the number of sinks in the sub-tree, as illustrated below.

September 2022 632 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusMR/Clock_Menu.html

The expanded and collapsed state of a node may be toggled by double-clicking on the node, or using the Expand/Collapse item on
the context menu. Additionally, a sub-tree can be marked as un-collapsible by using the context menu. An un-collapsible sub-tree
will not be collapsed when its parent is collapsed.

Simplification

The View – Simplify option in the menu bar can be used to further manage visibility, including the following:

Mark All Collapsible – Mark all nodes as collapsible.

Collapse all – Collapse all sub-trees such that each clock tree is fully collapsed.

Expand All – Expands everything so that no subtree is collapsed.

Expand All by Skew Group – Expand all sub-trees that pass through the specified skew group.

Hide – Specified cell types or cell instances can be hidden using the View -> Simplify -> Hide menu option. Hidden cells are
simply omitted, as represented in the diagram below where buffer cells, but not clock gates, have been hidden.

Show unhidden – Expands all the hidden instances and cells in the Clock Tree Viewer.

September 2022 633 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Context Menu

Right-clicking on a cell opens a context menu. This menu permits various operations to be performed, such as copying the cell
name, highlighting the cell, highlighting paths to the cell, opening a schematic viewer, or opening cell properties.

September 2022 634 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Multiple Input Cells

A multiple input cell, for example a multiplexer, can exist in more than one clock tree. Multiple input cells are shown in multiple clock
trees, but the sub-tree underneath the cell can only be expanded in one clock tree at a time. A dotted line is drawn between the
instances of the same cell as illustrated below.

Cross Probing

When an object is selected in the main Innovus layout window it will also be selected in the CTD window. Conversely, objects
selected in the debugger window will be selected in the layout window. The right-hand mouse button can be used to draw a
bounding box to perform multiple selections.

September 2022 635 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Unit Delay

The Visibility – Unit Delay menu option changes to a unit delay model where each cell has a delay of 0 and each wire a delay of 1.0.
This mode is useful for inspecting the clock graph structure before running CCOpt or CCOpt-CTS.

Additional Topics

Source Latency Update
Source latency update is performed to ensure that after CTS when clocks are switched to propagated mode that I/O timing and inter-
clock timing is consistent with the ideal mode timing model. Stated succinctly:

The source latency update step updates the source latencies at clock root pins such that the per clock average clock arrival
time is identical postCTS as it was preCTS.

This mechanism is best explained using an example. The diagram below represents the before CTS ideal clock mode timing.
In this example, there is a single clock with a clock source latency of 1ns and a network latency of 3ns. Therefore, the average
clock arrival time at both the I/O pins (represented by dotted flops) and the real sinks is 4ns.

Source Latency Update – Before CTS

September 2022 636 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Source Latency Update – Before CTS

The next diagram below illustrates what would happen if CTS were performed but instead of achieving a 3ns insertion delay CTS
achieves a 3.5ns insertion delay. The clock arrival time at the I/O pins is unchanged, but the clock arrival time at the real flops is now
3.5ns. This results in optimistic setup slack on input paths and pessimistic setup slack on output paths.
Source Latency Update – CTS without Source Latency Update

The diagram below illustrates the effect of source latency update. The clock source latency and network latency are unchanged, and
the I/O pin timing is unchanged. The clock root pin has the source latency overridden to be 0.5ns instead of 1ns. This adjusts the
clock arrival time at the real sinks such that it remains at 4ns. The input paths and output paths are now timed in the manner which
was intended preCTS. Unlike other ‘I/O latency modification’ schemes, this scheme operates correctly in the presence of multiple
clock domains communicating with I/O pins without any need for averages or need to match up virtual clocks with real clocks. The
source latency modification is performed per clock root pin per clock, such that cross-clock timing consistency is also maintained
from before CTS to after CTS. Virtual clocks, if present, do not need modification.

Source Latency Update – CTS with Source Latency Update

September 2022 637 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Source Latency Update – CTS with Source Latency Update

The diagram below is the same example but with the initial "before CTS" clock and network latencies both at zero. This gives rise to
a negative source latency set at the clock root pin. Before CTS the average clock arrival time is zero and this is maintained after CTS
via the source latency update.
Source Latency Update – Variation with Zero Initial Latencies

In the CCOpt-CTS flow, the source latency update step is performed near the end. In the CCOpt flow, the source latency update step
is performed after initial virtual delay balancing before timing optimization and useful skew scheduling commences. The source
latency updates are reflected in the Innovus timing constraints and will be saved in any saved database or exported in SDC as
normal.

In a block-level design with multiple clocks it is likely that each clock will obtain a different source latency modification. For example,
a small clock tree might have a source latency modification of -0.5ns while a large clock tree might have a source latency
modification of -2ns. This correctly maintains the validity of the timing constraints which were present before CTS for after CTS
usage. However, it means that the 1.5ns difference between the small and large clock tree needs to be synthesized at the top level,
but it is usually considerably more efficient to do this at the top level than it is at a block level. Typically, at the top level, an ILM model
of blocks is used, in which case CTS will be able to directly see the clock paths inside the ILM so the users need take no action to
configure this 1.5ns offset.

September 2022 638 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

By default, the software updates all loaded views for a design and not only those that are currently active.

The source latency modification scheme can be disabled using set_ccopt_property update_io_latency false. The latency
modification scheme should be disabled for top-level chips as balancing clocks outside the chip is unlikely to be practical or if the
flow requires balancing between clocks to be performed inside the block level. When latency modification is disabled, the designer
needs to correctly estimate the achievable clock tree insertion delay and configure clock network latencies accordingly to avoid a
timing jump over CTS and the switch to propagated clock mode timing.

Converting Library Path Delays to Clock Latencies
A new command convert_lib_clock_tree_latencies is provided to convert the Liberty max_clock_tree_path/min_clock_tree_path
(MCTP) data to per pin clock latency adjustments.Run this command before running the create_ccopt_clock_tree_spec command
so that the output of convert_lib_clock_tree_latencies impacts the clock tree specification that is created. It is also recommended
to use the command before place_opt_design to ensure placement and pre-CTS optimization observes the latency adjustments. The
syntax of the command is as follows:

[-help]

[-latency_file_prefix prefix_name]
[-pins pin_list]

[-views view_list]
[-override_existing_latencies | -sum_existing_latencies]
[-sum_existing_latencies | -override_existing_latencies_pins pin_list]
[-override_existing_latencies | -sum_existing_latencies_pins pin_list]
[-sum_existing_latencies | -sum_existing_latencies_pins pin_list]
[-override_existing_latencies | -override_existing_latencies_pins]

It is required that the analysis mode be set to on-chip variation (OCV) because the conversion process computes individual early and
late network latency values. This can be achieved by using the below command:
setAnalysisMode -analysisType onChipVariation

Views – By default all active setup and active hold analysis views are considered. The –views option can be used to restrict to a sub-
set of the active views.

By default, the conversion will consider all instance pins with MCTP data in all analysis views. Pins which have any existing
network latency, differing from the corresponding clock network latency will be skipped completely for all clocks and for all views –
this avoids the conversion process from interfering with any SDC specified pin latencies. Alternatively, existing latency offsets can be
summed or overridden for all or names pins using the appropriately named override and sum option. Additionally, the –pins option
can be used to consider only a specified list of pins instead of all pins with MCTP data.

By default, the conversion will internally apply the resulting set_clock_latency commands to the in memory timing constraints.
Alternatively the –latency_file_prefix parameter can be specified to have one file per analysis view written containing the
set_clock_latency commands.

Examples:

Example 1 – Single clock, no clock network latency, no pre-existing latency overrides

Circuit
ck1 --> icg --+--> flop1/CK (regular flop pin without MCTP data)
+--> macro1/CK (pin with MCTP data, of 0.222R/0.232F at 0.125 transition time)
+--> macro2/CK (pin with MCTP data, of 0.333R/0.343F at 0.125 transition time)

SDC
create_clock -period 1.0 [get_ports ck1]
set_clock_transition 0.125 [get_clocks ck1]

September 2022 639 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/convert_lib_clock_tree_latencies.html
../innovusTCR/setAnalysisMode.html

Command and log output
convert_lib_clock_tree_latencies -latency_file_prefix lat_ -views default_analysis_view_setup
Converting library clock tree path delays to clock latencies for analysis_view default_analysis_view_setup
Found 2 of 3 clock endpoints with library clock tree path data
+---+
| Clock endpoint | Status |
|------------------------+----------------------|
| macro1/ck | converted |
| macro2/ck | converted |
+---+
Writing latencies to file 'lat_default_analysis_view_setup.sdc'

Output file
set_clock_latency -0.222 [get_pins {macro1/CK}] -clock [get_clocks {ck1}] -rise
set_clock_latency -0.232 [get_pins {macro1/CK}] -clock [get_clocks {ck1}] -fall
set_clock_latency -0.333 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -rise
set_clock_latency -0.343 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -fall

Example 2 – Single clock, no clock network latency, pre-existing latency overrides

Circuit

 ck1 --> icg --+--> flop1/CK (regular flop pin without MCTP data)

 +--> macro1/CK (pin with MCTP data, of 0.222R/0.232F at 0.125 transition time)

 +--> macro2/CK (pin with MCTP data, of 0.333R/0.343F at 0.125 transition time)

SDC

 create_clock -period 1.0 [get_ports ck1]

 set_clock_transition 0.125 [get_clocks ck1]

 set_clock_latency -0.300 [get_pins {macro1/ck}]

Command and log output

convert_lib_clock_tree_latencies -latency_file_prefix lat_ -views default_analysis_view_setup

Converting library clock tree path delays to clock latencies for analysis_view default_analysis_view_setup

Found 2 of 3 clock endpoints with library clock tree path data

 +--+

 | Clock endpoint | Status |

 |------------------------+---------------------------------|

 | macro1/ck | skipped, existing latency found |

 | macro2/ck | converted |

 +--+

Writing latencies to file 'lat_default_analysis_view_setup.sdc'

Output file

 set_clock_latency -0.333 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -rise

 set_clock_latency -0.343 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -fall

Example 3 – Single clock, no clock network latency, pre-existing latency overrides, using the -override_existing_latencies
option

Circuit

September 2022 640 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

 ck1 --> icg --+--> flop1/CK (regular flop pin without MCTP data)

 +--> macro1/CK (pin with MCTP data, of 0.222R/0.232F at 0.125 transition time)

 +--> macro2/CK (pin with MCTP data, of 0.333R/0.343F at 0.125 transition time)

SDC

 create_clock -period 1.0 [get_ports ck1]

 set_clock_transition 0.125 [get_clocks ck1]

 set_clock_latency -0.300 [get_pins {macro1/ck}]

Command and log output

convert_lib_clock_tree_latencies -latency_file_prefix lat_ -override_existing_latencies -views

default_analysis_view_setup

Converting library clock tree path delays to clock latencies for analysis_view default_analysis_view_setup

Found 2 of 3 clock endpoints with library clock tree path data

 +--+

 | Clock endpoint | Status |

 |------------------------+---|

 | macro1/ck | converted, existing latency overwritten |

 | macro2/ck | converted |

 +--+

Writing latencies to file 'lat_default_analysis_view_setup.sdc'

Output file

 set_clock_latency -0.222 [get_pins {macro1/CK}] -clock [get_clocks {ck1}] -rise

 set_clock_latency -0.232 [get_pins {macro1/CK}] -clock [get_clocks {ck1}] -fall

 set_clock_latency -0.333 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -rise

 set_clock_latency -0.343 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -fall

Example 4 – Single clock, no clock network latency, pre-existing latency overrides, using the -sum_existing_latencies
option

Circuit

 ck1 --> icg --+--> flop1/CK (regular flop pin without MCTP data)

 +--> macro1/CK (pin with MCTP data, of 0.222R/0.232F at 0.125 transition time)

 +--> macro2/CK (pin with MCTP data, of 0.333R/0.343F at 0.125 transition time)

SDC

 create_clock -period 1.0 [get_ports ck1]

 set_clock_transition 0.125 [get_clocks ck1]

 set_clock_latency -0.300 [get_pins {macro1/ck}]

Command and log output

 convert_lib_clock_tree_latencies -latency_file_prefix lat_ -sum_existing_latencies sum -views

default_analysis_view_setup

 Converting library clock tree path delays to clock latencies for analysis_view default_analysis_view_setup

September 2022 641 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

 Found 2 of 3 clock endpoints with library clock tree path data

 +--+

 | Clock endpoint | Status |

 |------------------------+---|

 | macro1/ck | converted, existing latency summed |

 | macro2/ck | converted |

 +--+

 Writing latencies to file 'lat_default_analysis_view_setup.sdc'

Output file

 set_clock_latency -0.522 [get_pins {macro1/CK}] -clock [get_clocks {ck1}] -rise

 set_clock_latency -0.532 [get_pins {macro1/CK}] -clock [get_clocks {ck1}] -fall

 set_clock_latency -0.333 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -rise

 set_clock_latency -0.343 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -fall

Example 5 – Two clocks, existing clock network latency, pre-existing latency override, using the -
override_existing_latencies_pins and –sum_existing_latencies_pins options

Circuit

 ck1 ---> +-----+

 | mux | -----> icg --+--> flop1/CK (regular flop pin without MCTP data)

 ck2 ---> +-----+ +--> macro1/CK (pin with MCTP data, of 0.222R/0.232F at 0.125 transition time)

 +--> macro2/CK (pin with MCTP data, of 0.333R/0.343F at 0.125 transition time)

SDC

 create_clock -period 1.0 [get_ports ck1]

 create_clock -period 1.0 [get_ports ck2]

 set_clock_transition 0.125 [get_clocks ck1]

 set_clock_transition 0.125 [get_clocks ck2]

 set_clock_latency 1.5 [get_clocks {ck1}]

 set_clock_latency 2.0 [get_clocks {ck2}]

 set_clock_latency 1.2 [get_pins {macro1/ck}] –clock [get_clocks {ck1}]

 set_clock_latency 1.7 [get_pins {macro2/ck}] –clock [get_clocks {ck1}]

Command and mock-up log output

convert_lib_clock_tree_latencies -latency_file_prefix lat_ -override_existing_latencies_pins macro1/ck –

sum_existing_latencies_pins macro2/ck -views default_analysis_view_setup

Converting library clock tree path delays to clock latencies for analysis_view default_analysis_view_setup

Found 2 of 3 clock endpoints with library clock tree path data

 +--+

 | Clock endpoint | Status |

 |------------------------+---|

 | macro1/ck | converted, existing latency overwritten |

September 2022 642 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

 | macro2/ck | converted, existing latency summed |

 +--+

Writing latencies to file 'lat_default_analysis_view_setup.sdc'

Output file (the comments should not be written in the file)

1.5 is used since the existing latency override (1.2 instead of 1.5) is itself to be overwritten

 set_clock_latency 1.278 [get_pins {macro1/CK}] -clock [get_clocks {ck1}] -rise /1.5-0.222=1.278

 set_clock_latency 1.268 [get_pins {macro1/CK}] -clock [get_clocks {ck1}] -fall /1.5-0.232=1.268

 set_clock_latency 1.778 [get_pins {macro1/CK}] -clock [get_clocks {ck2}] -rise /2.0-0.222=1.778

 set_clock_latency 1.768 [get_pins {macro1/CK}] -clock [get_clocks {ck2}] -fall /2.0-0.232=1.768 # 1.7 is used since
the existing latency override is to be included (summed)

 set_clock_latency 1.367 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -rise /1.7-0.333=1.367

 set_clock_latency 1.357 [get_pins {macro2/CK}] -clock [get_clocks {ck1}] -fall /1.7-0.343=1.357

2.0 is used since there is no existing latency override for this clock. Note the log messaging will indicate

“existing latency summed” if applicable for any clock. Putting per clock reporting in the log seems to verbose to be

useful.

 set_clock_latency 1.667 [get_pins {macro2/CK}] -clock [get_clocks {ck2}] -rise /2.0-0.333=1.667

 set_clock_latency 1.657 [get_pins {macro2/CK}] -clock [get_clocks {ck2}] -fall /2.0-0.343=1.657

Debugging Unresolvable Skew Targets
As part of the CTS configuration, you may specify a desired skew target and expect the tool to achieve this. However, you may also
mark some nets as being preserved using the dont_touch flag. This preservation prevents buffering of that net and might, in some
circumstances, prevent CTS from achieving the desired skew target.

There are many ways in which net preservation can cause skew issues. A simple net case involving one net is detailed below.

The term, “simple” here refers to single clock nets:

That are preserved - marked as dont_touch or ideal network

September 2022 643 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Have a clock sink directly attached, where the sink is configured to be a skew group sink for a skew group, and

For that skew group, the difference in latency between the driver of the net and the sink vs. the longest path delay from the
driver of the net is bigger than the skew target.

The software detects and reports simple cases of net preservation. The course of action depends upon whether the
 ignore_problematic_skew_as_result_of_dont_touch_nets property is set or not. When it is set to true, the software ignores sinks
directly connected to nets that are causing unfixable skew problems for skew balancing. By default, this property is set to false.

For details, see CCOpt Properties.

The software takes one of the following actions:

1. Issues a warning requiring you to fix the setup to address the problem

2. Issues a warning, and internally modifies the balancing configuration to fix the problem

Scenario 1:

The following warning is issued when problematic preserved nets are found and the
ignore_problematic_skew_as_result_of_dont_touch_nets property is not set.

Type man <message_ID> to read the complete message.

NAME

 IMPCCOPT-1482

SUMMARY

 Found %d dont_touch nets whose immediate fanout are skew group sinks

 causing unfixable skew problems in skew groups. This may impact clock

 tree skew balancing QoR.

DESCRIPTION

 This message occurs when a dont_touch net is found in the clock tree

 that will stop the skew target being achieved due to not being able to

 add buffers to that net. When observed, the user should review the sub-

 sequent table of net names and pins attached to those nets and choose

 to:

 1.Ignore the message. The skew of the listed skew groups will be

 impacted by the amount listed in the table and lower skew targets will

 not be achievable.

 2. Remove the dont_touch from the nets named in the table. This will

 allow the tool to buffer the nets to fix the skew problem.

 3.Mark the skew group sink pins in the immediate fanout of the net as

 ignore pins, to take them out of the balancing problem for all skew

 groups.

 4.Remove the immediate fanout pins from the skew group sink list for

 the affected skew groups.

 5.Set the ignore_problematic_skew_as_result_of_dont_touch_nets prop-

 erty and rerun.

September 2022 644 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Scenario 2:

In the case where the ignore_problematic_skew_resulting_from_dont_touch_nets property is set to true, a different message will
be emitted.

Type man <message_ID> to read the complete message.

NAME

 IMPCCOPT-1483

SUMMARY

 Found %d dont_touch nets whose immediate fanout are skew group sinks

 causing unfixable skew problems. %d sinks directly connected to these

 nets have been ignored for skew balancing.

DESCRIPTION

 This message occurs when a dont_touch net is found in the clock tree

 that would stop the skew target being achieved due to not being able to

 add buffers to that net. The tool has internally marked the impacted

 sinks as ignore pins such that overall skew balancing should not be

 impacted by these sinks.

 One consequence of this message is that the skew numbers seen in the

 log during the run will not match the skew numbers reported post-CTS

 using report_ccopt_skew_groups.

 To resolve this warning, the user should review the subsequent table of

 net names and pins attached to those nets and choose to:

 1. Ignore the message. When reporting post-CTS, the skew of the listed

 skew groups will be impacted by the amount listed in the table for the

 sinks listed in the table.

 2. Remove the dont_touch constraint from the nets named in the table.

 This will allow the tool to buffer the nets to fix the skew problem.

 3. Mark the skew group sink pins in the immediate fanout of the net as

 ignore pins. To take them out of the balancing problem for all skew

 groups, the following tcl may be used to identify dont_touch nets and

 mark the sinks directly attached as ignore pins for balancing:

 set skew_group_sinks {}

 foreach net [get_db -u clock_trees .nets -if {.is_dont_touch}] {

 set is_problem_net false

 foreach load [get_db $net .loads] {

 foreach sg [get_db $load .cts_skew_groups_active_sink] {

 dict lappend skew_group_sinks $sg $load

 set is_problem_net true

September 2022 645 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

 }

 }

 if {$is_problem_net} {

 Puts "Found problematic skew group sinks on preserved net $net"

 }

 foreach sg [dict keys $skew_group_sinks] {

 modify_ccopt_skew_group -skew_group $sg -add_ignore_pins [dict get

 $skew_group_sinks $sg]

 }

 4. Remove the immediate fanout pins from the skew group sink list for

 the affected skew groups.

Output

A sample output is shown below:

Preserved nets causing skew problems:

=====================================

--

 Net Skew Skew Skew Num sinks Example

 group target Achievable on net sink

 (ns) (ns)

--

wire1 clk/func 0.100 0.516 2 top/ffer333/reg12/CK

wire2 clk/test 0.200 0.711 16 top/iiiwww3/reg34/CK

--

Updating Annotations After Clock Tree Specification Creation
This feature allows for communicating the ideal net status, annotated delays and transitions via the clock tree spec. You can update
ideal nets and annotations after clock specification creation.

Use the below command to update all ideal nets, transition and delay annotations to match active timing constraints.

update_clock_tree_spec_annotations

You can also write the updated settings to a file using the -out_file option or apply the settings immediately.

The following new properties are provided to model the data captured by set_ideal_network, set_annotated_delay,
set_annotated_transition, set_ideal_latency and set_ideal_transition commands:

ideal_net: If this attribute is set, the clock tree timing engine will consider the specified net as ideal.

annotated_delay_to - Overrides any clock tree timing engine computed cell arc or net arc delays to this pin, in a similar
manner to SDC set_annotated_delay.

annotated_transition - Overrides any clock tree timing engine computed transition at this pin, in a similar manner to SDC

September 2022 646 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

set_annotated_transition.

For details about the above properties, see CCOpt Properties.

For command description and details of usage of the command and examples, see update_clock_tree_spec_annotations in the
Innovus Text Command Reference.

Preserving Components in the Clock Tree
Preserving Ports

The following setting is used to preserve the module ports:

dbSet [dbGetHTermByInstTermName name] .dontTouch true

Preserving Instances

The following setting is used to preserve instances without permitting resizing:

dbSet [dbGetInstByName name].dontTouch true

The following setting is used to preserve instances while permitting resizing:

dbSet [dbGetInstByName name].dontTouch sizeOk

Note: sizeSameHeightOk and sizeSameFootprintOk are not supported and do not enable sizing.

Preserving Nets

The following setting is used to specify that the net should not be buffered:

dbSet [dbGetNetByName name].dontTouch true/ dbSet [dbGetHNetByName name].dontTouch true

The software issues the following warning suggesting that the clock tree instances that are user dont_touch and are not resizable:

**WARN: (IMPCCOPT-1437): Found %d clock tree instances which are user dont_touch and are not resizable - this can

impact clock QoR. Previous versions of the software would by default ignore the dont_touch setting when deciding to

size an instance. The command 'report_preserves' can be used to report on the preservation status of all instances.

Consider using the dont_touch setting of 'sizeOk' as an alternative to full dont_touch.

Power Management
CCOpt-CTS and CCOpt respect power management constraints specified via CPF or UPF. Typically, on most designs it is important
to permit CTS access to “always-on” buffers that have additional non-switched power. This is important so that CTS can buffer
across power domains where the primary power is switched. This is performed simply by including always-on buffers and inverters
with the regular buffers and inverters in the cell selection settings. For example:

set_ccopt_property inverter_cells {INVX4 INVX8 INVX12 PMINVX4 PMINVX8}
set_ccopt_property buffer_cells {BUFX4 BUFX8 BUFX12 PMBUFX4 PMBUFX8}

Note: The order of the cells in the lists is not important.

Just after ccopt_design is invoked, the log file will report which library cells are being used in each power domain. For example:

Clock tree balancer configuration for clock_tree ck:
CCOpt power management detected and enabled.
For power_domain SW and effective domain power_domain SW:
Buffers: BUFX8 BUFX4 BUFX1

September 2022 647 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/update_clock_tree_spec_annotations.html
../innovusTCR/ccopt_design.html

Inverters: INVX8 INVX4 INVX1
For power_domain SW and effective domain power_domain AO:
Buffers: PMBUFX8 PMBUFX2
Inverters: PMINVX8 PMINVX2
For power_domain AO and effective domain power_domain SW:
Buffers: PMBUFX8 PMBUFX2
Inverters: PMINVX8 PMINVX2
For power_domain AO and effective domain power_domain AO:
Buffers: BUFX8 BUFX4 BUFX1
Inverters: INVX8 INVX4 INVX1
Unblocked area available for placement of any clock cells in power_domain SW: 178511.090um^2
Unblocked area available for placement of any clock cells in power_domain AO: 5000.000um^2

If CTS detects an illegal effective power domain crossing in the clock tree, it will attempt to manage the situation by temporarily
overriding the effective domain of the fan-out of a violating clock tree net to match the driver’s effective domain. If this happens, then
in the log, there will be messages like these:

**ERROR: (IMPCCOPT-1044): CTS has found the clock tree is inconsistent with the power management setup: cell buf1 (a

lib_cell BUFX2) at (10.000,0.000), in power domain PDA has power_domain PDA and effective domain power_domain PDA

but drives modb/flop2/clk which has power_domain PDB and effective domain power_domain PDB.

To disable this behavior and have CTS abort with an error instead, set the manage_power_management_illegalities property
to false. To disable all power management checks completely, set the consider_power_management property to false.

Unbufferable Regions

It is possible that the power management constraints prevent a particular net from being buffered. In this situation, the CTS QoR is
likely to be severely hampered. CTS logs the following message:
**WARN: (IMPCCOPT-1172): CTS cannot select a library cell to use as a driver at one or more points of clock_tree ck.

For more detailed reporting, run the report_ccopt_cell_filtering_reasons command.

Run report_ccopt_cell_filtering_reasons will help user understand the detailed reason why no library cell can be used. In order
to see the details of which nets are involved, set the detailed_cell_warnings property true, and the software will log many
IMPCCOPT-1169 and IMPCCOPT-1170 messages with detailed information.

Shared Clock and Data Concerns
In some situations, a net may be used for both clock and datapath purposes. Consider the left-hand side example below with clock
divider flop d1 clocking flop f1. However, the output of d1 is additionally connected to the SI input of f2 as part of the scan chain. The
net driven by d1 is part of the clock tree graph and may not be operated on by datapath optimization including datapath hold fixing.
This restriction prevents datapath transforms from disrupting clock timing. After CTS it is possible that there exists a hold violation at
the input of f2, but datapath hold buffer insertion will not be able to insert a buffer to fix it.

Addition of an exclusion buffer

September 2022 648 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Addition of an exclusion buffer

The SI input of flop f2 will by default be a clock tree exclude pin. The command, ccopt_add_exclusion_drivers can be used to add
exclusion drivers to isolate exclude pins from the clock tree graph. The inputs to exclusion drivers are explicitly set to be clock tree
ignore pins.

As illustrated in the right-hand side example, once the exclusion buffer is added, datapath hold fixing, or other datapath optimization
is free to operate on the net between the exclusion buffer and flop f2.

Inverting Clock Gates (ICG) CTS Transforms
You can enable transforms between non-inverting and inverting ICGs. This can help reduce inverter counts in designs featuring both
positive-edge triggered inverting and non-inverting ICGs.

This limited-access feature enables the following two steps:

1. The first step removes any inverting ICGs from the netlist before the clustering step and replaces them with an equivalent non-
inverting ICG and an inverter (if possible).

2. The second step runs after the clustering step and tries to swap out non-inverting ICGs for inverting ICGs in the case where
doing so would save inverters. There is no consideration of power, but this transform may reduce inverter count.

For this feature to work, you need to:

Buffer with inverters

Enable the limited-access feature

Enable activity propagation

Have both inverting and non-inverting ICGs in your cell lists

Note: The ICGs must be similar - apart from their polarity - so that the software can swap between them. The ICGs will not be
swapped if they have different number of pins or different edge sensitivity.

This is a limited-access feature in this release. It is enabled by a variable specified using
the setLimitedAccessFeature command. To use this feature, contact your Cadence representative to explain your usage
requirements, and make sure this feature meets your needs before deploying it widely.

September 2022 649 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/ccopt_add_exclusion_drivers.html
../innovusTCR/setLimitedAccessFeature.html

CCOpt Property System
This section details the way the CCOpt property system operates behind the set_ccopt_property and get_ccopt_property
 commands. Note that some properties are read only and so many more properties are accessible
to get_ccopt_property than set_ccopt_property.

Setting Properties
Properties have a name and are assigned a value. Properties can be global, or per object type. The property name, value, and if
desired or required the object type and object pattern can be specified. The following syntax are acceptable:

1. set_ccopt_property <name> <value> [-obj <obj_pattern>]

2. set_ccopt_property <name> [-obj <obj_pattern>] <value>

3. set_ccopt_property [-obj <obj_pattern>] <name> <value>

Where,

name is the name of the property to be set

value is the new value to which you want to set the property

The most commonly used object types are: -skew_group, -clock_tree, -pin, -inst, -lib_pin, -delay_corner, -net_type.

All of the commands below are equivalent:

1. set_ccopt_property target_skew 0.1 –skew_group sg1

2. set_ccopt_property target_skew –skew_group sg1 0.1

3. set_ccopt_property –skew_group sg1 target_skew 0.1

The property name and value parameters are positional and must appear in order. The object type and object pattern specification
can appear anywhere. If an object type is not specified, then the setting will apply to all relevant objects including ones that are
created in the future.

Wildcards

The object name can involve wildcard style patterns, for example:

set_ccopt_property use_inverters –clock_tree test* true

Wildcards are resolved when the command is issued not when the property value is used. In the command shown above, if a new
clock tree test_new was defined after the set_ccopt_property command was issued, it would not have the use_inverters property
set.

Optional Object Type Switches

If the –object_type parameter is omitted, this implies a "forall" on that type value. The example below specifies that CTS should use
inverters for clock tree ct1:

set_ccopt_property use_inverters –clock_tree ct1 true

The example below does not specify the –clock_tree object type:

set_ccopt_property –use_inverters true

September 2022 650 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/set_ccopt_property.html
../innovusTCR/get_ccopt_property.html

And is equivalent to:

foreach ct [get_ccopt_clock_trees *] {
set_ccopt_property –use_inverters –clock_tree $ct true
}

Delay Corner Special Handling

There are some exceptions to the above rule that are designed to capture common user intent. The main exceptions are properties
for which the -delay_corner object type and -early/-late parameters apply. When these parameters are omitted, the default
behavior is that the property is not set across all delay corners but instead it will be set just for the primary delay corner. In the
following example, the leaf-level properties are maintained internally and one or more properties can be set at a time by specifying
additional information. The example illustrates the internal representation of the target_skew property in a design with one delay
corner used for setup timing and two delay corners used for hold timing. The initial default values are shown below:

If the command, set_ccopt_property target_skew 0.05 is set, the internal representation will change to become:

If the command “set_ccopt_property target_skew –delay_corner Hold1DC 0.1” is issued, the representation will change to:

Note that the specification of “Hold1DC” matches two cells in the table. To restrict further, add –early or –late.

Getting Properties
The get_ccopt_property command is used to retrieve the values of properties. For example, in the last table shown above, the
command “ get_ccopt_property –target_skew –delay_corner SetupDC –late” will return a value of 0.05.

However, if some or all of the “−key_name key_value” switches are omitted, then multiple values may be returned in a list format. An
example is shown below.

get_ccopt_property –target_skew –delay_corner SetupDC

 Early Late

SetupDC Ignore Auto

Hold1DC Ignore Ignore

Hold2DC Ignore Ignore

 Early Late

SetupDC Ignore 0.05

Hold1DC Ignore Ignore

Hold2DC Ignore Ignore

 Early Late

SetupDC Ignore 0.05

Hold1DC 0.1 0.1

Hold2DC Ignore Ignore

September 2022 651 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

../innovusTCR/get_ccopt_property.html
../innovusTCR/get_ccopt_property.html

returns the following:
{ \
 { −delay_corner SetupDC −early −value default } \
 { −delay_corner SetupDC −late −value 0.05 } \
}

If all the selected cells have the same value then a single value instead of a list will be returned. To force the return of a fully
expanded list, even if all values are the same, use the –list parameter. For a summary of all parameters of
the get_ccopt_property and set_ccopt_property commands, see Innovus Text Command Reference.

Getting a List of Properties and Descriptions

To obtain help on a property, or to find properties matching a wildcard pattern:

get_ccopt_property –help propertyName or pattern

To obtain a list of all available properties:

get_ccopt_property –help *

For example:

get_ccopt_property –help target_max_trans
This specifies the target skew for clock tree balancing. This may be set to a numeric value, or one of 'auto',

'ignore' or 'default'.

If set to 'auto' this indicates that an appropriate skew target should be computed.

If set to 'ignore' this indicates that skew should not be balanced for this corner/path combination.

If unspecified then the value of this property is 'default'.

If the value of the property is 'default' the target skew for late delays in the primary delay corner is interpreted

as 'auto' and as 'ignore' otherwise.

Valid values: default | auto | ignore | double
Default: default
Optional applicable arguments: "-skew_group <name>", "-delay_corner <name>", "-early" and "-late".

September 2022 652 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Clock Tree Synthesis

Optimizing Timing
Overview

Before You Begin

Results

Interrupting Timing Optimization

Adding Logical Tie-Off Cells

Performing Optimization Before Clock Tree Synthesis

Correcting Violations in PreCTS Mode for the First Time

Performing Rapid Timing Optimization for Design Prototyping

Using Additional PreCTS Timing Optimization Parameters

Performing Incremental PreCTS Optimization

Changing Default Settings in PreCTS Mode

Using the Early Clock Flow

Using the Multi-Bit Flip-Flop Flow

Merging Single-bit Flip-Flops

Splitting MBFFs

Use Model

Specifying the Timing Effort Level for MBFF Splitting and Merging

Reordering Mixed-Drive Strength Multi-Bit Cells

Reporting of Mixed-Drive Strength Multi-Bit Cells Used in Bit-Swapping

Multi-Bit Merging with Unused Bits

Multi-Bit Combinational Cell Optimization

Reporting the MBFFs

Reporting the Multi-Bit Latches

Dumping the MBFF Mapping Files

Splitting Multi-Bit Flip-Flops

Splitting Complex Flip-Flops

Performing PostCTS Optimization

Correcting Violations in PostCTS Mode

Skipping Path Groups During Hold Fixing

Reporting Violations Remaining After Hold Fixing

Using Additional PostCTS Timing Optimization Parameters

Performing Incremental PostCTS Optimization

Changing Default Settings in PostCTS Mode

Performing PostRoute Optimization

September 2022 653 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

About PostRoute Optimization

Using the route_opt_design Flow

Correcting Violations and Signal Integrity Issues using GigaOpt Technology in PostRoute Mode

GigaOpt in PostRoute Setup Timing Flow

GigaOpt in PostRoute Hold Timing Flow

GigaOpt in PostRoute Use Model

Changing Default Settings in PostRoute Mode

Performing Target-Based PostRoute Optimization

About Target-Based PostRoute Optimization

Automatic Selection

Using a Target File

Using a Target File to Perform End Point Adjustment

Using a Target File to do Area, Power, Max Transition, and SI Glitch Targeting

Using the createTBOptFile Command to Generate the Target File

Using Timing Debug to Generate the Target File

Using a Target File to Perform Hold Optimization

Default Naming Conventions for the TBOpt Flow

Optimizing SI Slew and SI Glitches in PostRoute Optimization

Optimizing Signal EM Violations at PostRoute Stage

Initial Steps

Optimization Strategies

Setting the Switching Activity

Reporting Signal EM Violations

Optimizing Signal EM Violations

Optimizing Power During optDesign

Leakage Power Optimization

Dynamic Power Optimization

Leakage and Dynamic Power Optimization Combined

Power-Driven Optimization for Different Optimization Modes

Migrating from Leakage and Dynamic Power Optimization to Power-Driven Optimization

Specifying the Correct Power Views for Optimization

Using Useful Skew

Using Useful Skew in PreCTS Mode

Using Useful Skew in PostCTS Mode

Using Useful Skew in PostRoute Mode

Controlling Useful Skew Optimization

September 2022 654 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Applying Useful Skew Limits to the Complete Flow

Distributed Timing Analysis for Hold Fixing

Using Active Logic View for Chip-Level Interface Circuit Timing Closure

Optimizing Timing in On-Chip Variation Analysis Mode

Specifying the MMMC Environment

Optimizing Timing in OCV Mode Using the Default Delay Calculator

Optimizing Timing Using a Rule File

Optimizing Timing When the Constraint File Includes the set_case_analysis Constraint

Using the Footprintless Flow

Using Cell Footprints

Viewing Added Buffers, Instances, and Nets

Default Naming Conventions

Using Signoff Timing Analysis to Optimize Timing and Power

Running MMMC SignOff ECO within Innovus

Performing Clock Skewing for Setup Timing Closure

Signoff Timing Analysis in Innovus using Timing Debug

Fixing SI Glitch, SI Slew, and SI Crosstalk Delta Delay Violations

SI Glitch Violations

SI Slew Violations

SI Crosstalk Delta Delay Violations

Optimization in Path-Based Analysis (PBA) Mode

Total Power Optimization

Setup Timing Recovery After a Large Leakage or Total Power Optimization

Getting the Best Total Power Optimization Recipe

Path Group Support

Top Down Block ECO flow using Tempus Signoff Timing

Metal ECO Flow

One Pass Logical Equivalence Check (LEC)

One Pass LEC Flow

Attribute Exchange between Genus and Innovus

Clock Gate Handling

Record of deleted CG pins

Name Mapping File

September 2022 655 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Overview
Optimize timing after running placement followed by early global route and RC extraction, after clock tree synthesis (CTS), and after
routing. The goals of timing optimization are to correct design rule violations (DRVs) and signal integrity (SI) violations and meet
timing. Timing optimization includes the following operations, depending on the design stage:

Adding buffers

Resizing gates

Restructuring the netlist

Remapping logic

Swapping pins

Deleting buffers

Moving instances

Applying useful skew

Use the setOptMode command (or the Tools - Set Mode- Mode Setup form) to specify global timing optimization parameters. Use
the optDesign super command (or the ECO - Optimize Design form) to optimize timing. Use the place_opt_design command to do
placement and preCTS optimization together.

Before You Begin
Before you optimize timing for the first time, complete the following steps:

Reserve enough additional placement space in the design in addition to the starting cell area to account for growth of the
design during timing optimization and clock tree insertion.

Specify preRoute and postRoute extraction scale factors by using the following commands:

generateRCFactor

create_rc_corner

Use the following method to set input transitions for the high fanout nets for delay calculation:

Set the delaycal_input_transition_delay variable.

Create and load footprints. (Optional)

You are not required to specify footprints. For more information, see the "Using the Footprintless Flow" section.

September 2022 656 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setOptMode.html
../innovusTCR/optDesign.html
../innovusTCR/place_opt_design.html
../innovusTCR/generateRCFactor.html
../innovusTCR/create_rc_corner.html
../innovusTCR/delaycal_input_transition_delay.html

Results
After optimizing timing, the Innovus™ Implementation System (Innovus) appends the log file with the following information:

Worst negative slack, total negative slack (TNS) and the number of failing (violating) paths. The software also reports hold
violations if you specify the -hold parameter in postCTS or postRoute mode. It writes the values to the log file and writes
reports to the working directory.

Note: The overall TNS and number of failing paths of a design might not be equal to the total of the TNS and failing paths of
the individual path groups. This is because the TNS and number of failing paths are based on the end-point of the path and are
not path based.

For example, the following figure has a register with two paths, one from a primary input with a slack of -0.6ns and other from
another register with a slack of -0.3ns.

In this case the overall TNS will be -0.6ns with 1 violating path (end point-based). But the individual reg2reg TNS will be -0.3ns
with 1 violating path and input to register with a TNS of -0.6ns with 1 violating path. Therefore, the sum total of individual path
group TNS is not the same as overall TNS.

Number of max_tran, max_cap, and max_fanout violations

Utilization (density)

If you specify path groups, the software produces a slack file and tarpt report for them. If you do not specify path groups, the software
produces the following violation reports:

Register-to-register

Register-to-clock-gate

Default: Includes all other paths, including paths to and from inputs/outputs.

The reports contain information about the following violations for the top 50 critical paths:

Setup violations

Hold violations

DRVs (maximum capacitance, maximum transition, and maximum fanout violations)

The software generates the reports and saves them in the file specified by optDesign -outDir (or in the timingReports directory
if -outDir is not specified).

The filenames are as follows:

designName _preCTS_ pathGroup .tarpt

designName _postCTS_ pathGroup .tarpt

designName _postRoute_ pathGroup .tarpt

The summary report has the following format:

September 2022 657 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

For more information on timing reports, see the timeDesign command.

Interrupting Timing Optimization
To stop timing optimization, use the Ctrl+C key combination. On pressing Ctrl+C, the command runs until the database is in a state
where the command can stop safely. When the command stops, the software presents the Interrupt menu.

For information on the Interrupt menu, see "Interrupting the Software" in the Getting Started chapter.

Warning: When you interrupt the software with Ctrl+C, the database will be in a state that is useful for debugging purposes only, and
not one that you should save and continue to use in the design flow.

Adding Logical Tie-Off Cells
Tie-off cell instances provide connectivity between the tie-hi and tie-lo logical input pins of the netlist instances to power and ground.
This connectivity does not cross the hierarchy module boundaries. The number of tie-off instances added can be controlled by
setting the distance and fanout constraints using setTieHiLoMode .

To add logical tie-off cells to the design after placing the netlist, use the Place Menu - Add Tie Hi/Lo form or the addTieHiLo
 command. To remove added logical tie-off cell instances, you can use the deleteTieHiLo command.

Performing Optimization Before Clock Tree Synthesis
The following topics are covered in this section:

September 2022 658 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/timeDesign.html
../innovusTCR/setTieHiLoMode.html
../innovusTCR/addTieHiLo.html
../innovusTCR/deleteTieHiLo.html

Correcting Violations in PreCTS Mode for the First Time

Performing Rapid Timing Optimization for Design Prototyping

Using Additional PreCTS Timing Optimization Parameters

Performing Incremental PreCTS Optimization

Changing Default Settings in PreCTS Mode

Using the Early Clock Flow

Using the Multi-Bit Flip-Flop Flow

Correcting Violations in PreCTS Mode for the First Time
Before optimizing timing in preCTS mode, you must break all timing loops by disabling arcs in the constraint file. If you do not
disable the arcs, the software cannot make a valid comparison of worst negative slack (WNS) between two different runs since
it might not break the loops at the same point each time. Use the following command:
set_disable_timing

Use the following command to optimize timing:
optDesign -preCTS

Use the following command to repair only DRVs:
optDesign -preCTS -drv

Note: By default, optDesign does not correct fanout violations. To repair fanout violations, run the following command
before optDesign, starting from the first call of optDesign -preCTS up to the last call of optDesign -postRoute:

setOptMode -opt_fix_fanout_load true

Performing Rapid Timing Optimization for Design Prototyping
To optimize timing using low-effort mode for design prototyping, use the following commands:

setDesignMode -flowEffort express

optDesign -preCTS

In low-effort mode, optDesign resizes gates and performs global buffer insertion and repair DRVs, but does not restructure the netlist.

Using Additional PreCTS Timing Optimization Parameters
You can use the following optDesign features either separately or in combination.

To run optimization with useful skew, use the following commands:
setOptMode -opt_skew true -opt_skew_pre_cts true

optDesign -preCTS

To disable area reclaiming, use the following commands (optDesign reclaims area by default):
setOptMode -opt_area_recovery false

September 2022 659 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/set_disable_timing.html
../innovusTCR/optDesign.html
../innovusTCR/setOptMode.html
../innovusTCR/optDesign.html
../innovusTCR/setOptMode.html

optDesign -preCTS

Performing Incremental PreCTS Optimization
Optimize timing incrementally to optimize setup times and area on critical paths. You can use the following features either separately
or together:

To run incremental setup-only optimization, use the following command:

optDesign -preCTS -incr

To run incremental optimization with useful skew, use the following commands:

setOptMode -opt_skew true -opt_area_recovery true
optDesign -preCTS -incr

Changing Default Settings in PreCTS Mode
You can change or add parameters for the following commands that optDesign runs automatically:

setAnalysisMode optDesign sets -clkSrcPath false and -clockPropagation forcedIdeal parameters by default: You cannot
override these values. You can add other parameters.

setExtractRCMode optDesign sets the extraction engine to preRoute. You cannot change this mode. Ensure that you set the
appropriate extraction scale factor.

setOptMode
optDesign sets the following parameters:

-opt_drv_margin

If you use setOptMode -opt_drv_margin, the value you specify is added to a dynamically calculated,
internal margin. For example, if you set a margin of 0.2 (20 percent), this multiplies the max_cap and
max_tran SDC constraints by 0.8. The margin can be positive or negative. If you set a margin of -0.2, this
multiplies the max_cap and max_tran SDC constraints by 1.20. optDesign writes the margin value to the
log file.

-opt_hold_target_slack

If you use setOptMode -opt_hold_target_slack, the value you specify is added to a dynamically
calculated, internal margin. The optDesign command writes the hold target slack value to the log file.

-opt_setup_target_slack

If you use setOptMode -opt_setup_target_slack, the value you specify is added to a dynamically
calculated, internal margin. The default -opt_setup_target_slack value is 0. The optDesign command
writes the setup target slack value to the log file.

setRouteMode
You can add parameters, but you cannot override the default settings.

September 2022 660 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setAnalysisMode.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/setOptMode.html
../innovusTCR/setRouteMode.html

Using the Early Clock Flow
You can use the early clock flow in which, CCOpt creates clock trees during place_opt_design , based on an initial clustering, and
annotates clock latencies on the clock gate pins for timing optimization. The flow also enables CCOpt ideal mode useful skew during
the WNS fixing step inside place_opt_design.

Note: Early clock mode place_opt_design -incremental reuses the existing early clock flow clock tree without any logical or
physical modification and makes adjustments only to useful skew using virtual delays. It is also essential to note that the CCOpt
clock tree spec must not be deleted between the original and incremental place_opt_design steps, just like it must not be done
between place_opt_design and ccopt_design, otherwise any useful skew will be lost.

For details, see Early Clock Flow in the Clock Tree Synthesis chapter.

Using the Multi-Bit Flip-Flop Flow
The optional Multi-bit flip-flop (MBFF) flow permits clock tree dynamic power reduction by optimizing usage of multi-bit sequential
cells, without degrading timing. This flow is available during preCTS optimization.

An MBFF is a single standard cell instance that has several single-bit flip-flops incorporated into the cell and typically having all
outputs with the same drive strength. Merging the single-bit flip-flops is good for optimizing power because the internal clock
inverters are shared, thereby, achieving power-per-bit savings. This is shown in the diagram below.

There is less flexibility for timing closure. Once merged, each bit of the MBFF cannot be sized independently.

There is less flexibility for placing individual bits that may result in longer routes.

Merging Single-bit Flip-Flops

In this flow, power reduction is achieved by merging single-bit flip-flops into MBFFs as much as possible in the preCTS optimization
stage after a reasonable timing is achieved. After the single-bit flip-flops are merged once to create MBFFs, the flow then attempts to
merge these MBFFs into larger MBFFs. This includes the MBFFs that are already present in the initial netlist.

As compared to the single-bit flip-flops, MBFFs are good for power, but less flexible for timing. Flip-flops on or close to the critical
path are not merged. Later, while performing preCTS optimization, timing closure is further achieved through splitting the MBFFs that
are still on the critical paths.

September 2022 661 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/place_opt_design.html

Splitting MBFFs

Splitting MBFFs can be done either with or without flip-flop merging with Innovus. Splitting MBFFs is done to recover timing. For
example, if there is a netlist coming from synthesis and it has MBFFs, the software splits them if it can achieve an improvement in
timing.

For the timing critical paths that include MBFFs, splitting of the MBFF will make it more flexible for timing. By using both the split and
merge flows together, you can attain a timing similar to that attained when the MBFF flow is not implemented.

Consider an example to understand how the two flows are used together. If you merge two flip-flops at different locations into a new
2-bit flip-flop and put this at a new location, the routes connected to the flip-flops may become longer, therefore, increasing the delay.
The preCTS optimization will try to recover the timing by using optimization methods such as buffering and sizing. However, if
standard optimization is not sufficient to recover timing, then the splitting of the merged flip-flops will be done. Splitting critical-path
multi-bit flip-flops may improve the timing because single-bit flip-flops are easy to resize and move.

The MBFF split transform is called several times during the course of preCTS optimization.

Use Model

To enable the MBFF flow, follow the below steps:

Set setOptMode -opt_multi_bit_flop_opt to true | mergeOnly | splitOnly

Set setOptMode -opt_allow_multi_bit_on_flop_with_sdc to true | false | mergeOnly | splitOnly

Run place_opt_design

You can choose any of the following options to run the flow:

setOptMode -opt_multi_bit_flop_opt true | false| mergeOnly | splitOnly

By default, the parameter is set to splitOnly, which means the flow is enabled for splitting MBFFs.

Specify true to enable the MBFF flow

Specify mergeOnly to enable only merging of MBFFs

Specify false to disable the flow

By default, the setOptMode -opt_allow_multi_bit_on_flop_with_sdc parameter is set to true. This means that by default, the
software will not honor the SDC constraints while merging or splitting of flops in the MBFF flow. To honor SDC constraints while
merging or splitting of flip-flops, you can set this parameter to false. Use mergeOnly to ignore the SDC constraints while merging but
honor for splitting. Use splitOnly to ignore the SDC constraints while splitting but honor for merging.

Note: The SDC constraints on D and Q pins are preserved and copied over to new flip-flops in the merging and splitting of flip-flops
even when the -opt_allow_multi_bit_on_flop_with_sdc parameter is set to true. Set the parameter to false only if you have
constraints on scan-input and scan-enable pins that you want to preserve.

Note: The MBFF flow is independent of power techniques included in the command, setDesignMode –powerEffort.

September 2022 662 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setOptMode.html
../innovusTCR/setOptMode.html

Specifying the Timing Effort Level for MBFF Splitting and Merging

You can specify the timing effort level for MBFF splitting and merging. Use the following parameters of the setOptMode command:

setOptMode -opt_multi_bit_flop_split_timing_effort {low | medium | high}: This parameter specifies the timing effort
level for MBFF splitting. You can specify any of the following:

low effort setting means splitting will be done only when absolutely necessary for critical paths.

medium effort setting means splitting happens for more critical paths to improve timing and remove critical timing
bottlenecks .

high effort setting does aggressive splitting and try to improve timing .

The default setting of this parameter is low.

setOptMode -opt_multi_bit_flop_merge_timing_effort {low | medium | high}: This parameter specifies the timing effort
level for MBFF merging. You can specify any of the following:

low effort setting allows degrading in timing to achieve merging.

medium effort means that merging happens either without or with minimal degradation of timing after merging.

high effort setting does not allow any degradation and does merging only if it either maintain or improves timing.

The default setting of this parameter is medium.

Reordering Mixed-Drive Strength Multi-Bit Cells

There are multi-bit (library) cells available with mixed-drive strength (MDS) for bits, which means that for the same cell, different bits
can have different drive strength. These bits can be reordered to achieve better timing and power optimization. You can improve
either timing or power optimization or both. For this, the following parameter is provided:
setOptMode -opt_multi_bit_flop_reorder_bits {false | true | timing | power}

When set to:

false: the software does not identify the MDS cells and no bit-reordering is done

timing: software identifies and uses the MDS cells for timing optimization

power: software identifies and uses the MDS cells for power optimization

true: software identifies and uses the MDS cells for both timing and power optimization

By default, this parameter is set to false.

September 2022 663 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setOptMode.html
../innovusTCR/setOptMode.html
../innovusTCR/setOptMode.html

Reporting of Mixed-Drive Strength Multi-Bit Cells Used in Bit-Swapping
You can report MDS multi-bit cells that are used in bit-swapping based on either strong or weak driving bits. When the setOptMode -
opt_multi_bit_flop_reorder_bits parameter is set to true, power, or timing, a column, "Bit-Strength (strong to weak)" is added in
the multi-bit flip-flop reports generated using the reportMultiBitFFs -info, –all, and –cell parameters.

Sample reports are shown below.

reportMultiBitFFs –all

All Mixed Driving strength MBFF cells / Library Related Information :

--

Mixed Driving Strength cells NumBits Dimensions ScanType ………….. LibName Bit-Strength (strong to

weak)

MB6SRLDFQM6P5ULVT 6 9910*2400 serial tcbn20socbwp_ecsm {Q1,Q4}{Q2,Q6}{Q5,Q3}

MB8SRLHFDM4P2ULVT 8 8971*2400 Parallel tsbn07socbwp_ecsm {Q5,Q7}{Q2,Q8,Q1,Q3}{Q4,Q6}

--

-

reportMultiBitFFs -cell MB6SRLDFQM6P5ULVT

The Mixed Driving strength MBFF cell / Library Related Information:

Mixed Driving Strength cells NumBits Dimensions ScanType ………….. LibName Bit-Strength (strong to weak)

MB6SRLDFQM6P5ULVT 6 9910*2400 serial tcbn20socbwp_ecsm {Q1,Q4}{Q2,Q6}{Q5,Q3}

This MBFF cell’s Usage Report :

MBFF Cell NumBits Count Total Area Total Leakage(W) Total Dynamic (W) Min-Max Total Power Range (W)

MB6SRLDFQM6P5ULVT 6 7894 59854 - -

September 2022 664 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Multi-Bit Merging with Unused Bits
You can provide information about the number of unused bits in a multi-bit cell and enable the flow to control the merging with
unused bits in multibit cell. To enable the flow, use the following parameter:

setOptMode -opt_multi_bit_unused_bits {false | true | prePlace | preCTS}

By default, at prePlace stage Innovus tries to merge the single-bit registers to multi-bit instances without unused bits. If during
merging, the software is unable to find a suitable multibit lib_cell with a width that matches the left-over bits of a bus, it chooses the
closest matching width, which leaves the minimum unused bits and, therefore, increases the multi-bit merging coverage.

When the -opt_multi_bit_unused_bits parameter is set to false, any merging that results in unused (undriven/unloaded) bits is
prevented. For example, if 6 single bit cells are there to be merged and there are 4-bit and 8-bit Multibit flops cells available in the
library, then the tool will pick 4-bit Multibit cell library (with two bits unmerged).

When set to true, the software tries to merge the single-bit register to multi-bit instances with unused bits at both, prePlace and
preCTS stages. For example, if 6 single-bit cells are there to be merged and there are 4-bit and 8-bit Multibit flop cells available in
the library, then the tool will pick 8-bit Multibit cell from the library (including the two unused bits).

When set to preCTS, the software merges the single-bit register to multi-bit instances with unused bits at the preCTS stage.

To specify the maximum number of unused bits to be allowed in each multi-bit cell, use the following parameter:

-opt_multi_bit_unused_bit_count

By default, this parameter is set to 0. You can specify any number from 1 to 32. To use this parameter,
the -opt_multi_bit_unused_bits parameter must be set to true.

Use Model

Consider the following scenarios:

When setOptMode -opt_multi_bit_unused_bits is set to true, and you want to set the maximum unused bits on the multibit
cell to be allowed for merging. Then, you need to provide a value (equal to or greater than 1) using the -
opt_multi_bit_unused_bit_count parameter.
Then tool allows merging with the maximum unused bits (in the merged multi-bit cell) as the value provided using the -
opt_multi_bit_unused_bit_count parameter.
For example, if 6 single-bit cells are there to be merged and there are 8-bit and 16-bit Multibit flop cells available in the library ,
and the -opt_multi_bit_unused_bit_count parameter is set to 2, then the tool picks 8-bit Multibit cell from the library (with 2-bit
unused).
or,
For example, if 5 single-bit cells are there to be merged and there are 4-bit and 8-bit Multibit flop cells available in the
library, and the -opt_multi_bit_unused_bit_count parameter is set to 2, then the tool picks 4-bit Multibit cell from library (1-bit
unmerged).

When setOptMode -opt_multi_bit_unused_bits is set to false and you set the value of the -
opt_multi_bit_unused_bit_count parameter, the software issues a warning:
"set setOptMode -opt_multi_bit_unused_bits to true to use this option."

When the value of setOptMode -opt_multi_bit_unused_bit_count parameter is greater than the maximum allowed limit, the
tool does not merge the group of those single-bit cells and prints the following reason for not merging:
Unused Bit Reason: Number of unused bits exceeded the maximum allowed limit.

September 2022 665 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setOptMode.html

Multi-Bit Combinational Cell Optimization
The multi-bit combinational flow allows merging and splitting of combinational cells. Combinational cells (muxes, inverters, nand,
nor, xor, xnor) share all pins. This flow permits reduction in area and power by optimizing usage of multi-bit combinational cells,
without degrading timing.

As compared to the single-bit combinational cell the multi-bit combinational cells are good for area.

The following commands are provided for this flow:

ecoMergeCombinationalCell: Merges combinational cells into multi-bit cells for the specified instance. You can specify the
names of the combinational instances to be merged or you can specify the file containing names of single bit instances to
merge.

ecoSplitCombinationalCell: Splits all multi-bit combinational cell instances to single-bit combinational cells. By default, a
specific combinational cell is split only if equivalent single-bit combinational cell can be found in libraries and there is timing
gain after the split

The following parameters are provided for this flow:

setOptMode -opt_multi_bit_combinational_opt {false | true | mergeOnly | splitOnly}: Enables and disables the multi-
bit combinational flow. This flow is called as a part of the preCTS optimization stage. By default, the parameter is set to
splitOnly, which means the flow is enabled for splitting combinational cells.

setOptMode -opt_multi_bit_combinational_merge_timing_effort {low | medium | high}: Specifies the timing effort level for
multi-bit combinational merging. By default, this parameter is set to medium, which allows merging without/minimal degradation
in timing.

setOptMode -opt_multi_bit_combinational_split_timing_effort {low | medium | high}: Specifies the timing effort level for
multi-bit combinational splitting. By default, it is set to low, which means the software allows splitting to very critical paths only
where it is necessary.

Conditions for Merging

Combinational cells are of same hierarchy

Combinational cells are of same functionality

Combinational cells have same input and output

Naming Convention During Merging/Splitting

When combinational cells are merged, the corresponding instance names are combined as follows:

Example

hier1/hier2/i_0 + hier1/hier2/i_1 + hier1/hier2/i_2 + hier1/hier2/i_3 -->

hier1/hier2/CDN_MB_i_0_MB_i_1_MB_i_2_MB_i_3

abc_x[0] + abc_x[1] + abc_x[2] + abc_x[3] --> CDN_MB_abc_x[0]_MB_x[1]_MB_x[2]_MB_x[3]

When splitting Multibit combinational cells, it will split the names as follows:

Example

hier1/hier2/i_[0:3] --> hier1/hier2/i_[0:3]__0, hier1/hier2/i_[0:3]__1, hier1/hier2/i_[0:3]__2,

hier1/hier2/i_[0:3]__3

CDN_MB_abc_MB_def --> abc, def

September 2022 666 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/ecoMergeCombinationalCell.html
../innovusTCR/ecoSplitCombinationalCell.html
../innovusTCR/setOptMode.html

Reporting the MBFFs

Use the reportMultiBitFFs or the reportMultibit command to report all the MBFFs that have been identified while loading the
design. This command is used after all the libraries are loaded. The syntax of the two commands is provided below.
reportMultibit

[-help]

[-outFile file_name]

[-type {comb | latch | flop | seq | iso | ls}]

[-library | -reasonNotMerged unmerged_reason | -notMergedSummary]

reportMultiBitFFs

[-help]

[-latches]

[[[-info | -equiv | -usage] -all] | -cell cell name | -statistics | -notMergedInstList | -

reasonNotMerged unmerged_reason]

[-outFile file_name]

Using reportMultibit

When the reportMultibit command is specified with no parameters, a default summary report is printed. By default, the sequential
cells are reported. Both, the multi-bit percentages merged, and a summary of why flops were not merged is printed. This is equivalent
to the reportMultiBitFFs -statistics, with the addition of unused bits. There are three basic types of multibit: sequential, combo,
and isolation/level shifter. This command supports specifying the type of multibit to report (or all). The -type parameter is a global
filter for all other options. Use -type all to print an exhaustive report.

A sample default summary report is shown below.

Use the following command to print a default summary report. By default, the sequential cells will be reported..
reportMultibit

The software returns the following information:

--

Current design flip-flop statistics

Single-Bit FF Count : 2854

Multi-Bit FF Count : 1451

- 2-Bit FF Count : 170

- 4-Bit FF Count : 148

- 8-Bit FF Count : 1133

Total Bit Count : 12850

Total FF Count : 4305

Bits Per Flop : 2.985

Total Clock Pin Cap(FF) : 3816.318

Multibit Conversion Ratio(%) : 77.79

Unused bits on Multi-Bit FF : 3

--

--

Multi-bit cell usage statistics

Usabel 2-bit cell : 8

Dont-use/touch 2-bit cell : 0

Usabel 4-bit cell : 8

Dont-use/touch 4-bit cell : 0

Usabel 8-bit cell : 8

Dont-use/touch 8-bit cell : 0

--

==

Sequential Multibit cells usage statistics

September 2022 667 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/reportMultiBitFFs.html
../innovusTCR/reportMultibit.html
../innovusTCR/reportMultiBitFFs.html

 Not Merged-bits Merged-bits Multibit Conversion% Bits Per Flop

-FlipFlops 3814 9996 72.38 2.62

--

Seq_Mbit libcell Bitwidth Count

MB4SRLSDFQ_SXG2422_D1_H169_L3_P45_LLL 4 148

MB2SRLSDFQ_SXG2222_D1_H169_L3_P45_LLL 2 170

MB8SRLSDFQ_SXG4844_D1_H169_L3_P45_LLL 8 1133

--

Total 1451

===

--

Category Num of Insts Rejected Reasons

--

Partition 2546 Odd number of flops in one partition

Contraint 306 Constraints by sdc,rule or user settings

 (check 'Nonremovable single-bit flip-flop' in

 the 'Pre-merge design statistics')

Timing 2 Exceed critical path threshold or mbff merging

 makes timing degradation

--

Using reportMultiBitFFs

Using this command, you can choose to report information about either all the MBFFs or one MBFF cell by specifying the name of
the cell. The reported information can be printed on the console and written to a file.

Sample reports are shown below.

Use the following command to display information about all the flip-flops in the design.
reportMultiBitFFs -all

The software returns the following information:

Use the following command to report the single-bit and multi-bit flip-flop count in the current design.

reportMultiBitFFs -statistics The software returns the following information:

September 2022 668 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Use the following command to display information about the multi-bit flip-flop for the specified cell:

reportMultiBitFFs -cell MB2SDFCNQOPPSBD1BWP24P90ELVT

Reporting the Multi-Bit Latches
Use the reportMultiBitFFs -latches parameter to report the multi-bit latches in the design similar to the reporting of MBFFs. All
other parameters work with this parameter just as they work with the flip-flops.

When this parameter is specified with the below parameters, the following information about the latches is reported:

-all: Reports all the multi-bit latches in the design.

-cell cell_name: Specifies the name of the latch for which information is reported. You can specify both, single-bit and multi-
bit latch for reporting this information.

-equiv: Reports multi-bit latch equivalence. It reports all the equivalent multi-bit latch cells and corresponding single-bit latch
cells in the design.

-info: This parameter reports the following properties of all the multi-bit latch cells in the design:
Name, NumBites, Don’t Use/ Don’t Touch, Dimensions, ScanType, Stateless Leakage, Stateless Dynamic, and LibName

-outFile: Specifies the name of the output file for the latch information.

-statistics: Reports the single-bit and multi-bit latch count in the current design.

-usage: Reports the multi-bit latch usages. This parameter reports the following usage of all the multi-bit latch cells in the
design:
Name, NumBits, Count, Total Area, Total Leakage, Total Dynamic, and Min-Max Total Power Range

September 2022 669 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/reportMultiBitFFs.html

Sample report is shown below.

Use the following command to display information about all the latches in the design.

reportMultiBitFFs -latches -all

All Multi-Bit Latch Cell/Library Related Information:

--

Multi-Bit Latch Cell NumBits DU/DT Dimensions ScanType Stateless Leakage(W) Stateless Dynamic(W) LibName

MBL4SQ0P9ULVT 4 F/F 2816*2400 Serial 1.178539e-06 1.198869e-06 tsbn05sfnd_ecsm

MBL8SP1P5SLVT 8 F/F 4864*2400 None 2.075658e-06 2.693444e-06 tsbn05sfnd_ecsm

………………

--

All Multi-Bit Latch Cells' Usage Report:

--

Multi-Bit Latch Cell NumBits Count Total Area Total Leakage(W) Total Dynamic(W) Min-Max Total Power Range(W)

MBL4DP0P9LLVT 4 0 0 _ _ _

MBL8SP2P9SLVT 8 0 0 _ _ _

--

All Multi-Bit Latch Cells' Equivalence Report:

--

Multi-Bit Latch Cell ‘MBL8SSQ_33':

--

--

Equivalent Single-Bit Latch Cells Ordered On Size:

--

SBLPV2Q0P9LVT SBLFV2G2P9SVT SBLSV1DF1P9HVT

SBLDV1Q1P9ULT SBLGV3R1P9LVT SBLFV3GH2P9SVT

SBLSRRV2P9UVT SBLDV1S0P9HVT SBLHV2JK0P9ULT

……………

--

Dumping the MBFF Mapping Files

Use the dumpMultiBitFlopMappingFile command to dump the MBFF mapping files. The syntax of the command is shown below.

[-help]
[-mapOutputPins {false | true | all}]

[-output directory]
[-prefix fileName_prefix]

The command writes the following files:

multi_bit_pin_mapping:

includes multi-bit input pin mapping information by default. In addition, it appends the output pins when the -
mapOutputPins option is specified.

multi_bit_mapping:

includes multi-bit optimization mapping information

The multi_bit_pin_mapping file has two columns. The first column provides the full path name of the flip-flop input D pin as it was in
the initial netlist. The second column provides the full path name of flip-flop input D pin in the current state of the database that
corresponds to the first column.

For example:

September 2022 670 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/dumpMultiBitFlopMappingFile.html

If SBF1, SBF2, SBF3, SBF4 are single-bit flip flops, and MBF1, and MBF2 are two-bit flip-flops, then,

The multi_bit_mapping file contains the following:

Merged Flops:

SBF1, SBF2 merged to MBF1

Split Flops:

MBF2 split to SBF3，SBF4

When the -mapOutputPins parameter is set to false, the software writes out only input pin mapping in the pin mapping file. For
example:
MBF1/D1 SBF1/D

MBF1/D2 SBF2/D

When the -mapOutputPins parameter is set to true, the software writes out only the mapped output terms in the MBFF pin mapping
file. For example:

MBF1/D1 SBF1/D

MBF1/D2 SBF2/D

MBF1/Q1 SBF1/Q

MBF1/Q2 SBF2/Q

The multi_bit_pin_mapping file by default contains the following:

SBF1/D MBF1/D1

SBF2/D MBF1/D2

MBF2/D1 SBF3/D

MBF2/D2 SBF4/D

Note: The multi_bit_pin_mapping file contains all information of the flops whose input D pin names have changed.

For example, if you have the following in the original netlist:

4BitMBF1 (4 bit MBF, D1-4)

SBF1 (single bit FF)

Then, an example of merging will be as follows:

If the incoming netlist has 4BitMBF1/D4 dangling (no signal attached) and MERGE, merged SBF1/D into 4BitMBF1/D4. The following
line will be included in multi_bit_input_pin_mapping file:

SBF1/D 4BitMBF1/D4

And, an example of splitting will be as follows:

If incoming netlist has valid signals for all 4 bits of 4BitMBF1 and splits 4BitMBF1/D4 out to SDF2/D leaving 4BitMBF1/D4 dangling, then
the following lines will be included in multi_bit_input_pin_mapping file:

VOID 4BitMBF1/D4

4BitMBF1/D4 SBF2/D

Splitting Multi-Bit Flip-Flops
In this flow, you can split a multi-bit flip-flop (MBFF) into single-bit flip-flops for the specific instances. By default, a specific flip-flop is
split only if equivalent single-bit flip-flops can be found in libraries and there is timing gain after the split. You can also specify that the
split flip-flops should be placed in legal locations. By default, the positions of the split flip-flops are not guaranteed to be legal.

September 2022 671 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Use the -all parameter to split all MBFFs into smaller-bit flip-flops including single-bit flip-flops (SBFFs).

Use the -inst parameter to specify pairs of MBFFs to be split and the corresponding single-bit flops to be used. You can also
specify the names of the flop instances to be split. You can specify a single instance or a tcl list of instances to be split.

Use the -listFile parameter to specify the file containing pairs of MBFFs to be split and the corresponding single-bit flops to be
used. You can also just specify the names of MBFF instances to be split. You can specify up to 50,000 instances to split.

Note: The -all, -inst and -listFile parameters are mutually exclusive. If the -all parameter is not specified, one of these two
parameters, -inst or -listFile, must be specified.

For this, the following command is provided.

ecoSplitFlop

[-help]

[-batch]

[-force]

[-fullSplit]

{-inst { {Mbff1 flopCell1} {Mbff2 flopCell2}..... } | -list_file fileName | all}

[-legal]

[-power]

{-preCTS | -postCTS | -postRoute}

[-skipRoute]

Splitting Complex Flip-Flops
In this flow, a complex flip-flop is split into a simple flip-flop and combinational logic for the specified instance. A complex flip-flop
means the D side has some combinational logic, such as AND, OR, MUX, AOI, and so on. By default, a specific flip-flop is split only
if equivalent simple flip-flops and combinational logic can be found in libraries and there is timing gain or power gain after the split.

For this, the following command is provided.

ecoSplitComplexFlop
[-help]

[-force]

{-inst {inst1, inst2,...} | -listFile instNamesFile | -all}

[-legal]

[-preCTS | -postCTS | -postRoute]

[-power]

[-skipRoute]

You can also specify that the split flip-flops should be placed in legal locations. By default, the positions of the split flip-flops are not
guaranteed to be legal.

Performing PostCTS Optimization
The following topics are covered in this section:

Correcting Violations in PostCTS Mode

Performing Incremental PostCTS Optimization

Changing Default Settings in PostCTS Mode

September 2022 672 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/ecoSplitFlop.html
../innovusTCR/ecoSplitComplexFlop.html

Correcting Violations in PostCTS Mode
To optimize timing after the clock tree is built, use the following commands:
optDesign -postCTS
optDesign in post-CTS fixes DRVs, reclaims area, and fixes setup and hold violations.
Note: If using CCOpt, instead of CCOpt-CTS, then additional post-CTS setup optimization is not normally required as CCOpt
combines CTS and postCTS style datapath optimization. Refer to Clock Tree Synthesis for further details of CCOpt.
By default, optDesign does not correct fanout violations. To repair fanout violations, run the following command
before optDesign, starting from the first call of optDesign -preCTS up to the last call of optDesign -postRoute:
setOptMode -opt_fix_fanout_load true

To repair setup and hold violations, use the following commands:
optDesign -postCTS

optDesign -postCTS -hold

To repair only DRVs, use the following command:
optDesign -postCTS -drv

To repair only hold violations, use the following command:
optDesign -postCTS -hold

Skipping Path Groups During Hold Fixing

You can instruct the software to exclude path groups from hold fixing by using the -opt_hold_ignore_path_groups parameter of
the setOptMode command.

Reporting Violations Remaining After Hold Fixing

You can generate report files that help diagnose the remaining hold violations after hold fixing by using the following commands:
optDesign -postCTS -hold -holdVioData fileName

optDesign -postRoute -hold -holdVioData fileName

A sample report is provided below.

// Path 1
Endpoint:
some/name/D
Beginpoint
:
some/name/Q
Analysis View:
hold_func
Hold Slack:
-
1615.8ps
Node:
some/name/pin
Setup Slack:
-
167.2ps
Analysis View:

September 2022 673 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setOptMode.html
../innovusTCR/optDesign.html

setup_func
Failed Reason:
 LegalSingleBuffer
 SetupTNSDegradation(65), LocalSetupWNSDegradation(7),
 ResizeLegal
 NoCellSelected (1), HoldSlackDegraded (4), LocalSetupWNSDegradation (5),
 ECO Safe Resize
 TooBigToFixByResize

A brief description of some of the important reasons that may appear in the "Failed Reason" section of the report are as follows:

"ResizeLegal" + "LegalSingleBuffer" = "NoLegalLoc" means could not find the legal location for resizing to bigger cell or inserting
new buffer/delay cell
"LocalSetupWNSDegradation" means that this move leads to degrading worst setup slack on connected input/output nets
"NetDrvFailed" means that this move leads to DRV (Tran/Cap) degradation
"SetupTNSDegradation" means that this move leads to setup TNS degradation on connected input/output nets
"NoCellSelected" means that no cell is selected for resizing due to don’t touch or other constraint
"HoldSlackDegraded" means that this move causes hold slack degradation instead of improvement
"TooBigToFixByResize" means resizing is not allowed as the hold violations are too big to be fixed by resizing alone

Note: LegalSingleBuffer, Resizelegal and ECO Safe Resize are the names of the transforms.

Using Additional PostCTS Timing Optimization Parameters
You can focus timing optimization on specific paths using path groups. Running the createBasicPathGroups command creates
reg2reg and reg2cgate (if present in the design) path groups and sets them to high effort. It also creates the in2reg, reg2out, and
in2out path groups when the -expanded option is used and sets these additional groups to low effort. To optimize these path groups,
run the following commands:

createBasicPathGroups
optDesign –postCTS

If path groups are not defined, the optDesign command will temporarily generate two high effort path_groups (reg2reg and
reg2cgate).

A path_group can be set as “low” or “high” effort.

A high-effort path_group receives a higher focus from the optimization engine than a low effort path_group

All high-effort path groups that are defined are optimized at the same time.

You can add slack adjustment and priority to any path group using the setPathGroupOptions command.

By default, optDesign will use the slack adjustment value that leads to the worst slack

The priority is used when an endpoint is a part of several path groups so the software can choose the adjustment value to
be used

The flow to create and optimize path groups is as follows:

group_path -name path_group_name -from from_list -to to_list -through through_list

setPathGroupOptions ...

optDesign -preCTS -incr

Creating path groups is not mandatory to achieve the best results because of the following reasons:

Too many custom path groups may impact the runtime significantly.

September 2022 674 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/createBasicPathGroups.html
../innovusTCR/setPathGroupOptions.html
../innovusTCR/group_path.html

Too many overlapping or nested path groups may impact TNS timing closure.

Performing Incremental PostCTS Optimization
To optimize setup time incrementally and reduce area, use the following commands:
setOptMode -opt_area_recovery true

optDesign -postCTS -incr

To take advantage of useful skew when optimizing timing in incremental postCTS mode, use the following commands:
setOptMode -opt_skew true -opt_skew_ccopt true

optDesign -postCTS -incr

To run incremental postCTS optimization if your design has a clock mesh, use the following commands:
setOptMode -opt_skew false

optDesign -postCTS -incr

Changing Default Settings in PostCTS Mode
You can change or add parameters for the following commands and parameters that optDesign runs automatically:

Performing PostRoute Optimization
The following topics are covered in this section:

About PostRoute Optimization

Using the route_opt_design Flow

Correcting Violations and Signal Integrity Issues using GigaOpt Technology in PostRoute Mode

GigaOpt in PostRoute Setup Timing Flow

GigaOpt in PostRoute Hold Timing Flow

Changing Default Settings in PostRoute Mode

About PostRoute Optimization

setAnalysisMode optDesign sets -clockPropagation to autoDetectClockTree and -
clkSrcPath to true by default: You cannot override these values.
You can add other parameters.

setExtractRCMode optDesign sets the extraction engine to preRoute. You cannot
change this mode. Ensure that you set the appropriate extraction
scale factor.

September 2022 675 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setAnalysisMode.html
../innovusTCR/setExtractRCMode.html

In postRoute mode, the software corrects setup violations and design rule violations unless you specify otherwise. It first operates
on register-to-register paths (and register-to-clocks path groups, if present), and then on the default path group. The software
performs RC extraction and delay calculation, and runs the NanoRoute router to perform ECO routing. In case the final timing after
ECO routing is degraded as compared to what was expected before ECO routing, the software automatically calls an incremental
optimization to recover the setup timing and/or DRV.

If filler cell information has been defined, optDesign removes or adds them as needed, following the information given by the
setFillerMode command.

If only non-SI Timing is being looked at, there should be very few timing violations that need correction. The primary sources of these
violations include the following:

Inaccurate prediction of the routing topology during preRoute optimization due to congestion-based detour routing

Minor correlation issues between preRoute and postRoute RC extraction.

Making unnecessary changes to the routing at this point can lead to a scenario where fixing one violation leads to the creation of
other violations. This cascading effect creates a situation where it becomes impossible to close on a final timing solution with no
DRVs. One of the strengths of postRoute optimization is its ability to simultaneously cut a wire and insert buffers, create the new RC
graph at the corresponding point, and modify the graph to estimate the new parasitics for the cut wire without re-running extraction.

To take even more advantage of this feature, you can provide an external SPEF file generated by a sign-off extraction tool for
improved convergence. However,you must provide a full SPEF (reduced SPEF does not work) and one of the following conditions
must be met:

The SPEF file must be generated with node locations using the starN format.
or

The resistance values in the LEF file must match those in the technology file used by signoff extraction to generate the SPEF
file, which enables the extraction engine to match the routes with the SPEF RC graph.

Because the violations at this stage are due to inaccurate modeling of the final route topology and the attendant parasitics, it is
critical not to introduce additional topology changes beyond those needed to correct the existing violations.

September 2022 676 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setFillerMode.html

Using the route_opt_design Flow
The route_opt_design command is provided to combine the routing and postRoute optimization flows into a single flow. The benefit
of this approach is to interleave the optimization step with routing step. When this command is run, the software performs global and
detail routing, setup/hold timing optimization, and DRV fixing. The flow aims to improve the runtime with similar or better QoR by
optimizing timing before detail routing.

The route_opt_design command can be used instead of the following commands:

routeDesign

optDesign -postRoute -setup -hold

The route_opt_design flow is different from routeDesign followed by optDesign -postRoute -setup -hold in the following ways:

The route_opt_design command performs more optimization during the routing stage

Extraction must be performed using the TQuantus extraction engine for performing interleaved optimization with routing. If
TQuantus extraction fails during routing, the route_opt_design command executes two separated commands
- routeDesign followed by optDesign -postRoute -setup -hold.

The route_opt_design command has parameters to split the routing part (-route) and the optimization part (-opt). When these
parameters are specified, the flow exits the interleaved mode, and goes back to the traditional flow with separate commands. This
means that route_opt_design -route is equivalent to routeDesign, and route_opt_design -opt is equivalent to optDesign -
postRoute -setup -hold. By default, the optimization of route_opt_design fixes both setup and hold timing in the interleaved mode
with routing. To fix setup timing only, use route_opt_design -setup. When the -setup parameter is specified, the software performs
optimization, and skips hold timing fixing.

Correcting Violations and Signal Integrity Issues using GigaOpt Technology in
PostRoute Mode
GigaOpt technology is default for the postRoute flow, including setup/hold/power optimization. GigaOpt simplifies the postRoute
closure flow. It is recommended that onChipVariation should be turned on and CPPR be used as shown below:

setAnalysisMode -analysisType onChipVariation -cppr both

GigaOpt in PostRoute Setup Timing Flow
GigaOpt technology has two phases:

Design-rule violations fixing and SI slew and glitch fixing

Setup timing fixing on base and SI delay

GigaOpt does multi-threading combined base and SI delay timing optimization. It supports the following:

Power-driven optimization

External SPEF-flow (with node location)

Filler cells deletion/insertion

This command is part of a limited-access feature in this release. It is enabled by a variable specified using
the setLimitedAccessFeature command. To use this feature, contact your Cadence representative to explain your usage
requirements, and make sure this feature meets your needs before deploying it widely.

September 2022 677 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/route_opt_design.html
https://dsmpubs/icd_pubs_website/encounter/past_releases/17.1/innovusTCR/setLimitedAccessFeature.html
../innovusTCR/routeDesign.html
../innovusTCR/optDesign.html
../innovusTCR/setAnalysisMode.html

Smart ECO routing

ILM/GigaFlex flow and MSV flow

GigaOpt in PostRoute Hold Timing Flow
In setup aware hold fixing, hold violations are fixed while having the full setup timing graph in memory.

GigaOpt supports the following:

External SPEF-flow

Filler cells deletion/insertion

Smart ECO routing

GigaOpt hold fixing generates detailed diagnostic report for all remaining hold-violated nets. GigaOpt hold fixing performs the
following:

Buffer insertion along the route

Wire and RC cutting

Legal location searching

Cell resizing

Distributed hold analysis

GigaOpt in PostRoute Use Model

To optimize timing setup and hold with base and SI delay, use the following commands:

optDesign -postRoute

optDesign -postRoute -hold

To optimize timing setup and hold with base delay only, use the following commands:

setDelayCalMode -SIAware false

optDesign -postRoute

optDesign -postRoute -hold

Note: For run-time reduction, you can also perform combined setup and hold optimization. Use the following command instead of
running both optDesign -postRoute and optDesign -postRoute -hold:

optDesign -postRoute -setup -hold

Examples

To run GigaOpt for performing setup timing TNS optimization on base and SI delay, use the following commands ensuring that
the default for setDesignMode -flowEffort is being used:

 setDesignMode -flowEffort standard
 optDesign -postRoute

To run GigaOpt for performing setup and leakage power optimization on base and SI delay, use the following commands:

 setOptMode -opt_power_effort high -opt_leakage_to_dynamic_ratio 1.0
 optDesign -postRoute

To run GigaOpt for performing setup with SI slews optimization on base and SI delay, use the following commands:
setOptMode -opt_post_route_fix_si_transitions true

September 2022 678 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

optDesign -postRoute

Note: By default, the optDesign command does not correct fanout violations. To repair fanout violations, run the following
command before optDesign, starting from the first call of optDesign -preCTS up to the last call of optDesign -postRoute:
setOptMode -opt_fix_fanout_load true

Note: Hold repair does not degrade the setup worst slack to less than the original value or the setup target slack value. You
can override the setup target slack value value by specifying setOptMode -opt_setup_target_slack before you run optDesign.
By default, hold repair is allowed to degrade the setup total negative slack. Therefore, to disable this feature, set the following:
setOptMode -opt_hold_allow_setup_tns_degradation false

You can instruct the software to exclude path groups from hold fixing. For more information, see "Skipping Path Groups During
Hold Fixing".

To take clock reconvergence pessimism removal (CRPR) into consideration when running timing optimization, use
the setAnalysisMode command before you run optDesign. For example:
set_timing_derate -max -clock -early 0.8 -late 1.2

set_timing_derate -min -clock -early 0.8 -late 1.2

setAnalysisMode -cppr both

optDesign -postRoute

To run postRoute timing optimization on designs containing Interface Logic Models(ILMs), use the following command:
optDesign -postRoute
This will automatically flatten ILMs, optimize timing, and then unflatten the ILMs.

To run postRoute setup or hold optimization based on external SPEF files (with node locations using the starN format) for a
design with four active RC corners (two for setup and two for hold), run the following:
spefIn -rc_corner cornerMax1 rcMax1.spef

spefIn -rc_corner cornerMax2 rcMax2.spef

spefIn -rc_corner cornerMin1 rcMin1.spef

spefIn -rc_corner cornerMin2 rcMin2.spef
optDesign -postRoute -hold
Note: You must provide SPEF information for each active rc_corner (setup and hold). If one corner does not have a SPEF, the
software will rerun RC extraction for every corner.

Changing Default Settings in PostRoute Mode
You can change or add parameters for the following commands that optDesign runs automatically:

setAnalysisMode optDesign sets -clockPropagation to autoDetectClockTree and -clkSrcPath to true by default: You cannot
override these values.

setExtractRCMode optDesign sets the extraction mode to postRoute –effortLevel medium (TQuantus). If no Quantus techfile is
available then –effortLevel low will be used. Note, you can always change this to –effortLevel high
(IQuantus) or –effortLevel signoff (Standalone Quantus) but both require a Quantus license. Ensure that
you set the appropriate extraction scale factors if using the low/medium/high effort levels.

September 2022 679 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setAnalysisMode.html
../innovusTCR/setExtractRCMode.html

Performing Target-Based PostRoute Optimization
The following topics are covered in this section:

About Target Based Post-Route Optimization

Automatic Selection

Using a Target File

Using a Target File to Perform End Point Adjustment

Using a Target File to do Area, Power, and Max Transition

Using the createTBOptFile Command to Generate the Target File

Using Timing Debug to Generate the Target File

Using a Target File to Perform Hold Optimization

Default Naming Conventions for the TBOpt Flow

About Target-Based PostRoute Optimization
The purpose of target-based Optimization (TBOpt) is to focus on critical nodes in the design at the postRoute stage and optimize
these by giving worst negative slack (WNS), area, power, max transition, and signal integrity (SI) glitch improvements with a
minimum disturbance to NanoRoute.

There are currently two main use models, one where the software can automatically select timing critical nodes and the other where
you provide the node data in a file and choose the optimization you want to perform on these nodes. Note that with the first use
model, the software automatically selects bottlenecks only for timing and not for area, power, max transition, and SI glitch. Also note
that this feature is not designed as a replacement for optDesign –postRoute but as an enhancement that can be called afterwards, if
required. It does not work on the design’s total negative slack (TNS). It will output useful tables to the log detailing the nodes it is
working on, whether they are from the target-based optimization file or not and the transforms used to fix them in the case of timing
optimization.

When a TBOpt file is specified, a table similar to the one shown below will be generated by default.

In addition, a summary table similar to the one shown below will be generated at the end of timing optimization.

September 2022 680 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Automatic Selection
The most straight forward use model is to allow the software to pick the most critical nodes itself and optimize those for timing. To do
this, use the following command:
optDesign –postRoute –targeted

Using a Target File
To select nodes by referencing instances, nets, and paths to pass to the software to optimize directly, use the following set of
commands:

setOptMode –opt_target_based_opt_file tb_opt.txt

To optimize only these nodes, use the following commands:

optDesign –postRoute –targeted

The format of the TBOpt file, tb_opt.txt is as follows with the syntax required in bold. You can use any of the below syntax
individually or collectively. They are all independent of each other and each contributes its own nodes for TBOpt to work on:

NETS : {net1} {net2} {netN}
FROMTOS : {fromTerm1 toTerm1} {fromTerm2 toTerm2} {fromTermN toTermN}
INSTS : {inst1} {inst2} {instN}
PATHS : {endpoint1} {endpoint2} {endpointN}

Example 1

NETS : {mod_i/mod_sub_i/reset_l_sync_3} {mod_i/mod_sub_i/FE_OCPN210_reset_l_sync_3}
INSTS : {mod_i/mod_sub_i/reset_l_sync_reg_15} {mod_i/mod_sub_i/FE_OCPC210_reset_l_sync_16}
PATHS : {mod_i/mod_sub_i/ser_en/data_d1_reg_32/D}

Example 2

INSTS : {mod_i/mod_sub_i/reg_20}

FROMTOS : {mod_i/mod_sub_i/u1/z mod_i/mod_sub_i/u460/D}

Using a Target File to Perform End Point Adjustment
You can set individual target slacks on different end point nodes, as required. To perform end point adjustment, use the syntax
provided below inside the tb_opt.txt file. A positive value of say, 200 means the slack will be 200ps worse at that node and
optimization will work to over-fix it by 200ps. Note that the syntax in bold must be adhered to:

END_POINT_ADJ : {endpoint1} {slack_adj:value in ps}

Or with a list of end points:

END_POINT_ADJ : {endpoint1} {endpoint2} ... {slack_adj:value in ps}

Note that for this to work, either of these must be combined with the usual node specification. For example, the following adjusts end
point u460/D and works on nodes from u1/z to u460/D:

END_POINT_ADJ : {u460/D} {slack_adj:200.0}
FROMTOS: {u1/z u460/D}

The following example adjusts end point u3/D and works on n1, n2, and n3 nets:

END_POINT_ADJ : {u3/D} {slack_adj:300.0}
NETS : {n1} {n2} {n3}

September 2022 681 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/optDesign.html
../innovusTCR/setOptMode.html
../innovusTCR/optDesign.html

The following example adjusts end point u3/D and will work on all paths to u3/D:

END_POINT_ADJ : {u3/D} {slack_adj:300.0}
PATHS : {u3/D}

If there are multiple adjustments set on the same endpoint using the same format then the final one will take precedence.

In addition, all tokens (NETS, INSTS, FROMTOS and so on) in the TBOpt file are cumulative except slack adjust, which will not add
any node into the list of nodes to work on. This means that each time a token is read, TBOpt will add it to the list of nodes to
evaluate. So to summarize:

NETS : {net1} -> Add net1 into list of nodes to work on.
INSTS : {i1} -> Add i1 into list of nodes.
PATHS : {p1} -> Add all nodes belonging to this path into nodes to work on.
FROMTOS : {f1 t1} -> Add all nodes from f1 to t1 into the nodes to work on.
END_POINT_ADJ : -> Adjust slack on selected end point, but do not add any node into nodes to work on.

You can also perform view-specific end point adjustment. Using the special view syntax in bold, you can adjust the end point for the
view, "setupView1" in the following example:

END_POINT_ADJ : {U6/D} {slack_adj:200.0 view:setupView1}
NETS : {n1} {n2} {n3}

Alternatively, if the name of the view is very long, you can use a VIEW_ID token as shown in the example below:

VIEW_ID : {Setup_TTF_m40c_0p81v_RCworst_ccworst_func_view2 1}
END_POINT_ADJ : {U10/D} {slack_adj:200.0 view: 1}
PATHS : {U10/D}

Note: You can use wildcards for specifying END POINT adjustments, NETS, PATHS, INSTS, and FROMTOS in the target file. For
example,

END_POINT_ADJ : {U*/D} {slack_adj:200.0 view:setupView1}

Using a Target File to do Area, Power, Max Transition, and SI Glitch Targeting
To target a certain module of a chip to do area optimization, use the following syntax inside the tb_opt.txt file:
AREA_RECLAIM : {ModuleName} {x1 y1 x2 y2}

To target a certain module of a chip to do power optimization, use the following syntax inside the tb_opt.txt file:
PWR_RECLAIM : {ModuleName} {x1 y1 x2 y2}

To target certain nets to do max transition optimization, use the following syntax inside the tb_opt.txt file. The value specified will
be in ps:
DRVS : {netName1} {netName2} {max_tran: e.g. 100}

It is possible to do DRV fixing on a net without any max_tran, which means fixing any existing max transition on the net:
DRVS : {netName1}

To target certain nets to do SI Glitch optimization, use the following syntax inside the tb_opt.txt file. The value specified will be a
percentage of VDD. Therefore, it is best to specify a low target to ensure that the net is fixed. Note the syntax in bold must be
adhered to:

SI_GLITCH: { netName or netNameList } { value : e.g. 0.1}

September 2022 682 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Using the createTBOptFile Command to Generate the Target File
The createTBOptFile command creates a target-based optimization (TBOpt) file for use with postRoute targeted optimization.
Once created, this file is passed to the setOptMode -opt_target_based_opt_file command. You can either provide the command a
timing report in a machine-readable format by using the -gtdFile parameter or let the command generate the timing report
internally by using the values specified for the -min_slack, -max_slack, and -max_paths parameters or the internal default values for
these parameters.

Based on this timing report, a bottleneck analysis is performed and the critical instances are stored in a file that is specified using
the -outFile filename parameter. This file uses the TBOpt format with the INSTS token. The bottleneck analysis computes the
number of times an instance appears (on only the failing paths by default) and creates "n" number of path categories for the
instances with the highest number of occurrences. Note that "n" is the number you specify using the -bottleneckInstanceNumber
 parameter of this command.

Also note that by default, multiple instances per path are allowed. This means that if there are multiple critical instances on a path, all
of them will be returned, therefore, leading to the generation of the most accurate list of critical instances.

A few examples are provided below:

The following command generates a TBOpt file with five critical instances using the default values for -min_slack, -max_slack,
and -max_paths that will be written to the file, TBOpt_bottleneck_5.txt:
createTBOptFile –bottleneckInstanceNumber 5 -outFile TBOpt_bottleneck_5.txt

The following command generates a TBOpt file, usergenerated.mtarpt with three critical instances based on a machine-
readable timing report generated using the -machine_readable parameter of the report_timing command:
createTBOptFile –bottleneckInstanceNumber 3 -outFile TBOpt_bottleneck_3.txt –gtdFile usergenerated.mtarpt

The following command generates a TBOpt file with six critical instances based on only the reg2reg path group with the
maximum number of worst paths as 3000:
createTBOptFile –bottleneckInstanceNumber 6 -outFile TBOpt_bottleneck_6.txt –path_group reg2reg –max_paths 3000

The following command generates a TBOpt file with nine critical instances based on a timing analysis of the worst 10,000
paths between +0.025ns and -1.0ns:
createTBOptFile –bottleneckInstanceNumber 9 -outFile TBOpt_bottleneck_9.txt –min_slack -1.0 –max_slack +0.025 –

max_paths 10000

Using Timing Debug to Generate the Target File
Below is a step by step guide to using the Timing Debug Bottleneck Analysis to look at instances that occur frequently and are
common to many critical paths. Use this feature to ‘Save Paths()’ to create a file that can then be directly applied to the setOptMode -
opt_target_based_opt_file tb_opt.txt file.

September 2022 683 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/createTBOptFile.html
../innovusTCR/setOptMode.html
../TCRcom/report_timing.html

September 2022 684 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Using a Target File to Perform Hold Optimization
To use a target file to perform hold optimization, first create the TBOpt file based on hold timing's critical nodes. For this, specify the -
early parameter while running the createTBOptFile command.

createTBOptFile -early -bottleneckInstanceNumber 5 -outFile TBOpt_bottleneck_5_hold.txt

Then, use the following commands to specify the above generated target file for hold optimization.

setOptMode -opt_target_based_opt_hold_file TBOpt_bottleneck_5_hold.txt

optDesign -postRoute -targeted -hold

Note: You can also launch setup optimization followed by hold optimization using the following command:

optDesign -postRoute -targeted -setup -hold

Note: Hold optimization is only called in the -opt_target_based_opt_only_file mode.

Default Naming Conventions for the TBOpt Flow
The names of the cells and nets added as a result of target-based optimization are annotated with the prefix FE_TBOPT.

September 2022 685 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/createTBOptFile.html
../innovusTCR/setOptMode.html
../innovusTCR/optDesign.html

Optimizing SI Slew and SI Glitches in PostRoute Optimization
By default, postRoute optimization does not fix SI slew violations. To enable this, set the setOptMode -
opt_post_route_fix_si_transitions parameter to true. Before doing this, ensure that the setDelayCalMode -SIAware parameter is
set to true. When this is turned on for optDesign, the software issues information and sets the setSIMode -
report_si_slew_max_transition parameter to true. This is to ensure consistency, so that when either timeDesign -postRoute or
reportTranViolation is run after optDesign, the same max trans violations are seen containing the SI slew.

Note: If only setSIMode -report_si_slew_max_transition is set to true, only SI slew reporting will be turned on and optDesign will
not fix the SI slews. For this, setOptMode -opt_post_route_fix_si_transitions parameter must be set to true.

By default, postRoute optimization fixes SI glitch violations. To turn this off , set the setOptMode -
opt_post_route_fix_glitch parameter to false .

Optimizing Signal EM Violations at PostRoute Stage
Electromigration (EM) violations are becoming more common for advanced technologies, especially 28nm and below, and need to
be optimized. They usually occur in the design at the output of large drivers. The following topics in this section deal with how to
report and optimize them:

Initial Steps

Optimization Strategies

Setting the Switching Activity

Reporting Signal EM Violations

Optimizing Signal EM Violations

Initial Steps
Before starting ensure the following:

The DB is fully legalized and routed. The fixACLimitViolation command is not supported in PreRoute mode. It is
recommended to have a DRC-clean DB to start with timeDesign –postRoute already done.

EM model file (ICT-EM Tech file) is prepared, if available.

TCF file is prepared, if available.

Prefix Description

FE_TBOPTPSBC Cell added during postRoute multi-buffering (NBF) in TBOpt flow.

FE_TBOPTPSBN Net added during postRoute multi-buffering (NBF) in TBOpt flow.

FE_TBOPTC Cell added during postRoute single-buffering in TBOpt flow.

FE_TBOPTN Net added during postRoute single-buffering in TBOpt flow.

September 2022 686 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setDelayCalMode.html
../innovusTCR/setSIMode.html
../innovusTCR/timeDesign.html
../innovusTCR/reportTranViolation.html
../innovusTCR/fixACLimitViolation.html
../innovusTCR/timeDesign.html

Optimization Strategies
There are three fixing strategies:

Wire widening (NDR)

Downsizing driver

Buffering

Among these, NDR is the default strategy. To turn on the downsizing and buffering, set the following options of
the fixACLimitViolation command:

-allowDownsize true
-allowAddBuffer true

To turn off NDR, use the following option:

-useNDR false

Note: Using NDR alone is the preferred approach for fixing EM violations because it causes the least disruption to design timing.

Setting the Switching Activity
If a TCF file is available, use it directly:

read_activity_file -format TCF -set_net_freq true test.tcf

If a TCF file is not available, you can generate the file. The following example shows how to first set the default switching activity to
0.2 for both input and sequential cells, and then generate and read the TCF file.

set_default_switching_activity –reset
set_default_switching_activity -input_activity 0.2 -seq_activity 0.2
propagate_activity

write_tcf test.tcf
read_activity_file -format TCF -set_net_freq true test.tcf

Note: For the read_activity_file command, ensure that you the –set_net_freq parameter set to true.

Reporting Signal EM Violations
Signal EM reporting is done by using the verifyACLimit command.

To get the initial AC limit violation report, run the verifyACLimit command. If you have set the frequency through TCF as specified
earlier, use the -use_db_freq parameter. To generate the report, specify the -report reportFileName parameter.

Note: This VAC report is then fed to the fixACLimitViolation command to read the EM violation information. This will ensure the
best fixing quality.

If you have an ICT file for EM model, specify the file using the -ict_em_models parameter of the verifyACLimit command. The
following example shows how to verify the RMS, average, and peak currents using the ICT file, and to print the report with fixWidth
information.

verifyACLimit -ict_em_models test.ictem -report test_1.rpt -method {rms avg peak} -use_db_freq

Note: It is recommended that the design be DRC-clean before you begin. To get the initial DRC number before EM fixing, use the
verify_drc command. For example:

verify_drc -limit 10000000

September 2022 687 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/read_activity_file.html
../innovusTCR/set_default_switching_activity.html
../innovusTCR/propagate_activity.html
../innovusTCR/write_tcf.html
../innovusTCR/verifyACLimit.html
../innovusTCR/verify_drc.html

Optimizing Signal EM Violations
Signal EM optimization is done by using the fixACLimitViolation command.

If you want to use NDR only, but want to have multiple iterations, do not use the -maxIter option. This is because the
option, -maxIter is not compatible with the -useReportFile option, which gives the best estimate of width and distance to be
widened.

The best way to achieve multiple iterations of fixACLimitViolation (note that one iteration may be sufficient) is described in the
following example. In this example, NDR is based on the report file provided by specifying the -useReportFile parameter.

verifyACLimit -report report1.rpt
fixACLimitViolation -useReportFile report1.rpt
verifyACLimit -report report2.rpt
fixACLimitViolation -useReportFile report2.rpt
verifyACLimit -report report3.rpt

Optimizing Power During optDesign
During timing optimization, when the correct power effort is specified, the software is fully aware of the impact of each optimization
technique in terms of both leakage and, if specified, dynamic optimization, and it will choose the best one considering all metrics.
This functionality is called power-driven optimization. It specifically calls both leakage and dynamic power optimizations. The
following topics are covered in this section:

Leakage Power Optimization

Dynamic Power Optimization

Leakage and Dynamic Power Optimization Combined

Power-Driven Optimization for Different Optimization Modes

Migrating from Leakage and Dynamic Power Optimization to Power-Driven Optimization

Specifying the Correct Power Views for Optimization

Leakage Power Optimization
To activate leakage power optimization during timing optimization, run the following command:

setOptMode -opt_power_effort {none | low | high} -opt_leakage_to_dynamic_ratio 1.0

When -opt_power_effort is set to none, no power optimization is performed. This is the default option.

When -opt_power_effort is set to low, optDesign will optimize leakage power after each timing optimization step. It is fully
leakage power-aware at every step of optimization and makes decisions based on that. There are no high leakage cells
inserted during hold fixing.

When -opt_power_effort is set to high, optDesign will optimize leakage power at all stages and it will use a more complex
preRoute flow to gain more leakage savings than just a simple call to leakage optimization. There are no high leakage cells
inserted during hold fixing. During timing optimization, optDesign will use high-effort techniques to ensure the best possible
leakage impact of each timing optimization change.

September 2022 688 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Note: To achieve the best leakage power results, load all the different Vth libraries. It is important to ensure that the correct power
view is specified using the -leakage parameter of the set_analysis_view command. The optimal view for leakage is the one with
higher temperature corners (85/125 degrees) and typical libraries.

Dynamic Power Optimization
To activate dynamic power optimization during timing optimization, run the following command:

setOptMode -opt_power_effort {none | low | high} -opt_leakage_to_dynamic_ratio 0.0

When -opt_power_effort is set to none, optDesign will not optimize dynamic power. This is the default option.

When -opt_power_effort is set to low, optDdesign will only optimize dynamic power in the pre-CTS setup optimization phase.

When -opt_power_effort is set to high, optDesign will optimize dynamic power in the entire setup optimization phases.

Note: Ensure that the correct power view is specified using the -dynamic parameter of the set_analysis_view command. It is also
recommended that you provide an activity file. This can be done by using the following command:

read_activity_file –format {VCD | TCF | SAF} file_name

In the absence of a switching file, it is recommended you use the following command:

set_default_switching_activity-input_activity 0.2 -seq_activity 0.2

propagate_activity

write_tcf tcfName

read_activity_file -format TCF -set_net_freq true tcfName

This will ensure both predictability and consistency throughout the flow.

Leakage and Dynamic Power Optimization Combined
To activate leakage and dynamic power-driven optimization together during timing optimization, you can specify a setOptMode -
opt_leakage_to_dynamic_ratio value between 0.0 and 1.0. In general, there is little value in specifying any value that is not an
increment of 0.1.

Note: To decide on the value, it is recommended that you run the report_power command once the design has been setup correctly
with respect to the following:

Correct power views are specified

MVT library is setup

Switching activity is supplied, and so on

If overall total power reduction is the goal, then looking at the overall impact of internal and switching power versus leakage power,
you can decide on the ratio to be specified to achieve the greatest impact. Some examples are provided below:

setOptMode -opt_leakage_to_dynamic_ratio 0.5 : This implies that timing optimization will be both dynamic and leakage
power-driven and trade-offs need to be done to achieve a balance between leakage and dynamic power optimization.

setOptMode -opt_leakage_to_dynamic_ratio 0.1 : This implies that timing optimization will be both dynamic and leakage
power-driven but dynamic optimization will be favored.

setOptMode -opt_leakage_to_dynamic_ratio 0.9 : This implies that timing optimization will be both dynamic and leakage
power-driven but leakage optimization will be favored.

To activate leakage and dynamic power-driven optimization together during timing optimization, you can specify the
set_db opt_leakage_to_dynamic_ratio attribute value between 0.0 and 1.0. In general, there is little value in specifying any value

September 2022 689 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/set_analysis_view.html
../innovusTCR/set_analysis_view.html
../innovusTCR/read_activity_file.html
../innovusTCR/set_default_switching_activity.html
../innovusTCR/propagate_activity.html
../innovusTCR/write_tcf.html
../innovusTCR/report_power.html

that is not an increment of 0.1.

Note: To decide on the value, it is recommended that you run the report_power command once the design has been setup correctly
with respect to the following:

Correct power views are specified

MVT library is setup

Switching activity is supplied, and so on

If overall total power reduction is the goal, then looking at the overall impact of internal and switching power versus leakage power,
you can decide on the ratio to be specified to achieve the greatest impact. Some examples are provided below:

set_db opt_leakage_to_dynamic_ratio 0.5 : This implies that timing optimization will be both dynamic and leakage power-
driven and trade-offs need to be done to achieve a balance between leakage and dynamic power optimization.

set_db opt_leakage_to_dynamic_ratio 0.1 : This implies that timing optimization will be both dynamic and leakage power-
driven but dynamic optimization will be favored.

set_db opt_leakage_to_dynamic_ratio 0.9 : This implies that timing optimization will be both dynamic and leakage power-
driven but leakage optimization will be favored.

Power-Driven Optimization for Different Optimization Modes
The setOptMode -opt_leakage_to_dynamic_ratio parameter controls the priority of the power-driven optimization. You can set any
value between 0 and 1. This parameter is used along with the -opt_power_effort parameter. When setOptMode -
opt_power_effort is set to low, power-driven optimization is not the highest priority. In this scenario, power-driven optimization is
performed only at certain stages of the optDesign flow, which is dependent on the value of the setOptMode -
opt_leakage_to_dynamic_ratio parameter. This is shown below.

When setOptMode -opt_power_effort is set to high, power-driven optimization is the highest priority. In this scenario, power-driven
optimization is performed at all stages of the optDesign flow. However, the type of optimization, dynamic or leakage, depends upon
the value of the setOptMode -opt_leakage_to_dynamic_ratio parameter. This is shown below.

leakageToDynamicRatio preCTS

postCTS

postRoute

0.0 Dynamic optimization Dynamic optimization Dynamic optimization

> 0.0 and < 1.0 Dynamic and leakage
optimization

Dynamic and leakage
optimization

Dynamic and leakage
optimization

1.0 Leakage optimization Leakage optimization Leakage optimization

September 2022 690 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../TCRcom/report_power.html

Migrating from Leakage and Dynamic Power Optimization to Power-Driven
Optimization
This section provides a rough guide on how to move from the previous leakage and dynamic power optimization flows to using
power-driven optimization. Since power-driven optimization functionality is introduced in the Innovus 15.1 release, there is no direct
one to one mapping from previous to new. However, some close approximations are provided below:

setOptMode –leakagePowerEffort low –dynamicPowerEffort none is roughly equivalent to setOptMode -opt_power_effort
low -opt_leakage_to_dynamic_ratio 1.0

setOptMode –leakagePowerEffort low –dynamicPowerEffort low is roughly equivalent to setOptMode -opt_power_effort
low -opt_leakage_to_dynamic_ratio 0.5

setOptMode –leakagePowerEffort low –dynamicPowerEffort high is roughly equivalent to setOptMode -opt_power_effort
high -opt_leakage_to_dynamic_ratio 0.1

setOptMode –leakagePowerEffort high –dynamicPowerEffort none is roughly equivalent to setOptMode -opt_power_effort
high -opt_leakage_to_dynamic_ratio 1.0

setOptMode –leakagePowerEffort high –dynamicPowerEffort low is roughly equivalent to setOptMode -opt_power_effort
high -opt_leakage_to_dynamic_ratio 0.9

setOptMode –leakagePowerEffort high –dynamicPowerEffort high is roughly equivalent to setOptMode -opt_power_effort
high -opt_leakage_to_dynamic_ratio 0.5

setOptMode –leakagePowerEffort none –dynamicPowerEffort none is roughly equivalent to setOptMode -opt_power_effort
none -opt_leakage_to_dynamic_ratio <any value>

setOptMode –leakagePowerEffort none –dynamicPowerEffort low is roughly equivalent to setOptMode -opt_power_effort
low -opt_leakage_to_dynamic_ratio 0.0

setOptMode –leakagePowerEffort none –dynamicPowerEffort high is roughly equivalent to setOptMode -opt_power_effort
high -opt_leakage_to_dynamic_ratio 0.0

September 2022 691 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Specifying the Correct Power Views for Optimization
As mentioned above, it is important to specify the correct leakage and dynamic view for optimization. The optimal view for leakage is
the one with higher temperature corners (85/125 degrees) and typical libraries. The optimal view for dynamic power is dependent
both on the design and on your inputs. Ensure that the activity is provided by one or the other methods mentioned above. For
specifying the power view, consider the following:

If the leakage and dynamic view is to be the same, then run the following command:
set_power_analysis_mode –leakage_power_view power_view_name –dynamic_power_view power_view_name

You can still use the –analysis_view power_view_name parameter but this parameter will be made obsolete in a future
release, so it is not recommended.

If the leakage and dynamic view is to be different, then run the following command:
set_power_analysis_mode –leakage_power_view leakage_view_name -dynamic_power_view dynamic_view_name

If the view is not an active view, it will be automatically handled by the optimization code. However, the report_power command
does not support non-active views. So, for this command, you will need to add the view to the active views using the
set_analysis_view command and then call the report_power –view power_view_name command. Also, in terms of leakage, if the
view is not active then the optimization will be forced to set the -state_dependent_leakage parameter of
the set_power_analysis_mode command to false.

Note: If you want to have state-dependent leakage (-state_dependent_leakage true) optimization, then the view needs to be made
part of the active view list. Also, it is important to ensure that the specified views used are always well defined from both a power and
timing point of view to get the optimal QOR.

Using Useful Skew
The useful skew feature in the software modifies the clock arrival time on sequential elements to improve the datapath timing
between sequential elements.

In a default flow, Innovus deploys useful skew in all the major commands of the Innovus flow, such as place_opt_design and
ccopt_design. With setOptMode options, you can control useful skew at each individual flow step, or disable useful skew altogether
for all Innovus commands.

To disable useful skew throughout Innovus, use the following setting:
setOptMode -opt_skew {true | false}

The false setting disables useful skew for all Innovus commands, regardless of any other useful skew settings. The default true
enables useful skew, subject to the controls for individual commands.

Using Useful Skew in PreCTS Mode
PreCTS optimization inside place_opt_design takes advantage of useful skew by default starting from Innovus 16.1 release. You
can enable or disable the preCTS useful skew with the following setting:

setOptMode -opt_skew_pre_cts {true | false}

With default optimization settings, sequential elements are only advanced. With the Early Clock Flow enabled, sequential elements
may be either advanced or delayed. For more information about the early clock flow, see Early Clock Flow in the Clock Tree
Synthesis chapter.

With default optimization settings, the resulting advances or delays are modeled as SDC network latencies on the corresponding

September 2022 692 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/set_power_analysis_mode.html
../innovusTCR/report_power.html
../innovusTCR/set_analysis_view.html
../innovusTCR/place_opt_design.html
../innovusTCR/ccopt_design.html
../innovusTCR/place_opt_design.html
../innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-EarlyClockFlow

pins, which are then translated into pin insertion delays for CTS during clock tree specification creation.

In the Early Clock Flow, the resulting advances or delays are expressed as both pin network latencies and pin insertion delays. For
more information, see Network Latencies in the Clock Tree Synthesis chapter.

Using Useful Skew in PostCTS Mode
PostCTS optimization takes advantage of useful skew by default starting from Innovus 16.1 release. The useful skew deployed in the
ccopt_design command depends on the optimization effort selected. The -opt_skew_ccopt parameter of the setOptMode command is
used to specify the optimization effort. The available options are none, standard, and extreme. The possible settings are:

none: low effort ccopt_design with no skewing

standard: standard effort ccopt_design. This includes the optimization steps in low effort ccopt_design with instance sizing and
buffer/inverter insertion in the clock tree to improve timing.

extreme: high effort ccopt_design. This includes the optimization steps in medium effort ccopt_design, using multiple phases of
concurrent clock and datapath optimization.

Note: Setting the effort level changes multiple internal properties ‘under the cover’. Advanced users using internal properties advised
by their support contact should be aware of this. for more information, see "Controlling Useful Skew Effort in CCOpt" section in the
Clock Tree Synthesis chapter.

Note: The skewClock command inside optDesign -postCTS performs only setup optimization, with awareness of hold timing. There
are no options to control performing hold timing optimization inside either optDesign -postCTS or -postRoute.

Using Useful Skew in PostRoute Mode
PostRoute optimization inside optDesign -postRoute takes advantage of useful skew by default starting from Innovus 16.1 release.
You can enable or disable postRoute useful skew with the following setting:

setOptMode -opt_skew_post_route {true | false}

When set to true, which is the default setting, the postRoute optimization steps include instance sizing and buffer or inverter
insertion in the clock tree to improve setup timing.

Note: The skewClock command inside optDesign -postRoute performs only setup optimization, with awareness of hold timing.
There are no options to control performing hold timing optimization inside either optDesign -postRoute or -postCTS.

Controlling Useful Skew Optimization
To report the current setUsefulSkewMode settings, use the following command:

getUsefulSkewMode

To control how the software employs useful skew, use the following command:

setUsefulSkewMode

To exclude boundary sequential cells in useful skew calculations, use the following command:

setUsefulSkewMode -opt_skew_no_boundary true

If you do not specify this parameter, the software takes boundary cells and ordinary sequential elements into account when

September 2022 693 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusUG/Clock_Tree_Synthesis.html#ClockTreeSynthesis-NetworkLatencies
../innovusTCR/skewClock.html
../innovusTCR/skewClock.html
../innovusTCR/getUsefulSkewMode.html
../innovusTCR/setUsefulSkewMode.html

calculating useful skew.

To limit the amount of slack, the software can borrow from neighboring flip-flops when performing useful skew operations. By default
the software allows a delay of 1 ns. Use the following command to adjust the delay:

setUsefulSkewMode -opt_skew_max_allowed_delay value

The software's delay calculation and RC extraction methods might differ from those of other sign-off tools, so other setup violations
might occur if the tool borrows too much slack. By having control over slack borrowing, you can prevent these setup violations.
Limiting borrowed skew also limits the clock tree skew to avoid large hold violations. If you do not specify this parameter, the
software automatically borrows the amount of slack needed (there is no maximum) to reduce setup violations.

Applying Useful Skew Limits to the Complete Flow
The setUsefulSkewMode -opt_skew_max_allowed_delay parameter imposes a limit on the useful skew applied at a given flop. This
limit should include skews generated across all the pre-CTS flow tools but exclude the user-specified pre-skews. However, the pre-
existing skews, encoded as pin insertion delay (PID) values, are not considered while imposing the skew limit specified by the -
opt_skew_max_allowed_delay parameter.

To include pre-existing skews while imposing the useful skew limits, use the -
opt_skew_apply_delay_limits_to_full_flow parameter. When this parameter is set to true, the Early Clock Flow (ECF) is modified
so that all pre-existing tool-generated useful skews count towards the limit imposed by the -opt_skew_max_allowed_delay parameter.
The tool-generated useful skew comprises any PID of category useful_skew or global_skew. PIDs of other categories are not
considered.

By default, this parameter is set to false, which means the pre-existing skews are not considered while imposing the skew limit.

Distributed Timing Analysis for Hold Fixing
In hold fixing, a significant portion of the CPU runtime is spent computing the setup and hold timing before and after the actual hold
fixing step. To reduce the elapsed time, the software supports distributed setup and hold timing analysis.

The distribution is either local or on remote hosts, depending on the EDP settings applied using the setMultiCpuUsage command. It
is enabled by default and the use model (on a local machine) is :

setMultiCpuUsage -localCpu number

optDesign -hold -postCTS/-postRoute

Note: The timing computed in the distributed mode can be different than in default mode when set_global
timing_cppr_threshold_ps is applied with a value higher than 1ps. But this does not impact timing convergence since in distributed
mode the timing would always be on the pessimistic side.

September 2022 694 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setUsefulSkewMode.html

Using Active Logic View for Chip-Level Interface Circuit Timing
Closure
The Innovus software provides a top-level interface timing operation flow to perform partitioning and budgeting on a trimmed-down
version of the timing graph: an active logic view. This flow helps you close the timing issues of the interface top-level paths as your
design has gone through the hierarchical flow until the postRoute stage. This flow also saves the memory usage and provides faster
runtime on large designs.

To perform optimization using an active logic view at the postRoute stage, complete the following steps:

1. Load the hierarchical design in the database that is created by assembleDesign using the entire post-routed block partition and
the top-level partition. Specify the partition information in the database.
restoreDesign assembled.enc.dat toplevel_design_name

2. Perform timing analysis on the design to identify the timing of the full-chip design.
timeDesign -postRoute -prefix preOpt

3. Set the optimization mode to use active logic view. If you specify this parameter, optDesign observes the floorplan fence
constraint when moving or adding cells.
setOptMode -opt_post_route_art_flow true

4. Run optDesign. The optDesign command honors active logic view.
optDesign -postRoute

5. Perform timing analysis again to ensure that there are no timing issues.
timeDesign -postRoute -prefix postOpt

Optimizing Timing in On-Chip Variation Analysis Mode
PostRoute timing optimization must be done using on-chip variation (OCV) to account for variations in process, voltage, and
temperature (PVT) across the die. When it takes OCV into account, the software calculates early and late delays, and uses them to
evaluate setup and hold timing checks. You introduce the delays into the analysis by specifying different min/max corner timing
libraries and operating conditions. Early/late variation might also be present due to slew merging effects of multiple input gates in the
clock path.

To enable the software to consider multiple libraries and operating conditions, you must specify a multi-mode/multi-corner (MMMC)
environment. The MMMC environment must be set up and OCV must be turned on, otherwise the optDesign command exits with
an error message.

For more information on OCV and MMMC, see the following sections:

Specifying the MMMC Environment

Optimizing Timing in OCV Mode Using the Default Delay Calculator

Specifying the MMMC Environment
There are three MMMC scenarios for timing optimization in OCV mode:

One library and one operating condition per corner

One library and two operating conditions per corner

September 2022 695 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/optDesign.html

Two worst-case libraries and two best-case libraries per corner

The operating condition specifications you provide to the create_delay_corner command determine the MMMC scenario for OCV
mode. These specifications give the software the values to use for early and late timing.

The following sections show the specifications necessary for each scenario. The differences are highlighted in bold-face type.

One library and one operating condition per corner
create_library_set -name libs_min -timing [list $bestcase_lib]

create_library_set -name libs_max -timing [list $worstcase_lib]

create_rc_corner -name rc_worst -cap_table CMAX.capTbl

create_rc_corner -name rc_best -cap_table CMIN.capTbl

create_constraint_mode -name postCTS [list xxx.sdc]

create_delay_corner -name delay_corner_max \

 -library_set libs_max \ -opcond_library stdcmos90T125 \ -opcond cmos90T125 \ -rc_corner rc_worst
create_delay_corner -name delay_corner_min \
 -library_set libs_min \

 -opcond_library stdcmos90Tm40 \ -opcond cmos90Tm40 \ -rc_corner rc_best
create_analysis_view -name postCts_max \
 -delay_corner delay_corner_max \
 -constraint_mode postCTS
create_analysis_view -name postCts_min \
 -delay_corner delay_corner_min \
 -constraint_mode postCTS
set_analysis_view -setup postCts_max -hold postCts_min

One library and two operating conditions per corner
create_library_set -name libs_min -timing [list $bestcase_lib]
create_library_set -name libs_max -timing [list $worstcase_lib]
create_rc_corner -name rc_worst -cap_table CMAX.capTbl
create_rc_corner -name rc_best -cap_table CMIN.capTbl
create_constraint_mode -name postCTS [list xxx.sdc]
create_delay_corner -name delay_corner_max \
 -library_set libs_max \
 -late_opcond_library stdcmos90T12 \ -late_opcond cmos90T125_slow \ -early_opcond_library

stdcmos90T125 \ -early_opcond cmos90T125 \ -rc_corner rc_worst
create_delay_corner -name delay_corner_min \
 -library_set libs_min \ -late_opcond_library stdcmos90Tm40 \ -late_opcond cmos90Tm40 \

-early_opcond_library stdcmos90Tm40 \ -early_opcond cmos90Tm40_fast \

 -rc_corner rc_best
create_analysis_view -name postCts_max \
 -delay_corner delay_corner_max \
 -constraint_mode postCTS
create_analysis_view -name postCts_min \
 -delay_corner delay_corner_min \
 -constraint_mode postCTS
set_analysis_view -setup postCts_max -hold postCts_min

Two worst-case libraries and two best-case libraries per corner

September 2022 696 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/create_delay_corner.html

create_library_set -name libs_min_std -timing [list $bestcase_lib_std]
create_library_set -name libs_max_std -timing [list $worstcase_lib_std]
create_library_set -name libs_min_fast -timing [list $bestcase_lib_fast]
create_library_set -name libs_max_fast -timing [list $worstcase_lib_fast]

create_rc_corner -name rc_worst -cap_table CMAX.capTbl
create_rc_corner -name rc_best -cap_table CMIN.capTbl

create_constraint_mode -name postCTS [list xxx.sdc]

create_delay_corner -name delay_corner_max
-late library_set libs_max_std \
-late_opcond_library stdcmos90T125 \

-late_opcond cmos90T125 \

-early library_set libs_max_fast \
-early_opcond_library fastcmos90T125 \

-early_opcond cmos90T125 \

-rc_corner rc_worst

create_delay_corner -name delay_corner_min
-late_library_set libs_min_std \
-late_opcond_library stdccmos90Tm40 \

-late_opcond cmos90Tm40 \

-early_library_set libs_min_fast \
-early_opcond_library fastcmos90Tm40 \

-early_opcond cmos90Tm40 \

-rc_corner rc_best

create_analysis_view -name postCts_max \
-delay_corner delay_corner_max \
-constraint_mode postCTS
create_analysis_view -name postCts_min \
-delay_corner delay_corner_min \
-constraint_mode postCTS

set_analysis_view -setup postCts_max -hold postCts_min

Optimizing Timing in OCV Mode Using the Default Delay Calculator
After you specify the MMMC environment, use the following commands to set OCV on and enable Clock Path Pessimism Removal
(CPPR), which is highly recommended:

setAnalysisMode -analysisType onChipVariation -cppr
optDesign -postRoute -hold

September 2022 697 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setAnalysisMode.html
../innovusTCR/optDesign.html

Optimizing Timing Using a Rule File
In a partitioned design, top-level and leaf partitions are generated. Before implementation, the leaf partitions' timing models are not
completely accurate. Because accurate timing cannot be derived without accurate timing models for leaf partitions, rule-based
optimization is a more suitable option than timing analysis-based optimization at this design stage. You can use a rule file for the top-
level design by using the following command:

addRepeaterByRule

Optimizing Timing When the Constraint File Includes the
set_case_analysis Constraint
If you include the set_case_analysis constraint in the timing constraint file, the Innovus software sets a constant value on specified
signals before performing timing analysis. This constant value is then propagated through the path.

If you use the same timing constraint file for timing optimization, the software does not perform timing optimization on the constant
nets because the delays are 0.

To run timing optimization on these nets, you must first specify the following command:

setAnalysisMode -caseAnalysis false

Using the Footprintless Flow
By default, the software creates an internal footprint structure based on cell functionality. It is possible that cells with
same functionality may be split across 2 or 3 different footprints, based on certain other characteristics, such as, drive strength. This
methodology is referred to as the footprintless flow, and has the following advantages over a flow that relies on footprint information
from the libraries:

The libraries do not need to contain footprints, and you do not need to specify a footprint file.

The following commands are not necessary because the software detects the functionality for inverters and buffers and decides
whether a buffer is a delay cell, based on the cell's timing characteristic. The commands have no effect if specified in this flow.

setBufFootPrint

setInvFootPrint

setDelayFootPrint

The software considers cells with the same functionality but different function syntax as equivalent and allows sizing between
such cells.

If the cell functionality is not defined, the software considers cells with the same cell user_function_class as equivalent and
allows sizing between such cells. For example:

cell (AND2X1) {
 user_function_class : my_and2_class;
}
cell (AND2X2) {

September 2022 698 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/addRepeaterByRule.html

 user_function_class : my_and2_class;
}
Since both cells have the same user_function_class value, "my_and2_class", they will be treated as functionally equal.
Note: Ensure that the following statement is included in the library file, otherwise the user_class_function is not read:
define(user_function_class,cell,string);

The software prints the list of usable and unusable ("don't use") buffers, inverters, and delay cells to the log file after reading in
the libraries, for example:
Total number of combinational cells: 620

Total number of sequential cells: 247

Total number of tristate cells: 42

Total number of level shifter cells: 0

Total number of power gating cells: 0 Total number of isolation cells: 0

List of usable buffers: BFX1 BFX2 BFX3 BFX4

Total number of usable buffers: 4

List of unusable buffers: BFX20 BFX32

Total number of unusable buffers: 2

List of usable inverters: IVX1 IVX2 IVX3 IVX4

Total number of usable inverters: 4

List of unusable inverters:

Total number of unusable inverters: 0

List of identified usable delay cells: DLY2 DLY4 DLY8

Total number of identified usable delay cells: 3

List of identified unusable delay cells:

Total number of identified unusable delay cells: 0

To revert to the behavior in previous releases (that is, to rely on footprint information in the libraries), use
the loadFootPrint command. As in those releases, you must specify buffers, inverters, and delay cell footprints according to what
was loaded in the footprint file. For more information, see "Using Cell Footprints".

To exclude cells from timing optimization, for example, if the libraries have clock buffers or clock inverters that should be used during
CTS but not during timing optimization, set the "don't use" attribute in the timing constraints file, library, or command shell. Timing
optimization can resize a "don't use" cell, but does not insert it.

Note: This is the default and recommended methodology since all of it is automated.

For more information see the setDontUse command.

Using Cell Footprints
Timing optimization can use information in a footprint file. For example, the buffering mechanisms in optDesign add cells only if they
are defined in the buffer footprint file.

To disable the footprintless flow (the default timing optimization flow) and load a footprint file, specify the following command:

loadFootPrint -infile footprint_file_name

Define footprints in your library or a footprint file by using the following commands, which are enabled when you
specify loadFootPrint:

September 2022 699 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setDontUse.html
../innovusTCR/loadFootPrint.html

setBufFootPrint

setInvFootPrint

setDelayFootPrint

Note: This is not the recommended methodology and should only be used as a workaround.

Viewing Added Buffers, Instances, and Nets
After running timing optimization, use the Design Browser to view the added buffers, instances, and nets. The names of the buffers,
instances, and nets added as a result of timing optimization are annotated with the prefix FE_.

For information on using the Design Browser, see the Design Browser section in the Tools Menu chapter of Innovus Menu
Reference.

Default Naming Conventions

Prefix Description Command

FE_MDBC Instance added by multi-driver net
buffering

optDesign

FE_MDBN Net added by multi-driver net buffering optDesign

FE_OCP_RBC Instance added by rebuffering optDesign

FE_OCP_RBN Net added by rebuffering optDesign

FE_OCPC Instance added by critical path
optimization during preRoute
optimization

optDesign

FE_OCPN Net added by critical path optimization
during preRoute optimization

optDesign

FE_OFC
Buffer instance added by
addRepeaterByRule or DRV fixing during
preRoute optimization

addRepeaterByRule/optDesign

FE_OFN
Buffer net added by addRepeaterByRule
or DRV fixing during preRoute
optimization

addRepeaterByRule/optDesign

FE_PHC Instance added by hold time repair optDesign

FE_PHN Net added by hold time repair optDesign

FE_PSBC Instance added by buffer insertion during
postRoute optimization

optDesign

September 2022 700 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setBufFootPrint.html
../innovusTCR/setInvFootPrint.html
../innovusTCR/setDelayFootPrint.html
../innovusMR/Tools_Menu.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/addRepeaterByRule.html
../innovusTCR/addRepeaterByRule.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html

Using Signoff Timing Analysis to Optimize Timing and Power
The signoff timing optimization feature lets you run timing and power optimization within Innovus on Signoff parasitic from Quantus
and Signoff timing from Tempus. This feature gives a complete automated solution for using the entire signoff tools through one high
level super command.

In a good timing closure methodology, at the implementation stage the timing targets that are set by the signoff Static Timing
Analysis (STA) tool should be met. In order to ensure that the design state is close to sign-off quality, the timing reported by the
implementation tool must correlate as much as possible to the signoff STA tool. In Innovus, signoff timing analysis and optimization
capabilities provide the following features:

Lets you run timing and power optimization on signoff timing within Innovus.

Maximizes the usage of Cadence tools - Innovus will enable you to run extraction (Quantus) and Tempus without extra effort.

Running MMMC SignOff ECO within Innovus
To provide signoff timing report in Innovus using Tempus, you can use the signoffTimeDesign command. This command uses
Quantus and Tempus in standalone mode to perform signoff STA using the DMMMC infrastructure and save an ECO Timing DB per
view. This signoff timing can be optimized using signoffOptDesign . Similarly, signoffOptDesign can be used to perform power
optimization on this signoff timing. The following diagram illustrates the flow and architecture of each signoff command:

FE_PSBN Net added by buffer insertion during
postRoute optimization

optDesign

FE_PSRC Instance added by postRoute
restructuring

optDesign

FE_PSRN Net added by postRoute restructuring optDesign

FE_PSC Instance added by postRoute setup
repair

optDesign

FE_PSN Net added by postRoute setup repair optDesign

FE_PDC Instance added by postRoute DRV fixing optDesign

FE_PDN Net added by postRoute DRV fixing optDesign

FE_RC Instance created by netlist restructuring optDesign

FE_RN Net created by netlist restructuring optDesign

FE_USKC Instance added during useful skew
optimization

optDesign/skewClock

FE_USKN Net added during useful skew
optimization

optDesign/skewClock

FE_ARRC Instance added by addRepeaterByRule addRepeaterByRule

FE_ARRN Net added by addRepeaterByRule addRepeaterByRule

September 2022 701 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/optDesign.html
../innovusTCR/addRepeaterByRule.html
../innovusTCR/signoffTimeDesign.html
../innovusTCR/signoffOptDesign.html
../innovusTCR/signoffOptDesign.html

In case the ECO Timing DB are not available when signoffOptDesign command is run, then the super command will automatically
run signoffTimeDesign under the hood, as shown in the figure below:

Signoff Timing Optimization provides a flexible flow to accommodate any specific methodology:

September 2022 702 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/signoffOptDesign.html
../innovusTCR/signoffTimeDesign.html

If parasitics should be extracted using TQuantus or IQuantus, this can be done manually by the user. Then
signoffTimeDesign can be used with the -reportOnly option to reuse those parasitics and skip the Quantus call.

In case specific steps/options should be performed before/during ECO routing, this step can be performed manually after
running signoffOptDesign with the -noEcoRoute option.

When specific signoff STA commands/options/globals should be applied, you can set these in a file and pass it to Tempus
through setSignoffOptMode -preStaTcl file option.

Performing Clock Skewing for Setup Timing Closure
Tempus ECO provides the ability to fix clock paths in order to fix the remaining setup timing violations. If the data path is fully
optimized, the software uses useful skew, which includes two methods: early clock and late clock. This either reduces the launch
clock delay or increases capture clock delay. The Tempus ECO engine can advance and delay clock arrival time to improve setup
timing while not creating any new hold timing violations.
Below are the key features of a skew engine:

Advanced clock tree manipulation to allow larger flexibility for clock skewing

Sizing, deletion, and buffering (includes inverter pair and load cell) at any clock tree level

Concurrent data path and clock path optimization for optimal timing closure

Sophisticated push-pull weight and timing bottleneck-based engine

Support for max level skewing to avoid excessive padding using setSignoffOptMode -clockMaxLevel <value>

Multi-Level Sizing and Buffering

Note: It is mandatory to provide a list of clock cells that are allowed to be used on the clock tree. Those cells can be inverter, buffer,
or any other combinational cells used as clock gaters.
Example:
setSignoffOptMode -clockCellList {CKBUFX1 CKBUFX4}

setSignoffOptMode -allowSkewing true
SignoffOptDesign -setup

The above commands performs clock skewing during setup fixing. Only CKBUFX1 and CKBUFX4 can be added to the clock tree.

September 2022 703 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/signoffTimeDesign.html
../innovusTCR/signoffOptDesign.html
../innovusTCR/setSignoffOptMode.html

Signoff Timing Analysis in Innovus using Timing Debug
Signoff timing analysis is performed by Tempus that saves signoff timing report (in .mtarpt) files per view. These files can be
loaded in Innovus through the global timing debug (GTD) interface in order to perform fine grain timing analysis.

Fixing SI Glitch, SI Slew, and SI Crosstalk Delta Delay Violations
Signoff ECO is able to fix different violations related to SI glitch, SI slew, and SI crosstalk delta delay.

SI Glitch Violations
A signal integrity noise glitch, also called voltage bump, generated by crosstalk coupling can propagate and amplify while traveling
along a path. As a result, this glitch can cause incorrect signal state change. The software provides the ability to fix SI glitch
violations in signoff ECO. This is done using the -fixGlitch parameter of the setSignoffOptMode command.

Syntax:

setSignoffOptMode -fixGlitch true | false

When set to true, the software performs SI glitch fixing during DRV fixing using resizing and buffering techniques.

The default value is false.

Notes:

This parameter must also be set during ECO DB generation.

The glitch fixing is done before max_tran/max_cap fixing.

It is mandatory to set the -enable_glitch_report parameter of the setSIMode command to true and use the report_noise
command to analyse and get a signoff glitch report.

For any remaining SI glitches that are not fixed using the resizing and buffering techniques, it is recommended to select those
nets and re-route them using an extra SI property.

Example:

The example below shows fixing of SI glitch violations only:
setSignoffOptMode –fixMaxCap false –fixMaxTran false –fixGlitch true

The example below shows fixing of SI glitch violations using DRV fixing in addition to the regular max_tran/max_cap violations:
setSignoffOptMode -fixGlitch true

signoffOptDesign -drv

SI Slew Violations
Crosstalk effects caused by parasitic capacitance between adjacent nets can lead to a large signal transition (SI slews) on the victim
nets. The software provides the ability to consider SI slews apart from base slews while performing transition violation fixing during
DRV optimizations. All other optimizers that include setup, hold, leakage, area, power, and dynamic do not consider SI slews. This
must be run as the first step of optimization before proceeding for any other incremental optimization.

This is done using the -fixSISlew parameter of the setSignoffOptMode command.

Syntax:

setSignoffOptMode -fixSISlew true | false

When this parameter is set to true, the tool checks max_tran rule against the SI slew and such violations are resolved during DRV

September 2022 704 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setSignoffOptMode.html
../innovusTCR/setSIMode.html
../innovusTCR/report_noise.html

fixing using resizing and buffering techniques.

The default value is false.

Note:

This parameter must be set during ECO DB generation in addition to setSIMode -enable_drv_with_delta_slew true

To analyze and report SI slew violations, run the following commands:

 setSIMode -enable_drv_with_delta_slew true

 report_constraint -drv_violation_type max_transition -all_violators

Examples:

The below example shows fixing SI slews violations only:
setSignoffOptMode -fixMaxCap false -fixSISlew true

To analyze and report SI slew violations use the following commands:
setSIMode -enable_drv_with_delta_slew true

report_constraint -drv_violation_type max_transition -all_violators

SI Crosstalk Delta Delay Violations
When aggressors are transitioning opposite the victim, it causes the arrival time to increase (positive delta delay). However, when
aggressors are transitioning at the same time as the victim, it causes the arrival time to reduce (negative delta delay). The software
provides the ability to fix crosstalk delta delay in signoff ECO. This helps in improving the design robustness, SI-delay fixing
convergence, and minimizing the setup versus hold timing conflicts on critical paths.

This is done using the -fixXtalk parameter, of the setSignoffOptMode command.

Syntax:

setSignoffOptMode -fixXtalk true | false

When set to true, the software reduces the crosstalk on the net that violates the thresholds set by you.

The default value is false.

Notes:

This parameter must also be set during ECO DB generation.

xtalk delta delay fixing is done after max_tran/max_cap fixing as a separate phase.

It is mandatory to set the below SI mode options:
setSIMode -separate_delta_delay_on_data true -delta_delay_annotation_mode lumpedOnNet

In addition, the following parameters of the setSignoffOptMode command are used to select nets for xtalk fixing during optimization:

To fix the nets with the crosstalk delta delay value equal to or greater than a specified threshold value:

a. For setup views: setSignoffOptMode -setupXtalkDeltaThreshold value in ns (default 0.3 ns)

b. For hold views: setSignoffOptMode -holdXtalkDeltaThreshold value in ns (default 0.3 ns)

To fix the nets with the slack threshold value equal to or less than a specified threshold value:

a. For setup views: setSignoffOptMode -setupXtalkSlackThreshold value in ns (default 1000 ns)

b. For hold views: setSignoffOptMode -holdXtalkSlackThreshold value in ns (default 1000 ns)

Example:

September 2022 705 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setSIMode.html
../innovusTCR/setSIMode.html
../innovusTCR/report_constraint.html

The following example uses DRV fixing to reduce the crosstalk delay on all nets that violated the 300ps threshold rule in setup views:

setSignoffOptMode -setupXtalkDeltaThreshold 0.3

setSignoffOptMode -fixXtalk true

signoffOptDesign -drv

Optimization in Path-Based Analysis (PBA) Mode
At implementation stage, tools are using the Graph-Based Analysis (GBA) mode because that allows fast turnaround time to analyze
timing and to update timing incrementally. The drawback is that the GBA mode is generating pessimistic timing. At the signoff stage,
where perfect accuracy is needed, you can enable the PBA mode and perform the final pass of timing closure. In addition, it is
recommended to run the area or power recovery engine to reach the best possible Power Performance Area (PPA) metrics. When
enabling PBA, each timing path is timed in its own context so that the slews or AOCV factors are computed based only on the path
being timed.
The following five options are specific to the PBA mode for Tempus ECO:

To enable PBA and select the retiming mode:
setSignoffOptMode -retime none

To select whether PBA is applied to Setup or Hold or both:
setSignoffOptMode -checkType early

To specify the maximum slack to be considered for retiming:
setSignoffOptMode -maxSlack 0

To specify the maximum number of paths to be retimed in total:
setSignoffOptMode -maxPaths -1

To specify the number of paths to be retimed for each endpoint:
setSignoffOptMode -nworst -1

The following is an example of SOCV PBA based Leakage optimization:
restoreDesign postroute.enc.dat topChip
<set all signoff STA views>
<apply signoff STA settings/options/globals >
<load parasitic>
setMultiCpuUsage –localCpu 16 -remoteHost 4 -cpuPerRemoteHost 4
setSignoffOptMode -retime path_slew_propagation

setSignoffOptMode -checkType both
setSignoffOptMode -maxSlack 10
setSignoffOptMode -maxPaths 5000000
setSignoffOptMode -nworst 50
setSignoffOptMode –pbaEffort high
setSignoffOptMode –saveEcoOptDb ECO-DB-PBA
signoffTimeDesign -reportOnly
setSignoffOptMode –loadEcoOptDb ECO-DB-PBA
signoffOptDesign -noEcoRoute -leakage

Note: In the above example, the -maxSlack option was set to 10 (DB timing unit) so that positive GBA slack paths are also getting
retimed in order to get more positive setup slack on those paths. That extra positive slack can then be used to perform more power
recovery.

September 2022 706 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/signoffOptDesign.html

Total Power Optimization
The signoffOptDesign command is able to perform Total Power optimization to reclaim total power in the design. This is done using
the -power parameter of the signoffOptDesign command. Using this parameter, the tool replaces the need to run the leakage and
dynamic power optimizations in consecutive steps. During total power optimization the engine concurrently minimizes leakage,
switching, and Internal power to achieve the lowest overall total power consumption.

During total power optimization, the report_power command needs to be run before ECO DB writing. The netlist activity can either
be computed using default toggling rate on the inputs or coming from an external VCD/SAIF file. In addition, the software performs
swapping and sizing on both the combinational and sequential cells, and also does buffer removal when enabled.

Example:

report_power

setSignoffOptMode -deleteInst true -optimizeSequentialCells true
signoffOptDesign -power

Note: To allow sequential elements to be resized during power optimization, ensure that there is no fixed attribute applied on them. If
you measure setup timing degradation after doing a power optimization, see section Setup Timing Recovery After a Large Leakage
or Total Power Optimization.

Setup Timing Recovery After a Large Leakage or Total Power
Optimization
It is quite common to get a large number of ECOs generated when doing power optimization. This means that thirty to eighty percent
of the netlist has been changed. Although the tool is doing an accurate timing estimation for each of the ECOs generated, it is not
able to guarantee a zero impact on setup timing. To recover the setup timing up to an initial value, a few ECOs having low or no
power cost might be needed. This setup timing recovery can be achieved by running a new signoff timing analysis and then calling
setup optimization with setSignoffOptMode -setupRecovery true. The recovery will be done with Vth swapping only, which means
that same size and same pin geometry cell sizing. Because of this there is no need to re-route the design and final timing can be
generated.

Getting the Best Total Power Optimization Recipe
To achieve the best QoR for total power optimization, ensure the following:

Timing analysis is performed in the PBA mode

Retiming in PBA mode is performed on positive GBA slack paths

The setSignoffOptMode -pbaEffort parameter is set to high

The list of usable cells is as large as possible and any fixed placement attribute on sequential elements is removed to allow
them to be sized

No sequential elements are fixed otherwise they will not be considered for resizing

While performing aggressive power optimization, a large number of netlist changes are generated and the timing histogram
shows a huge peak around the 0ns slack
Note : In this context, the software cannot completely avoid setup timing degradation and a light setup recovery based on Vth
cell swapping only helps to get back to the initial timing. The solution is to perform a setup timing recovery optimization after
generating fresh signoff timing post-power optimization.

September 2022 707 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/report_power.html

Template Script for Total Power Optimization in Innovus Cockpit

source postroute.enc
<set all signoff STA views>
<apply signoff STA settings/options/globals>
extractRC

setDistributeHost -lsf ...
setMultiCpuUsage -localCpu 16 -remoteHost 3 -cpuPerRemoteHost 8
setSignoffOptMode -preStaTcl preStaTcl.cl \
-retime path_slew_propagation \
-checktype both -pbaEffort high \
-maxSlack 10 -maxPaths 10000000 -nworst 50 \
-deleteInst true \
-saveEcoOptDb ECO-DB-PBA
signoffTimeDesign -reportOnly -outDir RPT-PBA-init
report_power

setSignoffOptMode -loadEcoOptDb ECO-DB-PBA
signoffOptDesign -noEcoRoute -power
ecoRoute

extractRC
setSignoffOptMode -maxSlack 0 -maxPaths 10000000 -nworst 50 \
-saveEcoOptDb ECO-DB-PBA2
signoffTimeDesign -reportOnly -outDir RPT-PBA-recovery
setSignoffOptMode -loadEcoOptDb ECO-DB-PBA2 -setupRecovery true
signoffOptDesign -noEcoRoute -setup
signoffTimeDesign -reportOnly -outDir RPT-PBA-recovery -noEcoDB

Path Group Support
Tempus ECO supports the following ways for path group-based fixing :

1. Endpoint-based inclusion/exclusion per view

2. Endpoint-specific slack adjustment per view (both positive and negative adjustments)

3. Option to fix only register to register paths

Path group support for Tempus ECO can be used for both Hold and Setup fixing.

Note: This feature is currently not supported for DRV or leakage optimization.

1. Endpoint-based inclusion/exclusion per view

You can specify endpoints that need to be included or excluded during optimization for a view with the following setSignoffOptMode
 parameters:

-selectHoldEndpoints

-selectSetupEndpoints

File format:

<View> include/exclude <Endpoints>

<View> can be specified as either viewName or V* (if the endpoints are to be included or excluded for all views)

<Endpoints> can be specified as a list of endpoint names separated by a space. For example, E1 E2 E3 slack range in nanosecond:
<minSlack> <maxSlack> where all endpoints with a slack greater than or equal to minSlack and slack less than or equal to maxSlack

September 2022 708 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/extractRC.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/setSignoffOptMode.html
../innovusTCR/signoffTimeDesign.html
../innovusTCR/report_power.html
../innovusTCR/ecoRoute.html
../innovusTCR/setSignoffOptMode.html

will be included or excluded. For example, -2.0 -1.0 E*, if all endpoints for the view need to be included or excluded.

Sample configuration files

The lines starting with # are comments and will be skipped.

File: hold_exclude_example

Exclude endpoints EXECUTE_INST/pc_acc_reg/SE and EXECUTE_INST/read_prog_reg/SE from view core+typ-rcMin for hold

fixing
core+typ-rcMin exclude EXECUTE_INST/pc_acc_reg/SE EXECUTE_INST/read_prog_reg/SE

File: hold_include_example_with_range

Include only the endpoints that have slacks >= -0.5 ns and <= 0.04 ns for view core+best-rcTyp for hold fixing
core+best-rcTyp include -0.5 0.04

2. Endpoint-specific slack adjustment per view

You can specify slack adjustment (margin) for selected endpoints during optimization for a view with the following
setSignoffOptMode parameters:

-specifyHoldEndpointsMargin

-specifySetupEndpointsMargin

File format:

<View> <Margin> <Endpoints>

<View> can be specified as either viewName or V* (if the endpoints are to be included or excluded for all views)

<Margin> is specified as float value in nanosecond. Margin value is subtracted from the endpoint slack so a positive margin means
that the endpoint slack would be degraded by the margin amount.

<Endpoints> can be specified as a list of endpoint names separated by a space. For example, E1 E2 E3 slack range in nanosecond:
<minSlack> <maxSlack> where all endpoints with a slack greater than or equal to minSlack and slack less than or equal to maxSlack
would be included or excluded. For example, -2.0 -1.0 E* if all endpoints for the view need to be included or excluded.

Sample configuration files

The lines starting with # are comments and would be skipped.

File : hold_margin_allViews_slackRange_example

Apply margin of 0.1 nanosecond to all endpoints that have slacks between -0.07 to -0.03 for all hold views
V* 0.1 -0.07 -0.03

File : hold_margin_allEndPoints_example

Apply margin of 0.2 nanosecond to all endpoints for hold view core+typ-rcMin
core+typ-rcMin 0.2 E*

File : hold_margin_selectedEndPoints_example

Apply margin of 0.6 ns to endpoints TDSP_CORE_MACH_INST/phi_6_reg/SE and TDSP_CORE_MACH_INST/phi_1_reg/SE for hold

view core+best-rcTyp
core+typ-rcMin 0.6 TDSP_CORE_MACH_INST/phi_6_reg/SE TDSP_CORE_MACH_INST/phi_1_reg/SE

3. Option to fix only register-to-register paths

You can choose to fix only register-to-register paths during Hold/Setup fixing with the parameter specified below. Other path group
configurations will be ignored in this mode. The timing for non-register-to-register paths for fixing mode (Hold or Setup) will be
adjusted to 0 but the timing for other mode (Setup during Hold fixing/Hold during Setup fixing) is not affected.

setSignoffOptMode -optimizeCoreOnly {true | false}

September 2022 709 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setSignoffOptMode.html
../innovusTCR/setSignoffOptMode.html

Sample Template Scripts

The following example shows graph-based analysis (GBA) signoff STA followed by Setup and Hold optimization:

source postRoute.enc

setMultiCpuUsage -localCpu 4 -remoteHost 3 -cpuPerRemoteHost 4

setSignoffOptMode -postStaTcl postStaTcl.tcl

signoffTimeDesign

signoffOptDesign -setup -noEcoRoute

signoffOptDesign –hold

The following example shows GBA signoff STA followed by Setup optimization that is based on TQuantus:

source postRoute.enc

setMultiCpuUsage -localCpu 4 -remoteHost 3 -cpuPerRemoteHost 4

setExtractRCMode -coupled true -engine postRoute -effortLevel medium

extractRC

setSignoffOptMode -preStaTcl preStaTcl.tcl

signoffTimeDesign -reportOnly

signoffOptDesign -setup -noEcoRoute

ecoRoute

extractRC

signoffTimeDesign –reportOnly -noEcoDb

The following example shows how to fix IR drop voltages for all instances in the design without creating any DRV violations.

signoffTimeDesign -reportOnly
setSignoffOptMode -fixIrDrop true
setSignoffOptMode -loadIrdropDb my_ir_db
setSignoffOptMode –fixMaxTran false –fixMaxCap false
signoffOptDesign -noEcoRoute -drv

The following example shows signoff STA followed by Hold optimization in PBA Setup and Hold mode:

source postRoute.enc

setMultiCpuUsage -localCpu 4 -remoteHost 3 -cpuPerRemoteHost 4

setSignoffOptMode -preStaTcl preStaTcl.tcl

setSignoffOptMode -retime aocv_path_slew_propagation -checkType both

signoffTimeDesign

signoffOptDesign –hold

Note: The preStaTcl.tcl script allows you to apply any signoff STA related settings or reset any of the set*mode commands.

The following example shows the AOCV PBA-based leakage optimization flow with positive PBA slack path retiming and high-
effort PBA mode:

source postroute.enc
<set all signoff STA views>
<apply signoff STA settings/options/globals >
extractRC
setDistributeHost -lsf …
setMultiCpuUsage -localCpu 16 -remoteHost 3 -cpuPerRemoteHost 8
setSignoffOptMode -preStaTcl preStaTcl.tcl \
 -retime aocv_path_slew_propagation \
 -checkType both -pbaEffort high \
 -max_slack 10 -max_paths 10000000 -nworst 50 \
 -saveEcoOptDb ECO-DB-PBA
signoffTimeDesign -reportOnly -outDir RPT_PBA_init
setSignoffOptMode -loadEcoOptDb ECO-DB-PBA

September 2022 710 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

signoffOptDesign -noEcoRoute -leakage
setSignoffOptMode -max_slack 0 -max_paths 10000000 -nworst 50 \
 -saveEcoOptDb ECO-DB-PBA2
signoffTimeDesign -reportOnly -outDir RPT_PBA_recovery
setSignoffOptMode -loadEcoOptDb ECO-DB-PBA2 -setupRecovery true
signoffOptDesign -noEcoRoute -setup
signoffTimeDesign -reportOnly -outDir RPT_PBA_recovery -noEcoDB

Top Down Block ECO flow using Tempus Signoff Timing
The Top Down Block ECO flow is used to optimize a block-level design while using ECO Timing database (DB) generated during
top-level full flat STA. The software fixes the timing violations for large-scale designs with faster turnaround time and consumes less
memory, as an ECO fixing session only loads the block-level data.

Using this flow, you can run timing analysis on a hierarchical design and find timing violations in one particular block. Instead of
running ECO at the full-chip level, you can generate ECO Timing DB for a specific block. Then, in a subsequent software session,
you can load data just for the identified block (including physical data) and then reuse the ECO Timing DB generated earlier and
rerun ECO fixing. Once the ECOs are implemented, you can rerun timing analysis on the hierarchical design and as a result, fewer
or no timing violations are reported, for the identified block.

The following diagram shows the steps in Top Down Block ECO flow:

Step 1: Design is assembled and final signoff timing constraints are applied.
Step 2: Timing is met except in the CPU block. At block level, CPU design does not include the latest timing signoff constraints.
Step 3: Load Verilog/DEF/Libs for CPU block only, and run ECO using ECO Timing DB generated at top level.
Step 4: Timing is met for all blocks.

The -blockScopeName parameter of the setSignoffOptMode command is used to automate the top-down block ECO flow. Using this
parameter, you can provide a module name or hierarchical instance name.

The following scripts are used for running top down block ECO flow:

Full-Chip Script:

<load hierarchical design>
<load parasitics>

setSignoffOptMode -blockScopeName “top/CPU”
setSignoffOptMode -saveEcoOptDb ECO-DB-CPU

Block-Level Script:

<load block level>
<load parasitics>

setSignoffOptMode -loadEcoOptDb ECO-DB-CPU

signoffOptDesign -setup

Notes:

At block level, you do not need to set this parameter as the tool automatically identifies the running of ECO fixing on an ECO

September 2022 711 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setSignoffOptMode.html

timing DB, which is generated in block scope context.

There is no need to assemble the physical data for the full-chip session.

You do not have to provide SDC at block level. All timing information extracted from top level is embedded in the ECO Timing
DB directory.

This flow does not support Master/Clone module, but you can select one clone by providing a hierarchical instance name and
then run the Top down Block ECO flow.

Metal ECO Flow
The Metal ECO flow, also known as Post-Mask flow supports the Gate Array filler cells. Using this flow, the timing closure engine
performs the netlist change without touching the base layer mask.

Before starting metal ECO, perform the following sanity checks:

All instances of the design must be placed (no unplaced instance allowed).

The initial design placement density must be 100%, that is no empty spaces left.

The list of Gate Array filler cells must contain enough granularity to ensure that any empty space created during metal ECO can
be filled back.

Do not specify cells through setTieHiLoMode if Tie cell insertion is not allowed.

The following command is used to run the metal ECO flow:

setSignoffOptMode -postMask true

The software performs the following netlist changes:

Inserts the Gate Array buffers or an inverter pair in place of existing Gate Array filler cells.

Resizes regular cells to Gate Array cells. It also resizes Gate Array cells to Gate Array cells.

Deletes a regular cell.

The software automatically identifies the Gate Array cells by checking which library instances have the same SITE name as the Gate
Array filler cells specified by the user. Here, empty spaces will be filled up by the Gate Array filler cells to ensure 100% placement
density.

By default, the -postMask parameter is set to false.

The following command lists all the Gate Array filler cells, which can be deleted or inserted back:

setSignoffOptMode -useGaFillerList list_of_Gate_Array_filler_cells_name

Note that this parameter is applicable in metal ECO mode only.

Note:

The Metal ECO flow is supported by DRV, Setup, and Hold fixing.

When setTieHiLoMode -cell {{tieLo_name tieHi_name}} setting is used, this flow will insert the TieLo cells to connect dangling
input pins, in case the existing TieLo cells in the floorplan are extremely far or too overloaded.

Example:

The following command enables Hold fixing in the metal ECO mode by allowing the listed Gate Array filler cells to be deleted or
inserted during the ECO process.

setSignoffOptMode –postMask true

setSignoffOptMode -useGaFillerList {GFILL1BWP GFILL2BWP GFILL4BWP GFILL10BWP}

signoffOptDesign -hold

September 2022 712 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setSignoffOptMode.html
../innovusTCR/setTieHiLoMode.html
../innovusTCR/signoffOptDesign.html

One Pass Logical Equivalence Check (LEC)
The one pass LEC flow lets you verify netlist changes during the place and route (PnR) flow for logical equivalence in a single step.
In this flow, you can do a Register Transfer Level (RTL) to netlist comparison between RTL and postRoute optimization (PRO) netlist
- any PnR stage netlist - in a single step.

One Pass LEC Flow
The one pass LEC flow is enabled by setting the following parameter to true.

setOptMode -opt_one_pass_lec

By default, this parameter is set to false.

The output is a mapping file that lists the initial netlist key points names and corresponding current netlist key points names. This is
generated using the following command:

write_name_mapping

Attribute Exchange between Genus and Innovus
For this flow, Genus and Innovus exchange optimization done in their respective tools.

This is done using attributes that are stored at various stages in various optimization steps. Multiple attributes are created in Innovus
for following optimization:

September 2022 713 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

../innovusTCR/setOptMode.html
../innovusTCR/write_name_mapping.html

Clock Gate Handling
Clock gate handling is available for the CGs already present in the RTL. There is no verification required for the CGs inserted during
the implementation.

The non-RTL CGs are skipped during mapping file generation.

Mapping depends on the value of the attribute, hdl_name on the CG. If the value is non-empty, it indicates that the corresponding CG
is present in the RTL. Only the CG pins with non-empty hdl_name will be mapped.

In case of merging of two CGs, the hdl_name attribute of the remaining CGs will be copied to the resulting CG.

Example:

Record of deleted CG pins
The deleted CGs (with non-empty hdl_name) are printed by using the seq_reason_deleted attribute.

dbGet designs .seq_reason_deleted

This attribute captures the name of the deleted CGs and prints the original name of the CG in the following format in the shell:

{{icg1} {HDLCG2 optimized}}

Example:

Name Mapping File
The initial netlist key points names and corresponding current netlist key points names are written/updated to a file. The mapping file
consists of pin mapping information of all changes done during flow (between the comparison points) including polarity changes.

September 2022 714 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

The following is used to write out name mapping file from Innovus.

write_name_mapping

Example

The following is an example of the usage of mapping command for 1 Pass LEC:

RTL2NETLIST:

write_name_mapping -hdl -map_pins output -pin_polarity true

NETLIST2NETLIST:

write_name_mapping -map_pins output -pin_polarity true

September 2022 715 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Timing

Using the NanoRoute Router
About NanoRoute Routing Technology

Routing Phases

Global Routing

Detailed Routing

NanoRoute Router in the Innovus Flow

Before You Begin

Checking Your LEF Files

Checking for Problems with Cells, Pins, and Vias

Adding Tracks

Specifying Routing Layers

Interrupting Routing

Using the routeDesign Supercommand

Results

Use Models

Running the NanoRoute Router with Innovus Menu Commands and Forms

Running the NanoRoute Router with Innovus Text Commands

Using NanoRoute Parameters

Using Attributes and Options Together

Accelerating Routing with Multi-Threading and Superthreading

When to Accelerate Routing

Superthreading Log File Excerpts

Following a Basic Routing Strategy

Using the Innovus Text Commands

Using the Innovus GUI

Checking Congestion

Using the Congestion Analysis Table

Using the Congestion Map

Resolving Open Nets

Log File Examples

Diagnosing Problems Using the check_tracks Command

Resolving Additional Open Net Problems

Running Timing-Driven Routing

Input Files

Using the CTE and the NanoRoute Router

September 2022 716 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Routing Clocks

Setting Attributes for Clock Nets

Routing Clock Nets Using the GUI Forms

Running Postroute Optimization

Preventing and Repairing Crosstalk Problems

Crosstalk Prevention Options

Running ECO Routing

ECO Limitations

ECO Flow

Evaluating Violations

DRC Marker Name Comparison Table

Violations on Upper Metal Layers

Violations in Timing-Driven Routing

Deleting Violated Nets

Using Additional Strategies to Repair Violations

Concurrent Routing and Multi-Cut Via Insertion

Postroute Via Optimization

Optimizing Vias in Selected Nets

Via Optimization Options

Performing Shielded Routing

Shielding Option

Performing Shielded Routing Using the GUI

Performing Shielded Routing Using Text Commands

Interpreting the Shielding Report

Routing Wide Wires

Using Non-Default Rules

Repairing Process Antenna Violations

Repairing Violations on Multiple-Pin Nets

Changing Layers

Using Diodes

Deleting and Rerouting Nets with Violations

Repairing Violations on Cut Layers

Process Antenna Options

Creating RC Model Data in TQuantus Model File

Use model for TQuantus Model File

Support for High Frequency Routing

September 2022 717 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Using the Third-party ECO Flow

Sample TCL Script

Setup Considerations

Troubleshooting

September 2022 718 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

About NanoRoute Routing Technology
The NanoRoute® router performs concurrent signal integrity, timing-driven, and manufacturing aware routing (SMART routing) of
cell, block, or mixed cell and block level designs. The router is optimized for routing designs with the following features:

More than 300K instances or nets and at least five routing layers

180 nanometer or smaller process technology

Signal integrity critical

Timing critical

Detailed-model (full-model) abstracts

Routing Phases
Full routing consists of global and detailed routing. You can repeat detailed routing incrementally on a routed database. Incremental
detailed routing is not the same as ECO routing. For information, see Global Routing and Detailed Routing.

ECO routing consists of incremental global and detailed routing passes on a routed design. During ECO routing, the router
completes partial routes and makes minimal changes to existing wire segments. For information, see Running ECO Routing.

Global Routing
During this phase, the router breaks the routing portion of the design into rectangles called global routing cells (gcells) and assigns
the signal nets to the gcells. The global router attempts to find the shortest path through the gcells, but does not make actual
connections or assign nets to specific tracks within the gcells. It tries to avoid assigning more nets to a gcell than the tracks can
accommodate. The detailed router uses the global routing paths as a routing plan.

The router can generate a map of the gcells, called a congestion map, that you can examine to see the approximate number of nets
assigned to the gcells. The congestion map uses colors to indicate whether there are too few, too many, or the correct number of nets
assigned to the gcells. If the router assigns too many nets to a gcell, it marks the gcell as over-congested. You can also read the
Congestion Analysis Table in the Innovus log file to learn the distribution and severity of the congestion after global routing.

Related Topics

For more information on gcells, see "GCell Grid" in the "DEF Syntax: chapter of the LEF/ DEF Language Reference.

For more information on the congestion map and table, see Checking Congestion.

Detailed Routing
During this phase, the NanoRoute router follows the global routing plan and lays down actual wires that connect the pins to their
corresponding nets. The detailed router creates shorts or spacing violations rather than leave unconnected nets. You can run
detailed routing on the entire design, a specified area of the design, or on selected nets. In addition, you can run incremental detailed
routing on a database that has already been detail routed. The router runs search-and-repair routing during detailed routing. During
search and repair, it locates shorts and spacing violations and reroutes the affected areas to eliminate as many of the violations as
possible. The primary goal of detailed routing is to complete all of the required interconnect without leaving shorts or spacing
violations.

During detailed routing, the router divides the chip into areas called switch boxes (SBoxes), which align with the gcell boundaries.
The SBoxes can be expressed in terms of gcells; for example, a 5x5 SBox is an SBox that encompasses 25 gcells. The SBoxes
overlap with each other and their size and amount of overlap might vary during search-and-repair iterations. The router also runs
postroute optimization as part of detailed routing. During postroute optimization, it runs more rigorous search and repair steps.
Detailed routing stops automatically if it cannot make further progress on routing the design. The routed data is saved as part of the
Innovus database.

September 2022 719 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

https://support.cadence.com/apex/techpubDocViewerPage?path=lefdefref/lefdefref5.8/lefdefrefTOC.html

NanoRoute Router in the Innovus Flow
The NanoRoute router is part of the block implementation and the top-level implementation stages of the Innovus flow. Run the
router early in the design flow to identify and fix routability problems or avoid them altogether. You can run the router in non-timing-
driven mode after the default parasitic extraction step to establish a baseline for future steps. If the design is congested or unroutable,
stop and resolve problems before continuing.

Before You Begin
The NanoRoute router reads designs directly from Innovus. Before running the router, ensure your design meeting the following
conditions:

It is fully placed and the placement is legal, without any overlaps. Use the checkPlace command to check for overlaps.

Power is routed. Use the sroute command to route power structures.

Checking Your LEF Files
You can avoid violations and save time if you ensure your LEF files are optimized for routing. Check the following statements and
edit the files with a text editor if necessary:

MINSIZE
The router does not support specifying MINSIZE without specifying AREA. MINSIZE allows a geometry that is smaller than AREA.

UNITS
The router does not support a value of 100 for DATABASE MICRONS in the UNITS statement. If the LEF technology file specifies
DATABASE MICRONS 100, run the following command before importing the design:
setImportMode -minDBUPerMicron 1000

MANUFACTURINGGRID
The router requires that you define the manufacturing grid.

MACRO
To improve pin access, ensure that all standard cell macros are defined as CLASS CORE.
You must use real shapes, not block-style abstracts, for the shapes on the layers where you expect the router to connect to pins
of standard cell macros.

VIA
The TOPOFSTACKONLY keyword is unnecessary if there are LEF LAYER AREA statements, because the router automatically derives
TOPOFSTACKONLY vias based on the AREA statements. If a default via satisfies the AREA statement, the router tags it internally as a
TOPOFSTACKONLY via.
If there is no AREA statement for a routing layer, the router looks for TOPOFSTACKONLY vias that go up to the next metal layer. If
TOPOFSTACKONLY vias exist, it derives the AREA rule from those vias--the smallest area of the bottom layer metal of all such vias
becomes the AREA rule. This feature provides backward compatibility with LEF files that do not have AREA rule support.

Related Topics

LEF Syntax chapter of the LEF/DEF Language Reference

Checking for Problems with Cells, Pins, and Vias
Make sure that all power and ground pins in the SPECIALNETS section of the DEF file are marked + USE POWER or + USE GROUND.

September 2022 720 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/checkPlace.html
../innovusTCR/sroute.html
../innovusTCR/setImportMode.html
../lefdefref/LEFSyntax.html

Overlapping cells: Overlapping cells make pins short each other and create violations on metal1. Check for overlaps by using
the checkPlace command.

Pins underneath power routes: Pins that are underneath power routes are inaccessible and cause violations on metal1 and
metal2. Check for pins underneath power routes by using the Auto Query feature.

Lack of rotated vias: Rotated vias help reduce design rule violations by making pins accessible. The router does not rotate vias
automatically and creates violations on metal1 when it cannot access the pins.

Adding Tracks
In the Innovus environment, the router generates tracks automatically, based on the routing pitch, layer width and spacing, and
minimum via widths. If you import a DEF file, run the add_tracks command prior to global routing to correct faulty track definitions
and tune the tracks to routing.

Related Topics

For information on importing DEF files, see the Import and Export Commands chapter in the Text Command Reference.

Specifying Routing Layers
By default, the router uses all possible routing layers for routing wires. In some situations, you might want to limit routing to a layer
range that does not include all routing layers. For example, you might want to reserve the top layers for power and ground stripes or
perform ECO routing on a few layers only. You can specify hard limits for routing all nets within a layer range or you can specify soft
limits to route specified nets within a layer range.

Specifying Hard Layer Limits

When you specify hard layer limits, the router routes all nets within those limits. If there is a pin outside the limits you specify, the
router uses vias, including stacked vias, to access the pin.

Use the following setDesignMode parameters to specify hard layer limits:

-bottomRoutingLayer

-topRoutingLayer

At times it might not be possible to route the nets within the limits without creating violations. For example, assume two pins, pin_a is
on metal8 and pin_b is on metal7. The pins overlap in the X and Y direction. If you specify that the top routing layer is metal6 , the
router connects to pin_a by using stacked vias, creating a short with pin_b.

Specifying Soft Layer Limits

When you specify soft layer limits, the router attempts to route specific nets within a layer range, but might route some nets outside
the layer range if necessary to complete routing without creating violations. In addition, you can specify the effort level for staying
within the range. You can also route specific nets within the layer range and others outside the layer range. For example, you can
route critical nets within a narrower layer range than you route the rest of the nets in order to improve timing.

Use the following setAttribute parameters to specify soft layer limits and set the effort level toward honoring the limits:

-bottom_preferred_routing_layer

-top_preferred_routing_layer

-preferred_routing_layer_effort

September 2022 721 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/checkPlace.html
../innovusTCR/add_tracks.html
../innovusTCR/Import_and_Export_Commands.html
../innovusTCR/setDesignMode.html
../innovusTCR/setAttribute.html

Interrupting Routing
To interrupt routing, press Ctrl+C. The routeDesign or globalDetailRoute command continues to run until the database is in a state
where the command can stop safely. When the software stops, it presents the Interrupt menu.

Warning: When you interrupt routing with Ctrl+C, the database will be in a state that is useful for debugging purposes only, and not
one that you should save and continue to use in the design flow.

Related Topics

For information on the Interrupt menu, see "Interrupting the Software" in the Getting Started chapter.

Using the routeDesign Supercommand
The recommended Cadence design flows use the routeDesign command to run global and detailed routing and to optimize vias and
wirelength after routing. The routeDesign command honors the setNanoRouteMode and setAttribute settings and has the following
advantages over using the globalRoute and detailRoute or globalDetailRoute commands:

It runs SMART routing by default; that is, it runs in both timing- and signal integrity-driven mode by default. The other routing
commands are not timing- or signal-integrity driven by default, but you can use the following setNanoRouteMode parameters to
turn on timing- and signal-integrity-driven routing for those commands:

-route_with_timing_driven true

-route_with_si_driven true

It changes the status of clock nets from FIXED to ROUTED so it can modify them during routing and routes them before routing
other nets. Once the status of the clock nets is set to ROUTED, it does not change it back to FIXED.

To keep clock nets' status FIXED, run the following command before running routeDesign:
setNanoRouteMode -route_fix_clock_nets true

To stop the router from routing clock nets first, run the following command before running routeDesign:
setNanoRouteMode -route_route_clock_nets_first false

It runs a placement check prior to routing to ensure that the placement is clean. To turn off the placement check, specify
the routeDesign -noPlacementCheck parameter.

It checks for conflicts in setNanoRouteMode settings and issues warning messages when it detects problems. In some cases, it
resets a mode in order to continue processing. For example, trying to fix postroute lithography problems and optimize vias
concurrently can cause conflicts. If routeDesign detects requests for both types of operation, it issues a warning, turns off via
optimization, and proceeds with fixing lithography problems.

It has parameters that simplify via and wire optimization after routing. In addition, some setNanoRouteMode parameters work with
routeDesign, but not with other routing commands.

The routeDesign options for via and wire optimization are -viaOpt and -wireOpt.

The setNanoRouteMode parameters that work only with routeDesign are -route_fix_clock_nets and -
route_route_clock_nets_first.

Related Topics

For more information, see the following commands in the Route Commands and Global Variables chapter of the Text Command
Reference.

detailRoute

globalDetailRoute

September 2022 722 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/routeDesign.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/setAttribute.html
../innovusTCR/globalRoute.html
../innovusTCR/detailRoute.html
../innovusTCR/globalDetailRoute.html
../innovusTCR/Route_Commands.html
../innovusTCR/detailRoute.html
../innovusTCR/globalDetailRoute.html

routeDesign

globalRoute

setAttribute

setNanoRouteMode

Results
The NanoRoute router outputs can include the following (depending on the run-time options you set):

Section in the Innovus log file

Routed DEF file

GDSII file

SDF or SPEF file

The following reports:

Routing statistics.

For information, see the reportRoute command.

Routing connectivity. For information, see the verifyConnectivity command.

Wire statistics, including wirelength. For information, see the reportWire command.

Shielding statistics

Timing analysis

Capacitance. For information, see RC Extraction.

Design rule checking (DRC) and layout versus schematic (LVS)

Process antenna violations.

Signal integrity. For information on signal integrity reports, see Analyzing and Repairing Crosstalk.

Note: The number of nets that were not routed due to the existence of mixed signal constraints are reported in the log file by the
NanoRoute Router.

Use Models

Running the NanoRoute Router with Innovus Menu Commands and Forms
Use the NanoRoute GUI forms to route the design and specify the following:

Net attributes

Most commonly used run-time options

Routing type (global, detailed, or both)

Congestion map style and options

September 2022 723 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/routeDesign.html
../innovusTCR/globalRoute.html
../innovusTCR/setAttribute.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/reportRoute.html
../innovusTCR/verifyConnectivity.html
../innovusTCR/reportWire.html

Use the following forms to route the design.

Mode Setup - NanoRoute
Use this form to specify the run-time options and the global parameters for the NanoRoute router.

Route Attributes
Use this form to specify attributes for nets.

NanoRoute
Use this form to set routing options.

Set Congestion Map Style - NanoRoute
Use this form to customize the congestion map.

For information on route GUI, see the Route Menu chapter, in the Menu Reference.

Use the following forms to route the design.

Route Attributes
Use this form to specify attributes for nets.

NanoRoute
Use this form to set routing options.

Set Congestion Map Style - NanoRoute
Use this form to customize the congestion map.

For information on route GUI, see the Route Menu chapter, in the Menu Reference.

Running the NanoRoute Router with Innovus Text Commands
Use the following commands to set NanoRoute attributes and options, generate tracks, and vias that are optimized for the router,
route the design, and optimize vias and wirelength after routing. The text commands include some NanoRoute options that are not
included on the forms.

add_tracks

Generates optimized tracks for the router (only necessary if you import a non-native DEF file).

getAttribute and setAttribute
Display and set net attributes.

getNanoRouteMode and setNanoRouteMode
Display and set run-time options for the router.

globalRoute, detailRoute, ecoRoute, globalDetailRoute, and routeDesign
Route the design.
Note: The recommended design flows use routeDesign command. For more information, see Using the routeDesign
Supercommand.

Using NanoRoute Parameters
The NanoRoute router has two kinds of parameters: attributes and options.

Attributes assign characteristics to nets.
For example, use attributes to specify nets that have the following attributes: they are routed on certain layers, they are
protected by extra spacing, and signal integrity violations that affect them are repaired after routing.

Options determine run-time operations.

September 2022 724 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusMR/Tools_Menu.html#ToolsMenu-ModeSetup-NanoRoute
../innovusMR/Route_Menu.html#RouteMenu-NanoRouteAttributes
../innovusMR/Route_Menu.html#RouteMenu-NanoRouteRoute
../innovusMR/Route_Menu.html#RouteMenu-NRSetCongestionMapStyle
../innovusMR/Route_Menu.html
../MRcom/Route_Menu.html#RouteMenu-NanoRouteAttributesSpecifyAttribute
../MRcom/Route_Menu.html#RouteMenu-NanoRouteRoute
../MRcom/Route_Menu.html#RouteMenu-NRSetCongestionMapStyle
../MRcom/Route_Menu.html
../innovusTCR/add_tracks.html
../innovusTCR/getAttribute.html
../innovusTCR/setAttribute.html
../innovusTCR/getNanoRouteMode.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/globalRoute.html
../innovusTCR/detailRoute.html
../innovusTCR/ecoRoute.html
../innovusTCR/globalDetailRoute.html
../innovusTCR/routeDesign.html
https://dsmpubs/icd_pubs_website/encounter/past_releases/12.0/soceUG/Using_the_NanoRoute_Router.html#UsingtheNanoRouteRouter-UsingtherouteDesignSupercommand

For example, use options to perform the following run-time operations: run global or detailed routing, route selected nets only,
repair antenna or design-rule violations, run timing driven or signal integrity driven routing, and specify the number of
processors to use.

The following table lists attribute and option characteristics:

Using Attributes and Options Together
You can use attributes and options together. For example, to run global and detailed routing and repair signal integrity violations on
a specified net during postroute optimization, set setAttribute -si_post_route_fix to true for the net and route the design with the
-route_with_si_driven option set to true.

Using text commands, issue the following commands:

setAttribute -net net1 -si_post_route_fix true

setNanoRouteMode -route_with_si_driven true

globalDetailRoute

Using the GUI, make the following selections:

On Route Attributes form,

a. Type the name of the net in the Net Name(s) text box.

b. Select TRUE for SI Post Route Fix.

Characteristic Attributes Options

Application Apply locally to a net object Apply globally to a process or
command

Specification Route Attributes form

setAttribute command

Some attributes can only be
specified by setAttribute.

NanoRoute form

setNanoRouteMode command

Some options can only be
specified by
setNanoRouteMode.

Persistence Saved with the database.
When you set an attribute and
save the database and exit, the
attribute setting is saved. If you
reload the database, the object
retains the attribute setting.

Saved with the database.
When you set an option, save
the database and exit, the option
setting is saved. If you reload
the database, the router retains
the option value.

Format -attribute_name

Example:
-avoid_detour

Case sensitive (all lower case)

Mandatory underscores
separate words

-option_name

Example:
-route_detail_auto_stop

Case sensitive (all lower
case)

Mandatory underscores
separate words

See settings
for this run …

Use the getAttribute command Use the
getNanoRouteMode command

September 2022 725 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/setAttribute.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/getAttribute.html#getAttribute-getAttribute
../innovusTCR/getNanoRouteMode.html#getNanoRouteMode-getNanoRouteMode

On the NanoRoute form,

a. Select both Global Route and Detail Route.

b. Select SI Driven and then Post Route SI.

Accelerating Routing with Multi-Threading and Superthreading
Innovus products accelerate routing by using more than one processor in the same machine and by distributing routing to multiple
machines. The NanoRoute router can use more than one processor in the same machine. This is called multi-threading. The
NanoRoute detail router accelerates routing even more by distributing detailed routing across the network to multiple machines. This
capability combines multi-threading with distributed processing, and is called Superthreading. When used with a gigabit Ethernet
connection, Superthreading makes data communication time negligible.

Superthreading has the following features:

Uses available Innovus licenses. No special licenses are necessary.

Platform independent.

Different operating systems - including Solaris, Linux, and HP-UX - can be used in the same job.

Different hardware - including Sun, IBM, and HP - can be used in the same job.

64-bit and 32-bit versions of the NanoRoute router can be used in the same job. For example, you can start a large job on
a 64-bit server and run the job on smaller 32-bit clients.

Can run using the rsh command, and with LSF, Sun Grid, or SSH configurations.

The RSH and SSH method tie multi-threaded jobs together.

The LSF and Sun Grid methods tie single jobs together.

Related Topics

Accelerating the Design Process By Using Multiple-CPU Processing chapter in the User Guide

Multiple-CPU Processing Commands chapter in the Text Command Reference

Set Multiple CPU Usage form in the Tools Menu chapter, in the Menu Reference.

When to Accelerate Routing
Not all designs or network topologies can take advantage of accelerated routing. Consider the following issues, and use single
threading, multi-threading, or Superthreading when appropriate:

Small (10k), simple designs or designs that do not have a lot of violations
Small jobs or designs that are easily routed probably do not need multiple CPUs or machines.

Slow networks
The speed (10 Mb, 100 Mb, or 1,000 Mb) and type (LAN or WAN) of the network affect Superthreading speed.

Loaded networks
Sharing CPU cycles with other processes increases Superthreading run time.

Full or pending LSF queues or queues configured for one job
A queue that is set up to run only one job decreases efficiency.

September 2022 726 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/Multiple-CPU_Processing_Commands.html
../innovusMR/Tools_Menu.html

Usage Notes

If you use the rsh command for Superthreading, you must be able to run the remote shell from the server machine to the client
machines without a password prompt.

The NanoRoute software must be accessible to the server and client machines.

Client machines must be able to access the same version of the NanoRoute software.

Start your routing job on the fastest multi-threaded machine available.

Include the host machine as a client, otherwise it will be a server only and will not perform any routing jobs.

If any CPUs crash, your job will not complete. If there is a crash, most likely it will happen during the client routing stage, and
the server will continue to run. The database on the server will be maintained in the state it had prior to the crash. Check the
messages in the log file to determine the problem and zoom into the area of the crash to see a graphical representation of the
cause of the failure. After you fix the problem, you can continue routing from the crash point.

If your job includes both Sun and Linux clients, include a different path to each executable in the command script.

You can run a job that uses both a Sun queue and a Linux queue.

Superthreading Log File Excerpts
The following excerpts from a log file show progress during Superthreading. The software uses the following definitions to calculate
the time:

client CPU time is the CPU time on clients only.

cpu time is the server CPU time plus the client CPU time

elapsed time is the complete run time (the total elapsed time).

The first file fragment shows that the job is running with RSH, with two threads on the same host. The NanoRoute router pauses as
the data on the server is synchronized.

#server my_machine is up on port 123456 waiting for connection

 # client 2thread 1 from host machine_1
 # client 2thread 2 from host host_machine_1
 # Sync client 2 data ...
 # cpu time = 00:00:03, elapsed time = 00:04:18, memory = 561.87 (Mb)

The second fragment shows that only 86 percent of the client CPU time is being used. Another process (in addition to the route job)
is using CPU resources.

 # client 3thread 1 from host machine_2
 # client 3thread 2 from host machine_2
 # Sync client 3 data ...
 # cpu time = 00:00:03, elapsed time = 00:04:31, memory = 561.87 (Mb)
 #

 # Start Detail Routing.
 # Start initial detail routing ...
 # completing 10% with 0 violations
 ...
 # completing 90% with 14 violations
 # elapsed time = 00:12:29, memory = 606.02 (Mb)
 # completing 100% with 10 violations
 # elapsed time = 00:12:53, memory = 567.24 (Mb)
 # number of violations = 0

September 2022 727 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

 # client cpu time = 00:03:12, memory 562.70 (Mb), util = 86%
#cpu time = 00:01:21, elapsed time = 00:123:54, memory = 566.24 (Mb)
. ...

The third fragment shows that the job took less elapsed time than cpu time. The elapsed time is less than the cpu time because
two clients are being used to route one job.

#Total number of violations on LAYER Metal8 = 4
#Total number of violations on LAYER Metal9 = 1
#Total number of violations on LAYER Metal10 = 0
#Client cpu time = 17:38:54
#Client peak memory = 795.22 (Mb)
#Cpu time = 19:18:40
#Elapsed time = 10:15:51

The final fragment shows the time the job completed.

#Increased memory = 92.98 (Mb)
#Total memory = 628.17 (Mb)
#Peak memory = 1019.30 (Mb)
#Complete global_detail_route on Fri Apr 16 10:14:33 2004

Following a Basic Routing Strategy
In general, the first time you route a design, you should be able to accept the default values on the NanoRoute GUI form. You can
look at the Innovus log file to see the processes that the NanoRoute router runs and the problems it encounters. Then you can adjust
the net attributes or run-time options to improve your results. The strategy presented in this section shows how you can break the
routing processes into steps, so you can analyze and solve problems easily. After each step, check for data problems and
congestion and make repairs. Repeat the step and repair remaining violations. Continue this process until the design is free of
violations before going to the next step.

September 2022 728 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Using the Innovus Text Commands
The following commands show the basic routing strategy using the Innovus text commands.

1. The router globally routes the design:
globalRoute

2. The router does the initial detailed routing (iteration 0 does not include a search-and-repair step), and saves the design as
droute0:
setNanoRouteMode -route_detail_end_iteration 0
detailRoute

saveDesign droute0

3. The router does the first search-and-repair iteration and saves the design for analysis:
setNanoRouteMode -route_detail_end_iteration 1
detailRoute
saveDesign droute1

4. The router does the second to nineteenth search-and-repair iterations and saves the design for analysis. The switch box grows
larger as the iteration number increases.
setNanoRouteMode -route_detail_end_iteration 19
detailRoute
saveDesign droute19

5. The router runs postroute optimization (route_detail_end_iteration default) and additional search-and-repair operations
and saves the design as droute:
setNanoRouteMode -route_detail_end_iteration default
detailRoute
saveDesign droute

Using the Innovus GUI
The following section describes the basic routing strategy using the GUI.

Run Global Routing

1. Choose Route - NanoRoute - Route.

2. Select Global Route on the NanoRoute form.

3. Click OK .

4. Save as groute.

5. Check the congestion map.

If you see congested areas after global routing, your design cannot be routed.

September 2022 729 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Run Initial Detailed Routing

1. Choose Route - NanoRoute - Route .

2. Set the following options on the NanoRoute form:

Detail Route

Start Iteration 0

End Iteration 0
The router builds the initial detailed routing database, but does not do any search and repair during this step.

3. Click OK .

4. Save the design as droute0.

5. Check the violations in the log file.

If you have many violations on metal1 and metal2, you probably have pin-access problems, incorrect track settings, or overlapped
cells. Check your LEF file and correct any problems.
See the "Evaluating Violations" section for an excerpt of a log file from a design with many violations on metal1 and metal2.
For information on the LEF file, see the LEF/DEF Language Reference.

Run Search and Repair

Break search and repair into two phases. Check congestion after each phase and repair violations.

To run the first phase of search and repair, complete the following steps:

1. Choose Route - NanoRoute - Route .

2. Set the following options on the NanoRoute form:

Detail Route

Start Iteration 1

End Iteration 1
During this phase, the router makes local changes to the database. It does not do detailed or global routing.

3. Click OK .

4. Save the design as droute1.

5. Check the violations in the log file and graphically.

To run the second search-and-repair phase, complete the following steps:

1. Choose Route - NanoRoute - Route .

2. Set the following options on the NanoRoute form:

Detail Route

Start Iteration 2

End Iteration 19
In this phase, the router makes additional search-and-repair passes. It reroutes nets with violations within a local area (a
switch box). In each successive pass, the size of the switch box size increases, so the router can make the repairs over
larger areas.

3. Click OK .

September 2022 730 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../lefdefref/lefdefrefTOC.html

4. Save the design as droute19.

5. Check congestion.

If you still have many violations (more than 1,000) or an unbalanced distribution of violations, you might still have a problem with the
data or a congested design.

For help resolving the violations, see the "Evaluating Violations" section.

Checking Congestion
Check congestion in your design after global routing by using the Congestion Analysis Table in the Innovus log file and the
congestion map in the Innovus main window.

Using the Congestion Analysis Table
The congestion analysis table shows the distribution and severity of congestion in global routing cells (gcells) on each routing layer.

Note: For information on global routing and on gcells, see Global Routing.

Following is an example of a Congestion Analysis table:

Congestion Analysis:
 OverCon OverCon OverCon OverCon
 #Gcell #Gcell #Gcell #Gcell %Gcell
Layer (1-2) (3-4) (5-6) (7-12) OverCon

Metal 1 22(0.01%) 10(0.00%) 0(0.00%) 0(0.00%) (0.01%)
Metal 2 5531(2.39%) 1680(0.73%) 370(0.16%) 123(0.05%) (3.33%)
Metal 3 4114(1.78%) 19(0.01%) 0(0.00%) 0(0.00%) (1.79%)
Metal 4 1333(0.58%) 137(0.06%) 0(0.00%) 0(0.00%) (0.64%)
Metal 5 5852(2.53%) 4(0.00%) 0(0.00%) 0(0.00%) (2.53%)
Metal 6 27(0.01%) 0(0.00%) 0(0.00%) 0(0.00%) (0.01%)

 Total 16879(1.22%) 1850(0.13%) 370(0.03%) 123(0.01%) (1.39%)

#Max overcon = 12 tracks.
#Total overcon = 1.39%
#Worst layer Gcell overcon rate = 2.53%

The first column, Layer, lists the metal layers that have over-congested gcells. The NanoRoute router marks a gcells as over-
congested if the global router has assigned more nets to the gcell than the gcell has available tracks.

The second through fifth columns, labeled OverCon #Gcell, list the number and percentage of gcells on each layer that are
over-congested.

The numbers in parentheses after OverCon #Gcell indicate how many additional tracks within the gcell are needed to
accommodate the global routing assignments. For example, OverCon #Gcell (1 - 2) means that one or two additional tracks
are needed to accommodate all the nets that the global router has assigned the gcells listed in the column. As you move from
left to right in the table, congestion increases because the difference between the number of nets assigned to the gcell by the
global router and number of available tracks within the gcell increases.

The number of columns in the table is determined by the number of additional tracks needed by the gcells with the worst
congestion. For example, if the most over-congested gcells need only four additional tracks, the table would include columns
for 1-2 and 3-4 tracks, but not for 5-6 or more tracks.

September 2022 731 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

https://dsmpubs/icd_pubs_website/encounter/past_releases/12.0/soceUG/Using_the_NanoRoute_Router.html#UsingtheNanoRouteRouter-GlobalRoutingGlobalRouting10183965GlobalRouting

The NanoRoute router creates only one column for gcells that need seven or more additional tracks. In the example, all gcells
that need seven to 12 additional tracks are listed in the column labelled OverCon #Gcell (7 - 12).

The NanoRoute router displays the maximum number of tracks needed in the last OverCon #Gcell column. In the example, the
maximum number of tracks needed is 12. If some gcells needed 14 more tracks, the column would be labelled OverCon #Gcell
(7-14). If the maximum number of tracks needed were only eight, the column would be labelled OverCon #Gcell (7-8).
Within each column, the table does not indicate exactly how many additional tracks are needed. For example, in the column
labelled OverCon #Gcell (7-12), The NanoRoute router does not distinguish between gcells that need seven, eight, nine, ten,
11, or 12 additional tracks.

The last column, %Gcell OverCon, lists the percentage of all gcells on the layer that are over-congested. In the example, on
layer Metal 1, only 0.01% of the gcells are over-congested.

The last row of the table, Total, lists the total number and percentage of over-congested gcells in each column. In the example,
1,850 gcells in the design, or 0.13% of all gcells, need three or four more tracks.

The last row of the last column displays the overall percentage of over-congested gcells in the design. In the example, 1.39% of
all cells are over-congested.

Following the table NanoRoute summarizes a few key values. The maximum number of tracks any Gcell needed, the total over
congestion number for all layers, and the worst layers Gcell congestion rate.

The worst layer Gcell overcon rate is intended to report the routing congestion so the pin access layer or the layer below the
pin access layer is not reported even if it is higher.

Interpreting the Table

Read the table horizontally to see the distribution and percentage of gcells on each layer that have a greater demand for tracks
than they have supply of tracks.

Read the table vertically to see which layers have the most over-congested gcells and how severe the congestion is.

The table does not show how closely the over-congested gcells are clustered. Look at the congestion map in the GUI to see
clusters of congestion and their exact location.

There is no specific number that determines whether the design is routable. In general, the more columns, and the more the
percentages increase toward the right side of the table, the worse the congestion.

Using the Congestion Map
Check obstructions and congestion in your design graphically by analyzing a congestion map. The information in the map is directly
extracted from the router after you run global routing. You choose the layers to display on the map. The Innovus software displays the
congestion map in the main window when you complete the following steps:

1. Globally route the design.

2. Select Physical view in the Views area of the Innovus main window.

3. Click the All Colors button. This displays Color Preferences form.

4. Select the View Only tab.

5. Make Congestion viewable.

6. Select both Horizontal Congest and Vertical Congest.

For more information on selecting the objects and colors, see the The Main Window chapter in the Innovus Menu Reference.

September 2022 732 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusMR/The_Main_Window.html

Interpreting the Congestion Map

In the map, blue or black indicate an acceptable level of congestion; white indicates an unacceptable level. However, this depends
on your design. For example, a design that is mostly uncongested might have small areas (often called hot spots) that are highly
congested. You must look at the overall congestion graphically to assess routability.

The following table explains the meaning of the default colors in the congestion map:

In the congestion map shown below, there is a congested area (a hot spot) in the lower left quadrant.

In the congestion map shown below, the design is not congested.

Color Explanation

Black No congestion: You have at least two tracks that are under-used.

Blue No congestion: You probably have one track that is under-used.

Green No congestion: All the tracks are used.

Yellow Low congestion: You probably have one track that is over-used.

Red Some congestion: You probably have two tracks that are over-used.

Magenta Moderate congestion: You probably have three tracks that are over-used.

White High congestion: You probably have at least four tracks that are over-used.

September 2022 733 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Resolving Open Nets
If the router cannot complete the connection of a net during routing, it generates an open net warning message in the Innovus log file
and sets the net status to open. Additionally, the log file provides a list of open nets in summary format.

During detailed routing, problems with pin modelling, routing track definitions, floorplanning, or conflicts between
setNanoRouteMode option settings can cause open nets.

During global routing, missing power or ground routing can cause open nets.

To resolve open net problems, complete the following steps:

1. Run check_tracks to diagnose a subset of open net problems in standard cells. This command generates a report in the
Innovus log file. Use the report to determine the specific cause of the open net. For more information, see Diagnosing Problems
Using the check_tracks Command.

2. Determine the cause of the remaining problems – mostly those caused by option conflicts or libraries – by manual analysis. For
more information, see Resolving Additional Open Net Problems.

3. Resolve the problems.

4. Re-run global and detailed routing.

Log File Examples
The following examples show sections of an Innovus log file that includes five open net warning messages generated during
detailed routing:

#Start Detail Routing.

September 2022 734 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

#start initial detail routing ...
#WARNING (NR) Fail to route NET example56/cp_aclk_2 in region (302.295 272.894 331.695 306.495) Set net status to

open.
#WARNING (NR) Fail to route NET example56/cp_aclk_3 in region (302.295 272.894 331.695 306.495) Set net status to

open.
...

#start 1st optimization iteration ...
#WARNING (NR) Fail to route NET example12/cp_bclk_5 in region (402.295 372.894 431.695 406.495) Set net status to

open.
#WARNING (NR) Fail to route NET example12/cp_bclk_6 in region (402.295 372.894 431.695 406.495) Set net status to

open.
...

#start 2nd optimization iteration ...
#WARNING (NR) Fail to route NET example99/cp_cclk_8 in region (502.295 472.894 531.695 506.495) Set net status to

open.
...

The following section of the same log file includes the open net summary:

number of violations = 0
#cpu time = 00:00:01, elapsed time = 00:00:01, memory = 51.15 (Mb)
#Complete Detail Routing.
#WARNING (NR) There are 5 open nets.

#Please refer to Innovus User Guide for details of open net messages and possible root causes.
#After resolving it, please re-run globalDetailRoute command.
#List of open nets :

example56/cp_aclk_2

example56/cp_aclk_3
example12/cp_bclk_5

example12/cp_bclk_6

example99/cp_cclk_8

#Total wire length = 340827 um.
#Total half perimeter of net bounding box = 298122 um.

Diagnosing Problems Using the check_tracks Command
The L_check_tracksS_check_tracks command reports the following types of problems in the Innovus log file:

Pins that are too far inside a blockage

Pins that are not aligned with routing tracks – Align pins with routing tracks to assure the maximum number of pickup points.

Pins that are above or underneath power stripes on the adjacent metal layer – The router might not able to access a pin if it is
blocked by a power stripe.

For more information, see Macro Obstruction Statement syntax and the accompanying figures in the LEF Syntax section of LEF/DEF
Language Reference.

September 2022 735 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/check_tracks.html
../TCRcom/check_tracks.html
../lefdefref/LEFSyntax.html

Resolving Additional Open Net Problems
If the router generates an open net message after you correct the problems reported by the check_tracks command, or if the
check_tracks command does not report any problems, check for the following additional problems:

Pin modelling or library problems

Pins without physical geometry

Pins that are less than the minimum width

Minimum-width pins that are placed off the manufacturing grid

Pins that are blocked for planar access, and are not accessible through a via without violating the adjacent-cut rule

Pins that trigger multiple-cut vias, but no multiple-cut vias are specified in the LEF file

Floorplanning problems

Cell overlaps introduced during placement
Use the checkPlace command to check for cell overlaps.

Problems caused by the setNanoRouteMode command settings or conflicts between parameter settings and library
specifications

No via access in pin but setNanoRouteMode -route_with_via_only_for_stdcell_pin true is specified

No via access in pin but setDesignMode -bottomRoutingLayer is too high or setDesignMode -topRoutingLayer is too low
for the router to connect without using a via

Via stacking is not allowed but setDesignMode -bottomRoutingLayer is higher than the pin layer (or setDesignMode -
topRoutingLayer is lower than the pin layer) so via stacking is required to reach the pin

Problems caused by missing power or ground routing

Missing special routes for stripes or followpins to connect tie-high or tie-low nets causes open power or ground nets
during global routing.
The global router issues open net warning messages such as the following:
#WARNING (NR) There is no prerouted stripe wire within routing layer range 1:9 for special net VSS.
#WARNING (NR) Please reroute special net wires before running NR.

If the router generates an open net message after you correct the problems reported by the check_tracks command, or if
the check_tracks command does not report any problems, check for the following additional problems:

Pin modelling or library problems

Pins without physical geometry

Pins that are less than the minimum width

Minimum-width pins that are placed off the manufacturing grid

Pins that are blocked for planar access, and are not accessible through a via without violating the adjacent-cut rule

Pins that trigger multiple-cut vias, but no multiple-cut vias are specified in the LEF file

Floorplanning problems

Cell overlaps introduced during placement
Use the check_place command to check for cell overlaps.

Problems caused by the routing attribute settings or conflicts between attribute settings and library specifications:

No via access in pin but route_with_via_only_for_stdcell_pin true is specified

September 2022 736 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/check_tracks.html
../innovusTCR/checkPlace.html
../innovusTCR/setDesignMode.html
../innovusTCR/setDesignMode.html
../innovusTCR/setDesignMode.html
../innovusTCR/setDesignMode.html
../TCRcom/check_tracks.html
../TCRcom/check_place.html

No via access in pin but design_bottom_routing_layer is too high or design_top_routing_layer is too low for the router
to connect without using a via

Via stacking is not allowed but design_bottom_routing_layer is higher than the pin layer (or design_top_routing_layer
is lower than the pin layer) so via stacking is required to reach the pin

Problems caused by missing power or ground routing

Missing special routes for stripes or followpins to connect tie-high or tie-low nets causes open power or ground nets
during global routing.
The global router issues open net warning messages such as the following:
#WARNING (NR) There is no prerouted stripe wire within routing layer range 1:9 for special net VSS.
#WARNING (NR) Please reroute special net wires before running NR.

Running Timing-Driven Routing
In the Innovus environment, during timing-driven routing, the router uses the Common Timing Engine (CTE) by default. All the
related tasks (route estimation for the timing graph, capacitance extraction, timing analysis, timing graph generation) are executed
within the Innovus environment. Timing-driven routing might cause longer run time and more violations than non timing-driven
routing. For information, see Violations in Timing-Driven Routing.

Input Files
To run timing-driven routing you need the following files:

Physical libraries in LEF

Timing library in .lib format

Timing constraints in .sdc format or a timing graph

Extended capacitance table generated by the Innovus software

Netlist in DEF or Verilog format

Placed design in DEF

Using the CTE and the NanoRoute Router

setNanoRouteMode -route_with_timing_driven true
globalDetailRoute

Figure 1: Flow for Routing - NanoRoute in Native Mode

September 2022 737 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Routing Clocks
Route clock nets before routing the rest of the signal nets. If you are using the routeDesign super command, the NanoRoute router
changes the status of clock nets from FIXED to ROUTED so they can be moved and routes them before routing other nets.

This section gives additional information on you can use to route clocks manually.

Layer assignments for clock nets might not correlate in global and detailed routing. For tight control over clock timing, run global and
detailed routing on clock nets before routing other nets. Fix the locations of the nets during detailed routing and unfix them during
postroute optimization. Use net weights to ensure priority during search and repair.

Setting Attributes for Clock Nets
If clock nets are marked USE CLOCK in the DEF file or you have defined a clock net in the Innovus database, the router automatically
sets the following values. You can change the values by setting attributes on the NanoRoute Attributes form. If the clock nets are not
defined, type the name of a clock net in the Net Name(s) text box to set attributes for the net.

Weight

The default net weight for clock nets is 10 to give clock nets priority during global routing (the default net weight for other nets is
2). During global routing, the router goes from global routing cell to global routing cell within each switch box, and routes the
nets with the highest weight first.

Bottom Layer
The default bottom layer for routing clock nets is 3, to ensure that the router has access to metal1 pins during routing. This
attribute sets a soft limit, and the router might route some nets on lower layers, if necessary to complete the routing.

Top Layer

The default top layer for routing clock nets is 4. This attribute sets a soft limit, and the router might route some nets on upper
layers, if necessary to complete the routing.

Avoid Detour
Avoid Detour is True for clock nets, so they are routed as straight as possible.

Set the following attribute:
setAttribute -preferred_extra_space 1
The -preferred_extra_space parameter adds spacing around the clock nets, which improves coupling capacitance. It is not
included on the NanoRoute/Attributes form.

September 2022 738 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/setAttribute.html

Tip: Select SI Prevention True to set Weight, Avoid Detour and -preferred_extra_space all at once. SI Prevention True sets
Weight to 10 , Avoid Detour to True , and -preferred_extra_space to 1 for clock nets.

Routing Clock Nets Using the GUI Forms
Specify the following options on the NanoRoute form:

Selected Nets Only
Specify Selected Nets Only to route the clock nets first. Unlike the Weight attribute, which gives priority to routing nets within a
switch box, Selected Nets is a global option that routes whole nets.

Global Route

Detail Route
Specify End Iteration 19 to stop routing before the postRoute optimization step.

Running Postroute Optimization
To prevent rip-up and rerouting of clock nets during postroute optimization, specify the following:

On the Route Attributes form, keep the attributes you have already set, and select TRUE for Skip Routing.

On the NanoRoute form, specify End Iteration default.

Preventing and Repairing Crosstalk Problems
During SMART routing, the NanoRoute router automatically prevents crosstalk problems by wire spacing, net ordering, minimizing
the use of long parallel wires, and selecting routing layers for noise-sensitive nets. The router performs these operations concurrently
with other operations. In addition to the operations it performs automatically, the router also performs shielded routing to protect
critical wires from crosstalk. During postroute signal integrity repair, the router performs these same operations. The following
sections describe the crosstalk prevention and repair operations the router performs, and whether you can set net attributes to control
them.

Wire Spacing
The router automatically adds extra space between critical nets. You can also use
the setAttributeset_route_attributes -preferred_extra_space attribute to add space.

Net Ordering
The router automatically routes critical nets first and avoids detours on those nets so they are as short as possible.

You can also use the -weight attribute to give priority to critical nets within a switch box, so they are routed first.

Minimizing the use of long parallel wires

September 2022 739 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/setAttribute.html
../TCRcom/set_route_attributes.html

The router automatically minimizes the use of long parallel wires, based on an internal algorithm. You cannot set an
attribute to control this feature.

Selecting routing layers
The router automatically restricts routing layers for critical nets to reduce both coupling and resistance. It routes clocks on
layers 3 and 4.

You can set the -bottom_preferred_routing_layer and -top_preferred_routing_layer attributes to specify
preferred layers for critical nets.

You can specify how strictly to enforce these attributes by specifying the -preferred_routing_layer_effort
attribute.

Shielding
The router can shield critical nets with power or ground wires to protect them from coupling. Shielding is not an automatic
operation--you control it with the -shield_net attribute.

Related Topic

Performing Shielded Routing

Crosstalk Prevention Options
To minimize problems caused by crosstalk, set the following NanoRoute options:

setNanoRouteMode -route_with_timing_driven true
setNanoRouteMode -route_with_si_driven true

These options specify timing-driven and signal integrity-driven routing and fine-tune the priorities the router assigns to timing, signal
integrity, and congestion. Use these options together to minimize crosstalk. After meeting the timing requirements of your design,
adjust the values and rerun routing, following these guidelines:

If your design is congested, use a low timing-driven effort.

If your design is not congested, use a high timing-driven effort
Tip: Because designs with severe signal-integrity problems are usually not congested, use a high timing-driven effort for those
designs.

If increasing the timing-driven effort creates a jump in the number of timing violations, decrease the timing-driven effort.

For more information, see Analyzing and Repairing Crosstalk.

September 2022 740 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Running ECO Routing
The NanoRoute router performs ECO routing by completing partial routes with added logic while maintaining the existing wire
segments as much as possible. ECO routing is useful in cases such as the following:

After the chip is initially routed, the customer or chip owner gives you a new netlist with minor changes.

After the chip is initially routed, buffers were added to repair setup or hold violations or DRVs during physical optimization.

Buffers were added or gates were resized during hand editing of a routed design.

Antenna diodes were added interactively after routing to repair process antenna violations.

After metal fill is added to the design.

During ECO routing, the router does the following:

Reroutes partial routes and nets without routing.
You can use wire editing commands to partially pre-route wires to guide global ECO routing. The router does not globally
reroute nets that are automatically pre-routed, such as clock nets, but it might make minor routing changes to pre-routes to
increase the routability of the design. Examples of minor routing changes include the following:

Completely moving a pre-route

Changing the routing topology within the current routing switch box.

Retains fully pre-routed nets and pin-to-pin paths.

Might use dangling paths in order to complete routes, but removes dangling wires left after global routing.

Keeps connectivity within the bounding box, but does not constrain layers or positions.

ECO Limitations
Do not use the globalRoute command in ECO mode. To route in ECO mode, use the globalDetailRoute command.

If more than 10 percent of the nets are new or partially routed, run full global and detailed routing instead of ECO routing.

ECO Flow
To perform ECO routing, specify the following:
setNanoRouteMode -route_with_eco true
globalDetailRoute

Info: The -route_with_eco parameter constrains changes but might lead to violations or long run times if it causes the router to
move more signals to resolve the routing.

Specifying Nets for ECO Routing

The router automatically identifies the nets that need changes during ECO routing. To route only a few nets, and skip routing on all
the other nets, specify the following commands:

setAttribute -net @PREROUTED -skip_routing true
setAttribute -net eco_net_name1 -skip_routing false
setAttribute -net eco_net_name2 -skip_routing false

September 2022 741 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

ECO Routing After Multiple-Cut Via Insertion

If your design is already fully routed and multiple-cut vias have been inserted for manufacturing, specify the following commands for
ECO route:

setNanoRouteMode -route_with_eco true
setNanoRouteMode -route_detail_use_multi_cut_via_effort low
globalDetailRoute

For more information on using Innovus ECO commands and flows, see Interactive ECO.

Evaluating Violations

DRC Marker Name Comparison Table
During the detail routing stage, the NanoRoute router reports violations after each iteration. The NanoRoute violation summary is
printed to log file by default. The following is an example of the violation table:

number of DRC violations = 13975

By Layer and Type:
MetSpc Notch Short NdrSpc Mar EolOpp Others Totals
Metal1 0 0 0 0 0 0 1 1
Metal2 1 0 0 0 0 0 1 2
Metal3 1 0 0 0 0 1 0 2
Metal4 2 1 15 0 1 2 4 25
Metal5 0 0 7 0 39 1 1 48
Metal6 2 5 19 0 5 1 5 37
Metal7 1 0 0 7527 0 0 2 7530
Metal8 0 0 4 6322 0 0 1 6327
Metal9 1 0 0 0 1 0 1 3
Totals 8 6 45 13849 46 5 16 13975

By Non-Default Rule:
Rule Metal1 Metal2 Metal3 Metal4 Metal5 Metal6 Metal7 Metal8 Totals
DBLCUT_DBLSPACE_RULE +S 0 0 0 0 0 0 8396 6617 15013
Totals 0 0 0 0 0 0 8396 6617 15013

The violation table is Per-Layer and Per-Rule violation count. Hence, Metal7 NdrSpc 7527 means there are 7527 NDR spacing
violations on Metal7 layer, and such NDR rules are defined as hard rules(with HARDSPACING). The Non-Default Rule table is
Per-NDR-Rule and Per-Layer VIOLATED-NDR-NET count.

Hence, DBLCUT_DBLSPACE_RULE 8296 Metal7 means there are 8296 NDR net violation locations.

More precisely,

 If one NdrSpc violation is between a NDR net and a regular rule net, this counts for 1 in NDR table.

 If one NdrSpc violation is between a NDR net and another NDR net, this counts for 2 in NDR table.

Note: +SW means the spacing/width defined with non-default value in NDR rule for at least one layer.
 +S means the spacing defined with non-default value in NDR rule for at least one layer.
 +W means the width defined with non-default value in NDR rule for at least one layer.

The following table describes the DRC violations with abbreviations:

September 2022 742 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Short Name Marker Name

AdjCSM Same Mask Adjacent Cut Spacing

AdjCut Adjacent Cut Spacing

Ant Antenna

AntAR Antenna Area Ratio

AntCAR Antenna Cumulative Area Ratio

AntCSA Antenna Cumulative Side Area Ratio

AntSAR Antenna Side Area Ratio

ArSpac Metal Area Spacing

BlockM Self-Aligned Double Patterning Block Mask Violation

C2CCol Same Layer Same Mask Cut Spacing

C2MCon Cut To Metal Concave Corner Spacing

C2MCvx Cut To Metal ConvexCorner Spacing

C2MO Cut To Metal Orthogonal Spacing

C2MSpc Cut To Metal Spacing

C2MWW Cut to Wrong Way Metal Spacing

ColChg Metal Color Change

ColCrSp Corner Spacing Same Mask

Color SameMask Spacing

CorFil Corner Fill Spacing

CorSpc Corner Spacing

CShort Cut Short

CutCtr Cut On CenterLine

CutEol Cut EolSpacing

CutFbd Cut Forbidden Spacing

CutInr Different Layer Cut Spacing

CutOrt Cut Orthogonal Spacing

CutSpc Same Layer Cut Spacing

Detour Wire detours

DSLCol Directional SpanLength SameMask Spacing

DSLSpc Directional SpanLength Spacing

September 2022 743 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Enc Enclosure

Enc2Jt EnclosureToJoint

EncEdg EnclosureEdge

EncEO EnclosureEdge Opposite

EncPrl Enclosure Parallel

EncSpc Enclosure Spacing

EOLColor End Of Line Color Spacing

EolExCol EolExtension Spacing

EolExt EolExtension Spacing

EolKO EndOfLine Keepout

EolOpp OppositeEol Spacing

EOLSpc End Of Line Spacing

FbdSp Forbidden Spacing

FeedTh Feedthrough On Pin

FltPatch Floating Patch

HVGeo Pin Access

InfSpc Influence Spacing

IsoCut Isolated Cut

JCSCol Joint Corner Spacing SameMask

JCSpc Joint Corner Spacing

Litho Litho

Loop Metal Loop

LthBDG Litho Bridging

LthEOL Litho EndOfLine

LthNCK Litho Necking

Mar Minimum Area

MaxStk MaxViaStack

MaxWid Maximum Width

MetSpc ParallelRunLength Spacing

MinCut Minimum Cut

MinEnc Minimum Enclosed Area (Min Hole)

September 2022 744 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

MinStp MinStep

MinWid Minimum Width

MtMCut Minimum Cut

NdrSpc Non Default Rule Spacing

Notch Notch Spacing

NSMet Non-sufficient Metal Overlap

OffGrd Off Grid or Wrong Way

Open Physical Open

PinAcc Pin Access Constraint

Protru Protrusion

Prvent Preventive Violation

Rect Rect Only

RtHalo Routint Halo wrong way

SharedE Same-Metal-Share-Edge Spacing

ShEdgH Same-Metal-Share-Edge Spacing

ShEdgV Same-Metal-Share-Edge Spacing

Short Metal Short

SLTbl Span Length Table

SpacH Horizontal Spacing

SpacV Vertical Spacing

SpnSpc ParallelSpanLength Spacing

V_EOL EndOfLine Spacing

V_NSM Non-sufficient Metal Overlap

V_VirG Pin Access

V_WMJ JogToJog Spacing

Via Via

ViaClu Via Cluster Violation

ViaEol EndOfLine Spacing

ViaMSt Minimum Step

ViaWmj JogToJog Spacing

VMinST Minimum step

September 2022 745 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Violations on Upper Metal Layers
Upper layers are typically used to route on top of macros where only a few routing layers are allowed. These upper layers typically
have larger vias than lower layers. When the routing pitch is not set at line-to-via distance, two types of violations are likely to occur:

Via-to-wire violations

Shorts

Figure 3, Figure 4, and the LEF and DEF file excerpts that follow show a design with many violations on metal6 .

Figure 3: Design with Violations

Figure 4: Violations on Metal 6

The relevant LEF file excerpt is:

LAYER Metal6
 TYPE ROUTING ;
 PITCH 0.46 ;
 WIDTH 0.2 ;
 SPACING 0.21 `

VNotch Notch Spacing

VolSpc Voltage Spacing

WidTbl WidthTable

WireFuse Fuse On Wire

WMJ JogToJog Spacing

WreExt Wire Extension

September 2022 746 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

 DIRECTION VERTICAL ;
END Metal6
LAYER Metal7
 TYPE ROUTING ;
 PITCH 0.82 ;
 WIDTH 0.4

 SPACING 42 ;
 DIRECTION HORIZONTAL ;
END Metal7
VIA via6 DEFAULT
 LAYER Metal6 ;
 RECT -0.19 -0.23 0.19 0.23 ;
 LAYER Via6 ;
 RECT -0.18 -0.18 0.18 0.18 ;
 LAYER Metal7 ;
 RECT 0.29 -0.2 0.29 0.2 ;
 RESISTANCE 0.68

END via6

The relevant DEF file excerpt is:

TRACKS X -4749270 D0 6324 STEP 460 LAYER Metal6

To repair the shorts and via-to-wire violations, align the tracks as much as possible without sacrificing them. Change the TRACKS
statement in the DEF file to have at least line-to-via STEP (pitch).

The line-to-via calculation for metal6 is:

Line to via metal6 = 1/2 Width + Spacing + 1/2 Via

 = 0.1 + 0.21 + 0.19

 = 0.5

Violations in Timing-Driven Routing
Run time and the number of violations often increase during timing-driven routing because the router restricts the routing of timing-
critical nets. During non-timing-driven routing, the router might detour some nets in order to avoid creating violations. In timing-driven
mode, however, the router does not detour timing-critical nets. Instead, it forces them to be routed as short as possible, which can
create congestion in the channels. Later, when design-rule checking takes precedence, the router detours timing-critical nets in
overly congested channels.

For information on the timing-driven routing flow, see Running Timing-Driven Routing.

Figure 5 and Figure 6 illustrate non-timing-driven and timing-driven routing results for the same design.

Figure 5: Non-Timing Driven Routing Results

September 2022 747 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Figure 6: Timing Driven Routing Results

Deleting Violated Nets
To delete violated nets, use the -regular_wire_with_drc parameter of the editDelete command. After deleting the nets, use ECO
routing, detailed routing, or the globalDetailRoute command to re-route the design.

Related Topics

detailRoute

ecoRoute

globalDetailRoute

setNanoRouteMode -route_with_eco

Using Additional Strategies to Repair Violations

Process Antenna Violations

Repair process antenna violations with antenna repair options or the wire editing commands.

For information on verifying process antenna violations, see "Verifying Process Antennas" in the Identifying and Viewing
Violations chapter of the Innovus User Guide.

For information on process antenna options, see Repairing Process Antenna Violations.

For information on wire editing, see Editing Wires.

Core Congestion

Ensure that blocks are placed in corners and near boundaries to help ease core congestion.

Concurrent Routing and Multi-Cut Via Insertion
The NanoRoute router can insert multiple-cut vias during detailed routing in order to achieve a high ratio of multiple-cut to single-cut
vias, minimize the number of vias in the design, and increase yield. To specify the effort level for inserting multiple-cut vias and route
the design concurrently, run the following commands:

setNanoRouteMode -route_detail_use_multi_cut_via_effort {medium | high}

September 2022 748 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/detailRoute.html
../innovusTCR/ecoRoute.html
../innovusTCR/globalDetailRoute.html
../innovusTCR/setNanoRouteMode.html

detailRoute

Postroute Via Optimization
The NanoRoute router can optimize vias on a fully routed design by replacing single-cut vias with multiple-cut vias or with fat vias
(single or multi-cut vias with an extended metal overhang). The router does not replace multiple-cut vias during this step. The router
replaces vias by substituting vias in the following order:

1. Fat double-cut vias

2. Normal double-cut vias

3. Fat single-cut vias

Ensure the following before replacing the vias:

Double-cut vias and fat vias are automatically generated or defined in the LEF file.

The design is completely global and detailed routed. If you delete any wires after routing, reroute the design before replacing
the vias.

The design is free of all DRC violations.

Complete the following steps:

1. To run postroute via reduction, type the following:

setNanoRouteMode -route_detail_min_slack_for_opt_wire slack

setNanoRouteMode -route_concurrent_minimize_via_count_effort value

routeDesign -viaOpt

Note: When you run these commands, the software optimizes and reduces the via count.

2. To run postroute single-cut to multiple-cut via swapping, complete one of the following steps:

a. To run postroute single-cut via to multiple-cut via swapping, type the following commands:

setNanoRouteMode -route_detail_min_slack_for_opt_wire slack

setNanoRouteMode -route_detail_post_route_swap_via multiCut

routeDesign -viaOpt

b. To run non-timing-driven postroute single-cut via to multiple-cut via swapping, type the following:

setNanoRouteMode -route_with_timing_driven false

setNanoRouteMode -route_detail_post_route_swap_via multiCut

routeDesign -viaOpt

3. To raise some via priority in multiple-cut via swapping, type the following:

setNanoRouteMode -route_with_timing_driven false

setNanoRouteMode -route_via_weight "viaName viaWeight"

setNanoRouteMode -route_detail_post_route_swap_via multiCut

routeDesign -viaOpt

September 2022 749 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Optimizing Vias in Selected Nets
To optimize vias in selected nets, set the setAttribute -skip_routing attribute to true for all nets, then set the attribute to false for
nets with vias you want to optimize.

setAttribute -net * -skip_routing true

setAttribute -net ... -skip_routing false

globalDetailRoute

Via Optimization Options
The following setNanoRouteMode parameters can be used for via optimization:

-route_detail_post_route_swap_via

-route_via_weight

-route_detail_use_multi_cut_via_effort

-route_concurrent_minimize_via_count_effort

To control the router to choose vias with the largest overhang first, specify the following option with higher viaWeight than the other
vias:
setNanoRouteMode -route_via_weight {viaName viaWeight}

Note: You can specify the priority for any via by using the -route_via_weight parameter, not just the largest overhang vias.

Performing Shielded Routing
The NanoRoute router can protect noise-sensitive nets, such as clock nets, from crosstalk by shielding them with power or ground
wires. NanoRoute automatically generates a shielding and statistics report after routing. For information on the report, see the
"Interpreting the Shielding Report" section.

The Figure below shows a section of a design with a shielded net. In the figure, you can see the following:

The signal net is shielded by a power net on one side and a ground net on the other side.

Multiple vias can be dropped where a stripe crosses the shielding net at a right angle, if the stripe is wide enough to
accommodate them.

A segment of the signal net is not shielded.

There are some floating shielding net segments.

Figure: Shielded Routing

September 2022 750 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/setNanoRouteMode.html

Shielding Option
You can add more vias on the shielding wire for power stripe connection using the editPowerVia command after using the
createShield command.
editPowerVia

-add_vias 1

-skip_via_on_wire_status {[routed][fixed] [cover] [shield]}

-skip_via_on_wire_shape {[Blockring] [Stripe][Followpin] [Corewire] [Blockwire] [Iowire] [Padring] [Ring] [Fillwire]

[Noshape]}

Note: Some vias might be removed by NR during ECO. Use the editPowerVia command each time the shielding is recreated.

Performing Shielded Routing Using the GUI
1. From the main menu, choose Route - NanoRoute - Specify Attribute . This opens the Route Attributes form.

2. On the NanoRoute/Attributes form, enter the name of the net to shield (this is the shielded net in the figure) in the Net Name(s)
field.

3. Enter the name of the power ground net (or both) in the Shield Net(s) field. These are the shielding nets in the figure.

To shield both sides with ground wires, enter the name of the ground net.

To shield one side with a ground wire and one side with a power wire, enter both the ground and the power net names.

4. Click OK or Apply .

5. Use the Innovus selectNet command to specify the net to shield. It must be the same as the net you specified on the
NanoRoute/Attributes form.

6. From the main menu, choose Route - NanoRoute - Route . This opens the NanoRoute form.

7. On the NanoRoute form, select the following:

In the Job Control area, select Selected Nets .

In the Mode area select both Global Route and Detail Route .

8. Click OK or Apply.

To route the remaining nets, complete the following steps:

1. On the NanoRoute/Attributes form, set the Skip Routing True for the shielded nets.
Tip: You can also skip routing on prerouted nets by issuing the following command:
setAttribute -net @PREROUTED -skip_routing true
@PREROUTED applies to a net that has any wiring, including partial wiring.

2. On the NanoRoute form, deselect Selected Nets Only .

3. Click OK or Apply to reroute the design.

Performing Shielded Routing Using Text Commands
The following command shields net1 with a ground wire:
setAttribute -net net1 -shield_net vss

globalDetailRoute

The following commands show how to shield two nets (do not shield more than one net with the same command):

September 2022 751 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/editPowerVia.html
../innovusTCR/createShield.html
../innovusTCR/editPowerVia.html

setAttribute -net net1 -shield_net abc_gnd

setAttribute -net net2 -shield_net abc_gnd

Interpreting the Shielding Report
The software generates a shielding report for the NanoRoute router when you run the reportShield command. You can customize
the report to output information on the whole design or on selected nets, and you can report per-layer statistics.

Following is a section of a report:

Name : Shielded net name
Length : Shielded net length
Shield : Total length of shielding wire
ratio : Average shielding ratio

Name Length Shield Ratio Layer: Length Shield Ratio

netA: 211.5 378.3 0.894
 METAL2: 5.0 2.2 0.222
 METAL3: 107.4 180.1 0.839
 METAL4: 99.1 196.0 0.989

average: 211.5 378.3 0.894
 METAL2: 5.0 2.2 0.222
 METAL3: 107.4 180.1 0.839
 METAL4: 99.1 196.0 0.989

To help understand the report, see the following figure, which shows a section of netA:

In the figure,

The software calculates the shielding ratio by using the following formula:

A Represents the shielded net.

B, C, and D Represent shielding wires.

September 2022 752 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/reportShield.html

Reporting the Tapping Information for Shielded Nets

The software generates a shielding report for nets that fail the tapping check. The tapping information is printed in a report file with
the name, <design_name>_shield.rpt. This file is generated by default when you run the reportShield command. The report lists the
required tapping distance, the names of the shielded nets for which the check is being performed, the names of the violating layers,
and the total number of missing tapping points. The report syntax and example are provided below.

--
Required tapping distance: <micron>

Shielded Nets : <Netname>
Violating Wire : <layer name> <shape box coordinates> : <micron>
Violating Wire : <layer name> <shape box coordinates> : <micron>

Shielded Nets : <Netname>
Violating Wire : <layer name> <shape box coordinates> : <micron>
Violating Wire : <layer name> <shape box coordinates> : floating

Total number of missing tapping points: <number>

A sample report is provided below:

Required tapping distance: 100.000

Shielded Nets: Net1
Violating Wire : Metal8 81.462 618.222 82.462 619.222 : 194.480
Violating Wire : Metal7 728.080 1.200 782.462 9.222 : 150.200

Shielded Nets: Net2
Violating Wire : Metal8 81.462 618.222 82.462 619.222 : 194.480
Violating Wire : Metal7 728.080 1.200 782.462 9.222 : floating

Total number of missing tapping points = 728

Routing Wide Wires
The NanoRoute router automatically tapers wide wires when connecting to pins, including input/output pins of standard cells, macro
cells, and block output pins. The tapered portion of a wire uses the minimum-width wire (the default width). If you do not want
tapering at the output pins, specify the following:

setNanoRouteMode -route_detail_no_taper_on_output_pin true

Note: By default, the NanoRoute router prohibits tapering on top level pins.

Using Non-Default Rules
By default, the NanoRoute router treats non-default rule spacing as a soft option; that is, when routing resources are available, it
honors the non-default rule. If the area is too congested, and resources are not available, the router might not honor the rule. If you
enable signal-integrity driven routing, the router attempts to minimize overall coupling capacitance in the design. If you enable
timing-driven routing, the router also favors critical nets when choosing spacing. You can use up to 254 nondefault rules. Nondefault
rules do not necessarily decrease the routing speed. Routing speed does decrease, however, due to the following factors:

September 2022 753 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

The ratio of non-default rule wires to default rule wires increases.

The amount of space between wires increases.

The number of additional nondefault vias increases, due to the nondefault rules.

In congested areas, the router might violate nondefault spacing rules in order to avoid design-rule violations and complete the
routing. Its flexibility with regard to nondefault spacing decreases the overall wirelength and benefits timing and signal integrity
because it allows some shorter nets to be more easily tolerated near adjacent nets without causing violations.

Note: You can force the router to honor the nondefault rules by specifying the following option: setNanoRouteMode
-route_strict_honor_route_rule true

Figure 8 illustrates nondefault spacing ("soft spacing") routing.

Figure 8: Non-Default Spacing Routing

Repairing Process Antenna Violations
The NanoRoute router can repair process antenna violations concurrently with DRC violations during the search-and-repair step.
During the postroute optimization step, when there are no more DRC violations, the router repairs additional process antenna
violations. This two-step methodology allows the router to use more aggressive methods to repair the process antenna violations
early on and saves CPU time. During postroute optimization, the router repairs antenna violations by changing layers (also called
antenna stapling or layer hopping). It also repairs process antenna violations by inserting diode cells as close as possible to input
gates to discharge current, and deleting and rerouting nets with violations.

Note: After routing, run the globalNetConnect command to ensure connectivity to power and ground pins in antenna cells added
during process antenna repair.

The router supports hierarchical process antenna calculations and repair. For information on PAE calculations, and the LEF and
DEF antenna parameters, see Calculating and Fixing Process Antenna Violations chapter of LEF/DEF Language Reference.

Repairing Violations on Multiple-Pin Nets
On multiple-pin nets, the router does the following:

On a two-pin net that has one input pin with antenna information and one output pin without antenna information, the router

September 2022 754 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/globalNetConnect.html
../lefdefref/PAE.html
../lefdefref/lefdefrefTOC.html

tries to repair the antenna violation based on input antenna information only.

On a two-pin net that has one input pin without antenna information and one output pin with antenna information, there is
usually no antenna violation on the output pin, so the router skips antenna repair.

On a two pin-net where the router does not have any antenna information on either pin, the router skips antenna repair.

On a three-pin net that has two input pins – one with antenna information and one without antenna information – and one
output pin without antenna information, the router skips antenna repair.

Changing Layers
The router automatically shortens wires whose area exceeds the gate/wire area ratio set in the LEF file. This process might not
guarantee that it can resolve all antenna violations – if the routing area is congested, process antenna violations can still occur, just
as shorts and spacing violations can occur.

Using Diodes
The router inserts antenna diode cells or uses preplaced diode cells to repair violations. It can swap filler cells with antenna diode
cells and fill the gap automatically if an antenna diode cell is not the same size as the filler cell it replaced. A later routing pass does
not remove previously placed diodes. The antenna diode cells must have the same LEF SITE definition as the standard cells.
Specify the diode cell name using the Diode Cell Name option on the NanoRoute form or the route_antenna_cell_name option on
the text command line.

Deleting and Rerouting Nets with Violations
If the design has more than 100 DRC violations, and you are using LEF 5.4 or later, the router deletes and reroutes nets with process
antenna violations.

Repairing Violations on Cut Layers
The NanoRoute router detects antenna violations on cut layers and repairs them by inserting diodes. To repair these violations, you
must specify a value in your LEF file for the ANTENNADIFFAREARATIO (or ANTENNACUMDIFFAREARATIO) for the cut layers. For each cut
layer, the value for ANTENNADIFFAREARATIO (or ANTENNACUMDIFFAREARATIO) must be larger than the value for ANTENNAAREARATIO (or
ANTENNACUMAREARATIO).

Info: If you do not use diodes to repair process antenna violations, the router cannot repair the violations on cut layers.

Tips:

To highlight the diodes that the router inserts, choose Edit - Select by Name.

To highlight the diodes, type *_antenna_* .

To specify the diode cells, use setNanoRouteMode -route_antenna_cell_name.

 To force the router to do more layer changing and skip diode insertion, specify setNanoRouteMode -
route_antenna_diode_insertion false

After the router repairs as many violations as possible by layer changing, reset this option to true and repeat process antenna
repair.

September 2022 755 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Process Antenna Options
Use the following options to repair violations caused by process antennas:

setNanoRouteMode options:

-route_detail_fix_antenna

-route_antenna_cell_name

-route_ignore_antenna_top_cell_pin

-route_antenna_diode_insertion

-route_diode_insertion_for_clock_nets

setAttribute -net netName -skip_antenna_fix

Examples

The following commands show the basic strategy for repairing process antenna violations:
setNanoRouteMode -route_detail_fix_antenna true
setNanoRouteMode -route_antenna_cell_name "ANTENNA"
setNanoRouteMode -route_antenna_diode_insertion true
globalDetailRoute
globalNetConnect

The NanoRoute router runs global and detailed routing. After repairing DRC violations, it repairs as many process antenna
violations as it can by layer hopping during postroute optimization. If any process antenna violations remain, the router repairs
them by inserting antenna diode cells named ANTENNA.

The following commands repair process antenna violations by inserting diodes and filler cells. The filler cells are specified by
the setFillerMode -core command. They fill any gaps that are left when a diode replaces a large filler cell.
setNanoRouteMode -route_antenna_diode_insertion true
globalDetailRoute
globalNetConnect

For information on adding filler cells, see the setFillerMode and addFiller commands.

Creating RC Model Data in TQuantus Model File
You can create and store RC model data in a TQuantus model file, which is generated by the TQuantus extraction engine. The
TQuantus extraction engine is an advanced extraction engine that is enabled by default for postRoute effort level
medium extraction. The TQuantus engine is tightly integrated with NanoRoute and drives track assignment-based timing and SI
optimization/postRoute optimization, and timing-driven routing.

The TQuantus model file generated using this engine has a benefit over the Quantus techfile in that it provides a simplified RC
model data for implementation as compared to the Quantus techfile that has a complicated RC table. However, there is a small
tradeoff for accuracy and runtime. You can create the TQuantus model file by using the createTQuantusModelFile command inside
the Innovus environment.

Before creating the TQuantus model file, ensure that the following are available in the Innovus database:

QRC techfiles

Pitch information from the technology LEF file

September 2022 756 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/setNanoRouteMode.html
../innovusTCR/setAttribute.html
../innovusTCR/setFillerMode.html
../innovusTCR/addFiller.html

RC corners

September 2022 757 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

Use model for TQuantus Model File
The use model for the creation and usage of TQuantus model file is detailed below:

1. Generate the TQuantus model file using the createTQuantusModelFile -file command.

2. Once the TQuantus model file is available, run the following command to bring it into the Innovus environment:
setExtractRCMode –engine postRoute –effortLevel medium –tQuantusModelFile tQuantus_model_file

3. Use the checkTQuantusModelFile command to check the consistency of the TQuantus model file against the various input files
listed above inside the Innovus database. The following commands automatically invoke the checktQuantusModelFile
command to check the TQuantus file, if TQuantus is chosen as the extraction engine.

a. routeDesign -trackOpt

b. timeDesign

c. optDesign –postRoute

d. extractRC

Note: The software issues warnings if inconsistencies are detected in the RC corner information, QRC techfile, or pitch
information in the LEF technology file. If such warnings are issued, the TQuantus model file will be generated automatically.

To use the TQuantus model file during track assignment-based timing and SI optimization (TA-Opt) and optDesign –postRoute
optimization, specify the -trackOpt option of the routeDesign command. Specifying this parameter ensures that TQuantus model file
is used during timeDesign and optDesign –postRoute optimization.
route_design –track_opt

Note: Specify the -idealClock parameter along with the -trackOpt parameter to enable the ideal clock mode for optimization.
routeDesign -trackOpt -idealClock

Note: The TQuantus flow is enabled by default. In this mode, the software instructs timeDesign and optDesign –postRoute to use the
TQuantusModel file for optimization. You can specify a file name for the TQuantus model file by using the –tQuantusModelFile
parameter of the setExtractRCMode command. If this file is not specified, it is generated automatically by the software.

Example1: Use Model for Track Assignment-Based Timing and SI Optimization

The example below details the use model for TA-Opt:

createTQuantusModelFile -file tQuantus_model.bin
setSIMode –reset
setExtractRCMode -engine postRoute -effortLevel medium -tQuantusModelFile tQuantus_model.bin
setDelayCalMode -SIAware true
setAnalysisMode -analysisType onChipVariation -cppr both

routeDesign –trackOpt

Note: When routeDesign -trackOpt is specified, the setDelayCalMode -SIAware parameter must be set to true. If it is set to false,
the software will error out. Also, you can enable the ideal clock mode for optimization by specifying the -idealClock parameter along
with the -trackOpt parameter.

Example2: Use Model for optDesign -postRoute and timeDesign –postRoute Optimization

The example below details the use model for optDesign -postRoute and timeDesign -postRoute optimization:

createTQuantusModelFile -file tQuantus_model.bin
setSIMode –reset
setExtractRCMode -engine postRoute -effortLevel medium -tQuantusModelFile tQuantus_model.bin

setDelayCalMode -SIAware true
setAnalysisMode -analysisType onChipVariation -cppr both
optDesign -postRoute/timeDesign -postRoute

September 2022 758 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/createTQuantusModelFile.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/checkTQuantusModelFile.html
../innovusTCR/routeDesign.html
../innovusTCR/timeDesign.html
../innovusTCR/optDesign.html
../innovusTCR/extractRC.html
../innovusTCR/routeDesign.html
../innovusTCR/timeDesign.html
../innovusTCR/optDesign.html
../innovusTCR/timeDesign.html
../innovusTCR/optDesign.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/setSIMode.html
../innovusTCR/setDelayCalMode.html
../innovusTCR/timeDesign.html
../innovusTCR/optDesign.html

Support for High Frequency Routing
The NanoRoute High Frequency Router (NRHF) has been implemented to address the custom and high frequency routing needs of
mixed-signal users. It is built on NanoRoute infrastructure for full interoperability. This capability enables routing of high frequency
digital signals but requires special constraints to achieve critical performance. Before using the NanoRoute high frequency router,
you must make sure that the design has routing constraints. The routing constraints can be specified though any of the following:

Integration Constraint Editor form in Innovus

Constraint Manager in Virtuoso
Note: For constraints entered in Virtuoso, OA based flow should be used. The multiple entry mechanism for routing constraints
is supported to take additional benefit of being fully interoperable between Innovus and Virtuoso.

setIntegRouteConstraint command

The NanoRoute high frequency router can be invoked before or after placement of standard cells and blocks. All nets which have the
constraints will be routed by default. To route specific nets you can use the setNanoRouteMode –route_selected_net_only
true command.
Note: Partially routed nets will not be routed.

The following routeDesign command parameter supports high frequency routing:

-highFrequency
Runs high frequency routing. It routes high frequency digital signals to achieve critical performance.

The following setNanoRouteMode command parameters support high frequency routing:

-route_high_freq_constraint_groups {order net match bus pair shield}

Routes only the specified constraint groups. The constraint groups can be net, match, bus, pair, or shield.
Note: You can add "order" in front to control the route order. If order is present, the NanoRoute high frequency router will honor
the order, if not, the router will determine the order.

-route_high_freq_match_report_file filename

Specifies the name of the match report file.

-route_high_freq_num_reserved_layers value

Specifies the number of metal layers to reserve for high frequency routing above the standard cell area so that routing has more
resources to access standard cell pins.

-route_high_freq_remove_floating_shield {true|false}

Removes floating shield segments for high frequency nets.

-route_high_freq_search_repair {true|false}

Runs search and repair to remove violations.

-route_high_freq_search_repair value

Specifies the shielding wire length. All shielding wires longer than the specified value are preserved by NanoRoute for high
frequency nets.

Additionally, the NRHF router honors the setAttribute -ndr_si_length_limit settings. The -ndr_si_length_limit parameter
specifies the table of parallel run length on each layer. It relaxes a hard NDR into a soft NDR whenever the parallel run length
between the NDR wire and another wire is smaller than the specified value. Honoring this attribute enables NRHF router to ignore
the NDR for a portion of the route which is a percentage of the total wire length for areas where the number of tracks are limited. With
this, NRHF can maintain default spacing for the short PG wires and use routing resources more effectively.

September 2022 759 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/setIntegRouteConstraint.html
../innovusTCR/routeDesign.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/setAttribute.html

Using the Third-party ECO Flow
Innovus supports using third-party data for ECO routing and layer only ECO routing. It supports non-DEF connectivity models,
multiple NDRs per net, and other third-party structures in order to enable ECO routing on non-native data. You can enable the third-
party support using the setNanoRouteMode -route_third_party_data true command.

Note: Since the third-party data uses DEF data types for different purposes and is formed for a completely different use model, it is
important to translate it into Cadence types. With proper setup Innovus accepts third-party data for ECO Routing. Performing the
ECO and resolving the remaining violation functions much same as with standard Innovus data and is compatible with Cadence
flows.

The recommended steps for importing third-party data into Innovus for ECO routing or post-mask layer only ECO routing are:

Set the third-party option

Read in the DEF file while preserving the non-native DEF connectivity shapes

Convert the data to Innovus forms

Sample TCL Script
The following is a sample TCL script that outlines this process:

Enable the third-party options #
setNanoRouteMode -route_third_party_data true
setMultiCpuUsage -localCpu 8

Load the data #
set init_lef_file {
 lef/tech.lef
 lef/cells.lef
 lef/macros.lef
}

set init_verilog net/design.v
init_design

Read the DEF file while preserving the non DEF connected shapes
defIn -preserveShape design.def

Convert special nets to regular nets with auto NDR generation
prepareForEcoRoute

Introduce ECO, ecoDefIn, optDesign, add/remove term etc.

ecoRoute -modifyOnlyLayers 1:4

Setup Considerations

Conversion

The conversion step changes DEF special nets to regular nets wires so that ECO routing can be performed. Since all special nets
are not required for ECO, you can mark any special net segment that may be excluded from the conversion as +FIXED before
converting the data for ECO. This may include power and ground nets secondary powers and clocking mesh structures. Clock mesh
would be detected as a loop and would be subjected to ecoRoute changes if not marked FIXED.

Note: Cadence recommends that you perform this process carefully as the lower layers of the clock may route from the mesh to the
pins and may be changed if included in an ECO. You must focus on the intent and scope of the ECO and the design to determine

September 2022 760 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/setNanoRouteMode.html

which structures need to remain special nets and which can be converted to regular wires for ECO.

Note: NanoRoute will not change any segment marked as a special net.

Example:
The following commands set the state of Snet power_ mesh in Metal6-Metal7 to FIXED.
editSelect -net power_mesh -via_cell {*67*}

editSelect -object_type {Wire Via} -type Special -net power_mesh -layer {Metal6 Metal7}

setSelectedStripBoxState all FIXED

Tech.lef

If you are using the Innovus System for the first time, you may face issues with the technology file and the design setup that may
require investigation.

Load the design

Verify the DRC Violations

The ecoRoute command attempts to fix any DRC violations so investigating any violation is important. The following are some
potential issues and some useful tips that enable you to fix them:

For Post-Mask ECO, the design used should be tape-out clean and should not have any DRC violations in Innovus. If Innovus
reports violations, it indicates that the Innovus tech.lef is a different version than the one used to tape out the design.

DRC violations at this stage can also indicate a rule interpretation discrepancy and require support for your
Cadence representative. You must make sure that the rule sets match. There may be differences in the Innovus Tech.LEF file
and the tape-out rule set that need to be fixed. Investigate any violations to align the status before proceeding with ECO
routing.

Verify the recommended rules that may have been optionally disabled in the original tape out routing. The design rules must
match and show 0 violations before proceeding with ECO routing.

Floorplan

Check the floorplan objects like blockages, cell rows, and tracking. The cells need matching rows for the placer to work with the
design and for diode cells and fillers to be replaced. The tracking should align with the routing for the ecoRoute command to interact
correctly with the existing routing and cell pin access.

Note: Partial routing blockages are supported in ECO routing.

Large number of violations in one area may indicate a blockage that should be removed. The third-party routing blockages are
generally more tool specific and should be removed.

Troubleshooting
If you have problems with your design, try the following troubleshooting tips:

Check the log file for errors and warnings. Correct the problems and continue routing or reroute, as appropriate. For example,
the router might stop routing automatically if it finds too many violations. If the router stops unexpectedly, check the log file for a
message that the router has reached the maximum number of violations and then set the setNanoRouteMode -
route_detail_auto_stop parameter to false to continue routing.

Verify connectivity and geometry before and after routing and compare results. You can also use the verifyConnectivity
command to check the connectivity.

Save the database after routing and restore it in a new session in the Innovus software. Saving and restoring the database

September 2022 761 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/ecoRoute.html
../innovusTCR/ecoRoute.html
../innovusTCR/setNanoRouteMode.html
../innovusTCR/verifyConnectivity.html

clears temporary data structures in memory.

Issue the defOut command, then defIn, and reroute. The defOut command saves all routing information in DEF and restores a
clean database for routing.

September 2022 762 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Using the NanoRoute Router

../innovusTCR/defOut.html
../innovusTCR/defIn.html

Optimizing Metal Density
Overview

Before You Begin

Adding Metal Fill in the Multiple-CPU Processing Mode

After You Complete Adding Via and Metal Fills

Metal Fill Features

Specifying Metal Fill Parameters

Recommendations for Adding Timing-Aware Metal Fill

Adding Metal Fill Over Macros

Recommendations for Power Strapping Mode

Adding Via Fill

Recommendations for Metal/Via Fill Flow

Recommendations for In-design Sign-off Metal Fill Flow

Signoff Fill - Pegasus Hierarchical Metal Fill

HMF Commands and Parameters

Achieving Gradient Density with Preferred Density Setting

Specifying Metal Fill Spacing Table

Trimming Metal Fill

Trimming Metal Fill for Timing Closure

Verifying Metal Density

Adding Metal Fill Using the GUI

Adding Metal Fill with Iteration

Viewing Metal Density Map in the GUI

September 2022 763 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

Overview
The dielectric layers in chip designs often vary in thickness due to the different patterns of metal on successive metal layers. These
variations reduce yield and impact chip performance. To minimize these, you can add inactive metal segments, called metal fills, to
the open areas of the design. The metal fill makes the topology of the metal layers more uniform, which reduces the variations in
metal density.

The additional metal increases cross-coupling capacitance, however, so it is important to balance the decrease in thickness
variations with the increase in capacitance.

To simplify the estimation of cross-coupling capacitance added by the metal fill, the software adds the metal fill in a staggered
pattern. For more information, see Metal Fill Features.

To minimize cross-coupling capacitance within layers, the software adds the metal fill in the timing-aware mode. For more
information, see Recommendations for Adding Timing-Aware Metal Fill.

In addition, the verifyMetalDensity and verifyCutDensity commands enable you to verify that the metal density of the metal
and cut layers is within the minimum and maximum density values specified by the LEF file or the setMetalFill and setViaFill
 commands, respectively.

The software uses parameters specified in the LEF file or the fill commands to analyze the density and determine the size and
position of the fill. It divides the design into windows and adds metal or cuts to the open areas in each window until the metal and cut
densities meet the density requirements.

You can add the fill to one or more layers at both the chip and block levels.

If you perform additional routing after inserting the fill, you can trim away fill that causes DRC violations.

Before You Begin
Complete detailed routing.

To make sure the metal fill is viewable, select the following options in the main window:

Floorplan or Physical view

Special Net visibility toggle

Metal Fill visibility toggle - To view the Metal Fill visibility toggle, click the All Colors button in the Layer Control window.

For more information on setting object visibility, see The Main Window chapter in the Innovus Menu Reference .

Adding Metal Fill in the Multiple-CPU Processing Mode
You can add the metal fill to the design in the multi-threading mode by running the following command before adding it:

setMultiCpuUsage

For more information on this and other multiple-CPU commands, see the Multiple-CPU Processing Commands chapter in
the Innovus Text Command Reference.

Alternatively, fill in the appropriate parameters on the Options - Set Multiple CPU Usage - Multiple CPU Processing form. (You can
also access this form by clicking the Set Multiple CPU button on the Route -- Metal Fill -- Add -- Add Metal Fill form.)

For more information, see Accelerating the Design Process By Using Multiple-CPU Processing.

September 2022 764 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/verifyMetalDensity.html
../innovusTCR/verifyCutDensity.html
../innovusTCR/setMetalFill.html
../innovusTCR/setViaFill.html
../innovusMR/innovusMRTOC.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/Multiple-CPU_Processing_Commands.html

After You Complete Adding Via and Metal Fills
After adding via and metal fills, extract parasitics and run timing and signal-integrity analysis, as needed. The metal fill and verify
usage is not normally used as sign-off (although it is possible with a strict methodology). In practice, you will still run a final sign-off
script on the full-chip to add any fill inside hard-blocks. Alternatively, you might run a sign-off script at the hierarchical boundaries or
at the die-boundary. In some cases, you may chose to do another extraction with Quantus QRC including the extra fills from GDS of
the sign-off script.

Metal Fill Features
The metal fill has the following features:

It can be square or rectangular.

It can be added in a staggered or non-staggered pattern.

It can be connected to power or the ground (tied-off) or left unconnected (floating).

It can be added in timing aware or non-timing aware mode.

It can be part of the power and ground structure.

Staggered Metal Fill Pattern
The staggered metal fill spreads out the effects of cross-coupling capacitance because the staggered pattern ensures that the metal
fill does not line up on adjacent layers.This pattern is most effective on lightly congested layers. By default, the software adds a metal
fill that is staggered in the preferred routing direction and not staggered in the non-preferred direction. The following figures show
staggered and non-staggered patterns for both rectangular and square metal fills.

A metal fill that is staggered in both directions can also be added. This type of metal fill has a diagonal pattern. It is most apparent
when it is added to the upper layers where there is not a lot of routing. The following figures show a metal fill that is staggered
diagonally:

September 2022 765 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

Connected and Floating Metal Fill
Metal fill segments can be connected (tied-off) to power or ground shapes on adjacent routing layers or left unconnected (floating).
The software creates vias, when it ties off the metal fill, that fit within the area where the metal fill segment overlaps with a power or
ground shape on an adjacent routing layer. It does not create vias that are larger than the overlapped area, or "cross-vias," in which
the via layer is contained within the same layer as the metal fill segment.

By default, the software creates both connected and floating metal fills. It is difficult to tie off all metal fills, therefore, some shapes are
usually left floating. You can minimize the number of floating shapes by including the following parameters when you run the
setMetalFill command:

-removeFloatingFill

-net netNameList

If you remove the floating metal fill, however, it is more difficult to reach the preferred density requirements. In addition, a floating
metal fill has the following advantages over a tied-off metal fill:

1. Lower cross coupling capacitance, especially if you specify short metal fill segments (long metal fill segments behave like they
are really tied off.

2. Easier to trim when there are violations. You can trim a floating metal fill that causes DRC violations with the trimMetalFill
 command. If you add a tied-off metal fill, however, you must either delete it manually to avoid problems with vias or use
fixOpenFill to address isolated fills.

When a tied-off metal fill is trimmed, the vias cause the following problems:

If not deleted, they cause shorts to new wires.

If deleted:

An isolated piece of previously tied-off metal fill might be left after trimming.

If the new routing was added during an ECO in which some layers were frozen, the change might affect a layer that should
have been left frozen.

For more information, see the figures below and "Trimming Metal Fill".

The figures below show a section of a design with a metal fill. In the first figure, the whole metal fill is floating. In the second figure,
some of the metal fill is floating and some is tied off. In the third figure, all of the metal fill is tied off.

September 2022 766 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/setMetalFill.html
../innovusTCR/trimMetalFill.html
../innovusTCR/fixOpenFill.html

 The figures below show the same design after an ECO, in which routing was added on Metal4 and Metal5.

These figures show what happens when you use a floating metal fill. The first figure shows the design with the added routing. The
second figure shows the design after the metal fill is trimmed. The dotted lines show where the metal fill was trimmed.

These figures show what happens when you use a tied-off metal fill. The first figure shows the design with the added routing. The
second figure shows the design after the metal fill is trimmed. The dotted lines show where the metal fill was trimmed.

September 2022 767 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

Timing-Aware Metal Fill
When it adds a timing-aware metal fill, the Innovus software avoids adding the fill near clock and signal nets and adds more near the
power and ground nets.

The software assigns a high cost to adding a metal fill near clock nets, a moderate cost to adding it near signal nets, and zero cost to
adding it near power and ground nets. It adds the fill, based on the cost, to achieve the preferred metal density with the least effect on
timing.

The software adds timing-aware metal fill by default.

To add a non-timing aware metal fill, type the following command:
addMetalFill -timingAware off

To use the Innovus common timing engine (CTE) for static timing analysis (STA), type the following command:
addMetalFill -timingAware sta -slackThreshold value

If the timing graph is already built, the software adjusts the costs as a function of the slack (nets with the worst slack have the

September 2022 768 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

highest cost). For more information, see Timing Analysis.

When you run the software in the STA mode, it assigns costs to four categories of nets:

Clock nets are assigned the highest cost.

Signal nets that have a slack value less than the threshold are assigned a moderate cost. You can use -slackThreshold and -
extraCriticalNet to choose critical signal nets.

Non-critical signal nets are assigned a small cost.

Power and ground nets (nets marked + USE POWER or + USE GROUND in the DEF file) are assigned zero cost.

Specifying Metal Fill Parameters
Some of the metal fill parameters can be specified in the Layer (Routing) section of the LEF file. All the parameters can be specified
by the Innovus metal fill commands or forms. The parameters that can be specified in the LEF file are listed in the table below.

If a parameter is specified in the LEF file, use the specified value. If a parameter is not specified, check the chip manufacturer's DRC
manual for the correct metal fill (or dummy fill) values and specify them manually with the command or form.

The following table lists the metal fill parameters that can be specified in the LEF file and the corresponding Innovus metal fill
parameters:

The Innovus software maintains the values specified for these parameters until you reset them or you restart the software.

Description LEF Statements setMetalFill
Parameter

Setup
Metal Fill
Parameter

Minimum distance between a segment of metal fill and another type of
object in the design, such as a signal wire

FILLACTIVESPACING -

activeSpacing
Active
Spacing

Minimum density allowed in the design MINIMUMDENSITY -minDensity Metal
Density %
Min

Maximum density allowed in the design MAXIMUMDENSITY -maxDensity Metal
Density %
Max

Area the Innovus software uses to examine metal density DENSITYCHECKWINDOW -windowSize Step Size
X
Step Size
Y

Distance the window moves for each metal fill iteration DENSITYCHECKSTEP -windowStep Window
Size X
Window
Size Y

If not specified properly, a metal fill can cause DRC violations and increase capacitance unnecessarily. Parameters
specified by the metal fill commands override parameters specified in the LEF file only if they are more restrictive
than the LEF parameters.

September 2022 769 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

For more information on LEF, see the LEF Syntax section of LEF/DEF Language Reference.

Recommendations for Adding Timing-Aware Metal Fill
Follow the following recommendations for metal fill parameters that specify the preferred density, metal fill shape, the space between
the metal fill segments, and whether to use a metal fill that is connected to special wiring. These parameters are not specified in the
LEF file.

Specify a preferred metal density between 25 percent and 40 percent.
Metal density within this range minimizes the density variation in design windows as well as the impact on added capacitance.
The reduced variation improves correlation with early RC estimates, that is, it gives you faster timing convergence, and
increases yield.

Determining the appropriate metal density is a process of balancing the decrease in density variation with the increase in
capacitance: A density of 35 percent minimizes variation and increases the capacitance by a moderate amount; a density of 25
percent adds less capacitance but does not decrease the variation quite as much.

Insert rectangular metal fill segments rather than square metal fill segments.
You can achieve the preferred metal density with fewer pieces of a rectangular metal fill than with a square metal fill. Adding
rectangular segments reduces the number of flashes on the reticle, minimizes the density variation across the design windows,
and approaches the preferred metal density in more windows.

The following dimensions for rectangular metal fill segments work with most 28 nm and 45 nm process rules:

Length: 0.1 um to 10 um

Width: Use the width specified in the chip manufacturer's DRC manual for the minimum value. Use two to three times that value
for the maximum width.
For example, you can specify the following dimensions:

0.1 um to 1.0 um for thin layers

0.2 um to 2.0 um for thick layers
Alternatively, for lower capacitance at the expense of more density variation, reduce the maximum width to the same value as
the minimum width.

Follow the chip manufacturer's DRC manual for the spacing between metal fill shapes. This is called the gap spacing. The gap
spacing is generally one to three times the minimum metal fill width. The following dimensions for gap spacing work with most
28 nm and 45 nm process rules:

0.1 um for thin layers

0.2 um for thick layers
Alternatively, for lower capacitance at the expense of more density variation, use values like 0.8 um for thin layers and 1.6 um
for thick layers.

Add metal fill to all metal layers or run the verifyMetalDensity command to determine where metal fill is needed.

Use metal fill that is not connected to special wiring.
Unconnected (floating) metal fill adds less capacitance to the design and is easier for postRoute and post-mask changes to
handle than connected (tied-off) metal fill.

Alternatively, you can use tied-off metal fill whenever possible and floating metal fill when tied-off metal fill cannot be created.
Either method is more likely to meet the preferred-metal density requirements than using tied-off metal fill throughout the
design.

September 2022 770 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../lefdefref/LEFSyntax.html
../innovusTCR/verifyMetalDensity.html

Timing-Aware Examples
The following examples specify conservative values for a 28 nm or 45 nm eight-layer design where metal layers 1 through 6 are thin
metal and metal layers 7 and 8 are thick metal.

The following command sets values for the active spacing, window size, window step, minimum density, and maximum density for
all eight layers:

setMetalFill -layer "1 2 3 4 5 6 7 8" -activeSpacing 0.4 \

 -windowSize 100 100 -windowStep 50 50\

 -minDensity 15 -maxDensity 85

The following command sets values for the gap spacing, preferred density, minimum and maximum width, and minimum and
maximum length for the thin-metal layers:

setMetalFill -layer "1 2 3 4 5 6"

 -preferredDensity 35 -gapSpacing 0.2 \

 -minWidth 0.1 -maxWidth 1.0 \

 -minLength 0.1 -maxLength 10.0

The following command sets values for the gap spacing, preferred density, minimum and maximum width, and minimum and
maximum length for the thick-metal layers:

setMetalFill -layer "7 8"

 -preferredDensity 35 -gapSpacing 0.4 \

 -minWidth 0.2 -maxWidth 2.0

 -minLength .2 -maxLength 20.0

The following command adds metal fill to all eight layers:

addMetalFill -layer "1 2 3 4 5 6 7 8 -timingAware sta"

Specifying the Active Spacing Value
The space between metal fill and nonmetal-fill geometries is called the active spacing, as shown in the following figure.

The Innovus software uses the FILLACTIVESPACING value in the LEF file for the active spacing. If FILLACTIVESPACING is not specified,
you can set it manually by using one of the following methods:

Specifying a value for setMetalFill -activeSpacing on the text command line

Note: The setMetalFill -activeSpacing settings are used for creating regular FILLWIRE shapes. For FILLWIREOPC shapes,
design rules are used.

Specifying a value for Active Spacing on the Setup Metal Fill form

If no value is specified in the LEF file, and you do not specify one manually, the software uses 0.6 microns for thin layers (less than
0.24 microns) and 0.8 microns for thick layers as the default active spacing value.

The default active spacing value is usually large enough that you can avoid using Optimal Proximity Correction (OPC) for the metal
fill shapes. In addition, the default active spacing minimizes the increase in cross-coupling capacitance caused by the metal fill,
which in turn reduces the additional timing delay.

As you increase the active spacing value, you reduce the space available for metal fill. A large increase--for example, 1 um to 2 um
for a 28 nm or 45 nm process--might prevent you from meeting the minimum density rule for some windows.

September 2022 771 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

Adding Metal Fill Over Macros
For adding metal fill to macros, the added metal fill is based on the recalculated metal density for that metal layer. If the added fill is
less than the preferred metal density (the default is 35 percent), the software tries to add metal fill shapes on that metal layer to meet
the preferred density goal. Otherwise, it does not add any metal fill shapes.

For better metal density accuracy, use the LEF DENSITY table--a list of rectangles with metal density numbers. These rectangles
cover the entire macro bounding box for that metal layer. The rectangles are defined in the MACRO section of the LEF file and are
honored by the addMetalFill and verifyMetalDensity commands. To force addMetalFill to place correct metal fill shapes for a
layer, place obstructions on the layer to block areas where metal fill should not be placed.

The DENSITY rectangles on a layer should not overlap and should cover the entire area of the macro. Choose the size of the
rectangles based on the uniformity of the density of the block. If the density is uniform, a single rectangle can be used. If the density is
not uniform, the size of the rectangles can be specified to be 10 to 20 percent of the density window size, so that any error due to
non-uniform density inside each rectangle area is small.

For ex ample, if the metal density rule is for a 100um x 100um window, the density rectangles can be 10um x10um squares. Any
non-uniformity will have little impact on the density calculation accuracy.

If two adjacent rectangles have the same or similar density, they can be merged into one larger rectangle, with one average density
value. The choice between accuracy and abstraction is left to the abstract generator.

The DENSITY table syntax is:

[DENSITY

 {LAYER layerName ;

 {RECT x1 y1 x2 y2 densityValue ;} …

 } …

END] …

For more information on LEF MACRO DENSITY, see the 'Macro' section of the LEF Syntax chapter in the LEF/DEF Language
Reference.

Note: If you want to ignore the MACRO DENSITY table in the LEF file, you can specify the -ignoreLEFDensity parameter with
the addMetalFill and verifyMetalDensity commands. When -ignoreLEFDensity is specified,
the addMetalFill and verifyMetalDensity commands use the default macro density calculation method for considering the density.

Estimating Density of Blockage
The attribute of a routing blockage declares its purpose; and the purpose, in turn, determines how the density of blockage is
interpreted.

A routing blockage can have the following attributes:

FILL - A blockage on the specified layer to block metal fill insertion. A FILL blockage is created to hold white place where metal
fill cannot be inserted. The density of a FILL blockage is calculated as 0, but the other objects under a FILL blockage are
accounted with real density.

PUSHDOWN - A routing blockage with no SPACING or DESIGNRULEWIDTH (DRW) that is pushed down with
+PUSHDOWN. This blockage requires wide-wire spacing as PUSHDOWN shapes are treated as real shapes. The density of
the blockage is calculated as 100% because it is considered as a real shape.

PUSHDOWN with SPACING/DRW - By default, the possibility of wide wires added to a top-level blockage area is avoided. If
you want less space for a routing blockage inside the sub-block, you can manually attach a DRW value to the top-level routing
blockage. The density of the blockage is calculated as preferred density, which is defined in LEF or specified with
setMetalFill command. It is assumed that there is no wide wire under a PUSHDOWN with SPACING/DRW blockage.

Blockage without attribute - A blockage without attribute is used to block insertion of any shapes in areas that are used by top
level routing or are booked for later steps. The density of the blockage is calculated as preferred density, which is defined in

September 2022 772 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/addMetalFill.html
../innovusTCR/verifyMetalDensity.html
../lefdefref/LEFSyntax.html
../innovusTCR/setMetalFill.html

LEF or specified with setMetalFill command because it is supposed that the area is used by routing wires.

Estimating Density of BLOCK Cell
If no macro density table is defined in LEF, the macro density is estimated as follows. Consider an instance represented by the
outlined rectangle below:

In the instance, A is empty area which is defined by overlap OBS, B is the OBS area, and C is instance pin area. The density of
these area is calculated as A=0, B=Preferred density, C=100%.

Based on the above assumption, the following formula is used to estimate the macro density.

If verifyMetalDensity Area ratio > 0.5, A and B are considered as preferred density, C is considered as 100%.

If verifyMetalDensity Area ratio <= 0.5, A and B are considered as 0, C is considered as 100%.

If OBS is outside of overlap area or macro boundary, the density of OBS is considered as 0.

If overlap is outside of macro boundary, the density of overlap is considered as 0.

If no OBS/PIN/OVERLAP in the macro area, the density is considered as 0.

If OBS or PIN is defined on some layers, it means the layers are used by macro. By default, the macro area should not be inserted
with metal fill without -onCell option. With -onCell option, the metal fill can be inserted in macro area but the metal fill should not
touch the OBS/PIN shapes.

If no OBS or PIN is defined on a layer, the layer is not used by macro. By default, the macro area should be inserted with metal fill
without -onCell option.

Recommendations for Power Strapping Mode
In power strapping mode, the software makes mesh connections to power and ground bus wiring, instead of the tree-type
connections used in regular connected mode. This configuration allows the metal fill shapes to carry current as part of the power and
ground structure. Power strapping uses the maximum possible number of cuts in vias, based on the intersection area between
layers, instead of using the minimum-cut based connections used in regular connected mode.

To get the best results in power strapping mode, follow these recommendations:

Use longer maximum lengths (at least 100 um).
Longer lengths increase the number of times a single metal fill shape intersects with the existing power/ground mesh.

Use higher values for preferred density (40 percent to 50 percent).
Higher preferred density increases the number of metal fill segments retained as candidates for power strapping.

Use wider metal fill

Adding Via Fill
When it adds via fill, the Innovus software does the following:

September 2022 773 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/verifyMetalDensity.html

Attempts to add vias that meet cut density requirements

Uses metal width and spacing values specified by the setMetalFill command (or Set Metal Fill form) to determine size and
allowed placement locations

Adds either tied-off or floating vias until the preferred cut density is met

In tied-off vias, either the top or bottom layer is connected to power or ground.

Floating vias are not connected to power or ground.
Floating vias could be inserted between floating metal fills or in white space.

Use the fill commands in the following recommended order:

1. setViaFill

2. setMetalFill

3. addViaFill

4. addMetalFill

Note: You can use the verifyMetalDensity and verifyCutDensity commands to verify that the metal density of the metal layers
and cut layers is within the minimum and maximum density values specified by the setMetalFill and setViaFill commands,
respectively.

Recommendations for Metal/Via Fill Flow
In the recommended flow, the software adds via fill to free space prior to adding other metal fill shapes. It does not connect via fill to
metal fill.

Use the fill commands in the following order:

1. Set via and metal layer parameters.
setViaFill -layer "Via23" -windowSize 50 50 -windowStep 25 25 -minDensity 0.005 -maxDensity 30 ...

setMetalFill -layer "Metal2 Metal3" -activeSpacing 0.4 -gapSpacing 0.1 -maxWidth 0.1 -maxLength 10 -windowSize

50 50 -windowStep 25 25 -minDensity 15 -maxDensity 85 ...

You also can specify the parameters in the GUI using the Setup Metal Fill Options and Setup Via Fill Options forms.
The addViaFill and addMetalFill commands will honor the setting to add via and metal fill.

2. Add via fill with specified options.

addViaFill -layer "Via23" -mode floatingOnly -area "0 0 100 100"

This will add via fill in white space to meet the via density requirements according to the specified rules. Via fill can be
connected to power or ground nets (tied off) or unconnected (floating). Via fill cannot be connected to signal nets.

To get the best results from via fill, add it before adding metal fill. You can minimize the need for via fill by inserting multiple-
cut vias with the NanoRoute router prior to adding via fill. For information, see setNanoRouteMode.

September 2022 774 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/setMetalFill.html
../innovusTCR/setViaFill.html
../innovusTCR/setMetalFill.html
../innovusTCR/addViaFill.html
../innovusTCR/addMetalFill.html
../innovusTCR/verifyMetalDensity.html
../innovusTCR/verifyCutDensity.html

3. Add metal fill with specified options.

addMetalFill -layer {Metal2 Metal3} -area 0 0 100 100 -stagger on -timingAware sta -onCells -net {VDD VSS} -

mesh

This will insert inactive metal into white space to achieve the metal density that is required by a specific manufacturing process.
However, the inactive metals do not touch any other metal fill.

Innovus now provides an alternative flow in which the software adds metal fill to free space prior to adding via fill shapes. It can
connect metal fill with special via fill. In this alternative flow, you:

1. Set metal layer parameters.

setMetalFill -layer "Metal2 Metal3" -activeSpacing 0.4 -gapSpacing 0.1 -maxWidth 2.0 -maxLength 10 -decrement 2

-diagOffset 0.4 0.4 -windowSize 50 50 -windowStep 25 25 -minDensity 15 -maxDensity 85 ...

2. Add metal fill with specified options.

addMetalFill -layer {Metal2 Metal3} -excludeVia Dvia -net {VDD VSS} -area 0 0 100 100 -stagger on -timingAware

sta -onCell -mesh

September 2022 775 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

This step inserts inactive metal into a placed and routed design to achieve the required metal density according to the specified
parameters. The software attempts to connect metal fill to the first net in the list, then the next net, and so on. However, the Dvia
should not be used to connect to special nets. If the metal fill cannot connect to special nets, keep them floating.

3. Set via layer parameters.
setViaFill -layer "Via23 " -windowSize 50 50 -windowStep 25 25 -minDensity 0.005 -maxDensity 30 ...

The parameters honor settings in the following order:

a. setViaFill

b. setMetalFill

c. LEF

d. Manufacture process default

4. Add via fill with the specified options.
addViaFill -layer "Via23" -area "2 4 6 8" -mode {floating connectToPG connectBetweenFill} -includeVia Dvia

This connects the floating metal fill with the special Dvia to meet the via density requirements.

Recommendations for In-design Sign-off Metal Fill Flow
In the recommended flow, the software calls the Pegasus/PVS engine to insert sign-off metal fill in design. The metal fill near critical
nets can be trimmed for timing closure.

Use the fill commands in the following order:

1. Insert sign-off metal fill in design.

September 2022 776 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

Before inserting sign-off metal fill, stream out a GDSII stream file of the current database. Specify the mapping file and units that
match with the rule deck you specify while inserting metal fill. If necessary, include the detailed-cell Graphic Database System
(GDS).

Note: Prepare the mapping file to align with the rule deck layer definition. Use the same unit as the rule deck.

If using Pegasus:

streamOut -mapFile $gds_map -outputMacros -units $gds_unit pegasus.fill.gds

run_pegasus_metal_fill calls the Pegasus engine to insert metal fill and then dump the metal fill in Innovus. The DEF
mapping file is required to ensure that the metal fill is put in the correct layers. The top cell name is also required.

run_pegasus_metal_fill -ruleFile $MF_RULE_DECK -defMapFile $def_out -gdsFile pegasus.fill.gds -cell $top_cell

If using PVS:

streamOut -mapFile $gds_map -outputMacros -units $gds_unit pvs.fill.gds

run_pvs_metal_fill calls the PVS engine to insert metal fill and then dump the metal fill in Innovus. The DEF mapping file is
required to ensure that the metal fill is put in the correct layers. The top cell name is also required.

run_pvs_metal_fill -ruleFile $MF_RULE_DECK -defMapFile $def_out -gdsFile pvs.fill.gds -cell $top_cell

2. Analyze the timing impact by metal fill.

After the metal fill is inserted, run timeDesign to check the timing.

timeDesign -postRoute -outDir postfill

If the timing result is acceptable, the metal fill step is complete.

3. Trim metal fill for timing closure.

If the inserted metal fill impacts timing, use trimMetalFillNearNet to trim the metal fill near nets for timing closure.

You can trim the same and upper/bottom layer metal in timing aware mode. Use -layer to specify the layers on which metal
can be trimmed. The spacing between metal fill and critical nets can be specified with the three spacing options. You can
specify different spacing for different slack net with multi-pass trimming.

You can specify the critical net with the -net option. You can also specify the slack threshold. If you do so, the tool decides the
critical net list with the slack threshold.

If the minimum metal density needs to be controlled, specify the window size and step. The metal density can then be
calculated with window setting.

a. Set metal fill parameters

setMetalFill -minDensity 10 -maxDensity 85 -preferredDensity 35 -windowStep 62.5 62.5 -windowSize 125 125

September 2022 777 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/timeDesign.html
../innovusTCR/trimMetalFillNearNet.html

If the minimum density target is specified, trimming stops as soon as the minimum density is achieved. If you do not
specify a minimum density target, metal fill is trimmed with the specified spacing.

b. Trim the metal fill near more critical nets with bigger spacing.

trimMetalFillNearNet -createFillBlockage -slackThreshold $slack1 -spacing 1.0 -spacingAbove 1.0 -
spacingBelow 1.0 -minTrimDensity $min_density

c. Trim the metal fill near less critical nets with comparatively smaller spacing.

trimMetalFillNearNet -createFillBlockage -slackThreshold 0.0 -spacing 0.4 -spacingAbove 0.4 -spacingBelow

0.4 -minTrimDensity $min_density

4. Analyze the timing impact after trimming metal fill.

timeDesign -postRoute -outDir posttrimfill

If the timing result is still not acceptable, repeat Step 3 until timing closure.

Note: Innovus metal fill does not support 20nm and below node design rules. We strongly recommend the Pegasus/PVS metal fill
solution for 20nm and below. If you have sign-off metal fill rule deck for 28nm and above available, we recommend you to move to
Pegasus/PVS solution too.

Signoff Fill - Pegasus Hierarchical Metal Fill
The recommended flow to signoff fill within Innovus is based on the Hierarchical Metal Fill (HMF) model, which uses the Pegasus
signoff fill rule file. HMF does not support fill with external tools (OT).

HMF provides unified metal fill database across Innovus, Pegasus, and Quantus, and offers the following features:

Lesser data storage requirement and memory footprint.

Lower runtimes at every stage of:

Metal fill generation

Final streamOut

saveDesign/restoreDesign

Utilities that help reduce the turnaround time through:

Timing aware setup

Trim fill function integrated into flow to recover timing

Incremental fill after ECO

Window-based editing of fills

Background run to release Innovus licenses during Pegasus fill

trimMetalFillNearNet does not check DRC rules. It only removes the metal fill with specified spacing. Do not perform
ECO operations after dump in sign-off metal fill, especially, at 20nm and below nodes. The sign-off metal fill typically
does not cause DRC issues with regular wires. If you perform an ECO action, the tool cannot get DRC clean because
trimMetalFill does not support 20nm and below node design rules.

September 2022 778 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/trimMetalFillNearNet.html
../innovusTCR/trimMetalFill.html

Run extraction and timing seamlessly

The following figure explains the HMF flow:

HMF Commands and Parameters
Metal Fill

set_metal_fill_signoff_mode: Sets fill, streamOut, and trim parameters.

get_metal_fill_signoff_mode: Returns fill, streamOut, and trim parameters.

add_metal_fill_signoff: Runs the signoff metal fill flow to generate HMF.

Following are the HMF-related parameters of these commands:

Parameter Description

-fill Runs signoff metal fill on the current database view and generates HMF.

-incremental Runs incremental metal fill post ECO and updates HMF.

-trim Trims metal fill for the specified nets or slack, and updates HMF.

-delete_fill Selectively deletes metal fill and updates HMF.

-flatten Selectively flattens metal fill into Innovus in editable mode for DRC/Density/Timing.

-merge_fill_edits Merges metal fill edits into HMF.

-view_fills Allows viewing metal fill in Innovus in the read-only mode.

September 2022 779 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

Stream-out and Extraction

streamOut –pvs_fill: Merges the HMF use-mode FILLONLY data attached to the current database into the output GDS file
and instantiates the PVS top fill cell inside the top design cell.

setExtractRCMode –pvs_fill true: Reads-in HMF during extraction/timing.

Save and Restore

saveDesign: Saves the Innovus database with HMF under *.enc.dat/.

restoreDesign: Restores the Innovus database and is aware of HMF, if it exists.

Running -fill in Background Mode/Launching Fill Job on LSF

To launch fill job on LSF and run -fill in the background mode without locking the Innovus license, use the -bg parameter as
shown below:

add_metal_fill_signoff -fill -bg -temp_working_dir working_dir

To check the status of -bg, run:

add_metal_fill_signoff -check_bg_run working_dir

To restore the successfully completed -bg, run:

add_metal_fill_signoff -load_fill_db working_dir

To kill -bg, run:

add_metal_fill_signoff -kill_bg_run working_dir

To submit a background job on LSF, set resource string before launching Innovus by running the following commands:

setenv DP_LSF_RESOURCE ‘resource_string_for_slave’

setenv MASTER_LSF_RESOURCE ‘resource_string_for_master’

add_metal_fill_signoff -fill -bg -lsf -temp_working_dir work_dir

Or:

add_metal_fill_signoff -fill -bg -master_lsf -lsf -temp_working_dir work_dir

For detailed description about HMF, its usage, syntax, examples, and Stylus mode, see Cadence Pegasus User Guide.

Achieving Gradient Density with Preferred Density Setting
To prevent density in neighboring regions from varying too much, the addMetalFill targets a preferred density. This minimizes the
variation in density from window to window. You can set the parameters as follows:

-minDensity 15 -maxDensity 85 -preferredDensity 35

addMetalFill -layer {Metal1 Metal2 Metal3}

The metal fills are inserted into white space to meet the preferred density. When the metal density in a window is less than the
minimum metal fill density value, addMetalFill adds metal fill to achieve a density slightly above the preferred density, if possible. If
the density is larger than maximum density after it pre-calculates the window density, no metal fills are inserted into the design. The
metal fills are inserted based on the preferred density in all windows. This way, the density variation from window to window is
minimized.

The windowStep parameter can be used to get further global uniformity. With this parameter, the metal densities in the window are
calculated and changed by step as shown in the diagram.

September 2022 780 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/addMetalFill.html

When add metal commands are applied, the engine calculates the Window_1 density and tries to insert metal fill until the window
density reaches the preferred density target. When Window_1 is finished, the engine moves to the next window. The window step is
specified in setMetalFill command. Note that half of Window_2 overlaps with Window_1. This means when Window_2 density is
calculated, half of Window_1 is considered in Window_2. In other words, Window_1 and Window_2 have mutual influence on each
other. After Window_2 is finished, the engine moves to Window_3. Window_3 has half part overlapping with Window_2 and one-
fourth part overlapping with Window_1. Metal fill is inserted in the remaining windows using a similar method.

For each 25*25 window step, the window density is cross-locked with the adjacent window steps (labeled 1, 2, 3, and 4 in the
diagram).

The engine calculates the window densities (1, 2, 3, 4 - Size 100*100) and tries to insert metal fill in it. The window step (size 50*50)
is considered in it respectively. This way, sudden changes in density between adjacent windows are smoothed out.

Specifying Metal Fill Spacing Table
During an Engineering Change Order (ECO) on a verified database with metal fill, NanoRoute routing sometimes creates shorts and
spacing violations. To resolve these violations, you would need to further add and trim metal fill. However, as the original database
was already verified for metal fill density and timing, you would want the changes to the database to be small and local with as less
impact to the original database and existing metal fill as possible.

In such cases, you can use the setMetalFillSpacingTable command to specify the spacing table based on existing metal fill
width. The spacing table includes the following spacing values:

Fill to active spacing

September 2022 781 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/setMetalFill.html
../innovusTCR/setMetalFillSpacingTable.html

Fill to fill spacing

Fill to OPC spacing

OPC to OPC spacing

OPC to active spacing

As trimMetalFill honors the spacing table, you can then run trimMetalFill to trim metal fill and get expected spacing.

Note: If no spacing table is specified, trimMetalFill honors the setMetalFill settings for -activeSpacing and -gapSpacing.
If setMetalFill values are also not specified, trimMetalFill uses the default settings.

Here are some examples that demonstrate how to specify spacing table for trimming metal fill:

Fill to active spacing table

The following set of commands specify the spacing table for fill to active spacing (as given below) and trim metal fill
accordingly:

setMetalFillSpacingTable -layer {2} -fill_to_active {{0.08 0.27}{0.14 0.36}{0.32 0.63}}

trimMetalFill -layer 2

The software checks the existing metal fill with the specified spacing table. If no violations are detected, existing metal fill is
retained. If the existing metal fills have activeSpacing violations, trimMetalFill uses the fill_to_active spacing table to trim
metal fill.

Sample output is as follows:

*** START TRIM METALFILL *** (CPU Time: 0:00:00.0 MEM: 558.359M)

Number of metal fills with spacing or/and short violations:4920

Total number of deleted metal fills: 4920

Total number of added metal fills: 4779

(CPU Time: 0:00:01.2 MEM: 558.359M)

*** END OF TRIM METALFILL ***

Fill to fill spacing table

The following set of commands specify the spacing table for fill to fill spacing (as given below) and trim metal fill accordingly:

Layer minWidth (=>) maxWidth (<=) activeSpacing (>=)

2 0.32 0.63

2 0.14 0.32-1MFG 0.36

2 0.08 0.14-1MFG 0.27

Layer minWidth (=>) maxWidth (<=) gapSpacing (>=)

3 0.32 0.6

September 2022 782 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/trimMetalFill.html
../innovusTCR/trimMetalFill.html

setMetalFillSpacingTable -layer {3} -fill_to_fill {{0.08 0.2}{0.14 0.3}{0.32 0.6}}

trimMetalFill -layer 3

The software checks the existing metal fill with the specified spacing table. If no violations are detected, existing metal fill is
retained. If the existing metal fills have gapSpacing violations, trimMetalFill uses the fill_to_fill spacing table to trim metal
fill.

Sample output is as follows:

*** START TRIM METALFILL *** (CPU Time: 0:00:00.0 MEM: 559.441M)

Number of metal fills with spacing or/and short violations:6119

Total number of deleted metal fills: 6119

Total number of added metal fills: 6022

(CPU Time: 0:00:01.0 MEM: 560.602M)

*** END OF TRIM METALFILL ***

OPC to active spacing table

The following set of commands specify the spacing table for OPC to active spacing (as given below) and trim metal fill
accordingly:

setMetalFillSpacingTable -layer {3} -opc_to_active {{0.05 0.08}{0.08 0.1}{0.1 0.12}}

trimMetalFill -layer 3

When required, you can use the getMetalFillSpacingTable command to print specified or all spacing tables used by trimMetalFill.

 Trimming Metal Fill
The automatic routers, including the NanoRoute® router, ignore metal fill (FILLWIRE and FILLWIREOPC) shapes and might create
routes that cause shorts or DRC violations.

The following case illustrates the DRC violation after NanoRoute ECO. You can use trimMetalFill to clean the violations
according to user setting, LEF setting, and default parameters.

trimMetalFill -deleteViol

3 0.14 0.32-1MFG 0.3

3 0.08 0.14-1MFG 0.2

Layer minWidth (=>) maxWidth (<=) opcActiveSpacing (>=)

3 0.1 0.12

3 0.08 0.1-1MFG 0.1

0.05 0.08-1MFG 0.08

September 2022 783 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/trimMetalFill.html

This command deletes metal fill shapes that cause DRC violations or shorts. After running the trimMetalFill command, the
remaining shapes are still rectangles.

This means you need not delete the metal fill before ECO and then add it again after ECO. Instead, you can trim metal fill in the
window that has been impacted by ECO. trimMetalFill can minimize the impact caused by the ECO on the timing of other paths
(due to cross-coupling changes) that were not involved in the ECO.

To remove the shorts and violations, complete the following steps:

To remove floating metal fill that causes shorts or violations, run the following command:
trimMetalFill [-deleteViol] [-ignoreSpecialNet]

This command repairs violations caused by the metal fill shapes. If the metal density drops below the target after trimming
the metal fill, re-run the addMetalFill command.

The trimMetalFill command trims metal and via fill shapes based on the following spacing rules:

Between FILLWIRE and FILLWIREOPC shapes, the active spacing value or minimum spacing based on DRC rules,
whichever is larger, is required.

Between FILLWIRE shapes, the gap spacing value or minimum spacing, whichever is larger, is required.

Between FILLWIREOPC and active shapes, the OPC active spacing value or minimum spacing, whichever is larger, is required.

Between FILLWIREOPC shapes, minimum spacing is required.
For more information, see trimMetalFill.

To specify the layers that you want to trim to fix DRC violations, use the -layer parameter of the trimMetalFill command. For
example, to trim metal fill in METAL2 and METAL3 layers, use the following command:
trimMetalFill -layer {METAL2 METAL3}

Note: This option is recommended for use with only floating metal fill. If you use trimMetalFill -layer on tied-off fill shapes,
some of the shapes may become isolated from the Power/Ground network.

To limit the area that in which metal fill is trimmed, use the -area parameter of the trimMetalFill command. This option is
recommended for use with only floating metal fill. If you use trimMetalFill -area on tied-off fill shapes, some of the shapes
may become isolated from the Power/Ground network.

To remove connected metal fill, complete the following steps:

a. Trim metal fill.

b. Fix isolated fill issues with fixOpenFill. You can choose to either change isolated PG fills to floating fill or remove isolate
fills (fixOpenFill -remove). If you choose to remove the isolated fills, you can then add metal fill incrementally to see if
any of those islands can be tied either to the same or another PG rail.

For information on FILLWIRE and FILLWIREOPC, see 'Shape' in the DEF Syntax chapter of the LEF/DEF Language Reference.

September 2022 784 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../lefdefref/DEFSyntax.html

(FILLWIREOPC is not supported by LEF 5.6.)

Trimming Metal Fill for Timing Closure
The metal fill (FILLWIRE and FILLWIREOPC) shapes potentially impact the timing if the metal fills are close to the critical nets. Although
Innovus provides timing-aware metal fill solution, you could also use post-fill trimming to improve the timing result. If you load third-
party metal fill in Innovus with defIn, you could rely on the post-fill trimming for timing closure.

In the following diagram, if you insert metal fill in the red area to meet the metal density requirements, it may impact timing. Use
trimMetalFillNearNet to trim the metal fill if the timing impact is high.

To specify critical nets:

Specify the net list with -net.

Use -clock to specify that metal fill should be trimmed around all clock nets.

Use -slackThreshold to specify the slack threshold. All the nets whose slack value is less than the specified threshold are
identified as critical nets.

To specify the spacing for trimming:

Use -spacing to specify the distance to be kept around critical nets in the same layer when trimming fill.

Use -spacingAbove to specify the distance to be kept around critical nets for the top layer.

Use -spacingBelow to specify the distance to be kept around critical nets for the bottom layer.

To prevent incremental metal fill close to the critical nets:

Use -createFillBlockage to create fill blockage after trimming metal fill. The fill blockage prevent metal fill in incremental
steps.

To prevent minimum density issues when trimming:

Set density parameters before running the trimMetalFillNearNet command.
Use the -minTrimDensity parameter to specify the minimum density value. Innovus calculates the metal density while trimming
metal fill. If the metal density is less the minimum density, trimming stops.

The following example illustrates how to use the trimMetalFillNearNet command.

1. Set metal fill parameters.
setMetalFill -minDensity 10 -maxDensity 85 -preferredDensity 35 -windowStep 62.5 62.5 -windowSize 125 125

2. Trim metal fill with larger spacing near more critical nets.
trimMetalFillNearNet -createFillBlockage -slackThreshold $slack1 -spacing 1.0 -spacingAbove 1.0 -spacingBelow
1.0 -minTrimDensity $min_density

3. Trim metal fill with comparatively smaller spacing near less critical nets

September 2022 785 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/trimMetalFillNearNet.html

trimMetalFillNearNet -createFillBlockage -slackThreshold 0.0 -spacing 0.4 - spacingAbove 0.4 -spacingBelow 0.4 -
minTrimDensity $min_density

The diagram below shows that the upper layer metal fill is trimmed.

Verifying Metal Density
After adding or trimming metal fill, use the Verify Metal Density and Verify DRC features to verify that the metal fill has been added
correctly.

Ensure that the minimum, preferred, and maximum density values and window size and step are defined in the default iteration
name. verifyMetalDensity uses the setMetalFill settings from the default iteration name. The default iteration name settings
are the settings used when setMetalFill is run either without the -iterationName parameter or with -iterationName default. If
these settings are not available, verifyMetalDensity uses the LEF settings. If the LEF settings are not
available, verifyMetalDensity uses the internal default values for verifying density.

For more information, see the "Verify Commands" chapter of the Innovus Text Command Reference.

September 2022 786 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/verifyMetalDensity.html
../innovusTCR/setMetalFill.html
../innovusTCR/verifyMetalDensity.html
../innovusTCR/violationBrowserReport.html

Adding Metal Fill Using the GUI
1. Determine the minimum and maximum size for metal fill shapes for each layer, then set these values on the Size &

Spacing page of the Setup Metal Fill form.

If you are using rectangular metal fill, use the Rectangle Length and Metal Fill Width values.

If you are using square metal fill, use the Metal Fill Width and Square Decrement values.

2. Determine the spacing around metal fill shapes for each layer, then set the value on the Size & Spacing page of the Setup
Metal Fill form. You must set two types of spacing values:

Spacing between a metal fill shape and an active metal shape. An active metal shape can be a signal wire, a power wire,
a cell, a pin, or any other structure that is not classified as a fillwire.

Spacing between a metal fill shape and another metal fill shape.

3. Determine the minimum, maximum, preferred, and external metal density for each layer, then set these values on the Window
& Density page of the Setup Metal Fill form.

4. Use the Verify Metal Density form to create a Verify Density report.

5. Locate an area in the design for which metal density is too low, then select that area on the Add Metal Fill form.

6. Determine whether you want metal fill to be square or rectangular, then choose the appropriate value on the Add Metal Fill
form.

7. Click OK or Apply on the Add Metal Fill form to add metal fill shapes to the area that you specified.

Adding Metal Fill with Iteration
Metal fill can be added iteratively with different parameter settings. You can specify a name for a set of values for setMetalFill
 parameters.

setMetalFill -iterationName file_step1 -layer Metal1 -minDensity 15 -windowSize 100 100 -windowStep 50 50

You can also save the iteration file using GUI. To do so, open the Setup Metal Fill Options form, specify the parameters in the form,
key in a file name, such as file_step1 , in the Iteration Name text box, and click OK.

The window size and step must be the same for all iterations of a specific layer. For example, the following specifications are NOT
allowed because the values are not consistent:

September 2022 787 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/setMetalFill.html

setMetalFill -iterationName file_step1 -layer Metal1 -minDensity 15 -windowSize 100 100 -windowStep 50 50

setMetalFill -iterationName file_step2 -layer Metal1 -minDensity 15 -windowSize 50 50 -windowStep 25 25

setMetalFill -iterationName file_step1 file_step2 -layer Metal1

If you want to specify different window size and step when adding metal fill, you need to run addMetalFill in separate steps. In the
following example, the specified values for -windowSize and -windowStep in step1 , step2 , and step3 are different:

setMetalFill -iterationName step1 -layer -windowSize 100 100 -windowStep 50 50

setMetalFill -iterationName step2 -layer -windowSize 100 100 -windowStep 50 50

setMetalFill -iterationName step3 -layer -windowSize 50 50 -windowStep 25 25

Here, you can run addMetalFill for the first two steps in a single iteration. However, you must run step3 in a separate iteration
because its window size and step values are different from those of step1 and step2. Use addMetalFill -iterationNameList to
add the metal fill using the stored set of parameters:

addMetalFill -iterationNameList {step1 step2} ...

addMetalFill -iterationNameList step3 ...

addMetalFill -layer {Metal1 Metal2 Metal3} -area 0 0 100 100 -nets {VDD VSS} -iterationName step1 step2

You can also do the same through the GUI by using the Route - Metal Fill - Add command.

Key in the existing file list in Iteration Name List text box in the Add Metal Fill form and then click OK.

The engine processes the iterations in the order listed and stops when the preferred density is reached in any iteration.

September 2022 788 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/addMetalFill.html

Viewing Metal Density Map in the GUI
You can generate the metal density report file containing the metal density violation information and view it in the GUI. For this, you
need to use the -report parameter of the verifyMetalDensity command. For example, the content of the metal density report file
is:

Run the following commands to check the metal density of all layers and view the metal density map in the GUI:

verifyMetalDensity -saveToDB

verifyMetalDensity -report reportName.rpt

Note: Before running the above commands, you need to set the same values for setMetalFill -windowSize and setMetalFill -
windowStep. Otherwise, the display of metal density is overlapped.

The output of the above commands is:

Additionally, the metal density map is displayed in the GUI with a layer control on the color panel, and the Legend check box on the
left, as shown below:

Metal Density Window Size

M1 11.14 (0 0) (10 10)

M1 8.96 (0 10) (10 20)

M1 8.96 (10 0) (20 10)

M1 8.96 (10 10) (20 20)

September 2022 789 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

../innovusTCR/verifyMetalDensity.html

To modify the color range, slide up or down the color range slider, as highlighted below:

The following figure depicts the metal density map for Metal Layer 3:

September 2022 790 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

The following figure depicts the metal density map for Metal Layer 2:

Select the Legend check box on the Metal Density Map bar to see the legend on the layout.

September 2022 791 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

Use the drop-down menu next to Legend to change the location of the legend. Here, ne means north east, nw means north west and
so on.

September 2022 792 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Optimizing Metal Density

Flip Chip Methodologies
Overview

Related Packaging Tools

Before You Begin

Using This Chapter

Related Flip Chip Information

Flip Chip Flow in Innovus

Introduction to Flip Chip Methodology

SiP Bump Flow

Reducing Data Size for SiP Import (Bypass Flow)

Testing the Package Routing Feasibility

Area I/O Flow

AIO Command Flow

Routing Bumps to I/O Driver Cells (Hierarchical AIO Flow)

Peripheral I/O Flow

PIO Flow Steps

PIO Command Flow

Flow Methodologies

Innovus-driven Floorplaning

Package-driven Floorplaning

Co-design-driven Floorplaning

Data Preparation

LEF

RDL Layer

BUMP

I/O Pad

Hard Macro

CLASS BUMP Attribute

NETLIST

Signal Pads

Power and Ground Pads

Flip Chip Floorplanning

Bump Creation and Assignment

Bump Creation

Bump Assignment

September 2022 793 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Port Numbering Approach in Assignment

Bump Assignment Optimization

Manual Bump Assignment Optimization

Using Bump Assignment Constraints

Viewing Flip Chip Flightlines

Automatic Redraw Feature

Selection-Based Highlighting

Colored Flightlines

Object-Specific Flightlines

DIFFPAIR-Based Highlighting

viewBumpConnection Display Rules

Example 1: Design has only one bump, bump_vdd, for VDD

Example 2: Design has multiple bumps for VDD

Long Pin Connection Display

Power Planning in Flip Chip Design

RDL Routing

Introduction

Useful Constraints for Flip Chip Routing

Global Constraints

SPLIT Constraint

NETS Constraint

Differential Routing Constraint

Match Routing Constraint

Shielding Routing Constraint

PAIR Constraint

Resistance Driven Constraint

Tapering Feature

SHARE_FIND_PORT Constraint

SHARE_IGNORE_* Constraints

Constraint for Restricting the Bump Escape Direction

Useful Extra Configurations for Flip Chip Routing

Power Routing

Connect PG Bumps to I/O Pads

PG Bumps Connect to Rings or Stripes

ECO Routing

P2P Router

September 2022 794 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Setting Up the P2P Router

Handling Flip Chip Designs with Complex Floorplans

Flip Chip Router Report

Format Definitions

Advanced Flip Chip Features

Two-Layer RDL Routing

Routing Bumps in the eWLB Process

Pillar Bump Support

fcroute Bus Routing for DDR3

RDL Extraction

SI and Timing Analysis

September 2022 795 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Overview
Flip chip is a methodology for placing I/O bumps and driver cells over the entire chip area in either a boundary (peripheral I/O) or
core (area I/O) configuration. The Innovus™ Implementation System flip chip design handles bump arrays, I/O drivers, electrostatic
discharge cells (ESDs), and routing information. Power, ground, and signal assignments are made after the bumps are placed.

Note: Flip chip is sometimes referred to as area I/O placement in Innovus documentation. Area I/O placement is a subset of flip chip.

Related Packaging Tools
Allegro® Package Designer (APD) and Allegro® SiP Digital Layout are related packaging tools that interface with flip chip. You
must have a separate license to run APD. The documentation for APD is provided in the Allegro® Package Designer User Guide
available on SourceLink.

To check the package routing from the bump array, use the APD/SiP tool.

September 2022 796 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Before You Begin
Before using flip chip, the following information is required:

Parameter data for:

Bumps

I/O drivers

Using This Chapter
The flows in this chapter include steps with examples of how to use flip chip.

For general flip chip flow information, see Flip Chip Flow in Innovus.

For information on a specific type of flow, see one of the following sections:

SiP Bump Flow

Area I/O Flow

Peripheral I/O Flow

In addition to the above, Innovus also supports a mix of Peripheral I/O and Area I/O styles.

September 2022 797 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Related Flip Chip Information
Text commands
For information on the flip chip commands, see the Flip Chip Commands and Global Variables chapter of the Text Command
Reference.

Flip Chip Toolbox Menu
For information on the flip chip forms, see the "Flip Chip" section of the Tools Menu chapter in the Menu Reference.

September 2022 798 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/Flip_Chip_Commands_and_Global_Variables.html
../innovusMR/Tools_Menu.html

Flip Chip Flow in Innovus
The following figure shows the general Innovus flip chip flow.

September 2022 799 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Introduction to Flip Chip Methodology
This section describes the various implementation and flow methodologies for flip chip.

Flip Chip supports the following implementation methodologies:

SiP Bump Flow

Area I/O Flow

Peripheral I/O Flow

SiP Bump Flow
For information on the SiP bump flow, see System-in-Package Flow Guide available on SourceLink or in the SiP Product Help.

Reducing Data Size for SiP Import (Bypass Flow)

You can use the -noCoreCells option of the defOut command to reduce data size for import into SiP. The syntax is as follows:
defOut -noCoreCells

This flow bypasses the bump flow (see Flip Chip Flow in Innovus).

Testing the Package Routing Feasibility

You can test the package routing feasibility of the design using APD/SiP.

For more information, see the Cadence Chip I/O Planner User Guide or the SiP Digital Architect/Layout User Guide on SourceLink.

You should use the -noCoreCells option whenever you are creating a DEF file for SiP.

September 2022 800 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/defOut.html

Area I/O Flow
In Area I/O (AIO) designs, the IO PADs are placed in the core area. You can define IO pad row clusters in the core, where these IO
pads will be placed, and from where they will be routed. With this implementation, routing is much less constrained. As a result,
routing congestion issues arise rarely. The bumps can be defined and placed close to the IO pads shortening the net length.

The disadvantage of this methodology is that the IO pad placement affects the standard cell placement and therefore the full timing
closure flow. Power routing is also more demanding in this implementation as dedicated power stripes must be routed to feed the
power requirement for the IOs.

In general, this implementation style is more complex but offers much less net delay from IO pad to the bump. In addition, the SI effect
is greatly reduced as the net length is much shorter.

To create a flip chip design, complete the following steps:

1. Load the floorplan with I/O pad placement.

2. Define the bumps.
Use the create_bump command or the Create Bump Array form to set up the bump array.

3. Assign signals, power, and ground to the bumps.

Use the Bump Assignment tab of the Flip Chip form to assign the signals, power and ground to bumps. Signal bumps are
blue-filled squares. Power bumps are red-filled squares. Ground bumps are yellow-filled squares.

4. Create power rings and stripes.

Use the Add Rings form to create rings around the core area and around the power and ground bumps.

Use the Add Stripes form to create stripes that connect to the power and ground bumps.

5. Connect power, from bumps to I/O cells or from bumps to rings/stripes.

Use the RDL Routing tab of the Flip Chip form to establish the power connections.

For more information on the creating power rings form, see Add Rings in the Power Menu chapter in the Menu Reference. For more

September 2022 801 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/create_bump.html
../innovusMR/Power_Menu.html#PowerMenu-AddRingsBasic

information on creating stripes, see Add Stripes in the Power Menu chapter in the Menu Reference.

Note: The remainder of this flow is similar to the typical Innovus flow.

AIO Command Flow

The AIO command flow can be depicted as follows:

Routing Bumps to I/O Driver Cells (Hierarchical AIO Flow)

The hierarchical AIO flow allows you to route the bumps, using the fcroute command, to I/O driver cells and then push down
(partition) this data into a lower level.

The text command for pushing down the data is:

handlePtnAreaIo -insertBuffer buffer_name

This command pushes down data in the partition as follows:

Bumps become routing blockages

I/O cells become placement and routing blockages

An internal pin is created over the I/O cell pin

A boundary pin is created

A buffer is created between the internal pin and the boundary pin

Note: If you want to view the flight lines before you route the bumps, you must first be in the Floorplan view. Then, use the left mouse
button to click on the bump.

September 2022 802 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusMR/Power_Menu.html#PowerMenu-AddStripesBasic
../innovusTCR/fcroute.html
../innovusTCR/handlePtnAreaIo.html

Peripheral I/O Flow
IO PADs are placed on the periphery of the die. If the design is severely pad limited, it could have multiple IO rings around the core
area. The pin of the pad is routed to the bumps using the redistribution layer (RDL). These bumps are located in the core area of the
chip. The diagram below depicts a typical peripheral design.

The recommendation is to floorplan the design, including the bump location, assignment, and RDL routing. The benefit is that you
can take the advantage of having more freedom when moving IO pads and bumps. Moving IO pads that are not related to analog
blocks is feasible at this stage. Bump movement needs to be verified for routing purposes in SiP. SiP verifies that there is no routing
congestion between bumps and package balls using the current bump assignment.

It is not recommended to implement the flip chip features as a post process after design closure. During full chip implementation, you
could choose not to use the RDL layer for signal or power routing and reserve this layer for the flip chip router. In this case, the bump
assignment and routing can be performed in parallel to the implementation flow or as a post step after final timing signoff. This
methodology restricts the movement of the IO pads as they are fixed after implementing the design closure flow. In addition, the
package tool (SiP) can limit the bump location. In this case, it is common to face routing congestion and hotspots.

A peripheral I/O (PIO) design has no impact on the default timing/area/power/DFM-DFY closure implementation flow.

PIO Flow Steps

The PIO implementation flow is similar to the traditional physical implementation flow, except for the handling of bump cells and RDL
routing.

There are four major elements of the flow:

After the initial floorplanning stage (set die and area and place I/O driver cells), the RDL implementation flow includes bump
placement and assignment, optimization of I/O driver cell placement, and RDL routing.

The bump placement and assignment is passed to APD (Allegro® Package Designer) for package design. You can determine
the route feasibility by using APD to check the bump routability to the package. This can be invoked from the Innovus user
interface.

The RDL-routed design is then ready for power planning/Quantus/other placement and routing operations.

Initial parasitics can be extracted in Innovus using the extractRC command. If more accurate parasitics are required, the signal-
routed design can be streamed out in GDSII format and sent to Assura™ RCX for extracting RC parasitics, which can be used

September 2022 803 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

for timing and SI analysis with the RDL effects.

PIO Command Flow

The PIO command flow can be depicted as follows:

Flow Methodologies
The design of an IC and its package/carrier has traditionally been two separate development processes done in succession (Serial
Design Flow), driven from a common specification.

Innovus-driven Floorplaning

The digital implementation engineer has an initial and rough floorplan to start with. For example:

The size of the chip might be given as a constraint from marketing or from the customer.

The location and ordering of some or all the I/Os may already be known. This information may come from the PCB or package
designer, or there may be some inherent placement requirements imposed by an analog block in the core.

All this information can be fed into Innovus during the implementation. In this case, Innovus can drive the flip chip implementation by
placing these PADs and then creating and assigning the bumps. After this implementation, the design needs to go to SiP Layout
(Cadence’s package implementation tool) to verify that the bump placement can be routed to the package balls. This is becoming
very critical as users are trying to reduce the size of the package which is limiting the routing resources.

September 2022 804 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Package-driven Floorplaning

In this case the bump creation and assignment are driven by the package tool and by the constraints from the PCB. This information
is fed into Innovus to drive the I/O pad placement. In this flow, the I/O pad and bump planning needs to be done before much of the
digital implementation steps, as the bump assignment is driven by package requirements. Once the placement of these I/Os is fixed,
the digital implementation in Innovus can start. There will be no need to come back to SiP to check the bump assignment as these
should not have been modified during the design closure steps. The downside of this approach is that the package engineer does
not have knowledge of the limitations and constraints coming from the logic in the design. It is probable that analog blocks have
specific placement constraints, which drive the pad placement and therefore the bump assignment.

Co-design-driven Floorplaning

This is the best method to achieve a quick compromise between digital implementation and the package/PCB board design.

The advantage of this method is that you can move between digital implementation and the package implementation by using SiP
Layout and Innovus. This methodology allows you to see IO pads and bumps by die abstract file in Sip Layout System and by I/O file
in Innovus, which can help in achieving closure on floorplaning faster.

In the above figure, the starting point in the flow is Innovus. However, the methodology is flexible enough for the engineer to choose
either of the tools, Innovus or SiP Layout, as the starting point. Once the compromise between the two design domains is achieved in
terms of routing feasibility, designers in the two domains can work on their own design issues separately as well as in parallel.

The following command in Innovus enables reading of I/O and bump information (placement and assignment information) from SiP
layout into Innovus:

readIoUpdate

The package balls in the package file dumped out by the SiP layout in XML format can be correctly displayed in Innovus even when
the design is a flip chip design.

After saving the package XML file in the SiP Layout, you can load the package data in the Innovus floorplan view using the
readPackage command.

September 2022 805 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/readIoUpdate.html
../innovusTCR/readPackage.html

Data Preparation
This section describes the data preparation required for a flip chip design.

LEF
Innovus relies on the LEF files to identify the bumps cells and flip chip pads. The cells involved in a flip chip design must have the
corresponding keywords.

RDL Layer

The definition of the RDL layer for the flip chip flow is similar to that of other layers in LEF. Here's an example:

LAYER metalRDL

 TYPE ROUTING ;

 DIRECTION VERTICAL ;

 PITCH 0.800 ;

 OFFSET 0.100 ;

 HEIGHT 3.7350 ;

 THICKNESS 0.9000 ;

 MINSTEP 0.400 ;

 FILLACTIVESPACING 0.600 ;

 WIDTH 0.400 ;

 MAXWIDTH 12.0 ;

 SPACINGTABLE

 PARALLELRUNLENGTH 0.00 1.50 4.50

 WIDTH 0.00 0.40 0.40 0.40

 WIDTH 1.50 0.40 0.50 0.50

 WIDTH 4.50 0.40 0.50 1.50 ;

 AREA 0.565 ;

MINENCLOSEDAREA 0.565 ;

…

END metalRDL

BUMP

The macro type of BUMP cells need to be CLASS COVER BUMP. Here is an example of a bump cell:

MACRO BUMPCELL

 CLASS COVER BUMP ;

 ORIGIN 0 0 ;

 SIZE 60.0 BY 60.0 ;

September 2022 806 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

 SYMMETRY X Y ;

 PIN PAD

 DIRECTION INPUT ;

 USE SIGNAL ;

 PORT

 LAYER M9 ;

 POLYGON 17.25 0.0 42.75 0.0 60.0 17.25 60.0 42.75 42.75 60.0 17.25 60.0 0.0 42.75 0.0 17.25 ;

 END

 END PAD

 OBS

 LAYER via89 ;

 POLYGON 17.25 0.0 42.75 0.0 60.0 17.25 60.0 42.75 42.75 60.0 17.25 60.0 0.0 42.75 0.0 17.25 ;

 END

END BUMPCELL

In the example above:

The bump has an octagonal shape of RDL layer. Innovus also supports rectangular bumps.

OBS can also be defined on the macro of BUMP cells and is honored by the flip chip router (fcroute).

Innovus will display the BUMP shape in GUI.

The following figure shows how bumps are displayed in Innovus.

Note: Polygon shapes are supported from LEF 5.6.

I/O Pad

The macro type of I/O pads need to be CLASS PAD AREAIO. Here is an example,

MACRO iopad

 CLASS PAD AREAIO ;

September 2022 807 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

 ORIGIN 0.000 0.000 ;

 SIZE 35.000 BY 246.000 ;

 SYMMETRY x y r90 ;

 SITE pad ;

 PIN PAD

 PORT

 CLASS BUMP ;

In the example above:

The port of PIN PAD has CLASS BUMP attribute, which is an optional attribute for I/O pads with CLASS PAD AREAIO.

The flip chip flow supports CLASS PAD I/O cell by default.

Note: More information about CLASS BUMP is in the section of CLASS BUMP.

Hard Macro

If the design has hard macros that have pins to be connected to bumps directly at the top level, these hard macros will keep their
original CLASS BLOCK and the PORTS definition will be enhanced to have a CLASS BUMP associated to them. This is an example of how
the LEF will look:

MACRO Dummy_HM

 CLASS BLOCK ;

 SIZE 2661.1200 BY 696.6000 ;

 ORIGIN 0 0 ;

 SYMMETRY X Y R90 ;

 PIN A1

 DIRECTION OUTPUT ;

 USE SIGNAL ;

 PORT

 CLASS BUMP ;

 LAYER top_layer ;

 RECT 2469.1800 0.0000 2490.1800 83.0000 ;

 END

 PORT

END Dummy_HM

In the example above:

If the hard macro does not have any port with CLASS BUMP, it will not be considered for flip chip flow even if the pin A1 is on an
I/O net.

Note: More information about CLASS BUMP is in the section of CLASS BUMP.

September 2022 808 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

CLASS BUMP Attribute

CLASS BUMP is one type of the port. It explicitly indicates that the port is a bump connection point and it can help you to distinguish
which ports in a pin are for flip chip flow.

Only CLASS PAD AREAIO and CLASS BLOCK can have the CLASS BUMP attribute.

Note: The flip chip flow supports CLASS PAD I/O cell by default. So the CLASS BUMP attribute is allowed to add to CLASS PAD cells
and the behavior of a CLASS PAD cell with CLASS BUMP is the same as that of CLASS PAD AREAIO with CLASS BUMP.

For CLASS PAD AREAIO, this attribute is optional. Following definitions are correct for flip chip flow.

For CLASS BLOCK, if the CLASS BUMP attribute is not specified, the macro will not be considered for flip chip flow even if there are
I/O pins connected to them.

CLASS BUMP will affect assignment and routing results.

From PORT Level

If none of the ports in a pin has the CLASS BUMP attribute:

For CLASS BLOCK macro, this pin will be excluded from flip chip flow.

For CLASS PAD AREAIO macro, all ports will be considered as one object for assignment and flip chip routing.

September 2022 809 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Only one bump is assigned to the pin.

The flip chip router will pick one port for routing based on its intelligence.

If all ports with the CLASS BUMP attribute are equal in one pin:

All ports with CLASS BUMP are applied to both CLASS PAD AREAIO and CLASS BLOCK macros in terms of assignment and
routing.

Each port will be assigned to one bump.

Every port can be routed to one or multiple bump, which depends on the setup of fcroute. You can control the pairing of
ports and bumps by adding bump connect target property.

If some ports in the same pin have the CLASS BUMP attribute while some do not:

The ports without the CLASS BUMP attribute will be excluded for assignment and flip chip routing. This applies to both CLASS
PAD AREAIO and CLASS BLOCK macros. The example below depicts what happens when some ports have the CLASS
BUMP attribute and some do not.

September 2022 810 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

If a port with the CLASS BUMP attribute has multiple geometries or port shapes:

It is considered as one object for assignment and flip chip routing. This applies to both CLASS PAD AREAIO and CLASS
BLOCK macros in terms of assignment and routing.

The flip chip router will pick one geometry for routing based on its intelligence because there is no mechanism to link a
specific geometry in one port to a specific bump. In case of very close geometries, fcroute will merge some geometries
then choose better one for routing.

From PIN Level

From PIN level, assume all pins are correctly defined as I/O port in the netlist and need to be connected to bumps.

If none of pins have CLASS BUMP ports:

For the CLASS BLOCK macro, these pins will be excluded from flip chip flow.

September 2022 811 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

For the CLASS PAD AREAIO macro, each pin will be assigned to one bump.

If all pins with CLASS BUMP ports are equal in one macro:

All ports with CLASS BUMP are applied to both CLASS PAD AREAIO and CLASS BLOCK macros in terms of assignment and
routing.

Each port with CLASS BUMP in one pin will be assigned to one bump.

Every port with CLASS BUMP in one pin can be routed to one or multiple bump.

September 2022 812 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

If some pins in a macro have CLASS BUMP ports but others do not:

The pins in the macro without CLASS BUMP ports will be excluded for assignment and flip chip routing. This applies to both
CLASS PAD AREAIO and CLASS BLOCK macros in terms of assignment and routing.

NETLIST
A bump is physical cell, which must not be defined in the netlist. The relationship between bump and pad is constructed during bump
assignment which is based on the shortest distance. Then, the flip chip router is used to connect the IO pad to its assigned bump.
Defining bumps in the netlist and assigning nets to these bumps is not compatible with Innovus and cannot be handled by Innovus.

IO pads must be defined in netlist.

September 2022 813 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Signal Pads

To be able to assign signal pads to bumps and connect them to their assigned bumps, the netlist needs to have their connection.
This is an example:

In the example above:

IO ports pin_1~3 have related IO pads iopad_1~3 with which they can be connected. Therefore, the signal pads iopad_1~3 can
be connected to their assigned bumps by the flip chip router.

IO port pin_4 does not have an IO pad with which to be connected. You may get the following WARNING message after
assignment and the flip chip router will not route net pin_4:
**WARN: (ENCSP-6014): I/O pin 'pin_4' does not connect to placed Area I/O instance or hard macro.

Internal wire signal_1 cannot be assigned to bumps, so iopad_4 with signal_1 does not have assigned bumps and the flip chip
router will not route the net signal_1.

Power and Ground Pads

To be able to assign PG pads to bumps and connect them to their assigned bumps, the netlist could have their connection. This is an
example:

In the example above, you can find the pin VDD of power_pad or the pin VSS of ground_pad does not have any related IO port.

September 2022 814 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

If the initial netlist does not have physical IO pads (for example, power and ground IO pads), you have the option of adding them
during floorplanning with addIoInstance.

To create the PG connections:

1. Define the power and ground (PG) net names in the power and ground fields in the Innovus .globals file:
setUserDataValue init_pwr_net {VDD}
setUserDataValue init_gnd_net {VSS} Note: PG nets definition is variable. Some users define these nets as logical nets in
the netlist without declaring them in the *.globals file. In such a case, Innovus cannot correctly recognize these nets as special
nets and therefore some feature may not work properly.

2. Run the globalNetConnect command or read the CPF file (read_power_intent -cpf and commit_power_intent).

After the PG connection creation, you can assign PG pads to bumps and connect them to their assigned bumps by using the flip chip
router.

If the PG connection is not created, the flip chip router will not route these PG nets.

Flip Chip Floorplanning

Bump Creation and Assignment
The flip chip die requires solder bumps to be attached to the package substrate. Bump generation is typically a two-step process --
placement and signal assignment.

Bump Creation

There are multiple ways to create bumps in Cadence tools. You can create a single bump or a bump pattern by using
the create_bump command.

Usually, bumps are created in a regular pattern with fixed pitch. The create_bump command can support the following bump patterns
in the chip:

-pattern_full_chip

-pattern_side {side width}

-pattern_array {row column}

-pattern_ring width

-pattern_center {row column}

Note: All these different bump patterns can coexist in the same floorplan.

During bump creation, the tool will issue a warning and will not create bumps where there are overlaps with other bumps based on
bump geometry. But you could specify the -allow_overlap_control option to create bumps with overlapping.

The bump creation process does not look into any type of routing blockages or obstruction in hard macro LEFs. The deleteBumps
command has the options -overlap_blockages and –overlap_macro, which can be used to clean up the placement of the bumps
before signal assignment.

Currently, verify_drc will not highlight overlaps between bumps and routing blockages. The bumps need to be assigned
(committed) in order for verify_drc to flag the short violation. It is a normal procedure to delete the unassigned bumps after a flip chip
design implementation.

A bump has four location types as specified below. create_bump provides you the capability to specify which location type is used for

September 2022 815 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/addIoInstance.html
../innovusTCR/globalNetConnect.html
../innovusTCR/read_power_intent.html
../innovusTCR/commit_power_intent.html
../innovusTCR/create_bump.html
../innovusTCR/deleteBumps.html
../innovusTCR/verify_drc.html

bump creation:

Bump cell center

Bump cell lower left location - This location can be obtained from bump attribute editor or by using the following command:

dbGet [dbGet top.bumps.name $Bump_name -p].pt

Bump geometry (bounding box) center - This location can be obtained with the following command:

dbGet top.bumps.bump_shape_center

Bump geometry (Bounding box) lower left location - This location can be obtained with the following command:

dbGet top.bumps.bump_shape_bbox

Bump placement supports undo. During bump placement trials, if you click the Undo button (or use the undo command) after
running create_bump, the bump floorplan will return to the state it was in before create_bump. If you then click the Redo button (or use
the redo command), the bump floorplan will reapply the changes made by create_bump.

Similarly, if you click Undo after running deleteBumps, the changes made by deleteBumps are cancelled out and the following bump
properties are recovered:

Name

Location

Port number properties

Fixed status

Placement status

On clicking Redo, the bump floorplan will revert to the status before undo.

Bumps can be created relative to an existing object in the design. To specify the type of the relative object, use the -
relative_type parameter of create_bump. The relative object can be an embedded bump, an inst_pin_port, or a block.

For details, refer to the -relative_type parameter in the create_bump command description.

Note that when the relative object is a block, you must use the -relative_block parameter to specify the block list for creating
bumps. create_bump then automatically creates bumps at the same location as that of the specified block pin, which must be on the
top routing layer of the design.

In addition, you can also use the -relative_block_constraint parameter to specify the filename of the block constraint to be used

September 2022 816 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/create_bump.html

for creating bumps based on block pins. create_bump parses the constraint file specified with -relative_block_constraint and
creates bumps based on the instance pins specified with -relative_block. The constraint format for bumps based on a block pin is
as follows:

BUMP_ON_BLOCK_PIN

 MACRO marco_name_list

 PIN [pin_name_list] [SINGLE|MULT]

 PORT [SINGLE|MULT]

 GEOMETRY_SHAPE RECT/POLY

 GEOMETRY_SHORT_EDGE min_value [:max_value]

 GEOMETRY_LONG_EDGE min_value [:max_value]

 NET net_list_name

END BUMP_ON_BLOCK_PIN

Here:

MACRO macro_name_list

Specifies the list of the constraint macros (blocks) whose pins are connected to the bump. This parameter is optional. If not
specified, the constraint works on all available macros. This parameter supports wildcard matching.

PIN [pin_name_list] [SINGLE|MULT]

Specifies the list of the constraint pins connected to the bump. This parameter is optional. If not specified, the constraint works
on all available pins of available macros. [SINGLE|MULT] is optional. SINGLE is the default value and indicates that only one
bump will be created for each available pin. MULT means bumps will be created on every available port of each available pin.

PORT [SINGLE|MULT]

Specifies the constraint ports connected to the bump. This parameter is optional. If not specified, the constraint works on one
available port. SINGLE is the default value and indicates that only one bump will be created for each available port. MULT means
bumps will be created on every available geometry of each available port.

GEOMETRY_SHAPE RECT/POLY

Specifies the shape of the constraint pin port geometries. This parameter is optional. If not specified, the constraint works on all
shapes of pin port geometries.

GEOMETRY_SHORT_EDGE min_value [:max_value]

Specifies the value or the region of the short edge length of the pin port geometry. If only one value is specified, it means the
expected short edge length of the pin geometry equals the specified value. If two values are specified, the expected short edge
length is between the specified min_value and max_value. The unit is micron. GEOMETRY_SHORT_EDGE means the length of the
short edge. If the geometry is a polygon, the tool uses the short edge of its bounding box as GEOMETRY_SHORT_EDGE.

GEOMETRY_LONG_EDGE min_value [:max_value]

Specifies the value or the region of the long edge length of the pin port geometry. If only one value is specified, it means the
expected long edge length of the pin port geometry equals the specified value. If two values are specified, the expected long
edge length is between the specified min_value and max_value. The unit is micron. GEOMETRY_LONG_EDGE means the length of
the long edge. If the geometry is a polygon, the tool uses the long edge of its bounding box as GEOMETRY_LONG_EDGE. This
parameter is optional. If not specified, the constraints work on all available geometries of pin port.

NET net_name_list

Specifies the list of the net names of the constraint pins connected to the bump. This parameter is optional. If not specified, the
constraint works on all nets of pins. This parameter supports wildcard matching and supports @signal, @power, and @ground.

Note that:

GEOMETRY_SHAPE, GEOMETRY_SHORT_EDGE, and GEOMETRY_LONG_EDGE are sub-constraints of the PORT constraint.

In one BUMP_ON_BLOCK_PIN constraint, only one PORT can be specified.

September 2022 817 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

You can specify multiple BUMP_ON_BLOCK_PIN constraints to set different constraint for different pins. Note that there is no
specific priority order among the various constraints defined in a constraint file. There is an OR relationship between the
various constraints defined in a file, which means that if the specified constraint file contains
multiple BUMP_ON_BLOCK_PIN constraints, the tool creates bumps on the block pins that meet any of the constraint in the
constraint file.

Here are some examples illustrating the use of the BUMP_ON_BLOCK_PIN constraint:

Example 1: create_bump -relative_type block is run without specifying -relative_block_constraint. The tool creates a
single bump for each block pin on the top layer for the specified blocks.

Example 2: create_bump -relative_type block is run with -relative_block_constraint 1.const. The specified constraint
file, 1.const, contains a specific BUMP_ON_BLOCK_PIN constraint. The tool parses the 1.const constraint file and creates
bumps only on the block pins that are specified in the constraint file.

Example 3: create_bump -relative_type block is run with -relative_block_constraint 2.const. However, the
specified constraint file, 2.const, is empty. In this case,the tool does not create any bumps because no block pin is specified in
the constraint file.

Example 4: create_bump -relative_type block is run with -relative_block_constraint 3.const. However, the
specified constraint file, 2.const, contains only the constraint start and end statements as given below:

BUMP_ON_BLOCK_PIN

END BUMP_ON_BLOCK_PIN

In this case, the tool creates bumps for all block pins on the top layer for the specified blocks. This is because all parameters in
the constraint file are assumed to be set at their default values, which means it is equivalent to the following constraint:
BUMP_ON_BLOCK_PIN

 MACRO *

 PIN SINGLE

 PORT SINGLE

 NET *

END BUMP_ON_BLOCK_PIN

This is also the same behavior as running create_bump -relative_type block without specifying -
relative_block_constraint.

Example 5: The following BUMP_ON_BLOCK_PIN constraints are defined in the constraint file:

BUMP_ON_BLOCK_PIN

 BLOCK abc

 PIN MULT

 PORT MULT

 NET *

END BUMP_ON_BLOCK_PIN

BUMP_ON_BLOCK_PIN

 BLOCK abc

 PIN MULT

 PORT MULT

September 2022 818 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

 GEOMETRY_SHAPE POLY

 NET @POWER @GROUND

END BUMP_ON_BLOCK_PIN

The tool creates bumps on all the pin ports because all pin ports are specified in first constraint.

Example 6: The following BUMP_ON_BLOCK_PIN constraints are defined in the constraint file:

BUMP_ON_BLOCK_PIN

 BLOCK abc

 PIN MULT

 PORT MULT

 NET @SIGNAL

END BUMP_ON_BLOCK_PIN

BUMP_ON_BLOCK_PIN

 BLOCK abc

 PIN MULT

 PORT MULT

 GEOMETRY_SHAPE POLY

 NET @POWER @GROUND

END BUMP_ON_BLOCK_PIN

The tool creates bumps on all signal pin ports and on all PG polygon pin ports.

Example 7: There are multiple ports of pin pinName1 with rectangle or polygon shapes. If the following constraint is defined in
the constraint file, the tool creates top bumps on only the polygon shapes and not on the rectangle shapes:

BUMP_ON_BLOCK_PIN

 PIN pinName1 MULT

 PORT MULT

 GEOMETRY_SHAPE POLY

END BUMP_ON_BLOCK_PIN

Example 8: There is a single port of pin pinName2 with multiple rectangle or polygon shapes. If the following constraint is
defined in the constraint file, the tool creates top bumps on all polygon and rectangle shapes:
BUMP_ON_BLOCK_PIN

 PIN pinName2

 PORT MULT

END BUMP_ON_BLOCK_PIN

Example 9: There is a single port with a single small rectangle. If the following constraint is defined in the constraint file, the
tool creates a top bump on the small rectangle:

BUMP_ON_BLOCK_PIN

 PIN pinName_list

END BUMP_ON_BLOCK_PIN

Example 10: The constraint file defines the following constraints, one on 10x10 rectangle ports and other on 20x20 polygon

September 2022 819 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

ports:

BUMP_ON_BLOCK_PIN

 PIN MULT

 PORT MULT

 GEOMETRY_SHAPE RECT

 GEOMETRY_SHORT_EDGE 10

 GEOMETRY_LONG_EDGE 10

END BUMP_ON_BLOCK_PIN

BUMP_ON_BLOCK_PIN

 PIN MULT

 PORT MULT

 GEOMETRY_SHAPE POLY

 GEOMETRY_SHORT_EDGE 20

 GEOMETRY_LONG_EDGE 20

END BUMP_ON_BLOCK_PIN

The tool creates bumps on all rectangle shapes within the specified 10x10 constraint and all polygon shapes within the 20x20
constraint.

Bump Assignment

After creating bumps, the user can now assign signal and PG bumps.

Signal Assignment

For signal assignment, you can automatically assign the signal bumps to the closest pad IO. This normally gives a suboptimal
assignment for routing.

Automatic signal assignment
You can use the assignBump command for signal assignment. This is fully automatic assignment and it will assign all available
signals for flip chip to bumps based on the shortest distance.

Manual signal assignment with the assignSigToBump command.

September 2022 820 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/assignBump.html
../innovusTCR/assignSigToBump.html

P/G Assignment

For PG assignment, the tool accepts the possibility of associating PG pads to specific bumps along with signal assignment. You can
choose to assign PG and signal pads to bumps together or just do the assignment separately .

Assign PG and signal pads to bump together
The assignment can be done automatically by using the command assignBump –pgnet {net_list}. With this usage, the tool
will consider PG nets and signal nets together and distribute appropriate bump resource from the global view based on the
shortest distance.

Assign PG nets only
The tool also allows you to assign only PG nets to bumps automatically by using the command assignBump –pgonly
–pgnet {net_list}.

If you want to have more control over the assignment of the power and ground nets, the tool offers a manual assignment
method by using the assignPGBumps and assignSigToBump command.

September 2022 821 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/assignPGBumps.html

Notes :

Notice how the bumps change color once they are assigned. By default, blue for an assigned signal bump, red for a power
bump, and yellow for a ground bump.

You can change the color of the assignment by supplying the net name and a valid color, which can be obtained from the
link http://www.w3.org/TR/SVG/types.html#ColorKeywords.
This is useful when you want to track the assignment of very specific critical nets. The command to read this text file containing
color mapping for bumps is ciopLoadBumpColorMapFile. This is an example of the file.
Clk green

Address* magenta

It can support wildcards for ease of use.

After assignment, you can use the viewBumpConnection command, which can display the connection as a flight line between IO
pads and bumps.
The flight lines of the viewBumpConnection command can be automatically redrawn after bump manipulations.
You can use the viewBumpConnection -bumpType power to display the flight lines of only PG connections.
You can use the viewBumpConnection -multiBumpsToPad or viewBumpConnection -multiPadsToBumps command to turn on
multiple connections. Without these two options, this command will only display one-to-one connections.

Port Numbering Approach in Assignment

For signal assignment, one net is usually related to one bump and the flip chip router can find the connection based on nets;
however, for PG assignment, many PG pads are connected to the same net. Therefore, you need to explicitly specify the pairing for
PG connection. This means that for a customized pattern of multiple pads to multiple bumps, fcroute needs to know exactly which
pin or ports need to be routed to which bump.

The port numbering approach allows you to specify the connection between pads to bumps explicitly during the assignment stage.

September 2022 822 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

https://www.w3.org/TR/SVG/types.html#ColorKeywords
../innovusTCR/ciopLoadBumpColorMapFile.html
../innovusTCR/viewBumpConnection.html

The port numbering feature allows you to specify explicitly:

Which port is to be connected to a bump
For example: Bump B_100, Inst_A and Inst_B

Which pad is to be connected to which bump in case of multiple pads to multiple bumps
For example: Bump B_102, B_103 and DDR

You can add the CLASS BUMP attribute in LEF onto pins/ports to specify explicitly which pin/port is for flip chip assignment and
routing. This attribute has been introduced in the section CLASS BUMP.

PORTs are numbered uniquely per cell in the Innovus database so that they can be referred during assignment and routing based
on instance.

Numbers are references for ports.

Regardless of whether or not the CLASS BUMP attribute is specified in LEF, ports will be numbered.

You can instantly view port numbers by selecting Miscellaneous -> Port Number on the Layer Control bar as shown below:

The figure below shows how the tool displays port number based on the LEF definition.

September 2022 823 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

The assignBump command adds the bump connection target property to bumps by default during bump assignment. You can open
the Attribute Editor for a bump to see the added property values after assignment. The value takes the following format:

Property name bump_connect_target

Type string

Property string format or :pin_name or :pin_name:port_num

September 2022 824 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/assignBump.html

Use the commands listed in the table below for manipulating and saving or restoring properties.

Notes

Add srouteFcroutePadPinTagging TRUE in the extra configuration file to turn on the port numbering feature for flip chip router
(fcroute).

The pin port numbers can be obtained using the dbGet command.
> dbGet selected.instTerms.cellTerm.pins.?

pin: allShapes class layerShapeShapes objType portNumber shapeViaShapes

> dbGet selected.instTerms.cellTerm.pins.portNumber

2 1 1

> dbGet selected.instTerms.cellTerm.pins.??

allShapes: 0x2adbb65bd330

class: undefined
layerShapeShapes: 0x2adbb65bd330

objType: pin
portNumber: 2
shapeViaShapes: 0x0

allShapes: 0x2adbb65bd308

class: undefined
layerShapeShapes: 0x2adbb65bd308

objType: pin
portNumber: 1
shapeViaShapes: 0x0

allShapes: 0x2adbb65bd420 0x2adbb65bd3f8 0x2adbb65bd3d0 0x2adbb65bd3a8 0x2adbb65bd380 0x2adbb65bd358

class: undefined
layerShapeShapes: 0x2adbb65bd420 0x2adbb65bd3f8 0x2adbb65bd3d0 0x2adbb65bd3a8 0x2adbb65bd380 0x2adbb65bd358

objType: pin
portNumber: 1
shapeViaShapes: 0x0

The pin port numbers can be obtained using the get_db command.
> get_db selected .pins.base_pin.physical_pins. < Tab>
class layer_shapes obj_type shape_vias

> eval_legacy {dbGet selected.instTerms.cellTerm.pins.portNumber}

2 1 1

> get_db selected .pins.base_pin.physical_pins.*

Object: physical_pin:0x2b9c3f17d6e0
class: undefined

Assignment Property Manipulation Property Save/restore Routing

assignBump addBumpConnectTargetConstraint writeFlipChipProperty fcroute

unassignBump editBumpConnectTargetConstraint readFlipChipProperty

swapSignal deleteBumpConnectTargetConstraint

viewBumpConnection findPinPortNumber

September 2022 825 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/assignBump.html
../innovusTCR/addBumpConnectTargetConstraint.html
../innovusTCR/writeFlipChipProperty.html
../innovusTCR/fcroute.html
../innovusTCR/unassignBump.html
../innovusTCR/editBumpConnectTargetConstraint.html
../innovusTCR/readFlipChipProperty.html
../innovusTCR/swapSignal.html
../innovusTCR/deleteBumpConnectTargetConstraint.html
../innovusTCR/viewBumpConnection.html
../innovusTCR/findPinPortNumber.html
../innovusTCR/dbGet.html
../TCRcom/get_db.html

layer_shapes: layer_shape:0x2b9c43079330
obj_type: physical_pin
shape_vias:

Object: physical_pin:0x2b9c3f17d670
class: undefined
layer_shapes: layer_shape:0x2b9c43079308
obj_type: physical_pin
shape_vias:

Object: physical_pin:0x2b9c3f17d750
class: undefined
layer_shapes: layer_shape:0x2b9c43079420 layer_shape:0x2b9c430793f8

layer_shape:0x2b9c430793d0 layer_shape:0x2b9c430793a8

layer_shape:0x2b9c43079380 layer_shape:0x2b9c43079358
obj_type: physical_pin
shape_vias:

Bump Assignment Optimization
The tool offers two methods for bump assignment optimization.

Manual optimization

Use bump assignment constraints

Manual Bump Assignment Optimization

If you need to perform minor ECOs on the assigned bumps, use the swapSignal command or choose Tools ->Flip Chip and then click
the Assignment Opt tab in the Flip Chip form.

September 2022 826 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/swapSignal.html

The following figure shows the signals before swapping.

The following figure shows the signals after swapping.

September 2022 827 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

The following figure shows the signals after swapping.

Using Bump Assignment Constraints

If you have any constraints for bump assignment, such as constraints to filter ports of pad pin, you can specify these in a constraint
file. The bump assignment constraint file is loaded using the assignBump -constraint_file option.

At present, the following types of bump assignment constraints are supported:

SHARE_FIND_PORT constraint to filter unnecessary ports

ASSIGN_ANALOG_PG_NETS constraint to specify which signal nets are analog PG nets

SHARE_IGNORE_* and ASSIGN_IGNORE_* constraints to exclude instances, macros, pins, or nets for assignment.

ASSIGN_PAD2BUMP_RATIO constraint to specify the pad to bump ratio per net, macro, or instance.

SHARE_FIND_PORT Constraint
The syntax for the SHARE_FIND_PORT constraint is as follows:

SHARE_FIND_PORT

PIN pin_name_list

MACRO macro_name_list

 LAYERS top_layer[: bottom_layer]

 GEOMETRY_SHORT_EDGE min_value [:max_value]

 GEOMETRY_LONG_EDGE min_value [: max_value]

net_name_list

END SHARE_FIND _PORT

The SHARE_FIND_PORT constraint can help you find a specific port. However, the property of CLASS BUMP port in the LEF file is higher
priority than this constraint, which means the SHARE_FIND_PORT constraint cannot filter the port with CLASS BUMP in the LEF file.

Parameters

Net name and at least one of the parameters - LAYERS, GEOMETRY_SHORT_EDGE, and GEOMETRY_LONG_EDGE - must be specified to

September 2022 828 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

filter unnecessary pin ports.

PIN pin_name_list

Specifies the list of the constraint pins connected with the specified net.

Is optional. If not specified, the constraints for the specified net work on all available pin ports for the flip chip design.

Supports wildcard matching.

MACRO macro_name_list

Specifies the list of the constraint MACROs whose pins are connected with the specified net.

Is optional. If not specified, the constraints for the specified net work on all available MACROs for the flip chip design.

Supports wildcard matching.

LAYERS top_layer[: bottom_layer]

Specifies the layer or the layer region on which the pin connected with the specified net is located.

The name of the layer must support layer ID and layer name in LEF.

GEOMETRY_SHORT_EDGE min_value [:max_value]

Specifies the value or the region of the short edge length of the pin geometry connected to the specified net. If only one
value is specified, it means the expected short edge length of pin geometry equals the value. Otherwise, the expected
short edge length is between min_value and max_value .

The unit is micron.

GEOMETRY_SHORT_EDGE means the length of the short edge.

assignBump ignores the geometries with a short edge length that does not meet the rule.
For example, pin VDD has following different ports:

port1: 5x25

port2: 15x10

port3: 5x5

port4: 10x20

port5: 15x25

If the constraint file specifies GEOMETRY_SHORT_EDGE 10:20, then port2, port4 and port5 can become candidates for
assignment.
On the other hand, if constraint file specifies GEOMETRY_SHORT_EDGE 5, port1 and port3 can become candidates for
assignment.

GEOMETRY_LONG_EDGE min_value [: max_value]

Specifies the value or the region of the long edge length of the pin geometry connected to the specified net. If only one
value is specified, it means the expected long edge length of pin geometry equals the value. Otherwise, the expected
long edge length is between min_value and max_value .

The unit is micron.

GEOMETRY_LONG_EDGE means the length of the long edge.

assignBump ignores those geometries with a long edge length that does not meet the rule

net_name_list

September 2022 829 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Specifies the list of the nets. This is a mandatory parameter.

Supports wildcard matching and also @signal, @power and @ground.

Here's an example of the SHARE_FIND_PORT constraint:

SHARE_FIND_PORT

 PIN VDD

MACRO VDD_PAD DDR_VDD_PAD

 LAYERS metalALP

 GEOMETRY_SHORT_EDGE 20:25

 GEOMETRY_LONG_EDGE 15

@power

END SHARE_FIND_PORT

If this constraint is specified in the assignBump constraint file, only those pins that meet the following requirements are available for
bump assignment. assignBump ignores all bumps that do not meet these requirements:

To be connected to the power net in the design

The name in LEF is VDD

Belongs to the macros VDD_PAD or DDR_VDD_PAD

On the layer metalALP

Has short edge between 20 and 25 microns and long edge equals 15 microns

ASSIGN_ANALOG_PG_NETS Constraint

The syntax for the ASSIGN_ANALOG_PG_NETS constraint is as follows:

ASSIGN_ANALOG_PG_NETS

net_name_list

END ASSIGN_ANALOG_PG_NETS

Parameters

net_name_list

Specifies the list of nets that are defined as signal nets in LEF or netlist but are actually analog PG nets.

Supports wildcard matching.

Notes:

The nets specified with the ASSIGN_ANALOG_PG_NETS constraint are still signal nets but are used for auto power/ground
assignment. assignBump treats these nets in the same way as other normal power/ground nets.

a. These nets can be specified as arguments of the assignBump -pgnet {net_list} or -exclude_pgnet {net_list} options.

b. These nets are considered when the assignBump -pginst {instance_list} is used.

c. These nets are excluded from signal assignment of assignBump.

assignBump does not modify the property of specified nets in ASSIGN_ANALOG_PG_NETS. Therefore, after assignment, the bumps

September 2022 830 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

that are assigned with the specified nets in ASSIGN_ANALOG_PG_NETS must be signal bumps instead of power/ground ones.

SHARE_IGNORE_* and ASSIGN_IGNORE_* Constraints

The SHARE_IGNORE_* and ASSIGN_IGNORE_* constraints can be used to exclude instances, macros, pins, or nets for assignment. The
syntax of the the constraint varies depending on what is being excluded.

Excluding Instances

Use the following syntax to specify list of instances to be excluded from assignment:

SHARE_IGNORE_INSTANCE

instance_name_list

END SHARE_IGNORE_INSTANCE

Here, instance_name_list specifies the list of instances that are to be excluded during assignment. It supports wildcards.

Excluding Macros

Use the following syntax to specify list of macros to be excluded from assignment:

SHARE_IGNORE_MACRO

macro_name_list

END SHARE_IGNORE_MACRO

Here, macro_name_list specifies the list of macros that are to be excluded during assignment. It supports wildcards.

Excluding Instance Pins

ASSIGN_IGNORE_INSTANCE_PIN

instance_name:pin_name

...

END ASSIGN_IGNORE_INSTANCE_PIN

Here instance_name:pin_name :

Specifies which pin of the specified instance is to be excluded during assignment.

Supports multiple parameters.

Supports wildcards.

Does not allow any blank spaces before or after “:”

Excluding Macro Pins

ASSIGN_IGNORE_MACRO_PIN

macro_name:pin_name

...

END ASSIGN_IGNORE_MACRO_PIN

Here macro_name:pin_name :

September 2022 831 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Specifies which pin of the specified macro is to be excluded during assignment.

Supports multiple parameters.

Supports wildcards.

Does not allow any blank spaces before or after “:”

Excluding Nets

ASSIGN_IGNORE_NET

net_name_list

END ASSIGN_IGNORE_NET

Here, net_name_list specifies the list of nets that are to be excluded during assignment. It supports wildcards.

ASSIGN_PAD2BUMP_RATIO Constraint

The syntax for the ASSIGN_PAD2BUMP_RATIO constraint is as follows:

ASSIGN_PAD2BUMP_RATIO
TOLERANCE net_name integer

PGNET net_name ratio

PGMACRO macro:pin ratio

PGINST inst:pin ratio
END ASSIGN_PAD2BUMP_RATIO

The ASSIGN_PAD2BUMP_RATIO constraint specifies the pad to bump ratio per net, macro, or instance.

Parameters

Parameters for Ratio Greater than 1

The following parameters work with a pad to bump ratio greater than 1.

TOLERANCE net_name integer

PGNET net_name ratio

When the pad to bump ratio is greater than 1, assignBump calculates the number of groups of multiple PG ports to multiple bumps and
the maximum number of ports in each group based on the specified ratio per net.

Assume the total number of ports is total_port , and the ratio is port_num:bump_num .

If total_port is an integer multiple of the ratio:
 Number of groups = total_port÷(port_num/bump_num) + TOLERANCE
Else:
 Number of groups = [total_port÷(port_num/bump_num)] + 1 + TOLERANCE

If port_num is an integer multiple of bump_num:
 Maximum number of ports in each group = port_num ÷ bump_num
Else:
 Maximum number of ports in each group = [port_num ÷ bump_num] + 1

For example, if there are 5 pads with VDD and the VDD pin of each pad has only one port and the pad to bump ratio is 3:2. Then:

Number of groups = Round off {5÷ (3/2) + 0} = 4

September 2022 832 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Maximum number of ports in each group = Round off {3/2} = 2

This feature tries to provide the best assignment result in following conditions:

The number of groups remains unchanged.

In each group, the number of ports must be no more than the maximum number of ports.

Following is the description of the parameters for ratio greater than 1:

TOLERANCE net_name integer

Specifies the tolerance value for specific nets. It only supports positive integers. With this option, the number of pad/port
groups will be counted by the tolerance value.

The default value is zero.

It works only for PGNET net_name ratio

net_name supports wildcard matching.

PGNET net_name ratio

Specifies the ratio for specific nets.

net_name supports wildcard matching.

The ratio must be more than 1. If you specify a ratio less than 1, assignBump issues an ERROR message and ignores the
ratio.

If the ratio is not in the simplest form, the tool will simplify it and give a WARNING.

For different PG nets, define the ratio per net separately. If you specify more than 1 ratio for the same
net, assignBump issues a WARNING message and chooses the last specified ratio for the net.

Example1
If the ratio for both VDD and VDD0 is 2:1 and the ratio for VSS is 3:2, the syntax is as below:
PGNET VDD 2:1 #The ratio for VDD is 2:1
PGNET VDDO 2:1 #The ratio for VDDO is 2:1
PGNET VSS 3:2 #The ratio for VSS is 3:2
PGNET VSS 3:2 #As this is the second and last ratio for VSS, assignBump #issues a WARNING message

and use it as the ratio of #net VSS.

PGNET VSSO 1:2 #As the ratio for VSSO is less than 1, assignBump issues
 #an ERROR message and ignores it.

Example 2
PGNET * 2:1 #The ratio for all pg nets specified in the assignBump command is 2:1

Example 3
In the ratio.const constraint file, following is specified:
PGNET VDD 4:2
PGNET VSS 4:2

Run the following command:
assignBump -constraint_file ratio.const -pgnet {VDD VSS}

a. The tool first simplifies the ratio to 2:1.

b. The tool calculates the number of pad/port groups and maximum number of ports in each group as follows:

September 2022 833 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

For VDD, as the total number of ports with VDD (5) is not an integer multiple of port_num (2), therefore:
Number of groups = [total_port÷(port_num/bump_num)]+1 +0 = [5÷(2/1)]+1 = [2.5] + 1 = 2 + 1 = 3

For VSS, as the total number of ports with VSS (3) is not an integer multiple of port_num (2), therefore:
Number of groups = [total_port÷(port_num/bump_num)]+1 +0 = [3÷(2/1)]+1 = [1.5] + 1 = 1 + 1 = 2

Both VDD and VSS use the same ratio 2:1. As in this ratio, port_num (2) is an integer multiple of bump_num (1),
therefore:
Maximum number of ports in each group for VDD and VSS = port_num÷bump_num = 2/1 = 2

The multi-PG pad to bump assignment is depicted below.

Parameters for Ratio Less than 1

The following parameters work with a ratio less than 1.

PGMACRO macro:pin ratio

Specifies the ratio for the specific MACRO cell.

macro:pin supports wildcard.

The ratio must be less than 1. Otherwise, assignBump issues an ERROR message and ignores it.

If you specify more than 1 ratio for the same pin, assignBump issues a WARNING message and chooses the last specified
ratio for it.

Choose the out-most geometry as the target and record the port number into bump_connect_target.
Example 1
PGMACRO DDR1:VDD 1:2 #The ratio for VDD pin in DDR1 is 1:2

PGMACRO DDR2:VDD 1:2 #The ratio for VDD pin in DDR2 is 1:2

PGMACRO DDR2:VDD 1:3 #As this is the second ratio and last ratio for

 #VDD pin in DDR2, assignBump issues a WARNING

 #message and uses it as the ratio of VDD pin in DDR2.

PGMACRO DDR3:VSS 2:1 #As the ratio is more than 1,

 #assignBump issues an ERROR message and ignores it.

Example 2
PGMACRO * 1:2 #The ratio for all pg pins in all macros of the

September 2022 834 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

 #instances specified in the assignBump command

 #is 1:2.

PGMACRO DDR1:* 1:2 #The ratio for all pg pins in DDR1 is 1:2.

PGMACRO *:VDD 1:2 #The ratio for VDD pin in all macros of the

 #instances specified in the assignBump command

 #is 1:2.

PGINST inst:pin ratio

Specifies the ratio for the specific instance.

inst:pin supports wildcard.

The ratio must be less than 1. Otherwise, assignBump issues an ERROR message and ignores it

If you specify more than 1 ratio for the same pin, assignBump issues a WARNING message and chooses the last specified
ratio for it.

Choose the out-most geometry as the target and record the port number into bump_connect_target.
Example 1
PGINST inst1:VDD 1:2 #The ratio for VDD pin in inst1 is 1:2

PGINST inst2:VDD 1:2 #The ratio for VDD pin in inst2 is 1:2

PGINST inst2:VDD 1:3 #As this is the second and last ratio for VDD pin

 #in inst2, assignBump issues a WARNING message

 #and uses it as the ratio of VDD pin in inst2.

PGINST inst3:VSS 2:1 #As the ratio is more than 1, assignBump issues

 #an ERROR message and ignores it.

Example 2
PGINST * 1:2 #The ratio for all pg pins of all instances

 #specified in the assignBump command is 1:2.

PGINST inst1:* 1:2 #The ratio for all pg pins in inst1 is 1:2.

PGINST *:VDD 1:2 #The ratio for VDD pin of all instances

 #specified in the assignBump command is 1:2.

If there is some conflict over ratio, the priority order is PGINST > PGMACRO > PGNET as shown in the following example.

ASSIGN_PAD2BUMP_RATIO

PGNET VDD 2:1 #The ratio for VDD is 2:1.

PGMACRO DDR:VDD 1:2 #If the VDD pin in DDR is connected to VDD,

 #the ratio for VDD pin in DDR is 1:2 as the priority

 #of PGMACRO is higher than PGNET.

PGINST inst:VDD 1:3 #The MACRO cell of inst is DDR. As the priority of PGINST

#is higher than PGMACRO, the ratio for VDD pin in inst

#is 1:3

PGNET VSS 3:1PGINST inst1:VSS 1:3 #If the VSS pin in inst1 is connected to VSS, the ratio

#for VSS pin in inst1 is 1:3 as the priority of

#PGINST is higher than PGNET.

END ASSIGN_PAD2BUMP_RATIO

The usage of ASSIGN_PAD2BUMP_RATIO is as below:

It turns on the feature of pads to bumps assignment by ratio.

If used with -pgnet, ASSIGN_PAD2BUMP_RATIO works on only the specified PG nets.

September 2022 835 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

If used with -exclude_pgnet, ASSIGN_PAD2BUMP_RATIO ignores the constraints for the specified excluded PG nets.

If used with -pginst, ASSIGN_PAD2BUMP_RATIO works on only the instances specified by PGMACRO and PGINST.

If used with -pgnet and -pginst, ASSIGN_PAD2BUMP_RATIO works on only the specified PG nets of the instances
specified by PGMACRO and PGINST.

If used with -exclude_pgnet and -pginst, ASSIGN_PAD2BUMP_RATIO works on the PG nets of the
instances specified by PGMACRO and PGINST, with the exception of the specified excluded PG nets.

If the objects specified by -pgnet, -exclude_pgnet and -pginst are not included in ASSIGN_PAD2BUMP_RATIO, assingBump issues
a warning message and uses 1 as the ratio value.

If not used with -pgnet, -exclude_pgnet or -pginst, ASSIGN_PAD2BUMP_RATIO ignores all the defined constraints.

September 2022 836 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Viewing Flip Chip Flightlines

If In flip chip designs, flightlines are used extensively to interact with the design. Flip chip flightlines are different from the normal blue
flightlines in Innovus and can be displayed using the viewBumpConnection command.

viewBumpConnection provides the following features to make it easy for you to use flightlines:

Automatic Redraw Feature
viewBumpConnection redraws flightlines automatically after the following bump manipulation actions:

Bump assignments are swapped using swapSignal: Flightlines of the selected bumps are swapped to reflect the manipulation.

Bumps are unassigned using unassignBump: Flightlines of specified bumps are removed.

A bump, IO pad, or block is moved: Flightlines are redrawn to reflect the new location.

September 2022 837 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/viewBumpConnection.html
../innovusTCR/swapSignal.html
../innovusTCR/unassignBump.html

Selection-Based Highlighting
When you select an object, the corresponding flightlines are highlighted in bold.

When a bump or IO pad is selected, its corresponding flightline is highlighted in bold.

When multiple bumps/IO pads are selected, all their flightlines are highlighted in bold.

If a block with multiple IO pins is selected, all its flightlines are highlighted in bold.

When the objects are deselected, the corresponding flightlines return to non-bold status.

Colored Flightlines
By default, all flip chip flightlines are displayed in yellow. You can use the viewBumpConnection -honor_color option to color these
flightlines based on either bump type or the nets to which the bumps are assigned:

To color flightlines by bump type, simply run viewBumpConnection -honor_color. The tool displays flightlines using the default
colors of the bumps:

Blue for signal bumps

Red for power bumps

Yellow for ground bumps

To color flightlines based on the nets to which they are assigned, you must:

1. Define bump color settings in a bump color map file using the following format:

net_name color_name

Example:

int cyan

reset pink

2. Load the bump color file using the ciopLoadBumpColorMapFile command.

3. Run viewBumpConnection –honor_color.

1. Run viewBumpConnection to display all flip chip flightlines.

2. Click on an object to highlight its flightline in bold.

September 2022 838 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/ciopLoadBumpColorMapFile.html

For bumps whose nets are not defined in the bump color file, the default colors are used as follows – blue for signal bumps, red
for power bumps, and yellow for ground bumps. A flightline has the same color as its bump.

Object-Specific Flightlines
You can easily view connections for specific objects, such as bumps, nets, and IO instances, using the
following viewBumpConnection parameters:

-bump {bump_list}: Use this parameter to view connections of specified bumps.

-io_inst {io_inst_list}: Use this parameter to view connections of specified IO instances or blocks.

-net {net_list}: Use this parameter to view connections of specified nets.

-selected: Use this parameter to view connections of selected bumps or IO pads in bold. If a block with multiple IO pins is
selected, all its flightlines are displayed in bold.

For example, the following command displays the flightlines for the port_pad_data_out[10] net, the Bump_29 bump, and
the IOPADS_INST/Ptdspop07 instance. It also displays in bold the flightline for the selected bump:

viewBumpConnection \
-net {port_pad_data_out[10]} \
-bump Bump_29 \
-io_inst IOPADS_INST/Ptdspop07 \
-selected \
-honor_color

September 2022 839 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

DIFFPAIR-Based Highlighting
Flip chip flightlines now honor the DIFFPAIR constraints specified in the flip chip router constraint file. This means that when you
select any one bump or IO pad that is part of a DIFFPAIR constraint, the tool highlights all flightlines of that DIFFPAIR in bold.

For example, suppose the flip chip router constraint file, diffpair.const, has the following setting:

SHARE_DIFFPAIR

port_pad_data_in[15]

port_pad_data_in[13]

END SHARE_DIFFPAIR

Now after setFlipChipMode -constraintFile diffpair.const is set, the flightlines for the DIFFPAIR are highlighted in bold when
any one bump or IO pad of the DIFFPAIR is selected:

Currently, you cannot turn off normal flightlines to focus on DIFFPAIR flightlines. However, you can use viewBumpConnection -
net net_list as a workaround. Here, net_list specifies nets of the DIFFPAIR. This way, you can display only the flightlines for
the DIFFPAIR and turn off all other flightlines.

viewBumpConnection Display Rules
A PAIR constraint is frequently used in the constraint file to define the connection between bump and IO pad for power/ground net
explicitly. The flip chip flightlines, viewed using viewBumpConnection, honor the SHARE_PAIR constraint and display the connection
between bump and IO pad for power/ground net.

 If you want flip chip flightlines to honor the SHARE_PAIR constraint:

1. Specify the SHARE_PAIR constraint in the flip chip constraint file using the following syntax:
SHARE_PAIR
net_name pad_name_list bump_name_list

END SHARE_PAIR

2. Specify the constraint file using the following command:
setFlipChipMode -constraintFile file_name

viewBumpConnection displays the connection between bump and IO pad based on the net. The following examples use net VDD to
explain the viewBumpConnection display rules:

September 2022 840 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/setFlipChipMode.html

Example 1: Design has only one bump, bump_vdd, for VDD

If bump_vdd does not have the port number property or the PAIR constraint, viewBumpConnection auto-pairs it and displays the
connections for VDD.

If bump_vdd has only the SHARE_PAIR constraint, viewBumpConnection displays the connection specified by
the SHARE_PAIR constraint.

If bump_vdd has only the port number property, viewBumpConnection displays the connection specified by the port number.

If bump_vdd has both the port number property and the SHARE_PAIR constraint, viewBumpConnection displays only the connection
specified by port number.

Example 2: Design has multiple bumps for VDD

If none of the bumps has either the port number property or SHARE_PAIR constraint, viewBumpConnection auto-pairs them and
displays the connections for VDD.

If all of the bumps have only the SHARE_PAIR constraint, viewBumpConnection displays the connections specified by
the SHARE_PAIR constraint.

If all of the bumps have only the port number property, viewBumpConnection displays the connections specified by the port
number.

If one bump has both the port number property and the SHARE_PAIR constraint as in the following example:

1. Bump_1: Does not have either the port number property or the SHARE_PAIR constraint.

2. Bump_2: Only has a SHARE_PAIR constraint:
SHARE_PAIR
VDD pad_2 Bump_2
END SHARE_PAIR

3. Bump_3: Only has the port number property.

4. Bump_4: Has both the SHARE_PAIR constraint and the port number property:
SHARE_PAIR
VDD pad_4 Bump_4
END SHARE_PAIR

5. Bump_5 and Bump_6: Only have a SHARE_PAIR constraint:
SHARE_PAIR
VDD pad_1 pad_5 pad_6 Bump_5 Bump_6
END SHARE_PAIR

6. Bump_7 and Bump_8: Have a SHARE_PAIR constraint as below and Bump_8 also has the port number property:
SHARE_PAIR
VDD pad_7 pad_8 Bump_7 Bump_8
END SHARE_PAIR

In this case, viewBumpConnection displays flightlines as follows:

Does not display the connection of Bump_1.

Displays the connection between pad_2 and Bump_2 based on the SHARE_PAIR constraint.

September 2022 841 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Displays the connection of Bump_3 based on the port number property.

Displays the connection of Bump_4 based on only the port number property.

Displays the connections based on viewBumpConnection auto-pairing results
for pad_1, pad_5 and pad_6 with Bump_5 and Bump_6.

Displays the connection of Bump_8 based on only the port number property. For Bump_7, ignores the SHARE_PAIR constraint
and does not display the connection of Bump_7. This means if one or more bumps in a SHARE_PAIR constraint have the port
number property, the other bumps without port number property in this SHARE_PAIR constraint are ignored and their
connections are not displayed.

Note that the SHARE_PAIR constraint does not support the following scenarios and will treat the last pairing as the available one.

Scenario #1

SHARE_PAIR VDD pad_1 Bump_1

END SHARE_PAIR

SHARE_PAIR

VDD pad_1 Bump_2 # This constraint works

END SHARE_PAIR

If you want to pair pad_1 to Bump_1 and Bump_2, use the following syntax:
SHARE_PAIR

VDD pad_1 Bump_1 Bump_2

END SHARE_PAIR

Scenario #2

SHARE_PAIR

VDD pad_1 Bump_1

END SHARE_PAIR

SHARE_PAIR

VDD pad_2 Bump_1 # This constraint works

END SHARE_PAIR

If you want to pair pad_1 and pad_2 to Bump_1, use the following syntax:
SHARE_PAIR

VDD pad_1 pad_2 Bump_1

END SHARE_PAIR

Long Pin Connection Display
Normally, viewBumpConnection uses the center of the pin of an IO instance for the connection display between the IO instance and a
bump. However, in case of a long pin with multiple connections, using the the center of the long pin geometry for the connection
display may be confusing when you check the connection. By default, viewBumpConnection displays a long pin connection with the
correct location, instead of the center of the pin, for both signal and power pins.

September 2022 842 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Power Planning in Flip Chip Design
The general power planning step does not differ from a non-flip-chip design. However, there are flow recommendations worth
mentioning.

It is advisable NOT to use the RDL layer before pad to bump routing, as the flip chip router is very sensitive to routing obstructions.
The power routing, i.e. stripe generation, with the RDL layer can be done after routing of I/O pads to bumps.

The addStripe command provides two options for easier flip chip design support. These options are:

-over_bumps

This option will create a power stripe over PG bumps.

The stripe generation will STOP at the end of a valid PG bump.

The image below shows power stripes in metal 8 generated over bumps in metal 9. The command will automatically drop
the generated vias if bumps do not have OBS to prevent via under bump as defined in LEF.

-between_bumps

This option will create a power stripe between PG bumps.

The stripes will NOT be created in areas where there are no PG bumps.

The image below shows the result of running the addStripe command with the -between_bumps option. Notice the
missing stripes where there are no PG bump.

September 2022 843 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/addStripe.html

These options allow for the possibility of providing an area (rectangular or rectilinear) for stripe routing. This is very flexible and
improves the usability of the command when there are multiple power domains in your design.

At this stage, it is not recommended to route/create the connection between power bumps and power routing/power pads using the
RDL layer. This step will be performed during or as a post step of the signal routing.

Notes:

The addStripe command creates stripes over unassigned bumps. It is recommended that after pad and bump optimization,
you delete all the spare bumps. These shorts will not be highlighted as violations during verification as the bump is not
assigned.

If you are planning to create power/ground stripes in the same layer as the RDL routing, it is recommended to do this after the
signal routing by fcroute.

RDL Routing

Introduction
The flip chip router (fcroute) is mainly used for routing the nets between bumps and I/O PADs.

The fcroute command supports two types for routing:

fcroute -type power

The power type can connect PG bumps to rings or stripes.

It supports only the m anhattan routing style.

It does not honor the settings specified with setFlipChipMode.

fcroute -type signal

The signal type can connect bumps to I/O pads.

September 2022 844 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

The router under this type supports two routing styles, manhattan and 45DegreeRoute. 45DegreeRoute is the default routing
style.

It honors all the settings specified with setFlipChipMode.

Used with the command setFlipChipMode -connectPowerCellToBump true, it can route PG bumps to I/O pads.

Used with the command setFlipChipMode -prevent_via_under_bump true, it can prevent via generated on the bump.

The command fcroute -type signal accepts two design styles, peripheral IO (pio) and area IO (aio). However, it is not limited by
design styles, which means that you can use the aio mode for some specific purpose in a pio design.

Note: In this document, the aio or pio mode is used to describe which design style is specified for fcroute.

Here are some examples of fcroute usage:

fcroute -type signal -designStyle aio
This command will use only the detail router to finish the connections between bumps to IO pads and it routes nets one by one,
so it is incremental.

fcroute -type signal -designStyle pio
This command will first use the global router to distribute all routing resource and then use the detail router to finish the
connections between bumps to IO pads followed by a post processing step to finalize routing.

fcroute -type signal -designStyle pio -area {x1 y1 x2 y2} -incremental
fcroute partially supports area-based routing in the specified coordinates for the area in which the net is routed. The -
incremental option is required for area-based pio mode routing.

fcroute can support TSV routing, which can route TSV to bumps/stripes/instance pins. The related commands are listed as
below:

Connect TSV to bumps: fcroute -type signal -connectTsvToBump
As TSV has front-side and back-side bumps, fcroute should route them separately.
Add srouteExcludeBumpType bump_cell_name in the extra configuration file to specify which bumps should be excluded
for routing by fcroute.

When connecting TSV to the back-side bump, use the extra configuration file to exclude the front bump.

When connecting TSV to the front-side bump, exclude the back-side bump.

Connect TSV to I/O pads: fcroute -type signal -connectTsvToPad

Connect power TSV to stripes: fcroute -type power -connectTsvToRingStripe
The TSV routing result is shown as below:

The flip chip router (fcroute) is an intelligent and predictable RDL router and it can help you evaluate floorplan change based on the

September 2022 845 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

quick flip chip routing result. In the initial floorplan stage, you can use the following general setting to get a quick routing result:

To set routing layers

Use the setFlipChipMode command to set routing layers:
setFlipChipMode -layerChangeBotLayer bot_layer_name -layerChangeTopLayer top_layer_name

Use the fcroute command to set.
fcroute -layerChangeBotLayer bot_layer_name -layerChangeTopLayer top_layer_name

To set routing width

Use the setFlipChipMode command to set.
setFlipChipMode -routeWidth value

Use the fcroute command to set.
fcroute -routeWidth value

You can use the following commands with the above setting:

Use setFlipChipMode for settings and then run fcroute for routing:

a. Specify the routing setting for fcroute as follows:
setFlipChipMode -layerChangeBotLayer bot_layer_name -layerChangeTopLayer top_layer_name -routeWidth value

b. Get the routing setting for fcroute to make sure all the settings are as expected:
getFlipChipMode

c. Run fcroute in the pio mode as an example:
fcroute -type signal -designStyle pio

Use fcroute for both setting and routing:

a. Get routing setting before routing to make sure all the settings are as expected:
getFlipChipMode

b. Run fcroute in the pio mode with general settings as an example:
fcroute -type signal -designStyle pio -routeWidth value -layerChangeBotLayer bot_layer_name -

layerChangeTopLayer top_layer_nam

Note: The differences between the settings for setFlipChipMode and fcroute are:

All the settings set by setFlipChipMode can be saved and restored by saveDesign/restoreDesign. These settings can work
on fcroute if they are not reset or overwrite by the options of fcroute.

All the settings set by fcroute cannot be saved after running fcroute. In addition, these settings work only when they are used
in fcroute.

Generally, fcroute can well handle typical pin shape shown as below:

Only one geometry for fcroute

Width/height of pin geometry will not be very different from each other.

At least one of width/height is larger than the routing width.

September 2022 846 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

The above is the basic function of fcroute, and it is greatly extended by constraints and extra configuration options for customized
requirements.

All constraints are specified in a text file, which can be specified as input to the command fcroute
-constraintFile or setFlipChipMode -constraintFile.

All extra configuration options are specified in a text file, which can be specified as input to the command fcroute
-extraConfig or setFlipChipMode -extraConfig.

Some useful constraints and extra configuration options for fcroute will be described in detail in the next two sections.

Useful Constraints for Flip Chip Routing
The flip chip router (fcroute) provides you the capability to specify routing constraints in a text file, which can be specified as input to
the command fcroute -constraintFile or setFlipChipMode -constraintFile.

Note:

All length constraints take micron as the unit.

All resistance constraints take ohm as the unit.

All values can of floating type.

The routing constraints supported by fcroute are as follows:

Global Constraints

You can specify general constraints affecting all the nets in the design. These general constraints need to be declared at the top of
the file. The accepted constraints are as follows:

WIDTH value

It specifies the global width for all the nets.

The unit is micron.

Both the aio and pio modes support this constraint.

Both manhattan and 45DegreeRoute support this constraint.

If you also specify routing width in the command setFlipChipMode or fcroute, fcroute will use the width specified in the
command.

It can also be applied into the NETS constraint, which is a local constraint. In this case, the specified width value only
works on the associated nets in the NETS constraint.

WIDTHRANGE min_value:max_value

It works only for the pio mode.

September 2022 847 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

It specifies a width range and allows fcroute to optimize wire width by considering MAXRES constraints.

The unit is micron.

It can also be applied into the NETS constraint, which is a local constraint. In this case, the specified width range only
works on the associated nets in the NETS constraint.

MAXRES value

It specifies the maximum resistance allowed to all the specified nets.

The unit is ohm.

Only the pio mode supports this constraint.

Both manhattan and 45DegreeRoute support this constraint.

The command fcroute can report the resistance with the setting srouteFCReport res_file_name in the extra
configuration file.

It can also be applied into the NETS constraint, which is a local constraint and the specified resistance only works on the
associated nets in the NETS constraint.

SPACING value

It specifies the distance in microns between the net routed by the flip chip router and all other routes.

The unit is micron.

Both the aio and pio modes support this constraint.

Both manhattan and 45DegreeRoute support this constraint.

The router uses the spacing value to limit the effect of coupling capacitance on the total capacitance of the net.

It can also be applied into the NETS constraint, which is a local constraint and the specified spacing only works on the
associated nets in the NETS constraint.

PIOLAYERCHANGE PAD

It turns on the layer change feature.

Only the pio mode supports this constraint.

Both manhattan and 45DegreeRoute support this constraint.

Different setting for routing layers will have the different behaviors as shown in the following examples. Assume the top
RDL is TOP_RDL and the second top RDL is 2nd_RDL.

Use TOP_RDL as much as possible and 2nd_RDL is used only when a single layer cannot finish routing in case of
cross-over.
-layerChangeBotLayer TOP_RDL -layerChangeTopLayer TOP_RDL

Freely change layers so that the tool will use the layer resources by its intelligence.
-layerChangeBotLayer 2nd_RDL -layerChangeTopLayer TOP_RDL

SPLIT Constraint

The SPLIT constraint is used to split wires when the routing width is larger than MAXWIDTH defined in LEF or the value specified by the
user. The SPLIT constraint works for the aio and pio modes. In addition, it supports both both manhattan and 45DegreeRoute. The
syntax of the SPLIT constraint is as follows:

September 2022 848 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

SPLITSTYLE RIVER|MESH

SPLITWIDTH value

SPLITGAP value

SPLITKEEPTOTALWIDTH TRUE|FALSE

Parameters

SPLITSTYLE RIVER|MESH

It specifies the interleaving style used for the split wires.

The default value is RIVER.

RIVER: The split wires do not have an interleaving pattern.

MESH: The split wires interleave with one another, as shown in the following illustration:

SPLITWIDTH value

It specifies the width of the split wire segment. If routing width is larger than this value, fcroute will auto split them.

The unit is micron.

Default value: MAXWIDTH defined in LEF.

SPLITGAP value

It specifies the gap between split wire segments.

The unit is micron.

If you specify this constraint, ensure that the distance between the split wire segments must be greater than the specified gap
value.

If you do not specify this constraint, the distance between split wire segments is the default minimum spacing value that does
not cause DRC violations.

SPLITKEEPTOTALWIDTH TRUE|FALSE

It is used to control different formula to compute the width of splitting wires.

If the value is FALSE:

This is the default value.

The splitting wire width is calculated using the following formula:
Total_wire_width = split_wire_width x n + split_gap x (n - 1)

For example, routing width=13, MAXWIDTH in LEF=10, split_gap=1.5.
Therefore, split_wire_wdith=(13-1.5)/2=5.75

September 2022 849 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

If the value is TRUE:

The splitting wire width is calculated using the following formula:
Total_wire_width = split_wire_width X n

For example, routing width=13, MAXWIDTH in LEF=10, split_gap=1.5.
Therefore, split_wire_wdith=13/2=6.5

The difference from FALSE is to take the split gap out of the wire width calculation so that splitting wire width can be
controlled by the user.

It can also be applied into the NETS constraint, which is a local constraint. In this case, the SPLIT feature works only on the associated
nets in the NETS constraint.

Examples

Examples of different split styles are given below:

SPLITSTYLE RIVER

SPLITSTYLE MESH

September 2022 850 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

NETS Constraint

You can use the NETS constraint to set some specific constraint for nets. It can work for the aio and pio modes. It supports
both manhattan and 45DegreeRoute.

The syntax of the NETS constraint is as follows:

NETS

 WIDTH value

 ROUTELAYERS bottom_layer:top_layer

 SPACING value

 net_name_list

END NETS

Parameters

WIDTH value and SPACING value are the same as the one for Global Constraints.

ROUTELAYERS bottom_layer:top_layer

It specifies a layer range for routing.

The name of layer could be specified the layer number or the layer name in LEF.
For example, bottom_layer is metal7 (METG2 in LEF) and top_layer is metal8 (METTOP in LEF). Following usage is
acceptable for fcroute.
ROUTELAYERS 7:8;
ROUTELAYERS metal7:metal8;
ROUTELAYERS METG2:METTOP.// This is recommended usage.

<net_name_list>

September 2022 851 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

It specifies the names of nets.

It supports general matching methods as below:

It supports “~”, which negates the specified net.

It supports wildcard matching(*)

It supports @SIGNAL, @POWER, @GROUND:

@SIGNAL means all signal nets;

@POWER means all power nets;

@GROUND means all ground nets.

Constraint for Changing Pin Access Direction

You can use the PADACCESSDIR soft constraint under NETS in the routing constraint file to change pin access direction. This is a soft
constraint:

PADACCESSDIR { FROMCORE | FROMDIEBOUNDARY | EAST | WEST | SOUTH | NORTH }

You can set FROMCORE or FROMDIEBOUNDARY exclusively to set the preferred pin access direction from the core and from the die
boundary, respectively. For example, FROMCORE means from the West side for I/O pad pins on the right side.
Similarly, FROMDIEBOUNDARY means from North for the top side.

You can also set one of EAST | WEST | SOUTH | NORTH directions. EAST, WEST, SOUTH and NORTH directions represent the 'from'
direction to the pin. For example, if you want fcroute to access pins of I/O pads on the West side (left side) from the center, you can
set PADACCESSDIR to either FROMCORE or EAST.

Here is an example of using PADACCESSDIR:

NETS

PADACCESSDIR EAST

tdigit[5]

END NETS

Note: This is a soft constraint.

Differential Routing Constraint

Differential routing is aimed at providing similar net delays and it applies to pairs of nets. It works only for the aio mode and also it
supports both manhattan and 45DegreeRoute.

To route these nets, fcroute will try,

1. Balance pair routing (matching routing length), if it fails then

2. Topological pair routing, if it fails then

3. Match L/W routing

September 2022 852 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

The same constraints have been used to create the above three routing results, the differences were on the nets selected for routing.
In these routing examples:

Picture (a) has balanced routing matching the length and topology of both nets.

Picture (b) cannot match the length but keeps the topological matching.

Picture (c) cannot match the topological so fcroute matches the length and the width of both nets.

All these methodologies guarantee a similar net delay.

Syntax

SHARE_DIFFPAIR

 REL_DIFFERENCE value

 ABS_DIFFERENCE value

 DPAIRGAP value

 net_1 net_2

END SHARE_DIFFPAIR

Here:

SHARE_DIFFPAIR in constraint file is supported in both the aio and pio modes by default.

REL_DIFFERENCE value is used to check whether the relative difference in length of the two nets in the differential after routing
meets the specified constraint value.

The default value is 0.2.

The relative difference is calculated by using the following formula:
REL_DIFFERENCE = Length of the longer net - Length of the shorter net
 --
 Length of the shorter net
For example, if the length of the constrained nets are 24 microns and 20 microns after routing, the relative difference is
calculated as (24 - 20) / 20 = 0.2.

ABS_DIFFERENCE value is used to check whether the absolute difference in length of the two nets in the differential pair after

September 2022 853 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

routing meets the constraint.

The default value is 40

The unit is microns.

The absolute difference is calculated by following formula:
ABS_DIFFERENCE = Length of the longer net - Length of the shorter net
For example, if the lengths of the constrained nets are 24 microns and 20 microns after routing, the absolute difference
would be calculated as (24 – 20) = 4.

DPAIRGAP value is used to control the spacing between the two nets in the differential pair.

The default value is the minimum spacing value in the LEF file.

The unit is microns.

Any violation in REL_DIFFERENCE or ABS_DIFFERENCE is reported in srouteFcReport.

The SHARE_ DIFFPAIR constraint can be used with resistance constraints if both nets in the SHARE_DIFFPAIR are restrained by the
same MAXRES and WIDTHRANGE constraints.

NETS

 MAXRES value

 WIDTHRANGE min_width: max_width

 net_list

END NETS

SHARE_DIFFPAIR

 REL_DIFFERENCE value

 ABS_DIFFERENCE value

 DPAIRGAP value

 net_1 net_2

END SHARE_DIFFPAIR

If the two nets in a SHARE_DIFFPAIR are restrained by different MAXRES and WIDTHRANGE constraints, an error occurs and only
the SHARE_ DIFFPAIR constraint is applied on those two nets.

Note: The two nets in a SHARE_DIFFPAIR have the same width after the resistance-driven routing feature is applied.

Example

SHARE_DIFFPAIR

REL_DIFFERENCE 0.2

ABS_DIFFERENCE 4

port_pad_data_out[7]

port_pad_data_out[8]

END SHARE_DIFFPAIR

September 2022 854 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Match Routing Constraint

For a group of nets (more than two), the router tries to match routing length. It only works for the aio mode. It also supports both
manhattan and 45DegreeRoute.

The syntax of MATCH constraint is as follows:

MATCH

 TOLERANCE value

 <2 or more nets>

END MATCH

Here, TOLERANCE specifies the tolerance value for differential routing. <2 or more nets> specifies the nets for which differential
routing is done.

In the picture below, the user has selected four nets to MATCH the length of the routing.

Shielding Routing Constraint

The flip chip router supports the capability of shielding nets during routing. To enable the feature, the recommendation is to use the
constraint file. Both the aio and pio modes support this feature. In addition, both manhattan and 45DegreeRoute support it.

The syntax of SHIELDING constraint is as below:

SHIELDING

SHIELDBUMP TRUE|FALSE

SHIELDWIDTH value

SHIELDGAP value

SHIELDSTYLE a|b|c

SHIELDNET net_name

net_name_list

END SHIELDING

September 2022 855 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Parameters

SHIELDBUMP TRUE|FALSE

If the value is TRUE

Shields bump with the specified shield net.

It only works in the aio mode and manhattan routing style.

If the value is FALSE

Does not shield bump.

It is the default value for SHIELDBUMP.

SHIELDWIDTH value

It specifies the width of the Shield Net, measured in microns.

SHIELDGAP value

It specifies the distance in microns between the shield (the special net) and the shielded net (the signal net).

SHIELDSTYLE a|b|c

It specifies where you want the shield to be placed, Above or Below or on the Common layer.

a = above the layer containing bumps

b = below the layer containing bumps

c = on the layer containing bumps ("common layer")

SHIELDNET net_name

It specifies a special net (typically VSS) used to shield the net.
net_name_list

It specifies the shielded nets.

In the picture below, the left net does not have SHIELDBUMP and the right net can be achieved by using SHIELDBUMP TRUE.

September 2022 856 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Notes

The shielding created will be floating. You will need to connect the shielding to the correct power/ground supply by using
the editPowerVia command.

defOut can mark the shielded nets as SHIELD, while displaying the SHAPE and ROUTED status of the metal shield wire. See the
following example.

Example

Consider the following example in which the fcroute command connects signal bumps to I/O cells using 90-degree signal routing for
aio mode. The command adds a side shield (VSS) on both sides of the signal route.

setFlipChipMode -route_style manhattan

fcroute -type signal -designStyle aio -layerChangeTopLayer 8 -layerChangeBotLayer 7 -routeWidth 8 -constraintFile

CFG/aio.constr

Constraint File CFG/aio.constr: Shield Net Description

SHIELDING

SHIELDBUMP true
SHIELDWIDTH 0.4
SHIELDLAYERS abc
SHIELDNET VSS
scan_out_2

September 2022 857 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

port_pad_data_out[15]

END SHIELDING

DEF Syntax

defOut contains the SHIELD syntax as follows:

-scan_out_2 (Bump_27_6_2 PAD) (IOPADS_INST/Pscanout2op PAD)

+ ROUTED METAL8 16000 + SHAPE IOWIRE (1255310 541920) (1369310 *)

NEW METAL8 16000 + SHAPE IOWIRE (1263310 533920) (* 695760)

+ PROPERTY BUMP_ASSIGNMENT "ASSIGNED"

;

-VSS (* VSS)

 + SHIELD scan_out_2 METAL8 800 + SHAPE IOWIRE (1275310 554320) (1315310 *)

 NET METAL7 16000 + SHAPE IOWIRE (1255310 541920) (1315310 *)

 NET METAL8 800 + SHAPE IOWIRE (1250510 529520) (1315310 *)

 + ROUTED METAL6 16000 + SHAPE STRIPE (1553200 109600) (* 186800)

 NET METAL6 16000 + SHAPE STRIPE (1753200 109600) (* 186800)

 + SHIELD scan_out_2 METAL8 800 + SHAPE IOWIRE (1275710 553920) (* 675760)

 METAL7 16000 + SHAPE IOWIRE (1263310 533920) (* 695760)

 METAL8 800 + SHAPE IOWIRE (1250910 529120) (* 675760)

PAIR Constraint

The SHARE_PAIR constraint is used to control the pairing between bumps and pads, especially for PG connection because it is a
common case for PG bumps and pads to have multiple bumps to multiple pads connection requirements and the user needs to
define the pairing. Both aio and pio modes support this constraint. In addition, both manhattan and 45DegreeRoute routing styles
support it.

The syntax of the SHARE_PAIR constraint is as follows:

SHARE_PAIR

net_name pad_name_list bump_name_list

END SHARE_PAIR

Parameters

This constraint supports the following pairing pattern.

One pad to one bump pairing

September 2022 858 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Multiple pads to one bump pairing

Turn on this feature with the option -multipleConnection multiPadsToBump in setFlipChipMode.

Multiple bumps to one pad pairing

Turn on this feature with the option -multipleConnection multiBumpsToPad in setFlipChipMode.

If the specified bump is not assigned or assigned to another net which is different from the specified net, fcroute will ignore it.

For those I/O pads or bumps not in the list but needed to be connected to the specified net, fcroute will ignore them and only route
the specified ones by PAIR constraint for the same net.

September 2022 859 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Resistance Driven Constraint

You may constrain the net resistance during routing. Both the aio and pio modes support this feature. In addition,
both manhattan and 45DegreeRoute routing styles support it.

The syntax of Resistance Driven Constraint is as follows:

NETS

 MAXRES value

 WIDTHRANGE min_value: max_value

 net_name_list

END NETS

MAXRES is the maximum resistance value allowed for the nets defined in the constraint.

WIDTHRANGE specifies a variable width. The router is allowed to use any width value between these two limits to avoid violating
the max resistance.

It is recommended to add srouteFCReport res_file_name in the extra configuration file.

The resistance values achieved after routing will be written to this file. This file will report the resistances in a table as follows:

#================================

#........Resistance Table........

resSQ: 0.100 for METAL8

#================================

'int' 0.875

...

'port_pad_data_out[15]' Actual:3.159 Constraint:3.000

This information can be useful for debugging purposes. For accurate values of resistance it is recommended to run Quantus
(Cadence Signoff Extraction Tool). Quantus can be run from Innovus.

Tapering Feature

The Tapering feature is enabled in the aio mode, wherein fcroute uses a thin routing width on I/O pins and wide routing width on
the bumps.

September 2022 860 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

You can specify the Tapering constraint in the fcroute constraint file. The constraint syntax is as follows:

Syntax

NETS

 TAPERSTEP step_value

 TAPERWIDTH width_value

 <nets>

END NETS

Here:

TAPERSTEP is the constraint to turn on tapering feature. It takes two values: 0 and 1.

0: There is no tapering needed.

1: Allow router taper once from normal routing width to the taper width at somewhere on the routing wires. The tapering
point is determined by the tool and user cannot control it.

TAPERWIDTH defines the wire width after tapering. It takes floating value and should be in the range of [MINWIDTH, normal_width].

MINWIDTH is the minimum width allowed for the metal layer and has been defined in technology LEF file.

normal_width is defined by the -routeWidth option in fcroute or routing width constraint specified in constraint file.

Example

NETS

TAPERSTEP 1 # 1 enables tapering, 0 disables tapering

TAPERWIDTH 10 # After tapering, the width would be 10

vssx_0 # Specifies the net name

vddcx_1 # Specifies the net name

END NETS

September 2022 861 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

SHARE_FIND_PORT Constraint
fcroute supports the SHARE_FIND_PORT constraint, which is used to find suitable ports based on specified parameters. All ports
meeting the specified constraint are used by both assignBump and fcroute.

For details of the syntax and description of the parameters, see SHARE_FIND_PORT Syntax.

With fcroute support for SHARE_FIND_PORT, the following two global constraints are being made obsolete:

FINDPINLAYERS layer_name - Used to specify the layer of the pin geometry for connection.

If both SHARE_FIND_PORT and FINDPINLAYERS are specified, the tool honors F INDPINLAYERS but gives a warning message
that it is now obsolete.

If only FINDPINLAYERS is specified, the tool follows the behavior of previous releases for FINDPINLAYERSbut gives a
warning message that it is now obsolete and recommends you to use SHARE_FIND_PORT.

If only SHARE_FIND_PORT is specified, the tool honorsSHARE_FIND_PORT. Behavior depends on the values specified
for LAYERS:

If one value is specified for LAYERS, the tool chooses port geometries on the specified layer.

If two values are specified for LAYERS, the tool chooses port geometries on layer ranges [bottom_layer,
top_layer].

MINPINSIZE width height - Used to specify the minimum geometry of the pin for connection.

If both SHARE_FIND_PORT and MINPINSIZE are specified, the tool honors MINPINSIZE but gives a warning message that it is
now obsolete.

If only MINPINSIZE is specified, the tool follows the behavior of previous releases for MINPINSIZE but gives a warning
message that it is now obsolete and recommends you to use SHARE_FIND_PORT.

If only SHARE_FIND_PORT is specified, the tool honors SHARE_FIND_PORT. Behavior depends on the values specified
for GEOMETRY_SHORT_EDGE/GEOMETRY_LONG_EDGE:

If one value is specified, the expected edge length is equal to the specified value.

If two values are specified, the expected edge length is in the range [min_value, max_value].

Examples

Some examples of SHARE_FIND_PORT are given below:

share_find_port_1.constr

SHARE_FIND_PORT

PIN PAD
MACRO LONG_INPAD
LAYERS METAL6
GEOMETRY_SHORT_EDGE 10:20
GEOMETRY_LONG_EDGE 20:60
@signal

END SHARE_FIND_PORT

This constraint constrains the selection of LONG_INPAD’s PAD pin: the pin should be on METAL6, the short edge should be between
10um~20um, and the long edge should be between 20um~60um. This constraint applies to all signal nets.

The routed result is as follows:

September 2022 862 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

share_find_port_2.constr

SHARE_FIND_PORT

LAYERS METAL6
GEOMETRY_SHORT_EDGE 10:20
GEOMETRY_LONG_EDGE 20:60
@signal

END SHARE_FIND_PORT

This constraint constrains the selection of pins: the pin should be on METAL6, the short edge should be between 10um~20um, and the
long edge should be between 20um~60um. This constraint applies to all signal nets.

The routed result is as follows. The pins on rstn_pad_o and clk_pad_o do not satisfy the size restrictions specified
with SHARE_FIND_PORT constraint and are therefore not routed:

September 2022 863 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

share_find_port_3.constr

SHARE_FIND_PORT

GEOMETRY_SHORT_EDGE 10:20
GEOMETRY_LONG_EDGE 40:60
rstn_1 clk_i

END SHARE_FIND_PORT

This constraint applies to only rstn_1 and clk_1 pins. The pin's short edge should be between 10um~20um, and the long edge
should be between 40um~60um.

The routed result is as follows. For rstn_i and clk_i, the METAL8 pin is of size 20umx30um, and the METAL6 pin is of size
20umx50um, therefore fcroute chooses the METAL6 pin shape:

September 2022 864 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

SHARE_IGNORE_* Constraints

The SHARE_IGNORE_* constraints can be used to exclude instances and macros from routing.

Excluding Instances

Use the following syntax to specify list of instances to be excluded from routing:

SHARE_IGNORE_INSTANCE

instance_name_list

END SHARE_IGNORE_INSTANCE

Here, instance_name_list specifies the list of instances that are to be excluded during flip chip routing. It supports wildcards.

Excluding Macros

Use the following syntax to specify list of macros to be excluded from routing:

SHARE_IGNORE_MACRO

macro_name_list

END SHARE_IGNORE_MACRO

September 2022 865 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Here, macro_name_list specifies the list of macros that are to be excluded during during flip chip routing. It supports wildcards.

Constraint for Restricting the Bump Escape Direction

The BUMP_ESCAPE_DIRECTION constraint can be used to restrict the escape direction in bumps with pre-drawing wires for outside
access.

fcroute supports octagonal bump pad structures with pre-drawing wires for outside access:

The pre-drawing wire is a pin in bump LEF. Use a constraint file to guide fcroute to connect the bump pre-drawing wire. You can
specify the bump escape direction as follows in the constraint file:

BUMP_ESCAPE_DIRECTION

BUMPCELLNAME directions

END BUMP_ESCAPE_DIRECTION

One bump cell can have multiple escape directions. Supported direction keywords are east, west, north, south, northeast,
northwest, southeast, and southwest. Other keywords are not allowed.

Note that this constraint file is used only for fcroute -type signal.

The following example shows how fcroute handles the such bump pad structures:

> fcroute -type signal -designStyle pio -constraintFile bumpEscapeDirection.const

In the constraint file:

BUMP_ESCAPE_DIRECTION

BUMPCELL0 east

BUMPCELL1 east northeast southeast

END BUMP_ESCAPE_DIRECTION

September 2022 866 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Useful Extra Configurations for Flip Chip Routing
The flip chip router (fcroute) provides you the capability to specify extra options into a text file, which can be given as an input to the
command fcroute -extraConfig or setFlipChipMode -extraConfig. Because of the rich patterns in flip chip routing and extensive
customization of RDL routing, this file defines extra options in addition to general settings that you may need for RDL routing. You
can choose the variables that can meet your requirements.

The following variables can be used in the extra configuration file:

srouteBumpToBumpRoute [TRUE | FALSE]
Specifies bump to bump routing. The default is TRUE.

srouteBumpToWireShape BLOCKWIRE
Connects the net to block wires

srouteConnectToAnyOfBump [TRUE | FALSE]

If it is set to TRUE, it means that it is unnecessary for fcroute to route to the center of bump but it is acceptable to touch the
bump geometry anywhere.

The default value is FALSE.

srouteConnectToCenterOfPin [TRUE | FALSE]

 If it is set to TRUE, fcroute can connect to the center of any pin except bump.

The default value is FALSE.

It is usually used when the width of the wire is less than the width of the pin.

srouteConnectToEdgeOfBump [TRUE | FALSE]

The default is FALSE.

Connects a wire to the edge of the bump if it is set to TRUE.

You should only use the extra configuration file if you are familiar with its use.

September 2022 867 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

srouteDifferentialRouteTolerance value The default value is 2.

If the actual difference between the length/width ratios is less than the specified value, the software omits differential routing. If
the actual difference is greater than the specified value, the software attempts differential routing, but if the software cannot
meet the specified value, the software displays a warning message.

srouteEcoMode [TRUE | FALSE]
The default is FALSE. When you set fcroute -eco to enable the ECO mode for Flip Chip route, srouteEcoMode is set to TRUE in
the extra configuration file.

srouteExcludeBumpType bumpCellName Specifies which bump cell will be excluded during routing.
Note: Currently, srouteExcludeBumpType supports both power and signal bumps. Use fcroute -type power ...
-extraConfig config_file_name to route certain types of bumps. The excluded types of bumps are defined
with srouteExcludeBumpType in the config file.

srouteExcludeRegion “llx1 lly1 urx1 ury1 llx2 lly2 urx2 ury2 …”

It specifies the region to exclude bumps and pads from fcroute.

It takes a string quoted by “” and in the string, multiple rectangular shapes are defined even they are disjointed.

The format of the string is like below,
"rect_ll_x rect_ll_y rect_ur_x rect_ur_y [more_rects]"

The unit is DB unit.

srouteFcCompaction [TRUE | FALSE]

The default is FALSE.

Turns on compaction routing, when set to TRUE . In the flip chip post-route stage, the compaction function pushes the
routing as close as possible to bumps in order to leave more routing resource for subsequent routing steps, such as P/G
bump connections or general power routing.
Note: This feature cannot be used with resistance driven and diffpair routings because the compaction action may
change the wire length and routing pattern. This feature does not support two-layer RDL routing.

srouteFcDieAreaOffset “left bottom right top”

Specifies the distance (in microns) to which the expanded area should extend from the edges of the chip. If
specified, fcroute can finish the routing in this expanded die area instead of the actual die area. The default value is “ 0
0 0 0 ”. This option does not support negative values.
Note: Routing is not allowed outside the expanded die area. If fcroute cannot finish the routing to specific bumps in the
expanded die area, it leaves these bumps open.

srouteFCReport file_name

Writes the resistance report into the specified file using the resistance constraint MAXRES and the inputs. It also reports
the width and length of special nets routed by fcroute.

srouteFcrMazeRoute45 [TRUE | FALSE]
Enables maze routing for 45 degree style routing. Maze routing increases the final routing completion rate for fcroute and
improves results for nets with complex patterns and long routing path.

srouteFcrouteAllowOverCongestion [TRUE | FALSE]
Specifies that all nets are routed even if there is not enough spacing in some area. The default is FALSE.

srouteFCrouteLayerIsPreferred. n [TRUE | FALSE]
Allows you to specify layer priorities for routing in a multi-layer design. For example, if you want M9 to be used only in very
congested area, set srouteFCrouteLayerIsPreferred.9 to FALSE to indicate that M9 is not a preferred layer for routing. Without

September 2022 868 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

any setting, every layer is considered a preferred layer, and the routing is distributed evenly.

Note: Currently, layer priority can be specified only in the pio flow.

srouteFcroutePadPinTagging [TRUE | FALSE]

It enables global router to honor port numbering if it is set to TRUE.

The default value is FALSE.

srouteGrouteClusterRegions x1 y1 x2 y2 x3 y3 x4 y4 ...
Allows you to specify the area I/O cluster regions in microns. Here, x1 y1 x2 y2 coordinates are equivalent to the llx
, lly , urx , and ury coordinates of the first area I/O cluster, x3 y3 x4 y4 represent the second, and so on.

Default: " "

srouteGrouteIncremental {TRUE | FALSE}
The default is FALSE.

srouteGrouteLengthDriven [TRUE | FALSE]
The default is FALSE. When optimizing placement and bump assignment, bias to vertical / horizontal connection instead of 45-
degree connection.

srouteGrouteMaxPathPerBump num_of_routes
Specifies the maximum number of routes coming from a single bump. Use along with srouteGrouteMaxPathPerPad to control
the maximum number of connections to a pin port for multiple bump routing. Here, num_of_routes has a range of 1 to 15.

srouteGrouteMaxPathPerPad num_of_routes
Specifies the maximum number of routes to a single pad pin geometry. Use along with srouteGrouteMaxPathPerBump to control
the maximum number of connections to a pin port for multiple bump routing. Here, num_of_routes has a range of 1 to 15.

srouteGrouteOptimizeWidth [TRUE | FALSE]
The default is FALSE.
Note: You must use this option in conjunction with the srouteGrouteOptimizeSpacing option and they cannot be set to true at
the same time.
Automatically adjusts the width of the nets specified in the constraint file within the max and min constraint. When set to true,
this configuration file option calls the global router to get the optimized width for each net and writes the results to a constraint
file called width.cons. If it is an fcroute -designStyle pio, the router routes the given nets as wide as possible (still within the
width range) while maintaining routability.
You can create your own constraint file to specify how the width is calculated. For example, if you have 10 nets in the design
(n1 through n10), you can create the following constraint file:

NETS

MINWIDTH 2.0

MAXWIDTH 5.0

WIDTHSTEP 0.1

n1 n2 n3

END NETS

NETS

MINWIDTH 5.0

MAXWIDTH 10.0

WIDTHSTEP 0.5

n4 n5 n6

END NETS

NETS

September 2022 869 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

WIDTH 3.0

n7 n8

END NETS

NETS
WIDTH 12
n9 n10
END NETS

where:

Note: All the nets within the same NET group will use the same final width. If you allow the nets to have different widths, while
satisfying the min and max value, you can use the following configuration file option:
srouteGrouteUniformWidth FALSE

srouteGrouteOptimizeSpacing [TRUE | FALSE]
The default is FALSE.

Note: You must use this option in conjunction with the srouteGrouteOptimizeWidth option and they cannot be set
to true at the same time.
Automatically adjusts the spacing within the max and min constraint. When set to true, fcroute calculates the maximum
allowable spacing (for the given net width) and writes it to the log file. All spacing values are the same.

srouteGrouteSerialBumpRouting [TRUE | FALSE]
Allows bumps of the same net to be connected together. The default is FALSE.

srouteGrouteUniformWidth [TRUE | FALSE]
All nets in the same width group have uniform width. The default is TRUE.

srouteJogControl [TRUE | FALSE]
Allows jogs during routing to avoid DRC violations. The default is FALSE.

srouteLayerChangeExcludeRegion “llx1 lly1 urx1 ury1 llx2 lly2 urx2 ury2 … "

Specifies the region to be excluded from layer change initiated by fcroute. In the argument string for this option, you can define
one or more rectangular shapes even if they are disjointed. You can also define a rectilinear shape. The format of the argument
string is as follows:

"rect_ll_x rect_ll_y rect_ur_x rect_ur_y [more_rects]"
or

“rectilinear_x1 rectilinear_y1 rectilinear_x2 rectilinear_y2 …”

srouteLayerChangeExcludeRegion “0 0 0 0”means layer change is allowed on the whole
chip. srouteLayerChangeExcludeRegion must be used with PIOLAYERCHANGE PAD in the constraint file. Only the pio mode
supports this constraint.

srouteLengthLimit [integer value]
Specifies the maximum routing wire length for each flip chip net. The default is 0.

n1, n2, and n3 Have a width between 2 and 5, and an incremental size of 0.1.

n4, n5, and n6 Have a width between 5 and 10, and an incremental size of 0.5.

n7 and n8 Have a fixed width of 3.0.

n9 and n10 Have a fixed width of 12.0.

September 2022 870 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

srouteMinLength [integer value]
Specifies the minimum segment length. The default is 0.

srouteOutputFailedResistanceGroute [TRUE | FALSE]
Displays nets that failed maximum resistance with different colors. The default is FALSE.

sroutePinSpacing dbUnitValue
Defines the I/O pad pin spacing.

sroutePioBusRoute [TRUE | FALSE]
Routes only the nets and bumps defined in the NETGROUP constraint, when set to TRUE. The default is FALSE.

sroutePioDiffPair [TRUE | FALSE]
Supports differential pair (DIFF PAIR) routing in the pio mode. The default is FALSE.

sroutePowerBumpAllDir [TRUE | FALSE]
Connects power bump to power stripes on all directions. The default is FALSE.

sroutePreferSameLayerJog [TRUE | FALSE]
Prefers a jog in the same layer. The default is FALSE.

sroutePrevent45ForLowerLayer [TRUE | FALSE]

It can prevent 45-degree routing for lower layer if it is set to TRUE.

The default value is FALSE.

sroutePreventViaUnderBump [TRUE | FALSE]
Prevents via under a bump. The default is FALSE.

sroutePushAndShove [TRUE | FALSE]
If TRUE, detail routing gets ripped and rerouted, to route open nets. The default is TRUE.

sroutePushAndShoveVerbose [TRUE | FALSE]
If TRUE, displays debugging messages during push_and_shove. The default is FALSE.

srouteReduceLayerChanges integer
The default is 0.

srouteRouteSpacing [integer value]
Specifies the default routing space for each flip chip net. The default is 0.

srouteRouteWidthForLowerLayer dbUnit

Indicates that fcroute should use dbUnit as width for the lower layer.

For example, if DB unit is 2000 and the width for lower layer is 8 micro, then this value should be set as 2000*8=16000.

srouteSpreadWiresFactor float
Specifies automatic spreading of wires during bump routing in order to prevent any SI violations. Here, float is applied as a
multiple of the minimum spacing that is required.

srouteStraightRouteOnly [TRUE | FALSE]
Specifies straight routing connections between targets. The default is TRUE.

srouteUseSpecifiedWidthForTopLayer {TRUE | FALSE}
If TRUE, forces fcroute to use user-defined width for the top layer connecting to the bump. The default is FALSE.

September 2022 871 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Power Routing
There are two methodologies for connecting the power and ground bumps that can coexist in the same design:

Connect PG bumps to the I/O pads.

Connect PG bumps to rings or stripes.

Connect PG Bumps to I/O Pads

It is recommended that these connections are done at the same time as the signal routing. First use the command setFlipChipMode
-connectPowerCellToBump true to enable connecting power cells to bumps, and then use the command fcroute -type signal to
route power cells to bumps.

Note: In a design, some Power/Ground (PG) bumps may be already connected to PG stripes before flip chip routing is
done. fcroute first checks whether port number is defined in bumps. If yes, fcroute routes the bumps to IO even if they are already
routed by PG stripes.

The command fcroute will automatically pair PG bumps with PG pads based on routability with some intelligence if there are no
specific pairing constraints by the user. Also fcroute will choose the suitable pin for routing based on its intelligence if there is no
constraint by the user.

For more control of the connection between PG bumps and PG pads, the designer can use the SHARE_PAIR constraint in the
constraint file or use port numbering feature.

September 2022 872 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

PG Bumps Connect to Rings or Stripes

The command fcroute -type power can connect PG bumps directly to rings or stripes.

You can create some extra power and ground bumps to reduce the IR drop. This is one of the advantages of the flip chip design.

The image below shows the difference between fcroute -type signal -designStyle pio, fcroute -type power, and addStripe.

Connect ground bump to I/O pad with setFlipChipMode -connectPowerCellToBump true and fcroute -type signal -
designStyle pio, as shown in (a).

Connect power bump to block ring with fcroute -type power, as shown in (b).

September 2022 873 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Connect PG bumps to stripe with fcroute -type power, as shown in (c).

Connect PG bumps to stripe with addStripe, as shown in (d).

September 2022 874 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

ECO Routing
The fcroute command detects ECO changes and performs ECO routing automatically. As a result, you do not need to modify routing
manually to complete ECO changes. To enable ECO mode flip chip routing, use the -eco parameter of the fcroute command. When
you specify the -eco parameter, fcroute automatically performs typical ECO routing steps, such as deleting existing routing results
or re-routing affected nets, whenever there is an ECO change.

Typical ECO routing working modes are:

Working Mode I:

Delete existing routing results

Re-route affected nets

Working Mode II

Re-route affected nets

Working Mode III

Delete existing routing results

Let's see how typical ECO changes impact routing:

IO-related ECO changes

Bump-related ECO changes

ECO Change Impact on Routing

Change in IO pad location Invokes fcroute -eco (Working Mode I)

Change in IO pad orientation Invokes fcroute -eco (Working Mode I)

Change in IO pad placement status No ECO routing needed

Add a new IO ring No ECO routing needed

Delete an IO ring No ECO routing needed

Change IO ring to die boundary margin No ECO routing needed

Add a new IO pad Invokes fcroute -eco (Working Mode II)

Delete an IO pad Invokes fcroute -eco (Working Mode III)

ECO Change Impact on Routing

Change in bump location Invokes fcroute -eco (Working Mode I)

Change in bump orientation No ECO routing needed

Change in bump placement status No ECO routing needed

Change in bump assignment status No ECO routing needed

Assign bump to another signal (including unassign) Invokes fcroute -eco (Working Mode I)

Add a new bump Invokes fcroute -eco (Working Mode II)

Delete a bump Invokes fcroute -eco (Working Mode III)

September 2022 875 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Routing ECO change

Netlist ECO changes

Bumps are not in netlist.

For netlist ECO changes related with IOs, the tool performs routing as for IO-related ECO changes.

Note: The optimization of IO pad location and/or bump assignment after IO ECO is not supported. You can use the exclude region
constraint to accomplish the task. For instance, in the example below, use srouteExcludeRegion in the etr.cfg file to exclude
unaffected areas so that the optimization is done only on affected components:

placePIO -assignBump -extraConfig etr.cfg

assignBump issues an ERROR message and ignores it.

P2P Router
Innovus supports a semi-automatic point-to-point (P2P) router. The P2P router can be accessed as follows:

The P2P router can be used for customized and special routing pattern generation. To use the P2P router:

1. Select the P2P router button from the toolbar on the main window.

2. Press F3 to set up the P2P router.

3. Click the object that will be the source.

4. Click another object to set it as the target.

Change the characters of an existing bump array No ECO routing needed

Add a new bump array No ECO routing needed

Delete a bump array No ECO routing needed

ECO Change Impact on Routing

Routing is partially deleted Invokes fcroute -eco (Working Mode II)

Note: The rerouting should preserve undeleted routings and do
reroute on deleted routing only.

Extra routing wires added but they cannot form a
complete path from pin to bump

No ECO routing needed

Extra routing wires added and they can form a complete
path from pin to bump

Invokes fcroute -eco (Working Mode III) and keeps new wires

September 2022 876 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Setting Up the P2P Router

When you press F3 for P2P setting, the following GUI form opens:

If net name is not set, the P2P router automatically picks up the net name based on the objects selected in the GUI.

If you do not select the Use exact location check box in the Point To Point form, the P2P router performs an auto search to find
an access point. Note that:

Use exact location specifies that the P2P router should use the exact location that you have clicked.

You can additionally select the Offset check box and specify offset values to define the maximum search offset from the
original click location.

The picture below depicts the results of auto selection versus using Use exact location:

September 2022 877 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

You can specify Guide Points in the Point to Point form to define a customized routing pattern. You can use this feature in
following ways:

Click the Draw button in the form and then click the required guide points in the main window. Press the Esc key to return
the location of selected guide points to the Guide Points text box. Click two objects for the source and target.
Or

Press Shift to turn on Guide Points. Then, click the required guide points in the main window. Click two objects for the
source and target.
Or

Directly enter the location of the guide points in the Guide Points text box in the Point to Point form. Click two objects for
the source and target.

Handling Flip Chip Designs with Complex Floorplans
If you have a flip chip design with a complex floorplan, you might get the following error:

**ERROR: Exceeding maximum number of 32 rows per cluster in cluster 0. Quit

The reason for this error is that if a design has a floorplan with IO pads of many different heights, the flip chip router may not be able

September 2022 878 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

to generate that many IO rows of different heights, internally. So, the flip chip router cannot proceed.

To solve this issue, you should do the routing in parts. You can try to unplace some IO pads (with CLASS PAD AREAIO or CLASS
BLOCK) or filler cells (with CLASS PAD SPACER or CLASS PAD AREAIO) that may not need to be routed. With a simplified
floorplan, do flip chip routing. After routing, you can load the IO pads and fillers back using the saved floorplan. Then, unplace
another part and do routing.

Flip Chip Router Report
You can use the srouteFCReport file_name option in the extra configuration file to report width, length, and resistance of the
special nets routed by fcroute. The report file generated by this option has the following format:

##

########## fcroute report ############

##

NET net_name bump_name:pad_name:pin_name:port_num

 STATUS open/resistance violation/routed

 Layer#: to be split/tapering/widthOpt

 Path: Width xx Length xx Resistance xx

 Path: Width xx Length xx Resistance xx

 …

 Layer#: to be split/tapering/widthOpt

 Path: Width xx Length xx Resistance xx

 Path: Width xx Length xx Resistance xx

 …

 Total length:xx

 Total resistance:xx (Constraint:xx)

END net_name

Format Definitions

net_name bump_name:pad_name:pin_name:port_num

Specifies the connection between bump and pad based on net. Incomplete connection specifications are also supported:

If the bump does not have the port number property, it outputs bump_name:pad_name

If the port number property does not include port_num , it outputs bump_name:pad_name:pin_name

STATUS open/resistance violation/routed
Reports the status of the net as one of the following:

Status Meaning

open If the net is not routed, its status is reported as open. No more information is output for this net.

September 2022 879 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Width/Length/Resistance/Total length/Total resistance
Specifies the width, length, and total length of special nets in microns.
Specifies the resistance and total resistance of special nets in ohms.

The formula to calculate the resistance is as follows:

where Li is the length of center line of ith wire segment, Wi is the width of the ith wire segment and ρ is read from the DB
resistance table according to the layer and width information.

Width/Length/Resistance is reported first by layer number from top to down and then by width.

Layer#: to be split/tapering/widthOpt
Specifies the feature to be applied to the net.

resistance

violation
If fcroute detects a resistance violation when it checks the resistance of the net against the resistance
constraint set by MAXRES in the constraint file, the status of the net is reported as resistance violation. In
this case, the Total resistance section reports the current resistance versus the expected resistance in
Constraint:xx.

routed If the net is successfully routed without any resistance violation, the status is reported as routed.

Layer# Indicates that no special feature is applied on this net.

For example, suppose net VSS is assigned to bump_vss with incomplete port number property.

NET VSS bump_vss:ground_pad:vss

 STATUS resistance violation

 Layer TOP_RDL

 Path: Width 25 Length 200 Resistance 2.5

 Layer 2nd_RDL

 Path: Width 25 Length 50 Resistance 0.8

 Total length: 250

 Total resistance: 3.3 (Constraint:3)

END VSS

September 2022 880 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Layer# to be

split
Indicates that the splitting feature will be applied on this net. Note that splitting happens after the report
is output.

For example, suppose net VSS is assigned to bump_vss with incomplete port number property.

NET VSS bump_vss:ground_pad:vss

STATUS routed

 Layer TOP_RDL

 Path: Width 25 Length 200 Resistance 2.5

 Layer 2nd_RDL to be split

 Path: Width 25 Length 50 Resistance 0.8

 Total length: 250

 Total resistance: 3.3
END VSS

Layer# tapering Indicates that the tapering feature is applied on this net.
For example, suppose net VSS is assigned to bump_vss with incomplete port number property.

NET VSS bump_vss:ground_pad:vss

STATUS routed

 Layer TOP_RDL tapering

 Path: Width 25 Length 200 Resistance 2.5

 Path: Width 15 Length 50 Resistance 1

 Total length: 250

 Total resistance: 3.5

END VSS

 Layer# widthOpt Indicates that width optimization feature is applied on this net.
For example, suppose net VSS is assigned to bump_vss with incomplete port number property.

NET VSS bump_vss:ground_pad:vss

STATUS routed

 Layer TOP_RDL widthOpt

 Path: Width 25 Length 250 Resistance 3

 Total length: 250

 Total resistance: 3

END VSS

September 2022 881 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Advanced Flip Chip Features

Two-Layer RDL Routing
As flip chip design become more and more complex, one layer may not be sufficient for completing RDL routing. Innovus supports
two-layer RDL routing for complex designs. However, in most flip chip designs, complete two-layer routing may not be required.
Instead, you may need to use two layers only in the IO area and one layer in the core area to optimize routing resources. In these
cases, you can add routing blockages to control where two layers are used and where only only layer is used for RDL routing.
fcroute strictly honors any routing blockages you add to control two-layer RDL routing.

fcroute provides two kinds of constraints for two-layer RDL routing:

1. Use PIOLAYERCHANGE PAD in the constraint file and srouteLayerChangeExcludeRegion “llx1 lly1 urx1 ury1 llx2 lly2 urx2
ury2 …” setting in the extra configuration file.

PIOLAYERCHANGE PAD in the constraint file

Turns on layer change feature in the pio mode. This constraint is not supported by the aio mode.

Both manhattan and 45DegreeRoute styles support this constraint.

By default, this constraint uses the region defined by srouteLayerChangeExcludeRegion “llx1 lly1 urx1 ury1
llx2 lly2 urx2 ury2 …” in the extra configuration file to prevent layer change from fcroute.

This constraint is applicable only when both -layerChangeBotLayer and -layerChangeTopLayer options specify the
same routing layer. The direction of layer change is down, which means fcroute must change the routing layer to
the layer lower than the specified routing layer.

srouteLayerChangeExcludeRegion “llx1 lly1 urx1 ury1 llx2 lly2 urx2 ury2 …” in the extra configuration file.

Specifies the region to be excluded from layer change initiated by fcroute.

srouteLayerChangeExcludeRegion “0 0 0 0”means layer change is allowed on the whole chip.

This option must be used with PIOLAYERCHANGE PAD in the constraint file.

Only the pio mode supports this constraint.

Both manhattan and 45DegreeRoute styles support this constraint.

In the argument string for this option, you can define one or more rectangular shapes even if they are disjointed.
You can also define a rectilinear shape.

The format of the argument string is as follows:
"rect_ll_x rect_ll_y rect_ur_x rect_ur_y [more_rects]" or
“rectilinear_x1 rectilinear_y1 rectilinear_x2 rectilinear_y2 ...”

The default region is the core region of the chip. If the core region is the same as the whole chip area, fcroute
ignores the PIOLAYERCHANGE PAD setting in the constraint file.

This option prevents layer change in the specified region. However, multiple layers can be allowed in the region.
This option places a virtual routing blockage on the cut layer. To prevent wires on a certain layer, a routing
blockage is still needed.

This option is a soft constraint for fcroute.
If the setting for routing layers is -layerChangeBotLayer TOP_RDL -layerChangeTopLayer TOP_RDL, fcroute implements the
above settings as follows:

September 2022 882 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Uses TOP_RDL as much as possible. It uses the second redistribution layer (RDL) only when a single layer cannot finish
routing in case of cross-over.

Honors the settings defined by srouteLayerChangeExcludeRegion as a soft constraint.

2. Add routing blockage to control where to make layer change.
fcroute strictly honors routing blockages. If you use a routing blockage with other routing constraints, fcroute honors the
mixed usage as well.

September 2022 883 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Routing Bumps in the eWLB Process
In embedded wafer leaver ball (eWLB) grid array process, some bumps are placed out of the chip and are required to connect to the
IO pin in the die. However, out-of-die routing is not allowed by default. You can use the srouteFcDieAreaOffset option in
the fcroute extra configuration file to specify the expanded area in which routing should be allowed:

srouteFcDieAreaOffset “left bottom right top”

Here, left specifies the distance (in microns) to which the expanded area should extend from the left edge of the chip. Similarly,
bottom , right , and top specify the distance from the bottom, right, and top edges of the chip, respectively. f croute can finish the
routing in this expanded die area instead of the actual die area.

Note: Routing is not allowed outside the expanded die area. If fcroute cannot finish the routing to specific bumps in the expanded
die area, it leaves these bumps open.

Pillar Bump Support
Flip chip development is driven by device performance and package miniaturization trends. Higher device performance leads to
more input/output connections per IC. At the same time, miniaturization requires smaller/thinner packaging, leading to smaller,
closer-spaced connections. Fine-pitch flip chip pillar bumps reduce size while meeting the challenges of thinner ICs and maintaining
robust IC and package reliability. As a result, pillar bumps are being used more and more in flip chip designs. With pillar bump, the
shape of a bump changes from octagon to a long octagon as shown below:

September 2022 884 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

fcroute supports horizontal and vertical pillar bumps. In addition, it also supports 45/135-degree pillar bumps, which are already
defined in LEF.

fcroute connects to bump center, point A for long-side or short-side entry, or point B for diagonal-side entry

Here, Point B is the intersection of lines a, b and c, which are the perpendicular bisectors of sides 1, 2 and 3 as shown below.

Sometimes, if fcroute cannot complete the routing when connecting to the center of bump, it may adjust the connection location with
its intelligence and without causing any DRC violations.

You can use the create_bump -orientation option to specify the orientation of a pillar bump. When required, you can use this option
to rotate a pillar bump by 90, 180, or 270 degrees to alleviate package and chip routing problems.

Note: Innovus does not rotate a bump by 45 degrees, but it can place and route 45-degree pillar bumps defined in LEF. Instead of
rotating the pillar bump, you can change the pillar bump master for correct orientation.

fcroute Bus Routing for DDR3
A long routing path in Double Data Rate 3 (DDR3) may cause crosstalk between signals. To prevent crosstalk, you must add P/G
nets between signal nets and route these nets together with the same pattern like bus routing and specify different width and spacing
per net.

In the bus routing pattern for DDR3:

Route signal and P/G nets together with the same pattern in a long path.

The shielding P/G net is floating, not connected to bump or pad pin.

September 2022 885 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

You can define the routing width and spacing for each net.

To support this bus routing pattern, you need to add the NETGROUP constraint in the constraint file. The NETGROUP constraint has the
following format:

NETGROUP

 BUSGUIDE net_group_name

 SHIELDNET/BUMP name WIDTH value SPACING value

 SHIELDNET/BUMP name WIDTH value SPACING value

 ...

 SHIELDNET/BUMP name WIDTH value SPACING value

END NETGROUP

Here:

BUSGUIDE net_group_name guides the global router as a hard constraint. You must create the net group with createNetGroup
. fcroute will honor the net order specified in NETGROUP in the constraint file.

SHIELDNET/BUMP name specifies the shield net or bump name and specifies the order for routing. The tool finishes routing in the
specified order.

Shield net will be floating after routing. The start/end point of shield net is controlled by the bus guide segments.

Define the net from left to right of routing accessing the first bus guide segment near to the bump as shown
below. fcroute honors this order to complete the routing.

WIDTH specifies the width for routing and overwrites the width by other options. It is optional.

SPACING specifies the spacing for routing. It is optional. If it is not specified, min spacing in LEF is used.

After adding the NETGROUP constraint in the constraint file, use the sroutePioBusRoute configuration variable in the fcroute extra
config file to control it. The use model is as follows:

1. Define the NETGROUP constraint in the constraint file.

2. Add sroutePioBusRoute true in the fcroute extra config file. With this setting, fcroute will route only the nets and bumps

September 2022 886 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/createNetGroup.html

defined in NETGROUP.

3. Create a net group with createNetGroup.

4. Add the required nets to the net group with addNetToNetGroup .

5. Create a bus guide for the net group. You must use orthogonal bus guide segments for the start and end points. Others
segments can be either orthogonal or 45-degree.

6. Run fcroute with -selected_bump, which specifies the bumps to be routed for NETGROUP.

Here is an example of how NETGROUP constraint can be used:

NETGROUP

 BUSGUIDE ddr_1

 BUMP Bump_598 WIDTH 28

 BUMP Bump_601 WIDTH 13.2

 BUMP Bump_602 WIDTH 28

 BUMP Bump_606 WIDTH 13.2

 SHIELDNET VSSQ_mc WIDTH 28

 BUMP Bump_607 WIDTH 13.2

 BUMP Bump_612 WIDTH 28

 BUMP Bump_605 WIDTH 13.2

 SHIELDNET VSSQ_mc WIDTH 28

 BUMP Bump_610 WIDTH 13.2

 BUMP Bump_613 WIDTH 28

END NETGROUP

September 2022 887 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

../innovusTCR/addNetToNetGroup.html

RDL Extraction
In the RDL extraction flow for designs using peripheral I/O methodology, Innovus outputs the design with the RDL routing into a GDS
file that is fed into Quantus extraction engine for parasitic extraction at the cell-level. Quantus generates a cell-level SPEF/DSPF file
that is used for timing and signal integrity analysis.

There are two steps in parasitic extraction with Quantus.

LVS is run to perform connectivity extraction.

Quantus is run to perform parasitic extraction.

The following diagram illustrates this flow.

Inputs to Extraction

Verilog netlist for annotation, generated by Innovus

GDS of design with RDL, generated by Innovus

qrcTechFiles

Outputs from Extraction

Cell-level SPEF/DSPF for SI/Timing analysis, including coupling RDL nets to signal nets

SI and Timing Analysis
The following procedure describes the signal integrity and timing analysis flow for an RDL design using the coupled SPEF file
generated by the RCX extraction tool.

1. Restore the design. restoreDesign routedSession.dat designname
This command restores the routed view of the design including the regular routing and RDL routing.

2. Import the coupled SPEF file from RCX. spefIn quantus_coupled.spef

September 2022 888 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

Make sure all the parasitics of the SPEF are back annotated in Innovus. If all the nets are back annotated, Innovus displays the
following message:
0 nets are missing in SPEF file.

3. Perform timing analysis in Innovus by using the timeDesign command.
timeDesign -postRoute -reportOnly
This command reports worst and total negative slack as well as register-to-register, default, register-to-clock-gating,
and input-to-output port slacks.

4. Analyze signal integrity by performing SI analysis in Innovus. The SI engine analyzes the design for glitch and SI violations.
timeDesign -postRoute

This command analyzes the design for SI, creates the analysis report, and reports the worst negative slack path with SI-
induced delay.

The following listing is a sample script for signal integrity and timing analysis in Innovus.

timeDesign -postRoute -reportOnly

September 2022 889 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

September 2022 890 Product Version 22.10

 Innovus User Guide
Design Implementation Capabilities--Flip Chip Methodologies

6

Hierarchical Flow Capabilities

Partitioning the Design

Timing Budgeting

Using ART in Hierarchical Designs

Top-level Timing Closure Methodologies

Top-level Timing Closure Methodologies for iHDB Flow

Extracting Timing Models

September 2022 891 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities

Partitioning the Design
Overview

Flow Methodologies

Top-down Methodology

Chip Planning

Implementation

Chip Assembly

Chip Assembly for iHDB Flow

Bottom-up Methodology

Implementation

Block Implementation

Top-level Implementation

Chip Assembly

Specifying Partitions and Blackboxes

Defining Partitions

Defining Blackboxes

Blackbox Flow

Saving Blackboxes

Reshaping Blackboxes

Removing Blackbox Specifications

Handling of Blackboxes with Non-R0 Orientation

Automatic Conversion of Orientation

Performing R0 Transformation

Specifying Multiple Instantiated Partitions and Blackboxes

Changing Partition Clone Orientation

Specifying Rectilinear Partitions and Blackboxes

September 2022 892 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Specifying Core-to-I/O Distance for Partition Cuts

Displaying All Partitions

Working with Nested Partitions

Defining Nested Partitions

Pin Assignment Across Nested Partitions

Pin Checking and Legalization Across Nested Partitions

Handling Pin Objects Across Nested Partitions

Committing Nested Partitions

Assembling Nested Partitions

Assigning Pins

Checking the Feasibility of Pin Assignment

Fixing PreCheck Issues

Assigning Partition and Blackbox Pins

Setting Pin Constraints

Pin Group

Net Group

Pin Guides

Pin Size (Width and Height)

Pin Spacing

Pin Layers

Pin-to-corner Distance

Pin Blockage

Performing Pin Pre-Assignment

Setting Constraints on a Specific Pin

Assigning Pins

Aligning Partition Pins Across Feedthrough Buffers

Placement-based Pin Assignment

September 2022 893 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Route-based Pin Assignment

Tips for Assigning Partition Pins

Validating Pin Placement Results

Checking the Pin Legality

Refining Pin Assignment and Fixing Pin Violations

Adjusting Pins

Aligning Partition Pins

Running Incremental Pin Assignment

Adjusting Floorplan or Floorplanning the Design Again

Performing Pin Assignment Again

ECO Pin Assignment

General Flow

Saving the Partition Pins

Restore Partition Pin Information

Assigning I/O Pins

Setting Pin Constraints

Performing Initial Pin Assignment

Using the assignIoPins Command to Optimize I/O Placement

Validating Pin Placement

Performing Congestion-aware Pin Assignment for Channel-based Designs

Salient Points About Congestion-aware Pin Assignment

Assigning Pins on Rectilinear Edges

Swapping Partition Pins

Pin Alignment

Assigning Pins for Bus Guides

Inserting Feedthroughs

Inserting Routing Feedthroughs

September 2022 894 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Inserting Feedthrough Buffers

Inserting Feedback Buffers

Limitations

Procedure

Using a Topology File to Insert Feedthrough Buffers

Topology File Structure Guidelines

Topology File Versions

Version 2.0 of the Topology File - Syntax and Examples

Version 1.0 of the Topology File - Syntax and Examples

Version 0.5 of the Topology File - Syntax and Examples

Replicating Feedthrough Insertions Across ECO Netlists

Reducing the Number of Buffers and Ports Added for Route-based Feedthrough
Insertions

Net Connecting Through Adjoining Partition

Mentioning Some Verilog Modules as dont-add-ports

Abbreviating Lengthy Feedthrough Net Names

Blocking Edges for Feedthrough Insertion

Support for Blockage Lines

Highlighting the Nets for which Feedthrough Buffers Have been Inserted

Using the Feedthrough Ports GUI Menu

Inserting Feedthrough Buffers Using the GUI

Writing Generalized Feedthrough Paths

Creating a Topology File Using the GUI

Editing a Topology File Using the GUI

Browsing Nets Using the GUI

Filtering Nets Using the GUI

Utilizing Pre-defined Feedthrough Pins in Custom Macros

September 2022 895 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Use Flow

How the connectMacroFeedthrough Command Connects Feedthroughs

Feedthrough Connection for Abutted Macros

Mapping File For Describing Feedthrough Connectivity

Limitations

Generating the Wire Crossing Report

Interpreting the Wire Crossing Report

Estimating the Routing Channel Width

Running the Partition Program

Creating a Top-Level Partition

Block-Level Partition

Pushing Down Signal Routes

How Top-level Stripes Are Pushed Down

How Bumps, Routes, and Area I/O Cells Are Affected

Area I/O Cells are Part of the Top-level Netlist

Bumps and Routing are on Top Routing Layer

Bumps and Routing are on Reserved Routing Layer

Limitations

Case 1: All Routing Layers Reserved for the Partition

Case 2: Top Layer Not Reserved for Routing

Saving Partitions

Working with OpenAccess Database

Pushing Down a Network into Block Partitions

Flow to Push Down a Network into Block Partitions

Flow Overview

Partition Pushdown Replay Flow

Focused Methodologies

September 2022 896 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Correcting Pin Illegality On Selected Pins

Selecting Pins Using a File

Assigning Pins of a Net

Using pins and nets in the same pin file

Assigning Pins in Pre-feedthrough Netlist

Promoting Selected Macro Pins

Doing Pin Prioritization

Method 1

Method 2

Prioritizing Few Pins in a Selected Pin Assignment Flow

Speeding Up Interactive Pin Assignment

Deciding the Closest Legal Location to a Selected Position

Pin QoR Metrics and Comparison

Handling Instance Groups Associated with Partitions

September 2022 897 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Overview
Most of the system-on-a-chip devices are designed in a traditional flat flow that avoids the effort to
set up a design hierarchy. However, in multi-million gate designs, this could result in memory
limitations and long run time. Designs team can develop and adopt a hierarchical flow to shorten
the turnaround time on large designs. Designs can be divided into manageable partitions; each
partition can be independently assigned to different design groups to be developed in parallel.

Hierarchical design can be divided into three general stages: chip planning, implementation, and
chip assembly.

Chip Planning
Breaks down a design into block-level designs to be implemented separately.

Implementation
This stage consists of two sub-stages: block implementation for a block-level design, and top-
level implementation for a design based on block-level design abstracts and timing models.

Chip Assembly
Connects all block-level designs into the final chip.

Flow Methodologies
This chapter covers the following methodologies in the partitioning area:

Top-down Methodology

Bottom-up Methodology

Top-down Methodology
The top-down methodology usually consists of top-down planning, implementation, and chip
assembly stages. Use this methodology to create a top-level or hierarchical floorplan from a flat
floorplan based on fenced modules. In this approach, the die size, shape, and I/O pads locations
will drive block and partition placement. Block-level design size and pins will be generated based
on the top-level floorplan.

September 2022 898 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Chip Planning

The following steps describe the most common flow for chip planning, which includes specifying
partitions and blackboxes:

1. Import the entire design to be partitioned. Import the design into the Innovus Implementation
System (Innovus) environment. You can also include blackboxes.

2. (Optional) Define the blackboxes. If your design has blackboxes that are not specified in step
1, you can define them after reading in the netlist. You can also adjust the size of the
blackboxes. For more information, see Saving Blackboxes.

3. Lay out the floorplan. Manually pre-place all modules that will become partitions or
blackboxes. You can also use the proto_design command for module placement and use
the place_design -concurrent_macros command for macro placement that places blocks and
std_cells together.

4. Run power planning.

5. Specify the modules and blackboxes that will become partitions. You can further adjust
blackbox size, if necessary. For more information, see Specifying Partitions and Blackboxes.

6. Run placement.

7. (Optional) Insert feedthrough buffers. Insert feedthrough buffers into partitions to avoid routing
nets over partition areas. This step is necessary for channelless or mixed designs. For more
information, see Inserting Feedthroughs. Run Early Global Route before this step if you want
to run route-based feedthrough insertion. You must also run Early Global Route if you want to
display and generate a list of all nets that cross over the top of each partition (using the
Partition - Show Wire Crossing menu command or the showPtnWireX command).

8. Run Early Global Route. Depending on what stage of the design is in, such as prototyping,
intermediate, tapeout, use the appropriate option of the setRouteMode command. For
example, the -earlyGlobalRoutePartitionHonorFence list_of_ptn_cell_names parameter
defines the partition cells in which Early Global Route honors the fence constraints. The -
earlyGlobalRoutePartitionHonorPin list_of_ptn_cell_names defines the partition cells in
which Early Global Route honors partition fences with single-entry constraints and pre-
assigned pins (pins marked FIXED) and assigned pins (pins marked PLACED).

9. Assign partition pins and blackbox pins using the assignPtnPin command.

10. Regenerate the routes that follow assign pins using the setRouteMode -

September 2022 899 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/showPtnWireX.html
../innovusTCR/setRouteMode.html
../innovusTCR/assignPtnPin.html
../innovusTCR/setRouteMode.html

earlyGlobalRoutePartitionHonorPin command.

11. Validate pin assignment result.

12. If needed, refine the pin assignment results or perform incremental pin assignment. If pin
placement results need to be improved, you can further refine pin placement manually or
automatically. After re-adjusting pins, verify pin placement again.

13. Budget the timing for blocks using the deriveTimingBudget command.

14. Partition the design using the partition command. If your design has multiple instantiated
partitions, run the alignPtnClone command before the pin assignment step to make sure that
all partition clones are well aligned with the master partition on a power mesh so you will not
have any problems when flattening the partitions. For more information, see Specifying
Multiple Instantiated Partitions and Blackboxes.

15. Save the partition using the savePartition command. This creates a directory for each block,
and saves its netlist, floorplan, and budgeted constraints to this directory. For top-level
designs, this also creates a directory containing the top-level netlist, floorplan, simple timing
model, and physical abstract for each partition block or blackbox. Subsequent work should be
done in these block-level and top-level directories for implementing the block-level and top-
level designs, respectively.
Tip: You should do all design work in each saved partition directory, including the top-level
directory.

Note: For Integrated Hierarchical Database (iHDB), save partitions with a specified module
tag (savePartition -module_model_tag). This creates pnr and lef module models for each
partition block. For top-level design, this also creates a pnr module model. These block-level
and top-level pnr models should be used for implementing the block-level and top-level
designs, respectively. For example if the design dtmf has the ptn_wrapper partition and the
default global data directory is DATA2. With savePartition -module_model_tag init, a pnr
model will be created for top-level design in the following directory: DATA2/dtmf/init/pnr.
For partition ptn_wrapper, a pnr and lef models will be created in the
DATA2/ptn_wrapper/init/pnr and DATA2/ptn_wrapper/init/lef directories.

Tip: You should do all design work in each saved partition directory, including the top-level
directory.

September 2022 900 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/deriveTimingBudget.html
../innovusTCR/partition.html
../innovusTCR/alignPtnClone.html
../innovusTCR/savePartition.html
../innovusTCR/savePartition.html
../innovusTCR/savePartition.html

Implementation

After the chip planning is complete, the next stage is to implement the individual blocks. The detail
of each block is implemented using the constraints for timing, size, and pin assignment determined
during the planning stage. Block implementation must be done in the block directory generated by
the savePartition step. At the completion of this step, block abstracts, timing models, a DEF file,
and a GDSII file should be generated to be used in top-level implementation and chip-assembly.
The next step is to implement the top-level designs with block model data, such as LEF, timing
model, power model, and noise model.

Note: For Integrated Hierarchical Database (iHDB), block implementation must be done with the
pnr model that was generated by the savePartition step. To restore a block or top-level design,
restore_module_model -cell cell_name -tag tagName should be used. At the completion of this
step, all needed models such as block abstracts, timing models, a DEF file, and a GDSII file should
be generated to be used in top-level implementation and chip-assembly. The next step is to
implement the top-level designs with block model data, such as LEF, timing model, power model,
and noise model.

Chip Assembly

Chip assembly is the last stage in the top-down process and consists of bringing together the
detailed information for the top-level and all of the blocks for full chip extraction, power, timing, and
crosstalk analysis. Chip assembly is done using the assembleDesign command.

Note: Before using the assembleDesign command, for each design, save the top-level and the
block-level designs using the saveDesign -def command. It is recommended that you save the
design with a def file so that it can be used for reassembling the design using the DEF merge
capability for a fast turnaround time.

As an example, consider a design called dtmf that has two partitions: a1 and b1. After running the
partition command, the partition directories are saved under the PTN directory. You would,
therefore, implement the following:

top-level design dtmf

a1 block

For information on chip assembly in the Integrated Hierarchical Database (iHDB) flow, see
Chip Assembly in iHDB Flow.

September 2022 901 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/savePartition.html
../innovusTCR/savePartition.html
../innovusTCR/restore_module_model.html
../innovusTCR/assembleDesign.html
../innovusTCR/saveDesign.html
../innovusTCR/partition.html

b1 block

The design files are a1.enc and a1.enc.dat for a1 block and b1.enc and b1.enc.dat for b1 block. The
following figure shows the directory structure:

You can perform chip assembly using the assembleDesign command. This command does the
following:

Concatenates the Verilog netlist files from the partitions back to the top level
Note: The partition netlists and top-level netlist are changed from the time the save partition
step was performed.

Merges the design data with the original top design level. By default, data from DEF files is
used. However, you can use the -fe parameter to specify that Innovus data should be used.
You can also use data in the OpenAccess database format.

Rows at top-level design will be cut, and the rows at block-level design will be brought back

Preserves scan chain information at partition block-level design, therefore minimizing the
floorplan data loss during partition and assemble design cycle. The start and stop scan chain
points at partition block I/O pins are adjusted back to instances that connect to scan chain
points. Top-level scan chains are not connected to block-level scan chains.

Note: You must run the assembleDesign command from the directory that contains the full chip-level
floorplan for the top-down hierarchical flow.

For this example, you would run the assembleDesign command as follows:
assembleDesign -topDir PTN/dtmf.enc.dat -blockDir PTN/a1.enc.dat -blockDir

PTN/b1.enc.dat

This assembles the entire design. You can also use the assembleDesign command to bring back
specified block data from OpenAccess database. Here is an example:

September 2022 902 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assembleDesign.html
../innovusTCR/assembleDesign.html

assembleDesign -topDesign testOALib DTMF layout -block testOALib ptn1 layout -block

testOALib ptn2 layout

In this example, the OpenAccess database top-level library is testOALib, the top-level cell name is
DTMF, and the top-level view is layout. Two blocks, ptn1 and ptn2, have been specified.

Note: The assembleDesign command supports rectilinear partitions. It also supports nested
blackboxes for the place-and-route data (-fe parameter) and the OpenAccess database. However,
because blackbox information cannot be specified in a block-level DEF file, nested blackboxes are
not supported for the DEF flow.

Chip Assembly for iHDB Flow

Chip assembly is the last stage in the top-down process and consists of bringing together the
detailed information for the top-level and all of the blocks for full chip extraction, power, timing, and
crosstalk analysis. Chip assembly for the Integrated Hierarchical Database (iHDB) flow can be
done with the following steps:

1. Restore the top-level design using read_module_model command.

2. Specify the block-level designs with pnr type model that will be assembled with the top-level
design using set_module_model command. Wildcard can be used to specify all blocks at top-
level.

3. Run commit_module_model -mmmc_file fullChipViewDefinitionFile command to load all
specified pnr models and merge them with top-level design.

Once the top and block level designs are assembled together:

Rows at top-level design will be cut, and the rows at block-level design will be brought back.

Scan chain information at partition block-level design is preserved, therefore minimizing the
floorplan data loss during partition and assemble design cycle. The start and stop scan chain
points at partition block I/O pins are adjusted back to instances that connect to scan chain
points. Top-level scan chains are not connected to block- level scan chains.

Note: Before using the iHDB flow, for each design, save the top-level and the block-level designs
using the create_module_model -tag tag_name command.

For example, consider a design called dtmf that has two partitions: a1 and b1 and the global data
directory is DATA (can be set using the set_module_model -default_dir command). After running
the partition/savePartition -module_model_tag init command, the partition pnr models are
saved under the DATA/<cellName>/init/pnr directory.

You would, therefore, implement the following:

September 2022 903 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/restore_module_model.html
../innovusTCR/set_module_model.html
../innovusTCR/commit_module_model.html
../innovusTCR/create_module_model.html
../innovusTCR/partition.html
../innovusTCR/savePartition.html

top-level design dtmf

a1 block

b1 block

Then assemble top and block design

Example of a chip assemble run script:
set_module_model -default_dir /myproject/DATA

read_module_model top -tag tag_name

set_module_model -cell * -tag tag_name -type pnr

commit_module_model -mmmc_file fullChipViewDefinititionFile

The following figure shows the directory structure:

Bottom-up Methodology
The bottom-up methodology consists of implementation and assembly stages. In the bottom-up
methodology, the size, shape, and pin position of block-level designs will drive the top-level
floorplanning.

Note: Chip assembly with Integrated Hierarchical Database does not support the
OpenAccess database yet.

September 2022 904 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Implementation

Each block in the design must be fully implemented. This includes place and route as well as clock,
power, and I/O. This section covers the following topics:

Block Implementation

Top-level Implementation

Block Implementation
The following is a sample report that displays if the design has overlap and Master-Clone alignment
violations:

The size of a block-level design can be derived or adjusted using the Floorplan - Specify Floorplan
menu command or the floorPlan command. The Innovus software can support a rectilinear block
level design.

You can run the assignIoPins command to assign I/O pins based on placement information. You
can specify initial I/O pin placement in an I/O constraint file. For more information, see the
Generating the I/O assignment File section in the "Data Preparation" chapter of the User Guide.
You can read in the I/O constraint file into the Innovus environment during the design import step, or
use the loadIoFile command after reading in the netlist. If an I/O constraint file does not exist, an
initial I/O pin placement can be derived from cell placement. After placing macros and standard
cells, the placer can internally call the assignIoPins command to place I/O pins based on current
cell placement. By default, pins are placed under power areas on different layers.

Note: The placer internally calls the assignIoPins only when you specify the setPlaceMode -
place_global_place_io_pins true command.

Note: Use the setPlaceMode -place_global_place_io_pins {true | false} command to disable I/O
pin assignment during placement.

After I/O pins have been assigned, you can further refine the current I/O pin assignment by doing
either of the following:

Adjust pins (using the Pin Editor or the editPin command). You can also use direct pin
manipulation to manually move selected pins to different locations.

Run incremental pin assignment by running the assignIoPins command. This command
honors fixed pins and re-assigns only the ones that have a placed or unplaced status.

Note: The loadIoFile command automatically sets the I/O pin placement status to fixed. For the
pins that need to be re-assigned, you must change their pin placement status.

September 2022 905 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/floorPlan.html
../innovusTCR/assignIoPins.html
../innovusTCR/loadIoFile.html
../innovusTCR/setPlaceMode.html
../innovusTCR/editPin.html

You can use the legalizePin command to resolve pin overlaps or pins off-grid.

Top-level Implementation
The following is a sample report that displays if the design has overlap and Master-Clone alignment
violations:

After block implementation, an abstract should be developed for each block-level design that will be
used in the top-level implementation. For the bottom-up approach, create a top-level floorplan
where block-level abstracts would be referenced in the top-level design.

Note: You can use the following command to generate the design abstract (LEF) information for the
block-level design:

write_lef_abstract command

create_module_model -type lef command (for iHDB flow)

Chip Assembly

For the bottom-up approach, see Chip Assembly, to bring together all the top-level and block-level
netlists and routing information.

September 2022 906 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/legalizePin.html
../innovusTCR/write_lef_abstract.html
../innovusTCR/create_module_model.html

Specifying Partitions and Blackboxes
Defining Partitions

Defining Blackboxes

Saving Blackboxes

Handling of Blackboxes with Non-R0 Orientation

Specifying Multiple Instantiated Partitions and Blackboxes

Changing Partition Clone Orientation

Specifying Rectilinear Partitions and Blackboxes

Specifying Core-to-I/O Distance for Partition Cuts

Displaying All Partitions

Working with Nested Partitions

Assigning Pins

Defining Partitions
To designate partitions, use the definePartition command and the Specify Partition form. The
following figure shows an example of how some of the fields in the Specify Partition form relate to
the partition. For a description of all the fields, see the Partition Menu in the Menu Reference.

September 2022 907 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/definePartition.html
../innovusMR/Partition_Menu.html#PartitionMenu-SpecifyPartition
../innovusMR/Partition_Menu.html

To specify a module as a partition, complete the following steps:

1. Move the module inside the core area. You can manually move a module, or use the
setObjFPlanBox command, to define a new module boundary with its coordinates in the core
area.
Note: A blackbox is a special partition where this restriction does not apply.
Note: You cannot create donut shaped objects during the partition flow.

2. Specify the name of the partition.

3. Specify the instance name of a module that is to become a partition.
Note: For cases where more than one module is instantiated with the same cell type,
see Specifying Multiple Instantiated Partitions and Blackboxes.

4. Specify the space, in micrometers, between the module boundary and core design area of the
partition module.

September 2022 908 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/setObjFPlanBox.html

5. (Optional) If the partition row height is different than specified in the Core Spec page of the
Design Import form, specify the row height, in micrometers.

6. (Optional) To account for wide wires at the top-level design, specify the extra spacing, in
micrometers, around the partition. At the top-level design, this information is saved as part of
the partition section in a floorplan file. By default, this value is 0; the top-level router uses
minimum wire spacing.

7. Specify the selected metal layers that are used for routing in the partition and generating
partition pins. A normal six-metal layer selection process is Metal1,Metal2, Metal3, Metal4,
and Metal5 selected, and Metal6 unselected. When saving the partition, the LEF generated for
this partition will have routing blockages on their layers so that the top-level router is aware of
which metal layers are being used in the partition. To customize routing interconnects over a
partition, use the Add Partition Feedthrough widget.

8. (Optional) Specify the pin pitch dimension for the partition sides.

9. (Optional) Select or deselect the metal layers from the defaults. Deselecting all metal layers
for a side of a partition prevents pins from being created for the entire side of that partition. The
selection of partition pin metal layers works in conjunction with the Partition Pin Guide
floorplan object.

10. Add the partition information to the Partition List field.

Defining Blackboxes
Normally a blackbox is a module with content that is not well defined. However, a well-defined
module can also be defined as a blackbox. A blackbox is similar to a hard block, but like a fence, a
blackbox can be resized, reshaped, and have pins assigned. After a blackbox has its pins assigned
and is partitioned, it behaves like a hard block. The blackbox feature can be used only with a
partitioned design. After the netlist has been loaded, you can further specify which modules or cells
will be regarded as blackboxes, or modify the existing blackbox sizes. A blackbox size can be
specified in terms of an estimated area (an actual value or an area value in terms of gate count), or
a fixed block width and height. You can define a blackbox in the following ways:

Use the setImportMode -keepEmptyModule true command before importing a design.

Once the design is imported, specify a module or hard macro as blackbox using
the specifyBlackBox command or the Specify Black Box form.
Note: Converting a hard macro into a blackbox will not update the blockage definitions when
you change the blackbox size.

September 2022 909 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Define LEF abstracts for blackboxes. You can specify a blackbox library in the LEF Files field
of the Design Import form. If a blackbox LEF abstract is specified in the LEF Files field, the
LEF abstract should have CLASS type as BLOCK BLACKBOX to indicate it is a blackbox.
The following is an example of a blackbox LEF abstract:
MACRO amba_dsp

CLASS BLOCK BLACKBOX ;

ORIGIN 0 0 ;

SIZE 4411.8600 BY 5697.3600 ;

END amba_dsp

After defining a blackbox with any of the above methods, you can further modify an existing
blackbox size with the specifyBlackBox command.

Note: You can use the getBlackBoxArea command to retrieve the standard cell area, macro area,
and cell utilization value for the specified blackbox.

Warning: If you convert a hard macro into a blackbox or define a blackbox with a LEF abstract that
has obstructions, the obstructions size will not be updated with a new blackbox size. Due to this
limitation, obstructions may be intruded outside of the new blackbox boundary.

Blackbox Flow

Note: Even though there are more than one ways to define a black box, it is recommended that you
define a black box by using the specifyBlackBox command.

The following flow specifies blackboxes with an original netlist that has modules with content that is
not well-defined:

1. Import the design. By default, the Innovus software keeps empty modules (setImportMode -
keepEmptyModule true)

2. Specify the blackboxes or load a floorplan file with blackbox information.

3. Floorplan the design.

4. (Optional) Save the design using the saveDesign command. This saves the blackbox
information. For the iHDB flow, save the design by running create_module_model -type pnr
command.

5. Run placement.

6. (Optional) Run Early Global Route.

September 2022 910 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

7. Proceed with the normal hierarchical flow for the design.

There is no separate step required for assigning blackbox pins or committing the blackbox. After the
blackbox pins are placed at near-optimal location by running Early Global Route, use
the assignPtnPin command to finally place blackbox pins to honor user-specified constrains.
When you partition the design, blackboxes as well as regular partitions are committed. Blackboxes
get converted to hard macros at top-level design that display as a Block object in the Attribute
Editor. The following flow is an ECO flow where the contents of the black box are now well defined.

1. Restore the design (or import the design and load a floorplan with the black box information)
using the restoreDesign command. For the iHDB flow, use the restore_module_model
command.

2. Run the loadBlackBoxNetlist command to incrementally load the netlist for the blackbox. You
can run this command without exiting the current session of the Innovus software.

3. Run the convertBlackBoxToFence command to convert the blackbox to a fence.
Note: To convert the fence back to a blackbox, run the convertFenceToBlackBox command.

4. Proceed with the normal hierarchical flow for the design.

Saving Blackboxes

To save blackbox information, use the saveDesign command or the File - Save Design menu
command. For the iHDB flow, use the -type pnr command.

Reshaping Blackboxes
The following is a sample report that displays if the design has overlap and Master-Clone alignment
violations:

During proto_design, a blackbox can be reshaped (within specified aspect ratio range) to minimize
overlaps. This reshape is based on the minimum and maximum values for the aspect ratio range
while maintaining the current area. The master and clone blackboxes are reshaped such that the
clone blackbox take the same size and shape as its master while meeting orientation constraints.

September 2022 911 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assignPtnPin.html
../innovusTCR/loadBlackBoxNetlist.html
../innovusTCR/convertBlackBoxToFence.html
../innovusTCR/convertFenceToBlackBox.html
../innovusTCR/saveDesign.html

Removing Blackbox Specifications
The following is a sample report that displays if the design has overlap and Master-Clone alignment
violations:

A blackbox can be unspecified by using the unspecifyBlackBox command. If the blackbox is an
empty module in the netlist, then you can also convert it to a partition fence using
the convertBlackBoxToFence command.

Tip: You should not delete a blackbox that was originally defined as a macro in the technology file;
otherwise, you might have problems with loosely integrated applications because these application
interfaces automatically generate only macro definitions for blackboxes. You should only use the
delete capability to try out different floorplan.

Handling of Blackboxes with Non-R0 Orientation
The partitioning- and blackbox-related commands in Innovus support only those blackboxes whose
master instances have an R0 orientation. Clones with a non-R0 orientation clones are, however,
supported. Partitioning-related commands such as assignPtnPin, partition, assembleDesign,
flattenPartition, convertBlackBoxToFence, and editPin work only with those blackboxes whose
master instances have an R0 orientation. Several commands in the Innovus software automatically
convert the orientation of master blackboxes to R0. In addition, you can also run the
changeBBoxMasterToR0 command to convert the orientation of the master blackboxes to R0. This
would be useful for example, you restore a design and want to convert the orientation of all the
master blackboxes to R0.

Note: You can check the orientation of partitions and blackboxes in a design by right-clicking a
partition/blackbox and selecting the Show Partition Orientation option from the context menu.

Note: You can use the changeBBoxMasterFromR0 command to change the orientation of the master
blackboxes from R0 to a different orientation.

The following sections provide additional information about automatic conversion of orientation and
about the changeBBoxMasterToR0 command.

Automatic Conversion of Orientation

Performing R0 Transformation

Automatic Conversion of Orientation

When the following commands change the orientation of a master instance blackbox to non-R0, the
commands automatically convert the new orientation to R0:

September 2022 912 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/unspecifyBlackBox.html
../innovusTCR/convertBlackBoxToFence.html
../innovusTCR/assignPtnPin.html
../innovusTCR/partition.html
../innovusTCR/assembleDesign.html
../innovusTCR/flattenPartition.html
../innovusTCR/convertBlackBoxToFence.html
../innovusTCR/editPin.html
../innovusTCR/changeBBoxMasterToR0.html

specifyBlackBox

placeInstance

proto_design

In addition:

Opening the Attribute Editor for such a master blackbox automatically converts the orientation
to R0.

Using the Flip or the Rotate options from the context menu (the menu that appears when you
click the middle mouse button on an object) automatically converts the orientation to R0.

Using the Flip or the Rotate options on the Floorplan toolbox automatically converts the
orientation to R0.

The conversion includes the following:

Cell blackbox geometries (PORT, OBS, and so on) are transformed.

Master instances are converted to R0 orientation. The clone instances are oriented
accordingly.
Note: The placement location remains unchanged.

Any pin guides, pin blockages, and pin constraints associated with transformed blackboxes
are deleted.
Note: There is no change in the design physically as a result of these transformations. Only
the cell orientation and the instance representation are modified.

As an example, if the blackbox master instance is MX, then after the transformation:

Cell geometries are transformed to MX

The orientation of the master instance is changed to R0.

Performing R0 Transformation

For designs that contain blackboxes whose master instances have a non-R0 orientation, you can
use the changeBBoxMasterToR0 command to convert the orientation of the master blackboxes to R0.

The syntax of the command is as follows:
changeBBoxMasterToR0 [-checkOnly] [{cellName | cellNameList}]

If cellName, or cellNameList, is not specified, the command converts the orientation of all the non-

September 2022 913 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/specifyBlackBox.html
../innovusTCR/placeInstance.html
../innovusTCR/proto_design.html
../innovusTCR/changeBBoxMasterToR0.html

R0 master blackboxes to R0. If the -checkOnly parameter is specified, the command does not
actually convert the orientation of any master blackbox; it only displays the number of master
blackboxes whose orientation would have been changed had the command been run without the -
checkOnly parameter. When you are ready to run a loosely integrated application, complete the
following steps:

Run the saveDesign command to make sure that you have updated the size and pin
information. For the iHDB flow, run the create_module_model -tag tag_name command.

Exit the Innovus software.

Rerun the Innovus software with the updated macro information.

To delete all the blackboxes in the design, use the unspecifyBlackBox -all command.

Specifying Multiple Instantiated Partitions and Blackboxes
When a module with multiple instantiations (also known as repeated partitions) of the same cell
type is assigned to become a partition, you can specify either one of the multiple instantiated
hierarchical instances to be partitions. The name of a hierarchical instance used for partition
specification becomes the master partition, and the other instantiations are clones of this master
partition.

When working with repeated partitions, you should be aware of the following:

You can only specify one instance as a master partition. The Innovus software will treat the
other instances are partition clones.

For the bottom-up hierarchical flow, where the block is implemented first, make sure all the
non-uniquified instances are placed inside the core before you specify the partition.

For non-uniquified blackboxes, the Innovus software automatically converts all hierarchical
instances of a same module as repeated blackboxes. The hierarchical instance that is first
instantiated in the netlist is treated as the master blackbox.

Partition and blackbox clones can be rotated and flipped even if the vias used in the design
are not square. The assembleDesign command will create the required symmetry of the via if
its definition is missing in the LEF.
Note: For the iHDB flow, use the following commands to create the required symmetry:
set_module_model -cell cell_name -type pnr

commit_module_model

Partition clones share the same pin assignment and pushed-down data as their partition

September 2022 914 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/saveDesign.html
../innovusTCR/unspecifyBlackBox.html
../innovusTCR/assembleDesign.html

master, you must run the alignPtnClone command before the commit partition step to make
sure all the partition clones are well aligned with the master on power mesh so you do not run
into problems when flattening the partitions.

For master and clones partitions, the Innovus software automatically snaps the clone
partitions such that clones will have the same row structure and pattern as their master. To
disable this snapping capability, use the -noEqualizePtnHInst option of
the loadFPlan command.

Changing Partition Clone Orientation
After specifying the partition, you can change the partition clones' orientation by using
the setClonePtnOrient command or through Attribute Editor during floorplanning. Use
the getClonePtnOrient command to retrieve orientation information of a specific partition
clone. For routing purposes, the Innovus software automatically stitches regular wires and rotates
vias correctly for non-R0 orientations, such as MX, MY, R180, and R270. For example, there is a
case where some of the clones follow the orientation of the master instance (R0), and some are
placed with R180 orientation. After chip assembly, the Innovus software flips and places the clone
instances' standard cells to match the R180 clone orientation, and repositions the routing according
to the R180 orientation.

Note: The R90, MX90 ,MY90 and R270 orientation clones are not supported because they have
have vertical rows.

The following example shows a design that has R90, R180, and R270 orientation clones:

Note: The illustration above only shows the wire information inside the partition, and does not

September 2022 915 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/alignPtnClone.html
../innovusTCR/loadFPlan.html
../innovusTCR/setClonePtnOrient.html
../innovusTCR/getClonePtnOrient.html

include the top-level connection.

Specifying Rectilinear Partitions and Blackboxes
You can specify a rectilinear (non-rectangular) partition shape by adding a cut area. The partition's
cut area will have no cell placement and no routing. Pins are assigned to the rectilinear partition
edges, as shown in the following figure:

The rectilinear pin assignment recognizes the rectilinear edges when assigning pins, and supports
any rectilinear shape. See Assigning Pins on Rectilinear Edges for more information.

To add a cut area to the partition or blackbox, complete the following steps:

Click on the Cut Rectilinear widget from the Tools area.

Move the mouse to an edge or corner of the partition or blackbox.

Left click and drag over the area.

Left click again to complete the cut.

For the top-level partition, the cut area allows block or cell placements. The equivalent text
command is setObjFPlanBoxList with the Module object type. For backward compatibility, you can
also use the createPtnCut command. You should specify a module as a partition before using
the createPtnCut command. For repeated partitions or blackboxes, when you create a cut on one
instance – either master or clone – the cut is applied to the other instances as well.

Note: If a cut is made on a blackbox/partition that has pins assigned to it, the affected pins are
automatically moved to the new edge boundary created by the cut.

Specifying Core-to-I/O Distance for Partition Cuts
Core-to-I/O distance is specified in the Specify Partition form. If the partition has a partition cut, core-
to-I/O distance is honored where the cut is specified. The specified top, bottom, left, and right core-
to-I/O distances is automatically assigned for the cutting edges that face the north, south, west, and
east side, respectively.

For example, if you specify a core-to-I/O distance of 5 µm for the top and bottom, and 2 µm for left

September 2022 916 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/setObjFPlanBoxList.html
../innovusTCR/createPtnCut.html
../innovusTCR/createPtnCut.html

For example, if you specify a core-to-I/O distance of 5 µm for the top and bottom, and 2 µm for left
and right sides:

The core to I/O distance for the edge A (facing east) should be 2 µm. The core to I/O distance for the
edge B (faced to north) should be 5 µm, same as the top side.

Displaying All Partitions
You can use the Show All Partition context-menu to display all the partitions in the design including
any hidden ones.

Working with Nested Partitions
The multi-level hierarchical flow, enables partitions to be defined inside partitions. This helps to
avoid the need to partition a big design one stage at a time. Instead of a single level partitioning of
the design you can make nested partitions at different levels. This helps in better control of partition
mapping and reduces the turnaround time. The multi-level hierarchical flow, supports master and
clones at different levels of hierarchy.

A nested design can have:

partition inside a partition

clone inside a partition

clone inside a clone

September 2022 917 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Even though a fence can be defined inside a fence in a single level of partition also, only one of
these fence is allowed to be defined as a partition. In multi-level designs, all the fences can be
defined as partitions. To see child fences, you can use Show Children from the context menu of the
parent fence. All operations of object creation and manipulation are supported for nested partitions.
Objects like pins, pin guides, pin blockages, bus guides etc are clearly shown. Pins are
automatically (or manually) assigned on all levels of partitions on boundaries of nested partition.

Defining Nested Partitions

Use the definePartition command to specify partitions inside a partition. While specifying
partitions, you can specify the definition in any order. For example, if PTN1 is a parent partition and
PTN2 is a child then the following commands give the same results:

definePartition -hinst PTN1

definePartition -hinst PTN2

or

definePartition -hinst PTN2

definePartition -hinst PTN1

Inserting Feedthroughs in Nested Partitions

The insertPtnFeedthrough and showPtnWireX commands support nested partitions. The
insertPtnFeedthrough command removes all parent level partitions and does feedthrough on the
bottom most level of partitions as if in a single level of partitions. For inserting feedthrough buffers
into nested partitions, the insertPtnFeedthrough command, first, automatically deletes the parent
partitions and keeps only the bottom most partition. It then does a single level feedthrough insertion

September 2022 918 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

and then automatically restores the parent partitions and brings the nested partition definition back
as it is.

Note: In nested designs, the insertPtnFeedthrough command only puts buffers and ports in the
bottom most level of partitions.

Pin Assignment Across Nested Partitions

The assignPtnPinassign_partition_pins command performs automatic pin assignment of
partitions inside other partitions. It places pins of nested partitions similar to single level partitions.
However, while assigning pins for a single level design the aim is to achieve maximum alignment
possible between pins. For nested partitions top pins are aligned first to reduce the top channel and
model congestion inside partitions. Thereafter, pin assignment is done to achieve maximum
possible alignment for nested partitions. During master/clone pin assignment for nested partitions,
pins are assigned such that they have comparable maximum misalignment in all scenarios. The
editPinedit_pin command is used for manual pin assignment in nested partitions. It places pins of
nested partitions similar to single level partitions. Early Global Route routes switches effecting
hierarchical routes and honors pins at different levels of partition. It considers pin guide constraints
present on the Nth level of partition and performs checks to avoid violations. The
setRouteModeset_db -earlyGlobalRoutePartitionHonorFence command identify nested partitions
and honor boundaries of both child and parent partitions.

Pin Checking and Legalization Across Nested Partitions

The pin checker and legalizer capabilities check and legalize partition and black box pins for all
levels of partitions. The checkPinAssignment command reports the pin status for pins of nested
partitions and is aware of shapes both inside and outside of the partition boundary of nested
partitions. The legalizePin command has also been enhanced to be aware of nested partitions and
correct the pin position of illegal pins across hierarchies. It gives a warning if the first level pin is
placed in second level partition or vice versa. However, it legalizes pins only for track placement. It
also supports pin overlapping across N levels for overlapping partition boundaries.

Handling Pin Objects Across Nested Partitions

To guide automatic pin placements for nested partitions and control pin positions, the pin objects
(pin groups, net groups, pin guides, and pin blockages) are handled in the following manner:

createPinGroup

September 2022 919 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assignPtnPin.html
../TCRcom/assign_partition_pins.html
../innovusTCR/editPin.html
../TCRcom/edit_pin.html
../innovusTCR/setRouteMode.html
../TCRcom/set_db.html
../innovusTCR/checkPinAssignment.html
../innovusTCR/legalizePin.html

Individual constraints should be defined for each hierarchical module since a pin group is
associated with cells. In order to create a pin group for nested partitions, the -cell parameter
must be used. For example, the following command defines different spacing constraints for N
level and N-1/+1 partitions.
createPinGroup -spacing 4 -cell PTN1

createPinGroup -spacing 2 -cell PTN2

createNetGroup
Since a net is a hierarchical object and is not associated with a cell, the same object can work
for multiple levels of hierarchy.

createPinBlkg
Since it has no specific element attached to it, it can be propagated to N+1/N-1 levels as well.
In order to create pin blockages for nested partitions, the -cell parameter is not required. It
applies to all partitions whose boundary it is touching. The -cell is only required when the -
edge parameter is used.

createPinGuide

In case of nested partitions, a common pin guide can be created for a net group. However, for
creating a pin guide for a individual pin groups spread across nested partitions, the -cell
parameter is required.

Committing Nested Partitions

The partition command inherits the physical cells inside correct partitions irrespective of the
sequence of the partition definition. The partition command commits all partitions (parent and
child) in a bottom up fashion. The parent is represented as a HARD MACRO at top level and child
as a HARD MACRO at parent level. To make any changes in a child, both the parent and child
partitions need to be flattened (parent and then child) in a sequential manner.

Assembling Nested Partitions

The incremental assemble design capability brings back partition data for nested partitions. It first
restores the top design, assembles the parent partitions, and then brings back all child nodes
partitions. It ensures that all references of master and clones (which may be at different levels of
hierarchy in different partitions) are assembled properly.

September 2022 920 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

For example (iHDB Flow):

restore_module_model

child cells model need to explicitly set in nested design

foreach k {parent child} {set_module_model -cell $k -type pnr}

commit_module_model

Assigning Pins
You can optimize partition and blackbox pins in the Innovus environment based on routing or
placement information. You can assign the pins or ports to a location on a partition, and set various
constraints as per your requirements on pin assignment, for example, you can create pin blockages
on specified areas. Run the Check Pin Assignment menu command of the Partition Menu or
the checkPinAssignment command after pin assignment to make sure that all pins are assigned, are
placed on routing grids, and are not overlapping. Blackbox pins are assigned in the same way as
partition pins. Pin assignment supports the following:

Rectilinear partitions and black boxes

Repeated partitions and black boxes. Both master and clones are considered when assigning
their pins.

Designs with an arbitrary origin.

Non-uniform tracks.

Automatic pin alignment across feedthrough path.

Note: Pin assignment assigns only signal pins but it does honor power/ground stripes and follow
pins. Power and ground pins are created when the design is partitioned.

Note: The pin assignment commands have been updated to honor the preferred routing layer
attributes as soft constraint during pin assignment. Pin assignment commands try to honor
the setAttribute –top_preferred_routing_layer and -
bottom_preferred_routing_layer attributes. However in case they cannot be honored, the pin is
assigned to any allowed layer.

The following sections describe pin assignment in Innovus:

Checking the Feasibility of Pin Assignment

Assigning Partition and Blackbox Pins

Assigning I/O Pins

September 2022 921 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/checkPinAssignment.html

Performing Congestion-aware Pin Assignment for Channel-based Designs

Assigning Pins on Rectilinear Edges

Swapping Partition Pins

Assigning Pins for Bus Guides

Checking the Feasibility of Pin Assignment
Before assigning pins to the design, you can check the design to identify potential issues that may
arise while assigning pins. You can use the -preCheck option of the checkPinAssignment command
to check for the feasibility of pin assignment mainly to catch the reason for unplaced pins in fully
abutted design.

Note: No other checkPinAssignment command parameter can be used if the -preCheck option is
being used.

The -preCheck parameter checks for the following:

Partition Fence Overlap Violation: It checks for any partition fences which are overlapping and
reports the violation.

Layer Violation: It checks for allowed layers on abutted edges of partition.

Spacing Violation: it checks for spacing on abutted edges.

Block Pin Violation: It checks if the block pin is placed on an abutted edge with its connected
partition.

Multi Partition Pin Net Violation: It checks for multi partition pin nets in abutted design.

Master-Clone Pin Connection Violation: It checks if symmetric abutted designs have each
master-clone pair connected to same pin.

Master-Clone Orientation Violation: Its check for the clone inside clone orientation. The clone
inside a clone should have a relative orientation with its parent which is checked with
master/clone inside master.

Master-Clone Net-Group Violation: It checks the net group ordering in master and clone
partitions.

Master-Clone Symmetric Violation: It checks if the clone to clone offset (relative distance
on abutted edges) is same as in the master to master/clone connection pair. This is required
so that the pins in each clone-clone and master-master/clone pair is the same.

Master-Clone alignment Violation: It checks for routing track offset in Master-Clone design to

September 2022 922 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

avoid off grid pins.

Master-Clone size Violation: It checks the master-clone size. This is required to check the
number of poly edges of clones with master and check each edge size for any mismatch.

Master-Clone align-zone Violation: It checks for the common alignment zone between master-
clone and their connected partitions.

Example
The following command checks the feasibility of assigning the pins in the
design:checkPinAssignment -preCheck#% Begin checkPinAssignment (date=02/26 13:51:22,
mem=737.7M)

 There are overlap violations found. Correct it first. All other

violation results will not be correct with overlap violation. Check detail report of

overlap violation in file test_preCheck.rpt

--

 Summary of pin pre checks

--

Partition Fence Overlap Violation | 1 |

Layer Violation | 0 |

Spacing Violation | 0 |

Block Pin Violation | 0 |

Multi Partition Pin Net Violation | 0 |

Master-Clone Pin Connection Violation | 0 |

Master-Clone Orientation Violation | 0 |

Master-Clone Net-Group Violation | 0 |

Master-Clone Symmetric Violation | 0 |

Master-Clone alignment Violation | 0 |

Master-Clone size Violation | 0 |

Master-Clone align-zone Violation | 0 |

#% End checkPinAssignment (date=02/26 13:51:22, total cpu=0:00:00.0, real=0:00:00.0,

peak res=737.9M, current mem=737.9M)

The violation marker is also displayed in the design:

September 2022 923 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The detailed report can be used to fix the violations:

Partition Fence Overlap Violation : Fence of hierarchical Instance 'c1' is overlapping with fence of

hierarchical instance 's1'. Recommended to change the area/position of fence to avoid this overlap

All the violations must be fixed before pin assignment is carried out.

Fixing PreCheck Issues

You can reduce the issues reported by the checkPinAssignment -preCheck command and improve
the pin QOR by automatically by using the alignPtnClone command to doing the following:

Fix the fence overlaps for partitions

Fix the clone orientation to make designs symmetrical

Fix the relative location and orientation of a set of target partitions based on reference
partitions.

Fixing Partition Fence Overlap Violation

The checkPinAssignment -preCheck command reports partition fence overlap violations. The -
snapAllCorners parameter of the alignPtnClone command can be used to fix partition overlaps.

Fixing Master-Clone Symmetric Violation

The checkPinAssignment -preCheck command checks if the clone to clone orientation and offset
(relative distance on abutted edges) is same as in the master to master/clone connection pair for
maintaining the symmetry . This is required so that the pins in each clone-clone and master-
master/clone pair are the same. The -symmetricOrientation parameter of the
alignPtnClone command can be used to check the orientation between each pair of partitions, and

September 2022 924 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/alignPtnClone.html
../innovusTCR/alignPtnClone.html
../innovusTCR/alignPtnClone.html

fix the symmetry by finding the optimum symmetric orientation of clones.

Note: These symmetry violations are reported under the "Master-Clone Symmetric Violation"
section of the report.

Fixing the relative location and orientation of a set of target partitions based on reference
partitions

The alignPtnClone command can be used to fix the relative location and orientation of the target
partitions based on the reference partitions using the following parameters:

-symmetryPatternReference string

Specifies the names of the partitions that are used as a reference set to maintain a
symmetrical pattern for other set of clone partitions in the group. The first partition in the list is
considered as the seed partition from which all the relative locations and orientations are
calculated for the rest of the partitions in the list.

-symmetryPatternTarget string

Specifies the names of the partitions that are used as a target set to maintain a symmetrical
pattern relative to the reference set of partitions in the group.

Note:

The number of partitions and their order must be the same as that specified with the -
symmetryPatternReference parameter.

The current location and orientation of the seed partition is used to relatively move the
other partitions in the list. The first partition in the list is considered as the seed partition
from which all the relative locations and orientations are calculated for the rest of the
partitions in the list.

You can specify master partitions in the target partitions set list. However, master
partitions can only have R0 orientation.

-targetOrientation {R0 R90 R180 R270 MX MX90 MY MY90}

Specifies the new orientation of the seed partition of the target partition set (-
symmetryPatternTarget). The specified orientation overrides the current orientation of the
seed partition and enables you to maintain the relative orientation of the different pairs of
clones.

Notes:

The seed partition is the first partition specified with the (-
symmetryPatternTarget) parameter from which all the relative locations and orientations

September 2022 925 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/alignPtnClone.html

are calculated for the rest of the partitions in the list.

The orientation of the master partitions cannot be changed.

-targetOrigin {x y}

Specifies the new origin of the seed partition of the target partition set (-
symmetryPatternTarget). The specified location overrides the current location of the target
seed partition.

Note:

It does not let the target seed partition go outside the core boundary.

The seed partition is the first partition specified with the (-symmetryPatternTarget)
parameter from which all the relative locations and orientations are calculated for the
rest of the partitions in the list.

Example:

The following command fixes the relative location and orientation of the target partitions based on
the reference partitions:

alignPtnClone -symmetryPatternReference {I_kam1b I_kam3a I_kam2b} (-

symmetryPatternTarget) {I_kam1d I_kam3b I_kam2a} -targetOrigin {51.1 42.845} -

targetOrientation R180

Assigning Partition and Blackbox Pins
Assigning pins for partitions and blackboxes includes the following steps:

September 2022 926 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Setting Pin Constraints

Assigning Pins

Validating Pin Placement Results

Refining Pin Assignment and Fixing Pin Violations

ECO Pin Assignment

Setting Pin Constraints

The Innovus software provides a number of constraints to control or guide partition, blackbox, or I/O
pin assignment:

Pin Group

Net Group

Pin Guides

Pin Size (Width and Height)

Pin Spacing

Pin Layers

Pin-to-corner distance

Pin Blockage

Pin Group
While assigning bus pins or signal pins that you want to be placed together, you can specify a
constraint for these pins by creating a cell pin group. You can create a cell pin group with
the createPinGroup command or by using the Edit Pin Group form (Edit - Edit Pin Group). You can
add pins to a cell pin group with the createPinGroup command or with
the addPinToPinGroup command. Cell pin groups do not have to be associated with a partition pin
guide because a pin group is not a constraint on any partition edge. In this case, the pin assignment
program can freely place this group of pins on any edge of the partition. However, pins that belong
to this pin group are still placed together in adjacent locations. With a pin group you can:

Optimize the order of pins within a cell pin group to improve wire length using the -
optimizeOrder option of the createPinGroup command. If this option is not specified, the pin
order is exactly as specified in the pin group.

September 2022 927 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/createPinGroup.html
../innovusTCR/createPinGroup.html
../innovusTCR/addPinToPinGroup.html

Specify pin spacing. The default minimum pin spacing between pins of a cell pin group is two
tracks.

The following commands create a pin group pGroup1 that consists of 3 INT bus bit pins of the
module ALU. These pins can be optimized within the pin group:

createPinGroup pGroup1 -cell ALU -pin {INT[0] INT[2] INT[3]} -optimizeOrder
or

createPinGroup pGroup1 -cell ALU -optimizeOrder
addPinToPinGroup -cell ALU -pinGroup pGroup1 -pin {INT[0] INT[2] INT[3]}

Use the deletePinGroup command to delete a pin group or all pin groups and use
the deletePinFromPinGroup command to delete a pin from a pin group.

Net Group
You can create a net group using the createNetGroup command or by using the Edit Net
Group form (Edit - Edit Net Group). You can specify net members when creating a net group or add
them later using the addNetToNetGroup command. To be honored by pin assignment, net groups
must be used in conjunction with a pin guide. As for a pin group, you can optimize the net pin order,
alternate the pin layers, and specify pin spacing for a net group. The following commands create a
net group nGroup1 that has two nets NET1 and NET2 with minimum pin spacing of 2 tracks.

createNetGroup nGroup1 -net {NET1 NET2} -spacing 2
Or

createNetGroup nGroup1 -spacing 2
addNetToNetGroup nGroup1 -net {NET1 NET2}

create_net_group -name nGroup1 -nets {NET1 NET2} -spacing 2
Or

create_net_group -name nGroup1 -spacing 2
update_net_group -name nGroup1 -add_nets {NET1 NET2}

Use the delete_net_group command to delete a net group or all net groups and use
the delete_nets_from_net_group command to remove a net from a net group.

Note: When you delete a net group, any bus guide associated with the net group also gets deleted.

September 2022 928 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/deletePinGroup.html
../innovusTCR/deletePinFromPinGroup.html
../innovusTCR/createNetGroup.html
../innovusTCR/addNetToNetGroup.html
../TCRcom/delete_net_group.html
../TCRcom/delete_nets_from_net_group.html

Pin Guides
You can create a pin guide to constrain a bus, net, pin, net group, or pin group to be placed in
specific areas. A pin guide is used for specifying a physical guided area where pins belonging to
the pin guide will be placed. A pin guide can support multiple constraint pin layers. In addition, any
bus, net, pin, net group, or pin group can be assigned to multiple pin guides. You can create a pin
guide using the Create Pin Guide widget from the GUI or through the createPinGuide command.

Note: While creating a pin guide, you cannot optimize the order of pin members or specify
minimum spacing. If you want to control the pin order and the pin spacing of the members of a pin
guide, first create a net group or a pin group and associate this net group or pin group with a pin
guide.

A physical location constraint can be specified either as a rectangular area or as an edge
constraint. If you specify a physical location constraint as an edge constraint, you will also need to
specify the partition/black box cell name.

Examples

Here are a few examples of using the createPinGuide command to create a pin guide.

The following command creates a pin guide for a net group nGroup1. The pin order within this
net group will be optimized. The pin members of this pin guide can be placed on the top edge
of the cell ALU. Pins will be placed on Metal2 or Metal4 layers:
createNetGroup nGroup1 -net {NET1 NET2} -optimizeOrder
createPinGuide -netGroup nGroup1 -edge 1 -cell ALU -layer {Metal2 Metal4}

The following command creates a pin guide for a pin group pGroup1 of cell/module ALU. Pins
of this pin guide will have a minimum spacing of 2 tracks:
createPinGroup pGroup1 -cell ALU -pin {INT[0] INT[2] INT[3]} -spacing 2
createPinGuide -area 678.52 371.25 778.53 787.33 -pinGroup pGroup1 -cell ALU
The pins will be assigned on the preferred layers.

The following command creates a pin group pGroup2. This pin group can be placed on the
top edge or the right edge of the cell TDSP. For top edge, pins can be assigned on the Metal4
or Metal6 layers. For right edge, pins can be assigned on the Metal5 layer.
createPinGroup pGroup2 -cell TDSP -pin p_addr* -optimizeOrder
createPinGuide -edge 1 -pinGroup pGroup2 -cell TDSP -layer {Metal4 Metal6}
createPinGuide -edge 2 -pinGroup pGroup2 -cell TDSP -layer Metal5

You can also use the GUI to create a partition pin guide. After you have determined a pin guide
location in the design display area, you can create a partition port for a net or bus name and add a
partition pin guide. To add a partition pin guide through the GUI, complete the following steps:

September 2022 929 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/createPinGuide.html

Select Edit - Create Pin Guide to display the Edit Pin Guide GUI form. Use this form to specify
the pin guide name, cell name, mode (by area or by edge), and the applicable layers.
Alternatively, click the Create Pin Guide widget and press the F3 key.

Click and drag over a partition fence overlap to specify the area or edge. For vertical edges,
the first pin generated starts from the bottom intersect point. For horizontal edges, the first pin
generated starts from the left intersect point, as shown in the following figure:

The default pin spacing is 2, which places one pin for every two metal tracks.You can change
the pin spacing with the Minimum Pin Pitch field in the Specify Partition form, or by changing
spacing of the associated pin group or net group.
You can use the Move/Resize/Reshape tool to modify the pin guide location.

Note: For a partition that has a rectangular cut, the partition pin guide must be placed on the
edge of the cut. You can also use a pin guide to assign pins, net group, or a pin group to a
specific side without specifying a pin guide area by using the createPinGuide command.

Change the partition pin guide object name to the net, bus, or net group name.

Use the partition pin guide attribute editor to change pin guide name to a net name, or the name of a
predefined net group or pin group. If the partition pin guide was assigned the net group name, all
nets and buses added to this net group name will have partition pins generated for the partition.
Pins are generated in the order the net or bus was entered by the addNetToNetGroup command.
Pins for unconnected nets and buses are randomly assigned. You can also use the partition pin
guide to assign floating pins.

Use the deletePinGuide command to delete a pin guide or all pin guides.

Handling Overlapping Pin Guides

Innovus supports overlapping pin guides on the same layer of a partition, however it may not create
a good pin QoR due to pinGroup/netGroup ordering issue. To resolve the ordering issue, you may
need to perform pin assignment multiple times:

Assign only 100 pins in middle of the side using selected pin assignment (-pin_file
filename).

Assign the remaining unplaced pins using the assignPtnPin -unplaceOnly command.

September 2022 930 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/addNetToNetGroup.html
../innovusTCR/deletePinGuide.html

Pin Size (Width and Height)
By default, pin size will be created based on the minimum area rule. Use -width and -depth
parameters of the setPinConstraint command to set the new pin width and depth of a routing layer
for a specific partition/black box cell. When this constraint is defined, pin assignment will use these
values for creating pin size.

Examples

The following commands set the pin width and depth of layer Metal2 for partition cell ALU to
0.4 and 0.6 respectively.
setPinConstraint -cell ALU -layer Metal2 -width 0.4
setPinConstraint -cell ALU -layer Metal2 -depth 0.6

The following commands set the pin width of pin pGroup1 to 0.3 and pin depth of pin pGroup1
to default.
setPinConstraint -cell ALU -pin pGroup1 -width 0.3

setPinConstraint -cell ALU -pin pGroup1 -depth default

With this example, all the pins of pGroup1 will have the width 0.3 and the default depth.

Pin Spacing
You can set minimum pin spacing in terms of track number using the Specify Partition form
(Partition - Specify Partition). The default pin spacing is 2, which places a pin for every two metal
tracks. You can modify the pin spacing in the following ways:

Global pin spacing at design level
Use the -global and -spacing parameters with the setPinConstraint command to set global
pin spacing. This spacing value will be applied to all partition/black box pins of the design.

Partition/black box level
Use the definePartition command with -minPitchTop, -minPitchBottom, -minPitchLeft,
and -minPitchRight parameters to specify minimum pin spacing for a partition. Similarly, to
specify the minimum pin spacing for a blackbox, use the specifyBlackBox command with -
minPitchTop, -minPitchBottom, -minPitchLeft, and -minPitchRight parameters.

Specific partition/black box area or edge
Use the -edge and -spacing parameters with the setPinConstraint command to set and get
the minimum pin spacing for a particular edge or all edges of a partition/black box cell.

September 2022 931 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/setPinConstraint.html
../innovusTCR/setPinConstraint.html
../innovusTCR/definePartition.html
../innovusTCR/specifyBlackBox.html

The -edge parameter of the setPinConstraint can take the following values:

N, S, W, E (supports both upper and lower case)

T, B, L, R (supports both upper and lower case)

dbcN, dbcS, dbcE, dbcW

The following commands set the minimum pin spacing for top and bottom edge of
partition cell ALU to 1 track.
setPinConstraint -cell ALU -edge T -spacing 1

setPinConstraint -cell ALU -edge B -spacing 1

The following command sets minimum pin spacing for all edges of partition cell TDSP to
3 tracks
setPinConstraint -cell TDSP -all -spacing 3

Note: Use the unsetPinConstraint command to unset the minimum pin spacing, for a
specified module, area, or edge(s), that was defined with the setPinConstraint
command.

Pin group or net group
Use the createPinGroup or the createNetGroup commands to specify minimum pin spacing
at the pin group or net group level. This specified minimum pin spacing will apply to all the pin
members of the specified pin group or net group.

Pin level
Use the setPinConstraint command to specify minimum pin spacing of a particular pin.

As spacing constraints can be specified at more than one level, pin assignment honors the spacing
constraints in the following order (with appropriate command):

Pin spacing (setPinConstraint –cell A –pin * –spacing 3)

Net group or pin group spacing (createPinGroup GRP -cell A -pin * –spacing 4)

Partition/black box spacing on a particular edge (setPinConstraint –cell A –area {2 3 4
5} –spacing 5)

Partition/black box spacing (setPinConstraint –cell A –side {T B} –spacing 6)

Global spacing (setPinConstraint –global –spacing 8)

September 2022 932 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/unsetPinConstraint.html
../innovusTCR/createPinGroup.html
../innovusTCR/createNetGroup.html

Pin Layers
Specify pin layers that will be used for placing pins on a specific partition side using the Specify
Partition form (Partition - Specify Partition). Alternatively, you can use the setPinConstraint -
layer -edge command.

Note: Using the setAttribute –top_preferred_routing_layer and -
bottom_preferred_routing_layer parameters, the preferred routing layer attributes are attached to
nets. These attributes are honored throughout the routing process. The pin assignment commands
honor these preferred routing layer attributes as soft constraint during pin assignment. This provides
a better co-relation with the NanoRoute Router as it considers these as soft constraints. If a pin
cannot be placed on these layers, the pin will not be unassigned. Pin assignment commands try to
honor these attributes however in case they cannot be honored, the pin is assigned to any allowed
layer.
If only one of the attributes is given, the other is assumed from the lowest or the highest value of
the allowed layer list. If -top_preferred_routing_layer is applied, then -
bottom_preferred_routing_layer is assumed to be the lowest layer of allowed layer list.
Alternatively, if -bottom_preferred_routing_layer is applied, then -
top_preferred_routing_layer is assumed to be the highest layer of allowed layer list.

You can specify layer constraints at partition level, pin guide level, or pin level.

Partition level
Layer constraint per edge can be specified at partition level using either:

The Specify Partition form (Partition - Specify Partition), or

The definePartition command with -pinLayerTop, -pinLayerBottom, -pinLayerLeft,
and -pinLayerRight parameters. These layer constraints will be applied to all pins on a
particular edge of the specified partition.

The setPinConstraint command with the -layer and -edge options. This command
sets the pin layers for a specified edge or for all edges.

Pin guide level
Use the -layer parameter of the createPinGuidecreate_pin_guide command to specify layer
constraints for all pin members of a pin guide. Layer constraint at pin guide will override the
layer constraint at partition level.

Pin level
Use the -layer parameter of the setPinConstraint command to specify layer constraint for a
specific partition/black box pin.

September 2022 933 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/setPinConstraint.html
../innovusTCR/definePartition.html
../innovusTCR/setPinConstraint.html
../innovusTCR/createPinGuide.html
../TCRcom/create_pin_guide.html
../innovusTCR/setPinConstraint.html

Note: Layers can be specified using the LEF layer names or layer ID numbers.

Layer constraint at pin level will have higher priority than layer constraint at partition level.

If a layer constraint is applied to a pin that also belongs to a pin guide, the pin guide layer
constraint will have higher precedence.

If a layer constraint is being applied to a pin that already belongs to a pin group a or net group,
the layer constraint will not be applied. To apply layer constraint for this pin, first remove this
pin from the pin group or net group, and then apply the pin layer constraint.

Pin-to-corner Distance
To keep pins away from partition/black box corners, you can set the pin-to-corner distance
constraint.

Use the setPinConstraint -corner_to_pin_distance command to set pin to corner distance
for a particular corner or all corners of a specific cell.

Use the setPinConstraint -global -corner_to_pin_distance command to set global pin-to-
corner distance that will be applied to all partition and blackboxes in the current design. The
default value is 5 routing tracks.

The -corner cornerNumber parameter of the commands specifies the corner of the partition block.
This is an integer value, where corner numbering starts at 0 from the lower-left corner of a partition
clock-wise. Corner 0 is the corner that has the smallest y value.

Example

The following command sets pin-to-corner distance for corner 0 and corner 2 of the cell ALU to 8
routing tracks.
setPinConstraint -cell ALU -corner 0 -corner_to_pin_distance 8
setPinConstraint -cell ALU -corner 2 -corner_to_pin_distance 8

September 2022 934 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/setPinConstraint.html

Pin Blockage
After determining the partition pin blockage point, you can block that area from assigning pins on
specific metal layers. Pin assignment engines also honor regular routing blockages if they intersect
with partition edges. You can create pin blockages with the Create Pin Blockage widget or by using
the createPinBlkg command.

Note: Early Global Route does not honor the partition pin blockage.

To create the partition pin blockage with the Create Pin Blockage widget, complete the following
steps:

Click the Create Pin Blockage widget from the Toolbox. Alternatively, select Floorplan - Edit
Floorplan - Create Pin Blockage.

Left-click and drag over a partition fence overlap.

Right-click the partition pin blockage and select Attribute Editor and then specify the metal
layers to block.

The following command creates a pin blockage for the entire left edge of cell TDSP on layer Metal5.
createPinBlkg -edge 0 -cell TDSP -layer 5

If the -layer option is not specified, the pin blockage will be created on all partition/black box
reserved routing layers.

Use the deletePinBlkg command to delete a pin blockage or all pin blockages (deletePinBlkg -
all).

Note: You can create pin blockage on master or clone instances. Pin blockages are transformed on
both master and clones enabling you to visually see the pin blockage on both master and clone
partitions. If you delete or modify any of such pin blockages, all its variants with same
corresponding box on master/clones will be deleted.

After determining the partition pin blockage point, you can block that area from assigning pins on
specific metal layers. Pin assignment engines also honor regular routing blockages if they intersect
with partition edges. You can create pin blockages with the Create Pin Blockage widget or by using
the create_pin_blockage command.

Note: Early Global Route does not honor the partition pin blockage.

To create the partition pin blockage with the Create Pin Blockage widget, complete the following
steps:

Click the Create Pin Blockage widget from the Toolbox. Alternatively, select Floorplan - Edit
Floorplan - Create Pin Blockage.

Left-click and drag over a partition fence overlap.

September 2022 935 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/createPinBlkg.html
../innovusTCR/deletePinBlkg.html
../TCRcom/create_pin_blockage.html

Right-click the partition pin blockage and select Edit Pin Blockage and then specify the metal
layers to block.

The following command creates a pin blockage for the entire left edge of cell TDSP on layer Metal5.
create_pin_blockage -edge 0 -cell TDSP -layer 5

If the -layer option is not specified, the pin blockage will be created on all partition/black box
reserved routing layers.

Use the delete_pin_blockages command to delete a pin blockage or all pin blockages
(delete_pin_blockages -all).

Note: You can create pin blockage on master or clone instances. Pin blockages are transformed on
both master and clones enabling you to visually see the pin blockage on both master and clone
partitions. If you delete or modify any of such pin blockages, all its variants with same
corresponding box on master/clones will be deleted.

Performing Pin Pre-Assignment
You can pre-assign a pin before pin assignment using the Pin Editor or the editPin command.
These pre-assigned pins will have fixed placement status so pin optimizers will honor them. For
more details, see the Pin Editor section in the Edit Menu chapter of the Menu Reference.

Setting Constraints on a Specific Pin
Use the setPinConstraint command to specify the following constraints for a particular pin:

Physical location
A pin can be constrained by specifying its coordinate (x, y) location and its preferred routing
layer. If specified location is not on valid track, the pin will be snapped to the closest location.
To keep the pin on non-preferred routing layer or to not snap the pin, use
the editPin command instead. Besides an actual physical location, a pin can also be
constrained to a particular edge.

Layer

Spacing

The following command specifies that the pin reset of partition cell mult_32 should be placed on top
edge with either Metal5 or Metal7 routing layer.
setPinConstraint -cell mult_32 -pin reset -edge 1 -layer {Metal5 Metal7}

For setting pin size constraint for a specific pin use the setPinConstraint command with the -pin

September 2022 936 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../TCRcom/delete_pin_blockages.html
../innovusTCR/editPin.html
../innovusMR/Edit_Menu.html
../innovusTCR/setPinConstraint.html
../innovusTCR/editPin.html
../innovusTCR/setPinConstraint.html

-width -depth parameters. The following salient points apply to setting the pin constraints for a
specific pin:

If constraints are applied to a pin that also belongs to a pin guide, the pin guide constraint will
have higher precedence.

If a location and/or layer constraint is being applied to a pin that already belongs to a pin
group or a net group, the constraint will not be applied. To apply location and/or layer
constraint for this pin, first remove this pin from the pin group or net group, and then apply the
pin constraint(s).

If a pin with layer constraints defined is added to a net group or pin group, the pin cannot be
added to a pin group or a net group with the createPinGroup, createNetGroup,
addPinToPinGroup, or addNetToNetGroup commands because the pin has already been
constrained. To add this pin to a pin group or net group remove the constraints first (using the
unPinConstraint command).

If the following constraints cannot be met during pin assignment, the Innovus software will
issue a warning message and the constrained pins will be placed at the lower-left corner of
the partition/black box with unplaced placement status:

Pin constraint

Pin group constraint

Net group constraint

Use the unPinConstraint command to remove constraint settings for a specific pin.

Assigning Pins

There is no separate step required for assigning black box pins. To assign pins, use the Partition -
Assign Pins GUI menu or the assignPtnPin command. Pin assignment supports the following:

Rectilinear partitions and black boxes

Repeated partitions and black boxes.

Non-uniform tracks

Pin assignment assigns signal pins but it does honor power/ground stripes and follow pins. Power
and ground pins will be created during the partition step.

Note: Even though unconnected (floating) partition pins can be assigned randomly on any open
space on any edge, the assignPtnPin command tries not to club all the floating pins on one edge.

September 2022 937 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/createPinGroup.html
../innovusTCR/createNetGroup.html
../innovusTCR/addPinToPinGroup.html
../innovusTCR/addNetToNetGroup.html
../innovusTCR/unsetPinConstraint.html
../innovusTCR/unsetPinConstraint.html
../innovusTCR/assignPtnPin.html
../innovusTCR/assignPtnPin.html

However, in case of floating buses, it assigns all the unconnected bus pins of a bus close to the
connected pins of the same bus. In case all the bus pins are unconnected, then they are assigned
close to the last assigned bus. The benefit of this feature is that if the pins need to be connected
later on then there is no need to re-open the block.

Note: The assignPtnPin command internally calls the reportUnalignedNets command to generate
the summary report at the command line.

Aligning Partition Pins Across Feedthrough Buffers

The assignPtnPin command, by default, places pins such that they are aligned on different
partitions across nets through buffer chains. The re-placement of buffers aligned to a new pin
location gives better congestion and net length. The following consideration as made while aligning
feedthrough pins:

Pins across nets on different partitions are aligned.

The pin for 1-pin nets (partitions pins connecting with the top-level object) are assigned near
the source/sink. Here, the top-level object can be a pin of the pre-placed standard cell or
macro/block or IO pins.

Maximum alignment is attempted on buffer chain nets (for Z, L and other shape of partition
feedthroughs)

Maximum alignment is attempted on buffer chain nets if encountered with blocked slots.

The order of different buffer chain nets is not maintained.

Nets can choose different edges or sides

The following is an example of default feedthrough pin assignment. Here, despite blockages, there
is maximum alignment in the red buffer and the blue buffer chain nets.

September 2022 938 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assignPtnPin.html
../innovusTCR/reportUnalignedNets.html
../innovusTCR/assignPtnPin.html

In the following example, in spite of pin blockages, the assignPtnPin command has attempted
maximum alignment on the buffer chain nets.

After pin placement, as shown above, the blocks place these buffers again for better congestion and
reduced net length results.

September 2022 939 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assignPtnPin.html

Placement-based Pin Assignment

Pin assignment is based on connectivity. Cell placement should be performed before running pin
assignment.

Route-based Pin Assignment

For route-based pin assignment, routing should be performed prior to the assignPtnPin command.
Routing cross points with partition/black box boundary will be used as guidance for pin assignment.
Default Early Global Route performs the following:

Assigns initial black box pins based on connectivity

Creates temporary routing blockages over black boxes based on black box reserved routing
layers

Runs earlyGlobalRoute to route to black box pins

Removes temporary blockages

For channel-less designs use default early global route:
earlyGlobalRoute

For channel-based designs that have thick channels, use:
setRouteMode -earlyGlobalRoutePartitionHonorFence list_of_ptn_cell_names

earlyGlobalRoute

Tips for Assigning Partition Pins

For most of the designs, running the assignPtnPin command without any option should give a
reasonable result. However specific options can provide better results in some cases. These
options are described here:

-maxPinMovementForAlign parameter
If you have ran partition aware routing
(setRouteMode -earlyGlobalRoutePartitionHonorFence) for pin assignment, you should use
these parameters to minimize pin movement from existing routing cross points because these
routing cross points should give near-optimal pin locations.
Example:
setRouteMode -earlyGlobalRoutePartitionHonorFence list_of_ptn_cell_names

earlyGlobalRoute
assignPtnPin -maxPinMovementForAlign 20

September 2022 940 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assignPtnPin.html
../innovusTCR/assignPtnPin.html

-ptn ptnName -pin pinList parameter
Use this parameter for running incremental pin assignment or assigning specific pins of
specific partitions. This parameter can be used in the following pin assignment scenarios:

When you want to assign critical pins first and then assign the rest of partition and/or
black box pins.

First, run pin assignment to assign these critical or specific pins. Use the above option in
conjunction with the -markFixed parameter so these pins will not be moved by second
pin assignment run.

Run pin assignment again to assign the rest of the pins.
Example:
assignPtnPin -ptn tdsp_core_glue -pin {p_address[0] p_address[3]} -ptn alu_32

-pin rom_data* -markFixed

assignPtnPin

In the previous example, if you are running routed based pin assignment, you should run
the earlyGlobalRoute command between the first and the second pin assignment run
so that the routing that will be used for the second pin assignment is based on pin
locations of the first pin assignment step.

Run incremental pin assignment
This scenario is in contrast to the first scenario where you would run pin assignment for
all partition and/or black box pins, and then further re-optimize some specific pins.
Example:
assignPtnPin

assignPtnPin -ptn mult_32 -pin {reset addr*}
If reset and all addr pins of the partition mult_32 have fixed placement status, you should
also use -moveFixedPin option; otherwise pin optimizer will not move fixed pins.

-enforceRoute parameter
With this parameter, pin assignment completely follows the routing information without
honoring any user-specified pin constraints and pin locations may not be legal. This option
should only be used for a rough pin assignment or for comparing pin locations based purely
on routing result with pin locations that are legalized. If you want to use this pin placement
result for your implementation stage, you need to run the legalizePin after the assignPtnPin
command to legalize them.

September 2022 941 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/legalizePin.html

Validating Pin Placement Results
You can perform the following steps to validate and correct pin placement results:

Checking the Pin Legality

Refining Pin Assignment and Fixing Pin Violations
After assigning partition or blackbox pins, you can further refine the current pin assignment
and fix any pin violations using one or more of the following methods

Adjusting Pins

Aligning Partition Pins

Running Incremental Pin Assignment

Adjusting Floorplan or Floorplanning the Design Again

Performing Pin Assignment Again

Checking the Pin Legality
The checkPinAssignment command checks the generated partition and blocks-box pins and I/O
pins and generates a summary report of the violations found. Use the
checkPinAssignment command to make sure that pins are legalized (for example, the pins snap to
routing grid, are on reserved routing layers, honor user-specified constraints, do not cause any DRC
violations, and so on).

You can check:

All partition/black box pins
Example: The following command checks all partition/black box pins in the current design and
saves the result into the output file pinLegality.rpt.
checkPinAssignment -outFile pinLegality.rpt

All pins of a specific partition
Example: The following command checks all pins of the partition TDSP_CORE
checkPinAssignment -ptn TDSP_CORE -pin *

Specific partition pins
Example: The following command checks all bus pins p_addrs and rom_data of the partition
TDSP_CORE

checkPinAssignment -ptn TDSP_CORE -pin {p_addrs* rom_data*}

September 2022 942 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/checkPinAssignment.html
../innovusTCR/checkPinAssignment.html

The checkPinAssignment command highlights violations on individual pins by marker that covers
the full pin shape. It checks violations for pin_abutment, pin_depth, pin_layer, pin_min_area,
pin_on_fence, pin_on_track, pin_spacing, pin_width, and logical_pin. If there is a marker on the
master pin, marker on clone pins is not highlighted. The checkPinAssignment command will check
for individual violations, which are different than master, on clone pins as well. For instance,
spacing to an object near clone. The markers that are specific to clones will be reported by
checkPinAssignment.

For violations of guide, such as bus_guide and pin_guide, if there is violation in individual
pins, markers will be on individual pins only.

For violations of group, pin_group and net_group, the first pin offending the group order will be
highlighted as violation and all the pins from first pin to the last pin of the group will be
highlighted as aggressor. If the pin group is traversing multiple edges then multiple aggressor
type violations will be generated. The graphic below shows an example of violations marked
for pins.

In this example, there is a pin group a1, a2, a3, a4, a5, a6, a7, a8. After the placement, the order of
the pins is changed to a1, a3, a2, a4, a8, a5, a7, a6. In this case, the first pin violating the order is
a3, and therefore will be marked by a violation marker. Also, to reduce the number of victims, entire

September 2022 943 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

group from the first pin to the last pin is highlighted. Here, the pin group is on three edges.

On edge 1, first pin of the group is a1 and the last pin is a2.

On edge 2, there is only one pin a4.

On edge 3, the first pin is a8 and the last pin is a6.

Therefore, three victim markers will be drawn from first to last pin on each edge. These victim
markers may cover other pins which fall between the first and the last pin, such as pin B and pin E
on edge1 and edge 3, respectively.

Note: The checkPinAssignment command enables you to query results of the command report and
find more details of the violations. Each time the checkPinAssignment command is run, it
automatically refreshes the properties of pins. It clears all properties on all pins and populates fresh
properties on each pin based on the latest the checkPinAssignment command results. These
properties are persistent in save/restore DB.

You can query results of the pin violations report generated by the checkPinAssignment command to
automate the flow. For example:

To query for all partition pins with depth violation, you can use the following query:
get_db [get_db partitions .master -if {.obj_type == hinst}] .local_hpins -if

{.vio_depth == 1}

To query for all pins (partition pins, bbox pins and IO pins) with depth violation, you can use
the following query:
puts [concat \

[get_db ports -if {.vio_depth == 1}] \

[get_db [get_db partitions .master -if {.obj_type == inst}] .pins -if {.vio_depth

== 1}] \

[get_db [get_db partitions .master -if {.obj_type == hinst}] .local_hpins -if

{.vio_depth == 1}] \

]

To query for all pins in a master partition having pin depth violations, you can use the
following query:
get_db [get_db partitions .master -if {.obj_type == hinst && .name == “S”}]

.local_hpins -if {.vio_depth == 1}

September 2022 944 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/checkPinAssignment.html
../innovusTCR/checkPinAssignment.html
../innovusTCR/checkPinAssignment.html
../innovusTCR/checkPinAssignment.html

Refining Pin Assignment and Fixing Pin Violations

After assigning partition or blackbox pins, you can further refine the current pin assignment and fix
any pin violations using one or more of the following methods:

Adjusting Pins

Aligning Partition Pins

Running Incremental Pin Assignment

Adjusting Floorplan or Floorplanning the Design Again

Performing Pin Assignment Again

These steps are explained in the following sections.

Adjusting Pins
You can Adjust pins using the Pin Editor or the editPin text command. You can also use direct pin
manipulation to manually move selected pins to different locations.

Aligning Partition Pins
You can align partition pins with other block pins (using the Pin Editor or the pinAlignment text
command). The pinAlignment command can be used to align partition/black box pins with or
without specified reference object(s). Reference objects can be hard macros, blackboxes, I/O pads,
standard cells, and ptn pin.

You can use the pinAlignment command in different ways to align pins:

Align specific pins with the specified referenced object
pinAlignment -refObj refInstName -ptnInst instName -pinNames pinList

Align all pins of specified partition/blackbox instance that connect with the specified reference
object
pinAlignment -refObj refInstName -ptnInst instName

Align all pins of every partition/blackbox that connects with the specified reference object
pinAlignment -refObj refInstName

Align specific pins of specified partition/blackbox instance
pinAlignment -ptnInst instName -pinNames pinList

September 2022 945 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/editPin.html
../innovusTCR/pinAlignment.html

Align all pins of specified partition/blackbox
pinAlignment -ptnInst instName

Align all possible partition/blackbox pins
pinAlignment

If the referenced object is not specified, the pinAlignment command will automatically derive
referenced object based on connectivity information. If the aligned pin has multiple connections, the
referenced object will be derived based on the following priority:

Hard macro pin

I/O pad pin or I/O pin

Partition pin

Standard cell pin

By default an aligned pin will:

Be snapped to routing grid. Use -noSnap option if you want that pins should not be snapped.

Have the same layer routing with the referenced pin. Use the -keepLayer option to keep
existing aligned pin layer. Use the -newLayer option to assign new layer for aligned pin.

Not be legalized. Use the -legalizePin option to legalize aligned pin(s).

Have a fixed pin status. Use the -markPlaced option to assign placed status to aligned pin(s).

Running Incremental Pin Assignment
Based on the current pin assignment result, re-run pin assignment. You can specify pin constraints
to further guide new pin placement. If you want to reoptimize only a few specific pins, use the -ptn
and the -pin options of the assignPtnPin command to specify the list of pins that will be reassigned.

Example: The following command reoptimizes address bus bit pins, rom_data bus bit pins of
partition ALU, and reset pin of partition ARB:
assignPtnPin -ptn ALU -pin {address* rom_data[*]} -ptn ARB -pin reset

By default, -ptn and -pin options will not reassign specified pins if they have fixed status. Use the
-moveFixedPin option with the -ptn and -pin options to force specified fixed pins to be
reassigned. However if you want to keep only a few existing pins and re-optimize the rest of the
pins, instead of specifying many pins, you can mark these existing pins to fixed placement status
using the setPtnPinStatus command and then re-run pin assignment:
setPtnPinStatus -cell * -pin * -status fixed

assignPtnPin

September 2022 946 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assignPtnPin.html
../innovusTCR/setPtnPinStatus.html

Adjusting Floorplan or Floorplanning the Design Again
Sometimes a sub-optimal floorplan can also lead to a bad pin placement result. If this is the case,
re-adjust the floorplan and run pin assignment again.

Performing Pin Assignment Again
Perform pin assignment again. If the partitions or blackboxes have been committed, use
the flattenPartition command to unassign the pins. If the partitions or blackboxes are not yet
committed, use the setPtnPinStatus command to unplace the pins.

ECO Pin Assignment

The Innovus software provides incremental or ECO pin assignment capability. This capability can
be used in the ECO flow where partition/black box ports in the original netlist get modified
(added/deleted). In this flow, you can preserve most of the existing partition/black box pin locations
and let the software assign the newly added pins.

General Flow

1. Import design.

2. Floorplan design (specify partition/black box information in this step).

3. Run placement.

4. Route design.

5. Save full chip floorplan and/or save design for later use.

6. Assign pins (assignPtnPin)

7. Save partition/black box pin information into a partition file (savePtnPin). For iHDB flow, use
savePtnPin -module_model_tag.

8. Route design to connect to new partition/black box pins.

9. Derive timing budget (deriveTimingBudget)

10. Commit partitions/black boxes (partition).

11. Save top and partition information into each directory (savePartition).

September 2022 947 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/flattenPartition.html
../innovusTCR/setPtnPinStatus.html
../innovusTCR/assignPtnPin.html
../innovusTCR/savePtnPin.html
../innovusTCR/savePtnPin.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/partition.html
../innovusTCR/savePartition.html

After having new modified netlist, ECO pin assignment can be run as follows:

1. Import design with new modified netlist.

2. Load full-chip floorplan that saved in the previous step 5.

3. Place and route the design. Placement and routing information that are saved in the step 5 can
be restored if still applicable.

4. Use the loadPtnPin command to load the partition file that was saved in the previous step 7 or
the partition file (or DEF file) of each partition block to preserve existing partition/blackbox pin
locations. Make sure that partition/blackbox pins in partition file have fixed placement status so they
will not be moved in the next step, pin assignment.

5. Run pin assignment to assign the newly added pins.

Saving the Partition Pins

Use the savePtnPin command to save pin placement information for later use. The command
provides options to save pin information of:

Specific partition/blackbox
Example: Save pin locations of partition execute_i into file execute_i.ptn
savePtnPin -ptn execute_i execute_i.ptn

All partitions and/or blackboxes
Example: Save pin information of all partitions and/or black boxes in the current design
savePtnPin -all allPtnPin.ptn

Current block-level design
Example: Save I/O pin locations of the current design
savePtnPin -design ioPin.ptn

Restore Partition Pin Information

Use the loadPtnPin command to restore/load pin placement information of a particular
partition/blackbox. The command restores the following:

A partition file that is generated by the savePtnPin or the saveFPlan (floorplan .fp.ptn)
commands
Example: Load pin locations of the partition ALU from partition file ALU.ptn
loadPtnPin -ptnName ALU -file ALU.ptn

September 2022 948 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/loadPtnPin.html
../innovusTCR/savePtnPin.html
../innovusTCR/loadPtnPin.html

Block-level DEF file
Example: Load pin locations of partition ALU from ALU DEF file
loadPtnPin -ptnName ALU -def ALU.def

Assigning I/O Pins
For a top-down hierarchical flow, I/O pins of a block-level design will normally be assigned during
the full-chip pin assignment. This pin placement information is saved in a block-level floorplan
partition file (floorplan .fp.ptn) or a DEF file that is generated by the savePartition command.
You must explicitly run I/O pin assignment with the assignIoPins command.

Note: In the iHDB flow, the DEF file is generated by using the savePartition -module_model_tag
command.

This section covers the following topics:

Setting Pin Constraints

Performing Initial Pin Assignment

Validating Pin Placement

Setting Pin Constraints

The Innovus software provides a number of pin constraint commands to control or guide I/O pin
assignment. The same set of pin constraint commands that are used for setting constraints for
partition/blackbox pins can also used for I/O pins. The only difference is that you do not need to
specify the -cell option for I/O pins. For more information, see Setting Pin Constraints in
the Assigning Partition and Blackbox Pins section of this document.

Performing Initial Pin Assignment

For a bottom-up flow, initial pin placement can be generated by placing the design. After importing a
design and floorplanning it, you should place the design.

Note: Set the setPlaceMode -place_global_place_io_pins command to true if you want to enable
I/O pin assignment during the placement step.

After I/O pins are assigned, you can further refine the current I/O pin assignment by one of the
following methods:

September 2022 949 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/savePartition.html
../innovusTCR/assignIoPins.html
../innovusTCR/savePartition.html

Manually adjust pins by direct pin manipulations or using pin editor.

Use the assignIoPins command to further optimize I/O placement.

Using the assignIoPins Command to Optimize I/O Placement

The assignIoPins command assigns I/O pins based on placement information. The design must be
placed before this command is run. The command supports:

Rectilinear designs

Non-uniform tracks

User-specified constraints

By default, the assignIoPins command will honor fixed pins and only assign pins that have
placed/unplaced placement status. If the initial I/O placement is generated by loading a constraint
file (that is, the loadIoFile command automatically set I/O placement status to fixed) you should
change I/O pins placement status to placed using setPtnPinStatus command before running I/O
pin assignment.

To incrementally assign I/O pins, you can do one of the following:

Specify pins that should be re-optimized using the -pin option.
For example, the following command re-assigns all p_address bus pins, int, and bio I/O pins
of the design tdsp_core. It optimizes these specified pins even though they have fixed
placement status.
assignIoPins -pin {p_address[*] int bio} -moveFixedPin

Mark I/O pins that you want to keep with fixed status and run the assignIoPins command. This
scenario can be used when you want to re-optimize most of I/O pins.
For example, the following command preserves the port_pad_data_in and
port_pad_data_out buses and clock pins, and re-optimizes the rest.
setPtnPinStatus -cell tdsp_core -pin port_pad_data* -status fixed
setPtnPinStatus -cell tdsp_core -pin clk -status fixed

assignIoPins

September 2022 950 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assignIoPins.html

Validating Pin Placement

After assigning I/O pins, it is recommended that you check for I/O legalization. Use the
checkPinAssignment command to make sure that pins are legalized (such as they snap to routing
grid, are on reserved routing layers, honor user-specified constraints, not cause any DRC
violations, and so on).

You can check:

All I/O pins
Example: Verify all I/O pins of the current design and output the result into the output file
pinLegality.rpt.
checkPinAssignment -outFile pinLegality.rpt

Specific I/O pins
Example: Verify all bus pins BG_scan_in, BG_scan_out, and the write pin of the design
checkPinAssignment -pin {BG_scan* write}

If any pin violation is detected, you can:

Manually adjust pins by direct pin manipulation or using pin editor.

Run the legalizePin command to automatically legalize pins. You can legalize all I/O pins or
specific I/O pins of the design. Fixed pins will not be adjusted unless the -moveFixedPin
option is specified.

Examples

The following command legalizes all pins in the design. If the design is a block-level design
that also has partition/blackbox pins, it will also adjust the partition/ blackbox pins. If you want
to legalize only the I/O pins but not the partition/black box pins, you should use legalizePin -
pin * instead.
legalizePin

The follwoing command legalizes all I/O pins. Fixed pins will also be adjusted because the
option -moveFixedPin has been specified.
legalizePin -pin * -moveFixedPin

The follwoing command legalizes the clock, reset, and all rom_data bus bit pins of the design.
Pins with fixed status will not be moved.
legalizePin -pin {clock reset rom_data*}

September 2022 951 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/checkPinAssignment.html
../innovusTCR/legalizePin.html

Performing Congestion-aware Pin Assignment for Channel-
based Designs
To perform route-based pin placement for channel-based designs, it is recommended that you run
partition-aware routing instead of a routing that does not take partitions into consideration. Pin
assignment decisions based on such partition-aware routing are more optimal with respect to top-
channel congestion.

For channel-based designs, use:
setRouteMode -earlyGlobalRoutePartitionHonorFence list_of_ptn_cell_names

earlyGlobalRoute

Note: The iHDB flow is suited only for channel-based designs . Also, the improvement in quality of
results of pin assignment, with respect to top channel congestion, is more visible in case the design
has thick channels.

Salient Points About Congestion-aware Pin Assignment

The following points apply to the behavior and usage of the congestion-aware pin assignment
feature:

The net groups are sorted in descending number of nets in them.

The net groups that have a significant number of inter-partition nets are routed in a partition-
aware manner. The remaining netgroups with fewer inter-partition nets are routed in a manner
similar to flat earlyGlobalRoute.

This command is suited only for channel-based designs . Also, the improvement in quality of
results of pin assignment, with respect to top channel congestion, is more visible in case the
design has thick channels.

Assigning Pins on Rectilinear Edges
Rectilinear pin assignment can recognize rectilinear edges when assigning pins. It can support any
rectilinear shape (such as L, T, and U shapes). For rectilinear boundaries created with partition
cuts, the edges are identified by starting at the lower-left-most corner, moving clockwise to mark
each edge with a direction flow, as shown in the following figure:

September 2022 952 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

All the edges with the same direction flow are considered to be on the same side and have the
same user-specified pin constraints.

Swapping Partition Pins
Select two pins of the same partition.

With the cursor over one of the selected pins, click and hold the middle mouse button to bring
up the context pop-up menu.

Select Swap Pins (or use the swapPins command).

Pin Alignment
Using pinAlignment, the following command aligns A0 and A1 pins of blockB to the reference pins
of blockA:
pinAlignment -ptnInst B -refObj blockA -pinNames {A0 A1}

September 2022 953 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/swapPins.html
../innovusTCR/pinAlignment.html

Assigning Pins for Bus Guides
A bus guide helps ensure that buses are routed together over blocks and is typically used in early
floorplanning stages. The use model of pin assignment for a bus guide is similar to that of a pin
guide. The assignPtnPin command supports bus guides by treating a bus guide as a pin guide that
is associated with a net group. When you assign pins for a design containing a bus guide, all pins
of the corresponding net group are placed in the specified bus guide area.

If the specified bus guide area is not large enough to cover all the net group pins, the assignPtnPin
command issues a warning message and places the maximum possible net group pins in bus
guide area. The rest of pins are placed outside the pin guide area such that the pins stay
together. Bus guide pin assignment also supports all features of net groups. The check pin
assignment, pin legalization and pin refinement features also support bus guides.

Info: The bus guide feature is intended to guide partition pins and blackbox pins and not I/O pins.
The I/O pin assignment feature (assignIoPins command) does not, therefore, take bus guides into
account.

Inserting Feedthroughs
There are two types of feedthroughs you can use for partitions: feedthrough buffers and routing
feedthroughs. Both types offer different approaches for inserting feedthroughs.

Info: Before inserting feedthroughs, you should determine what stage the design is in, such as
prototyping, intermediate, tapeout, and set the appropriate global options by running commands
such as setPlaceMode, setExtractRCMode etc. For example, when inserting feedthroughs during
prototyping, you could set modes with the following commands:
setPlaceMode -place_design_floorplan_mode true setExtractRCMode -engine preRoute

Inserting feedthrough buffers allows a netlist change, whereas inserting routing feedthroughs does
not. The differences between how these two commands affect the design are as follows:

Feedthrough Buffers for Partitions
The insertPtnFeedthrough text command inserts feedthrough buffers into the partitions to
change the partition netlists, and avoids routing nets over partition areas. Alternatively, you
can use the Browse/Plan Partition Feedthroughs form. Inserting feedthrough buffers for
partitions affect the design in the following areas:

Changes both the top-level and partition-level netlists.

September 2022 954 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/assignPtnPin.html
../innovusTCR/assignPtnPin.html
../innovusTCR/assignIoPins.html
../innovusTCR/setPlaceMode.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/insertPtnFeedthrough.html
../innovusTCR/insertPtnFeedthrough.html
../innovusMR/Partition_Menu.html#PartitionMenu-FeedthroughPorts

After inserting buffers, it automatically calls the ecoPlace command to place these
buffers close to the partition boundary. However, insertPtnFeedthrough does not place
the feedthrough pins, which should be assigned during partitioning.

Inserted buffers will be part of the partition netlists and pushed down to the partition level
during Partitioning.

Wherever a net enters and exits a partition, two ports and a buffer (or two buffers with the
-doubleBuffer option) are added to the partition netlist.

For nets that enter or exit a partition several times, such as a "T" shaped connection,
three ports will be created. For a cross shaped connection, four ports will be created.

Use the Design Browser to view the newly added buffer instance and net names for
each partition. The new port names have a FE_FEEDX_.....net_name prefix.

For mixed designs, not all nets should become feedthrough nets. To exclude certain
nets, such as clock nets or high fanout nets, use the -excludeNet option. This option is
based on the topology of the partition neighborhood relationship, so early global routing
is not required before inserting feedthrough buffers, although it could help improve the
quality of results.

To specify a file that contains net names for which to insert feedthrough buffers, use the
-selectNet option. You can create this file manually, create a list of nets via a script, or
use showPtnWireX.

Whether you use the -selectNet option, the Innovus software does not necessarily
insert a feedthrough.

Feedthrough insertion is driven by connectivity when Early Global Route is not run
before insertPtnFeedthrough.

You can save feedthrough insertion buffer topology tree information in a file by using
the -saveTopoFile parameter. You can later use this topology tree file with another ECO
netlist and replicate the feedthrough insertions.

The insertPtnFeedthrough command can detect if the design has power domains. This
way, appropriate buffers can be derived automatically from power domain library binding
to support both Always On and switchable power domains. However, an error message
is reported if no regular buffer is found for an Always On power domain in the
feedthrough path.

The insertPtnFeedthrough command removes nets that are inserted with feedthrough

September 2022 955 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

buffers from any net groups to which they belong. After running this command you
should, therefore, update the net groups that contain feedthrough nets.

For inserting feedthrough buffers into nested partitions, the insertPtnFeedthrough
 command, first, automatically deletes the parent partitions and keeps only the bottom
most partition. It then does a single level feedthrough insertion and then automatically
restores the parent partitions and brings the nested partition definition back as it is. In
nested designs, the insertPtnFeedthrough command only puts buffers and ports in the
bottom most level of partitions.

Routing Feedthroughs
The createPtnFeedthrough text command inserts routing feedthroughs into the partitions
without changing the design netlist. Alternatively, you can use the Create Physical
Feedthrough form. Inserting routing feedthroughs affects the design in the following areas:

Manages only the physical aspect of a partition, not the logical aspect.

No new ports are added to a partition and no buffers are added to the partition netlist.

For channel feedthroughs, this creates channels for over-the-block routing on specified
layers at the top-level design. These channels are pushed down as routing blockages
on the correct routing layers at the partition level during Partitioning.

For placement island feedthroughs, the Innovus software reserves these areas for
inserting buffers at the top-level design after running the addRepeaterByRule command.
These island feedthroughs will be pushed down as placement blockages and routing
blockages on all routing layers at the partition level during partitioning.

Inserting Routing Feedthroughs
Routing feedthroughs and hole punch buffers reserve a portion of the partition area for top-level
use. Because the partition's netlist does not change, no new ports are created for the partition.
Buffers are inserted in top-level netlist but occupy space within the partition's fence. Partition
feedthroughs are used to indicate the top-level partition's concession within the partition fence.
Partition feedthroughs should be defined before running the Partition program, which automatically
generates appropriate placement and routing blockages within the partition and in top-level view to
reflect the real estate ownership scheme. For example, a routing feedthrough with Metal6 will
generate a Metal6 routing blockage for the partition, and an opening in the Metal6 blockage in the
top level.

September 2022 956 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/createPtnFeedthrough.html
../innovusMR/Partition_Menu.html#PartitionMenu-CreatePhysicalFeedthrough
../innovusTCR/addRepeaterByRule.html

Note: The partition feedthrough discussed in this section is a floorplan object. It affects a partition
only physically (not logically) and does not affect partition feedthrough buffer cells.

A routing feedthrough (slot) within the partition's fence is used by the top-level partition's routing,
and an island within the partition's fence can be used by the top-level partition's placement, as
shown in the following figure:

Note: Routing feedthroughs can be used without placement islands.

To create a channel-type feedthrough, use the Create Physical Feedthrough tool widget. After
adding a partition feedthrough to the design, you can use the Attribute Editor to change its layers.
The specified routing layers are reserved for top-level use, and the partition uses the other layers.
You can create an island type partition feedthrough in a similar way, but all layers are deselected.

To insert routing feedthroughs and hole punch buffers, complete the following steps:

Create routing feedthroughs using one of the following methods:
Method 1: Use the Create Physical Feedthrough widget to create the physical feedthrough on
the partition. Select the feedthrough and open the Attribute Editor form, specify the metal layer,
and click OK. This creates the channel for the routing on the specified layers at the top level,
and pushes down appropriate routing blockages at the block level.
Method 2: If you want to specify narrow feedthroughs or several of them on a given partition,
choose Partition - Create Physical Feedthroughs to open the Create Physical
Feedthrough form. To specify which partition you want, click on the partition in the design
display area, then click get selected. Complete the form and click OK.

(Optional) If you have hole punch buffers, create an island to specify where the holes are to be
punched in the partition. To do this, use the Create Physical Feedthrough widget to create a
routing feedthrough and then deselect all layers after double-clicking on the physical
feedthrough. This creates the island for buffer placement at the top level, and pushes down
the appropriate routing and placement blockage at the block level by the partition command.
At the top-level design, buffers can be placed into these created islands by IPO or buffer
insertion.

Run Partition. This automatically creates routing blockages for the channel feedthroughs, and
placement blockages for the placement island, as shown in the following figure:

September 2022 957 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Inserting Feedthrough Buffers
Partition feedthrough insertion manages partitioned designs that have nets that need to be pushed
down to become a component of each partition design. That is, each feedthrough buffer must be
added to the partitioned design, which changes the partition's netlist. This approach is typically
used in channelless designs and in designs with limited channel resources. A pure channelless
design has no channel routing resource – connections among partitions are always done by means
of module abutment and pin alignment. A mixed or partially channelless design has limited routing
resource in the channels; therefore, abutment and pin alignment is only performed on selected nets.
The following example shows how nets are selected for feedthrough buffers:

Inserting Feedback Buffers

You can insert a feedthrough buffer to a net that loops back to an original partition to avoid the net
routing over a partition area using the insertPtnFeedthrough command or the Browse/Plan
Partition Feedthroughs GUI form (Partition - Feedthrough Ports). The following example shows a
situation where net LoopBack connects to output pin O and input pin I of Partition A, and input I2 of
Partition C.

September 2022 958 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

By inserting a feedthrough buffer (BUF1) and a feedback buffer (BUF2) with
the insertPtnFeedthrough command, LoopBack now connects to the input pins of BUF1 and BUF2,
as shown in the following figure:

Limitations

Each partition must be intact. A non-child instance cannot be preplaced in another partition.
This would present a top-level net connection problem.

Partition pin guides cannot be used during feedthrough insertion.

The Unpartition program cannot remove the inserted buffers for the feedthrough nets.

Does not handle blackboxes.

It might not handle clock nets efficiently because the insertPtnFeedthrough command does
not take timing into account.

It cannot handle nets that are connected to two or more glue logic standard cells. This type of
net should be excluded from feedthrough insertion.

For channel based methodology, you should exclude high fanout nets and clock nets from
feedthrough insertion for better results.

The insertPtnFeedthrough command does not support master-clone designs with power
domains.

 In nested designs, the insertPtnFeedthrough command only puts buffers and ports in the
bottom most level of partitions.

September 2022 959 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Procedure

1. Design the top-level floorplan for the partition design.

2. Run Placement.

3. (Optional) Run Early Global Route.

4. Create a file to identify which nets get buffers. You can manually edit the file, create a script, or
generate a wire crossing file (see Generating the Wire Crossing Report).

5. Generate the feedthrough buffers and nets. Use the insertPtnFeedthrough -selectNet
command with the created net file. alternatively, use the Browse/Plan Partition Feedthroughs
form.

6. Run Early Global Route to completely connect the design, including the inserted feedthrough
buffers.

7. Run Partition to generate the partition pins and change the partition module status to hard
block.

8. Run Save Partition. This saves the design and generates a top-level directory and partition
directories.

9. Run the savePartition command. This saves the design and generates a top-level directory
and partition directories.
Note: For the iHDB flow, use the savePartition -module_model_tag command.

Using a Topology File to Insert Feedthrough Buffers
You can guide the insertion of feedthrough buffers for specific nets by providing the feedthrough
topology information for those nets in a topology file. The topology file can be created using the
following methods:

By manually writing the topology structure in a file. This structure must be written using a
specific syntax. You can manually create this file and subsequently edit it.

By using the Browse/Plan Partition Feedthroughs GUI form. For more information see
the Creating a Topology File Using the GUI section.

Topology File Structure Guidelines

The topology file consists of multiple sections and must follows the following guidelines:

September 2022 960 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Each section contains a header which specifies whether the section specifies the topology for
a net, netgroup or a bus.

The section specifies the topology tree in terms of the edges between two nodes.

The root node of the tree must be the driver of the net.

The root node does not have any parent node.

Each other node in the tree other than the root node must have a unique parent node.

The tree must be complete. The path from the driver to each sink should be traceable in the
tree.

Topology File Versions

There are different versions of the topology file:

Version 2.0

Version 1.0

Version 0.5 (Used with write_generalized_feedthru_path command ONLY)

In Version 2.0 of the topology file:

You can specify exactly how the reuse of ports takes place in master clone scenarios.

You have more control over the feedthrough topology.

The main difference from version 1.0 is that the topology needs to be specified in terms of the port
names of the hierarchical modules rather than the names of the hierarchical modules. The version
2.0 of the topology file will *not* obsolete the version 1.0.

Version 2.0 of the Topology File - Syntax and Examples

The syntax of the topology information in the file is as follows.

Comment line

 version version_string;
 nametype netname

 fromtype-totype from_name to_name;

 fromtype-totype from_name to_name;

 ...

 end nametype

September 2022 961 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

 nametype netname

 fromtype-totype from_name to_name;

 fromtype-totype from_name to_name;

 ...

 end nametype

 ...

The description of the syntax is as follows

nametype Can only be net. It cannot be bus or netgroup.

netname The name of the net. Wildcards (* or ?) cannot be used for net names.

fromtype Can have one of the following values:

hterm: The from_name is to be specified as hinstname/portname. If the port names
specified don't exist already then they will be created.

instterm:

For top level pins the from_name is specified as instname/termname.

For multi-fanout nets originating from a hierarchical module which is a
partition or a clone the topology must originate from the driver term. Instead of
specifying the complete driver name such as instname/termname one can use
the shorthand driver_term. Refer to examples 2,4,and 6 given below.

io: For chip level I/O pins.

Note: The hinst keyword may not be used as a fromtype in version 2.0.

totype Can have one of the following values:

hterm: The to_ name is to be specified as hinstname/portname. If the port names
specified don't exist already then they will be created.

 instterm: For top level instance pins. The to_name is specified as
instname/termname.

io: For chip level I/O pins.

Note : The hinst keyword may not be used as a totype in version 2.0.

September 2022 962 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Examples of usage of topology file version 2.0

The following examples illustrate topology file usage:

Example 1: Simple Case
The following image shows a two pin net before and after feedthrough insertion. It has an
output port on partition A and an input port on partition C.

The following topology syntax is used:

version 2.0;
net net
hterm-hterm A/out B/ft_in;
hterm-hterm B/ft_in B/ft_out;
hterm-hterm B/ft_out C/in;
end net

 Example 2: Multi-fanout Case
The following is a before and after feedthrough insertion image of a multi-fanout net with three
sink partitions. It has output port on partition A and input ports on partitions B, C, and D.

version The version is 2.0. The topology file is saved in this format when the -
repeatedSymmetricAbuttedFPlan option is used with the -saveTopoFile filename
option of the insertPtnFeedthrough command.

September 2022 963 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following topology file is used

version 2.0;
net net
instterm-hterm driver_term A/out;
instterm-hterm driver_term A/out_new;
instterm-hterm driver_term A/out_new2;
hterm-hterm A/out B/in;
hterm-hterm A/out_new C/in;
hterm-hterm A/out_new2 D/in;
end net

Example 3: Reuse for simple case of Example 1
The following is a before and after feedthrough insertion image of four nets with two pins.

September 2022 964 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following topology file is used:

version 2.0;
net net1_1
hterm-hterm A1/out1 B1/ft_in1;
hterm-hterm B1/ft_in1 B1/ft_out1;
hterm-hterm B1/ft_out1 C1/in1;
end net

net net1_2
hterm-hterm A1/out2 B1/ft_in2;
hterm-hterm B1/ft_in2 B1/ft_out2;
hterm-hterm B1/ft_out2 C1/in2;
end net

net net2_1
hterm-hterm A2/out1 B2/ft_in1;
hterm-hterm B2/ft_in1 B2/ft_out1;
hterm-hterm B2/ft_out1 C2/in1;
end net

September 2022 965 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

net net2_2
hterm-hterm A2/out2 B2/ft_in2;
hterm-hterm B2/ft_in2 B2/ft_out2;
hterm-hterm B2/ft_out2 C2/in2;
end net

Example 4 : Reuse case for multi-fanout case of Example 2
The following is a before and after feedthrough insertion image of two multi-fanout nets with
three sink partitions each.

September 2022 966 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following topology file is used:

version 2.0;
net net1
instterm-hterm driver_term A1/out;
instterm-hterm driver_term A1/out_new;
instterm-hterm driver_term A1/out_new2;
hterm-hterm A1/out B1/in;
hterm-hterm A1/out_new C1/in;
hterm-hterm A1/out_new2 D1/in;
end net

net net2
instterm-hterm driver_term A2/out;
instterm-hterm driver_term A2/out_new;
instterm-hterm driver_term A2/out_new2;
hterm-hterm A2/out B2/in;
hterm-hterm A2/out_new C2/in;

September 2022 967 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

hterm-hterm A2/out_new2 D2/in;
end net

Example 5: Complex case for loopback net
The following is a before and after feedthrough insertion image of a loopback net.

The following topology file is used:

version 2.0;
net loopback
hterm-hterm A/out B/ft_in;
hterm-hterm B/ft_in B/ft_out;
hterm-hterm B/ft_out C/ft_in;
hterm-hterm C/ft_in C/ft_out;
hterm-hterm C/ft_out D/ft_in;
hterm-hterm D/ft_in D/ft_out;
hterm-hterm D/ft_out A/in;
end net

Example 6: Complex case for multi-fanout net
The following is a before and after feedthrough insertion image of a complex multi-fanout net.

September 2022 968 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following topology file is used:

version 2.0;
net mfanout
instterm-hterm driver_term A/out;
instterm-hterm driver_term A/out_new;
hterm-hterm A/out B/ft_in1;
hterm-hterm B/ft_in1 B/ft_out1;
hterm-hterm B/ft_out1 C/ft_in1;
hterm-hterm C/ft_in1 C/ft_out1;
hterm-hterm C/ft_out1 D/in1;
hterm-hterm A/out_new B/ft_in2;
hterm-hterm B/ft_in2 B/ft_out2;
hterm-hterm B/ft_out2 C/ft_in2;
hterm-hterm C/ft_in2 C/ft_out2;
hterm-hterm C/ft_out2 D/in2;
end net

Version 1.0 of the Topology File - Syntax and Examples

The syntax of the topology information in the file is as follows.

Comment line

 version version_string;

September 2022 969 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

 nametype netname

 fromtype-totype from_name to_name route_data=(x,x,x,x,x,x);

 fromtype-totype from_name to_name route_data=(x,x,x,x,x,x);

 ...

 end nametype

 nametype netname

 fromtype-totype from_name to_name route_data=(x,x,x,x,x,x);

 fromtype-totype from_name to_name route_data=(x,x,x,x,x,x);

 ...

 end nametype

 ...

Note: The syntax is case sensitive.

The description of the syntax is as follows:

nametype Can be net, bus, or netgroup. The value netgroup represents all nets in
the net group. You should update the net group after feedthrough insertion
step.

Here are some examples of nametype:

bus myBus[0:1] specifies bus bits

net myBus[0:1] specifies a scalar net.

bus myBus[1] specifies a bus bit

net mybus[1] specifies a scalar net or a bus bit. In case both exist in
the design, use the Verilog escape name and use the
dbgIsBackSlashInNamesHiddenFlag variable to resolve correctly.

September 2022 970 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

netname Can be a net name, bus name, or a net group name. Wildcards (* or ?) can
be used for net name, bus name, or net group name.

If more than one net group is matched with wildcard, the
insertPtnFeedthrough command will issue a warning message and:

use only the first matched net group

ignore the other ones.

Wild cards can only be used for a bus name BUT not bus range. For
example, you cannot specify bus busname[1:*].

Specifying bus entries : If a bus named databus has 32 bits (from 0 to 31),
its r bus entries are specified as follows:

bus databus specifies all 32 bits from 0 to 31

bus databus[13:23] specifies databus[13] to databus[23]

bus databus[13] specifies only the bit 13 of databus

You cannot provide any net-specific entries for multiple bus bits, net
groups, or wildcard nets. Hence, bus topologies cannot be specified for
bus nets connected to top-level instance pins or to I/O pins.

Using escape mechanism for special characters: The following escape
mechanisms remove all restrictions on characters:

\\ for the backslash character (\) itself

\b for blank

\t for tab

\n for new line

\0 for null

\s for semicolon (semicolon (;) is the path statement terminator).

Any other character which follows a backslash (\) is taken literally. For
example, \a is considered as a. If one wants to use *,? literally then must
use escaping as these are used for wildcards.

Note: If a net appears twice in any form, the first entry corresponding to the
net is used. The subsequent entries generate an error.

September 2022 971 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/insertPtnFeedthrough.html

All version- and topology-statements in the topology file end with a semicolon (;). Any extra spaces
are ignored. Here is an example of a topology file:

############################

version 1.0;

net net1

io-hinst net1 i_b;

hinst-instterm i_b inst_c/net1;

end net

net clk*

hinst-hinst i_a i_b;

hinst-hinst i_b i_c;

end net

fromtype Can have one of the following values:

io for I/O pins

hinst for hierarchical instance name of a partition or partition clone

instterm for top-level instance pins

totype Can have one of the following values:

io for I/O pins

hinst for hierarchical instance name of a partition or partition clone

instterm for top-level instance pins

hinstfb for hierarchical instance name of a partition or partition clone.
This can only be used as part of the combination hinst-hinstfb, which
specifies a feedback buffer path.

version Version is the format version. The format version for this release is 1.0.

route_data Optional field that specifies routing information.

This is not a user-specified field. This field is created when the
insertPtnFeedthrough command is run with the -saveTopoFile parameter.
This field is used only for ECO purposes.

The route_data parameter is not available if the totype is hinstfb.

September 2022 972 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

netgroup group_a

hinst-hinst i_a i_b;

hinst-hinst i_b i_c;

end netgroup

bus databus[0:31]

hinst-hinst i_a i_b;

hinst-hinst i_b i_c;

end bus

############################

Examples of usage of topology file version 1.0

The following examples illustrate topology file usage:

Example 1: Two pin net
The following image shows a two pin net before and after feedthrough insertion. It has an
output port on partition A and an input port on partition C.

In order to insert a buffer in partition B, the following topology syntax is used:

version 1.0;
net netname
hinst-hinst A B;
hinst-hinst B C;
end net

 Example 2: Multi-fanout net with two sink partitions
The following is a before and after feedthrough insertion image of multi-fanout net with two
sink partitions. It has output port on partition A and input ports on partitions B and C.

September 2022 973 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following topology file is used
version 1.0;
net netname
hinst-hinst A B;
hinst-hinst A C;
end net

Example 3: Multi-fanout net with 2 sinks which are standard cells
The following is a before and after feedthrough insertion image of a multi-fanout net with 2
sinks which are standard cells.

The following topology file is used:
version 1.0;

September 2022 974 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

net netname

hinst-instterm A inst1/A;

hinst-instterm A inst2/A;

end net

Example 4 : Multi-fanout net with 3 sinks which are standard cells
The following is a before and after feedthrough insertion image of a multi-fanout net with 3
sinks which are standard cells. It is not desired to insert separate buffers for inst1 and inst2.

The following topology file is used:
version 1.0;

net netname

hinst-instterm A inst1/A;

hinst-instterm A inst3/A;

instterm-instterm inst1/A inst2/A;

end net

September 2022 975 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Version 0.5 of the Topology File - Syntax and Examples

The Version 0.5 of the Topology file is used only while using the Generalized Feedthrough Paths
capability. This topology file version can be written by the user and then be used by
the write_generalized_feedthru_paths command. Alternatively, you can use the Path
Guidance page of the Browse/Plan Partition Feedthroughs GUI form to generate the topology file
in version 0.5 format that contains a path for one master and clone chain to derive path of all master
and clone chains.

The syntax of the topology information in the version 0.5 of the topology file file is as follows.

Comment line

 version version_string;
 path_nets*

 fromtype-totype from_name to_name;

 fromtype-totype from_name to_name;

 ...

 end path_nets

Example of Topology File Version 0.5:

version 0.5;

path_nets *

hinst-hinst iW1/it1/ia1 iW1/it1/ib1;

hinst-hinst iW1/it1/ib1 iW1/it1/ic1;

hinst-hinst iW1/it1/ic1 iW1/it1/id1;

end path_nets

The description of the syntax is as follows

September 2022 976 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../TCRcom/write_generalized_feedthru_paths.html

Replicating Feedthrough Insertions Across ECO Netlists
While performing a feedthrough insertion through the insertPtnFeedthrough command, you can
save the feedthrough buffer topology tree information in a file by specifying the
-saveTopoFile parameter as follows:

fromtype Can have one of the following values:

hterm: The from_name is to be specified as hinstname/portname. If the port
names specified don't exist already then they will be created.

instterm:

For top level pins the from_name is specified as instname/termname.

For multi-fanout nets originating from a hierarchical module which is a
partition or a clone the topology must originate from the driver term. Instead of
specifying the complete driver name such as instname/termname one can
use the shorthand driver_term. Refer to examples 2,4,and 6 given below.

io: For chip level I/O pins.

totype Can have one of the following values:

hterm: The to_ name is to be specified as hinstname/portname. If the port names
specified don't exist already then they will be created.

 instterm: For top level instance pins. The to_name is specified as
instname/termname.

io: For chip level I/O pins.

path_nets Keyword for user specified set of paths for which generalized path will be derived.

Note: It is necessary to use *

version The version is 0.5. The topology file is used only by
the write_generalized_feedthru_paths command.

September 2022 977 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../TCRcom/write_generalized_feedthru_paths.html

insertPtnFeedthrough -saveTopoFile topoFileName

where,
topoFileName is the name of the file in which topology information is saved.

When you run the insertPtnFeedthrough command on another ECO netlist, you can use the saved
file to replicate feedthrough buffer insertions by specifying the -topoFile parameter as follows:
insertPtnFeedthrough -topoFile savedTopoFileName

where,
savedTopoFileName is the name of the file that was saved earlier using the -saveTopoFile
parameter.

This way, you can save a file with feedthrough buffer topology tree information and use it to create
the same feedthrough buffer insertions across multiple netlists. The flow can be summarized as
follows:

Import a design.

Perform floorplanning on the design.

Perform feedthrough buffer insertion and save the feedthrough buffer topology tree information
in a file (use the -saveTopoFile parameter of the insertPtnFeedthrough command).

Import design with a new ECO netlist.
Note: The ECO netlist should not contain the original inserted feedthrough buffers.

Perform feedthrough buffer insertion with the topology file saved from step 3 (use
the -saveTopoFile parameter of the insertPtnFeedthrough command).
Note: If you use the -topoFile parameter, only those nets that are specified in the topology
file are considered for feedthrough buffer insertion.
Note: If a net does not exist in the design, it should not be in the topology file. For example, if
ECO changes remove a net, that net should be removed from the topology file.

Repeat steps 4 and 5 for more ECO netlists, if required.

Reducing the Number of Buffers and Ports Added for Route-
based Feedthrough Insertions
You can use the -reduceAddedPort parameter of the insertPtnFeedthrough command to specify
that feedthrough insertion should follow the routing topology more closely. This can help reduce the
number of added ports and buffers. The ports are created at the route crossing points. The status of
the added ports is set to Fixed . Subsequent use of Early Global Route will make the routes pass
through these pins. Therefore, there is no need to create partition pin guides for these pins.

September 2022 978 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/insertPtnFeedthrough.html

Note: The -reduceAddedPort parameter is applicable only for route-based feedthrough insertions.

This behavior is illustrated through the following scenarios:

Net Connecting to Non-partition Instance Terminals in the Top-level Routing Channels
The following diagram illustrates the improvement in feedthrough insertion where a net connects to
a non-partition instance terminals in the top-level routing channels.

Net Connecting Through Adjoining Partition
The following diagram illustrates the improvement in feedthrough insertion between partitions
where there is another partition in between.

September 2022 979 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Mentioning Some Verilog Modules as dont-add-ports

During insertPtnFeedthrough, if a new verilog port gets created in a module, then the tool does not
create new ports in the module if it is listed in the dont_add_ports_to_module option. For example,
without the dont_add_ports_to_module option, the feedthrough buffers and new verilog ports are
added as shown in the figures below:

However, if some modules are specified in dont_add_ports_to_module, then new ports are not
created in the specified modules. For the design scenario shown above, here are some examples
of the usage of dont_add_ports_to_module.

September 2022 980 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

insertPtnFeedthrough –dont_add_ports_to_module {P3_hi}

insertPtnFeedthrough –dont_add_ports_to_module {P3_hi P4_hi}
An alternate path is created leaving the partitions mentioned in dont_add_ports_to_module.

insertPtnFeedthrough –dont_add_ports_to_module {P3_hi P7_hi}

September 2022 981 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

insertPtnFeedthrough –dont_add_ports_to_module {P1_hi P7_hi P8_hi }

Consider another design scenario now, as shown below. Note that wr_hi is the verilog wrapper
module containing P6 (wr_hi/P6_hi), P7 (wr_hi/P7_hi), P8 (wr_hi/P8_hi), P9 (wr_hi/P9_hi).

September 2022 982 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

insertPtnFeedthrough –dont_add_ports_to_module {wr_hi wr_hi/P7_hi wr_hi/P8_hi}

Abbreviating Lengthy Feedthrough Net Names
You can abbreviate inserted feedthrough net names so that the net names will not extend too long if
you run the insertPtnFeedthrough multiple times. With the -useShortName option, you can
eliminate the use of the old net name and partition names, and instead use a running count for the
new net names. For example, if a feedthrough net reset connects two partitions tt_chiplet and
video_chiplet, the feedthrough net name is:
FE_FEEDX_NET_C__tt_chiplet_video_chiplet_reset

September 2022 983 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The net name abbreviation convention for feedthrough buffer insertion when using the
insertPtnFeedthrough -useShortName command are:

The net name abbreviation convention for feedback buffer insertion when using the
insertPtnFeedthrough -useShortName command are:

Blocking Edges for Feedthrough Insertion
Automatic feedthrough of high fanout nets in abutted designs is a limitation. As a workaround, you
can get a topology file for feedthrough of high fanout nets. The -blockedEdgesFile parameter of
the insertPtnFeedthrough command accepts a file, which contains blocked edges to guide
feedthrough. This is helpful in symmetric master and clone designs.

Use Model
Use the insertPtnFeedthrough –blockedEdgesFile command to provide a file that contains the
names of the partitions followed by the edge numbers for the partition which are considered as
blocked for the purpose of insertPtnFeedthrough command.

The syntax of the blocked partition edge file is as below:
<CellName> <edge_number_list>

For example,
Master1 0 1
Master2 0 1

Here, Master1 0 1 signifies that edges 0 and 1 for partition Master1 are blocked. Similarly,

Note:

Both facing edges of two abutted partitions need to be blocked to ignore a path for
feedthrough.

Blocking one edge is no operation for feedthrough path finding. The edge order or partition

Net Names FE_FTN_ n , where n is an integer

Buffer Names FE_FTB_ n , where n is an integer

Net Names FE_FB_NET_ n , where n is an integer

Buffer Names FE_FB_BUF_ n , where n is an integer

September 2022 984 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

order does not matter.

If a partition and its edge is repeated in file , sum total of all edges will be blocked

A blocked pair of edge is considered blocked for all feedthrough paths for selected nets.

For example, the following command will run and commit the possible feethroughs.
insertPtnFeedthrough –blockedEdgesFile ft.blocked –saveTopoFile –checkOnly

Note: The topofile can be further edited for path corrections/alterations.

Examples

The following examples illustrate how blocked edges guide feedthrough insertion. The aim is to
develop connectivity between partition P4 and P2-m and partition P4 and P2-c by doing
feedthrough insertion.

Use the insertPtnFeedthrough –blockedEdgesFile command to provide the file containing the
names of the partitions followed by the edge numbers for the partition which are considered as
blocked for the purpose of insertPtnFeedthrough command.
insertPtnFeedthrough –blockedEdgesFile ft.blocked

The blockedEdgesFile can have:

Single block edge per partition
ft.blocked: P4 3 or,

ft.blocked: P1 3

September 2022 985 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following illustration shows the blocked edges (as specified in the ft.blocked file) and the
probable feedthrough paths.

Multiple block edges per partition
ft.blocked: P4 2 3 4 or,
ft.blocked: P1 0 3
The following illustration shows the blocked edges (as specified in the ft.blocked file) and the
probable feedthrough paths.

September 2022 986 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

In the above example if we change one edge such that:
ft.blocked: P4 2
ft.blocked: P1 3
Then the feedthrough path from P4 to P2-c can go through P1-c, as shown below in the blue
path, but no change will happen for path for P4 to P2-m. This makes the feedthrough
asymmetric and port/buffer reuse difficult.
Note: It is better to block a master/clone edge than to block a unique partition edge.

September 2022 987 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

A mix combination of block edges
 ft.blocked: P4 1 3 5
 ft.blocked: P1 3
 P3 3
 The following illustration shows the blocked edges (as specified in the ft.blocked file) and the
probable feedthrough paths.

September 2022 988 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Note: For any other connection, say between P1-m to P3-m and P1-c to P3-c, the same set of
blocked edges will apply. The insertPtnFeedthrough command will chose a path which does
not cross these edges.

Support for Blockage Lines

The insertPtnFeedthrough command enables you to block partial edges during the placement
based feedthrough insertion. Using the -blockageFile parameter, you can specify the file that
contains the coordinates of line segments that are considered as blockages for placement based
feedthrough insertion.

Note: The blockages must be defined as lines that do not overlap with partitions or macros. These
blockage lines are supported only with automatic feedthrough insertion or placement based
feedthrough insertion.

The following is the format of the blockage file:
x1 y1 x2 y2

x1 y1 x2 y2

...

xn yn xm ym

The blockage lines are specified as coordinates of a box, however, the boxes should be of zero

September 2022 989 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/insertPtnFeedthrough.html

width or height.

For a vertical line x1 = x2
For a horizontal line y1 = y2

In the following illustration, h1,h2,v1,and v2 are blockage lines.

Highlighting the Nets for which Feedthrough Buffers Have been
Inserted
Once you insert partition feedthrough buffers with the insertPtnFeedthrough command, you can
highlight these nets with the hiliteFeedthroughNets command. The highlighted feedthrough path
consists of the nets, the terms that the nets connect to, and the instances that contain those
terms. For the hiliteFeedthroughNets command to work, the insertPtnFeedthrough command
must be run with the -netMapping parameter. The net mapping file generated with the
insertPtnFeedthrough -netMapping parameter is used by the hiliteFeedthroughNets command to
highlight the feedthrough nets. To dehighlight the feedthrough nets, run the dehighlight command.

September 2022 990 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/insertPtnFeedthrough.html
../innovusTCR/hiliteFeedthroughNets.html
../innovusTCR/dehighlight.html

Using the Feedthrough Ports GUI Menu

You can use the Feedthrough Ports menu to inserts feedthrough buffers into the partitions to
change the partition netlists, and avoid routing nets over partition areas. Additionally, you can use
this menu for the following:

Change both the top-level and partition-level netlists.

Specify a file that contains net names for which to insert feedthrough buffers.

Save feedthrough insertion buffer topology tree information in a file.

The Feedthrough Ports menu command opens the Browse/Plan Partition Feedthroughs form.

Note: For a description of all the fields of the Browse/Plan Partition Feedthroughs form, see the
Partition Menu chapter in the Menu Reference.

Inserting Feedthrough Buffers Using the GUI

You can use the Automatic page of the Browse/Plan Partition Feedthroughs form to insert
feedthrough buffers into the partitions to avoid routing a net over a block area. This automatically
runs ECO placement and changes the original netlist.

Use Model:

1. Select the method to use for defining feedthrough insertion. Based on your selection, the
availability of different GUI items of the form changes.

To derive the feedthrough topology based on the placement and shape of the elements
of the design irrespective of the routing, use Place Based.

To derive the feedthrough topology based on the routing results, use Route Based.

To derives the feedthrough topology based on the topology defined in the file,
use Topology Based.

The Browse/Plan Partition Feedthroughs form provides enhanced GUI support for
Feedthrough Insertion and Debugging. This form is a limited-access feature in this release. It
is enabled by a variable specified using the setLimitedAccessFeature command. To use this
feature, contact your Cadence representative to explain your usage requirements, and make
sure this feature meets your needs before deploying it widely.

September 2022 991 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/setLimitedAccessFeature.html
../innovusMR/Partition_Menu.html#PartitionMenu-FeedthroughPorts
../innovusMR/Partition_Menu.html

2. (Place Based and Route Based) Specify options for selecting nets for feedthrough insertion.

3. (Topology Based) Specify the file that has the topology tree information. This information is
used to create feedthrough buffers for the netlist.

4. (Optional) Specify the different constraints on finding path.

5. (Optional) Specifies the different options for feedthrough insertion.

6. Click OK or Apply on the Automatic page of the Browse/Plan Partition Feedthroughs form to
insert the feedthrough buffers.

Example: Place-based feedthrough insertion by interactive path constraining

The following image shows a place based feedthrough insertion.

Here, you can use the Browse/Plan Partition Feedthroughs form for interactive path constraining by
using the Show and Hide button next to the different constraints on the form.

Click Show or Hide to exclude partition b from feedthrough paths consideration.

Click Show or Hide to show or hide certain edges of partition being blocked for feedthrough
through the blockedEdges.txt file.

Click Show or Hide to show or hide blockage lines for avoiding feedthrough path through
the ptnft.blk. file. You can click Add to add blockage lines directly in design and automatically
save them to the ptnft.blk. file.

Note: For a description of all the fields of the Browse/Plan Partition Feedthroughs - Automatic form,

September 2022 992 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusMR/Partition_Menu.html#PartitionMenu-PlanBrowseFTAuto

see the Partition Menu chapter in the Menu Reference.

Writing Generalized Feedthrough Paths

In any design, feedthroughs are required to make non-neighbor and multi-ptn-pin nets into 2-ptn-pin
nets. With designs getting bigger and complex, the presence several partitions in designs results in
hundreds of possible combinations for feedthrough paths based on the connectivity of different
partitions. The path guidance based feedthrough capability provides a way to generalize and
automate the feedthrough paths. You can use the Path Guidance page of the Browse/Plan Partition
Feedthroughs form to derive feedthrough topological paths from the user specified paths to cover all
the chain connectivity probabilities in a master and clone hinst scenario. It is used to create or view
the topology file version 5.0 that contains user specified set of paths for which generalized
paths will be derived. The topological file, in version 0.5 is further converted to version 2.0
topological file.

Alternatively, you can use the write_generalized_feedthru_paths command to read
an input topological file, in version 0.5 and then create the version 2.0 topological file.

The cases where the tool can generalize the paths include:

1. Partition to Partition Generalization: Nets from one hisnt pair to another that are all on the
same path. These can have one generalized path that applies for all nets from hisnt to hinst
pair.

2. Partition Chain Generalization: The tool can automatically generalize the feedthrough path if
the master and clone (source-sink) chain is the same. The user can specify one path and the
tool can automatically derive the generalized path for all symmetrical master and clone
chains.

3. Partition Sub chain Generalization: The tool can automatically generate sub chain paths if the
master and clone chains are the same. The user can specify one path (TIP: Specify the
longest chain path to get maximum generalization) and the tool can automatically derive the
 generalized sub chains.

The Path Guidance option is a limited-access feature in this release. It is enabled by a
variable specified using the setLimitedAccessFeature command. To use this feature, contact
your Cadence representative to explain your usage requirements, and make sure this feature
meets your needs before deploying it widely.

September 2022 993 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusMR/Partition_Menu.html
../innovusTCR/write_generalized_feedthru_paths.html
../innovusTCR/setLimitedAccessFeature.html

Use Model:

September 2022 994 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

1. Click Edit to create or edit a path guidance file (topology file version 0.5). You can click View
to review the generalized and derived paths. To read and edit an already created user path
file, enter the name in the Read Path File field.

2. In Topology Section, click Edit/Add Section and select the Type of entry.
Note: Currently, Path_Nets is the only available option.

3. Enter the Name for the nets and click the Add button. This name displays in the Tree area.
Note: Currently, this option is supported for all nets. You must only specify * as the Name.

4. Add nodes to the Path_Nets section. You can add nodes using either the Add Edge area or
the interactive Canvas Edit area.

Using the Add Edge area specify the start and end partitions of paths

a. From Hinst Name: Specify the start partition. Alternatively, click Get Selected to
control the list of partitions being populated by selecting the partitions in the GUI.

b. To Hinst Name: Specify the end partition.

c. Click the Add button to create an edge node for the object in the specified
hierarchy. The new node is added to the bottom of the topology.

September 2022 995 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Using the Canvas Edit area:

a. Click the button in the Canvas Edit section to create a node. As soon as we
click on a partition in GUI, a node is added to path in the tree.

b. A node (blue color) appears on the partition in the Innovus GUI canvas where
the net source is. This node is also added and selected in the “Tree” section of
form. Partition of the selected node is also selected in the Innovus canvas.

September 2022 996 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Note: The nodes and direction arrows of the feedthrough path follow a color-coded
representation in the GUI for easy identification.

Note: The dots for the nodes are always placed at the center of the partition,
irrespective of where you click on the partition.

When the cursor is moved in the Innovus canvas, the node changes the color from
blue to white. This signifies that the node is selected. Directional arrows showing
all the possible endpoints of the net also appear. These arrows follow the cursor.
Note: For a feedthrough path to be complete, the created path should include all
these endpoints.

c. Click on any partition to create a feedthrough node. The new feedthrough node
added to the path is now displayed in white color, indicating it is now the current
selected node. Its partition gets selected in the Innovus canvas. This node is also
added in the Tree area.
Note: The previous node now takes the original blue color that represents a
source node of the net. The directional arrow from the previous node (blue, source
node) to the current selected node, changes to yellow color indicating that the path
has been already selected for the feedthrough. The white directional arrows now
start from the current selected node (white) to the remaining endpoints.
Subsequently, click on partitions to add feedthrough nodes and reach an
endpoint. The previous node always changes to a different color and the current
node becomes white. The nodes that are part of the feedthrough path are
displayed in the Tree area. Note: You can click the Undo button to undo the last
operation. Node tree is also updated in Tree section of form. Selected partition is
also updated in Innovus canvas. This is a sequential operation. Alternatively, you
can use the Redo button to redo the last undo operation.

d. To complete the feedthrough path, double-click on the current node or press the
Esc key. The white current node takes the color of the node it represents.

e. Finally, click the button to edit the Canvas Edit mode.

5. Click Save Path File and then specify the name of the topology version 0.5 path guidance
file. Click the Save button to save the file.

September 2022 997 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following image shows the path guidance topology file (version 0.5) created using
the Browse/Plan Partition Feedthroughs form.

6. In the Generalize Paths section, click the Generalize Paths button to automatically derive
feedthrough topological paths from the user specified paths to cover all the chain connectivity
probabilities in a master and clone hinst scenario.

a. The Generalized Path File field displays the name (generalized.path) of the
intermediate file containing the generalized paths. It contains the user defined and
derived paths.

b. The Topo v2 File field displays the name (path.topo) output topological file with version
2.0 format.

c. Select Don't generalize sub paths to make the generalization algorithm avoid
generalizing reverse chain paths.

d. Select Don't generalize sub paths to make the generalization algorithm avoid
generalizing sub-paths.

7. Click the View tab to review generalized and derived paths.

The user and generalized paths are auto populated from internal files.

User paths depicted by "*"

September 2022 998 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Generalized paths depicted by "#"

8. Click Show Generalized Paths to display the paths in the GUI. You can click the Show
All button to display all the generalized paths of click on any path listed in the tree area to see
it in the GUI

Creating a Topology File Using the GUI

Use the Edit Topology page of the Browse/Plan Partition Feedthroughs form to create a
feedthrough path topology file.

September 2022 999 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Note: For more information on the structure of the topology file, see Topology File Structure
Guidelines.

September 2022 1000 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Use Model:

1. In Topology Section, click Edit/Add Section and select the Type of entry. You can select
between: Net, NetGroup, or Bus.

2. Enter the Name of the topology section entry and click the Add button. This name displays in
the Tree area.

3. Add nodes to the selected topology section. You can add nodes using either the Add
Edge area or the interactive Canvas Edit area.

Using the Add Edge area specify the start and end partitions.

a. From Hinst Name: Specify the start partition. Alternatively, click Get Selected to
control the list of partitions being populated by selecting the partitions in the GUI.
By default, all partitions are populated in the list.

b. To Hinst Name: Specify the end partition.

c. Click the Add button to create a node for the object in the specified hierarchy. The
new node is added to the bottom of the topology.

September 2022 1001 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Using the Canvas Edit area:

a. Click the button in the Canvas Edit section to create a node. A node (blue
color) appears on the partition in the Innovus GUI canvas where the net source is.
This node is also added and selected in the “Tree” section of form. Partition of the
selected node is also selected in the Innovus canvas.

Note: The nodes and direction arrows of the feedthrough path follow a color-coded
representation in the GUI for easy identification.

Note: The dots for the nodes are always placed at the center of the partition,
irrespective of where you click on the partition.

When the cursor is moved in the Innovus canvas, the node changes the color from
blue to white. This signifies that the node is selected. Directional arrows showing
all the possible endpoints of the net also appear. These arrows follow the cursor.
Note: For a feedthrough path to be complete, the created path should include all
these endpoints.

September 2022 1002 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

b. Click on any partition to create a feedthrough node. The new feedthrough node
added to the path is now displayed in white color, indicating it is now the current
selected node. Its partition gets selected in the Innovus canvas. This node is also
added in the Tree area.
Note: The previous node now takes the original blue color that represents a
source node of the net. The directional arrow from the previous node (blue, source
node) to the current selected node, changes to yellow color indicating that the path
has been already selected for the feedthrough. The white directional arrows now
start from the current selected node (white) to the remaining endpoints.

Subsequently, click on partitions to add feedthrough nodes and reach an
endpoint. The previous node always changes to a different color and the current
node becomes white. The nodes that are part of the feedthrough path are
displayed in the Tree area.
In the following image, node I_kam4 (red in color) represents a partition
selected for feedthrough that has no endpoint from the original net.

Note: A feedthrough path can have multiple sink nodes.

September 2022 1003 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Note: You can click the Undo button to undo the last operation. Node tree is also
updated in Tree section of form. Selected partition is also updated in Innovus
canvas. This is a sequential operation. Alternatively, you can use the Redo button
to redo the last undo operation.

c. To complete the feedthrough path double-click on the current node or press the
Esc key.The white current node takes the color of the node it represents. In the

following image, node s1 (green in color) represents a sink node partition
selected for feedthrough that has an endpoint.

Note: Once complete feedthrough path, you can continue to add nodes to the tree
structure. If required, you can split the nodes of the topology tree to branch out the
topology tree structure.

d. Finally, click the button to edit the Canvas Edit mode. The Feedthrough
Browser stops the suggestive directional white arrows.

4. Click Write and then specify the name of the topology file to Save. Click the Save button
to save the file.

Example:

The following image shows the details of a topology file created using the Browse/Plan Partition
Feedthroughs form.

September 2022 1004 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Editing a Topology File Using the GUI

Use the Edit Topology page of the Browse/Plan Partition Feedthroughs form to edit a feedthrough
path topology file.

Note: For more information on the structure of the topology file, see Topology File Structure
Guidelines.

Use Model:

1. Click Open (v.1) and then specify the name of the topology file to Load. Click Apply to load the
file and populate the Tree area with the topology information.

2. Add or delete topology sections or edges and then click Apply to make changes to the
structure of the topology file.

September 2022 1005 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

To add a section node in the tree area and click Add in the Topology Section area.
Select the Type of entry (Net, NetGroup, or Bus).

To delete an entry from the Tree area, select the node in the Tree area and click the

 (Delete selected node/section in the topology tree) button in the Canvas Edit area.
You can also click Delete All in the Topology Selection area to delete all entries from
the topology tree.

To delete an entry from the canvas GUI, enable the Canvas Edit mode, and then select
a node (white color) and delete it.

3. Add or delete topology edges and then to click Apply to make changes to the structure of the
topology file.

To add a topology edge node, select the Topology Section node in the tree area.
Click Add in the Topology Edge area and then specify the start and end partitions
using From Hinst Name and To Hinst Name respectively.

To delete a topology edge node, select an edge node in the tree area and then click

 (Delete selected node/section in the topology tree) in the Canvas Edit area.

To delete an entry from the canvas GUI, enable the Canvas Edit mode, and then select
a node (white color) and delete it.

4. Click Save and then specify the name of the topology file to Save. Click Apply to save the file.

Example:

September 2022 1006 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following image shows the details of a topology file edited using the Browse/Plan Partition
Feedthroughs form.

Browsing Nets Using the GUI

Use the View Nets page of the Browse/Plan Partition Feedthroughs form to analyze the
feedthrough path and to highlight all nets for which feedthrough buffers were inserted or were
considered. The highlighted feedthrough path consists of the nets, the terms, and the instances.

Debugging Nets for Feedthrough Path at Pre Feedthrough Stage

Use Model:

1. Load the pre-feedthrough topology file by selecting Pre Feedthrough Topology File and then
specifying the name of the topology file.

Note: If feedthrough was run using the Automatic Page of Browse/Plan Partition
Feedthroughs form without mapping file, the topology file name is automatically populated.

Note: Cadence recommends you to use the topology file for path analysis before inserting
feedthroughs.

September 2022 1007 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

2. Click Load to populate the Display area with the net names and the detour ratios.

September 2022 1008 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Tip: You can click the NETNAME header to sort the net names in ascending or descending
alphabetical order. Alternatively, you can click the Detour Ratio header to sort the nets in
ascending or descending order of their detour ratio.

3. Select a net to display its details and analyze its topology. A corresponding path is also drawn
in the GUI.

Tip: You can press the shift key and add more nets for analysis.

Example:

In the following image feedthrough path of net nk6 traverses through b2 (clone of cell b). When we
load the topo file, cross probing is done for hinst to hinst (as is described in topology file).

Analyzing the Feedthrough Path After Committing Feedthrough

You can use the View Nets page of the Browse/Plan Partition Feedthroughs form to analyze the
feedthrough path using the net mapping file after committing the feedthough.

Use Model:

1. Load the net mapping topology file by selecting Post Feedthrough Net Mapping and then
specifying the name of the Net Mapping File.

Note: If feedthrough was run using the Automatic Page of Browse/Plan Partition
Feedthroughs form with mapping file, the net mapping file name is automatically populated.

Note: Cadence recommends you to use the mapping file to analyze the path after feedthrough

September 2022 1009 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

insertion.

September 2022 1010 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

2. Click Load to populate the Display area with the net names and the detour ratios.

Tip: You can click the NETNAME header to sort the net names in ascending or descending
alphabetical order. Alternatively, you can click the Detour Ratio header to sort the nets in
ascending or descending order of their detour ratio.

3. Select a net to display its details and analyze its topology. A corresponding path is also drawn
in the GUI.

Example 1:

In the following image, feedthrough path of net nk6 traverses through b2 (clone of cell b). The path
displayed is similar to the one displayed using the topology file, however with the use of mapping
file additional details like start instterm and traversing intermediate hinst terms are displayed.

Example 2:

The following image displays the feedthrough path when the mapping file is loaded after doing the
pin assignment. In this case the path traverses through actual pin locations.

September 2022 1011 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Example 3:

Simply loading the mapping file after doing feedthrough insertion will display the feedthrough path
like displayed with Example 1. However, if you assign partition pins and then want to see the path
browsing through the partition pin location then you must load the mapping file and click the Apply
button. The following image displays such details.

September 2022 1012 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Filtering Nets Using the GUI

Use the Filter Nets page of the Browse/Plan Partition Feedthroughs form for applying filters on nets
in order to choose target nets. It enables you to work on limited set of nets across different pages of
the Browse/Plan Partition Feedthroughs form. For a description of all the fields, see the Partition
Menu chapter in the Menu Reference.

Utilizing Pre-defined Feedthrough Pins in Custom Macros
Some designs contain hard macros, which could, for example, be IP blocks or analog blocks. chip-
level routing might not be possible without passing over these blocks. Or, in other cases, routing
might not meet timing requirements if it detours around these blocks. To facilitate routing these
blocks might provide pre-defined feedthrough pins You can utilize these predefined feedthroughs
using the connectMacroFeedthrough command. This command automatically connects the
feedthrough pins to nets that have wires crossing over these blocks or macros.

September 2022 1013 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusMR/Partition_Menu.html#PartitionMenu-Browse/PlanPartitionFeedthroughs-FilterNets
../innovusMR/Partition_Menu.html
../innovusTCR/connectMacroFeedthrough.html

Use Flow

The connectMacroFeedthrough command uses the routing topology to connect the pre-defined
feedthrough nets. Therefore, the design must be placed and routed before you run the
connectMacroFeedthrough command. The use flow is as follows:

1. Import the design.

2. Floorplan the design.

3. Perform placement.

4. Run Early Global Route.
Info: At least one vertical and one horizontal routing layer must be available (that is, not
blocked) on the macro(s). Otherwise, there will be no routing over the macro(s). In case the
macro has all the layers blocked, manually remove the blockage over one horizontal and
vertical layer.

5. Connect the built-in feedthroughs through the connectMacroFeedthrough command.
Note: Before running detailed routing, take care of the unused feedthrough input pins that are
left floating. For example, you might want to assign them to tie-high or tie-low. You can save
the list of the unused ports with the connectMacroFeedthrough -floatingPortList command.

How the connectMacroFeedthrough Command Connects

Feedthroughs

The following points illustrate the criteria for feedthrough selection and other important features of
the connectMacroFeedthrough command:

The connectMacroFeedthrough command considers all routing on all layers that cross the
specified custom macro boundaries.

The command searches for a feedthrough whose in and out pins lie on the same sides of the
macro on which the wires enter and exit the macro.

A feedthrough that has pins that are closer to the intersections has a higher probability of
selection. Both input and output pins are considered. Layer information is ignored while
evaluating the distance. To consider only pins within a specific distance from the wire
crossing, use the -maxSearchDistance parameter.

The command creates new nets and ports as required.

September 2022 1014 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

If multiple feedthrough insertions are performed, the command keeps track of the feedthroughs
already used, and does not assign such feedthroughs again.

The new nets (the nets that connect to feedthrough output pins) have the following naming
convention:

FE_FTM_x_ netName

where x is a unique numeric identifier and netName is the name of the original net.

You can select only specific nets for or exclude specific instances or nets. You can also
specify the distance till which the command will search for a connected feedthrough. The
feedthrough connectivity is described through a mapping file.

Feedthrough Connection for Abutted Macros

For abutted custom macros, the connectMacroFeedthrough command detects the paths formed by
the abutted feedthrough pins. The Innovus software considers only the end points of the detected
paths, and picks those feedthroughs that will give good results. The following figures show how
Innovus selects the feedthroughs for insertion in the abutted custom macros.

The following figure shows pre-defined custom feedthroughs in the design.

September 2022 1015 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/connectMacroFeedthrough.html

The following figure shows how these feedthroughs are utilized by
the connectMacroFeedthrough command. Notice the feedthrough pins, represented by yellow
squares, that are added at the intersection of the macro boundary and the pre-defined nets.

September 2022 1016 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/connectMacroFeedthrough.html

Mapping File For Describing Feedthrough Connectivity

The feedthrough connectivity is defined through a mapping file that is provided as a parameter to
the. If a mapping file is not specified with the connectMacroFeedthrough command, Innovus
assumes that a file with the name portmap in the current directory is used by default.

The syntax of the file is as follows:
MACRO MacroName

 Macro definition section

END MACRO

The definition of the macro is provided in the Macro definition section, which can contain one or
more feedthrough sections. The name of the feedthrough section is optional.

Note: The definitions for all custom macros to be used in the design should be in a single portmap
file.

The syntax of the Feedthrough section is as follows. The name of the feedthrough is optional.
Feedthrough [feedthroughName]

Pin Section

END FEEDTHROUGH

Each Feedthrough section contains one section for the input pin and one section for the output pin.

Note: Multi-fanout feedthrough sections are not supported.

The syntax of the pin section is as follows:
PIN PinName

END PIN

Note: All the predefined macro feedthrough pins should be floating pins.

Here is an example of a mapping file:
MACRO RAMXXX

FEEDTHROUGH feedthrough1

PIN feedthrough1_in

END PIN

PIN feedthrough1_out

END PIN

END FEEDTHROUGH

FEEDTHROUGH feedthrough2

PIN feedthrough2_in

END PIN

PIN feedthrough2_out;

END PIN

September 2022 1017 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/connectMacroFeedthrough.html

END FEEDTHROUGH

END MACRO

Limitations

The connectMacroFeedthrough command has the following limitations:

Multi-fanout feedthroughs are not supported.

Routing blockage and congestion are not considered. However, because topology is derived
from routing, this should not be a concern.

Bidirectional pins (INOUT) are not supported.

The topology is derived from the routing results. Therefore, you might need to specify certain
Early Global Route options (for example, options to block or unblock certain routing tracks) to
get the desired routing results.

Floating module ports connected to a net are not supported because there is no routing to the
floating module ports.

Rectilinear hard macros are not supported.

Generating the Wire Crossing Report
You can display and write a file of wires that physically cross over partitions using the showPtnWireX
text command or the Partition - Show Wire Crossing menu command. The results are saved to a
designName .wirecrossing file that reports nets that cross each partition in a design. For any net
that crosses more than one partition, you can use it as a starting point for generating a list of nets for
feedthrough insertion.
Tip: Edit the designName .wirecrossing file to exclude high fanout nets, clock nets, and nets that
are connected to two or more glue logic standard cells to avoid timing and routing problems on
these nets. You can use the resulting file with the insertPtnFeedthroughs text command's -
selectNet option. Note that the Innovus software determines the buffer tree topology, so not all
specified nets will receive inserted feedthroughs. For example, nets that connect directly between
adjacent partitions are not candidates for feedthrough insertion.
In designs with master clone partitions, the showPtnWireX command creates three additional output
files. These files can be used by the insertPtnFeedthrough -selectNet filename command for
path based feedthrough insertions in master and clone designs.

For example, when you specify,

September 2022 1018 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/connectMacroFeedthrough.html
../innovusTCR/showPtnWireX.html
../innovusTCR/insertPtnFeedthrough.html
../TCRcom/add_partition_feedthrus.html

showPtnWireX -outFile abc

The following files are generated:

abc.mc_connected_nets.txt: For all nets connected to master/clone partitions.

abc.mc_crossing_nets.txt: For all nets with wires over master/clone partitions (but not in the
above file) and not intra partition nets.

abc.non_mc.txt: For all remaining nets which are not in above files and are not intra partition
nets.

The default outfile file, abc.wirecrossing, is only valid for non master/clone designs and has
no significance for master and clone designs. The abc.wireCrossing file does not include wire
crossings over clone partitions.

These files contain just the net names. Their syntax is as follows:
NetA
NetB NetC NetD ...

To do path based feedthrough insertion for master clones nets, do the following:

For abc.mc_connected_nets.txt and abc.mc_crossing_nets.txt files, use the following
command without using the -routeBased parameter:
insertPtnFeedthrough -selectNet abc.mc_connected_nets.txt or,
insertPtnFeedthrough -selectNet abc.mc_crossing_nets.txt

For abc.non_mc.txt file, use the following command with or without using the -
routeBased parameter:
insertPtnFeedthrough -selectNet abc.non_mc.txt

Interpreting the Wire Crossing Report
The wire crossing report section lists the nets, their wire lengths, in micrometers, and the shape of
the wire in relation to the partition. For example, the following report segment is for a partition
module named ptn01:

###

Nets that cross partition module ptn01

Box (335 335) (833 567)

Format: Net <netName> <wireLength> <shape>

###

September 2022 1019 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Net A 65 I

Net B 80 L

Net C 1050 T

Net D 132 X

...

The first net in the report, A, has a wire length of 65 micrometers in an `I' shape, which indicates that
the net crosses the partition on opposite sides, as follows:

Net A 65 I

The second net in the report, B, has a wire length of 80 micrometers in an `L' shape, which indicates
that the net crosses the partition on adjacent sides, as follows:

Net B 80 L

The third net in the report, C, has a wire length of 105 micrometers in an `T' shape, which indicates
that the net crosses the partition on three sides, as follows:

Net C 105 T

The fourth net in the report, D, has a wire length of 132.30 micrometers in an `X' shape, which
indicates that the net crosses the partition on all four sides, as follows:

September 2022 1020 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Net D 132 X

In the report, you can also include the total length of the wire crossing the block in the horizontal X
direction and total length of the wire crossing the block in the vertical Y direction using the -delta
option of the showPtnWireX command. For example, the following report segment is for the same
partition module named ptn01 using the -delta option:

##

Nets that cross partition module ptn01

Box (335 335) (833 567)

Format: Net <netName> <wireLength> <shape> <deltaX> <deltaY>

##

Net A 65 I 0 65

Net B 80 L 38 47

...

The first net in the report, A, has a wire length of 65 micrometers in an `I' shape, with a total of 0
length in the horizontal X direction, and 65 in the vertical Y direction:

Net A 65 I 0 65

The second net in the report, B, has a wire length of 80 micrometers in an `L' shape, with a total of 38
length in the horizontal X direction, and 47 in the vertical Y direction:

Net B 80 L 38 47

September 2022 1021 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

In the above example, the 38 length in the X direction is calculated for the X direction net segments
(X1 + X2 + X3), and the 47 in the Y direction is calculated for the Y direction net segments (Y1 + Y2
+ Y3).

Estimating the Routing Channel Width
For committed partitions and blackboxes with assigned pins, channel width estimation uses the
current pin assignment. If partition pins are not assigned, they are placed at the lower-left corner. In
this case, the Innovus software issues a warning message because the estimator cannot produce a
good result.

For uncommitted partitions, channel width estimation runs the Partition program, assigns pins,
estimates the channel widths, and runs the Unpartition program. For blackboxes without assigned
pins, it assigns pins and estimates the channel widths.

The channel width estimation also considers topology constraints to drive block placement. These
constraints are block-to-block boundary, block-to-block distance, block order and alignment, block
aspect ratio, net weight (from global earlyGlobalRoute), and block halo. The channel width
estimator also respects these constraints so that their top-level block floorplans are not dramatically
changed. If there is conflict between a specified constraint and the minimum required channel
spacing, the Innovus software honors the minimum required channel spacing.

This feature produces a report containing the following information:

Estimated required spacing, in micrometers, between partitions, blackboxes, and hard
macros.

Estimated required spacing surrounding each partition based on its pins (the relative distance
between partition blocks required for top-level routing).

Estimated distance between blocks and core boundaries (top, bottom, left, right).

 The following figure shows an example of how the channel estimation report relates to the design:

September 2022 1022 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Running the Partition Program
The Partition program creates the partitions in the top-level design. This changes the module's
status from a fence to a block and generates pins if routing data exists from running Early Global
Route. When the Partition program is run, the Early Global Route data is deleted because the
current placement and route data are not suitable for further work at the top level. The partition pin
guide (floorplan) object can be used to determine the location of the pins, and nets or buses will be
assigned to the partition pin guide objects.

If the partitions are changed, then the Placement and Early Global Route programs must be rerun.
To change the status of the partition from being a hard block, you must run Unpartition to flatten the
partition.

Notes:

After you run the Partition program and save the partition data, you should exit the session
and start a new session for the top-level design and for each partition in their newly created
UNIX directories.

Running the Partition program creates a blockage on an OVERLAP layer even though the
OVERLAP layer is not defined in the technology section of the LEF file. As a result, the
partition LEF file cannot be loaded into either the Innovus software or any standalone tools. If
your design has rectilinear partitions or feedthroughs, the OVERLAP layer must be defined in
the technology section of the LEF file.

If a partitioned design is unpartitioned and then partitioned again, it will lose the original
routing and timing information. The routing and timing information are not preserved during
the unpartition-partition process. To restore the timing information, save your routing data

September 2022 1023 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

before partitioning.

You can save the partition data in an OpenAccess database.

Creating a Top-Level Partition

1. Run the Partition program.

2. Run Early Global Route on the top-level partition.

3. Check for routing congestion. If there is no congestion, you are done. If there is congestion,
continue to step 4.

4. Run the Unpartition program and add more routing resources to the congested area.

5. Rerun the Partition program.

Repeat steps 1 - 5 until there is no routing congestion.

Block-Level Partition

To create a block-level partition, complete the following steps:

1. Run the Partition program.

2. Check to see if each partition size is suitable. If it is, you are done. If it is not, continue to step
3:

3. Run the Unpartition program.

4. Increase the size of the block.

5. Rerun the Partition program.

Continue with the steps above until you have reached suitable partition sizes.

Pushing Down Signal Routes
During partition program, you can use the -pushRoute parameter of the partition command to push
down signal routes to the respective partitions.
Info: Before running the partition -pushRoute command, you can check the hierarchy violations for
nets on the partitions with the checkHierRoute command.

Here's the pushdown behavior with the -pushRoute parameter of the partition command:

September 2022 1024 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/partition.html
../innovusTCR/checkHierRoute.html
../innovusTCR/partition.html

The following routes are pushed down:

Intra-partition nets routed completely within the routed boundary.

Inter-partition nets that cross the partition boundary only once and that pass through the
partition pin location.

Top nets that are routed completely in the top channels are retained at the top

All other nets are deleted.

Note: All the wires of a hierarchy-violating net are discarded, in case even a single wire of that net
has a hierarchy violation.

How Top-level Stripes Are Pushed Down
When you use the partition command, it retains the stripes that are not on a layer reserved by the
partition at the top level and also copies them into the partition. The following table explains how
the stripes on the top level are pushed down to the partition when you run the partitioning program.

Stripe Position How Stripes Are Pushed Down

September 2022 1025 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/partition.html

Stripe completely
inside partition
boundary

Top-level:

On layers not reserved for partition, the stripe is retained at
the top and is copied to the block-level design.

On layers reserved for partition, the stripe is pushed down
to the block-level design.

Block-level:

On layers not reserved for partition, the stripe is retained at
the top and is copied as two pins and one stripe.

On layers reserved for partition, the stripe is pushed down
as two pins and one stripe.

Block Abstract:

On layers not reserved for partition, two pins are created at
the edges.

On layers reserved for partition except the topmost layer,
two pins are created at the edges.

On the topmost layer reserved for partition, one big LEF pin
is created.

Stripe is partially
inside Partition
boundary.

Top-level: The stripe is retained on the top and is copied to
the block-level design.

Block-level: The stripe is retained at the top and is copied as
two pins and one stripe.

Block Abstract: The stripe is retained at the top and is copied
as a big LEF pin.

Stripe is outside but
close to boundary

Top-level: Stripe is retained at the top.

Block-level: Stripe is retained at the top and is copied as a
routing blockage (same size as wire) with a +PUSHDOWN
attribute.

Block-abstract: No effect.

September 2022 1026 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

How Bumps, Routes, and Area I/O Cells Are Affected
This section illustrates how bumps and routes are handled when the design uses hierarchical
partitioning with flip chip RDL routing and 45-degree routes. This information pertains to
the partition command. After the partition, LEF obstruction is cut against the overlapping bumps at
the top. This is done for all the bumps (power/gnd/signal/unused). Similarly the routing blockages
inside the partition is cut against the pushed down bump.

The following scenarios are discussed in this section:

Area I/O Cells are Part of the Top-level Netlist

Area I/O Cells are Part of the Partition Netlist

Area I/O Cells are Part of the Top-level Netlist

When area I/O cells are part of the top-level netlist, signal bumps and routes remain bumps and
wires at the top level, but become routing blockages at the partition level. This allows routing at the
block level while preserving the space for the signal bumps and routes. Power and ground bumps
and routes are copied and pasted (duplicated) from the top level to the partition. This allows power
analysis at the block level. When the design is flattened, the duplicate power and ground bumps
and routes are removed from the block level.

The following sections discuss the behavior for the following cases:

Bumps and Routing are on Top Routing Layer

Bumps and Routing are on Reserved Routing Layer

Note: For all the listed scenarios, the push down behavior for signal routes is similar to the behavior
described in the "How Top-level Stripes Are Pushed Down" section.

Bumps and Routing are on Top Routing Layer
The following table summarizes the behavior when the bumps and the routing are on the top routing
layer and you run the partition command.

September 2022 1027 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/partition.html
../innovusTCR/partition.html

Object
Type

Top Level Partition Level

Area
I/O cell

An pin equivalent
pin to the area I/O
pin is created in the
partition LEF file.
This pin has the
same size, location,
and metal layer as
the area I/O pin.

Area I/O cell is retained in the partition netlist

Signal
bump

Signal bump stays
on top and,
additionally, an
equivalent pin is
created in the
partition LEF file.

If the bump overlaps fully or partially with the
partition, and connects to the partition:
An equivalent pin for the signal bump is
created in the partition LEF file. This pin has
the same size, location, and metal layer as the
bump.

If the bump overlaps with the partition but is not
connected to the partition:
The signal bump is pushed down as a routing
blockage.

Signal
Routes

Signal Routes
routed on the top
routing layers stays
at top.

If the signal route overlaps the partition and is
also connected to a area I/O cell inside the
overlapping partition and a signal bump at the
top, the signal route is copied and pasted to
the partition. The pushed down net will be the
internal net in the partition and will be named
based on the partition port it is connected to
inside the partition.

If the signal route overlaps the partition to
which it is not connected (that is, it is not
connected to any instance inside the partition
but to a bump at top), these routes are copied
and pasted as routing blockages inside the
overlapping partition.

September 2022 1028 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Bumps and Routing are on Reserved Routing Layer

The following table summarizes the behavior when the bumps and the routing are on the reserved
routing layer and you run the partition command.

Object
Type

Top Level Partition Level

Area
I/O cell

Not applicable because area I/O
cell is already part of the partition
netlist.

Area I/O cell is retained in the
partition netlist.

Signal
bump

Signal bump stays on top and,
additionally, an equivalent pin is
created in the partition LEF file.

Bumps get pushed down to
the partition as an equivalent
pin in the partition DEF file.

Signal
route

Signal routes are removed from
the top.

Routing gets pushed down
inside the partition block

September 2022 1029 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/partition.html

Limitations
The pushdown of the signal bumps as an equivalent pin inside the partition is not supported
for the non-rectangular shapes of the bump cell.

If the pushed down area I/O cell has pin shapes on the top routing layers, the blockages
created on the top routing layers are not cut against these component pins.

If the signal routes are pushed down to the partition, any routes that do not overlap with the
partition but lie close enough to the partition boundary and may thus result in spacing
violations at chip assembly, will be pushed down as blockage inside the partition. This may
result in some blockages being pushed down to the partition but outside the partition box.

The following examples illustrate the behavior:

Case 1: All Routing Layers Reserved for the Partition

Case 2: Top Layer Not Reserved for Routing

Case 1: All Routing Layers Reserved for the Partition
The design has six routing layers. All the layers are reserved for the partition. Signal Bump SM is
connected to area I/O cell inside the partition. The following diagram shows the floorplan view
before partitioning.

The following figure shows the view at top after partitioning.

September 2022 1030 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following figure shows the view inside the partition

Case 2: Top Layer Not Reserved for Routing
The design has six routing layers. Layers Metal1-Metal5 are reserved for the partition. Metal6 is the
top routing layer. The following diagram shows the floorplan view before partitioning.

September 2022 1031 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following diagram shows the view at the top after partitioning.

The following figure shows the view on the top after partitioning with the pins visible.

The following figure shows the view on the top after partitioning with visible routing blockages on
layer Metal6.

 The following figure shows the view inside partition with the display of the routing blockages turned
off

September 2022 1032 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Saving Partitions
You can save partition results, including the top-level partition, to their own subdirectories so that
each partition can be worked on concurrently. Each partition directory contains all files necessary to
run the Innovus software. Files necessary to run back-end tools are in the Innovus proprietary
format. Def file can additionally be saved by using the -def option while saving partitions.

To save a partition, use the savePartition text command.
Note: For the iHDB flow, use the savePartition -module_model_tag text command.

Working with OpenAccess Database

You can save and load designs using the OpenAccess database. The following commands and
parameters are used for OpenAccess database designs.

The savePartition command can save files in OpenAccess database format:

-ptnLib

Specifies an OpenAccess directory library name where the top-level and the block-level

Warning: Cadence recommends you NOT to use the Save Design form to save a partition.

Note: The iHDB flow does not support OpenAccess flow yet.

September 2022 1033 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/savePartition.html
../innovusTCR/savePartition.html

designs will be saved.

-ptnView
Specifies a view name for the top view and the partition view.

The assembleDesign command supports assembling the saved OpenAccess format files.

-topDesign

Specifies the top-level name.

-block

Specifies the block names.

The general flow for designs that use an OpenAccess database is the same as described
throughout this chapter.

The following command saves the partition information/files in the OpenAccess database format.
The information for the top and the block level designs (all blocks) will be written in
the libForOA directory view with the view name ptnView1.
savePartition -ptnLib libForOA -ptnView ptnView1

The following command assembles the design after bringing back information from the top-level
cell DTMF and block-level cells TDSP_CORE and TDSP_ARB.
assembleDesign -topDesign libForOA DTMF ptnView1 -block libForOA TDSP_CORE ptnView1 -

block libForOA TDSP_ARB ptnView1

Pushing Down a Network into Block Partitions
In a hierarchical chip design methodology, some networks (i.e. std cells and nets along with shape
of wires connected to such nets) are designed in a highly symmetric manner to ensure similar
latency and minimal skew across all its anchor buffers. This method of network tree construction
does not consider the underlying floorplan. To the extent that such a tree – with its wires and anchor
buffers – is completely out of tune with the complicity requirements of a hierarchical design
methodology. Such un-hierarchical nature is often designed for, but not limited to clock, reset
signals, along with high speed buses and other chip critical nets.

 As a result, such networks need to be properly reallocated, as a separate step, to fit the nature of
the hierarchical floor plan. In a hierarchical design methodology, every logic and wire must fit the
nature of underlying partitions. To ensure this, such networks need to be “pushed down” logically
and physically into the partitions they overlap with. In this way, they are available during partition
implementation, and play their necessary timing closure and design closure role. For example, a
clock network which is suitably pushed down into overlapping partitions, can serve well in
accurately closing the partitioned block design timing and SI flows.

September 2022 1034 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The idea behind “Push Down Network” is to modify the design – without losing its logical
equivalence nature – in such a manner that it becomes amenable to be hierarchically partitioned
into various sub-designs. This enables the continuance of hierarchical design intent.

Flow to Push Down a Network into Block Partitions
This flow will push down the logic physical data as-is to the overlapping partition fences. Below are
the flow highlights:

Before doing network push down, ensure that all partitions in the design should have proper
non-overlapping fences. You must also make sure that the floorplan is clean and does not
have any overlaps. Additionally, ensure that the nets to be pushed down are routed and the
logic connected to the net is already placed.

Any regular wires of the net to be pushed down are irreversibly converted to special wires.

The pushed down logic maintains its DEF position (location and orientation).

The pushed down wires maintain their DEF position.

The (special) wires connected to the net are cut at the partition fence boundaries. Also, if the
net has been pushed down to another (lower) level of verilog hierarchy, then the (special)
wires are transferred to this new net.

Some Verilog ports and corresponding partition pins are created in the partition modules as
per the routing topology of the net.

For every partition, the new Verilog ports are assigned. Pin shapes are created in the partition
for every Verilog port created.

New top level nets may be required to connect the Verilog modules

The pushed down network capability does not create any Verilog assign statements in the top
logic. If required, the assign statements are created only inside the partition module.

The net is pushed down to the “lowest logical level”, as per the logic connected to the net.

In abutted designs, the partition pins are created abutted to each other at the abutted
boundary.

Master and clone designs are not supported. During network push down of a design with
master and clone partitions, only the master partitions are considered for push down. Innovus
discards clone partitions in such designs.

The pushed down network capability handles wide-wires.

September 2022 1035 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Flow Overview

The following are the flow overview steps:

1. Load the design with partitions defined and CCT clock pre-routed and pre-placed

2. Push down the CCT clock tree as it is into the partitions it’s overlapping to.

a. push_ptn_network $clock_nets_to_pushdown

b. Creation of assignment statements.

c. Creation of partition pins

d. The list of nets to be pushed down has to the provided

3. deriveTimingBudget

4. Turn partitions into blocks
partition -pushDownNonPGSpecialNet

5. Save partition data.
For example:
savePartition –def –dir PTN

For iHDB, savePartition –def –module_model_tag PTN

Example

In the design below:

The clock network (std cell and wires) is designed in a flat manner, without consideration of
underlying partitions.

The clock buffer i3 is logically outside, but physically inside the partition PTN.

The wire n1 is crossing PTN boundary multiple times, where as there is no verilog port of PTN
which logically connects to n1 net.

September 2022 1036 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/push_ptn_network.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/partition.html
../innovusTCR/savePartition.html
../innovusTCR/savePartition.html

After pushing down the network:

The clock buffer i3 is pushed down into PTN as PTN/i3. It is at the same absolute physical
location as it was originally.

To push down n1, n3 verilog ports (k1, k2, k3) are created in PTN. They are assigned to each
other inside PTN module.

Post Commit Partition:

September 2022 1037 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

n1 is connected to k1. Then, it is emerging as n5 and n6 nets which connect to i2 and i4. At a
high level, the net n1 is basically split at each partition port. The partition ports themselves are
created as per the routing topology of n1.

PTN/n3 is completely transferred to PTN block, along with its logic and (special) wires.

Verilog assign statements are created to mutually assign ports k1, k2, k3 inside PTN block
verilog.

After assembleDesign, the net n1 will re-emerge with its connections and (special) wires.
Note: For the iHDB flow, the net n1 will re-emerge with its connections and (special) wires,
after you do the following:
set_module_model -cell * -type pnr

commit_module_model

Partition Pushdown Replay Flow
In the partition pushdown replay flow ECO objects (logical netlist changes and physical changes)
are generated by comparing two partition databases. These ECO objects can be applied to a new
version of the partition databases. This capability caters to the specific requirements of the clock
pushdown flow (using push_ptn_network command).

For example, in the clock pushdown flow (push_ptn_network), the clocks are pushed down
(logically as well as physically) into overlapping partitions, and saved into partition database, let’s
say pushdown_blocks database. Now, by comparing the original partition block database and
pushdown_blocks database, ECO objects can be generated for each partition. Later, these partition
specific ECO objects can be applied to the new versions of the partition database.

September 2022 1038 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/push_ptn_network.html

This is illustrated in the diagram below:

The following support this flow:

create_pushdown_eco

Creates logical and physical ECO files that are used to push down ECO objects by comparing
two partition databases. It generates logical and physical ECO objects for each partition, in
parallel, using EDP (parallel/distributed) framework. DEF ECO is generated for all logically
modified nets. Additionally, if the -ptn_net_dir parameter specified, then a union of nets
specified in -ptn_net_dir and the logically-modified-nets, is selected for DEF ECO
generation.

commit_pushdown_eco

September 2022 1039 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/create_pushdown_eco.html
../innovusTCR/commit_pushdown_eco.html

Commits ECO for a partition block by applying ECO and generating a database for the block.
It applies the previously generated ECO objects, to each partition, in parallel, using EDP
(parallel/distributed) framework.

The partition pushdown replay flow involves the following steps:

Generate the original database for each partition.

Generate the new database that is later compared with the original database for ECO data
generation.

Generate ECO for all partitions and top using the new create_pushdown_eco command.
The following is an example dbTCL script for generating the original database of each
partition , generating the pushdown database, and then generating partition pushdown ECO.
load full-chip database;

partition –pushDownSpecialNetAsObs $snets

savePartition –dir $originalDir –def

flattenPartition

Create push down (say, htree/push_ptn_network) database

push_ptn_network –nets $clk_nets -output_nets_for_wire_distribution nets.txt …

partition –pushDownSpecialNetAsObs $snets -inputNetsForWireDistribution nets.txt

savePartition –dir $htreeBlocksDir –def

Create ECO by comparing original and pushdown databases

create_pushdown_eco \

-original_dir $originalDir \

 -pushdown_dir $htreeBlocksDir \

 -ptns [concat [dbget top.ptns.master.cell.name] [dbget top.name]] \

-eco_object_dir $ecoObjectDir \

-gen_script_only

The above script generates ECO objects, for each partition, in $ecoObjectDir:
ECO is generated only for the partitions specified via –ptns option.

Commit ECO for a partition block on a new database of the block using
the commit_pushdown_eco command. Alternatively, you can read the ECO objects
individually for each partition.

Use the commit_pushdown_eco command for applying pushdown ECO at each
partition.
Example dbTCL script:
On Innovus prompt:

September 2022 1040 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

commit_pushdown_eco \
 -pre_eco_dir $preEcoDir \
 -eco_object_dir $ecoObjectDir \

The above command applies ECO changes, specified in $ecoObjectDir, to all the
partition databases in $preEcoDir, and saves post ECO database for all partitions in
$postEcoSaveSesignDir.

Commit the ECO objects one by one for required the partition block using the two output
files – eco_logical.tcl and eco_physical.def. This option enables you to check and
validate the changes before committing them.
Example dbTCL script:
cd $originalDir/$ptn_name

restoreDesign $ptn_name

source ./../../$ecoObjectDir/$ptn_name/eco_logical.tcl

defIn ./../../$ecoObjectDir/$ptn_name/eco_physical.def

saveDesign ./../../$post_eco_dir/$ptn_name.enc –def

Focused Methodologies
In addition to generic flow methodologies, there are some specific requirements for various design
styles. They are covered as under:

Correcting Pin Illegality On Selected Pins

Selecting Pins Using a File

Assigning Pins of a Net

Assigning Pins in Pre-feedthrough Netlist

Promoting Selected Macro Pins

Doing Pin Prioritization

Prioritizing Few Pins in a Selected Pin Assignment Flow

Speeding Up Interactive Pin Assignment

Deciding the Closest Legal Location to a Selected Position

Pin QoR Metrics and Comparison

The partition pushdown ECO flow does not support the iHDB flow in the current release.

September 2022 1041 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Correcting Pin Illegality On Selected Pins
You can use the legalizePin command to automatically correct all violations on the design. When
the checkPinAssignment command suggests an error on a pin, this pin is part of a net that has one
pin emanating from the partition containing the source and the other pin concluding at partition with
sink. In order to avoid bends in the route, it is always better to move pins on both partitions. This is
particularly important when a design has a narrow or no channel in between the two partitions. For
abutted designs (no channels), even if you select a pin for legalization (legalizePin -ptn
ptnName -pin pinName) the Innovus will move its connected pin to a location where both pins will
be legal.

The behavior of moving pins in pairs (for a selected pin) is controlled by distance between two
partitions. With the use of the -auto_pairing parameter, the legalizePin command
automatically calculates the channel width or distance between pins in a design which will
be considered for pairing.

Alternatively, for a distance (in microns) between the pins, to move corresponding connected pins of
2 pin connection nets, you can use the setPinAssignMode -max_distance_pairing command. The -
max_distance_pairing option behavior extends to partitions which are less than 50 microns apart
(default value) and can be easily used to set the value of the distance (lower or higher than 50) for
which the pins should be moved in pairs automatically.

The following example illustrates this behavior:

In the above figure, the design has no channel between Partition A and Partition C. It has <50
microns channel between Partition A and Partition B and a channel of >100 microns between
Partition B and Partition C. The pink colored pins (P1, P3 on partition A and P3 on Partition C) are
illegal in the design.

Specifying the following command will only move - P1 and P3 of Partition A, P1 of Partition B, and

September 2022 1042 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

P1 of Partition C:
legalizePin -ptn A -pin {P1 P3}

and specifying the following command will only move P3 on Partition C:
legalizePin -ptn C -pin {P3}

In order to move pin P3 of Partition B along with P3 of Partition C, you must use the following
command:
setPinAssignMode -max_distance_pairing 100

Now, P3 of Partition B will also move to the shaded green location (as shown above) along with P3
of Partition C.

Note: Even though the pins P1 of Partition B or Partition C are legal, they will still be moved to get
an alignment with their corresponding connected pin.

You can avoid moving the corresponding pin for any channel width (routing bends are acceptable
in channels) by using the distance value for the -max_distance_pairing option as 0. In such a
case, whatever may be the distance between the channel, but the pins will not move in pairs and
the legal pins will remain on their original position.
setPinAssignMode -max_distance_pairing 0

Selecting Pins Using a File
The assignIoPins, assignPtnPin, checkPinAssignment, legalizePin commands can work on
selected pins also.

For example,
assignIoPins -pin {out1 out2 out3}

assignPtnPin -ptn A -pin {in1 in2 in3} -ptn B -pin {pina pinb pinc}

checkPinAssignment -ptn A -pin {in1 in2 in3}

legalizePin -ptn A -pin {in1 in2 in3}

This selection of pins can also be achieved using a list of pins, per partition, from a file.

In the pin file, the pins are specified in the following format:

Partition: PtnName/BlockName

Pin1

Pin2

..

PinN

Partition: PtnName/BlockName

Pin1

Pin2

..

September 2022 1043 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

PinN Nets:
netA

netB

..

netN

For example, consider the following use model:

assignIoPins -l_pin_file pin.list
assignPtnPin -s_pin_file pin.list

checkPinAssignment -l_pin_file pin.list

legalizePin -l_pin_file pin.list

where, pin.list contains:

Partition: top
out1

out2

out3

Partition: A

in1

in2

in3

Partition: B

pina

pinb

pinc

Now, the checkPinAssignment and legalizePin commands will work for block: top, Partition: A
and B.
All pins present in the pin.list file will be considered for selection.

Now,
For assignIoPins command, all Io pins will be selected, under the section Partition:top.
For assignPtnPin command, all pins of all partitions in the file will be considered, except the
pins under the section Partition:top.
For checkPinAssignment and legalizePin commands, pins of all partitions and block (block: top,
Partition: A and B) will be considered.

Note: To skip one of the partitions from selection, you can use the -exclude_ptn parameter.
However this parameter is not applicable for the assignIoPins command.

For example:

The following command ignores the partition B mentioned in the pin file pin.list.
assignPtnPin -s_pin_file pin.list -exclude_ptn {B}

September 2022 1044 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The select pins are similar to the ones selected with assignPtnPin –ptn A {in1 in2 in3}
 command.

The following command only considers pins of partition A . pins of block Top and of partition B
are ignored.
checkPinAssignment -l_pin_file pin.list -exclude_ptn {top B}
The select pins are similar to the ones selected with checkPinAssignment -ptn A -pin {in1
in2 in3} command.

The following command considers pins of block Top and of partition B. It ignores pins of
partition A mentioned in the pin file pin.list
legalizePin -l_pin_file pin.list -exclude_ptn {A}
The select pins are similar to the ones selected with:
legalizePin -ptn top -pin { out1 out2 out3}
legalizePin -ptn B -pin {pina pinb pinc }

Assigning Pins of a Net

In the selected pin assignment flow, using the pin file for selecting pins offers an additional benefit.
Instead of defining a set of pins which are connected to a net and is part of different partitions, you
can select the net name itself. As a result, all the pins connected to different partitions will be
derived automatically.

Partition: PtnName/BlockName

Pin1

Pin2 Nets:
netA

netB

..

netN

For example, consider a Net n1 which connects to 3 partition pins, pin x on partition A, pin y on
partition B, and pin z on partition C.

The following command will do selected pin assignment of just net n1.
assignPtnPin -ptn a -pin {x} -ptn b -pin {y} -ptn c -pin {z}

Alternatively, you can use the -pin_file parameter to do the pin assignment for net n1 using the
following command:
assignPtnPin -s_pin_file a.list

September 2022 1045 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

where, a.list contains:

Net:
n1

All net names specified under the Net section of the pin file will have all their pins assigned.

Note: You can use the -exclude_ptn ptnName parameter to ignore the pins of the specified
partition.

Using pins and nets in the same pin file

The pin file supports explicit pin names for each partition but the section for net names is implicit of
pins of more than one partition

Use Model: Design where the master and clone are interacting with each other

The pin file p.list contains:
Nets:
netA
netB
Ptn:Block
P2
Ptn:A
P3

The following command will place block pin P1, which has been implicitly mentioned in the
pin file, through netB and block pin P2, which has been explicitly mentioned in the pin file.
assignIoPins -l_pin_file p.list

September 2022 1046 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following command will place pins on nets, netA and netB, connected to all partitions
(implicit mention in the file) pin P1 of PTN C, PTN B, PTN A and pin P2 of PTN B, PTN
A. Pin P3 of PTN A is mentioned explicitly in the pin file.
assignPtnPin -s_pin_file p.list

The following command will place pins on nets, netA and netB, connected to PTN B (pin P1
and P2) and PTN C (pin P1) but will not place Pin P1 (netA) and Pin P2 (netB) on PTN A
(implicit mention in file) and Pin P3 on PTN A (explicit mention in file)
assignPtnPin -s_pin_file p.list -exclude_ptn {A}

The following command check and legalize all pins including blocks pins P1 of PTN C, PTN
B, PTN A and pin P2 of PTN B and PTN A, P3 pin on PTN A, P1 and P2 pin on block.
checkPinAssignment -l_pin_file p.list;

legalizePin -l_pin_file p.list

The following commands will check and legalize pin P1 on PTN B and pin C and pin P2 on
PTN B but will ignore pin P1, P2 of Block and pins P1, P2, P3 of PTN A
checkPinAssignment -l_pin_file p.list -exclude_ptn {A Block};

legalizePin -l_pin_file p.list -exclude_ptn {A Block}

For master and clone connections:

If pin file pc.list contains:
Nets:

netC

The following command will place pin P1 on PTN P (both master and clone) and pin P2 only
on PTN C.
assignPtnPin -s_pin_file pc.list

If pin file pd.list contains:
Net:

netD

The following command will place pin P1 on PTN P (both master and clone) and pin P3 only
on PTN C.
assignPtnPin -s_pin_file pd.list

The following command will place pin P1 on both master and clone.
assignPtnPin -s_pin_file pd.list -exclude_ptn {C}

If pin file pe.list contains: Ptn:P P1

September 2022 1047 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following command will place pin P1 on PTN P (both master and clone).
assignPtnPin -s_pin_file pe.list

If pin file pf.list contains:
Ptn:C P2

The following command will only place pin P2 on PTN C.
assignPtnPin -s_pin_file pf.list

Note: The pin selection for commands assignIoPins, checkPinAssignment, and legalizePin will be
the same.

Use Model: Design where the master and clone are interacting with top

If pin file pc.list contains:
Nets:

netC

The following command will consider pin P1 on partition P (both master and clone) and only
consider pin P2 on PTN C.
assignPtnPin -s_pin_file pc.list

The following command will consider pin P1 on partition P (both master and clone)
assignPtnPin -s_pin_file pc.list -exclude_ptn {C}

The following command will only consider pin P2 on PTN C
assignPtnPin -s_pin_file pc.list -exclude_ptn {P}

If pin file pd.list contains:
Nets:

netD

September 2022 1048 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The following command will consider pin P1 on partition P (both master and clone)
assignPtnPin -s_pin_file pd.list

The following command will assign pin P3 of block.
assignIoPins -s_pin_file pd.list

If pin file pe.list contains:
Ptn:P P1

The following command will place pin P1 on PTN P (both master and clone).
assignPtnPin -s_pin_file pe.list

If pin file pf.list contains:
Ptn:C P2

Ptn:Block

P3

The following command will only place pin P2 on PTN C.
assignPtnPin -s_pin_file pf.list

The following command will assign pin P3 on Block.
assignIoPins -l_pin_file pd.list

Note: The pin selection for commands assignIoPins, checkPinAssignment, and legalizePin will be
the same.

Assigning Pins in Pre-feedthrough Netlist
Abutted designs have no channels between partitions. You must use the insertPtnFeedthrough
command on such designs before pin assignment so that ports are inserted into the partitions which
lie in between the partitions that contain source and sinks. This makes the design routable by
avoiding any violations in the hierarchy.

The following example illustrates this behavior:

September 2022 1049 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/insertPtnFeedthrough.html

The design shown in the figure above is a fully abutted design with block TOP and partitions PTN1
and PTN2.
It has the following 4 nets:

net1 connects inst I1 of PTN1 to inst I1 of PTN2

net2 connects inst I2 of PTN2 to TOP (block) port P1

net3 connects inst I2 of PTN1 to TOP port P2

net4 connects inst I3 of PTN1 to inst3 of PTN2 and top port P3

For nets net1 and net2 a feedthrough is not required as the net routing will not cross over unrelated
partitions. However, nets net3 do require a feedthrough as the route would cross over unrelated
partition PTN2.
for and net4, feedthrough is required because PTN2 requires 2 ports (for entry and exit points of
routes) but it just has the entry point port.

When you use the assignIoPins, assignPtnPin, pinAlignment commands, they will give the results
shown in Figure 1. They cannot put pins for nets net3 and net 4, because it will create illegal pins.
The checkPinAssignment command will report abutment violations on pins if you manually try to
keep pins as shown in Figure 2. The legalizePin command will not touch them, as it does not
have any legal pin location for such pins

September 2022 1050 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Thus to resolve these issues and get legal pin locations, the feedthrough of these nets is required.
To get pins (of nets that would require feedthrough) assigned in pre feedthrough netslist stage use
the following command:
setPinAssignMode -strict_abutment false

This would:

Enable the assignIoPins, assignPtnPin, pinAlignment commands to keep pins with
abutment violations.
Note: Pin P3 of PTN2 can come at 2 locations: aligned with P3 of PTN1 or can be aligned to
top port P3 (shown in light color in the figure)

Enable the checkPinAssignment command to avoid reporting abutment violation on these
nets.

Enable the legalizePin command to move such pins in order to remove other type of issues.

 Note: The checkPinAssignment command will continue to flag genuine abutment violations. For
example, if pin P1 of PTN1 and PA of PTN2 are placed at not aligned location, then
 the checkPinAssignment command will report abutment violation for them, even with the strict
abutment mode is set to false. To avoid reporting such violations, you can use the
 checkPinAssignment -ignore {pin_abutment } command to ignore the abutment check all together.

Promoting Selected Macro Pins
You can use the setPromotedMacroPin command to select or mark signal and/or PG pin shapes to
be promoted later on. Using the setPromotedMacroPin -layers parameter you can specify the metal
layer(s) of the macro pins. Alternatively, if –layers is not specified, all pin layers between
setPinAssignMode –promotedMacroMinLayer and setPinAssignMode –promotedMacroMaxLayer
 range are selected for macro pin promotion.

Note: The setPromotedMacroPin command should be called after specifying the maximum and

September 2022 1051 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/setPromotedMacroPin.html
../innovusTCR/setPinAssignMode.html

minimum metal layer names for promoting macro pins using the setPinAssignMode –
promotedMacroMaxLayer maxLayer and –promotedMacroMinLayer minLayer parameters,
respectively.

The following commands promote the top most layer pins of selected macros:

setPinAssignMode –promotedMacroMinLayer 4 –promotedMacroMaxLayer 8

setPromotedMacroPin -reset

setPromotedMacroPin -insts {A B} -pins * -layers {7 8}

setPromotedMacroPin -insts B -pins X -layers 8 -override

setPromotedMacroPin -insts C -layers 5 -abuttedToBoundaryOnly

setPromotedMacroPin -insts C -layers {8}

setPromotedMacroPin -insts C -pins D[*] -layers {} -override

setPromotedMacroPin -insts D -pins OUT

setPromotedMacroPin -insts D -pins CLK -abuttedToBoundaryOnly

assignIoPins

The setPromotedMacroPin command settings are honored by the assignPtnPin, assignIoPins
 and partition commands automatically.

assignPtnPin: In top-down flow, the assignPtnPin command only promotes signal pins from
the list of pins promoted by the setPromotedMacroPin command.
For example, the following command assigns partition pins and promotes macro signal pins
from layer 4 to layer 6.

setPinAssignMode –promotedMacroMinLayer 4 –promotedMacroMaxLayer 8

setPromotedMacroPin -insts * -layers {4 5 6}

assignPtnPin

partition: In top-down flow, the partition command only promotes P/G pins from the list of

September 2022 1052 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

pins promoted by the setPromotedMacroPin command.
For example, the following commands promote metal 10 VSS pins on layer 10 of macros that
have prefix MEM. Design technology has 12 metal layers

setPinAssignMode –promotedMacroMinLayer 10
setPromotedMacroPin -reset
setPromotedMacroPin -insts MEM* -pins VSS -layers 10
partition

assignIoPins: In bottom-up flow, the assignIoPins command promotes both signal and P/G
pins from the list of pins promoted by the setPromotedMacroPin command.
For example in a design where signal pins are already placed, the following command
promotes P/G pins on metal 12. Design technology has 12 metal routing layers.

setPtnPinStatus -cell [dbGet top.name] -pin * -status fixed
setPromotedMacroPin -layers 5 -pins [dbGet -u [dbGet -p top.insts.cell.subClass

block].pgTerms.name]
assignIoPins

The -reportOnlyFile parameter of the setPromotedMacroPin command can be used to write out all
setPromotedMacroPin settings in memory into an output TCL file which can be sources later on.
For example, the following settings will be written to the mmMPP.tcl file.

setPromotedMacroPin -insts A -layers {7 8}
setPromotedMacroPin -insts B -layers 7
setPromotedMacroPin -insts C -pins S -layers 6
setPromotedMacroPin -insts D -pins T
setPromotedMacroPin -reportOnlyFile myMPP.tcl

The output report file (myMPP.tcl) contains:
setPromotedMacroPin -reset
setPromotedMacroPin -insts A -layers {7 8}
setPromotedMacroPin -insts B -layers 7
setPromotedMacroPin -insts C -pins S -layers 6
setPromotedMacroPin -insts D -pins T

If the setPromotedMacroPin command is specified, the assignPtnPin, assignIoPins, and partition
 commands display the count of the Signal/PG pins promoted for partitions/design in a log file (as
applicable).

The following is an example of the log file of the assignPtnPin command in the top down flow.
Summary Report for Partition: tdsp_core

Total number of promoted signal pins: 10

Total number of promoted signal pins through switch -abuttedToBoundaryOnly: 3

September 2022 1053 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Total number of all promoted pins: 13

…

Doing Pin Prioritization
As there may be limited slots which ensure less congestion and a better route length resulting in an
improved timing result, you may want to prioritize putting some pins first in the pin assignment flow.
You can use the following methods to prioritize pins and get better pin locations for certain pins:

Method 1

Use the specifyNetWeight command to specify the priority weighting of a net. Pins that connect to
a net that has a higher net weight are assigned before the pins that connect to a net with a lower
net weight. For example, the following commands set the priority net weighting for nets net1 to first
and net2 to second. All pins on net1 will have more slots to choose from:

specifyNetWeight net1 5
specifyNetWeight net2 4

assignPtnPin

Pins with net weights are prioritized after putting:

Pins with location constraints, set using the setPinConstraint command

Pin/net grouped/guided pins

Master and clone pins

Note: If a slot has been assigned to a grouped pin in the default pin assignment flow, this slot
cannot be assigned to any pin of a net by setting the net weight on it.

Method 2

Select only a few pins for pin assignment to ensure that these pins have maximum slots to choose
from and decide on the best pin locations. For example, the following commands place the pins
in[1:5] (in1, in2, in3, in4, and in5) first. The pins out[1:5] (out1, out2, out3, out4, and
out5) will be placed later. The out[1:5] pins will not move pins in[1:5] from their positions, therby
ensuring out[1:5] will occupy from the rest of the pins.

assignPtnPin -ptn A -pin {in1 in2 in3 in4 in5}
assignPtnPin -ptn A -pin {out1 out2 out3 out4 out5}

September 2022 1054 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/specifyNetWeight.html

Note: You can also do the pin selection using the pin_file flow to achieve the same results.

Note: If the selected pins are part of a pin group, then all the pins of the group will be placed in the
flow.

For example, If pin in2 is part of pin group GRP having pins {data reset in2} then the following
command will place all pins including pins in1, in2, in3, in4, in5, data, and reset.
assignPtnPin -ptn A -pin {in1 in2 in3 in4 in5}

However, you can do the following to avoid placing the whole group of pins:

Use the assignPtnPin -ignore_group_pins command. The following command will
place only the pins in1, in3, in4, and in5 .
assignPtnPin -ptn A -pin {in1 in2 in3 in4 in5} -ignore_group_pins

Use the createPinGroup PinGroup -optimizeOrder command to s pecify that pins in the
PinGroup are reordered to optimize wire length.
Now pin in2 is part of pin group GRP having pins {data reset in2} with -optimizeOrder, then
the following command will place pins in1, in2, in3, in4, in5
createPinGroup PinGroup -cell {A} -pin {data* reset in2} -optimizeOrder

assignPtnPin -ptn A -pin {in1 in2 in3 in4 in5}

Note: If the selected pin is of a master or clone, then pin on both the master and clone will be
placed (and not the pin of the other connected partitions). However, connectivity to other partition for
both master and clone will be considered.

The following example illustrates this behavior:

September 2022 1055 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

As shown in Figure 1, specifying the following command will place pins of both master Pm and
clone Pc while considering pins P2 and P3 of partition C (part of net netC and netD).
assignPtnPin -ptn P -pin {P1}

In Figure 2, there is a pin blockage on partition C. Now, pin P1 of partition P will be placed in such a
way that they consider connection of both nets connecting to (master/clone) partition pin P1. Hence,
the pins will be placed at location which is optimized with position of pins P2 and P3 of partition C.
In the figures above, the pins of partition C are shown for illustration only and will not be placed by
command assignPtnPin -ptn P -pin {P1}.

Note: Both the methods of pin prioritization honor constraints on other connected pins or partitions.

For example, consider a net which has 2 pins. The first pin going to partition A through pin in1 and
the second pin connected to partition B though pin out1. Pin out1 of partition B has a location
constraint. In this case while doing selected pin assignment of partition A using the following
command:
assignPtnPin -ptn A -pin {in*})

the position of pin in1 of partition A will be chosen considering the location constraint of pin out1 of
partition B (even though pin out1 of partition B has not yet been placed).

However, if the following command was specified such that the pin in1 was not in the original
selection list
assignPtnPin -ptn A -pin {out*})

then it is not guaranteed that pin in1 will be at the same location (that would be best for it,
considering the location constraint on its corresponding pin (out1 of partition B)), because any of the
selected {out*} pin can now occupy that location.

Prioritizing Few Pins in a Selected Pin Assignment Flow

You can combine both the methods described above to select pins and then set priority among
those selected pins. For example, you can use any of the following use models to select the same
set of pins - { in1 in2 in3 in4 in5} {out1 out2 out3 out4 out5}. These selected pins may not
have priority among them.

Model 1

assignPtnPin -ptn A -pin {in1 in2 in3 in4 in5}
assignPtnPin -ptn A -pin {out1 out2 out3 out4 out5}

Model 2

assignPtnPin -pin_file a.in.list
assignPtnPin -pin_file a.out.list

where, the pin files contain

September 2022 1056 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

In both these models, Innovus does not choose to favor certain pins over others. However, if you
want that among the list of selected pins, priorities should be set, then you can put netWeight on the
nets of chosen pins. For example, after selecting pins using the above commands, you may specify:

specifyNetWeight net5 6
assignPtnPin -pin_file a.in.list

Now pin in5 of net net5 will be considered first among the other in* pins out of all the pins of
partition A.

Speeding Up Interactive Pin Assignment
When you use the editPin batch command or the Pin Editor in the interactive pin assignment flow,
internal data structures are created to work on a given solution space. When you give a sequence
of commands for pin assignment, the solution space (floorplan objects that impact pin assignment)
is not changed. But each of the specified commands creates these data structures individually, to
speed up the interactive pin assignment flow, you can choose to reuse these data structures. To
enable pin-editing in batch mode, you can use the setPinAssignMode -pinEditInBatch
true command. In the batch mode, multiple editPin commands reuse internal data structures for all
pins without recreating them for each individual command.

For example:

setPinAssignMode -pinEditInBatch true

editPin -pin {P1} -layer 2 -assign X1 Y1

editPin -cell {A} -pin {P2} -layer 3 -assign X2 Y2

editPin -cell {A} -pin {P3} -layer 4 -assign X3 Y3

editPin -cell {B} -pin {P4} -layer 4 -assign X4 Y4

editPin -cell {B} -pin {data*} -layer 4 -spreadType start -start 0 0 -side r

editPin -pin {data*} -layer 4 -spreadType start -start 0 0 -side r

editPin -cell {A} -pin {data*} -layer 4 -spreadType start -start 0 0 -side r

….

….

a.in.list a.out.list

Partition: A

in1

in2

in3

in4

in5

Partition: A out1
out2
out3
out4
out5

September 2022 1057 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/editPin.html
../innovusTCR/setPinAssignMode.html

….

setPinAssignMode -pinEditInBatch false

Notes:

Once the interactive pin assignment is complete, it is important to set the mode to false. This
can be done using the setPinAssignMode -pinEditInBatch false command.

Floorplan changes (involving but not limited to pin/routing blockages, pin guides, pre routes,
macro placement, size/shape of fences/design) are not allowed and should not be carried out
during the batch mode.

Deciding the Closest Legal Location to a Selected Position
To assign a pin on a selected position on a partition on a layer’s top side, you use the following
command:
editPin -cell cellName -pin pinName -assign {x y} -layer layerID -side top

For example, the following command assigns pin A of partition Ptn1 at xy position on the top side
with layer 2.
editPin -cell PTN1 -pin A -assign X Y -layer 2 -side top

However, if the selected position is not a legal position, as shown by the green dot in the figure
above, then by default the pin will go to the right. This is shown by the red pin in the figure. The
default spread direction is clockwise for all edges.

Top: Left to Right

Bottom: Right to Left

Note: In the above figure, all red pins depict the chosen location (always clockwise for all edges) to
keep the pin in case the provided location is not feasible. All yellow pins depict the location to keep
the pin in counter clock wise direction to provided unfeasible location

In order to get the pins in the opposite direction, you can use the editPin -spreadDirection

September 2022 1058 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

{counterclockwise} parameter. For example,
editPin -cell PTN1 -pin A -assign X Y -layer 2 -side top -spreadDirection

{counterclockwise}

You can also use the -spreadDirection {both} parameter to automatically choose the closest
legal location in both directions. This enables the editPin command to decide the closest legal
location to desired x y location in both direction and place the pin there. In the figure shown above,
the pin will be placed on the left side (yellow pin), which is 1 tracks away (rather than going to right
side (red pin), which is 3 tracks away from the green dot (desired x y), on the top edge.

Pin QoR Metrics and Comparison
Pin QoR generation and comparison helps to determine the best pin assignment arrangement for a
design. You can use the reportPinAssignStatisticss command to generate pin QoR data for a
specified partition and use the comparePinAssignStatistics command to generate a pin QoR
comparison file based on a reference and a target pin QoR file.

Pin QoR Metric:

To generate a pin QoR metric for a pin arrangement, a wire-length metric is associated with every
pin corresponding to the wires in the timing cone of the pin.

Pin QoR Metric Flow

Load a placed design.

P1/k1 Timing Cone is shown below. It is calculated as all_fanin + all_fanout of P1/k1.
The same timing cone applies to P2/metal1 also.

September 2022 1059 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

../innovusTCR/reportPinAssignStatistics.html
../TCRcom/report_pin_assignment_statistics.html
../innovusTCR/comparePinAssignStatistics.html

P1/k2 Timing Cone is shown below. It is calculated as all_fanin + all_fanout of P1/k2.
The same timing cone applies to P2/metal2 also.

Delete buffers and inverters. The following command can be used to delete buffer and
inverters from the placed design.
deleteBufferTree

September 2022 1060 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Perform routing honoring pins and hierarchy
setRouteMode -earlyGlobalRoutePartitionHonorFence list_of_ptn_cell_names -earlyGlo

balRoutePartitionHonorPin list_of_ptn_cell_names

earlyGlobalRoute

The P1/k1 Timing Cone wires shown in red below:

P1/k2 Timing Cone wires shown in red below:

Report pin QoR metric. You can use the reportPinAssignStatistics command to generate
the pin QoR data for a specified partition(s) in an output file.
reportPinAssignStatistics -outFile pin_qor.txt
For Example:

September 2022 1061 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Note:

If a net is not routed, then, manhattan distance between source-sink pairs is be used to
replace corresponding wire-length distance.

For floating pins (from outside) of a partition,the pin is always assumed to be within the
timing cone box.

Pin QoR statistics is not generated for blackbox partitions.

Pin QoR Comparison:

For pin QoR comparison, two different pin QoR metric reports are used. The wire length metrics for
every pin is compared and the %change is displayed in tabular form in a text file.

Pin QoR Comparison Flow

Use the reports generated by the reportPinAssignStatistics command. Consider the
following example:
For a design, the following command generates a pin_qor_reference.txt pin QoR metric
report.
reportPinAssignStatistics -outFile pin_qor_reference.txt

Now, for a new version of the same design, another pin QoR metric report is generated.

September 2022 1062 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Note: A new version of the same design, can have some partition ports added or deleted.

The following command generates a pin_qor_target.txt pin QoR metric report:
reportPinAssignStatistics -outFile pin_qor_target.txt

Use the comparePinAssignStatistics command to generates a pin QoR comparison file
based on a reference and a target pin QoR file.
For example:
The following command compares the two pin QoR metric reports against timing-cone-wire-
length data:
comparePinAssignStatistics –reference pin_qor_reference.txt –target

pin_qor_target.txt -outFile qor_compare.txt

The following is the qor_compare.txt report

Note:

If a partition port is found in the reference report but not in the target report, and vice-
versa, then it will not be reported in the compare_qor.txt.

In the reference report, if P1/k1 is connected to P2/k2 but in the target report, P1/k1 is
connected to P2/k4. Then no comparison data will be printed for P1/k1. That is to say,
the inter-partition-connectivity should remain the same, in reference and target, for it to
be reported as a comparison row in compare_qor.txt

Handling Instance Groups Associated with Partitions
For a clear distribution and better handling of grouped instances associated with partitions, the inst
groups of the following types can be pushed down and assembled back:

September 2022 1063 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Simple instance groups where all elements of the group are of the same partition

Nested partitions and nested groups

Cross partition groups

Instance groups with master and clone partitions

For cross partition groups,

at the time of committing the partition, a group is created in the participating partition with the
same name, and only the group elements contained in it are added to the group.

at the time of assembleDesign/flattenPartition, the groups are made unique by prefixing
with the partition inst name.

Example 1: Nested partitions with nested and cross partition groups

The following is an example of nested partitions with nested and cross partition groups.

The instance groups are:

Group:Insts
g0: {inst1 B/inst3 A/B/inst5}
g1: {inst2 B/inst4 B/b0 B/A/inst6 g0}
g2: {inst0 B/A/a0 g1 }

After partition, the individual partition level groups and their members are represented as:

September 2022 1064 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

After flattening the partition or assembling the partition back at chip, the instance groups are named
uniquely where flattened inst names are prefixed to created group names.

Updated instance groups:

Example 2: Instance groups with master and clone partitions

The following is an example of instance groups with master and clone partitions.

Here, A1 is master and A2 is clone.

g0: {inst1} B_g0: {B/inst3} B_A_g0: {B/A/inst5}

g1: {inst2 g0} B_g1: {B/inst4 B/b0} B_A_g1: {B/A/inst6}

g2: {inst0 g1} B_A_g2: {B/A/a0}

September 2022 1065 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The instance groups are:

Group:Insts
g0: {inst0 A1/inst3}
g1: {inst1 A2/inst4}
g2: {inst2 A1/inst5 A2/inst5}

After partition, the individual partition level groups and their members are represented as:

After flattening the partition or assembling the partition back at chip, the instance groups are named
based on the following:

g0: When instances from the master partition and other hierarchy are added in a group, same
instances from the clone are defined for the clone instance too.

g1: When instances from the clone and other hierarchy are added in a group, the clone
instances are ignored when partitioning is done.

g2: When instances from both master and clone partitions, and other hierarchy are added in a
group, the clone instances are ignored and the instances similar to the master are defined for
the clone as well.

September 2022 1066 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Updated instance groups:

Example 3: Master-Clone and nested partitions with nested and cross partition groups

The following is an example of master-clone and nested partitions with nested and cross partition
groups.

g0: {inst0} A1_g0: {A1/inst3} A2_g0: {A2/inst3}

g1: {inst1}

g2: {inst2} A1_g2: {A1/inst5} A2_g2: {A2/inst5}

September 2022 1067 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

The instance groups are:

Group:Insts
g0: {inst0 B/inst5}
g1: {inst1 A/inst4}
g2: {inst2 B/inst6 B/C/inst7 g1}

After partition, the individual partition level groups and their members are represented as:

After flattening the partition or assembling the partition back at chip, the instance groups are named
uniquely where flattened inst names are prefixed to created group names.

Updated instance groups:

g0: {inst0} A_g1: {A/inst4} B_C_g2: {B/C/inst7}

g1: {inst1} B_g0: {B/inst5} D_C_g2: {D/C/inst7}

g2: {ins2 g1} B_g2: {B/inst6}

September 2022 1068 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Partitioning the Design

Timing Budgeting
Overview

Is My Design Ready for Budgeting?

Deriving Timing Budgets

Budgeting Using the GUI

Budgeting Using Text Commands

Deriving Preliminary Budgets in Early Design Phase

Calculating Timing Budgets

Master Clone Budgeting

Constraints Adjustment

Analyzing Timing Budgets

Resolving Conflicts with Path-Based Exceptions

Budgeting Clock Latency in Propagated Mode

Budgeting Libraries

Resolving Conflicts with Path-based Exceptions

Defining Clocks Inside the Partition

Customizing Budget Generation

Fixing Budget

Recommendations for Fixing Budget

Fix Budget Example

Modifying Budgets

Reading the Justify Budget Report

Design Example

SDC Constraints for Design Example

Generated Report for Design Example

Dumping Justification Files for Setting Boundary Conditions Example

September 2022 1069 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Generate Summarized Report of Budget Data

Reading the Justify Exception Report

Design Example

SDC Constraints for Design Example

Generated Report for Design Example

Support for Distributed Processing in Budgeting

Constraints Support in Budgeting

Warning Report

Pin Constraint Values Greater than Available Time

Warning Report Example

Cycle-Based Timing Budgeting

Examples

Using setFixedBudget with setCycleBudgetRatio

Examples

Using Cycle-Based Timing Budgeting with Nested Partitions

Example

Stage-Based Timing Budgeting

deriveTimingBudget -stageBased

setBudgetingMode -stageBasedWeight

setBudgetingMode -stageBasedPartitionMultiplier

setBudgetingMode -stageBasedFanoutDrivingFactor

Validating Budgets

Overview

Flow

Collecting Verification Data

Examples

List of Errors Detected

September 2022 1070 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Related Commands

September 2022 1071 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Overview
In hierarchical design flows, chip-level timing constraints must be mapped correctly to
corresponding block-level constraints. The Innovus™ Implementation System (Innovus) software
does this automatically to produce predictable timing convergence.

The software apportions budgets to blocks using a path-based method, which might not have a
direct relationship to the size of the blocks themselves.

Timing budgeting is run per-view, and generates view files for partition implementation and top-
level implementation (not for chip assembly).

The following flowchart shows how timing budgeting is performed.

Note: You can set the analysis view at any time before performing timing analysis.

September 2022 1072 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Is My Design Ready for Budgeting?
In order to close timing on the hierarchical level, you must be able to close timing on the flat design
first. If the fully flat placement of a design (based on the partition fences, pin placement, and so on)
does not meet timing before partitions are committed, then it is unlikely that timing will close after
the partitions are committed and the budgets generated.

To help you decide whether the design is ready for budgeting, run virtual IPO on the flat design.
This builds a timing graph, which allows you to examine the design for failing inter-partition paths.
When you find these paths, you can use the information to determine why the problems occur and
how you can fix them. In a hierarchical implementation, you might need to iterate top-level
floorplanning and virtual IPO several times before creating a floorplan that can meet timing.

When you are convinced that the timing will close at this stage of the design process, you can then
run timing budgeting.

Deriving Timing Budgets
You can generate timing budget constraint files for each top-level partition using either the partition
graphical user interface (GUI) or the various text commands.

Budgeting Using the GUI
To generate the constraints files using the GUI, complete the following steps:

1. Read in the pin assigned data having timing constraint file during design import.

2. Derive timing budgets. Select Derive Timing Budget from the Partition menu, and specify the
options you need on the Derive Timing Budget form.

3. (Optional) Save timing budgets. Select Design - Save - Save Timing Budget.

4. Partition the design. Select Partition - Partition.

5. Save the Partition data. Select Design - Save - Partition to save the top and partitions data in

Do not connect the ports of the same partition directly through Verilog assign statements.
Timing budgeting requires a physical pin inside a partition to budget timing path. This can be
checked in the design by running:

check_design -type budget

Use remove_assigns -buffering before deriving timing budget to fix this issue.

September 2022 1073 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

a directory

This directory has sub-directories topCellName for the top-level and partitionName for the partitions.

For each partition, this procedure creates a timing constraint file named partitionName.constr.pt.
These files are located in each partition directory. The library model files, partitionName.lib, are
created in the top-level directory. The constraints file top_level.top.constr is created for the top
level.

The result is budgeted constraints and partitions.

Budgeting Using Text Commands
To generate the constraints files using the text commands, complete the following steps:

1. Load pin assigned database having timing data, using source pin_assign.enc command.

2. Derive the timing budgets using the deriveTimingBudget command.

3. Partition the design using partition commands.

4. Save the partition data using savePartition -dir dir_name command.

Note: For the Integrated Hierarchical Database (iHDB) flow, save partitions with a specified module
tag (savePartition -module_model_tag).

The result is budgeted constraints and partitions.

Note: The deriveTimingBudget command does not generate a timing graph, if it already exists.
Additionally, user will have to provide a timing graph generated without
using deriveTimingBudget and must set the value of -virtualOptEngine same as that of the
command used to generate the timing graph.

Deriving Preliminary Budgets in Early Design Phase
The software provides a flow for deriving timing budgets in the early stages of the design to obtain a
preliminary estimate of the budgets. It uses the net delay and net load that you specify using
the setBudgetingMode command. To perform the preliminary budgeting, you use the -
preliminary parameter of the deriveTimingBudget command. The software does not use virtual
optimization for calculating budgets.

The software uses the top-level net delays that you specify using the -topLevelDelayPerLen and -
topLevelMinDelayPerNet parameters of the setBudgetingMode command. It calculates the total

September 2022 1074 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/deriveTimingBudget.html
../innovusTCR/savePartition.html
../innovusTCR/savePartition.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/setBudgetingMode.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/setBudgetingMode.html

delay value using the value of the -topLevelDelayPerLen parameter and the total length of the net. If
the total delay value that the software calculates is less than the -
topLevelMinDelayPerNet parameter, it uses the value of the -topLevelMinDelayPerNet parameter.
Otherwise it uses the value of the -topLevelDelayPerLen parameter. It assumes the block-level
delays are zero.

The software uses the lump capacitance that you specify using the setBudgetingMode -
overrideNetCap command for both top-level and block-level nets. It uses this value to calculate the
cell delay.

It assumes all the net delay is on the top-level and does not perform boundary net adjustments.
Therefore, when you run thejustifyBudget command after generating the preliminary budgets, the
Adjustment by Net Delay value is zero in the budgeting report.

The software proportions the budget according to the calculated values.If you do not use the -
preliminary parameter in the deriveTimingBudget command, it adds three extra buffer delays to the
delay of the positively slacked path. If you use the -preliminary parameter, the software distributes
the positive slack equally between source block, destination block, and top-level. Therefore, the
value of following fields in the budgeting report is zero:

Virtual buffering adjustment

External buffering adjustment

To perform preliminary budgeting, complete the following steps:

1. Load the hierarchical design, having timing data and pin assigned, in the database.
source init.enc

2. Set the delay values to be used during budgeting.

setBudgetingMode -topLevelDelayPerLen value

-topLevelMinDelayPerNet value

-overrideNetCap value

3. Derive timing budgets.
deriveTimingBudget -preliminary

4. Verify the budgets.
justifyBudget

Calculating Timing Budgets
Innovus proportions timing budget for partitions based on the path segment length, with a slight
difference in calculation when the slack on a path is positive or negative.

September 2022 1075 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/justifyBudget.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/justifyBudget.html

For paths with negative slack, the proportioning formula for a setup check (max budgeting) is:
SD/TD * AT = BB(neg)
For paths with negative slack, the proportioning formula for a hold check (min budgeting) is:
SD/TD * (AT + HT)= BB(neg)

Note: If AT + HT is less then zero, the software does not use the proportioned value. The software
uses the timing analysis values for input or output delays.

For paths with positive slack, the proportioning formula for a setup check (max budgeting) is:
SD + SD/TD * PS = BB (pos)
For paths with positive slack, the proportioning formula for a hold check (min budgeting) is:
SD - SD/TD * PS = BB (pos)

where:

SD is the delay through a path segment.

TD is the total delay of the path.

AT is the total available time. This could be the number of clock periods for multicycle paths,
or the clock period minus the fixed delays.

HTis the hold time.

Note: For max budgeting, hold time is not same as setup time. Setup time is represented as
an extra delay for the path. On the other hand, hold time is equivalent to required time, that is
the amount of time a signal cannot change.

BB is the baseline budget

PS is the positive slack

Note: For a positively slacked path, budgeting adds virtual buffer delays to the path. The software
usually adds three virtual buffer delays. In case of abutted designs, budgeting adds two virtual
buffer delays. In case of feedthrough paths, budgeting distributes three buffer delay through all
segments of the path.

Example 26-1 Negatively Slacked Path

In this example, block A is connected to block B via top-level net C. The budget of the top-level net
is not fixed. When placed and routed, the path segment through block A needs 3 ns, path segment

September 2022 1076 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

through block B needs 2 ns, and net C requires 1 ns. The available time to be budgeted is 5 ns.

The software calculates the following values:

Budget for block A = 3/6 * 5 = 2.5 ns

Budget for block B = 2/6 * 5 = 1.67 ns

Budget for net C = 1/6 * 5 = 0.83 ns

Output delay at A = Budget for block B + Budget for net C = 2.5

Input delay at B = Budgets for blocks A + Budget for net C = 3.33

Example 26-2 Positively Slacked Path

In this example, the path segment through blocks A and B, and net C require 1 ns each. The total
delay is 3 ns. The total available budget is 5 ns. Therefore, positive slack is 2 ns.

The software calculates the following budget values:

Budget for A, B, and C = 1 + 1/3 * 2 = 1.66 ns

Master Clone Budgeting
Master-clone partitioning/budgeting involves a trade-off between design implementation time and
optimized timing for the complete design. When a master is replicated as multiple clones, a single
partition is created that represents the worst of all the partitions for each pin and clock. Master-clone
budgeting provides you with the flexibility to generate a single unified timing budget constraint file
and timing model (.lib) for repeated partitioned modules referred to as master and clones.The data
checked for includes:

Physical characteristics - The following physical characteristics are compared for each
interface pin across all partitions: drive resistance, internal capacitance, and external
capacitance. The merged physical data includes the electrical data that contributes to the
timing of every pin of the instance. When the merged data is stored, it stores the largest data
for each pin. For example, drive resistance of the master for a pin = largest of the drive
resistances for the pin in instances.

Timing characteristics - The following timing characteristics are compared for each interface
pin across all partitions: network latencies, user delay in each pin, and slack in each pin for

September 2022 1077 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

each clock arriving at it based on input delay and output delay. The merged timing
characteristics require comparison of the slack at a pin due to each clock arriving at it across
instances and saving the worst among them. For example, the clock Clk has a
slack S1 in Inst1 and S2 in Inst2. If S1>S2, then the data in Inst1 is taken for that pin for that
clock.

Clock data - All the data in each pin is merged per clock. Since different clocks can arrive at
different instances, the clocks in the overall master is merged. This is done by looking at the
clock list on each instance and adding the ones not present in the overall master to it.

The following command derives a timing budget for hierarchical partitions based on the worst-case
data per-pin for the master/clone set containing the partitions:

setBudgetingMode -masterClonebudget_master_clone {true|false}

In master clone budgeting, the software takes set_input_delay (SID) or set_output_delay(SOD) for
a port of a repeated partition in such a way that the budget inside the partition is the smallest. This
feature prevents under-constraining of some of the full chip paths going through the repeated
partitions.

The software computes set_input_delay and set_output_delay for various feedthrough and non-
feedthrough paths during master clone budgeting using the following methods:

Non-feedthrough path: Give min budget inside the partition, that is, choose max
of set_input_delay and set_output_delay.
max(SIDm, SIDc1, SIDc2, ….),

max(SODm, SODc1, SODc2, ….)

For example, the input delay value of 2.0 is stored for the master and the value of 3.0 and 4.0
is stored for the two clones, respectively:

set_input_delay -max -clock CLK1 2.0 { IN1 }

set_input_delay -max -clock CLK1 3.0 { IN1 }

set_input_delay -max -clock CLK1 4.0 { IN1 }

Choose the max of set_input_delay 4.

Pure feedthrough path: Choose budgets from the master/clone having the most critical
path. set_input_delay and set_output_delay will come from the same instance.

September 2022 1078 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html

For example, consider there are two instances of the same cell, where M is the master and C is
the clone and a clock cycle of 6ns. In this case, instance based budgeting creates the
following constraints:

For M:
set_input_delay 3 sigIn

set_output_delay 1 sigOut

For C:
set_input_delay 2 sigIn

set_output_delay 3 sigOut

You will choose budgets from the master/clone whose SID+SOD is the biggest, that is,
choose the clone (C).

Pure feedthrough but two paths having the same normalized slack: Take
both set_input_delay and set_output_delay from the same instance such that the budget
inside the instance is min.

September 2022 1079 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html

For example, consider there are two instances of the same cell, where M is the master and C is
the clone and a clock cycle of 6ns. In this case, instance based budgeting creates the
following constraints:

For M:
set_input_delay 3 sigIn

set_output_delay 2 sigOut

For C:
set_input_delay 1 sigIn

set_output_delay 4 sigOut

In this case, both feedthrough paths have the same normalized slack.You should ensure that
both SID and SOD come from the same instance, that is, either SID = 3, SOD=2 or SID=1,
SOD=4.

Pure feedthrough with paths starting/ending with different clocks: In this case, different
clocks in the master/clone cannot be merged. As a result, invalid clock paths come in the
design. For example, a path from sigIn with clk1 ending at sigOut with clk2.

To eliminate this problem, use false paths. The following example illustrates how SDC is
being generated by using set_false_path:
set_input_delay -clock clk1 2 sigIn

set_input_delay -clock clk2 3 sigIn

set_output_delay -clock clk1 1 sigOut

set_output_delay -clock clk2 2 sigOut

set_false_path -from clk1 -through sigIn -through sigOut -to clk2

set_false_path -from clk2 -through sigIn -through sigOut -to clk1

September 2022 1080 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_false_path.html

Constraints Adjustment
The timing budgeting process produces a .lib file for a partition that will be used during top-level
implementation, and a SDC file for partition implementation. When top-level and block-level
implementations are run in parallel, the timing model and the SDC files must match in order for chip
assembly to succeed.

To ensure that the files match, timing budgeting makes adjustments for the following constraints:

Capacitance
For each partition input pin, the tool produces the following output:

In the .lib file, a specification of the pin's capacitance.

In the SDC constraint file, a set_max_capacitance constraint.
If a max_capacitance constraint in the SDC file is greater than the capacitance specified in
the .lib file, this could lead to timing violations during the reassembly. The partition
optimization might change the load of a partition input pin to a value such that the buffer,
chosen at the top level with respect to the small capacitance specified in the .lib file, would
not be able to drive the load.

The correlation adjustment done by budgeting ensures that
the [pin_capacitance specification in the .lib file and the set_max_capacitance constraint in
the partition SDC to be very nearly the same.

Transition
For each partition output pin, the tool produces the following output:

In the .lib file, a lookup table describing the pin transitions with respect to load.

In the SDC constraint file, a set_max_transition constraint.
If the .lib lookup table indicates a range of transition values that are all less than
the set_max_transition value used to constrain partition implementation, it could be possible
for you to perform top-level implementation assuming that the transition will be, for example,
500 ps, while the partition implementation can pass with a transition of 1 ns on the same port.
This situation could result in problems after reassembly.

The correlation adjustment done by budgeting ensures that
the set_max_transition constraint in the partition SDC is within the lookup table in the
partition .lib.

September 2022 1081 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_max_capacitance.html
../innovusTCR/set_max_capacitance.html
../innovusTCR/set_max_transition.html
../innovusTCR/set_max_transition.html
../innovusTCR/set_max_transition.html

Load and max_cap
For each partition output pin, the tool produces the following output:

In the .lib file, a max_capacitance DRV for the pin.

In the SDC constraint file, a set_load constraint.
A max_capacitance constraint in the .lib greater than the set_load constraint in the SDC can
lead to timing violations during reassembly. The top-level optimization might change the load
of the partition output pin to an unrealistic value for the buffer implemented within the partition,
and chosen with respect to the small set_load constraint.

The correlation adjustment done by budgeting ensures that the max_capacitance in
the .lib file and the set_load constraint in the partition SDC file are nearly the same.

Analyzing Timing Budgets
To analyze timing budgets, you must first identify all the boundary pins of the partitions. For each
partition pin, the software generates timing constraints in the form of
timing set_input_delay or set_output_delay if the pin is an input or output pin, respectively. The
software divides the total available budget among all partitions involved, where their boundary pins
constitute part of the path.

A pin might have multiple paths going through it. Multiple paths through the same port are handled
by CTE budgeting. In case of multiple paths related to the same clocks and the same number of
clock cycles, the tool automatically chooses the best path for deriving the budgets.

Resolving Conflicts with Path-Based Exceptions
Budgeting generates one input or output delay assertion for each group of paths controlled by the
same group of path-based exceptions. For set_input_delay generation at a partition port, the path
group is the union of paths originating from the same clock phase that is controlled by the same
group of exceptions at the partition port. For set_output_delay generation, the path group is the
union of paths with the same clock phase at the end point that is controlled by the same set of
exceptions traversing backward at the partition port.

September 2022 1082 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_load.html
../innovusTCR/set_load.html
../innovusTCR/set_load.html
../innovusTCR/set_load.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html

Examples

All of the following examples use the same design:

Case 1

ONE virtual clock (along with one original clock) will be created for each same group of path-based
exceptions during budgeting.

Chip-level exceptions:
set_multicyle_path 2 -setup -from FF1 -to my_partition/FF3/D

For single cycles path and clk:
set_input_delay -clock clk number In1

(based on single path through In1)

For multicycle path and clk:
set_input_delay -clock clk_v0 number In1

(based on worst path from FF1)
set_multicycle_path 2 -from clk_v0 -through in1 -setup -to FF3/D

Case 2

Two virtual clocks are created for each same group of path-based exceptions.

Chip-level exceptions:

September 2022 1083 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

set_multicycle_path 2 -setup -from FF1 -to my_partition/FF4/D

set_false_path -from FF1 -to my_partition/FF3/D

set_multicycle_path 2 -setup -from FF2

For multicycle paths from FF1:
set_input_delay -clock clk_v0 number In1

(based on path from FF1 to my_partition)
set_multicycle_path 2 -setup -from clk_v0 -through In1 -to FF4/D

For false path from FF1:
set_false_path -from clk1_v0 -through in1 -to FF3/D

For multicycle path from FF2:
set_input_delay -clock clk_v0 number In1

(based on worst path from FF2)
set_multicycle_path 2 -from clk_v0 -through in1 -setup

Case 3

Two virtual clocks are created.

Chip-level exceptions:
set_mulicycle_path 3 -setup -from FF1 -to my_partition/FF3/D

set_mulicycle_path 2 -setup -from FF2 -to my_partition/FF4/D

For multicycle 3 path and clk:
set_input_delay -clock clk_v0 number In1

(based on worst of paths from FF1)
set_multicycle_path 3 -from clk_v0 -through in1 -setup -to FF3/D

For multicycle 2 path and clk:
set_input_delay -clock clk_v1 number In1

(Based on worst path form FF2)
set_mulicycle_path 2 -from clk_v1 -through in1 -setup -to FF3/D

Case 4

Two virtual clocks are created:

September 2022 1084 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Chip-level exceptions:
set_mulicycle_path 2 -setup -from FF1 -to my_partition/FF4/D

set_false_path -from FF1 -to my_partition/FF3/D

set_mulicycle_path 2 -setup -from FF2

For multicycle 2 path from FF1:
set_input_delay -clock clk1_v0 number In1

(based on path from FF1 to my_partition/FF4)
set_mulicycle_path 2 -setup -from clk1_v0 -through In1 -to FF4/D

For false path from F1:
set_false_path -from clk1_v0 -through in1 -to FF3/D

For multicycle 2 path from FF2:
set_input_delay -clock clk2_v0 number In1

(based on worst of paths from FF2)
set_multicycle_path 2 -from clk2_v0 -through in1 -setup

Budgeting Clock Latency in Propagated Mode
Innovus includes clock latency in the constraints generated for clocks in propagated mode. The
clock latency is included in the set_input_delay and set_output_delay constraints. The clock
latency is added to set_input_delay and subtracted from the set_output_delay. This feature is
useful when a clock tree is present in your design.

For multiple paths, both source and propagated clock latency is included in
the set_input_delay and set_output_delay constraints. The software adds the -
source_latency_included and -network_latency_included constraints in
the set_input_delay and set_output_delay constraints for all inputs and outputs related to clocks
in propagated mode. Consider the following figure.

September 2022 1085 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html

The deriveTimingBudget command result in the following constraints for the Sub partition:

create_clock -clock subclk -waveform...

set_clock_latency -source (top_source + delay Buff1 + delay Buff2 + delay Buff3)

subclk

set_input_delay -clock subclk (Input delay (with skew) + top_source + delay Buff1)

 -source_latency_included -network_latency_included In1

set_output_delay -clock subclk (output_delay (with skew) - top_source - delay Buff1)

 -source_latency_included -network_latency_included Out1

Where,

top_source = source latency of the clock at the top leveldelay Buff* = delay through each buffer in
the clock network

Budgeting Libraries
To enable design analysis at the top level, budgeting generates black box models of the partitions
in the .lib format.

Resolving Conflicts with Path-based Exceptions
Budgeting generates internal pins and combinational arcs to model the budgets of each group of
paths controlled by the same group of path-based exceptions. For input ports, the path group is the
union of paths with the same clock phase at the end point that is controlled by the same set of
exceptions traversing backwards towards the input port. For output ports, the path group is the
union of paths originating from the same clock phase that is controlled by the same group of
exceptions at the partition port.

September 2022 1086 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/deriveTimingBudget.html

Case 1: A single cycle path and a multicycle path through the

partition port

Chip-level exceptions:

set_multicycle_path 2 -from A1/ck -to my_Partition/B/D

set_multicycle_path 2 -from my_Partition/B/ck -to C1/ck

 MCP delays are modelled on the combinational arcs between input and output ports, and the
internal pins. In the following .lib representation, MCP delays are modelled on arcs IN -
> int_input_0 and int_output_0 -> Out.

Top-level exceptions:

set_multicycle_path 2 -setup -from [list [get_pins {A1/CK}]] -through [list

[get_pins {partition/in}]] -to [list [get_pins {partition/int_input_0}]]

set_multicycle_path 2 -setup -through [list [get_pins {partition/int_output_0}]]

-through [list [get_pins {partition/out}]] -to [list [get_pins {C1/D}]]

September 2022 1087 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Case 2: A single cycle path and two different multicycle paths

through the partition port

Chip-level exceptions:

set_multicycle_path 2 -from [get_pins {A1/CK}] -to [get_pins {my_partition/B/D}]

set_multicycle_path 4 -from [get_pins {A/CK}] -to [get_pins {my_partition/B1/D}]

set_multicycle_path 2 -from [get_pins {my_partition/B/CK}] -to [get_pins {C1/D}]

set_multicycle_path 4 -from [get_pins {my_partition/B1/CK}] -to [get_pins {C/D}]

In this case because of two different MCP constraints, budgeting generates two internal pins to
model the effect of multicycle paths, and a normal arc is modelling the effect of the single cycle path,
at both input and output ports.

Top-level exceptions:

September 2022 1088 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

set_multicycle_path 2 -setup -from [list [get_pins {A1/CK}]] -through [list

[get_pins {my_partition/in}]] -to [list [get_pins {my_partition/int_input_0}]]

set_multicycle_path 2 -setup -through [list [get_pins {my_partition/int_output_1}]

] -through [list [get_pins {my_partition/out}]] -to [list [get_pins {C1/D}]]

set_multicycle_path 4 -setup -from [list [get_pins {A/CK}]] -through [list

[get_pins {my_partition/in}]] -to [list [get_pins {my_partition/int_input_1}]]

set_multicycle_path 4 -setup -through [list [get_pins {my_partition/int_output_0}]

] -through [list [get_pins {my_partition/out}]] -to [list [get_pins {C/D}]]

Defining Clocks Inside the Partition
Budgeting generates additional internal pins to model the effect of the clocks defined inside the
partition at the top level.

Chip-level constraint:
create_clock -name clk -period 10 [get_pins {my_Partition/B/clk_int}]

For the above constraint, an internal pin is created in the partition. At the top level, a constraint is
generated for this internal pin.

In the following .lib representation, the B/clk_int pin is created, and sequential and check arcs
are defined with the internal pin.

Top-level constraint:

September 2022 1089 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

create_clock -name clk -period 10 [get_pins {my_Partition/B/clk_int}]

Customizing Budget Generation
You can customize budget generation according to the design stage and timing requirements. To
customize budget generation, use the following commands in Innovus:

The -freezeATopBLevelbudget_fix_top_level parameter of the setBudgetingMode command
fixes the top-level timing budget and proportions the timing budget for the partitions. The
commands consider blocks that are not being budgeted as fixed.
If the top-level design has no buffers or glue logic, using the -
freezeATopBLevelbudget_fix_top_level parameter might not make much difference in the
generated budgets.

The setBudgetingMode -ignoreDontTouch command is used to consider don't_touch blocks.
The -ignoreDontTouch parameter does not consider dont_touch as fixed delay. The
budgeting results change based on whether fixed delay is considered during trial IPO.

At the top level, you can set the set_input_delay and set_output_delay constraints on the
hierarchical ports (or partition ports). The software generates budgets for the hierarchical ports
based on the set constraints.

Fixing Budget
You can fix budget for a particular path segment between partitions and start/end points only for the
following segments:

Chip In -> Partition In

Start Point -> Partition In

Partition In -> Partition Out

Partition In -> End Point (FF D Pin) inside same partition

Start Point (FF Q Pin) inside same partition -> Partition Out

Partition Out -> Chip Out

Partition Out -> End Point

September 2022 1090 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/setBudgetingMode.html
../innovusTCR/setBudgetingMode.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html

To fix budget for a path segment, use the setFixedBudget command in Innovus.

Recommendations for Fixing Budget
Following are the recommendations for fixing budget:

To perfectly control the delay being distributed in RAK design, “-virtualOptEngine {none}” is
used.

This avoid changing of delays inside a partition based on virtual buffers inserted by
virtual optimization engine is called by deriveTimingBudget internally.

Examples: setFixedBudget -from P5/in -to P5/out -slack 0

Delay of this segment in RAK design is =0.284

With virtual optimization more buffers can get added and delay values may change,
hence changing the budgets for each of the partitions (we can’t accurately predict the
number of buffers and hence the delay numbers are unknown before virtual optimization
is done).

Example: setFixedBudget -from P5/in -to P5/out -delay .284

This can fix the delay of partition ptn_fd and override the effects of optimization

However results may be inaccurate as paths are not optimized for delays/DRVs
(partition delay value can be retrieved by running timeDesign -preCTS)

For channel based design (top portion of net has some delays), top segments are also
considered for slack distribution. setFixedBudget should be applied to any segment whose
slack distribution needs to be controlled (including top segments discussed in the statement)

Set “-bufferDelayAdjustment 0” to prevent deriveTimingBudget from automatically adding
buffer delays to partition for whom we are fixing the budgets (may lead to unexpected results).

Fix Budget Example
Generated budget constraints with required time is 6ns and total path delay is 12ns.

Budget = required time * (segment delay/total delay)

6*(3/12)=1.5ns 6*(2/12)=1ns 6*(2/12)=1ns 6*(2/12)=1ns 6*(3/12)=1.5ns

September 2022 1091 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/setFixedBudget.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/setFixedBudget.html
../innovusTCR/deriveTimingBudget.html

setFixedBudget -from PTN2/P2 -to PTN2/P3 -slack 0

No slack will be distributed to segment 3, delay will remain equal to segment delay = 2ns

For other segments

New required time is 6-2=4ns

New total delay is 12-2=10ns

Modifying Budgets
You can modify budgets after they have been saved using the saveTimingBudget command. To
modify budgets, you must create an input budget file containing constraints that look like an SDC
file. It only supports the set_input_delay and set_output_delay constraints, as shown below:

set_input_delay 1.5 -clock [get_clocks {clk1_setuphold}] -max -fall [get_ports

{sub_in}] -add_delay

set_input_delay 1.9 -clock [get_clocks {clk1_setuphold}] -max -rise [get_ports

{sub_in}] -add_delay

Budget = required time * (segment delay/total delay)

4*(3/10)=1.2ns 4*(2/10)=.8ns FIXED 2ns 4*(2/10)=.8ns 4*(3/10)=1.2ns

September 2022 1092 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/saveTimingBudget.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html

The clock names in these constraints are same as the the ones in the generated budget file. You
can provide a bus name instead of a pin name to apply the same budget to all pins of the bus.

A sample Tcl script is given below:

setBudgetingMode -virtualOptEngine none

deriveTimingBudget -justify

saveTimingBudget -dir Budget

modifyBudget -file modify.tcl -ptn SUB -view default_analysis_view_setup

saveTimingBudget -dir MOD

In this example, modify.tcl is the input budget file containing the constraints.

When you change the budgets on a port using the modifyBudgetcommand, the justify budget report
displays the modified budget and the justification for that (user applied or derived from user
applied), thereby ensuring accuracy.

For manual budgeting, the budget of the port can change in the following scenarios:

When you directly apply a constraint on the port, the justify report shows the location of the file
from which the constraint has been taken, the applied constraint, and the port on which it was
applied.

When you apply a constraint on a connected port, the budget of that port also changes. The
output port will be impacted due to modification at the input port as it is one continuous path.
Budgets are modified at the output port by adjusting the required time of the port with the extra
delta delay given to (or taken away from) the connected port. Therefore, the modifications at
the input port is reflected in the justify report for both the input port and the output port,
wherein, the budgets are being recalculated for the output port based on the modification.
The justify report has information about the port, the delta and how that delta affected the
constraint value at the given port.

Partition: block
Port: sub_in
Budgeted constraint type: set_input_delay(setup rise)
Virtual Clock: clk1_setuphold
Budget Applied by modify budget statement (/../../modify.tcl:3) :
set_input_delay 1.9 -clock [get_clocks {clk1_setuphold}] -max -rise [get_ports

{sub_in}] -add_delay

Applied constraint = 1.900
Start clock: clk1 clock edge: rise
End clock: clk1 clock edge: rise

September 2022 1093 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/modifyBudget.html

Reading the Justify Budget Report
You use the deriveTimingBudget -justify command to generate a budget report per view
containing the debug data to justify the timing budget for a pin. For a negatively slacked path, the
software distributes the total available time (in a simple clock period case) proportionally between
ports of instances along the path. For a positively slacked path, the software usually adds some
buffer delays to the generated delay values (built in positive slack).

The report generated contains the following fields:

Adjustment for budget available time
Derived as follows:

Path Fixed Delay + Fixed Delay For Feedthrough Blocks - Clock Skew + Value of Constraint
for the Receiving Register (HoldTime)

Where, Fixed Delay For Feedthrough Blocks is the two buffer delay distributed between all
feedthrough blocks.

Fixed Delay on the Path(pathFixDel)
Specifies the delay that cannot be modified. The fixed delay adjustment
includes: set_input_delay, set_output_delay, all cell delays for the cells marked
as dont_touch if -ignoreDontTouch is not used, delays of top level segments if -
freezeATopBLevelbudget_fix_top_level is used, any snapped delays calculated by
using setBudgetingMode -snapFdBudgetTo or -snapInputBudgetTo. If, during timing analysis,
the path segment delay used to generate a budgeting constraint for the port falls below
specified threshold value the delay segment is snapped to the specified value and is
considered as fixed delay during budget allocation.

Virtual clock adjustment

Budget Impacted by modify budget statement (location of the file in which the
applied constraint is specified) :
set_input_delay 1.9 -clock [get_clocks {clk1_setuphold}] -max -rise [get_ports

{sub_in}] -add_delay

Impact of modify budget(modDelta) = 0.911
Available budget after adjustment(AvailTime)=(10.000 - 2.982) - (0.911) = 6.107

September 2022 1094 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/deriveTimingBudget.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html

Specifies a special adjustment to map the virtual clock into clocks pertaining to partitions. This
number is generated when you use the saveTimingBudget command.

Top Level Adjustment
Specifies the top-level delay value. The top-level delay value cannot be less than the
minimum percentage of total available budget specified using the
-topALevelbudget_top_level parameter of the setBudgetingMode command.

RC Adjustment (RC)
Specifies the input delays. During timing analysis the input delays are adjusted by the delay
due to input port drive cell that was added by budgeting as a set_drive command in the
generated constraint file. The Adjustment by RC number is subtracted from the delay value in
budgeting so that this effect is not counted twice in the budget.

Adjustment by clock latency
Specifies the clock latency of the driving object.

Total Delay (totDel)
Specifies the total path delay.

Initial Slack
Initial Slack = (Data Required Time - fixed delay) - (Path segment number1 delay + Path
segment number 2 delay).

Virtual Buffering Adjustment
Specifies the total extra delays added to the positive slacked path. This number is usually
three extra buffer delays. In case of abutted designs, the number is two extra buffer delays.

Note: In case of feedthrough paths, three buffer delay is distributed through all segments of
the path.

Slack after Virtual Buffering Adjustment (slack)
The software takes out three buffers worth of delay from positive slack to safeguard minimum
partition budget. This adjustment is used only for positive slacks.

External Buffering Adjustment
Specifies the extra delay that is external to partition port. This is usually equivalent to two
buffer delays. This is part of the virtual buffering adjustment. This delay is added to the input
delay for the input ports and output delay for the output ports.

Budgeted constraint
Budget = Adjustment for budget available time * Delay for path outside the partition / Absolute

September 2022 1095 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/saveTimingBudget.html
../innovusTCR/setBudgetingMode.html
../innovusTCR/set_drive.html

total delay + Adjustment by fixed delay + Adjustment by virtual clock + Adjustment by clock
latency - Adjustment by RC + External Buffering Adjustment

External segment delay
Delay of the path segment outside of the partition.

This block's segment delay
Delay of the path segment inside of the partition.

Fixed delay through feedthrough
Amount of extra delay allocated to the path feedthrough segments.

External Segment Fixed Delay from Budget Snap
The fixed delay for the path segment external to the partition contributed by
using setBudgetingMode -snapFdBudgetTo or -snapInputBudgetTo.

Total External Segment Fixed Delay

Fixed delay of the path segment outside of the partition.

External Segment Extra Delay From Budget Snap
The extra delay added to the external path segment when you use setBudgetingMode and if
external segment path delay is below user defined threshold.

Clock Skew

The path clock skew.

Note: The report precision (the number of digits printed after the decimal point) is 3.

Design Example
module Top(in1, clk1, clk2, out);

input in1;

input clk1;

output out;

input clk2;

wire c0, c1, c2;

bfx0 buf0(.A(in1), .Z(c0));

SUB i_sub1(.sub_in(c0),

.sub_clk(clk1),

.sub_out(c1));

bfx0 buf1(.A(c1), .Z(c2));

September 2022 1096 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/setBudgetingMode.html

SUBn i_sub2(.sub_in(c2),

.sub_clk(clk2),

.sub_out(out));

endmodule // TOP

module SUB (sub_in, sub_clk, sub_out);

output sub_out;

input sub_in;

input sub_clk;

df1qx1 sub_FF (.D(sub_in), .CP(sub_clk), .Q(sub_out));

endmodule // SUB

module SUBn (sub_in, sub_clk, sub_out);

output sub_out;

input sub_in;

input sub_clk;

df1qx1 sub_FF (.D(sub_in), .CP(sub_clk), .Q(sub_out));

endmodule // SUBn

SDC Constraints for Design Example
current_design Top

create_clock -name clk1 -period 1 -waveform {0 0.5} [get_ports {clk1}]

set_input_delay 0.2 -clock clk1 [get_ports {in1}]

set_multicycle_path 2 -from [get_pins {i_sub1/sub_FF/CP}] -to [get_pins

{i_sub2/sub_FF/D}]

create_clock -name clk2 -period 1 -waveform {0 0.5} [get_ports {clk2}]

set_output_delay 0.1 -clock clk2 [get_ports {out}]

Generated Report for Design Example
To validate the budgets with positive slack in the design example, "Design Example", type the
following command:

justifyBudget -inst i_sub2 -pin sub_in

The following report was generated:

September 2022 1097 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

HInstance: i_sub2

Port: sub_in

Budgeted constraint type: set_input_delay(setup rise)

Virtual Clock: clk1_V0

Initial budget available time + clock skew = 2.000

One Buffer Delay for Adjustment(cell bfx2): 0.198

Fixed Delay for Feedthrough Paths(fixFdThru)= 0.000

External Segment Fixed Delay From Budget Snap(snapExtFixedDel) = 0.000

Total External Segment Fixed Delay(extFixDel) = 0.000

This Block's Segment Fixed Delay from budget snap(snapIntFixedDel) = 0.000

Total This Block's Segment Fixed Delay(intFixDel) = 0.000

External Segment Extra Delay From Budget Snap (snapExtDelExtra) = 0.000

This Block's Extra Delay From Budget Snap (snapIntDelExtra) = 0.000

Path Extra Delay From Budget Snap (snapExtraDel) = (0.000 + 0.000) = 0.000

Fixed Delay on the Path(pathFixDel) = (0.000 + 0.000 + 0.000 + 0.000) = 0.000

Fixed Delay Adjustment(fixDel)= 0.000

Clock Skew(clkSkew): 0.000

Adjustment for budget available time= -(pathFixDel + fixFdThru - clkSkew +

snapExtraDel)

= -(0.000 + 0.000 - 0.000 + 0.000) = -0.000

Available budget after adjustments(AvailTime)= (2.000 - 0.000) = 2.000

External Segment Delay(extSegDel): 0.638

This Block's Segment Delay(segDel): 0.273

Total delay(totDel): 0.638 + 0.273 = 0.910

Initial Slack = AvailTime - totDel

Initial Slack = 2.000 - 0.910 = 1.090

Virtual Buffering Adjustment: (3 x 0.198) = 0.594

Slack after Virtual Buffering Adjustment(slack): 1.090 - 0.594 = 0.496

External Virtual Buffering Adjustment(extVirBuf)= 0.396

Top Level Adjustment(topLev): 0.000

Virtual Clock Adjustment(virClk): 0.000

RC Adjustment(RC): 0.009

Budgeted constraint = extSegDel + slack * extSegDel / totDel + extVirBuf + topLev +

fixDel + virClk + startClkLat - RC

Budgeted constraint = 0.638 + 0.496 * 0.638 / 0.910 + 0.396 + 0.000 + 0.000 + 0.000 +

0.000 - 0.009 = 1.372

Path 1: MET Setup Check with Pin i_sub2/sub_FF/CP

Endpoint: i_sub2/sub_FF/D (^) checked with rising edge of 'clk2'

Beginpoint: i_sub1/sub_FF/Q (^) triggered by rising edge of 'clk1'

Other End Arrival Time0.000

September 2022 1098 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

- Setup0.269

+ Phase Shift1.000

+ Cycle Adjustment1.000

= Required Time1.731

- Arrival Time0.641

= Slack Time1.090

Clock Rise Edge0.000

= Beginpoint Arrival Time0.000

Note: The justifyBudget command honors the report_timing_format global, which allows you to
customize the timing report according to the user-specified columns. You must set this global before
specifying justifyBudget or deriveTimingBudget -justify to get the report in the desired format.

Dumping Justification Files for Setting Boundary Conditions
Example
To dump justification files for setting boundary conditions, run the following command:

setBudgetingMode –justifyBoundaryCondition true

Following is a sample justification file set by the above command:

September 2022 1099 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/justifyBudget.html
../innovusTCR/justifyBudget.html
../innovusTCR/deriveTimingBudget.html

September 2022 1100 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Generate Summarized Report of Budget Data
You can generate a script friendly summary of what budgets have been produced for a specific port
or ports. For reporting the budgeting data for buses, specify the bus name as the pin name. Use the
justifyBudgetreport_timing_budget -summary command to generate the summarized reports.

The use model is given below:

1. Enable the collection of reporting data, before running deriveTimingBudget.

2. Report budgets - This command does the actual reporting, and should be issued after the
budget has been saved by using the saveTimingBudget or savePartition command.

Note: For the Integrated Hierarchical Database (iHDB) flow, save timing budget or partitions with a
specified module tag (saveTimingBudget-module_model_tag or savePartition -module_model_tag).

The output is stored in the output file in the following format for pins:

Pin: Port Name

SDC Data

Clock: Clock Name

SDC Source Budget(Rise,Fall): rise value, fall value

SDC Destination Budget(Rise,Fall) : rise value, fall value

Exception(s) : shows the exceptions written for the port in the resultant SDC file, if

any

SDC Warnings: shows the budgeted warnings for the port, if any

Justify Source Budget(Rise, Fall): rise value, fall value

Justify Destination Budgets(Rise,Fall): rise value, fall value

Justify Slack (Rise, Fall) : rise value, fall value

Library Data

Reference Pin: the other end pin name

Delay Rise : rise delay value

Delay Fall : fall delay value

The above block is repeated for various pins which are requested through the command (or for all
pins , if * is specified).

For input pins:

Source Budget is equal to the constraint (SID)

Destination Budget is equal to the budget given to the partition

For output pins:

Source Budget is equal to the budget given to the partition

September 2022 1101 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/deriveTimingBudget.html
../innovusTCR/saveTimingBudget.html
../innovusTCR/savePartition.html
../innovusTCR/saveTimingBudget.html
../innovusTCR/savePartition.html

Destination Budget is equal to the constraint (SOD)

Bus reporting goes through all bus bits and collects the minimum, maximum, median and average
data. The "constraint" on the output port is defined as the output delay on that port, which
corresponds to the Destination Budget of the port. Hence, more the destination budget, more is the
output port constrained.

The output of the justifyBudgetreport_timing_budget -summary command is stored in the output
file in the following format for bus pins:

Bus: Bus Name

Most Constrained Bit : bit name

SDC Data

Clock: Clock Name

SDC Source Budget(Rise,Fall): rise value, fall value

SDC Destination Budget(Rise,Fall) : rise value, fall value

Exception(s) : shows the exceptions, if any

SDC Warnings: shows the warnings if any

Justify Source Budget(Rise, Fall): rise value, fall value

Justify Destination Budgets(Rise,Fall): rise value, fall value

Justify S lack (Rise, Fall) : rise value, fall value

Least Constrained Bit: bit name

SDC Data

Clock: Clock Name

SDC Source Budget(Rise,Fall): rise value, fall value

SDC Destination Budget(Rise,Fall) : rise value, fall value

Exception(s) : shows the exceptions, if any

SDC Warnings: shows the warnings if any

Justify Source Budget(Rise, Fall): rise value, fall value

Justify Destination Budgets(Rise,Fall): rise value, fall value

Justify S lack (Rise, Fall) : rise value, fall value

Median Constrained Bit: bit name

SDC Data

Clock: Clock Name

SDC Source Budget(Rise,Fall): rise value, fall value

SDC Destination Budget(Rise,Fall) : rise value, fall value

Exception(s) : shows the exceptions, if any

SDC Warnings: shows the warnings if any

Justify Source Budget(Rise, Fall): rise value, fall value

Justify Destination Budgets(Rise,Fall): rise value, fall value

Justify Slack (Rise, Fall) : rise value, fall value

September 2022 1102 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Average Source Budget (rise,fall in ns) : average budget across all bus bits(rise and

fall)

Average Destination Budget (rise,fall in ns): average budget across all bus

bits(rise and fall)

Reading the Justify Exception Report
You can use the justifyException command to provide a debugging or justification mechanism of
exceptions on ports. This command allows you to debug exception constraints and justify all
exceptions for the specified instances or partitions of the design.

To justify exceptions:

1. Set the -enablejustifyException parameter of the setBudgetingMode command to true to
save the justify exception data during the deriveTimingBudget process.

2. Perform exception justification using one of the following two ways:

Specify the deriveTimingBudget command with the -justify parameter.
When the -justify parameter is specified, the justify file generated
as <partition|inst>_<view name>.justify is appended with the exception information
(Applied and Translated Exceptions). If the same view is used as both setup and hold, then
the file names are generated as <partition|inst>_<view name>_<setup|hold>.justify.
These files are saved in their respective partition/inst directory in the budget_justify directory
by default, if the setBudgetingMode -justifyBudgetDir parameter is not specified.

Specify the justifyException command to justify all exceptions on pins specified by -
pins or -pin. If you do not specify an output file using the -outfile parameter, the exception
data will be displayed on the screen.

Flow example with deriveTimingBudget -justify

restoreDesign 120.des.dat top

createFence partition 1 2 3 4

You can run the deriveTimingBudget command both with and without the -justify
parameter. When the -justify parameter is not specified, the data is collected only for
exception justification, and will neither be written in a file nor will be displayed on screen.

September 2022 1103 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/justifyException.html
../innovusTCR/setBudgetingMode.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/deriveTimingBudget.html
../innovusTCR/justifyException.html

definePartition -hinst partition

setBudgetingMode -enable justifyException true -justifyBudgetDir

budget_justify_with_dtb

deriveTimingBudget -ptn {partition} -justify

Flow example without -justify but with the justifyException command

restoreDesign 120.des.dat top

createFence partition 1 2 3 4

definePartition -hinst partition

setBudgetingMode -enable justifyException true -justifyBudgetDir

budget_justify_ptn_with_command

deriveTimingBudget -ptn {partition}

justifyException partition -pin out1 -view default_analysis_view_setup # this will only print
data on screen
justifyException partition -pin out1 -view default_analysis_view_setup -outfile

block_default_analysis_view_setup.jusifyExcp #this will print data in the specified file

The report generated contains the following fields:

Partition

Specifies the partition or instance for which the exception justification is done.

Port

Specifies the partition/instance's port for which the exceptions have been justified.

Budgeted constraint type

Specifies the delay type applicable on this port. It can be
either set_input_delay and set_output_delay. It also provides the information of setup/hold
check for rising/falling edge of clock.

Virtual Clock

Virtual clock with which setup/hold check is done.

Exception

Specifies the exception type applied on the port. It can be one of the following:

- set_multicycle_path

- set_max_delay

- set_min_delay

September 2022 1104 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_multicycle_path.html
../innovusTCR/set_max_delay.html
../innovusTCR/set_min_delay.html

Note: set_false_path is not reported because only constrained paths are justified.

Applied exceptions

Specifies the path exception information picked up from the Common Timing Engine. It is the
same information that is printed in the path exception section of the timing report when
"report_timing -path_exception all" is issued on the path that has been used for budgeting
of the port.

Translated exception

Specifies the full chip exceptions translated to partition/instance.

Design Example
module partition (

 in,

 clk,

 out,

 out1);

 input in;

 input clk;

 output out;

 output out1;

 BUFX12 B21 (.A(clk), .Y(o2));

 BUFX12 B22 (.A(o2), .Y(o4));

 BUFX12 B23 (.A(o4), .Y(o5));

 DFFHQX1 D21 (.D(in), .CK(o5), .Q(ox));

 BUFX12 BMC (.A(ox), .Y(out1));

 BUFX12 BMD (.A(ox), .Y(out1));

endmodule

module top (

 in,

 clk,

 out);

 input in;

 input clk;

 output out;

 BUFX12 B1 (.A(in), .Y(s1));

 BUFX12 B2 (.A(clk), .Y(s2));

September 2022 1105 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_false_path.html

 partition partition (.in(s1), .clk(s2), .out(s3), .out1(s4));

 BUFX12 B3 (.A(s4), .Y(out));

endmodule

SDC Constraints for Design Example
current_design top

create_clock -name clock -period 15 [get_ports {clk}]

set_input_delay 2 -clock clock in

set_output_delay 3 -clock clock out

set_multicycle_path 2 -through partition/BMC/Y

set_multicycle_path 3 -through partition/BMD/Y

Generated Report for Design Example
Partition: partition

Port: partition/out1

Budgeted constraint type: set_output_delay(setup rise)

Exception: set_multicycle_path

Applied exceptions:

Translated exception:

set_multicycle_path 2 -setup -through [list \

 [get_ports {out1}]] -to [list \

 [get_clocks {clock}]]

Translated exception:

set_multicycle_path 3 -setup -through [list \

 [get_ports {out1}]] -to [list \

 [get_clocks {clock}]]

Partition: partition

Port: partition/out1

Budgeted constraint type: set_output_delay(setup fall)

Exception: set_multicycle_path

Through Late View Name

 partition/BMC/Y cycles 2 default_analysis_view_setup

September 2022 1106 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Applied exceptions:

Translated exception:

set_multicycle_path 2 -setup -through [list \

 [get_ports {out1}]] -to [list \

 [get_clocks {clock}]]

Translated exception:

set_multicycle_path 3 -setup -through [list \

 [get_ports {out1}]] -to [list \

 [get_clocks {clock}]]

Support for Distributed Processing in Budgeting
Innovus supports distributed time budgeting for MMMC designs to improve the overall run-time for
large designs. In the distributed mode, processing of views are distributed across CPUs of a local
machine or multiple machines, and the view data is collated using the saveTimingBudget command.

Distributed processing supports two modes:

Local Mode - you can specify the number of CPUs to use on local machine. In this mode, you
can distribute views across multiple CPUs of the same machine.
setDistributeHost -local

setMultiCpuUsage -localCpu integer

Remote Mode - you can specify one or more CPUs to use on network hosts. In this mode,
you can distribute views to multiple machines.
setDistributeHost -rsh -add {host1 host2 host3}

setMultiCpuUsage -remoteHost integer

The use model for distributed MMMC budgeting is as follows:

1. Set up the multi-host environment. Specify the setMultiCpuUsage command to set the
maximum number of hosts and the setDistributeHost command to set the multiple-CPU
processing configuration for distributed processing.

2. Specify the deriveTimingBudget command. This command internally creates distribution

Through Late View Name

 partition/BMC/Y cycles 2 default_analysis_view_setup

September 2022 1107 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/saveTimingBudget.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/setDistributeHost.html
../innovusTCR/deriveTimingBudget.html

scripts for all views and runs these scripts on different CPUs/machines per the multi-host
environment. The logs and distribution scripts for different views are located in
the .tbMMMCDistributed directory for later reviews.

3. Specify the saveTimingBudget command. This command internally collates the data for
multiple views from different runs and saves it to the specified directory.

Note: All parameters of the saveTimingBudget command, except -dir, are ignored. You can set
these parameters using the setBudgetingMode command.

Example

setMultiCpuUsage -remoteHost 4

setDistributeHost -lsf -queue lnx64 -resource "select[mem>10000 && tmp>400 && swp >1000

&& OSNAME==Linux && SFIARCH==OPT64]

setBudgetingMode -virtualOptEngine none

deriveTimingBudget -inst i_top_0

saveTimingBudget -dir Budget

Constraints Support in Budgeting
group_path
This constraint is supported in timing optimization and timing analysis. In budgeting, it is not
pushed-down inside the partition and top-level SDC. This will affect timing budgets, because
the constraint affects chip-level timing analysis.

create_clock
If a top-level clock CK is inverted, then while generating the budgets for a partition a new
negative clock CK_B_ENC is created for the partitions connected to the negative clock.
For example, if CK is defined as:
create_clock -name CK -period 7.500 -waveform { 0.000 3.750 } \

[list [get_ports {clk}]]

The negative clock is:
create_clock -name CK_B_ENC -period 7.500 -waveform { 3.750 7.500 } \

[list [get_ports {losdclko_rp}]]

Where, losdclk0_rp is the clock port of the partition.

September 2022 1108 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/saveTimingBudget.html
../innovusTCR/saveTimingBudget.html
../innovusTCR/setBudgetingMode.html
../innovusTCR/group_path.html
../innovusTCR/create_clock.html

create_generated_clock

set_clock_latency
The set_clock_latency constraint is generated when you use the
setAnalysisMode -skew true command. The clock latency is not budgeted between the
partitions. The setAnalysisMode -clockPropagation sdcControl, along
with set_clock_propagation constraint, do not cause the network delay through the clock tree
to be budgeted for the partitions. The same clock latency is assigned to all the partitions if
specified in the top-level clock constraints.

set_clock_uncertainty

set_input_delay

set_output_delay

set_input_transition

set_load

set_drive

set_driving_cell

set_max_transition

set_max_capacitance

set_multicycle_path

set_false_path

Innovus timing analysis requires that
the set_false_path and set_multicycle_path constraints have valid startpoints and
endpoints for the -from and -to options.
Valid startpoints are:

Input ports

Input part of bidirectional ports

Clock pins of sequential cells

Pins associated with set_input_delay

Pins associated with set_path_delay -from

September 2022 1109 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/create_generated_clock.html
../innovusTCR/set_clock_latency.html
../innovusTCR/set_clock_latency.html
../innovusTCR/set_clock_uncertainty.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_input_transition.html
../innovusTCR/set_load.html
../innovusTCR/set_drive.html
../innovusTCR/set_driving_cell.html
../innovusTCR/set_max_transition.html
../innovusTCR/set_max_capacitance.html
../innovusTCR/set_multicycle_path.html
../innovusTCR/set_false_path.html
../innovusTCR/set_false_path.html
../innovusTCR/set_multicycle_path.html
../innovusTCR/set_input_delay.html

Valid endpoints are:

Output ports

Output part of bidirectional ports

Data pins of sequential cells

Pins associated with set_output_delay

Pins associated with set_max_delay -to
During budgeting, the software generates valid budgets for partitions based on invalid
constraints at the top. For example, if set_multicycle_path 2 -from SUB/IN1 is set at the top
level, it is ignored during timing analysis, because a hierarchical pin is not a valid startpoint
for set_multicycle_path constraint. However budgeting generates set_multicycle_path -
from IN1 for partition which is valid when the constraints are sourced for the partition
because IN1 is a top-level port for partition and a valid start point.

set_case_analysis

set_max_delay

set_min_delay

set_logic_zero

set_logic_one
Partition ports could be left unconstrained, which means that there are some ports
missing set_input_delay or set_output_delay constraints in the constraint file. Several
factors can cause a partition I/O being unconstrained. For
instance, set_false_path, set_case_analysis, set_disable_timing in an input constraint file
can effectively cut paths through a port. The set_input_delayconstraint at the top-level,
without a reference clock is another possibility which can cause some partition ports being
unconstrained. Missing timing arcs in cell timing model can also cut timing paths. If a constant

signal (1'b0, 1'b1) is assigned to a net leading to a partition port in Verilog®, the constant
signal can also cause that port to be left unconstrained.

Min and -hold
The following commands are supported:

set_clock_latency -min

set_clock_transition -min

September 2022 1110 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_output_delay.html
../innovusTCR/set_multicycle_path.html
../innovusTCR/set_case_analysis.html
../innovusTCR/set_max_delay.html
../innovusTCR/set_min_delay.html
../innovusTCR/set_logic_zero.html
../innovusTCR/set_logic_one.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_false_path.html
../innovusTCR/set_case_analysis.html
../innovusTCR/set_disable_timing.html
../innovusTCR/set_input_delay.html

set_clock_uncertainty -hold

set_drive -min

set_driving_cell -min

set_input_delay -min

set_output_delay -min

set_false_path -hold

set_load -min

set_min_delay

set_multicycle_path -hold

set_timing_derate
This constraint is pushed down to a separate file with the extension .nonsdc.constr in the
push down directory.

Warning Report
The saveTimingBudget -ptn command generates a warning report (partition_or_instance.warn)
for the each partition and stores these reports in the partition subdirectories.

Pin Constraint Values Greater than Available Time
The .warn report contains a section entitled "Pin constraint values greater than available time."

The software checks whether generated input_delay/output_delay budgets are less than a
maximum allowed time in the clock period for the delay. The maximum allowed time is defined as a
delay between active edge of the starting clock and the sampling edge of the sampling clock. This
time may vary based on phase shift and multicycle path directives. If deriveTimingBudget
tsConsCheck is specified, budget checking will use more conservative value for available time:

The tool subtracts clk2q delays from available time when checking output_delay statements and
setup time when checking input_delay statements.

September 2022 1111 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_timing_derate.html
../innovusTCR/saveTimingBudget.html
../innovusTCR/deriveTimingBudget.html

The following command reports all partition ports that have slack less than <value>
in partition_dir/partition_name/partition_name/constr.warn:

savePartition/saveTimingBudget -rptNegSlackOnPorts value

For example:

*.warn file:

....

/* Start Section: Instance ports with slack < 0.020 */

/* End Section: Instance ports with slack < 0.020 */

Warning Report Example
The warning report format is as follows:

September 2022 1112 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

September 2022 1113 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Cycle-Based Timing Budgeting
Cycle-based timing budgeting is done by using the -cycleRatio parameter of
the deriveTimingBudget command. You can set the timing budgeting constraint based on the clock
cycle, which ensures that budgeting is done in minimum time and memory consumption by deriving
partition block delays from the total clock cycle time. For this, you can use the
setCycleBudgetRatio command. The setCycleBudgetRatio command derives the IO delays from
the total cycle time of the clock, so that the budgeting can be done in least time and memory. This
command supports:

Top-level segment ratio

Different top ratio based on critical partition to partition connection

Different ratio between source and sink partition

Support clock based segment control

Note: Do not use the setFixedBudget command during the cycle-based timing budgeting.

Examples
The following commands present an example of the TOP to PTN path:
setCycleBudgetRatio -fromTop -toPtn {* 0.6}

setCycleBudgetRatio -fromTop -toPtn {ptn1_hinst 0.7}

Note: * matches with any partition hinst. However, it does not matches with TOP.
Following is the output:

The following commands present an example of the PTN to TOP path:

September 2022 1114 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/deriveTimingBudget.html
../innovusTCR/setCycleBudgetRatio.html
../innovusTCR/setCycleBudgetRatio.html
../innovusTCR/setFixedBudget.html

setCycleBudgetRatio -fromPtn {* 0.6} -toTop

setCycleBudgetRatio -fromPtn {ptn1_hinst 0.7} -toTop

Note: * matches with any partition hinst. However, it does not matches with TOP.
Following is the output:

The following commands present an example of reserving TOP percentage:
setCycleBudgetRatio -fromPtn {* 0.6} -toTop

setCycleBudgetRatio -fromTop -toPtn {* 0.6}

setCycleBudgetRatio -fromPtn {* 0.3} -toPtn {* 0.3}

Note: * matches with any partition hinst. However, it does not matches with TOP.
Following is the output:

The following command presents an example of the PTN to PTN path:
setCycleBudgetRatio -fromPtn {ptn1_hinst 0.6} -toPtn {ptn2_hinst 0.3}

Following is the output:

September 2022 1115 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

The following command presents an example of the PTN to PTN Abutted path:
setCycleBudgetRatio -fromPtn {ptn1_hinst 0.6} -toPtn {ptn2_hinst 0.3}

Partitions are under-constrained by 10% of clock cycle. Following is the output:

The following command presents an example of how the top level budget is split into top and
FT segments of the paths:
setCycleBudgetRatio -fromPtn {ptn1_hinst 0.4} -toPtn {ptn2_hinst 0.3}

Note: FT segment is over-constrained and given 0% budget.
Following is the output:

September 2022 1116 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Using setFixedBudget with setCycleBudgetRatio
You can use the setFixedBudget command along with the setCycleBudgetRatio command to
constrain paths in the cases where a block or partition budget should be fixed (the delay of block or
partition should be used as its budget), and budgets should be allocated to some other partitions
based on some percentage of the available time. The setFixedBudget command should not be
used with cycle-based timing budgeting. This means that the -cycleRatio parameter should not be
used in such a case.

Examples
The following command presents an example of IP BLOCK:
setFixedBudget -through ip_hinst -slack 0

setFixedBudget -from ip_hinst/* -toFlopsOf ip_hinst -slack 0

setFixedBudget -fromFlopsOf ip_hinst -to ip_hinst/*-slack 0

setCycleBudgetRatio -fromPtn {ptn1HInst 0.3} -toPtn {ptn2HInst 0.3}

deriveTimingBudget

Note: Since deriveTimingBudget is used without -cycleRatio, all the percentages are with
respect to the total available clock cycle time.
Following is the output:

September 2022 1117 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/setFixedBudget.html
../innovusTCR/setCycleBudgetRatio.html
../innovusTCR/deriveTimingBudget.html

Following is an example of a channel based with fixed delay in channels using the -
through parameter:
setFixedBudget -through ip_hinst -slack 0

setFixedBudget -through / -slack 0

setFixedBudget -from ip_hinst/* -toFlopsOf ip_hinst -slack 0

setFixedBudget -fromFlopsOf ip_hinst -to ip_hinst/*-slack 0

setCycleBudgetRatio -fromPtn {ptn1HInst 0.3} -toPtn {ptn2HInst 0.3}

deriveTimingBudget

Following is the output:

The following command presents an example of fixed actual delay segments:
setCycleBudgetRatio -fromTop -toPtn {* 0.6}

setFixedBudget -from ptn1_hinst/* -toFlopsOf ptn1_hinst -delay 100ps

setFixedBudget -fromFlopsOf ptn1_hinst -to ptn1_hinst/* -delay 200ps

September 2022 1118 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

setCycleBudgetRatio -fromPtn {* 0.3} -toPtn {ptn1_hinst 0}

deriveTimingBudget

Following is the output:

Using Cycle-Based Timing Budgeting with Nested
Partitions
In addition to the individual partitions, cycle-based budgeting can also be used for nested partitions.
You can use the setCycleBudgetRatio command to also specify the ratio of the parent and child
partitions for the desired timing budgeting for parent-level segment.

Example
A design has four partitions: P2, P3, P4 and P2/Z (nested inside P2). The path used for budgeting
starts from a flip-flop, s5, in the P2/Z partition to another flip-flop, e2, in the P4 partition, passing
through P3, as presented in the following figure:

September 2022 1119 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/setCycleBudgetRatio.html

The following commands present cycle-based timing budgeting for the path presented in the above
figure:

setCycleBudgetRatio -fromPtn {P2 0.5} -toPtn {* 0.2}

setCycleBudgetRatio -fromPtn {P2/Z 0.3} -toPtn {* 0.2}

deriveTimingBudget -cycleRatio -justify

Following is the P2 justify budget report generated for the ko2 port:

Following is the Z justify budget report generated for the o2 port:

In the above reports:

set_output_delay at Z level is 7.

set_output_delay at P2 level is 5.

So, the effective delay for partition P2 is 2.

The following figure presents allocation of budgets in this example:

September 2022 1120 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_output_delay.html

Stage-Based Timing Budgeting
Stage-based timing budgeting is done using a timing graph, which has annotated unit delays for
every logic cell or flip-flop (excluding buffers and inverters). This method of timing budgeting can be
used in very early stages of the design, before applying optimization for quick budgets. It is more
accurate than the cycle-based timing budgeting. In this method, timing budgeting takes the longest
logic path and proportionately divides the clock cycle time as budgets to the blocks. Stage-based
timing budgeting can be done using the -stageBased parameter of the deriveTimingBudget
command, which is explained below.

deriveTimingBudget -stageBased
This parameter creates a quick stage-based timing graph to be used for timing budgeting. Timing
budgeting with the stage-based timing graphs is used in very early stages of the design, before
applying optimization for quick budgets. This method is more accurate than the cycle-based timing
budgeting.

When this parameter is used, any existing timing graph in the design is overwritten by the
generated special quick stage-based timing graph. The following examples present the scenarios
in which this parameter can be used:

reg2reg path

Define the budgets for the parent and child partitions carefully, so that the budget allocated at
the parent level is appropriate, and not negative. The software does not check for the
correctness of parent and child partition ratio definition.

September 2022 1121 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/deriveTimingBudget.html

reg2out path with IO Port set_output_delay = 0

reg2out path with IO Port set_output_delay = T/4

September 2022 1122 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

reg2reg path with set_max_delay - Case 1

reg2reg path with set_max_delay - Case 2

reg2reg path with set_fixed_budget

September 2022 1123 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

in2reg path with IO Port set_input_delay = 0

September 2022 1124 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Use the setBudgetingMode parameters explained in the sub-sections below for learning about more
features of stage-based timing budgeting.

setBudgetingMode -stageBasedWeight
Use this attribute to specify default weights of the sequential, combinational, and buffer/inverter
cells for the stage-based timing budgeting. Following are the default weights of these cells:

Sequential: 1

Combinational: 1

Buffer/inverter: 1

setBudgetingMode -stageBasedPartitionMultiplier
Use this parameter for specifying the weight multiplication factor for the partition hinsts. Those
hInsts, which are not explicitly mentioned, will have the default weights. If the weights of hinsts have
been specified using the setBudgetingMode -stageBasedWeight parameter, those are used with
their default weights. Else, the default weights (1 for sequential cell, 1 for combinational cell, and 0
for buffer/inverter) are used. In case of nested partitions, if the child partition multiplier is not
specified explicitly, then it will have its parent’s multiplier. If parent and child partitions have
separate multipliers, then they will be honored.

See the examples below for understanding the usage of this parameter:

Example 1:

setBudgetingMode -stageBasedWeight {2 1 1}

setBudgetingMode –stageBasedPartitionMultiplier {{PTN1 2} {PTN2 3}}

September 2022 1125 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/setBudgetingMode.html

Cycle time = T

Budget for PTN1= 8/19 T

Budget for PTN2= 9/19 T

Budget for top = 2/19 T

Example 2:

This example presents usage of the -stageBasedPartitionMultiplier parameter in the nested
design where the weight multiplier for both PTN1 and PTN2 is 2:

setBudgetingMode -stageBasedWeight {2 1 1}

setBudgetingMode –stageBasedPartitionMultiplier {{PTN1 2}}

Example 3:

This example presents usage of the -stageBasedPartitionMultiplier parameter in the nested
design where the weight multiplier for PTN1 is 2 and PTN2 is 3:

setBudgetingMode -stageBasedWeight {2 1 1}

setBudgetingMode –stageBasedPartitionMultiplier {{PTN1 2} {PTN1/PTN2 3}}

September 2022 1126 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

setBudgetingMode -stageBasedFanoutDrivingFactor
Use this parameter for specifying the fanout count of the pin, according to which the buffer stages
are added in the timing graph. This parameter provides the basis for the software to calculate the
number of fanouts and buffer stages to be virtually added for each stage according to the following
table:

If the weight of the original cell is w, weight of the buffer is b, and the number of buffer stages is n,
then:

Final weight of cell = w + (b*n)

See the examples below for understanding the functioning of the -
stageBasedFanoutDrivingFactor parameter.

Example 1:

setBudgetingMode -stageBasedWeight {3 2 1}

Fanout Range Number of Buffer Stage Added (n)

1 to d 0

(d+1) to d2 1

(d2+1) to d3 2

(d3+1) to d4 3

.. ..

September 2022 1127 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Example 2:

setBudgetingMode -stageBasedWeight {3 2 1}

setBudgetingMode –stageBasedFanoutDrivingFactor 8

Default weight for combinational cell =1

I1 has fanout of 40, so its weight = 2+ (1*1) = 3

I2 has fanout of 70, so its weight = 2+ (1*2) = 4

I3 has fanout of 8, so its weight = 2+ (1*0) = 2

Example 3:

setBudgetingMode -stageBasedWeight {3 2 1} ; ## Default weight for sequential cell =3

, combinational cell =2, buffer/inverter=1 , {S C B} = {3 2 1}

setBudgetingMode -stageBasedPartitionMultiplier {{PTN1 2} {PTN2 3}} ## PTN1 {S C B} =

{6 4 2}, PTN2 {S C B} = {9 6 3}

setBudgetingMode –stageBasedFanoutDrivingFactor 8

I1 has fanout of 40, so its weight = 4 + (2*2) = 8 ; ## I2 has fanout of 70, so its

weight = 2+(1*2) = 4 ;

I3 has fanout of 8, so its weight = 6 + (3*0) = 6

Cycle time = T

Budget for PTN1= 16/44 T

Budget for PTN2= 19/44 T

Budget for top = 9/44 T

September 2022 1128 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

Validating Budgets

Overview
When you generate the timing budgets for partitions using the deriveTimingBudget command, it is
good to validate the results using the checkPartitionSdc command. The validation ensures that the
timing data of the partitioned block is same as that of the chip. This saves the ECO iteration for the
chips and partitioned blocks, and thereby reduces the overall design cycle time.

Note: This validation is carried out independently by comparing the constraints data and timing
data.

The constraints data can be generated from the third-party tools also. To run
the checkPartitionSdc command, the constraints data and timing data for the chips and blocks
must be available in the Innovus format.

On running this command, some simple constraints are directly validated though the SDC
comparison. For some other checks related to pins, the chip and block values are compared.
However, for some complex exception constraints, an independent validation is done by checking
and comparing the phases reaching at the boundary register's pin of the chips and the blocks.

The comparison checks the files of the missing, extra, and mismatching constraints in the blocks
and the chips. These can help in fixing the partitioned block constraints to get accurate budgets.

Flow
The flow of the budgets validation procedure is presented below:

September 2022 1129 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/deriveTimingBudget.html
../innovusTCR/checkPartitionSdc.html
../innovusTCR/checkPartitionSdc.html

When you run the command:

1. The chip database is loaded to generate the chip data files.

2. The following tasks are done in parallel :

a. Load the partitioned top database to generate the top data files. This step is optional.

b. Load the partitioned block database to generate the block data files. This step can be
run multiple times.

3. Compare the constraints and timing data to check the chip and block data files.

Collecting Verification Data
While verifying timing budgeting, collect the following data from the chips and blocks:

Clock Definitions

Clock Boundary Pins

Clock Uncertainties

set_case_analysis on Boundary Pins

set_case_analysis on Internal Pins

Disable Timing on Internal Pins

set_dont_touch on Instances

Phase on End Points Connected to the Block Input Ports

September 2022 1130 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/set_case_analysis.html
../innovusTCR/set_case_analysis.html
../innovusTCR/set_dont_touch.html

Use Model

Perform the following steps:

1. Prepare a TCL file, chip.tcl, to load the full chip design. The file name needs to have at least
the source <design>.enc statement.

2. Launch Innvous and run the checkPartitionSdc command.

3. Analyze the following results in cps/*:

a. The chip data files are saved by the name ‘chip.*’.

b. The block/top data files are saved by the name ‘block.<block_name>.*’.

c. The compared results of the chip and block data are saved in
‘compare_chip_vs_<block>*. For example, the phase comparison report for
block S_T is TBV_REPORT/compare.chip_vs_S_T.endpt.phase.rpt.

Following is the syntax of the checkPartitionSdc command:

checkPartitionSdc [-help]

{[-chip string -partition_dir string] | [-chip string] [-accumulated] [-

overwrite_tag] | [-compare_only]}

[-cells string]

[-master_only]

[-no_top]

[-out_dir string]

Note: For the Integrated Hierarchical Database (iHDB) flow, check partitions with a specified
module tag (checkPartitionSdc -module_model_tag).

The following table presents the description of the command parameters:

-help Outputs a brief description that includes the type and default information for
each checkPartitionSdc parameter. For a detailed description of the
command and all its parameters, use the man command:
man checkPartitionSdc

-accumulated Runs comparison for the accumulated budgeting mode.

-cells string Specifies the list of cell names for which the SDC comparison is to be
done.

Default: all cells

September 2022 1131 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/checkPartitionSdc.html
../innovusTCR/checkPartitionSdc.html
../innovusTCR/checkPartitionSdc.html

Examples
The following command runs the validation using the chip database chip.tcl and the partition
database in ./PTNS:

checkPartitionSdc -chip ./chip.tcl -partition_dir ./PTNS

The following command runs the validation using the chip database chip.tcl and the partition
database in ./PTNS for partitions P1 and P2:

checkPartitionSdc -chip ./chip.tcl -partition_dir ./PTNS -partitions P1 P2

The following command runs the validation using the chip database chip.tcl, the partition
database in ./PTNS, and the dumping reports and log in ./CHK:

checkPartitionSdc -chip ./chip.tcl -partition_dir ./PTNS -out_dir ./CHK

The following command runs the validation using the chip database chip.tcl, and partition

-chip string Specifies the TCL file, which loads the chip database.

-compare_only Compares the dumped data with the previous timing budgeting validation
run.

-master_only Dumps and compares constraints for checking only the master partitions for
the master-clone designs. In case this parameter is not used, the tool
dumps and compares constraints taking clones also in consideration.

-

module_model_tag

string

Specifies the module model tag for the cell on which the SDC comparison
is to be done.

Note: Use this parameter for the Integrated Hierarchical Database (iHDB)
flow.

-no_top Disables checking of the TOP cell.

-overwrite_tag Regenerates design for the accumulated Budgeting mode.

-out_dir string Specifies the directory, which contains the output in the form of validation
comparison reports and log files.

Default: ./cps

-partition_dir

string
Specifies the directory, which contains the partition database.

September 2022 1132 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

database in ./PTNS, and only checks the partitions data (no portioned top checking with chip):

checkPartitionSdc -chip ./chip.tcl -partition_dir ./PTNS –no_top

List of Errors Detected

Clock Category

CLK-001: Clocks missing in Block, exists in Chip

CLK-002: Clocks missing in Chip, exists in Block

CLK-003: Clocks missing in Block, exists in Chip (WARN - exists on feed-thru path)

CLK-004: Clocks period mismatch

CLK-005: Clocks waveform mismatch

CLK-006: Clocks propagation mismatch

CLK-007: Clocks generation mismatch (WARN - This can occur on boundary pins)

CLK-008: Clocks uncertainty pair missing in Block, exists in Chip

CLK-009: Clocks uncertainty pair missing in Chip, exists in Block

CLK-010: Clocks uncertainty pair value mismatch

CLK-011: Clocks group missing in Block, exists in Chip

CLK-012: Clocks group missing in Chip, exists in Block

CLK-013: Clocks in clock group missing in Block, exists in Chip

CLK-014: Clocks in clock group missing in Chip, exists in Block

Case Analysis Category

CASE-001: set_case_analysis missing in Block, exists in Chip on boundary pin

CASE-002: set_case_analysis missing in Chip, exists in Block on boundary pin

CASE-003: set_case_analysis value mistmatch on boundary pin

CASE-004: set_case_analysis missing in Block, exists in Chip on internal pin

CASE-005: set_case_analysis missing in Chip, exists in Block on internal pin

September 2022 1133 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

CASE-006: set_case_analysis value mistmatch on internal pin

Inactive Arcs Category

DISABLE-001: set_disable_timing missing in Block, exists in Chip

DISABLE-002: set_disable_timing missing in Chip, exists in Block

Don't Touch Category

DTOUCH-001: set_dont_touch missing in Block, exists in Chip

DTOUCH-002: set_dont_touch missing in Chip, exists in Block

Data Checks Category

DCHECK-001: set_data_check missing in Block, exists in Chip

DCHECK-002: set_data_check missing in Chip, exists in Block

DCHECK-003: set_data_check (across blocks) missing in Block, exists in Chip

DCHECK-004: set_data_check (across blocks) reference pin mismatch (WARN - probably
translated)

DCHECK-005: set_data_check constraint value mismatch

IO Category

IO-001: Phase at endpoint missing in Block, exists in Chip

IO-002: Phase at endpoint missing in Chip, exists in Block

IO-003: Required-time mismatch at endpoint

Related Commands
checkPartitionSdc

September 2022 1134 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Timing Budgeting

../innovusTCR/checkPartitionSdc.html

Using ART in Hierarchical Designs
Overview

Types of Active Logic Views

Flat Top

Critical

Creating an Active Logic View

The flexILM PreCTS Closure Flow

September 2022 1135 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Using ART in Hierarchical Designs

Overview
Active-logic Reduction Technology (ART) is a technique that is used to activate certain portion of a
logic in a design and masking the other logic, while maintaining full physical design database in
memory. In ART, an active logic view contains only the active portion of the logic.

ART can be applied to any timing-related command, such as timing budgeting or timing
optimization to reduce run time and memory usage. In timing operations, an active logic view
contains only the set of timing paths exposed to the specific operation. When applied to timing
optimization, active logic views enable cross-hierarchical optimization while preserving the full
hierarchical view of the design after optimization is complete.

Types of Active Logic Views
The tool creates an active logic view based on the partition boundaries, set of critical timing paths,
block module boundaries, and physical area. There are two types of active logic views:

Flat Top

Critical

Flat Top
A flat top is a partition-based active logic view that activates the top-level paths and the interface
path of partition blocks. The logic inside the partition blocks is excluded from the timing database.

The following figure shows the flat top active logic view:

September 2022 1136 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Using ART in Hierarchical Designs

Critical
The critical active logic view activates all paths in a design that have a negative slack. All other
logics in the design is masked.

Creating an Active Logic View
To create an active logic view, load the entire chip as a design in the Innovus software, specify the
partition, and then run the createActiveLogicView command with an appropriate option.

Note: The Innovus software considers MMMC settings while creating an active logic view.

Example of Active Logic View Creation

To create an active logic view, run the following commands:

assembleDesign -topDir top.enc.dat -blockDir block1.enc.dat

createActiveLogicView -type flatTop

Note: For the Integrated Hierarchical Database (iHDB) flow, run the following commands:

set_module_model -default_dir ./DATA2

restore_module_model top -tag init

An active logic view cannot be saved as a database or a file. Run the
createActiveLogicView command to create an active logic view.

September 2022 1137 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Using ART in Hierarchical Designs

../innovusTCR/createActiveLogicView.html
../innovusTCR/createActiveLogicView.html
../innovusTCR/set_module_model.html
../innovusTCR/restore_module_model.html

set_module_model -cell block1 -type pnr -tag init

commit_module_model

The flexILM PreCTS Closure Flow

FlexILM creates reduced Netlist by trimming logic on internal path and keeping logic on interface
path, and saves Netlist and DEF. In terms of Netlist and Placement ECO, FlexILM commits change
on interface paths to original block data via the ECO process. It also contributes to memory
reduction in timing graph and physical data.

Preliminary Results on Large Design: Floorplan

September 2022 1138 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Using ART in Hierarchical Designs

../innovusTCR/commit_module_model.html

Preliminary Results on Large Design: Memory and TAT

For detail about flexILM flow, you can refer to the Top-level Timing Closure Methodologies chapter
in the Innovus User Guide.

Note: For information on how to create a FlexILM model using the Integrated Hierarchical
Database (iHDB) flow, see Top-level Timing Closure Methodologies for iHDB Flow.

September 2022 1139 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Using ART in Hierarchical Designs

Top-level Timing Closure Methodologies
Using Interface Logic Models (ILM)

September 2022 1140 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

Using Interface Logic Models (ILM)

Overview
Models are compact and accurate representations of timing characteristics of a block. An Interface
Logic Model (ILM) is a structural representation of a block, specifically a subset of the block's
structure including instances along the I/O timing paths, clock-tree instances, and instances or nets
coupling affecting the signal integrity (SI) on I/O timing paths.

Instead of using a blackbox at the top level, you create an ILM at the block level and use it as you
would use a blackbox.

The advantages of using ILMs are as follows:

More accurate analysis than a blackbox flow

More SI aware than combined .lib or .cdb approach

Can model clock generator inside block

More accurate timing and SI reduces the number of design iterations to close timing and
SI.

No need to characterize blocks

Works on an actual design data

Can be used in the initial prototyping stage for very big designs, when loading full design data
is not feasible.

Allows you to modify only top-level data

Fully preserves implemented partitions

Uses the original constraint file for top-level analysis

No abstraction for timing exceptions

General ILM Flow
ILM is used for top-level timing closure. Models will be generated during the block implementation
stage and will be used at the top implementation stage. Following is the general ILM foundation
flow:

September 2022 1141 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

ILM Generation at Innovus Partition Block-level Design

Use the createInterfaceLogic command to generate ILM at the Innovus partition block-level
design. Two types of models can be generated, ILM model and SI model. The ILM model will be
used for timing analysis and clock tree synthesis, and the SI model can be used at postRoute stage
for SI analysis. The SI model can only be generated if the block-level design is already SI-aware
optimized.

September 2022 1142 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/createInterfaceLogic.html

Here is an example flow script for ILM generation:

source DBS/init.enc

deriveTimingBudget

clearActiveLogicView

partition

savePartition -dir PTN -def

set ptnNameList {tdsp_core ram_128x16_test ram_256x16_test}

Create partition blocks

Cd to each partition block directory, and create ILMs

foreach ptnName $ptnNameList {

 cd PTN/${ptnName}

 restoreDesign . ${ptnName}

 place_opt_design

 ccopt_design

 routeDesign

 saveDesign ${ptnName}_data.enc

 setAnalysisMode -analysisType onChipVariation

 optDesign -postRoute

 createInterfaceLogic -dir ilm

 cd ../..

}

Note: You can also generate an ILM model using the third-party data with
the import_ilm_data command. However, it is recommended to use Innovus-generated models for
better timing correlation.

ILM Integration at Top-level Design

Once the models have been generated, they can be specified at the top-level design for timing
closure:

September 2022 1143 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/import_ilm_data.html

1. Specify a block as an ILM using the specifyIlm command.

set ilmNameList {tdsp_core ram_128x16_test ram_256x16_test}

foreach ilmName $ilmNameList {

 specifyIlm -cell ${ilmName} -dir ../../PTN/${ilmName}/ilm

}

2. Specify the ILM SDC constraint file for each constraint mode using the full chip SDC file (not
the top-level SDC file).

update_constraint_mode -name setup_func \

 -ilm_sdc_files $dataDir/mmmc/dtmf_recvr_core_func.sdc

update_constraint_mode -name setup_test \

 -ilm_sdc_files $dataDir/mmmc/dtmf_chip_testmode.sdc

3. Continue with the normal flow.

Here is an example flow script for top-level timing closure using ILM:

restoreDesign . dtmf_recvr_core

ILM SDC file(s) are used in the flattened ILM view.

Timing results are not available if the ILM SDC file is not defined.

Top-level SDC file is used when ILMs are not specified.

September 2022 1144 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/specifyIlm.html

Specify ILMs at top-level design

set ilmNameList {tdsp_core ram_128x16_test ram_256x16_test}

foreach ilmName $ilmNameList {

 specifyIlm -cell ${ilmName} -dir ../../PTN/${ilmName}/ilm

}

NEED to specify SDC constraints for ILMs using FULL-chip SDC file

update_constraint_mode -name setup_func \

 -ilm_sdc_files $dataDir/mmmc/dtmf_recvr_core_func.sdc

update_constraint_mode -name setup_test \

 -ilm_sdc_files $dataDir/mmmc/dtmf_chip_testmode.sdc

flattenIlm

place_opt_design

checkPlace

earlyGlobalRoute

timeDesign -preCTS

saveDesign DBS/place_route.enc

optDesign -preCTS

timeDesign -preCTS

saveDesign DBS/optDesign.enc

Creating ILMs
In the hierarchical design flow, you create a detailed block-level implementation of a block, then
specify the createInterfaceLogic command to create an ILM for the block. This command creates
the specified directory containing ILM files.

You can also create ILMs for blocks that are in an intermediate stage of design, then use the data at
the top level of the design for preliminary timing optimization.

An ILM created for an incomplete block is not as accurate as an ILM created for a complete
block. Always use ILMs for complete blocks to complete the top-level design.

September 2022 1145 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/createInterfaceLogic.html

The software generates ILM data for CTS, signal integrity, and other design stages (preCTS,
postCTS, postRoute)

ILM data for preCTS, CTS, postCTS, and postRoute
The model contains the netlist of the circuitry leading from the I/O ports to interface sequential
instances (that is, registers or latches), and from interface sequential instances to I/O ports.
The clock tree leading to the interface registers is preserved.

In case of CTS, the timing and CTS models have been merged to reduce the disk usage of an
ILM model. The CTS data is limited to the worst clock sinks and instances/nets leading to
those sinks.

In general, internal register-to-register paths will not be kept in the ILM model. However, in
special cases some internal paths will be kept as shown in the example given below. In the
example, FF1 and FF2 will be kept as they are the interface flops that connect to the output
port and/or input port. Also, FFClk is kept as for each clock port we need to keep at least one
register for timing budget. As a result, we will have two internal register-to-register paths
(shown with red arrows).

ILM data for SI
The model includes all the above, plus aggressor drivers or nets which affect I/O paths. It also
includes the timing window files in the ILM model directory.

Note: When createInterfaceLogic is called, all views are generated for multi-corner, multi-mode
(MMMC) analysis.

September 2022 1146 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

Example ILM Creation

The following method creates a model that can be used in the top-level implementation flow by
both timeDesign and optDesign for setup effort, including postRoute SI optimization. This model is
also used during ccopt_design.

createInterfaceLogic -dir block_A.ILM

Sample Summary Report

The following is a sample summary report generated at the end of
the createInterfaceLogic command:

--

 createInterfaceLogic Summary

--

Model Reduced Instances Reduced Registers

ilm_data 7153/7621 (93%) 174/285 (61%)

si_ilm_data 6793/7621 (89%) 160/285 (56%)

In this report, the reduction ratio in the ilm_data model is 93 percent which means that 7153 out the
total 7621 instances for this block have been eliminated, only 468 instances are written to the
Verilog netlist, out of which 111 instances are registers.

This summary report applies to a block using MMMC. Therefore, views with worst reduction ratio
are displayed for each model.

ILM Generated Data

ILM Generation provides the following output data:

File Extension Description

.def One def file

.v One netlist file

September 2022 1147 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/timeDesign.html
../innovusTCR/optDesign.html
../innovusTCR/ccopt_design.html

Preserving Selected Instances in ILMs

You can force the selected instances and nets to be included in the ILM model by using
the createInterfaceLogic -keepSelected parameter.

1. Select instances or nets using the selectInst or selectNet commands.

2. Specify createInterfaceLogic -keepSelected.

Creating ILMs for Shared Modules

You can use the same sub-block module in different ILM blocks, enabling reuse of versatile
modules. The createInterfaceLogic command considers constant propagation, so that only the
enabled parts of a module are considered when creating ILMs for the reused modules. Because the
Innovus database cannot handle the same module name in different circuits, the software
automatically modifies the module names with the following rule:

topModuleName+timestamp+$+moduleName

As an example, one ILM block (ModuleA) uses an ALU module (ALU) as an unsigned ALU, and a
second block (ModuleB) uses the ALU as a signed ALU. You can change the input signal to use the
ALU differently, setting one ALU as sign enabled and the other to off. When you run
the createInterfaceLogic command, the software considers only the enabled parts of the ALU when
creating ILMs for ModuleA and ModuleB. The software also ensures that the name of the ALU module
in ModuleA and the name of the ALU module in ModuleB are different.

.place One Innovus place file

.sdc One per analysis view

.spef One per corner

.xtwf One per analysis view. This file is only available with SI model

September 2022 1148 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/selectInst.html
../innovusTCR/selectNet.html

Creating ILMs Without Using Innovus Database

If you do not have an Innovus database for an implemented block but have a Verilog netlist,
constraints, and SPEF for that block, then use the import_ilm_data command to store data in the
ILM format.

Following is the usage of the import_ilm_data command:

import_ilm_data -cell blk1 -dir A -model_type timing -verilog V1.v \

 -spef 1.spef -rc_corner corner1 -sdc sdcfile1 -timing_view view1

import_ilm_data -cell blk2 -dir A -model_type si -verilog V2.v \

 -spef 2.spef -rc_corner corner2 -sdc sdcfile2 -timing_view view2

import_ilm_data -cell blk1 -model_type timing -cell_view designLib \

 -verilog V1.v

import_ilm_data –cell blk1 -dir A –model_type timing -verilog V1.v \

 -spef 1.spef –rc_corner corner1

import_ilm_data –cell blk1 -dir A –model_type timing \

 –sdc sdcfile1 –timing_view view1

Note: The import_ilm_data command does not merge timing and CTS data into one model. ILMs
created using this command will have separate models for timing, CTS, and SI.

Specifying ILM Directories at the Top Level
Use specifyIlm for ILM data of a block at the top partition level rather than using the default .lib
model. You can run specifyIlm multiple times in the same session. Each time you run this
command, the software overwrites the previous setting for the same block. If master/clones exist in

-cell, -model_type, {-cell_view | -dir} are required options. When you import an
ILM model from a third party, you must specify the cell that you want to transfer to
Innovus, the model that will be put inside the Innovus ILM model, and the directory
where the ILM data will be stored.

-timing_view requires -sdc, and -rc_corner requires -spef. If these options are not
provided together, the tool will give an error message.

September 2022 1149 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

the design, the cell name will have the name of the master partition.

Note: You can use this command (and unspecifyIlm) only if the ILMs are unflattened
(unflattenIlm). You cannot change ILM settings in flattened ILM view.

Use unspecifyIlm to revert to the .lib model of the block.

Example Top-level Implementation Flow with ILMs

1. Before you start the Innovus tool, prepare the top-level Verilog file, if needed.

If you use the Innovus hierarchical flow in a previous Innovus session, then the savePartition
command automatically creates the top-level data. Else, you need the following in the top-
level directory:

A Verilog netlist that includes dummy modules for the blocks (ILM or Liberty) in the
design.

A view definition file since ILMs are supported only in the MMMC mode. If you have a
non-MMMC design, create or load a view definition file that contains the following:
set_analysis_view -setup {mode1_slowCorner} -hold {mode1_fastCorner}

2. Start an Innovus session from the top-level module directory within the directory where the
partitions are saved.

3. Load the design, including the top-level netlist, ILM directory name, ilm_blocks.lib (optional
if using ILM), stdcells.lib, and .lef for the block and chip-level constraints.
 specifyIlm -cell block_A -dir ../block_A/block_A.ILM

 specifyIlm -cell block_B -dir ../block_B/block_B.ILM

4. Load the floorplan.
loadFPlan top_floorplan

5. Flatten the ILM.
flattenIlm

September 2022 1150 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/unspecifyIlm.html
../innovusTCR/unflattenIlm.html
../innovusTCR/savePartition.html

6. Place the design.
place_

7. Build the clock tree.
cc

8. Run postCTS timing optimization.
optDesign -postCTS

optDesign -postCTS -hold ;#optional

9. Route the design.
routeDesign

10. Run SIAware inside pre-route optimization and post-route optimization with hold.

setDelayCalMode –SIAware true

optDesign –postRoute

optDesign –postRoute –hold

If you want to create an ILM of the resulting block for use in the next level up in the hierarchy, run the
following steps with the above-mentioned flow:

1. Enable SI aware delay calculation.
setDelayCalMode –SIAware true

2. Perform timing analysis.
timeDesign -postRoute

3. Create ILM.
createInterfaceLogic -dir block_parent

ILMs Supported in MMMC Analysis
Cadence strongly recommends that you use ILMs in the MMMC mode. If you have a non-MMMC
design, create and load a view definition file that contains the following:

set_analysis_view -setup {mode1_slowCorner} -hold {mode1_fastCorner}

The MMMC analysis for designs including ILMs is identical to MMMC analysis for black box

September 2022 1151 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

designs except for the following considerations:

1. Views, modes, and corners at the top and partition levels must have same names.

2. When you use create_constraint_mode or update_constraint_mode to specify constraints for
MMMC, you must specify the ILM constraints using the -ilm_sdc_files parameter (that is,
timing in the presence of ILMs gets constraints from the -ilm_sdc_files parameter, not the -
sdc_files parameter). The .sdc files specified with the -ilm_sdc_files parameter should be
the constraint file of the full-chip flat netlist where it allows referencing nets or pins internal to
the ILM model.

If you want to see the LEF pins of the ILM in GUI, the design must be in the unflattened mode.

The following figure shows the flattened and unflattened ILM. The LEF pins of the ILM are visible
after unflattening the ILM.

ILMs Supported in SI
ILM supports the SI aware for optDesign and timeDesign. These commands automatically
run setIlmType -model si before calling flattenIlm such that the SI ILM model is used. Therefore,
your present postRoute optimization scripts should run successfully in the presence of ILMs
(without any additional changes).

The following command can be used to get timing reports containing the SI push-out delays on nets
using the setIlmType -model command:
Reflattens to SI model, then does not unflatten (All other design

commands unflatten upon exit, regardless of the flattened/unflattended

state before invocation)

 setDelayCalMode –SIAware true

 timeDesign -postroute

September 2022 1152 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/setIlmType.html
../innovusTCR/flattenIlm.html

Adds incremental delay column (for SI push-out delays) in timing output:

 set_global report_timing_format {instance arc cell delay arrival required}

Minimizes the width of the report such that it easily fits into the screen

without wrapping

 set_table_style -name report_timing -no_frame -indent 0

report_timing

Note: You can also invoke the Global Timing Debugger (Timing - Debug Timing - Generate).

SI Model Generation

To enhance the accuracy for top-level SI analysis, SI models are supported only when the RC
database has coupling capacitance information. This information is needed for correct SI analysis.

ILM Model
ILM model contains both timing and CTS information instead of having a separate model for each of
them to reduce the disk usage. In this model, the timing and CTS models have been merged by
only the:

interface paths from the timing model.

best/worst latency registers that are to be kept as a part of the CTS model. All other registers
are excluded.

worst inter-clock paths for the timing model.

In the SPEF flow, ensure that SPEF has coupling capacitance data for the SI model that is to
be generated. In the extraction flow, the setExtractRCMode settings determine whether the SI
model is generated (the extraction mode will not be changed internally to generate the SI
model).

September 2022 1153 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/setExtractRCMode.html

Interactive Use of ILMs
When setIlmMode -keepFlatten is set to true, the flow will work under the flattenIlm mode. As a
result:

The number of flatten/unflattenIlmunflatten_ilm calls inside super commands, such
as place_opt_design, timeDesign, optDesign, ccopt_design, is reduced.

Super commands except assembleDesign will return in the same ILM mode as it was.

Once the design is flattened, it will be kept in the flattened state until you run unflattenIlm. This
will help reduce the number of flatten/unflattenIlm operations during the timing closure where
you can run timeDesign, interactive debugging, setting additional SDC constraints, manual
ECO in the flattenIlm mode.
Note: For multi-stage scripts, you need to set this option only once.

The list of commands for which Innovus will automatically unflatten ILMs/flattenILMs
when setIlmMode -keepFlatten is set to true is given below:

Handling Interactive Constraints
You cannot specify the interactive constraints when ILMs are not flattened (unflattenIlm). In the
flattened mode (flattenIlm), you can specify both interactive and modeless constraints and these
constraints are used during various cycles of unflattenIlm to flattenIlm. During saveDesign, these
constraints are honored.

To specify additional constraints while running unflattenIlm, set the following:

set_global timing_defer_mmmc_object_updates true

set_interactive_constraint_modes [all_constraint_modes -active|or

your_own_list_of_modes]

foreach mode {list_of_modes_to_be_updated} {update_constraint_mode -name $mode

-ilm_sdc_files \

[concat get_constraint_mode -name $mode -ilm_sdc_files] additional.sdc]

}

Include all mode-less constraints such as timing_derates and group_path in a separate file, and
run:

source <mode-less_constraint.sdc>

set_global timing_defer_mmmc_object_updates false

set_analysis_view -update_timing

September 2022 1154 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

../innovusTCR/place_opt_design.html
../innovusTCR/timeDesign.html
../innovusTCR/optDesign.html
../innovusTCR/ccopt_design.html
../innovusTCR/assembleDesign.html
../innovusTCR/saveDesign.html

September 2022 1155 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies

Top-level Timing Closure Methodologies for
iHDB Flow

Using Interface Logic Models (ILM)

Using Flexible Interface Logic Models (FlexILM)

Using ILM ECO Methodology

ILM Model Generation for ILM ECO Flow

Using Interface Logic Models (ILM)

Overview
Models are compact and accurate representations of timing characteristics of a block. An Interface
Logic Model (ILM) is a structural representation of a block, specifically a subset of the block's
structure including instances along the I/O timing paths, clock-tree instances, and instances or nets
coupling affecting the signal integrity (SI) on I/O timing paths.

Instead of using a blackbox at the top level, you create an ILM at the block level and use it as you
would use a blackbox.

The advantages of using ILMs are as follows:

More accurate analysis than a blackbox flow

More SI aware than combined .lib or .cdb approach

Can model clock generator inside block

More accurate timing and SI reduces the number of design iterations to close timing and
SI.

No need to characterize blocks

Works on an actual design data

Can be used in the initial prototyping stage for very big designs, when loading full design data
is not feasible.

September 2022 1156 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

Allows you to modify only top-level data

Fully preserves implemented partitions

Uses the original constraint file for top-level analysis

No abstraction for timing exceptions

General ILM Flow
ILM is used for top-level timing closure. Models will be generated during the block implementation
stage and will be used at the top implementation stage. Following is the general ILM foundation
flow:

September 2022 1157 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

ILM Generation at Innovus Partition Block-level Design

Use the create_module_model -type ilm command to generate ILM at the Innovus partition block
level design.
Two types of models can be generated, ILM model and SI model. The ILM model will be used for
timing analysis and clock tree synthesis, and the SI model can be used at the postRoute stage for
SI analysis. The SI model can only be generated if the block-level design is already SI-aware
optimized.

Note: User can also create ILM models after pre-cts, and post-cts flow.

Here is an example flow script for ILM generation:

restore_module_model $block -tag init

place_opt_design

create_module_model -tag my_preCts

September 2022 1158 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/create_module_model.html
../innovusTCR/restore_module_model.html
../innovusTCR/place_opt_design.html
../innovusTCR/create_module_model.html

create_module_model -tag my_preCts -type ilm

ccopt_design

create_module_model -tag my_postCts

create_module_model -tag my_postCts -type ilm

routeDesign

setDelayCalMode -SIAware false

optDesign -postRoute

verify_drc

verifyConnectivity

create_module_model -tag postRoute_v1

create_module_model -tag postRoute_v1 -type etm

create_module_model -tag postRoute_v1 -type ilm

ILM Integration at Top-level Design

Once the models have been generated, they can be specified at the top-level design for timing
closure:

1. Specify a block as an ILM using the set_module_model command.
set_module_model -cell tdsp_core -tag my_preCts -type ilm

set_module_model -cell ptn_wrapper -tag pre_cts_v2 -type ilm

2. Commit the specified ILMs using the commit_module_model command to load them into the
design. The full chip SDC constraint files can be specified with the commit_module_model
command using the -mmmc_file option.
commit_module_model -mmmc_file design/dtmf_recvr_core.enc.dat/viewDefinition.tcl

Note: If the MMMC file does not have the -ilm_sdc_files information, full chip constraint files
must be loaded using the create_constraint_mode or update_constraint_mode command
after the ILM models are specified and before running the commit_module_model command as
follows to avoid the redundant ILM SDC reading:

set_global timing_defer_mmmc_object_updates true

foreach mode [all_constraint_modes] {update_constraint_mode -name $mode -

ilm_sdc_files <full_chip_sdc_file>}

commit_module_model

September 2022 1159 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/ccopt_design.html
../innovusTCR/routeDesign.html
../innovusTCR/setDelayCalMode.html
../innovusTCR/optDesign.html
../innovusTCR/verify_drc.html
../innovusTCR/verifyConnectivity.html
../innovusTCR/set_module_model.html
../innovusTCR/commit_module_model.html
../innovusTCR/create_constraint_mode.html
../innovusTCR/update_constraint_mode.html
../innovusTCR/set_global.html
../innovusTCR/timing_defer_mmmc_object_updates.html
../innovusTCR/all_constraint_modes.html

set_global timing_defer_mmmc_object_updates false

3. Continue with the normal flow.

Here is an example flow script for top-level timing closure using ILM:

set_module_model -default_dir /myproject/DATA

restore_module_model dtmf_recvr_core -tag init

set_module_model -cell tdsp_core -tag my_preCts -type ilm

set_module_model -cell ptn_wrapper -tag preCts_v2 -type ilm

commit_module_model -mmmc_file <full_chip_view_definition_tcl_file>

setDesignMode -process 65

setAnalysisMode -analysisType onChipVariation -cppr both

place_opt_design

create_module_model -tag top_pod

set_module_model -cell tdsp_core -tag my_postCts -type ilm

set_module_model -cell ptn_wrapper -tag postCts_v2 -type ilm

delete_ccopt_clock_tree_spec

commit_module_model

ccopt_design

create_module_model -tag top_postCts

set_module_model -cell tdsp_core -tag postRoute_v1 -type ilm

set_module_model -cell ptn_wrapper -tag postRoute_v2 -type ilm

commit_module_model

routeDesign

optDesign -postRoute

setExtractRCMode -engine postRoute

extractRC

timeDesign -postRoute

create_module_model -tag final

ILM SDC file(s) are used in the flattened ILM view.

Timing results are not available if the ILM SDC file is not defined.

September 2022 1160 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/set_module_model.html
../innovusTCR/restore_module_model.html
../innovusTCR/commit_module_model.html
../innovusTCR/setDesignMode.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/place_opt_design.html
../innovusTCR/create_module_model.html
../innovusTCR/delete_ccopt_clock_tree_spec.html
../innovusTCR/ccopt_design.html
../innovusTCR/routeDesign.html
../innovusTCR/optDesign.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/extractRC.html
../innovusTCR/timeDesign.html

Creating ILMs
In the hierarchical design flow, you create a detailed block-level implementation of a block, then
specify the create_module_model -type ilm command to create an ILM for the block. This
command creates the ILM model under the central data repository directory.

You can also create ILMs for blocks that are in an intermediate stage of design, then use the data at
the top level of the design for preliminary timing optimization.

The software generates ILM data for CTS, signal integrity, and other design stages (preCTS,
postCTS, postRoute)

ILM data for preCTS, CTS, postCTS, and postRoute
The model contains the netlist of the circuitry leading from the I/O ports to interface sequential
instances (that is, registers or latches), and from interface sequential instances to I/O ports.
The clock tree leading to the interface registers is preserved.

In case of CTS, the timing and CTS models have been merged to reduce the disk usage of an
ILM model. The CTS data is limited to the worst clock sinks and instances/nets leading to
those sinks.

In general, internal register-to-register paths will not be kept in the ILM model. However, in
special cases some internal paths will be kept as shown in the example given below. In the
example, FF1 and FF2 will be kept as they are the interface flops that connect to the output
port and/or input port. Also, FFClk is kept as for each clock port we need to keep at least one
register for timing budget. As a result, we will have two internal register-to-register paths
(shown with red arrows).

An ILM created for an incomplete block is not as accurate as an ILM created for a complete
block. Always use ILMs for complete blocks to complete the top-level design.

September 2022 1161 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

ILM data for SI
The model includes all the above, plus aggressor drivers or nets which affect I/O paths. It also
includes the timing window files in the ILM model directory.

Note: When the create_module_model -type ilm command is called, all views are generated for
multi-corner, multi-mode (MMMC) analysis.

September 2022 1162 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

Example ILM Creation

The following method creates a model that can be used in the top-level implementation flow by
both timeDesign and optDesign for setup effort, including postRoutepost_route SI optimization. This
model is also used during ccopt_design.

set_module_model -default_dir /myproject/DATA

restore_module_model $block -tag init

place_opt_design

…

create_module_model -tag my_postroute -type ilm

Sample Summary Report

The following is a sample summary report generated at the end of the create_module_model -type
ilm command:

--

 create_module_model -type ilm Summary

--

Model Reduced Instances Reduced Registers

ilm_data 7153/7621 (93%) 174/285 (61%)

si_ilm_data 6793/7621 (89%) 160/285 (56%)

In this report, the reduction ratio in the ilm_data model is 93 percent which means that 7153 out the
total 7621 instances for this block have been eliminated, only 468 instances are written to the
Verilog netlist, out of which 111 instances are registers.

This summary report applies to a block using MMMC. Therefore, views with worst reduction ratio
are displayed for each model.

ILM Generated Data

ILM Generation provides the following output data:

File Extension Description

September 2022 1163 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/timeDesign.html
../innovusTCR/optDesign.html
../innovusTCR/ccopt_design.html
../innovusTCR/set_module_model.html
../innovusTCR/restore_module_model.html
../innovusTCR/place_opt_design.html
../innovusTCR/create_module_model.html

Preserving Selected Instances in ILMs

You can force the selected instances and nets to be included in the ILM model:

1. Select instances or nets using the selectInst or selectNet commands.

2. Specify the following commands:
set_module_model -default_option {-keepSelected} -type ilm

create_module_model -tag my_cts -type ilm

Creating ILMs for Shared Modules

You can use the same sub-block module in different ILM blocks, enabling reuse of versatile
modules. The create_module_model -type ilm command considers constant propagation, so that
only the enabled parts of a module are considered when creating ILMs for the reused modules.
Because the Innovus database cannot handle the same module name in different circuits, the
software automatically modifies the module names with the following rule:

topModuleName+timestamp+$+moduleName

As an example, one ILM block (ModuleA) uses an ALU module (ALU) as an unsigned ALU, and a
second block (ModuleB) uses the ALU as a signed ALU. You can change the input signal to use the
ALU differently, setting one ALU as sign enabled and the other to off. When you run
the create_module_model command, the software considers only the enabled parts of the ALU when
creating ILMs for ModuleA and ModuleB. The software also ensures that the name of the ALU module
in ModuleA and the name of the ALU module in ModuleB are different.

Note: With Integrated Hierarchical Database (iHDB), ILM models cannot be imported from third-

.def One def file

.v One netlist file

.place One Innovus place file

.sdc One per analysis view

.spef One per corner

.xtwf One per analysis view. This file is only available with SI model

September 2022 1164 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/selectInst.html
../innovusTCR/selectNet.html
../innovusTCR/set_module_model.html
../innovusTCR/create_module_model.html
../innovusTCR/create_module_model.html

party tools.

Specifying ILM Directories at the Top Level
Use the set_module_model -type ilm command for ILM data of a block at the top partition level
rather than using the default .lib model. You can run the set_module_model -type ilm command
multiple times in the same session. Each time you run this command, the software overwrites the
previous setting for the same block. If master/clones exist in the design, the cell name will have the
name of the master partition.

Once ILMs are specified, the commit_module_model command should be invoked to load specified
ILM models. To revert specified ILM models back to .lib model of the block, use the following
commands;

set_module_model -type lef -add_ons etm

Example: Top-level Implementation Flow with ILMs

1. Before you start the Innovus tool, prepare the top-level Verilog file, if needed. If you use the
Innovus hierarchical flow in a previous Innovus session, then the savePartition -
module_model_tag command automatically creates the top-level data.

2. Start an Innovus session.

3. Load the design, including the top-level netlist, and ILM specification.

restore_module_model dtmf_recvr_core -tag init

set_module_model -cell tdsp_core -tag my_preCts -type ilm

set_module_model -cell ptn_wrapper -tag my_preCts -type ilm

set_global timing_defer_mmmc_object_updates true

foreach mode [all_constraint_modes] {

update_constraint_mode -name $mode -ilm_sdc_files <full_chip_sdc_file>

}

commit_module_model

set_global timing_defer_mmmc_object_updates false

4. Place and optimize the design.
place_opt_design

5. Optionally save a design

September 2022 1165 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/set_module_model.html
../innovusTCR/savePartition.html
../innovusTCR/restore_module_model.html
../innovusTCR/set_global.html
../innovusTCR/timing_defer_mmmc_object_updates.html
../innovusTCR/all_constraint_modes.html
../innovusTCR/update_constraint_mode.html
../innovusTCR/commit_module_model.html
../innovusTCR/place_opt_design.html

create_module_model -tag top_preCts

6. Build the clock tree.
set_module_model -cell tdsp_core -tag my_postCts -type ilm

set_module_model -cell ptn_wrapper -tag my_postCts -type ilm

delete_ccopt_clock_tree_spec

commit_module_model

ccopt_design

create_module_model -tag top_postCts

7. Route the design.
set_module_model -cell tdsp_core -tag postRoute_v1 -type ilm

set_module_model -cell ptn_wrapper -tag postRoute_v1 -type ilm

commit_module_model

routeDesign

8. Run SIAware inside pre-route optimization and post-route optimization with hold.

setDelayCalMode –SIAware true

optDesign –post_route

optDesign –post_route –hold

setExtractRCMode -engine postRoute

extractRC

timeDesign -postRoute

create_module_model -tag top_postRoute

September 2022 1166 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/delete_ccopt_clock_tree_spec.html
../innovusTCR/ccopt_design.html
../innovusTCR/routeDesign.html
../innovusTCR/setDelayCalMode.html
../innovusTCR/optDesign.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/extractRC.html
../innovusTCR/timeDesign.html
../innovusTCR/create_module_model.html

Nested ILM Support
Stylus Hierarchical Data Base provides an easy way for supporting design with multiple levels of
hierarchy where an ILM can be nested inside another ILM.

1. First implement all block-level designs and generate their ILMs using
the create_module_model -type ilm command.

2. At top-level design, specify all ILMs including nested ones using the set_module_model
command.

3. Run the commit_module_model command to load all ILMs including nested ones to the top-
level design where Innovus will automatically stitches all the ILM SPEFs together.

4. Run the normal top-level timing closure flow.

Example: dtmf_recvr_core design has tdsp_core and ptn_wrapper as first-level of physical
hierarchy. Inside ptn_wrapper design, it has ram_128x16_test cell as second-level of physical
hierarchy.

Note: The ILM model should be a donut model. If a block-level design has specified ILM
model, when generating an ILM model for this design, the create_module_model -type
ilm command will automatically treat the ILM as a LEF.

For example, consider a block-level design, ptn_wrapper, that has ram128X16_test as an
ILM. Specifying the create_module_model -type ilm command will generate an ILM model for
ptn_wrapper with ram128x16_test as a LEF.

At top-level design, do the following:
set_module_model -default_dir /myproject/DATA

restore_module_model dtmf_recvr_core -tag init

setOptMode -opt_skew false

#setDesignMode -earlyClockFlow true

set_module_model -cell tdsp_core -tag my_preCts -type ilm

set_module_model -cell ptn_wrapper -tag my_preCts -type ilm

set_module_model -cell ram_128x16_test -tag my_preCts -type ilm

commit_module_model -mmmc_file design/dtmf_recvr_core.enc.dat/viewDefinition.tcl

reportIlmStatus

place_opt_design

…

September 2022 1167 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/create_module_model.html
../innovusTCR/set_module_model.html
../innovusTCR/restore_module_model.html
../innovusTCR/setOptMode.html
../innovusTCR/setDesignMode.html
../innovusTCR/reportIlmStatus.html
../innovusTCR/place_opt_design.html

ILMs Supported in MMMC Analysis
Cadence strongly recommends that you use ILMs in the MMMC mode. If you have a non-MMMC
design, create and load a view definition file that contains the following:

set_analysis_view -setup {mode1_slowCorner} -hold {mode1_fastCorner}

The MMMC analysis for designs including ILMs is identical to MMMC analysis for black box
designs except for the following considerations:

1. Views, modes, and corners at the top and partition levels must have same names.

2. When you use create_constraint_mode or update_constraint_mode to specify constraints for
MMMC, you must specify the ILM constraints using the -ilm_sdc_files parameter (that is,
timing in the presence of ILMs gets constraints from the -ilm_sdc_files parameter, not the -
sdc_files parameter). The .sdc files specified with the -ilm_sdc_files parameter should be
the constraint file of the full-chip flat netlist where it allows referencing nets or pins internal to
the ILM model.

ILMs Supported in SI
ILM supports the SI aware for optDesign and timeDesign. These commands automatically switch to
SI ILM models during postRoute stage. Therefore, your present postRoute optimization scripts
should run successfully in the presence of ILMs (without any additional changes).

SI Model Generation

To enhance the accuracy for top-level SI analysis, SI models are supported only when the RC
database has coupling capacitance information. This information is needed for correct SI analysis.

In the SPEF flow, ensure that SPEF has coupling capacitance data for the SI model that is to
be generated. In the extraction flow, the setExtractRCMode settings determine whether the SI
model is generated (the extraction mode will not be changed internally to generate the SI
model).

September 2022 1168 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/set_analysis_view.html
../innovusTCR/create_constraint_mode.html
../innovusTCR/update_constraint_mode.html
../innovusTCR/setExtractRCMode.html

ILM Model
ILM model contains both timing and CTS information instead of having a separate model for each of
them to reduce the disk usage. In this model, the timing and CTS models have been merged by
only the:

interface paths from the timing model.

best/worst latency registers that are to be kept as a part of the CTS model. All other registers
are excluded.

worst inter-clock paths for the timing model.

Handling Interactive Constraints
All timing related commands works in flattened or global view only. With dual-view ILMs user
should stay in the flattened view throughout the top-level timing closure flow. To improve loading
run time of SDCs, suggest to do the following to delay all SDC loading after all constraints are
specified:

set_global timing_defer_mmmc_object_updates true

set_interactive_constraint_modes [all_constraint_modes -active|or

your_own_list_of_modes]

foreach mode {list_of_modes_to_be_updated} {update_constraint_mode -name $mode

-ilm_sdc_files \

[concat get_constraint_mode $mode -ilm_sdc_files] additional.sdc]

}

Include all mode-less constraints such as timing_derates and group_path in a separate file, and
run:

source <mode-less_constraint.sdc>

set_global timing_defer_mmmc_object_updates false

set_analysis_view -update_timing

September 2022 1169 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/set_global.html
../innovusTCR/timing_defer_mmmc_object_updates.html
../innovusTCR/set_interactive_constraint_modes.html
../innovusTCR/update_constraint_mode.html
../innovusTCR/get_constraint_mode.html
../innovusTCR/set_analysis_view.html

Using Flexible Interface Logic Models (FlexILM)

Overview
In the top-level timing closure, timing budgeting is not accurate and inter-partition critical paths are
hard to close. After partition, blocks are implemented in a number of days and are modeled as ILM
blocks at the top-level design for the top-level timing closure. ILM blocks are read-only, and as a
result, top-level timing issues are not fixed easily, especially in channel-less designs where there is
no room for buffer insertion. Designers may need to do at least two or three passes of hierarchical
flow to close timing. To address this challenge, a single-pass hierarchical solution with Flexible
Interface Logic Models (FlexILM) can be used. FlexILM is a reduced netlist where logics on
interface paths are kept and logics on internal paths are removed. At the top-level design, interface
paths of FlexILMs can be optimized, and netlist and placement changes can be ECO back to
partition blocks automatically. FlexILM also reduces the memory in timing graph and physical data
where removed instances are replaced by placement blockages to avoid violations with the newly
added optimized logics. Additionally, routing of removed nets will be replaced by RC grids to
improve RC extracted correlation.

The advantages of using FlexILM are as follows:

Enables concurrent top and block optimization for interface paths

Fixes inter-partition timing critical paths early in the flow where interface logics can be

September 2022 1170 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

touched

Does not need accurate timing budget

Is the only solution for a channel-less design

Currently, FlexILM does not provide support for master/clone, route, and CCopt with useful skew,
and there is minor delay or RC correlation due to a different routing pattern.

General FlexILM Flow
FlexILM is used for the top-level timing closure. Models should be generated during the block
implementation stage and will be used at top-level design for timing closure. Following is the
general FlexILM flow:

FlexILM Model Creation
FlexILM can be generated at the Innovus partition block-level design using the
create_module_model -type flexilm command. FlexILM supports the preCTS and/or postCTS
optimization stage. It converts reduced instances to placement blockages and reduced net wires to
RC Grid.

September 2022 1171 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/create_module_model.html

Following is an example flow script for generating FlexILM:

set_module_model -default_dir /myproject/DATA

set_module_model -default_options {-optStage preCTS} -type flexilm

restore_module_model $block -tag init

place_opt_design

create_module_model -tag my_preCts

create_module_model -tag my_preCts -type flexilm

Note: The -optStage parameter is mentioned to specify the stage at which the flexILM model will be
used, preCTS or postCTS.

Note: When the create_module_model -type flexilm command is called, all the views are
generated for multi-corner, multi-mode (MMMC) analysis.

Top-Level Optimization
After creating FlexILM model from each partition, these models can be specified and committed at
the top level using the commit_module_model command. Once the design is optimized, changes can
be ECO back to block-level design using the update_module_model command.

September 2022 1172 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/set_module_model.html
../innovusTCR/restore_module_model.html
../innovusTCR/place_opt_design.html
../innovusTCR/create_module_model.html
../innovusTCR/commit_module_model.html
../innovusTCR/update_module_model.html

Following are the main steps of the top-level optimization flow:

1. Set the central data repository
set_module_model -default_dir /myproject/DATA

2. Restore the design for the top level.
restore_module_model dtmf_recvr_core -tag init

3. Commit FlexILM model for all the blocks.

set_module_model -cell * -tag my_prects -type flexilm

commit_module_model -mmmc_file $dataDir/dtmf_recvr_core.enc.dat/viewDefinition.tcl

report_module_model

4. After committing FlexLM model, you optimize the design to improve timing by following the

The full chip MMMC view file should be specified with the –mmmc_file option
when running commit_module_model.

You can use the following command to get back to the full block after you have
committed the FlexILM model at the top level.
set_module_model -cell * -type pnr -tag init

commit_module_model

September 2022 1173 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/set_module_model.html
../innovusTCR/restore_module_model.html
../innovusTCR/commit_module_model.html
../innovusTCR/report_module_model.html

steps given below:

a. Ensure that you keep logic ports during optimization.

set flexIlmList {tdsp_core_inst ram_128x16_test_inst}

foreach hi $flexIlmList { dbSet [dbGetHInstByName $hi].dontTouchHports true }

redirect {} > keepPorts.hinsts

redirect {foreach hi $flexIlmList {puts “$hi”}} >> keepPort.hinsts

setScanReorderMode -keepPort keepPort.hinsts

setScanReorderMode -enable_for_partition true

setRouteMode -earlyGlobalRoutePartitionHonorFence {.}

b. Run the place_opt_design command to optimize the design.
place_opt_design

5. Run the update_module_model command to update the partition blocks with ECO changes.

set blocks “tdsp_core ram_128x16_test”

foreach m $blocks {

update_module_model -cell $m -plugin_tcl {

setMultiCpuUsage -localCpu 8

ecoPlace

create_module_model -tag post_opt

create_module_model -tag post_opt -type flexilm -include_early_global_route

}

6. After net list changes had been ECO back to block-level designs, block designs with ECO
changes can be brought back to the top-level design for chip assembly to check timing.
Following is the sample script:

foreach m $blocks { set_module_model -cell $m -tag post_opt -type flexilm}

commit_module_model

dbDeleteTrialRoute

setRouteMode -earlyGlobalRoutePartitionHonorPin true

earlyGlobalRoute

timeDesign -preCTS

FlexILM Model Data
FlexILM generation provides the following output data:

File Extension Description

September 2022 1174 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

../innovusTCR/setScanReorderMode.html
../innovusTCR/setRouteMode.html
../innovusTCR/place_opt_design.html
../innovusTCR/update_module_model.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/ecoPlace.html
../innovusTCR/create_module_model.html
../innovusTCR/commit_module_model.html
../innovusDBAref/dbDeleteTrialRoute.html
../innovusTCR/setRouteMode.html
../innovusTCR/earlyGlobalRoute.html
../innovusTCR/timeDesign.html

Using ILM ECO Methodology

Overview
ILM model is read-only where optimizer cannot change the ILM block netlist. As a result, you may
need to iterate few passes between the top- and block-level designs to close timing. ILM
methodology has been enhanced to ILM ECO methodology. In ILM ECO methodology, Innovus
optimizer can optimize ILM boundary interface logics and can ECO back the changes into partition
blocks. The ILM ECO methodology supports:

Post-route optimization style where it can add buffers and/or resize cell(s) to improve
WNS/TNS

Master/clones where all the ECO changes are applied to both master/clone hinsts

For ILM ECO operation:

Logics between registers to registers are converted to dummy logic cells instead of removing
them so refinePlace can check edge constraints when legalizing new added buffers

ILM SPEF has node locations so the extractor can update SPEF for new added net(s)

ILM placement/routing blockages are removed while actual blockages inside block design are
preserved

.v Netlist file

.sdc One per constraint mode

.def One DEF placement file

.rcg One RC Grid file

.blkg One placement blockage file

September 2022 1175 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

ILM ECO Integrated in the Flow
When ILM ECO is integrated in the flow, the boundary timing issues can be fixed earlier in the flow.
However, it is hard to execute top and block timing closure in parallel because of the ECO netlist
consistency requirement.

September 2022 1176 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

ILM Model Generation for ILM ECO Flow
To generate an ILM model for ILM ECO flow, -allowIlmEco option should be specified:

set_module_mode -default_options {-allowIlmEco} –type ilm

create_module_model -type ilm -tag postcts

Note: The ILM model netlist generated with –allowIlmEco tends to be larger than the netlist of
default ILM model as the optimizer requires to keep complete connection of kept netlist. Therefore, it
is recommended to use –allowIlmEco only for the models that you plan to open-up for optimization
to improve runtime/memory.

ILM ECO At Top-Level Design
After specifying ILMs at the top-level design, you need to specify the ILMs that can be opened for
optimization by setting cell DB allowIlmEco flag/bit.

Usage model:

September 2022 1177 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

dbSet [dbGetCellByName <cellName>] .allowilmEco true

Optimizer checks this flag/bit of an ILM hinst. If it is true, optimizer optimizes the ILM boundary
interface logics to improve timing.

Note: This bit setting has higher precedence than any other DB ILM dont touch settings.

Saving the ILM ECO Information
The write_ilm_eco_db command saves the netlist and placement information changes at the top-
level design. The write_ilm_eco_db command generates a binary ECO file that can be read/loaded
back to a block-level design.

Generate ECO TCL script with read_ilm_eco_db –module_model_tag for iHDB.

Also output a corresponding ECO report file for viewing purpose.

Sample Scripts
Here is a sample script for the block-level ILM ECO model generation:

set_module_model -default_dir DATA2

Restore block-level design generated by savePartition –module_model_tag command

restore_module_model <block1Name> -tag init

#place_opt_design

#ccopt_design

Generate an ILM to be used at top-level design so top-level implementation can

be ran in parallel

set_module_mode -default_options {-allowIlmEco} –type ilm

create_module_model -type ilm -tag postCTS

Here is a sample script for the top-level design implementation with ILM ECO:

set_module_model -default_dir DATA2

restore_module_model <topDesign>

set_module_model -cell <block1Name> -tag postcts -type ilm

September 2022 1178 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

set_module_model -cell <block2Name> -tag postcts -type ilm

commit_module_model

Specify which ILMs can be optimized

dbSet [dbGetHInstByName <block1HinstName>].cell.allowIlmEco true

dbSet [dbGetHInstByName <block2HinstName>].cell.allowIlmEco true

place_opt_design

ccopt_design

optDesign –postCts –hold

create_module_model -tag postcts_hold

Recommend to write out ECO file(s) after postCts stage

write_ilm_eco_db -module_model_tag postcts

Here is a sample script for ILM ECO implementation and verification:

For block-level ILM ECO implementation:

set_module_model -default_dir DATA2

Restore block-level design generated by savePartition –module_model_tag command

restore_module_model <block1Name> -tag postcts -add_ons {eco}

#place_opt_design

#ccopt_design

Generate an ILM to be used at top-level design so top-level implementation can

be ran in parallel

set_module_mode -default_options {-allowIlmEco} –type ilm

create_module_model -type ilm -tag postcts_eco

For Merged Top-Level Timing Verification

set_module_model -default_dir DATA2

restore_module_model <topDesign> -tag postcts_hold

set_module_model -cell <block1Name> -tag postcts_eco -type ilm

September 2022 1179 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

set_module_model -cell <block2Name> -tag postcts_eco -type ilm

commit_module_model

...

timeDesign -postCTS

create_module_model -tag postcts_hold_eco

ILM-based Timing Re-Budgeting
Optionally, timing budgeting can be re-generated for all ILMs based on the current optimized
design.

Sample Scripts

Rebudgeting and ECO

Here is a sample script top-level design implementation with ILM ECO:

September 2022 1180 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

set_module_model -default_dir DATA2

restore_module_model <topDesign>

set_module_model -cell <block1Name> -tag postcts -type ilm

set_module_model -cell <block2Name> -tag postcts -type ilm

commit_module_model –mmmc_file <fullChipViewDefinition>

Specify which ILMs can be optimized

dbSet [dbGetHInstByName <block1HinstName>].cell.allowIlmEco true

dbSet [dbGetHInstByName <block2HinstName>].cell.allowIlmEco true

place_opt_design

ccopt_design

optDesign –postCts –hold

create_module_model -tag postcts_hold

Optional to re-budget timing for the block design

setBudgetingMode –fixTopLevelPaths positiveOnly

report_timing

deriveTimingBudget –allIlmHinsts

saveTimingBudget -module_model_tag postcts

Recommend to write out ECO file(s) after postCts stage

write_ilm_eco_db -module_model_tag postcts

Here is a sample script for block-level ILM ECO implementation with updated budgets

set_module_model -default_dir DATA2

restore_module_model <block1Name> -add_ons {mmmc eco} –tag postcts

If block1 post CTS hold step is running parallel with top-level design then

block1 postcts hold should be loaded instead

restore_module_model <block1Name> -tag postcts_hold \

-add_ons {postcts/mmmc postcts/eco}

September 2022 1181 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

…

September 2022 1182 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Top-level Timing Closure Methodologies for iHDB Flow

Extracting Timing Models

Overview

ETM Generation

ETM Generation for MMMC Designs

Slew Propagation Modes in Model Extraction

Basic Elements of Timing Model Extraction

Secondary Load Dependent Networks

Characterization Point Selection

Constraint Generation during Model Extraction

Parallel Arcs in ETM

Latency Arcs Modelling

Latch-Based Model Extraction

Model Extraction in AOCV Mode

Stage Weight Modeling in ETM

PG Pin Modeling During Extraction

Extracted Timing Models with Noise (SI) Effect

Merging Timing Models

Limitations of ETM

Validation of Generated ETM

Auto-Validation of ETM

ETM Extremity Validation

Limitation/Implications of EV-ETM

September 2022 1183 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

Overview
Timing model extraction is the process of abstracting the interface timing of hierarchical blocks in a
timing library. Typically, model extraction has the following advantages:

Reduces the memory requirements by generation of extraction timing models (ETMs) for
respective blocks, which may be huge in size.

Reduces the static timing analysis (STA) run time.

Hides the proprietary implementation details of the block from a third-party.

The do_extract_model command is used to build a timing model of a digital block to be used with a
timing analyzer. The automatic derivation and extraction of the "actual" timing context for a lower-
level module instance is required for achieving timing convergence with large design databases.

The software has the following advantages for timing extraction:

Provides a fast timing engine that allows for quick derivation of a module's timing context.

Extracts data correctly across multiple clock domains.

Allows merging of various models in various modes for their respective blocks.

You can start with model extraction with the following data loaded in the software:

Design netlist.

Timing libraries.

Block context (i.e. constraints like clocks, path exceptions, operating conditions etc.)

RC data of the nets.

September 2022 1184 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html

The following diagram illustrates this flow:

Model Extraction Flow

ETM Generation
ETM represents the timing for interface paths. Input to flop/gate, input to output and flop/gate to
output paths of a design are preserved as timing arcs in the ETM. If there are multiple clocks
capturing the data from an input port then an arc with respect to each input port is extracted.

The flop-to-flop type of paths are not written in the ETM, as these do not affect the interface paths
timing. The following figure shows the equivalent ETM for a given netlist:

The following figure shows the Extracted Model:

September 2022 1185 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

The timing model extracted is context independent as it gives the correct value of arcs/delays, even
with varying values of input transitions, output loads, input delays, or output delays. In such cases, it
is not required to re-extract the model if some of the context gets changed at a later stage of
development.

However, the model depends upon the operating conditions, wire load models, annotated
delays/loads, and RC data present on internal nets defined in the original design. So if these
elements change at the development stage of design then we need to re-extract the model for
correlation with the changed scenario.

ETM Generation for MMMC Designs
In MMMC configuration, for generating ETM, only one view should be active. If you need to
generate ETM for a specified view, however, the view is not active in setup as well as hold mode,
then the software will show an error. It is a prerequisite that the view should be active for both setup
and hold analysis. You can use the set_analysis_view –setup {$viewName} –hold

{$viewName} command before running the do_extract_model command to achieve this.

After model extraction for MMMC designs, the dumped assertion files will be added with
${viewName} suffix, and the dumped derate related assertion files will be added with
${delayCornerName} prefix. You need to choose the corresponding file while using the extracted
models.

Slew Propagation Modes in Model Extraction
Model extraction supports two modes of slew propagation - worst slew propagation and path-based
slew propagation. These are described below.

September 2022 1186 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/set_analysis_view.html
../innovusTCR/do_extract_model.html

Worst Slew Propagation

In worst slew propagation mode, the worst slew of all the incoming arcs at a converging point is
taken to propagate further. For example, if at input pin i1 , the slew index was {1 3 5} and at input pin
i2 the slew index was {1 2 6}, then the resulting slew at the output will be corresponding to the slew
index {3 5 6}, which is worst of all the slew indices.

That is, slew (i1) = slew (i2) = max {(actual slew (i1->z), actual slew (i2->z)}.

Path-Based Slew Propagation

In path-based slew propagation mode, the actual slew for the path elements is propagated for the
extracted arcs. For example, if at input pin i1 the slew index was {1 3 5} and at input pin i2 the slew
index was {1 2 6}, then the resulting slew index for path through i1 will be {1 3 5} and through i2 will
be {1 2 6}.

The slew propagation mode can be controlled by using
the timing_extract_model_slew_propagation_mode global variable. The default value of this global
variable is worst_slew.

Basic Elements of Timing Model Extraction
The following are the various basic elements which are relevant to model extraction:

Nets – internal and boundary nets

Timing Paths - check and delay paths – in2reg, in2out, and reg2out paths

Minimum pulse width and periods checks

Path Exceptions – false, multicycle, min delay, max delay, disable timing

Constants

Unconstrained Paths

Clock Gating Checks

September 2022 1187 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/timing_extract_model_slew_propagation_mode.html

Design Rules

Clocks - created clocks and generated clocks

These are explained in the following sections.

Nets
Nets can mainly be classified into two types – boundary nets and internal nets. The nets which are
directly connected to the input or output ports of the block are termed as the boundary nets. The
nets which drive and are driven by some internal instance pin of the block are termed as the internal
nets. Model extraction treats both the nets differently as boundary nets are always related and
connected to the context.

Boundary Nets

The boundaries are connected to the context. So the RC data for them may change if the context of
the block changes at a later stage. To be better context independent the model should not consider
SPEF or DSPEF data for their delay calculation and a separate SPEF/DSPEF file for the boundary
nets can be stitched to the top level data while instantiating the extracted model.

The software by default considers the RC data while extracting the model. The software provides a
command line option which can be used to ignore the RC data for boundary nets by using the
following setting:

setDelayCalMode -ignoreNetLoad true

Note: Currently, the software does not output the SPEF file for boundary nets which can be used at
the top level. To solve this problem, you need to create the top level SPEF file for boundary nets of
this block or use the default behavior to consider the boundary nets RC data for model extraction.

Internal Nets

As the internal nets connect the pins for the internal instance of the block, they are in no way
dependent on the context environment. So the RC data defined for the internal nets is used as it is
for delay calculation and is added in the extracted paths. If no RC is defined for these nets, then the
wire load models are used to calculate their delays.

However, if a load or resistance is annotated using the set_load/set_resistance command, then it
will override the annotated SPEF or the applied wire load model.

September 2022 1188 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/setDelayCalMode.html
../innovusTCR/set_load.html
../innovusTCR/set_resistance.html

If the nets are annotated with the delays using the set_annotated_delay command or SDF
annotation, then the annotated delay is used instead of the calculated delays. In case of
incremental delays the addition of calculated and incremental delays is used.

Timing Paths
Timing paths are broadly divided in four types:

In2reg

reg2out

in2out

reg2reg: The reg2reg paths are not relevant to the model extraction process.

These are described below.

In2Reg Paths
A In2reg path is a setup/hold check that starts from an input port and is captured at a flop or gating
element by a clock. So the in2reg type of paths are captured in equivalent setup or hold checks.
The setup/hold values to be written in ETM are calculated using the data path delay, the setup/hold
value of the library cell and the clock path delay. The equations can be written as follows.

Setup arc value = data path delay (input to flop) + setup value of flop – clock path delay (clock
source to clk pin)
Hold arc value = data path delay (input to flop) - hold value of flop – clock path delay (clock source
to clk pin)

The value for these arcs is the function of the transition on the input port and the transition at the
clock source. If a flop is captured by multiple clocks then separate setup/hold arcs are extracted with
respect to each clock source.

Reg2out Paths
The reg2out paths are paths starting from a register and ending up on an output port. These paths
are a combination of trigger arcs (of starting register) and the combinational delay from sink of
trigger arc to the output port. So for such paths an equivalent trigger/sequential arc is modeled in the
extracted model. The delay for the arc will be equal to:

Sequential arc delay = delay (clock source to CK of register) + delay (register CK pin to out port).

The delay for these arcs is a function of the slew at the clock source and the capacitance at the
output port. As the extracted model can be used for max as well as min analysis, two arcs are
preserved in the model to represent the longest and the shortest path. Different types
(rising_edge/falling_edge) of arcs are extracted for the different valid clock edges.

September 2022 1189 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/set_annotated_delay.html

In2Out Paths
The in2out paths are the path starting from an input port and ending up on an output port. These
paths are pure combinational paths. So for such paths an equivalent combinational arc is modeled
in the extracted model. The delay for the arc will be equal to:

Combinational arc delay = delay (delay of all elements in the path)

The delay for these arcs is a function of the slew at the input port and the capacitance at the output
port. As the extracted model can be used for max as well as min analysis, two arcs are preserved in
the model to represent the longest and the shortest combinational path. In case if no path exists for
a particular transition (rise/fall), half unate (combinational_rise /combinational_fall) arcs will be
extracted. The timing sense for the arc will depend on the function of worst (early/late) paths.

Minimum Pulse Width and Period Checks
The minimum pulse width and period constraints defined at the CK pin of the registers are
transferred to the clock source pins during model extraction.

There may be several different type of registers in the fanout of a clock source. So while transferring
the minimum pulse width to the clock source you can use the worst values present on the fanout
registers. The pulse width is calculated as:

pulse width = MAX(Arrival time of Launch clock Path - Arrival time of Capture Clock Path + pulse
width at clock pins from library)

The minimum period for any clock pin is calculated in the same way as the minimum pulse width.
The minimum period is calculated as:

Min Period = MAX(Arrival time of Launch clock Path - Arrival time of Capture Clock Path + Min
Period at clock pins from library)

These checks can be modeled in the following three ways:

Library attribute

Scalar tables

Arc-based modeling

These are explained below.

Library Attribute
By default, these checks are written as library attributes in ETM.

pin (CLKIN2) {

 clock : true ;

September 2022 1190 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

 min_period : 2.0554;

 min_period : 2.6248;

 min_pulse_width_low : 0.2773;

 min_pulse_width_high : 0.7673;

}

If min_period checks corresponding to both rise and fall transitions are present in a design, then
they wiil be modeled as duplicate entries in ETM when written as library attributes. To avoid
duplicate entries we can model these checks as scalar tables or arcs, where rise and fall transition
of min_period checks can be modeled as shown in following sections. These arcs will be honored
by the timer depending on the context, hence will be more accurate.

Scalar Tables

If the timing_extract_model_write_clock_checks_as_scalar_tables global variable is set to true,
then these checks will be written as scalar tables as shown below:

pin (CLKIN2) {

 clock : true ;

 timing() {

 timing_type : minimum_period ;

 rise_constraint (scalar){

 values(" 2.0554");

 }

 fall_constraint (scalar){

 values(" 2.6248");

 }

 related_pin :" CLKIN2 ";

 }

 timing() {

 timing_type : min_pulse_width ;

 rise_constraint (scalar){

 values(" 0.7673");

 }

 fall_constraint (scalar){

 values(" 0.2773");

 }

 related_pin :" CLKIN2 ";

 }

}

Arc-Based Modeling

These checks can also be written as arcs by setting
the timing_extract_model_write_clock_checks_as_arc global variable to true. In this case the

September 2022 1191 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/timing_extract_model_write_clock_checks_as_scalar_tables.html
../innovusTCR/timing_extract_model_write_clock_checks_as_arc.html

resulting arc is the function of rise/fall slew of CLK port, hence delay and slew propagation of the
clock network for rise and fall transitions is considered for writing these arcs. The arc-based
modeling of clock-style checks is more accurate and is recommended for use.

pin (CLKIN2) {

 clock : true ;

 timing() {

 timing_type : minimum_period ;

 rise_constraint (lut_timing_2){

 values(" 2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000");

 }

 fall_constraint (lut_timing_2){

 values(" 2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000");

 }

 related_pin :" CLKIN2 ";

 }

 timing() {

 timing_type : min_pulse_width ;

 rise_constraint (lut_timing_2){

 values("0.767, 0.767, 0.767, 0.767, 0.742, 0.087, 0.100");

 }

 fall_constraint (lut_timing_2){

 values("0.201, 0.201, 0.201, 0.201, 0.238, 0.247, 0.2636");

 }

 related_pin :" CLKIN2 ";

 }

}

Path Exceptions

Timing extraction flow honors path exceptions defined in the given constraints' file. Typically, the
following path exceptions are used:

set_false_path

set_multicycle_path

set_min_delay

set_max_delay

September 2022 1192 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/set_false_path.html
../innovusTCR/set_multicycle_path.html
../innovusTCR/set_min_delay.html
../innovusTCR/set_max_delay.html

For more information on handling of these exceptions, refer to section “Constraint Generation during
Model Extraction”.

Constants

The case analysis and the constants are propagated while extracting the model. In case
of set_case_analysis command, we can control how constants propagated at o/p or bi-di ports are
modeled in ETM through the following global variable.

set timing_extract_model_case_analysis_in_library true (or false)

When set to false, this global variable specifies the propagated or applied constants, using
the set_case_analysis command to output ports in the generated constraints file (generated using –
assertion parameter in the do_extract_model command).

When set to true, this global variable specifies that propagated constants to output ports are written
as pin functions in the extracted model.

Unconstrained Paths
The unconstrained end points exist when proper launch/capture clock phase is not propagated at
the desired endpoint due to any exceptions. The unconstrained input ports due to false path
exceptions are ignored and are not modeled during ETM extraction. The unconstrained
combinational IO paths due to false path exceptions are ignored and are not modeled during ETM
extraction. The unconstrained trigger arcs are calculated during ETM extraction.

September 2022 1193 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/set_case_analysis.html
../innovusTCR/timing_extract_model_case_analysis_in_library.html
../innovusTCR/do_extract_model.html

Clock Gating Checks

If integrated clock gating (ICG) cells are used for gating the clocks, then these arcs are preserved as
setup/hold arcs. If combinational cells are used for gating, then these arcs will be preserved as no-
change arcs between a clock pin and its enabling signal pin. If you wish to extract these checks as
regular setup/hold checks, you can set the timing_extract_model_gating_as_nochange_arc global
variable to false.

Depending on the type of clock gating situation, no change checks are inferred as follows:

The following waveform shows how no_change checks are modeled:

no_change Checks Modeling

Simple Clock Gating with AND or Logic

The following diagram shows clock gating AND/OR logic:

September 2022 1194 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/timing_extract_model_gating_as_nochange_arc.html

A simple AND gate check will be as follows:

timing () {

timing_type: nochange_high_high;

}

timing () {

timing_type: nochange_low_high;

}

Note: After extracting the clock gating check arc the signal downstream the gate output is not
propagated to the clock pins of the registers.

Clock Gating with Blackbox or Unknown Logic

In case of clock gating with unknown logic, as shown below, no_change checks will be checked
with respect to both the rising edge and the falling edge of the clock signal.

No Clock Gating Logic

There are some gates, such as multiplexers or XOR gates, where a clock signal cannot control the
clock gate, as shown below.

In such cases, no checks are inferred so you need to explicitly set the gating check if you want
these interface paths to be extracted in the ETM. To know where static timing analyzer will not infer
the gating in such situations, you can use the following command:

check_timing -check_only clock_gating_controlling_edge_unknown –verbose

September 2022 1195 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/check_timing.html

Annotate Delays, Load, and Slews
Model extraction uses the back annotated delay slews and the load information during the
extraction process and reflect the effect in the extracted model. Here is a small description how
these are used.

Annotated Delays
The annotated delays using SDF or the set_annotated_delay command override the calculated
delay (from library or RC data) value for the arc; however, the output slew for the arcs is used as
calculated. In case of incremental delays the delta delay is added to the calculated arc delay.

Annotated Slews
Annotated slews are ignored during timing model extraction. These constraints are dumped in
assertions file generated with the do_extract_model -assertions parameter.

Annotated Load
Annotated load will override the pin capacitance defined in the library, and will be used for the C-eff
and hence the delay calculation.

Note: The annotated delays are generated with a particular context and remain true for that context
(transition times) only. So annotating the delays/slews makes the model context dependent. So to
create a context independent model it is recommended not to annotate the SDF.

Design Rules
Model extraction uses the design rules defined in the library. The worst (smaller for max design
rules and vice-versa) among all the fanout pins (topologically first level) is used for the input ports
and the worst of all the fanin pins (topologically first level) is used for the output ports.

If design rule limits are defined at the pin and library level, the design rule from the pin is chosen,
rather than the worst of the pin and library level, because the pin level information overrides the cell
level, which in turn overrides the library level information. If design rule violations (DRV) are coming
from the constraints, then you can choose them based on the following setting:

set timing_extract_model_consider_design_level_drv {true/false}

When set to false, the user-asserted design level DRVs are not considered while modeling DRVs
in the extracted timing model.

When set to true, the user-asserted design level DRVs are considered while modeling DRVs into
the extracted timing model.

September 2022 1196 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/set_annotated_delay.html
../innovusTCR/do_extract_model.html
../innovusTCR/timing_extract_model_consider_design_level_drv.html

Clocks

Created Clocks

If the create_clock assertion is applied on the pin of a design (not port), then the pin is modeled as
an internal pin with the same name as that of the clock asserted on it. If a clock is created on a
design port, then this port will be preserved as ETM I/O pin, with the same name as that of the port
itself.

create_clock [get_ports {CLKIN}] -name clk -period 3 -waveform {0 1.5}

create_clock [get_pins buf5/Y] -name clk3 –period 3 -waveform {0 1.5}

 pin (CLKIN) {

 clock : true ;

 direction : input ;

 capacitance : 0.0042;

 }

 pin (clk3) {

 clock : true ;

 direction : internal ;

 capacitance : 0.0110;

 }

Generated Clocks

The generated clocks that defined in a hierarchical block, using
the create_generated_clock command, are supposed to be a part of the block itself and do not
come from the top level. So ETM preserves generated clocks inside the model as internal pins
using the Liberty generated_clock construct. The name of any such internal pin is the same as that
of the generated clock.

Some of the examples are described below.

Example 1: Single generated clock on a single pin

September 2022 1197 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/create_clock.html
../innovusTCR/create_generated_clock.html

create_generated_clock –name gclk –source [get_ports clk] –divide_by 2 [get_pins

buf1/A]

During the extraction process the pin “buf1/A” will be preserved as an internal pin in the library with
name gclk. The model will show as follows:

generated_clock (gclk) {

master_pin : clk;

divided_by : 2;

clock_pin : “gclk “;

}

pin (gclk) {

clock: true ;

direction: internal ;

.

.

}

Example 2: Multiple clocks on the same pin

There are some design scenarios when multiple generated clocks are defined on a single pin. This
asserts multiple clock definitions on the pins. In this case, during model extraction the pin is
duplicated with the name of the clock. For example, in a design if there are two clock definitions,
such as:

create_generated_clock –name gclk1 –source [get_ports clk] –add –master_clock CLK –

divide_by 2 [get_pins buf1/A]

create_generated_clock –name gclk2 –source [get_ports clk] –add –master_clock CLK –

divide_by 2 [get_pins buf1/A]

During the extraction process the pin buf1/A will be preserved as an internal pin with names gclk1
and gclk2. The model will be as follows:

generated_clock (gclk1) {

master_pin : clk;

divided_by : 2;

clock_pin : “gclk1 “;

}

generated_clock (gclk2) {

master_pin : clk;

divided_by : 2;

clock_pin : “gclk2 “;

}

pin (gclk1) {

clock: true;

direction: internal;

September 2022 1198 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

…..

}

pin (gclk2) {

clock: true;

direction: internal;

…..

}

Example 3: Generated clocks on multiple pins

When a generated clock is defined on multiple pins, the software asserts a single clock definition on
multiple pins. To handle this scenario, all the pins asserted with this clock are preserved as internal
pins in the model with the name [clock_name_<count>] and the generated_clock construct is
written in the model with all the pin names in the clock_pin attributes with a space between them.
For example, consider a netlist having clock definitions on multiple pins.

create_generated_clock –name gclk1 –source [get_ports clk] –add –master_clock CLK –

divide_by 2 [get_pins {buf1/A buf2/A}]

During the extraction process, the pin buf1/A will be preserved as an internal pin in the library with
the name gclk1_1; and the pin buf2/A will be preserved as an internal pin with name gclk1. The
model will be as follows:

generated_clock (gclk1) {

master_pin : clk;

divided_by : 2;

clock_pin : “gclk1_1 gclk1 “;

}

pin (gclk1_1) {

clock: true;

direction: internal;

…

}

pin (gclk1) {

clock: true;

direction: internal;

…

}

In this case when ETM is read, two generated clocks gclk1_1 and gclk1 will be created on two
internal pins - gclk1_1 and gclk1, respectively. Any constraint coming from the top level will match
only with clock gclk1, and not gclk1_1. To avoid such a situation,
set timing_library_genclk_use_group_name global variable to true. When this global variable is
enabled, the original clock (gclk1) is generated at two internal pins - gclk1_1 and gclk1.

When timing_library_genclk_use_group_name true is set, then the report_clocks command

September 2022 1199 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/timing_library_genclk_use_group_name.html
../innovusTCR/report_clocks.html

output shows the following output:

--

 Clock Descriptions

--

Clock Name Source Period Lead Trail Gen Prop

--

clk clkin 3.600 0.000 1.800 n y

gclk1 BLOCK/gclk1_1 BLOCK/gclk1 7.200 0.000 3.600 y y

--

On turning off this global, report_clocks will return:

--

 Clock Descriptions

Clock Name Source Period Lead Trail Gen Prop

clk clkin 3.600 0.000 1.800 n y

gclk1 BLOCK/gclk1 7.200 0.000 3.600 y y

gclk1_1 BLOCK/gclk1_1 7.200 0.000 3.600 y y

--

Example 4: generated clock in case of multi ETM instantiation at top

When the timing_prefix_module_name_with_library_genclk global variable is set to true, the
software appends the instance name to the clock pin name when creating a generated clock. When
set to false, the software uses only the clock pin name when creating a generated clock. For
example, assume that the cell for instance a/b in the timing library contains the following generated
clock group:

generated_clock (genclk1) {

 divided_by : 2 ;

 clock_pin : " genclk1 ";

 master_pin : CLKIN ;

}

By default (true), the software creates a generated clock with the name - genclk1. If you
set timing_prefix_module_name_with_library_genclk to false, the software creates a generated
clock with the name - etm/genclk1.

If ETM is instantiated at the top level as BLOCK1 and BLOCK2, then by default
the report_clocks command will show the following output:

--

 Clock Descriptions

--

September 2022 1200 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/timing_prefix_module_name_with_library_genclk.html
../innovusTCR/report_clocks.html

Clock Name Source Period Lead Trail Generated Propagated

--

BLOCK1/genclk1 BLOCK1/genclk1 7.200 0.000 3.600 y y

BLOCK2/genclk1 BLOCK2/genclk1 7.200 0.000 3.600 y y

--

If you do not want to differentiate between genclk1 generated in various ETM instantiations, you can
set timing_prefix_module_name_with_library_genclk to false. In such a case, the
report_clocks command will show the following output:

 Clock Descriptions

Clock Name Source Period Lead Trail Generated Propagated

genclk1 BLOCK2/genclk1 7.200 0.000 3.600 y y

Note: You will need to ensure that the constraints are applied with respect to the generated clock
naming. If required, you can remove the library generated clocks and then apply the specified
generated clocks so that minimal changes are required in the constraints.

Clocks with Sequential and Combinational Arcs

Consider a case where both the sequential and combinational arcs exist between a clock (CLK)
and an output (OUT) pin. If any of the early/late sequential/combination arcs is missing (due to a
path exception) between the CLK and OUT pins, the CLK pin is duplicated as two pins with
_SEQ_pin and _COMB_pin suffixes. All the combinational arcs starting from this clock root to the
duplicated pin are bound with the “_COMB_pin” suffix and all the sequential arcs are bound to be
duplicated pin with the “SEQ_pin” suffix.

Sequential and combinational arcs between a clock

The following will be created in ETM:

pin (CLKIN_SEQ_pin) {

 clock : true ;

 direction : internal ;

September 2022 1201 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

 capacitance : 0.0110;

 }

pin (CLKIN_COMB_pin) {

 clock : true ;

 direction : internal ;

 capacitance : 0.0110;

 }

pin (DATAOUT) {

 direction : output ;

 timing() {

 timing_type : combinational ;

 fall_transition (lut_timing_3){ … }

 related_pin :" CLKIN_COMB_pin ";

 }

 timing() {

 timing_type : rising_edge ;

 fall_transition (lut_timing_3){ … }

 related_pin :" CLKIN_SEQ_pin ";

 }

Secondary Load Dependent Networks
If there is a timing path from one output pin to another pin, the model extractor considers both the
primary output loading and the secondary output loading when output-to-output delays are
computed. In the following figure there is an output-to-output path from z1 to z2:

Output-to-output path from z1 to z2

The extracted timing model for this block consists of two delay arcs - one from a -> z1 and another
from a -> z2. But the delay of arc a -> z2 also depends on the secondary loading, that is, at port z1.

This gives rise to a delay arc from a to z2 which is dependent on two loads and one input slew. So
this arc will be dumped as a three-dimensional delay table because the delay depends on the
primary output loading at z2, as well as a secondary output loading at z1.

The table template will be as follows:

lu_table_template (lut_timing_1) {

variable_1: input_net_transition;

September 2022 1202 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

index_1 (“0...0 1.0 2.0 3.0 4.0 5.0”);

variable_2: total_output_net_capacitance;

index_2 (“0...0 1.0 2.0 3.0 4.0 5.0”);

variable_3: related_out_total_output_net_capacitance;

index_3 (“0...0 1.0 2.0 3.0 4.0 5.0”);

}

By default, 3D arc modeling is disabled - the software considers 3D arcs as 2D arcs in timing
modeling.

Note: You should always buffer the port to avoid 3D dependencies. If there is more than a couple of
load dependencies, then there will be accuracy loss since model extraction cannot accurately
model beyond 3D arcs accurately.

Characterization Point Selection
Selecting characterization during point extracted models depends on the following selection
criteria:

If no input_slews/clock_slews/output_load is specified as an argument in
the do_extract_model command, then the software determines the characterization points from the
design's interface elements - that are supplied with the external slew/load. This can be explained as
follows.

All the check arcs (e.g., clk->in) will be characterized for the slew points as follows:

Reference slew points will be taken from the slew index of the first element just after the “clk”
port.

Signal slew points will be taken from the slew index of the first element just after the “in” port.

All the sequential (e.g., clk->out) arcs will be characterized as follows:

Input slew will be taken from the slew index of the first element just after the *clk* port.

All the combinational arcs (e.g., in->out) will be characterized as follows:

Input slew will be taken from the slew index of the first element just after the *in* port.

Output load will be taken from the load index of the last element just before the *out* port.

Consider the following topology in a netlist:

in --------> buf1-- -----> ff1/d -------->buf2 --------> out

clk ------> clk_buf ---- ->ff1/clk-------->buf2 --------> out

in ------> buf3 ------> buf4 --------> buf5 --------> out

September 2022 1203 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html

A snapshot of the original timing library for the interface elements (i.e., BUF and CLK_BUF) is as
follows:

Cell (BUF)

{

timing ()

index_1 ("0.0500, 1.4000, 4.5000");

index_2 ("1.0500, 6.5000, 10.0000");

}

Cell (CLK_BUF)

{

timing ()

index_1 ("1.0500, 2.4000, 3.5000");

index_2 ("0.0500, 4.5000, 5.0000");

}

If the do_extract_model command is used, then the extracted model will be characterized as
follows:

Check Arc clk->in

index_1 ("0 0.0500, 1.4000, 4.5000");

Here the signal slew is taken from buf1 slew-index in original libraries.

index_1 ("0 1.0500, 2.4000, 3.5000");

Here the reference slew is taken from clk_buf slew-index in the original libraries.

Seq. Arc clk->out

index_1 ("0 1.0500, 2.4000, 3.5000");

The input slew is taken from clk_buf slew-index in the original libraries.

index_2 ("0 1.0500, 6.5000, 10.0000");

Output load is taken from buf2 slew-index in the original libraries.

Combinational arc in->out
index_1 ("0 1.0500, 1.4000, 4.5000");

The input slew is taken from buf3 slew-index in the original libraries.

index_2 ("0 1.0500, 6.5000, 10.0000");

Output load is taken from buf5 slew-index in the original libraries.

Note: A value of 0 is always added to the characterization points.

September 2022 1204 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html

Constraint Generation during Model Extraction
The extracted models need to be validated before they are transferred to other designers to be used
for a top-level analysis or optimization flow. For validation purposes, we need a subset of the
original timing constraints and further a subset of these constraints is needed for fitting the model in
a top level netlist.

The model extraction process will output a timing library and two constraint files containing the
subset of the original constraint. One of these constraint files will be used for a standalone
validation of the model compared to the original netlist. By default model.asrt and
model.asrt.latchInferredMCP will be written in the CWD. If the do_extract_model -assertions
test.asrt command is specified, then three assertion files are generated - test.asrt,
test.asrt.latchInferredMCP, and top_model.asrt. The other constraint file (top_model.asrt) will be
used when the extracted model will be stitched to a top level netlist and test.asrt will be used for
standalone model validation.

Two separate constraint files are required for:

Standalone validation will need all the context parameters of the design.

STA or optimization flow when stitched to a top level environment, the context parameter will
be automatically coming from the top level. So some of the constraints (in the above file) need
to be filtered.

This is what is achieved with an automated procedure executed with every model extraction. The
following are the handling of these constraints in a model extraction flow:

False Path Exceptions

If the set_false_path constraint is applied through some internal pins/ports, then those
paths/arcs are removed during extraction.

If the set_false_path constraint is applied between clocks or a clock and a port, then these
paths are removed and these exceptions are saved in a top_model.asrt as well as test.asrt
file.

Multi-Cycle Path Exceptions
If multi-cycle paths through pins/ports are applied, then during extraction the worst paths through
them mapped to the IO ports are calculated and the exceptions through these IOs are dumped in the
top_model.asrt file.

Consider the following design scenario with multi-cycle path exception applied at A.

Multi-cycle path exception

September 2022 1205 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html
../innovusTCR/set_false_path.html

If there is no path from IN1/OUT1 and IN2/OUT2, the multi-cycle path will be pushed to IN2/OUT1.
Since there are other paths going through these ports, multi-cycle paths cannot be pushed to
IN2/OUT1 and cycle adjustment is done in delay values of the arcs. This will make the model
context dependent.

When you set timing_extract_model_disable_cycle_adjustment global variable to true, the
software will disable the cycle adjustment to make ETM context independent. You will have to
manually apply the multi-cycle path at the top level while using this ETM.

Note: You should examine the constraint file (”top_model.asrt”), as these constraints are just
indicative of what is needed to be modeled at the top level. In certain situations, it may not be
possible to extract all possible exceptions for top level due to limitations of liberty to model them
correctly for a given path in case of conflicts.

set_disable_timing
If the set_disable_timing constraint is applied on any arc, then this arc gets disabled and is not
used for the extraction purpose. Thus, such arcs are handled internally by the software and are not
written to any of the constraint files. Also, the path broken by them will not be extracted during ETM
generation.

set_case_analysis
Constants applied/propagated by the set_case_analysis command can be written as a function
attribute of a pin in ETM by setting the timing_extract_model_case_analysis_in_library global
variable to true. This can be written in the ETM-validation constraint file generated by setting this
global variable to false.

create_clock
The pins/ports having create_clock definitions on them are preserved in the timing model. If a clock
is created on some internal pin then the pin name needs to be modified to reflect the instance name
of the extracted model. This is achieved using the same variable approach.

September 2022 1206 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/timing_extract_model_disable_cycle_adjustment.html
../innovusTCR/set_disable_timing.html
../innovusTCR/set_case_analysis.html
../innovusTCR/timing_extract_model_case_analysis_in_library.html
../innovusTCR/create_clock.html

[get_pins “$ETM_CORE/pin1 $ETM_CORE/pin2 $ETM_CORE/pin3”]

When the extracted model is stitched to some top level netlist, then the clock definitions are
supposed to come from the top level netlist itself. So that such clock definitions are not needed to be
dumped in the top level constraint file, but need to exist in the assertion file for standalone
validation.

create_generated_clock
The pins having the create_generated_clock defined on them are preserved in the extracted model
as internal pins. As generated clocks are very much intended for the block itself and are not
supposed to be coming from the top level, liberty provides syntax to define the generated clocks in
the timing model. You can use the following use model:

generated_clock (gclk) {

clock_pin : gclk ;

master_pin : clk ;

multiplied by : 2 ;

}

While loading a model, the software names the generated clocks after their target pin names, so
while dumping the generated clocks in the library the target pin name is modified to the clock name
itself. This facilitates the same name of generated clock names in the original netlist and the
extracted model. This name changing cuts down the need to modify other constraints (clock
uncertainty/path exceptions) related to this clock. In this case it is not required to dump these
generated clocks as a separate constraint.

set_input_delay/set_output_delay
The constraints like set_input_delay and set_output_delay lie in this category. Though these
constraints can be applied on ports as well as some internal pins. Such constraints applied on
some internal pins are of no use for the extracted models, as in an extracted model only interface
timing is considered.

The constraints applied on the ports need not any change as the port will be preserved with the
same name. So these constraints are dumped out in the assertion file for validation and do not have
any impact on the generated ETM. These need not to be dumped out for the top level constraint file
as in a top level the data must be coming to the port from some other top level register or port. So
the input delay value is supposed to be the delay of path from top level register/port to this port.

set_max_transition/set_max_capacitance
If these constraints exist in the SDC file for a block and
the timing_extract_model_consider_design_level_drv global variable is set to false, then these
max_cap/max_trans constraints (from SDC) will not have any impact on the generated model.

If the timing_extract_model_consider_design_level_drv global variable is set to true, then these

September 2022 1207 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/create_generated_clock.html
../innovusTCR/set_input_delay.html
../TCRcom/set_input_delay.html
../innovusTCR/set_output_delay.html
../TCRcom/set_input_delay.html
../innovusTCR/timing_extract_model_consider_design_level_drv.html

constrains are considered while generating the timing model. A conservative value of
max_transition defined at the library cell associated with a port, or defined
set_max_transition setting in the SDC is chosen for all the ports. Similarly, in case of
max_capacitance a conservative value defined at a library cell associated with a port, or the
set_max_capacitance setting defined in the SDC is chosen for all output ports.

Note: The set_max_transition or set_min_transition constraint defined in the SDC is always
dumped in the constraints file that is read during validation.

set_load/set_resistance/set_annotated_transition
The set_load, set_resistance, or set_annotated_transition constraints can be applied on pins as
well as ports. Such constraints applied on internal pins are handled in the extraction flow during
delay calculation. So these are included in the model itself. But these constraints applied on the
port are treated as the out context environment and need to be dumped out in the constraints file to
be read for model validation.

set_annotated_delay/set_annotated_check
The set_annotated_delay, or set_annotated_check constraint is applied on the internal arcs as
incremental or absolute values. The annotated delays/checks are handled in the extraction flow
during delay calculation, so these are included in the model. This constraint is not written out in any
of the constraint files.

set_input_transition/set_driving_cell
The set_input_transition, or set_driving_cell constraints are applied only on ports. At the top
level , the input transition at ETM pins depends upon the transition of the signal coming from the
top-level circuitry. Similarly, the driving cell is needed only at the block level to replicate the actual
driver of ETM at the top level. Hence, these are written only in the validation constraint file.

clock_uncertainty/latency
By default, the clock uncertainty or clock latency constraints are written in the validation constraint
file. But if timing_extract_model_include_latency_and_uncertainty is set to true, then these
values will be considered during ETM characterization. And the delay tables in ETM are written
with these values included.

Parallel Arcs in ETM
If a mode is extracted in the BC-WC or OCV mode, then timing is included through the early and
late path analysis (as is done with the report_timing command).

Consider the following design:

Parallel arcs in ETM

September 2022 1208 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/set_max_transition.html
../innovusTCR/set_max_capacitance.html
../innovusTCR/set_max_transition.html
../innovusTCR/set_min_transition.html
../innovusTCR/set_load.html
../innovusTCR/set_resistance.html
../innovusTCR/set_annotated_transition.html
../innovusTCR/set_annotated_delay.html
../innovusTCR/set_annotated_check.html
../innovusTCR/set_input_transition.html
../innovusTCR/set_driving_cell.html
../innovusTCR/report_timing.html

In the above design there are two paths CLK->IN (check path) and CLK->OUT (sequential path).

Here, the check (setup) path will be captured by the early path of clock (CLK->buf4->buf5->FF/CK).
But the sequential path will be using the late clock path (CLK->buf1->buf2->buf3->and1->FF/CK).
The extraction of early/late attributes is differentiated through the min_delay_arc attribute. So, in the
extracted model for combinational/trigger/latency arc, both the rise/fall maximum and minimum arcs
exist.

Latency Arcs Modelling
The latency arcs exist between a generated clock and the respective master clock. The actual paths
are considered during extraction. For example, consider a generated clock with -divide_by 2. The
edge relationship of master and generated clock will be “R ->R” and “R -> F”. The paths “F->F” and
“R->F” arc will not be dumped, even if such paths are present in the design for data propagation.

In case of an ideal master clock, the arcs between master and generated clock source, is controlled
through the following setting:

set timing_extract_model_ideal_clock_latency_arc {false/true}

When set to true, the zero delay arc from the master clock to generated clock is considered in the
extracted model. When set to false, this arc is not modeled.

Latch-Based Model Extraction
Extraction model handles transparent latches during model extraction based on the arrival times
defined on input ports and the specified clock periods - whether a path from an input port to a latch
causes borrowing or not. The following points should be noted:

If the path causes borrowing then path traversal should continue through the latch until either

September 2022 1209 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/timing_extract_model_ideal_clock_latency_arc.html

a non-borrowing latch or edge-triggered flip-flop is encountered. If the path does not cause
borrowing, then path tracing should be stopped and a setup arc should be extracted relative to
the closing edge of the first (interface) latch.

The borrowing behavior of latches does not impact the extracted hold arc. So hold arcs should
always be extracted relative to the close edge of the first interface register (latch or flip-flop)
that is encountered while tracing paths from input ports.

Borrowing can result in paths being traced through latches from an input port to an output port.
In this case, a delay (comb) arc should be extracted from the input port to output port. In
scenarios where path becomes more than 1 cycle, inferred multi-cycle paths are dumped in a
separate file named as “model.asrt. latchInferredMCP”.

When tracing paths from interface registers to output ports, transparent latches will be handled
by tracing through borrowing latches backwards and generating a sequential delay arc from a
clock port to an output port.

Note: As all such latch traversal arcs are true for setup analysis, there will be a set_false_path -
hold statement in the assertion file for any such arcs. Please also note that “model.asrt.
latchInferredMCP” file is indicative of what assertions you may need to use at the top level. They
should be audited before using multi-cylce paths, as they cannot be inferred in all the cases.

Model Extraction in AOCV Mode
Innovus supports modeling of AOCV derated delays and stage weights in ETM. These stage
weights and AOCV derates are used during the top level analysis with ETM by correctly computing
the stage counts and derates of the paths related to ETM. The AOCV analysis mode can be
enabled by using the following setting:

setAnalysisMode -aocv true

Stage Weight Modeling in ETM
The stage weight modeling feature can be enabled by using the following parameter:

do_extract_model -include_aocv_weights

When specified, this enables the software to write stage weights on individual arcs.

The weights written in the ETM are not meant to derate the model. The model will be containing the
derated delays. The stage weight extracted on arcs will be used to calculate the stage count of chip
level paths going across the ETM.

September 2022 1210 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/setAnalysisMode.html
../innovusTCR/do_extract_model.html

The extraction of stage weight will be done by tracing the minimum stage count path on arc-by-
arc basis. A path-based cell stage count will be printed on all sequential and combinational arcs.
The extraction strategy for computing stage weight will be as follows:

The stage weights in the extracted model are dumped as user-defined attributes. This will require
defining three attributes at the arc level.

define ("aocv_weight","timing","float");

define ("clock_aocv_weight","timing","float");

The first attribute will be used for combinational and trigger arc and will be dumped

at arc level

as below.

timing () {

timing_type : combinational;

timing_sense : positive_unate;

aocv_weight : 4;

.

.

}

The check arcs will be dumped with two separate stage weights for data and clock:

timing () {

timing_type : setup_rising;

aocv_weight : 4;

clock_aocv_weight : 3;

.

.

}

AOCV Derating Mode
The AOCV derating mode can be specified to path-based, graph-based, or none by using
the following setting:

set timing_extract_model_aocv_mode option

You can specify one of the following options:

graph_based: Delays in ETM are derated using the graph-based stage counts.

path_based: Delay in ETM are derated using total path stage count of worst path between
those pin pairs.

none: Models derated delays that contain the effect of user-derate but does not contain effect

September 2022 1211 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/timing_extract_model_aocv_mode.html

of AOCV derates.

The default is none.

Before setting this global variable to graph_based or path_based, it is mandatory that the AOCV
libraries are read in and AOCV analysis is enabled (by using setAnalysisMode -aocv true).

Merging Model with stage_weight Attribute
The merged timing model contains minimum stage_weight defined between various input library
files, hence merged timing model is pessimistic.

Points to be Considered for Block Level AOCV Run
The following points need to be taken care of for the block level AOCV run:

1. If analysis of a block is performed in the standalone mode, then you need to specify the stage
weight seen at the port(s). The applied stage weight affects the internal weight count of the
block for the IO paths. If these weights are not applied, the pessimistic analysis will be done
for the interfacing paths of the block (when block is top). Hence the ETMs will also have
pessimistic numbers for such paths.

2. The same ETM may not be used for multiple instantiation at the top level, due to the following
reasons:

Different stage counts at the ports (as seen from the top) is possible.

Different critical paths between the ports for different instances is possible.

You can use ETM with most conservative stage count for all the instances, but this will lead to
pessimistic analysis.

3. The ETMs are written taking AOCV derates into account. At the top level, you need to have
two types of AOCV derate tables:

Cell level AOCV tables

Design level AOCV tables for net

If design level cell AOCV derates are used at the top level, then the block delays (as seen from the
top) will have the AOCV effect twice - once during model extraction at the block level and second at
the top level from design level cell AOCV tables. In case design level AOCV tables are being
passed with ETM at the top level, then you should provide a cell level table for ETM with derating
as 1 for all the possible stage counts and/or distance.

September 2022 1212 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

PG Pin Modeling During Extraction
Power-ground pins are defined as current source or sink pins, respectively. Information of PG pins
can be fed to the software by CPF/UPF files.

Information regarding power/ground pins can be written in the ETM. To enable writing PG pin
information in a timing model, you can use the do_extract_model -pg option. The various low
power attributes are written at the library level, cell level, and pin level in ETM.

Pre-requisites of PG-based flow are:

Input CPF/UPF and libraries in the flow for power/ground aware ETM generation.

Signal Integrity (SI) analysis uses some commands and may fall back to CDB (whenever the
relevant power rail/voltage information is missing in the CPF/dotlib) for getting supply
information. The CPF or input dotlib will have sufficient information to correctly model ETM.

PG Modeling in ETM
Modeling of voltage maps
Voltage maps definitions are typically modeled inside the Liberty .lib format at library scope level. It
specifies the voltage value associated with the power rail name (voltage names). At cell level
pg_pin groups are associated with voltage values using the voltage names.
voltage_map (VDD, 0.8);

voltage_map (VSS, 0.0);

Modeling of power/ground pins
At the cell level, the pg_pin groups will be modeled in the ETM in the following way:
pg_pin (VDD1) {

voltage_name : VDD ;

pg_type : primary_power;

}

pg_pin (VSS1) {

voltage_name : VSS ;

pg_type : primary_ground ;

}

The supported pg_type in model extractions: primary_power, primary_ground, internal_power,
internal_ground. If a power rail is the output of a power switch cell, it will be marked as
internal_power/ground.

Associating power and ground pins to signal pin
This information will be written for all the logic input/output/in-out pins that are written in the ETM.

September 2022 1213 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html

For internal pins that are preserved inside the ETM dotlib (e.g., a pin on which the generated clock
was asserted), no such information will be retained.

pin (A) {

…
related_power_pin: VDD1;

related_ground_pin: VSS1;

}

For ports, that are written as pins in ETM, the associated pin (driver or receiver of a net) will be
checked and printed in the same way as related_power_pin and related_ground_pin information.

ETM Merging Requirements for Power/Ground Aware ETMs
Voltage maps from two libraries will be merged successfully as long as the voltage rail names
are distinct.

pg_pins will be merged successfully as long as power rail names and the pg_type match.

related_power_pin and related_ground_pin will be merged as long as they are available in all
the libraries and refer to the same power rail name.

Extracted Timing Models with Noise (SI) Effect
To generate a timing model with SI effects contained within a block, you can use the following flow
for a block under consideration:

Load the database and the relevant information for performing STA/SI analysis.

Perform SI analysis, or if you have an incremental SDF from the previous SI run just load the
incremental SDF.

Run model extraction. During this phase, the incremental delays will be added to the
computed base delays for characterization of the dotlib table. When the final dotlib is written, it
contains the effect of the SI analysis in terms of characterized delays.

The block ETM can then be instantiated in the top level flow and the required file can be loaded for
performing top level analysis with ETM.

September 2022 1214 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

Merging Timing Models
The software supports merging library models through the merge_model_timing command. You can
generate ETM in various modes and then merge them in a single library (in which all the modes are
defined inside a merge_group) that can be used for timing optimization during design flow. These
mode_group/modes are defined in merged ETM as mode_definition/mode_value.

To merge two ETMs (corresponding to funct and scan views) use the following:
merge_model_timing -library_file funct_etm.lib scan_etm.lib -modes funct scan -

mode_group funct_scan -outfile merged_funct_scan.lib

These modes are defined in merged ETM as:

mode_definition (funct_scan){

mode_value (funct){

}

mode_value (scan){

}

In a merged ETM, arcs corresponding to different modes are defined as the following:

timing() {

mode(funct_scan," funct ");

min_delay_arc : "true" ;

related_pin :" SI_ClkIn ";

}

timing() {

mode(funct_scan ," scan ");

related_pin :" EJ_TCK ";

}

To read arcs corresponding to funct (scan) mode, use set_mode funct (scan). If
the set_mode command is not issued, the arcs corresponding to both the modes will be reported by
report_timing. Single mode can be specified with the set_mode command. An error is issued if
more than one mode is passed as an argument to this command. The mode merging enables you to
do the analysis in various modes on a single shell.

Some considerations while merging models are given below:

All the input timing models should have the same cell name.

If the timing arcs are not comparable i.e., the number of index values differ, then they are
written as separate timing arcs with separate mode definitions.

Boundary pins of single mode libraries should be equivalent in number and name while

September 2022 1215 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/merge_model_timing.html
../TCRcom/merge_model_timing.html
../innovusTCR/set_mode.html
../innovusTCR/report_timing.html

merging. An error message will be flagged if that is not the case.

If you have generated clocks with the same name, as well as same definition in ETM libraries,
then just this clock is preserved in the merged library, without issuing an error message.

If you have generated a clock with the same name, but different
divided_by/multiply_by/master_pin/clock_pin definition, then an error message is displayed
stating that “genclk is defined with different specification in two modes, merging is not
possible”.

If there is a mismatch in timing arcs among the input libraries, then the merged library will
contain the union of all the timing arcs with the respective mode. For example, if the first
library has only setup arcs and the second library has only hold arcs then the merged library
will have both setup and hold arcs with respective modes appended.

If there are mismatches in internal pins among input libraries, that is, if a particular internal pin
is missing in one or more libraries then that internal pin and its timing arcs will be part of a
merged library with respective mode.

For both maximum and minimum DRV, you can use the most conservative value. The
minimum value from maximum DRVs will be used and the maximum value from minimum
DRVs will be used in the merging.

When same modes are specified in the modes list for two libraries e.g., merge_model_timing -
library_files "setup.lib hold.lib" - modes "M M" -mode_group “MG”, then the arcs from
the two libraries will be assigned the same mode i.e., “M” while merging.

Limitations of ETM
The limitations of ETM are as follows:

1. In path-slew propagation mode, the slew/delay dependency on side inputs will be lost.

2. Consider the following two cases:

(a) clk-in check ac will depend on the slew at the D and CK pins of the register. Hence these check
arcs are modeled as 2D-check arcs, as expected.

Check arc

September 2022 1216 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/merge_model_timing.html
../TCRcom/merge_model_timing.html

(b) In the second case, the slew at D pin will depend upon the loading at the out port. Hence check
arc value will essentially depend upon the slews at the D and CK pins and the out load as well. But
currently model extraction does not support 3D modeling of check arcs.

Load dependent check arc

The following timing report shows setup_rising present in the ETM:

Path 1: VIOLATED Hold Check with Pin cppr_block/CLKIN

Endpoint: cppr_block/DATAIN (^) checked with leading edge of 'clk'

Beginpoint: DATAIN (^) triggered by leading edge of 'clk2'

Path Groups: {clk}

Other End Arrival Time 0.000

+ Hold 5.000

+ Phase Shift 0.000

= Required Time 5.000

Arrival Time 0.500

Slack Time -4.500

Clock Rise Edge 0.000

+ Input Delay 0.500

= Beginpoint Arrival Time 0.500

Timing Path:

--

Pin Arc Cell Edge Arrival

 Time

--

DATAIN -> DATAIN ^ ^ 0.500

cppr_block/DATAIN cppr_block ^ 0.500

--

September 2022 1217 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

The following timing report shows no setup_rising in the ETM:

Path 1: VIOLATED Hold Check with Pin cppr_block/CLKIN

Endpoint: cppr_block/DATAIN (^) checked with leading edge of 'clk'

Beginpoint: DATAIN (^) triggered by leading edge of 'clk2'

Path Groups: {clk}

Other End Arrival Time 0.000

+ Hold 5.000

+ Phase Shift 1.800

= Required Time 6.800

Arrival Time 0.500

Slack Time -6.300

Clock Rise Edge 0.000

+ Input Delay 0.500

= Beginpoint Arrival Time 0.500

Timing Path:

Pin Arc Cell Edge Arrival

Time

DATAIN -> DATAIN ^ ^ 0.500

cppr_block/DATAIN cppr_block ^ 0.500

4. When ETM is read at the top, the information about the stage count inside the block is lost. Hence
for paths coming in/out of the block, incorrect stage count is calculated while applying AOCV derate
(on the top level instances which fall in this path).

ETM at the top level

When BLOCK netlist is read at the top level, the stage count for buf1 and buf2 is 4, but when an
ETM of BLOCK is read, their stage count becomes 2.

The following example shows a timing report with BLOCK netlist:

Path 1: MET Late External Delay Assertion

September 2022 1218 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

Endpoint: DATAOUT2 (^) checked with leading edge of 'clk'

Beginpoint: DATAIN (^) triggered by leading edge of '@'

Path Groups: {clk}

Other End Arrival Time 0.000

- External Delay 0.010

+ Phase Shift 3.600

= Required Time 3.590

- Arrival Time 0.354

= Slack Time 3.236

Clock Rise Edge 0.000

+ Input Delay 0.000

= Beginpoint Arrival Time 0.000

Aocv Aocv Cell Pin

Stage Derate

Count

--

 DATAIN

4.000 1.169 BUF buf2/Y

4.000 1.169 BUF buf_2/Y

4.000 1.169 BUF BLOCK/buf7/Y

4.000 1.169 BUF BLOCK/buf8/Y

5.000 1.167 DATAOUT2

--

The following example shows a timing report with BLOCK ETM:

Path 1: MET Late External Delay Assertion

Endpoint: DATAOUT2 (^) checked with leading edge of 'clk'

Beginpoint: DATAIN (^) triggered by leading edge of '@'

Path Groups: {clk}

Other End Arrival Time 0.000

- External Delay 0.010

+ Phase Shift 3.600

= Required Time 3.590

- Arrival Time 0.325

= Slack Time 3.265

Clock Rise Edge 0.000

+ Input Delay 0.000

= Beginpoint Arrival Time 0.000

--

Aocv Aocv Cell Pin

Stage Derate

Count

September 2022 1219 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

--

 DATAIN

2.000 1.173 BUF buf2/Y

2.000 1.173 BUF buf_2/Y

3.000 1.171 cppr_block BLOCK/DATAOUT2

4.000 1.169 DATAOUT2

--

While modeling any arc, the rise and fall constraints are written separately. While modeling stage
weights, the worst of rise/fall stage weight is written in ETM.

Consider the following example showing two paths with given stage weight and rise/fall slack
values. The rise and fall arcs will be modeled corresponding to Path1 and Path2, respectively,
between IN1/OUT1. The single value of stage weight (4 in this case) will be written in ETM. Ideally,
the fall constraint should have the stage weight of 2 in this case, but due to the limitation, the stage
weight becomes 4 adding to the pessimism in analysis.

Modeling stage weights

pin (DATAOUT) {

direction : output ;

timing() {

 timing_type : combinational ;

 timing_sense : positive_unate ;

 cell_rise (lut_timing_2){

 values(\

 " -10, -20", \

 " -30, -40" \

);

September 2022 1220 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

 }

cell_fall (lut_timing_2){

 values(\

 " -10, -20", \

 " -30, -40" \

);

 }

aocv_weight : 4.0000;

related_pin :" CLKIN ";

}

6. The modeling of ETM with waveform propagation is not fully supported in Innovus. It is
recommended to turn off waveform propagation before running the do_extract_model command. It
can be done by using the following setting:

setDelayCalMode -equivalent_waveform_model none

Validation of Generated ETM
The extracted models should be validated before stitching to the top level for their accuracy and
coverage. This block-level validation can be achieved by comparing the interface timing of the
extracted timing models against the original gate-level netlist, by using the following commands.

write_model_timing

compare_model_timing

A brief description of the ETM commands used in a validation flow is given below

Commands Used in Validation Flow

do_extract_model
The ETM is generated by using the following command:

do_extract_model top.lib -verilog_shell_file test.v -verilog_shell_module test-

assertions test.asrt

This command writes the following files:

verilog_shell_file (test.v): Verilog having an ETM instantiated in it. In case the block
constraints file has the set_driving_cell command, then the cell used there will be

September 2022 1221 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html
../innovusTCR/setDelayCalMode.html
../innovusTCR/write_model_timing.html
../innovusTCR/compare_model_timing.html
../innovusTCR/do_extract_model.html

instantiated in test.v.

verilog_shell_module(test): Module name of test.v.

top.lib: The resulting ETM.

test.asrt: The resulting exception file to be used in a validation flow.

The do_extract_model -check parameter checks the extracted timing model for any possible
Liberty-related issue. When specified, the command displays detailed error/warning messages and
their summaries.

write_model_timing
The write_model_timing command writes a report on the interface timing of a specified netlist. The
use model of the command is as follows:

write_model_timing –type slack ref.rpt

The report ref.rpt contains the following timing view properties to capture the timing characteristics
of the design being extracted as a timing model:

Slack or Arc Value: Reports the worst-case slack or arc value for each path from input port to
clock, from clock to output port, and from input port to output port.

Transition Time: Reports the actual transition time at each port for the four delay types:
min_fall, min_rise, max_fall, and max_rise.

Capacitance: Reports the maximum total (lumped) capacitance at each port, and if available,
the effective capacitance.

Design Rules: Reports all the design rules that apply to each port, including the maximum
capacitance, minimum capacitance, maximum transition time, maximum fan-out (for input
ports), and fan-out load (for output ports).

compare_model_timing
The compare_model_timing command compares two reports generated by
the write_model_timing command. If the timing parameter values in the two files are the same or
within the specified tolerance, then the result is pass (otherwise fail). The use model is as follows:

compare_model_timing –ref ref.rpt -compare comp.rpt -outFile final.rpt

percent_tolerance 3 -absolute_tolerance [expr 0.30/$timeUnit]

The compare_model_timing report shows the comparison results for individual paths, ports, and
timing parameters. The resulting comparison report has the same sections as the interface timing
report: slack, or arc value, transition time, capacitance, design rules. There are two tolerance
settings as follows:

Absolute tolerance: Indicates the absolute acceptable difference between compared

September 2022 1222 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/write_model_timing.html
../innovusTCR/compare_model_timing.html
../innovusTCR/write_model_timing.html

parameters in library time units.

Percentage tolerance: Shows the percentage of acceptable difference between compared
parameters.

A path is flagged as a failure by the compare_model_timing command if it violates both the absolute
and percentage tolerance values.

Validation Flow - MMMC Designs
Case 1: In MMMC configuration, only one view should be active before
the do_extract_model command is issued. To set a view, you can use the set_analysis_view –
setup {$viewName} –hold {$viewName} command.

The model is extracted using the do_extract_model command along with the following set of
commands:

set viewList [all_analysis_view]

foreach viewName $viewList {

set_analysis_view –setup {$viewName} –hold {$viewName}

spefIn -rc_corner $rcCorner.spef

file mkdir $viewName

do_extract_model -view $viewName $viewName/test.lib -assertions \ $viewName/test.asrt -

verilog_shell_file $viewName/test.v \

-verilog_shell_module test

write_model_timing -view $viewName -type slack -verbose $viewName/ref.rpt

}

exit

This will create a separate directory for each view in $viewList, and files from each view will be
written in the corresponding directory. The generated ETM and the write_model_timing report from
the complete netlist will be saved in the corresponding ($view) folder.

Case 2: For validation of ETM generated from multiple views, the following set of commands can be
used to read the ETMs from the corresponding directory:

set_analysis_view –setup {view1} –hold {view1}

do_extract_model my_view1.lib -lib_name extracted_model -cell_name extracted_cell -

tolerance 0.0 -verilog_shell_file top.v -verilog_shell_module test_top –view view1

write_model_timing –type slack netlist_view1.rpt –view view1

set_analysis_view –setup {view2} –hold {view2}

do_extract_model my_view2.lib. -lib_name extracted_model -cell_name extracted_cell -

tolerance 0.0 -verilog_shell_file top.v -verilog_shell_module test_top –view view2

write_model_timing -type slack netlist_view2.rpt –view view2

September 2022 1223 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html
../innovusTCR/set_analysis_view.html
../innovusTCR/write_model_timing.html

exit

The last step is the validation report generation for each analysis view. The write_model_timing
command with the -view option will generate a report file that will contain the interface timing
information for this design for the specific view. First you should save the timing for the original
netlist and then this will be used to compare with the report file generated with the model
instantiation.

Auto-Validation of ETM
Innovus provides an automated validation flow for ETM, in which all the validation steps mentioned
in the previous steps can be run automatically. This can be done by using the do_extract_model -
validate parameter.

Note: When the -validate parameter is used, the existing validation directory will be removed and
a new directory will be created. It is recommended to specify different directories for the output ETM
file and auto-validation reports.

This flow will write out the required write_model_timing and compare_model_timing reports
in $val_dir. At the end of the auto-validation, the shell with block netlist is retained. The
comparison of both setup and hold checks is performed by the auto-validation.

The following summary is generated at the end of the auto-validation:

|Total_fail | Slack_Fail | Cap_Fail | Trans_Fail | DRV_Fail | checkType

| 5 | 2 | 1 | 0 | 2 | setup

| 2 | 1 | 0 | 0 | 1 | hold

ETM Extremity Validation
The ETM models the timing arcs in the design for a range of discrete input-slews/output-loads. The
slew/load asserted using SDC at the block-level during ETM characterization represents the
anticipated context of the ETM instance at the top-level. However, the current validation of the ETM
is done only for the input-slews/output- loads that have been asserted on the design during the ETM
extraction. Therefore, the current validation of ETM is incomplete in the sense that the validation is
not being done for a complete range of slew/load points for which ETM has been characterized.

Additionally, in GBA mode the problem of ETM validation is computationally more difficult. In GBA
mode, the assertion of a slew on a particular input port may have an impact on the timing of a path

September 2022 1224 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html
../innovusTCR/write_model_timing.html
../innovusTCR/compare_model_timing.html

starting from some other input port. Therefore, different combinations of input slews at the input
ports will result in different timing behavior of the block in GBA mode. Since there can be
exponentially large number of combination of slews at the input ports, validation of ETM in GBA
mode is computationally more difficult.

The “Extremity-Validation” of ETM (also referred as EV_ETM) validates ETM at the
minimum/maximum value of the slew at the input ports and minimum/maximum value of the output
load at the output ports, thereby validating the ETM to a greater extent of the possible scenarios at
the top. The minimum/maximum slew at the input port is defined as the minimum/maximum slew for
which that input port has been characterized in the ETM library. Similarly, the minimum/maximum
load at the output port is defined as the minimum/maximum load for which that output port has been
characterized in the ETM library.

The minimum/maximum value of the slew/load will yield four corners of the ETM context, namely:

1. Corner 1 (Fast): the minimum slew at the input ports and the minimum load at the output ports

2. Corner 2: the minimum slew at the input ports and the maximum load at the output ports

3. Corner 3: the maximum slew at the input ports and the minimum load at the output ports

4. Corner 4 (Slow): the maximum slew at the input ports and the maximum load at the output ports

The validation flow in exhaustive mode, is same as that in non-exhaustive mode, that is:

1. do_extract_model

2. write_model_timing at the block level

3. Read ETM at the top level

4. write_model_timing at the top level

5. compare_model_timing

This flow is controlled by the timing_extract_model_exhaustive_validation_mode global variable.

Additional files generated in EV-ETM (but not generated in normal validation) will be stored in the
current working directory by default. However, location to place these files can be controlled by
the timing_extract_model_exhaustive_validation_dir global variable. These files are written as
hidden files.

Also note that the timing_extract_model_exhaustive_validation_dir global variable should point
to the same directory at the block and top level. When this global variable is not used at the block
level, then the EV-ETM files (in step 1 and 2 above) will be dumped in the working directory at the
block level. If the working directory at the top level is different than that at the block level, then at the
top level timing_extract_model_exhaustive_validation_dir global variable should point to the
block level working directory.

September 2022 1225 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

../innovusTCR/do_extract_model.html
../innovusTCR/write_model_timing.html
../innovusTCR/compare_model_timing.html
../innovusTCR/timing_extract_model_exhaustive_validation_mode.html
../innovusTCR/timing_extract_model_exhaustive_validation_dir.html

The compare_model_timing command will compare the write_model_timing report output written at
the block level with the corresponding top-level report. The output
of compare_model_timing command, corresponding to four corners is written to a file named,
<output_file_name>_ev, where <output_file_name> is the name of the output-file. The results of four
different corners are written in four different columns as shown below:

#Slack(SS)/Status Slack(SF)/Status Slack(FS)/Status Slack(FF)/Status

 Transition Arc-Type From To

###

#######################

7.511[7.511]/PASS 7.511[7.511]/PASS 7.466[7.466]/PASS 7.466[7.466]/PASS

rise/rise setup CLK1 CLOCK1

9.666[9.665]/PASS 9.666[9.665]/PASS 9.336[9.321]/PASS 9.336[9.321]/PASS

fall/rise setup CLK3 CLOCK2

In this mode, there is no change in the use models of do_extract_model, write_model_timing,
and compare_model_timing commands. The behavioral difference (between default validation and
EV_ETM) is the creation of additional four files corresponding to the four corners.

If the slew propagation is set to worst, then
the do_extract_model and write_model_timing commands will issue a warning

Limitation/Implications of EV-ETM
The EV-ETM flow will have the following limitations/implications:

The runtime of validation will appreciably increase.

The EV-ETM will be supported only in the path_based mode and not in worst_case mode.

The EV-ETM, though validates the ETM at the corners, cannot be considered as fully
rigorous. For example, the proposed methodology does not validate the timing obtained by
interpolation of the tables characterized in ETM.

September 2022 1226 Product Version 22.10

 Innovus User Guide
Hierarchical Flow Capabilities--Extracting Timing Models

7

Prototyping Flow Capabilities

Innovus enables quick full-chip virtual prototyping to accurately capture downstream physical/electrical impacts
at the beginning of the design cycle. Its unique prototyping flow capabilities make hierarchical implementation
easier and faster for giga-scale, high-speed designs.

Using Early Global Route for Congestion and Timing Analysis

What-If Timing Analysis

Fast Slack Timing Analysis

Prototyping Methodologies

September 2022 1227 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities

Using Early Global Route for Congestion and Timing
Analysis
The Early Global Route or the earlyGlobalRoute Router performs quick global routing for estimating routing-
related congestion and parasitic (resistance and capacitance) values. It is the default pre-route routing engine
for full flow that aims to provide a good turnaround time (TAT) and a good better correlation with NanoRoute.
You can use Early Global Route results to estimate and view routing congestion, and to estimate parasitic
values for optimization and timing analysis. When used during prototyping, Early Global Route creates actual
wires, so that you can get a good representation of RC and coupling for timing optimization at an early stage in
the flow. Early Global Route also produces a congestion map that you can view to get an early feedback on
whether the design is routable.

Note: The Early Global Router does not guarantee DRC-clean routing results. In congestion estimation, Early
Global Route is used to calculate the track utilization by routing wires. Using the Early Global Router is correct
if there is any overlap between Early Global Route wires and pre-routed wires as you should focus on the
congestion value.

Note: Do not perform signal integrity analysis on a design that has been routed using Early Global Route,
because the routes are only used to estimate parasitic values for timing analysis. Route designs with
NanoRoute, if you want to perform signal integrity analysis.

You can use Early Global Route during virtual prototyping, hierarchical floorplanning, block implementation,
and top-level implementation.

Related Information

Prerequisite for Running Early Global Route

Routing a Flat Design

Routing a Partitioned Design

Using Early Global Router on MSV Designs

Analyzing Route Data

Congestion Distribution Report

September 2022 1228 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

Prerequisite for Running Early Global Route
For running Early Global Route directly, the design must be successfully placed and it must be loaded into the
current Innovus session.

Note: Early Global Route is the default engine in flat design flow.

Additional Information

Correlation with NanoRoute: Early Global Route solves the correlation issue between pre and post
NanoRoute. The difference between the Early Global Route congestion map and NanoRoute DRC
violation marker indicates a correlation issue that needs to be fixed.

Wire Overlap: Early Global Route is only used for congestion repair and timing estimation. The running
results may not be DRC clean. Cadence recommends you to use NanoRoute for the final tape out so that
you can find overlapping with wires or routing blockage boundary by Early Global Route. However, Early
Global Route can consider the available routing tracks and wires spacing during congestion calculation,
resulting in a congestion value that is correct.

Related Information

Using Early Global Route for Congestion and Timing Analysis

Routing a Flat Design

Routing a Partitioned Design

Using Early Global Router on MSV Designs

Analyzing Route Data

Congestion Distribution Report

Routing a Flat Design
In a flat design, Early Global Route can route through guides, regions, and fences, as long as there are no
routing blockages or hard blocks.

Use Model

Tuning the Early Global Routing Congestion Value

Using Bus Guides

Routing Secondary PG Pins

Routing on Reverse Direction

September 2022 1229 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

Use Model
Run Early Global Route for the first time to gauge the routability of the design. You can then examine the
congestion map and congestion distribution report to identify the congested areas that might cause routing
problems later in the design session.

1. Set the preferred routing layer using the setDesignMode command.

a. Define the bottom routing layer using the -bottomRoutingLayer value parameter.

b. Define the top routing layer using the -topRoutingLayer value parameter.

2. The clock routing wires can have a larger width and spacing value than the other signal wires. This
requires Early Global Route to preserve more routing resources for clock wires. Use one of the following
methods to specify the routing resources for clock wires:

a. Load the FE-CTS spec files using the specifyClockTree -file string command and then enable
the -earlyGlobalHonorClockSpecNDR parameter of the setRouteMode command (setRouteMode –
earlyGlobalHonorClockSpecNDR true) to force Early Global Route to honor the routing constraints
defined in clock tree spec file.

Note: The FE-CTS flow is a limited-access feature in this release. This feature is enabled by a
variable specified using the setLimitedAccessFeature command. To use this feature, contact your
Cadence representative to explain your usage requirements.

b. Define the number of tracks occupied by Early Global Route, using the setRouteMode -
earlyGlobalNumTracksPerClockWire value command.
Note: The CCOpt flow contains options to convert routing constraints into db. To use this feature,
contact your Cadence representative for the flow support.
Note: Early Global Route also honors the following net attributes defined by
the setAttribute command.

3. Call Early Global Route using the earlyGlobalRoute command.

Attribute Name Description

non_default_rule Defines the specified non-default rule for the nets.

preferred_extra_space Specifies the preferred extra spacing for the nets.

top_preferred_routing_layer Specifies the preferred highest layer for routing specified signal
nets.

bottom_preferred_routing_layer Specifies the preferred lowest layer for routing specified signal
nets.

skip_routing Specifies that the specified net should not be routed.

shield_net Preserves the routing resource for shielding nets.

September 2022 1230 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

../innovusTCR/setDesignMode.html
https://dsmpubs/icd_pubs_website/encounter/past_releases/16.1/innovusTCR/setLimitedAccessFeature.html
../innovusTCR/setAttribute.html
../innovusTCR/earlyGlobalRoute.html

Tuning the Early Global Routing Congestion Value
Early Global Routing enables you to tune the congestion results using the -
earlyGlobalSupplyScaleFactorH and -earlyGlobalSupplyScaleFactorV parameters of
the setRouteMode command. This provides a better correlation between Early Global Route and NanoRoute.

setRouteMode -earlyGlobalSupplyScaleFactorH value

setRouteMode -earlyGlobalSupplyScaleFactorV value

Where, the default value is 1

Max : 1.250000
Min : 0.750000

The value defines the capacity of available tracks in each gcell. You can get a pessimistic congestion map
with a smaller value and an optimistic result with a larger value.

You can increase the value of these parameters over 1 if Early Global Route is showing too much congestion
but the number of DRCs are not many. Alternatively, you can decrease the value if the congestion is small but
the number of DRCs are many.

Note: Even though Early Global Route is tuned by technology continuously, some cases may require tuning
manually. Even though these parameters can be used for tuning the congestion results, Cadence recommends
you to contact your Cadence representative if you see a correlation issue.

Correlation issues that may require tuning can be identified by comparing the congestion(hotspot) to the
NanoRoute DRC. These issues can degrade all sorts of QOR. After tuning the Early Global Routing
congestion value, there may be improvement in all sorts of metrics, however, there may be tradeoffs.
For example, if you make the congestion pessimistic you can improve DRC and runtime but you might
increase density and maybe end up with worse timing.

Note: You can use the reportCongestion command after routing the design to view the average
congestion and the local hotspot score report.

Using Bus Guides
Early Global Route honors the routing pattern constraint defined by bus guides. When you define the routing
layer and pattern for specified nets, the earlyGlobalRoute command automatically checks the bus guide
information, then routes these nets based on their defined bus guide constraints. However, the bus guide is a
soft constraint for Early Global Route, which means the nets can be routed outside a bus guide.

The following limitations exist for the Early Global Route bus guide feature:

Bus bit ordering is not guaranteed; it depends on the pin ordering and topology requirements.

Bus guides must be complete, and must cover the pins of the net they are to guide.

September 2022 1231 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

../innovusTCR/setRouteMode.html
../innovusTCR/reportCongestion.html

Routing Secondary PG Pins
Early Global Route supports routing of secondary PG pins. This makes the congestion results accurate. The
following steps describe the routing flow for secondary PG pins:

Use the setPGPinUseSignalRoute command to set the internal bit for the cell/pin pair to be routed by the
signal router.

Use the setRouteMode -earlyGlobalRouteSecondPG true command to enable the secondary PG
pin feature.

Optional: Define the non-default rules using the setAttribute command.

Optional: Define the maximum fanout for Early Global Route using the setRouteMode –
earlyGlobalSecondPGMaxFanout command.

Optional: Define the connected stripe layer using the setRouteMode –
earlyGlobalRouteStripeLayerRange command. This option enables you to control the layer of power
stripe to connect.

Call the earlyGlobalRoute command.

Note: To enable the secondary PG pin feature, you can use the setRouteMode -earlyGlobalRouteSecondPG
true command.

Routing on Reverse Direction
Early Global Route partially supports routing along the reverse direction. You can use the -
earlyGlobalReverseDirection parameter of the setRouteMode command to reverse the routing direction in the
given region on the specified layer-range.

Use the following command to specify an area in which Early Global Route routes wires in the non-preferred
direction:
setRouteMode -earlyGlobalReverseDirection "(x1 y1 x2 y2) Metal2:Metal2 (x3 y3 x4 y4)

Metal3:Metal3 ..."

Note: You can define the reverse direction routing area by “(x1 y1 x2 y2)” and routing layer by
“Metal2:Metal2”. In release 15.2, the Early Global Router only supports a single layer with this option.
Consequently, “Metal2:Metal3” is not supported.
The -earlyGlobalReverseDirection parameter only has impact on the congestion value calculation. By routing
along the reverse direction, you can reduce the routing capacity on the specified layer and add extract
resources on the above and below layers.
Innovus does not display the routing wires in the reverse direction routing region.

For example, the following command reverses the routing direction in the specified region on layer Metal3.
setRouteMode -earlyGlobalReverseDirection "(757.996 542.697 995.323 772.5685) Metal3:Metal3"

September 2022 1232 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

../innovusTCR/setPGPinUseSignalRoute.html
../innovusTCR/setRouteMode.html
../innovusTCR/setAttribute.html
../innovusTCR/earlyGlobalRoute.html
../innovusTCR/setRouteMode.html

The congestion value without reverse direction routing:
Overflow after earlyGlobalRoute 0.02% H + 0.00% V

The congestion value with reverse direction routing:
earlyGlobalRoute overflow: 0.93% H + 0.10% V

Related Information

Using Early Global Route for Congestion and Timing Analysis

Prerequisite for Running Early Global Route

Routing a Partitioned Design
In a flat design, Early Global Route can route through guides, regions, and fences, as long as there are no
routing blockages or hard blocks. However, fences are often defined as partitions, which become blocks after
the design becomes hierarchical. Once partitions become blocks, the routes are no longer allowed, unless they
use a proper feedthrough mechanism, such as inserted buffers or routing feedthroughs. Early Global Route
provides options to route the partitioned designs with or without honoring fence and pin constraints.

September 2022 1233 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

Note:

Early Global Route supports specified routing constraint setting for each partitions. You can define the
complete list of partitions that route in a HonorFence and HonorPin style.

Early Global Route fully supports hierarchical design flow and is turned on automatically.

Use model
As per requirement, use the following attributes of the setRouteMode command:

setRouteMode -earlyGlobalRoutePartitionHonorFence list_of_ptn_cell_names

Defines the partition cells in which Early Global Route honors the fence constraints. You should specify
the partition cell names, which are Verilog module names that can contain alphabetic characters,
numeric characters, an underscore, and/or a dollar sign.

setRouteMode -earlyGlobalRoutePartitionHonorPin list_of_ptn_cell_names

Defines the partition cells in which Early Global Route honors partition fences with single-entry
constraints and pre-assigned pins (pins marked FIXED) and assigned pins (pins
marked PLACED). Placed pins includes the pins with placed and fixed status.

setRouteMode -earlyGlobalRoutePartitionPinGuide {true|false}

Defines whether Early Global Route should honor fixed pin and user-specified pin guide. When
enabled, Early Global Route uses the pin guide statements in the floorplan file to guide the routing
through partition pin points.

Notes:

Early Global Route does not honor the fences or fixed pin constraints by default. You must define the -
earlyGlobalRoutePartitionHonorFence attribute to honor the constraints.

For flat partitioned designs, you can specify -earlyGlobalRoutePartitionHonorFence to simulate
channel-based routing. For channel-less designs, you must perform feedthrough insertion before using
this attribute.

The HonorPin setting has priority over HonorFence setting. As a result, if the HonorPin option is specified
before or after the HonorFence option for a partition, the partition will be routed as HonorPin. You must
reset the HonorPin setting if the same partition has to be routed as HonorFence later.

The default value for setRouteMode -earlyGlobalRoutePartitionPinGuide is true.

If the -earlyGlobalRoutePartitionHonorPin attribute has been defined, Early Global Route automatically
honors the fence constraints even if the -earlyGlobalRoutePartitionHonorFence attribute has not been
specified.

September 2022 1234 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

../innovusTCR/setRouteMode.html

Nested Partition Support by Early Global Route
Early Global Route supports nested partitions. The partitions specified with
the –earlyGlobalRoutePartitionHonorFence and the -earlyGlobalRoutePartitionHonorPin parameters are
routed in the style that honors fence and pin constraints. All other partitions are still routed flat.

Example:
In the following diagram, P1, P2, P3, P4, C1, C2, C3, G1, and G2 are partitions, however, only P2 and C2 are
defined to honor fence constraints. Consequently, earlyGlobalRoute routes partition P2 and C2 using the
HonorFence routing style while other partitions are routed flat.

setRouteMode –earlyGlobalRoutePartitionHonorFence {P2 C2}

earlyGlobalRoute

Early Global Route Behavior in Partitioned Designs

Routing Behavior When Pin Guides Are Honored:

The following table explains the Early Global Route behavior in partitioned designs when pin guides are
honored:

Default
Behavior

With
-
earlyGlobalRoutePartitionHonorFence

With
-
earlyGlobalRoutePartitionHonorPin

September 2022 1235 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

setRouteMode -earlyGlobalRoutePartitionPinGuide true

earlyGlobalRoute

Honor
Partition
Fences
with
Single
Entry

N Y Y

Allow
Crossing
Over
Other
Partitions

Y N N

Honor
Pin
Guides

N Y Y

Honor
Fixed
Pins

N Y Y

Honor
Placed
Pins

N N Y

September 2022 1236 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

Routing Behavior When Pin Guides Are NOT Honored

The following table explains the Early Global Route behavior in partitioned designs when pin guides are not
honored:

setRouteMode –earlyGlobalRoutePartitionHonorFence . -earlyGlobalRoutePartitionPinGuide false

earlyGlobalRoute

Default
Behavior

With
-
earlyGlobalRoutePartitionHonorFence

With
-
earlyGlobalRoutePartitionHonorPin

Honor
Partition
Fences
with
Single
Entry

N Y Y

Allow
Crossing
Over
Other
Partitions

Y N N

Honor
Pin
Guides

N N N

Honor
Fixed
Pins

N N Y

Honor
Placed
Pins

N N Y

September 2022 1237 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

Related Information

Using Early Global Route for Congestion and Timing Analysis

Prerequisite for Running Early Global Route

Using Early Global Router on MSV Designs
In multiple supply voltage (MSV) designs, the nets have preferred and non-preferred power domains that have
constraints on the routing pattern. Early Global Route honors this setting and routes wires through the preferred
power domains. However, since it is a soft routing constraint, Early Global Route can route through non-
preferred power domains with a high cost.

To enable the MSV routing feature in Early Global Route, use the following command:

setRouteMode –earlyGlobalHonorMsvRouteConstraint true

This option honors MSV domain constraints. It is used to decide whether Early Global Route should honor
power domain settings. By default, Early Global Route ignores the power domain settings and routes as a flat
design. When enabled, wires are routed inside preferred power domains as much as possible.

The following illustrations explain the behavior of Early Global Route results for MSV designs.

Net
Name

Color Net Type

n1 Blue intra power
domain net
(PD1)

September 2022 1238 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

Example

The following command routes the design as a flat design and does not honor the MSV constraints.

setRouteMode –earlyGlobalHonorMsvRouteConstraint false
earlyGlobalRoute

The following command routes the design by honoring the MSV constraints and the different power
domain settings.

setRouteMode –earlyGlobalHonorMsvRouteConstraint true
earlyGlobalRoute

Related Information

Using Early Global Route for Congestion and Timing Analysis

Prerequisite for Running Early Global Route

n2 Red inter power
domain net
(PD1 and
PD3)

September 2022 1239 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

Analyzing Route Data
Early Global Route is the route engine before NanoRoute, which is used for congestion evaluation and timing
analysis. After running Early Global Route, you can analyze the GUI and log results to check if your design is
routable.

Visually check the route congestion markers. The red diamond-shaped congestion markers should not
be very dense in a local area. These markers contain an overflow value to identify the number of tracks
required for that grid, and the actual number of tracks available.

In the log file, inspect the Early Global Route congestion value and wire length. Use the congestion value
to check whether the design is routable and the routing layer is reasonable.

Note: The Early Global Router has honors partial routing blockages that have a density attribute that defines
how many percent of routing tracks are available for each layers. Early Global Route updates the supply
calculation based on the available tracks per blockage ratio in the region where the blockage is.

Congestion Markers in the Display

Early Global Route can calculate the required and available tracks in each gcell. You can visually check the
Early Global Route congestion statistics in the design display area of the main Innovus window to identify the
tight clusters of congestion markers. Check the design display area to make sure there are no markers grouped
closely together. These usually occur around blocks or between large blocks. The indicators are diamond
shaped and red by default. Zoom into the area to display the vertical and horizontal congestion overflow
values, as shown in the following figure.

Congestion markers contain a vertical or horizontal overflow value to identify the number of tracks required for
that grid, and the actual number of tracks available. For example, in the above illustration, the vertical overflow
is 2/0, which indicates that two additional tracks are required, and 0 tracks are available. Congestion marker
values are based on an integer number of adjacent gcells that are grouped together to form a "super gcell."
Horizontal congestion super gcells are tall, narrow boxes that typically have a height of four gcells and a width

September 2022 1240 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

approximately equal to the height of a vertical congestion super gcell. Vertical congestion super gcells are
short, wide boxes that typically have a height of one gcell and a width approximately equal to the height of a
horizontal congestion super gcell.

Vertical and horizontal overflow values are calculated separately for better accuracy. The overflow value is the
amount by which the track demand exceeds the track supply. The required track value is calculated by totaling
the number of required tracks in the super gcell. That is, the value is the sum of the number of required tracks in
all of the adjacent gcells that form the super gcell.The available track value is calculated by totalling the
number of available tracks in the super gcell.

Note: Congestion markers can display different congestion information than that contained in the default
congestion distribution report. The information in the congestion distribution report is based on the congestion
of each gcell instead of the super gcells.

To change the size of super gcells, define the following variable:
set rdaSuperGcellSize n

The value you specify for n must be greater than or equal to 0 and less than or equal to 10. If you specify a
value of 1, a super gcell becomes a regular gcell, and the displayed congestion marker information matches
the congestion information provided in the report. If you specify a value of 0, the super gcells become square.

Congestion Marker Color Boxes

By specifying the HCongest and or VCongest colors in the Color panel, you can also add a color box to the
congestion marker that indicates the severity of the overflow level (that is, the number of overflow tracks in a
one-unit area). Usually, a one-unit area contains 10 global cells (gcells) horizontally. If there are 50 vertical
tracks available in that area, and Early Global Route requires 51 vertical tracks, the congestion marker color
box is blue (by default), indicating a one-track overflow. If Early Global Route requires 52 vertical tracks, the
congestion marker color box is green (by default), indicating a two-track overflow. An example of this is shown
in the following figure.

The following table shows the default congestion marker colors and their corresponding overflow values:

Level Color Overflow Value

level 1 Blue 1 (One more track required)

level 2 Green 2 (Two more tracks required)

level 3 Yellow 3 (Three more tracks required)

level 4 Red 4 (Four more tracks required)

level 5 Magenta 5 (Five more tracks required)

September 2022 1241 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

Related Information

Using Early Global Route for Congestion and Timing Analysis

"Multicolor Layers" section in the The Main Window chapter of the Menu Reference.

Congestion Distribution Report

Congestion Value Calculation

Early Global Route prints the congestion value and wire length in the innovus.log and innovus.logv files.

Note: The congestion calculation method used by Early Global Route uses the same formula as Global
Route. After Early Global Route completes, you can find the following value in the log file:

[NR-eGR] Overflow after Early Global Route 0.03% H + 0.00% V

Note: The total overflow value for Early Global Route is calculated by adding the demand and capacity from
each layer for each GCell.

For example, the overflow value for Early Global Route is calculated using the the following formula:

eGR_total_overflow = 0

For each GCell {

 Total_gcell_demand = 0

 Total_gcell_capacity = 0

 For each layer{

 Total_gcell_demand += demand;

 Total_gcell_ capacity += capacity

 }

 overflow = Total_gcell_demand - Total_gcell_capacity

 If (overflow > 0) {

 eGR_total_overflow += sqrt(overflow)

 }

}

The final calculation for the overflow value is done by dividing the total overflow value for Early Global Route
by the total number of unblocked gcells:

Overflow eGR = eGR_total_overflow / total number of unblocked gcells

Note: This calculation is done by both directions so you need to add (H) and/or (V) to present this for both
directions.

level 6 and higher Gray to white 6 or greater (Six or more tracks required)

September 2022 1242 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

../innovusMR/The_Main_Window.html

Early Global Route Congestion Formula

In Early Global Route congestion formula, Innovus first adds up the total overflow value for each GCell on all
the layers on vertical or horizontal direction and then derives the total overflow from its square root

Innovus adds up all the overflow numbers together and divides it by the total available cell numbers. Similar to
the Global Route compatible congestion formula, Innovus also calculates the horizontal and vertical
congestion value separately:

Overflow (H) = sqrt (number of overflow gcells for all layers (H) / total number of unblocked

GCells for a single layer)

The Early Global Route congestion formula uses the square root of overflow number but not the overflow gcell
to calculate the overflow value. For example, if there are 1000 gcells and only 1 gcell with 9 overflow along the
vertical direction, the congestion value in that direction is 0.3%. The gcell height and width equals to one stand
cell row height. This formula also excludes all the fully blocked gcells from this calculation, if there are 200 fully
blocked gcells, the congestion value should be 0.375%

Note: For the double pattern technology (DPT), Early Global Route cannot color wires automatically so
it preserves 15% capacity on all DPT layers.

Wire Length Report

Early Global Route also calculates the routing length and via number on each layer to get the wire length
distribution and compare it with the final NanoRoute result. Early Global Route honors the top and bottom layer
setting by the setDesignMode and setAttribute commands.

[NR-eGR] Length (um) Vias

[NR-eGR] -----------------------------------

[NR-eGR] Metal1 (1H) 0 25155

[NR-eGR] Metal2 (2V) 134127 35802

[NR-eGR] Metal3 (3H) 189844 5296

[NR-eGR] Metal4 (4V) 95825 1646

[NR-eGR] Metal5 (5H) 77137 416

[NR-eGR] Metal6 (6V) 29560 0

[NR-eGR] -----------------------------------

[NR-eGR] Total 526492 68315

[NR-eGR] --

Note: The default value of min routing layer is Metal2. As shown in the above results, Early Global Route does
not use Metal1 for routing by default. Early Global Route can use Metal1 layer with the -bottomRoutingLayer
setting, but cannot fully use Metal1 as the other layers.

Related Information

Using Early Global Route for Congestion and Timing Analysis

September 2022 1243 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Using Early Global Route for Congestion and Timing Analysis

../innovusTCR/setDesignMode.html
../innovusTCR/setAttribute.html

What-If Timing Analysis
Performing What-If Timing Analysis

Prerequisite

Timing Models Supported for What-If Timing Analysis

Using the What-If Timing Commands

September 2022 1244 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--What-If Timing Analysis

Performing What-If Timing Analysis
You use blackboxes in large designs containing hierarchical flows when gate-level details are not available at
the beginning of the design cycle. You can easily modify the timing model of a blackbox at the top level
because it is not a hard macro. Using the Innovus™ Implementation System, you can make quick modifications
to the timing model of a blackbox, and run timing analysis to check the impact of the modifications. This feature
is known as what-if timing budgeting. The Innovus software provides what-if timing commands to support what-
if timing budgeting. For more information on what-if timing commands, see the chapter What-if Timing
Commands," in the Innovus Text Command Reference.

The following diagram shows the what-if budgeting flow.

Prerequisite
Prior to using what-if timing commands, you must load the what-if timing models into the database because the
what-if timing commands simulate the modifications of the timing arcs.

If you do not have timing models in the early design phase, you can use the setWhatIfClockPort command to
create clock ports. You can then use the clock port to create timing arcs.

The what-if timing analysis commands do not support the Multi-Mode Multi-Corner (MMMC) feature.

September 2022 1245 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--What-If Timing Analysis

../innovusTCR/What-If_Timing_Commands.html
../innovusTCR/setWhatIfClockPort.html#setWhatIfClockPort-setWhatIfClockPort

Timing Models Supported for What-If Timing Analysis
The Innovus software supports two timing models for what-if timing analysis: intrinsic and normalized. You can
select only one mode at a time.

The following figure shows the intrinsic timing model.

Figure 10-1 Intrinsic Timing Model

The data types associated with the numbers in the figure above and the corresponding commands that you use
to specify that data are as follows:

An intrinsic timing model uses the following formula for timing arcs ending on output ports:

Delay = constant delay + driver delay (look-up table)

If you do not use slew specifications in an intrinsic timing model, the timing arc is a 2-D timing table containing
input slew and output capacitance dependencies. With slew specifications, the timing arc is only load
dependent.

The following figure shows the normalized timing model.

Figure 10-2 Normalized Timing Model

The data types associated with the numbers in the figure above, and the corresponding commands that you

Data Type Command

1 Type of Driver setWhatIfDriveType

2 Driver input slew

3 Clock insertion delay to internal registers setWhatIfClockLatency

September 2022 1246 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--What-If Timing Analysis

../innovusTCR/setWhatIfDriveType.html#setWhatIfDriveType-setWhatIfDriveType
../innovusTCR/setWhatIfClockLatency.html#setWhatIfClockLatency-setWhatIfClockLatency

use to specify that data is as follows:

A normalized timing model uses the following formula for timing arcs ending on output ports:

Delay = constant delay - driver delay* + driver delay (look-up table)

Where,

constant delay = Timing arc delay including driver delay

driver delay* = Constant delay considering an input slew and an output capacitance

constant delay - clock latency must be greater than driver delay*

In a normalized timing model mode driver input slew is always required. In this mode, timing arcs are only load
dependant. If you do not specify the driver total output net capacitance, the software takes real net capacitance
into account.

Using the What-If Timing Commands
You can perform the following tasks with the what-if timing commands:

Selecting Timing Model
Use the following command to select the timing mode:

setWhatIfTimingMode

Defining generated clocks on internal pins:
Use the following command to create an internal pin and to define a generated clock on the pin.

createWhatIfInternalGeneratedClock

Set the following values on the what-if ports, if required:

Capacitance

Maximum capacitance

Maximum transition

Maximum fanout

Data Type Command

Driver type setWhatIfDriveType

Driver input slew

Total driver output net capacitance

Clock insertion delay to internal registers setWhatIfClockLatency

September 2022 1247 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--What-If Timing Analysis

../innovusTCR/setWhatIfDriveType.html#setWhatIfDriveType-setWhatIfDriveType
../innovusTCR/setWhatIfClockLatency.html#setWhatIfClockLatency-setWhatIfClockLatency
../innovusTCR/setWhatIfTimingMode.html#setWhatIfTimingMode-setWhatIfTimingMode
../innovusTCR/createWhatIfInternalGeneratedClock.html

Use the following command to set these values on the what-if ports:

setWhatIfPortParameters
By default, the parameters specified with the setWhatIfPortParameters command are applied to all
ports in the what-if timing analysis model. If you want to apply the values for a particular port,
specify the port name with the setWhatIfPortParameters -port parameter.

Selecting the precedence between the values set by setWhatIfDriveType command and the values set by
the setWhatIfPortParameters command
On output ports, parameters such as capacitance value, maximum capacitance values, maximum
transition value, or the maximum fanout value can come from the driver (setWhatIfDriveType command)
or they can be set through the setWhatIfPortParameters command.

Use the following command to define which of these values will take precedence in case of a conflict.

setWhatIfTimingMode

Modifying Timing Arcs
While what-if commands are the same for both intrinsic and normalized timing models, the delay value
specified in the commands for the combinatorial and the sequential timing arcs has different meaning.
The driver output net capacitance is a characteristic of the normalized timing model only. Whenever you
create or modify a timing arc, the timing graph is updated automatically. The Innovus software
recomputes the entire timing arc whenever any of the parameter such as clock insertion delay, timing arc
delay or driver type is modified.

Note: The timing sense of the driver is taken into account in the combinatorial what-if timing arc
description--while applying the drive type, the timing sense of the combinatorial arc is replaced by the
timing sense of the driver's timing arc. For sequential arcs, the timing sense is always set to non_unate.

Use the following commands to modify timing arcs:

setWhatIfDriveType

setWhatIfClockPort

setWhatIfClockLatency

Getting Timing Arcs Assertions
Use the following command to get what-if timing arc assertions:

getWhatIfTimingAssertions

Saving Timing Arcs Assertions
Use the following command to save what-if timing arc assertions:

saveWhatIfTimingAssertions

Deleting Timing Arcs Assertions

September 2022 1248 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--What-If Timing Analysis

../innovusTCR/setWhatIfPortParameters.html#setWhatIfPortParameters-setWhatIfPortParameters
../innovusTCR/setWhatIfPortParameters.html#setWhatIfPortParameters-setWhatIfPortParameters
../innovusTCR/setWhatIfPortParameters.html#setWhatIfPortParameters-setWhatIfPortParameters
../innovusTCR/setWhatIfTimingMode.html#setWhatIfTimingMode-setWhatIfTimingMode
../innovusTCR/setWhatIfDriveType.html#setWhatIfDriveType-setWhatIfDriveType
../innovusTCR/setWhatIfClockPort.html#setWhatIfClockPort-setWhatIfClockPort
../innovusTCR/setWhatIfClockLatency.html#setWhatIfClockLatency-setWhatIfClockLatency
../innovusTCR/getWhatIfTimingAssertions.html#getWhatIfTimingAssertions-getWhatIfTimingAssertions
../innovusTCR/saveWhatIfTimingAssertions.html#saveWhatIfTimingAssertions-saveWhatIfTimingAssertions

Use the following command to delete the what-if timing arc assertions:

deleteWhatIfTimingAssertions

Checking Timing Assertions
Use the following command to check the what-if timing assertions:

checkWhatIfTiming

Generating what-if timing Models
After modifying the what-if timing model (in memory) using the what-if command, you can generate an
updated timing model (.lib).

Use the following command to generate an updated .lib file:

saveWhatIfTimingModel

Generating What-If SDC constraints
The Innovus software generates the what-if timing constraints considering the top-level environment of
the blackbox or blackblob. It provides a higher convergence for a top-down flow. The software generates
drive, load and transition as IN context. The software generates the input and output delays as OUT
context taking into account the last modifications done when you use the what-if commands.

Use the following command to save the What-If constraints:

saveWhatIfConstraints

September 2022 1249 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--What-If Timing Analysis

../innovusTCR/deleteWhatIfTimingAssertions.html#deleteWhatIfTimingAssertions-deleteWhatIfTimingAssertions
../innovusTCR/checkWhatIfTiming.html#checkWhatIfTiming-checkWhatIfTiming
../innovusTCR/saveWhatIfTimingModel.html#saveWhatIfTimingModel-saveWhatIfTimingModel
../innovusTCR/saveWhatIfConstraints.html#saveWhatIfConstraints-saveWhatIfConstraints

Fast Slack Timing Analysis

September 2022 1250 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Fast Slack Timing Analysis

The Fast Slack Analysis feature can be used to analyze and display slack information of FlexModels and/or
specified modules. Fast Timing Analysis calculates the initial timing between FlexModels and/or specific
modules based on manhattan distance using psPM timing value for net delay.

Related Information

Performing Fast Slack Timing Analysis

Initializing Fast Slack Timing Analysis

Performing Fast Slack Timing Analysis
The Fast Slack Timing Analysis provides a fast and reliable way to interactively check timing between
FlexModels and/or selected modules using GUI. The timing report is based on the reliable psPM model and
the slack is calculated between two models. Once the timing between models is initialized, slack of timing path
between models is updated if locations of these models are changed.

Note: It can be used for the chip planning stage of a prototyping or a during hierarchical implementation flow.

September 2022 1251 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Fast Slack Timing Analysis

Initializing Fast Slack Timing Analysis
You can initialize the fast timing analysis using the Initialize Fast Timing Analysis GUI form that can be
displayed by choosing Floorplan - Generate Floorplan - Initialize Fast Timing Analysis in the Innovus UI.

Note: The psPM model should be available before invoking fast slack timing analysis.

When the Initialize Fast Timing Analysis form is displayed:

1. Choose one of three usage models based on your design.

FlexModel Only: Initializes the timing analysis for FlexModels only.

Specified Hinsts Only: Initializes the timing analysis for user specified hinsts by GUI selection.

FlexModel and Specified Hinsts: Initializes the timing analysis for FlexModels and user specified
hinsts by GUI selection.

2. Click OK

Once initialization is done, slack is automatically updated if the location of a model is changed and the Slack
Preference form is displayed

For example:

Examples of Fast Slack Timing Analysis

Example 1

When you choose Floorplan - Generate Floorplan - Initialize Fast Timing Analysis - FlexModel Only

September 2022 1252 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Fast Slack Timing Analysis

Example 2

When you choose Floorplan - Generate Floorplan - Fast Slack Analysis/Display - Display slack for

September 2022 1253 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Fast Slack Timing Analysis

When the model is moved, slack value is automatically updated

September 2022 1254 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Fast Slack Timing Analysis

Prototyping Methodologies
The prototyping foundation flow provides a simplified design analysis. You can filter large amount of data and
visualize the data using various forms of graphical representations. This flow has the following capabilities:

Capacity: This flow handles upto 50 million instances in concurrent timing and congestion-driven mode.

Turnaround Time: This is a progressively converging flow and enables you to run:

Global placement of modules

Incremental macro placement

Detailed standard cell placement

By creating abstracts of the design to ten times fewer instances than the full netlist, you get ten times
faster turnaround.

GUI: Simplified GUI is provided to obtain abstract timing information relevant to the global context.

Productivity: It provides a unified correct by construction flow for partitioning, pin assignment, macro
placement, feedthrough insertions, and time budgeting.

Flexible abstractions: This flow contains:

Fine grain abstraction for the right mix of capacity and accuracy.

The innovative FlexFiller connectivity modeling for reasonable placement utilization, routing
congestion, and timing estimates.

Optimization: By using the prototyping foundation flow, you can:

Run real optimization on interface paths of the FlexModels to improve accuracy.

Create models only once and use it multiple times to refine global placement.

This makes model generation linearly scalable with an additional CPU.

Creative heuristics – the flow provides:

Lightweight prototype timing engine

Timing-driven proto_design and earlyGlobalRoute

The prototyping methodologies have been designed to handle growing design sizes. It allows you to do
productive chip planning and concurrently handle multiple design objectives. You can use the following
methodologies:

SoC Architecture Information (SAI)

FlexModels

September 2022 1255 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../TCRcom/proto_design.html
../innovusTCR/earlyGlobalRoute.html

Possible Application of SAI/FlexModel Flows

Related Information

Using SAI Methodology for Prototyping Without Netlist

Using SAI 2.0 Methodology for Early Prototyping and Planning

Using FlexModel for Prototyping

September 2022 1256 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Using SAI Methodology for Prototyping Without Netlist
The SoC Architecture Information (SAI) methodology allows floorplanning and analysis much earlier in the
design process when a netlist is not available. SAI methodology allows exploring design feasibility and creates
schematics and floor plan with foundry, IP, and die size target information. Additionally, you can turn block
diagram information into a simple format, and create a netlist to enable Innovus floor planning.

The SAI architecture is shown below:

The SAI file contains the following details:

Chip Architecture and IPs information is captured: Includes reference unit “gate” from the foundry specification,
reference flop, macros or special IPs, memory with different sizes and ports, bus connection, soft modules
(partitions), existing partial netlist, clocks, and floorplan dimension. Additionally, the software can also
convert the block diagram language into a simple format.

Enabling SAI Mode
The SAI mode enables you to turn a high-level block diagram into a real netlist and timing constraint (.sdc)
ready for floorplanning and timing analysis much earlier without having a netlist or just with a partial netlist.

You can use the following Innovus commands to enable or disable the SAI mode:

read_sai: Enables the SAI mode that allows the use of SAI commands interactively at the command
line.

end_sai: Disables the SAI mode.

September 2022 1257 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/read_sai.html
../innovusTCR/end_sai.html

Enabling SAI in Batch Mode

To enable SAI in batch mode, you can use the following commands:

setUserDataValue init_lef_file …
setUserDataValue init_mmmc_file …
setUserDataValue init_verilog ... #partial netlist
setUserDataValue init_top_cell <my_top_cell_name>

read_sai demo.sai

In the above example, read_sai enables you to interactively use SAI commands on the prompt or in turn, use it
within a script to execute SAI steps. In the batch mode, you can directly use read_sai demo.sai.

Note: The content of demo.sai (used to build design content through SAI commands) is shown in the
section Sample SAI File below.

Enabling SAI in Interactive Mode

For an interactive session, you can use the read_sai command to invoke SAI capabilities and follow up with
individual SAI commands on the prompt to build the database.
read_sai

Type in any SAI related commands you want to use. For example create_module, connect, add_macro, ...

You can also use the –help option to check the SAI command options. Once completed, you can end the SAI
session with the end_sai command.

Notes:

end_sai terminates the SAI input in both interactive or SAI script based commands.

You can use the timeDesign –prePlace parameter to check if timing is ready. Then you can open GUI to
floorplan modules.

Creating Automatic Netlist with SoC Architecture Information (SAI)
Based on the SAI, you can create a netlist to enable Innovus floorplanning. This provides the following
features:

Parse a partial netlist and the SAI file and to create a netlist.

Add dummy cells to mimic the size of the define modules (RFQ).

Add dummy flop to mimic the boundary connection from module to module.

Add dummy memory or the real memory in order to assist sub-chip floorplan.

September 2022 1258 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Add pipe line stage registers per the specification in the connection file.

Create SDC timing constraints file for the defined boundary connection and read into Innovus.

Define the die size and read into Innovus.

Create all the net groups and pipeline net groups.

Handle master-clone, where connection model is single-driver but multiple receiver.

Partial Netlist Support
The SAI commands can be used to generate top level netlist or add new modules or modify the existing ones.
Consider the following examples:

Top level netlist is ready but consists of some incomplete modules

Incomplete modules might have only port definition or have some logic inside. The SAI
command create_module can be used to fill those modules with pseudo logic incrementally, as shown
below:
create_module xcmUnit1 -cell XM_PORT$i -gate_count 5000

-memory_bit_count 8192 -util 0.4 -aspect_ratio_range {0.5 2.0}

–flop_count 450 –flop_ref_clock clk

You can create a net connection by using the following command:
connect xcmUnit1/out -to xsw/in -clock clk -bus_width 256 -pipeline_stages 2

Module ports can be created on demand when the connect command is used.

There is no top level netlist but some modules for partition blocks are ready. The SAI
command create_module will generate top level netlist and add existing modules.

September 2022 1259 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Sample SAI File
set_sai_version 1.0
set_ref_flop DFFSRX4 ;# define a Flop
set_ref_gate CLKBUFX8 ;# define the basic “unit gate” cell
set_ref_memory mem1 -bit_size 1024 -area_per_bit 1.1 -aspect_ratio 0.75
for {set i 0} {$i<6} {incr i} {
create_module iport$i -cell XM_PORT$i -gate_count 5000 -memory_bit_count 8192 \
-util 0.4 -aspect_ratio_range {0.5 2.0} –flop_count 450 \
–flop_ref_clock clk
}
create_module xsw -cell XM_XBAR -gate_count 8000 -memory_bit_count 4096 -util 0.5\
-aspect_ratio_range {0.5 2.0}
add_macro -cell XM_PORT0 {ram_128x16A 10 rom_512x16A 20}
add_macro -cell XM_PORT1 {ram_128x16A 10 rom_512x16A 10}
add_macro -cell XM_PORT2 {ram_128x16A 10 rom_512x16A 20}
add_macro -cell XM_PORT3 {ram_128x16A 10 rom_512x16A 10}
add_macro -cell XM_PORT4 {ram_128x16A 10}
add_macro -cell XM_PORT5 {ram_128x16A 10 rom_512x16A 10}
add_macro -cell XM_XBAR -memory mem1
for {set i 0} {$i<6} {incr i} {
connect iport$i/out -to xsw/in$i -clock clk -bus_width 256 -pipeline_stages 2
connect xsw/out -to iport$i/in -clock clk -bus_width 256
}
add_clock clk -period 6.0 -waveform {0.0 3.0} -buffer CLKBUFX8
set_floorplan -aspect_ratio 1.0 -util 0.2 -side_spacing 80.0

Related Information

Prototyping Methodologies

Using SAI 2.0 Methodology for Early Prototyping and Planning

Supported SAI Commands

September 2022 1260 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Using SAI 2.0 Methodology for Early Prototyping and
Planning
The Soc Architecture Information (SAI) methodology is a powerful and self-contained design planning
capability. It provides an ideal design/floorplan hand-off mechanism between front-end and back-end teams.
Designers can turn a high-level block diagram into a real netlist and timing constraint (.sdc) ready for
floorplanning and timing analysis much earlier without having a netlist or just with a partial netlist.

With SAI version 2.0, designers are able to specify floorplan constraints to guide module and/or macro
placement, report floorplan quality index, and any constraint violations. The SAI 2.0 methodology provides you
the ability to:

Specify floorplan constraints using SAI version 2.0 that will be honored during module and/or macro
placement.

Specify cost functions to bias floorplan synthesis results.

Identify the floorplan constraint violations on GUI, and report floorplan quality index based on the
specified constraints and its scoring.

Recommended SAI 2.0 Flow
The recommended SAI 2.0 flow for early prototyping and planning involves the following steps:

1. Creating a SAI file with floorplanning constraints.

2. Reading a SAI file into Innovus to generate a SAI design.

3. Invoking Automatic Floorplan Synthesis to place modules/macros.

4. Checking the floorplan constraints and reporting the Floorplan Quality Index.

5. Once the Floorplan Quality Index is zero or close to it, continue with the normal hierarchical flow.

September 2022 1261 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Creating a SAI file with Floorplanning Constraints
A SAI file should be created with information such as reference unit gate and flop, macros, memory with
different sizes and ports, partition modules, bus connections between modules, clocks, and floorplan
dimensions. In addition, SAI 2.0 can support floorplanning constraints with the constrain SAI command. This
command allows you to set the following constraints/rules:

Place specified macros along the boundary.

Place modules with minimum spacing to core box.

Place modules away from each other with minimum spacing.

Modules/macros abutment

Furthermore, the new -weight option is added to the existing connect SAI command that can be used to
specify the net weight for a critical net. The proto_design command will honor the specified net weight
constraint of a net/bus such that its connected modules will be placed close together to minimize the wire
length.

September 2022 1262 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../TCRcom/proto_design.html

Sample SAI 2.0 File
The following is a sample of the SAI 2.0 file:

Reading a SAI file into Innovus to Generate a SAI Design
When the SAI 2.0 file is available, the next step is to read it into Innovus using the existing read_sai command.
After reading in the SAI file, the design is ready for floorplanning.

The read_sai command enables the SoC Architecture Information (SAI) mode that allows the use of SAI
commands interactively at the command line.

–rule_only: Use this option when you already have a SAI design and only want to read the floorplan
constraints/rules.

–reduce_by_flexfiller: Use this option to reduce the size of the generated SAI netlist using the
FlexFiller technology that is same as the FlexModel methodology. This helps to address the capability
and run-time limitations of a growing design size (10 or 100 of million instances).

For example, the following command reads in the example2.0.sai file and reduces the SAI netlist while
maintaining the module areas:
read_sai example2.0.sai –reduce_by_flexfiller

Generating an Initial Floorplan
The next step in the flow is to generate an initial floorplan. Given a SAI netlist and a design physical boundary,
the proto_design command can generate an initial floorplan that can be used as a start point for making the
final floorplan.

September 2022 1263 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/read_sai.html

The following diagram displays a floorplan that was generated by proto_design that met SAI constraints.

Checking and Reporting SAI Constraints
You can use the report_sai_constraint command to validate a floorplan result and to check whether the
specified SAI constraints are met. This enables front-end designers to easily evaluate a floorplan provided by
their physical designers against the specified floorplan rules without requiring them to have much knowledge
about using the Innovus System.

Example of SAI Violation Markers

In the following example, the SAI file has the rule “macro_abut_to_edge” where macro B12/H29 should be
abutted to any design boundary. As a result, it is placed close to the top edge boundary with 100 micron
spacing. This violates the “macro_abut_to_edge” rule; hence the report_sai_constraint command displays a
violation message and creates the violation marker.

September 2022 1264 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Related Information

Prototyping Methodologies

Using SAI Methodology for Prototyping Without Netlist

Supported SAI Commands

Using FlexModel for Prototyping
A FlexModel is a Verilog netlist that can contain macros, interface standard cells, and flex fillers. The flex fillers
reserve space for the removal of internal register-to-register logic. The flex fillers have no timing model
associated with them and they connect such that the model holds together during placement. So the placer will
place them together in one group.

September 2022 1265 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

A FlexModel netlist is usually one tenth the number of instances of its full netlist. It is used during early design
planning to reduce the run time and memory while accurately modeling the timing and area. A FlexModel can
be created even in early stages of the design where the netlist is in its early stages. If your netlist is a full/partial
netlist which has combinatorial logic, then the FlexModel will have the interface logic, the macros as well as
the flex fillers. This will help in accurate timing and area estimation.

If your netlist is a skeleton netlist (that is it contains only flops at the model's interface ports), then your
FlexModel's interface logic will only consist of flops (no gates). There will no combinatorial logic. This type of
netlist will help find gross timing problems. In case of an empty netlist, your FlexModel will have only the
macros and flex fillers. Using an empty netlist, you can estimate the design area but you cannot estimate
timing.

September 2022 1266 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Following is the comparison table between different supported Innovus abstractions:

Advantages of Using FlexModel Methodology

Stages of Prototyping with FlexModels

Generating Models

Debugging Constraints and Prototype Design

Analyzing and Adjusting the Floorplan

Defining Partitions

Finishing and Saving Partition

Creating Hierarchical FlexModels

Hierarchical FlexModel Generation Flow

Advantages of Using FlexModel Methodology
Following are the advantages of using the prototyping foundation flow:

FlexModels reduce the instance count to 1/10th that of full netlist.

Allow designs upto 100 million instances

Significantly improve the run time and memory

September 2022 1267 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Using FlexModels, you can perform the floorplanning of top level and partitions simultaneously. Many
FlexModels per partition provide visibility into a partition's macros for congestion analysis and internal
timing details.

This flow allows accurate chip-level timing.

A FlexModel is created with all of its I/O paths optimized to be as fast as possible

Short paths are optimized

Eliminates re-spin of models with different budgets

Models are created only once and then used for many turns of the floorplan

No top-level optimization is needed. It is done only once during the model creation.

This flow minimizes the partition/channel resizing.

Stages of Prototyping with FlexModels
The prototyping foundation flow runs in the following stages:

Generating Models

Debugging Constraints and Prototype Design

Analyzing and Adjusting the Floorplan

Defining Partitions

Finishing and Saving Partition

The following diagram shows the various stages of prototyping foundation flow.

September 2022 1268 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Generating Models

This is the first step in the prototyping foundation flow. In this step, you identify, create, and replace existing
modules in the design with physical and timing models on disk for each identified model.

The Model Generation Flow

Note: Innovus will automatically replace original full netlist with new FlexModel information and save a
committed FlexModel design on disk. Once FlexModel generation is done, you should exit the current Innovus
session and restore the saved FlexModel design with a new Innovus session.

September 2022 1269 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Examples

The following example shows the use of set_proto_model command using which you can mark the
modules for modeling.
set_proto_model -model prog_bus_mach -type flex_module

set_proto_model -model port_bus_mach -type flex_module

set_proto_model -model mult_32 -type flex_module

set_proto_model -model mult_32 -create_total_area 9770

get_proto_model -all

Output:

module type source create_total_area

prog_bus_mach flex_module user

September 2022 1270 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

mult_32 flex_module user 9770

port_bus_mach flex_module user

get_proto_model -all -tcl

{{name prog_bus_mach} {type flex_module} {source user}}

{{name port_bus_mach} {type flex_module} {source user}}

{{name mult_32} {type flex_module} {source user} {create_total_area 9770}}

get_proto_model -type_match {flex_module} -name -tcl

prog_bus_mach port_bus_mach mult_32

The following example shows the use of identify_proto_model command that is used for automated
marking of modules for modeling.

set_proto_mode -identify_min_insts 205
set_proto_mode -identify_max_insts 4190
identify_proto_model

The following example shows the use of create_proto_model command that is used to create models on
the disk. The committed FlexModel design is saved into DBS/model_gen.enc.dat directory

setMultiCpuUsage -remoteHost 2 -cpuPerRemoteHost 1

setDistributeHost -local

create_proto_model -out_dir DBS/model_gen.enc

report_proto_model -created

Debugging Constraints and Prototype Design

This is the second stage of prototyping foundation flow. In this stage, first you need to close timing on the flat
floorplan by placing the FlexModels. Since there are many FlexModels per partition, so you will also
simultaneously close the block-level placement of the FlexModels. Second, you need to define the partitions
and draw fences around the already placed FlexModels.

September 2022 1271 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Closing Timing for the Flat Floorplan

You can close the timing for a flat floorplan by:

Running timeDesign

Running proto_design

Running timeDesign

To begin closing the flat floorplan, you first need to perform timeDesign pre-placement. This is done to check
the initial timing and constraints.

timeDesign -proto -preplace

September 2022 1272 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

The timeDesign -proto parameter allows you to call the prototype timing if FlexModels are present.

By default prototype timeDesign assumes:

No detours

No pin or wire overload

Best routing layers used (that is the lowest RC delay)

Runs very fast and is useful for debugging constraints

The prototyping foundation flow accepts set_proto_mode -timing_ps_per_micron. This option represents the
amount of total delay (buffer and wire) that a technology can drive a signal at a certain distance. You also have
an option to automatically create a pico-second per micron models (psPM.model) that is based on the net
length and layer for timing estimation using create_ps_per_micron_model command

Note: This psPM.model correlates well with optDesign.

The timeDesign -proto parameter always uses the best intrinsic gate delays.

Examples

Consider a design in which FlexModel, Flex1, has terminal pins Out1 and ln1. If you run proto_design
without running standard cell placement, then the standard cell driving Out1 within Flex1 is unplaced. If
the macro ln1 terminal location is known, then the distance is calculated as the Minimum
Manhattan Distance between the Flex1 fence and the ln1 terminal.

If a standard cell containing ln2 within Flex2 standard cell is unplaced, then the distance is calculated as a the
minimum distance between the two FlexModels. The delay is zero for any case where one of the terminals is of
a unplaced standard cell which does not have a parent guide/region/fence (that is, neither the standard cell nor
its parents have any placement information).

If place_design is run, and if

the value of get_proto_mode -timing_net_delay_model is best_delay_no_detour (default
value), and

set_proto_mode -timing_ps_per_micron is set to {Metal1:Metal5 0.25 Metal6:Metal7 0.14}
then, timeDesign -proto assumes no detour on the least delay layers. In such a case, the Out1 to
ln2 delay is calculated as:

September 2022 1273 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Metal6delay + Metal7delay
0.14*2000 + 0.14*7000 = 1260ps

If the value of -timing_net_delay_model is use_actual_wire, and if no routing exists, the delay
calculation is same as with best_layer_no_detour value. Else, actual routing distances and layers
are used for calculating the delay:
+ Metal5delay
0.25*8000 + 0.25*7000 = 3750ps

Running proto_design

In the next step, you need to run timing-driven proto_design.

To do this, set the following:

set_proto_design_mode -flexmodel_constraint_type fence

set_proto_design_mode -timing_aware true

The -flexmodel_constraint_type fence parameter:

forces proto_deisgn to keep FlexModels from overlapping.

forces proto_design to place a FlexModel's hard macros within the FlexModel fence.

forces place_design to place standard cells within the FlexModel.

September 2022 1274 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Analyzing and Adjusting the Floorplan

After proto_design some manual refinement is usually necessary. This may require the following:

Checking the floorplan using the checkFPlan command.

Analyzing the congestion and timing for the floorplan using the following commands:

place_design

earlyGlobalRoute

timeDesign -proto

load_timing_debug_report -proto

The prototyping timing flow is fast as the calls to earlyGlobalRoute and optDesign are not required. Buffering is
also not needed since long wire delay is estimated using the set_proto_mode -
timing_ps_per_micron parameter or psPM.model information. The flow is accurate since the FlexModel's
interface logic has been fully optimized once during model creation, that is, even the short interface paths of a
FlexModel are optimized to be as short as possible.

The load_timing_debug_report -proto command creates timing categories for each FlexModel pair. These
timing categories are color-coded and thousands of timing paths are condensed into few paths. For example,
in the figure below, thousands of timing paths are condensed only into eight paths (the top path from the eight
FlexModel pair timing categories). The red one is the worst timing path.

Defining Partitions

After running proto_design and getting a flat FlexModel placement that closes timing, you need to define
partitions. In the first pass for defining a partition, it is recommended to use the modules from the original
design hierarchy. For example, in the design hierarchy shown below, the TDSP_CORE_INST partition has nine
FlexModels. There are other FlexModels also. Since there are many FlexModels at the top level of the design
example below, to create a partition to hold them, an instance group can be created, which a restructuring step
will change the netlist by changing that instance group into a module. So you define an instance group
named PTN2 and define all the FlexModels within that instance groups.

September 2022 1275 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/checkFPlan.html
../innovusTCR/place_design.html
../innovusTCR/earlyGlobalRoute.html
../innovusTCR/timeDesign.html
../innovusTCR/load_timing_debug_report.html
../innovusTCR/set_proto_mode.html
../innovusTCR/proto_design.html

Once the instance group PTN2 is created, the next step is to draw its fence using the generate_fence
command. To get a report of the FlexModels and their hierarchical names to decide if an instance group is right
for your design, use the report_proto_model -identified command.

In the second pass, you define the partitions and perform manual refinement. Here you delete the
TDSP_CORE_INST partition and create a new instance groups PTN1.

Once your floorplan looks good, the next step is to create a logical hierarchy for created instance groups PTN1,
and PTN2 using createLogicHierarchy command. Once new logical modules are created, you can define
them as partitions.

September 2022 1276 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/generate_fence.html
../innovusTCR/report_proto_model.html

Finishing and Saving Partition

This is the last stage of running the prototyping foundation flow. In this stage, you analyze the floorplan to make
sure that design is routable and has met timing requirements. To begin, you first create the power structure of a
design and finish the floorplan so that you can perform detailed placement. You can also create the bus guides
to guide the routing of critical nets. After doing this, you should run the , earlyGlobalRoute, timeDesign -
proto, and load_timing_debug_report -proto command to check that there are no congestion problems and
your design meets the timing requirements. After the floorplan is verified, then you need to perform feedthrough
insertion, pin assignment and run earlyGlobalRoute honoring the assigned pins. Then you need to check the
timing again before generating the timing budget for the block. Finally, you save your design.

The finish and save partition stage can be divided into the following tasks:

September 2022 1277 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/earlyGlobalRoute.html
../innovusTCR/timeDesign.html
../innovusTCR/load_timing_debug_report.html

Finishing the Floorplan

Analyzing the Floorplan

Feedthrough Insertion

Pin Assignment

Running timeDesign

Budget Timing

Finishing the Floorplan

While finishing the floorplan, you can create the power structures using the sroute command. To prepare the
floorplan for detailed placement and feedthrough insertion, you can add the block halo for your macros, add
standard cell row blockages around partition fences to reserve the area for feedthrough insertion, and add
partial placement blockages between macros and boundaries to handle congestion.

Analyzing the Floorplan

 Use the following commands for analyzing the floorplan and detecting timing and congestion problems.

1. place_design: Places standard cells based on the global settings for placement, RC extraction, timing
analysis, and early global routing. It also relieves the congestion and reorders the scan cells.

2. earlyGlobalRoute: Performs a quick global routing for estimating routing-related congestion and
parasitic (resistance and capacitance) values.

3. timeDesign -proto: Runs early global route, extraction, and timing analysis, and generates detailed
timing reports for FlexModel designs.

4. load_timing_debug_report -proto: Loads the violation report in Innovus for debugging timing results. It
creates flex model categories and displays the top path of the top 8 (by default) categories.

Calculating Delay Using Timing-Driven Early Global Route

In a typical design described in the following example, you might see that the initial Early Global Route results
have shown the worst negative slack of -1ns versus 0ns for the timing-driven earlyGlobalRoute due to the
following reasons:

Before earlyGlobalRoute, timeDesign -proto calculates the delay from Out1 to ln2 by:

finding the bounding box that contains two terminals.

multiplying half a perimeter by the best delay factor.
For example, 0.14 *(2000+7000)=1260ps as shown below

September 2022 1278 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

https://dsmpubs/icd_pubs_website/encounter/past_releases/14.1/soceUG/Prototyping_Methodologies.html#PrototypingMethodologies-7763796
https://dsmpubs/icd_pubs_website/encounter/past_releases/14.1/soceUG/Prototyping_Methodologies.html#PrototypingMethodologies-7763866
https://dsmpubs/icd_pubs_website/encounter/past_releases/14.1/soceUG/Prototyping_Methodologies.html#PrototypingMethodologies-7770274
https://dsmpubs/icd_pubs_website/encounter/past_releases/14.1/soceUG/Prototyping_Methodologies.html#PrototypingMethodologies-7770378
https://dsmpubs/icd_pubs_website/encounter/past_releases/14.1/soceUG/Prototyping_Methodologies.html#PrototypingMethodologies-7764123

assuming best and non-detouring layers

After running the initial iteration of Early Global Route, then the actual routing layer is used and the layer
length is multiplied by its delay factor. This results in more delay as compared to the earlier stage.
For example, Metal4 delay (0.25*8000) + Metal5 delay(0.25*7000) = 3750ps

Next, the tool automatically determines the critical nets and weigh them so that they can be routed first to
minimize the tour or no-detour, and also set the correct bottom routing layer to use the routing layer with
less delay. So by the fourth iteration, the delay is similar as you predicted early in the flow.
It is calculated as: Metal6 delay (0.14*2000) + Metal7 delay (0.14*7000) = 1260 ps

Feedthrough Insertion

After solving the congestion problems, you perform feedthrough insertion. In this step, you:

Delete two rows of placement blockages around partition fence (Two inner row and two outer row
blockages) to provide space for inserted buffers.

Run the insertPtnFeedthrough command.

Run the earlyGlobalRoute command to re-route old/new feedthrough nets and any existing top and/or
inter partition nets that are changed by the refinePlaceplace_detail command during feedthrough

September 2022 1279 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/insertPtnFeedthrough.html
../innovusTCR/earlyGlobalRoute.html
../innovusTCR/refinePlace.html
../TCRcom/place_detail.html

insertion.

createPlaceBlockage -allPartition -innerRingBySide {2 2 2 2} -outerRingBySide {2 2 2 2}

insertPtnFeedthrough -routeBased -netMapping ft_mapping_file -doubleBuffer

#re-route new nets created by inserted buffers:

earlyGlobalRoute

deselectAll

Pin Assignment

After running earlyGlobalRoute, you perform pin assignment. To do this:

Assign pin locations exactly where routing crosses the partition boundaries.

Check assigned partition pins.

Reassign pins which are overlapping or short.

Report unaligned partition pins.

For example,

assignPtnPin -enforceRoute
checkPinAssignment
legalizePin -keepLayer -verbose
reportUnalignedNets -ptnToPtn {unaligned} -topToPtn -rptFile ptnToPtn_unaligned.pins
reportUnalignedNets -ptnToPtn {layerMismatch} -topToPtn -rptFile ptnToPtn_layerMismatch.pins

September 2022 1280 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/earlyGlobalRoute.html

Running timeDesign

In this step, do the following:

Run final setRouteMode with -earlyGlobalRoutePartitionHonorFence by honoring partition pins
(-earlyGlobalRoutePartitionHonorPin) to check congestion.

Honor partition pin constraints while routing top and inter-partition nets.

Run timeDesign to get the final timing report.

For example,

setRouteMode -earlyGlobalRoutePartitionHonorPin list_of_ptn_cell_names

earlyGlobalRoute
saveDesign assignPin.enc
timeDesign -proto -expandedViews
load_timing_debug_report -proto

Budget Timing

To perform timing budgeting, you have a choice to do psPM timing budgeting or based on the optVirtual
command. It is recommend to run psPM budgeting for a quick turn-around time.

Run timeDesign -proto

Derive timing budgets for partitions in a design.

For example,

timeDesign -proto; load_timing_debug_report -proto

setBudgetingMode -writeLatencyPerClock true

setBudgetingMode -enableJustifyException true

setBudgetingMode -noHoldView true

deriveTimingBudget -justify

September 2022 1281 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/setRouteMode.html
../innovusTCR/timeDesign.html
../innovusTCR/timeDesign.html

Save Design

In this step, the FlexModel setting will be saved in the saved design directory if a design has FlexModels. This
information will be restored by the restoreDesign command to load FlexModel netlists from the directory
specified with the set_proto_mode -create_dir parameter and to set relevant information for FlexModels.

Commit Partition

To commit a partition, convert partition fences to partition blocks and push down top-level floorplanning data
into partition block level designs for accurate block implementation using partition command.

Note: If a partition module has FlexModel(s), then the partition block-level design will still have FlexModels.

Save Partition

During this step, data is generated for the top-level and block-level implementation. If there are FlexModels at
the top-level, then the saved top-level netlist will contain FlexModels. If there are no FlexModels outside
partitions, then the top-level netlist will be the original full netlist. Similarly, if a partition has FlexModels, then its
partition netlist will contain FlexModels.

Replace FlexModel Netlist Back to Full Netlist

Once the top and partition block level design data bases are created, you should run:
replace_proto_model -ptn_dir value

where,
value is the same output directory name that was specified with the -dir option of the savePartition command
to replace FlexModel netlists for top and block-level designs back to full netlist.

Creating Hierarchical FlexModels
For generating FlexModels you need to load a full netlist which utilizes a lot of memory. To improve memory
usage, Innovus provides the ability to create FlexModels for each partition block netlist, if the information is
already available. FlexModels for each partition can be loaded back to the top level design. The following
figure shows how FlexModels can be created at each partition block and loaded into the top level design to
reduce memory usage:

September 2022 1282 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Hierarchical FlexModel Generation Flow

You can load a full chip FlexModel netlist of a design using the following flow:

1. Create FlexModels for partition block using an existing model generation flow at the partition block.

2. Create FlexModels for top-level netlist, if required.

3. Run the assemble_proto_model command at the current run directory where full chip FlexModel netlist is
to be loaded.

The following diagram shows the Hierarchical FlexModel generation flow:

Sample Script for Creating Models at Partition Blocks

To improve run time, you can use multiple CPUs to run block model generation in parallel:

set ptnName "tdsp_core"
set minInst 100

cd PTN_dir/$ptn
restoreDesign . $ptn
create_ps_per_micron_model
set_proto_mode -identify_min_inst ${minInst}
identify_proto_model
create_proto_model -out_dir fm.enc

cd ../..

exit

September 2022 1283 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

Sample Script for Assembling All Models

assemble_proto_model -topdir {PTN_dir/DTMF_CHIP/fm.enc.dat PTN_dir/DTMF_CHIP/proto_model} \
-blockdir { PTN_dir/tdsp_core/fm.enc.dat PTN_dir/tdsp_core/proto_model} \
-blockdir { PTN_dir/arb } \
-mmmc_file viewDefinition.tcl

saveDesign DBS/model_gen.enc
report_proto_model -created

timeDesign -preplace -proto
Continue with normal flow
…

Related Information

Prototyping Methodologies

Prototyping Commands chapter of the Text Command Reference.

September 2022 1284 Product Version 22.10

 Innovus User Guide
Prototyping Flow Capabilities--Prototyping Methodologies

../innovusTCR/Prototyping_Commands.html

8

Analysis Capabilities

RC Extraction

Base Delay Analysis

Timing Analysis

Debugging Timing Results

Power and Rail Analysis

Power Analysis and Reports

Analyzing and Repairing Crosstalk

September 2022 1285 Product Version 22.10

 Innovus User Guide
Analysis Capabilities

../TCRcom/report_timing.html

RC Extraction

Overview
You can perform two types of extraction in Innovus™ Implementation System (Innovus) software:

PreRoute Extraction

PostRoute Extraction
Generates more accurate parasitics for cross-coupling and signal integrity analysis, timing
and SI optimization flow, or obtain sign-off quality detailed parasitic extraction. The postRoute
extraction engine has four variants that allow selection based on the performance versus
accuracy needs. Following is a list of extraction engines in increasing order of accuracy:

Native Detailed

TQuantus

Integrated Quantus (IQuantus)

Standalone Quantus

The following table summarizes the types of extraction used during the design process.

Extraction Type When Quantus
License
Required

PreRoute Used during optimization both before
and after clock tree synthesis.

PostRoute Native
Detailed

Used during postRoute and SI
optimization flow in older technologies.

TQuantus Used during postRoute optimization flow
in newer technologies.

IQuantus Used after ECO and for near signoff.

Note: For IQuantus, Quantus XL license
is required

September 2022 1286 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

Related Information

Pre-Requisites for RC Extraction

Performing Extraction in Innovus

Types of RC Extraction

PreRoute RC Extraction

PostRoute RC Extraction

Setting the Scale Factors

Generating a Capacitance Table

Reading a Capacitance Table

Reading a Quantus Techfile

PreRoute Extraction Flow without Capacitance Table Data

Correlating Native Extraction With Sign-Off Extraction

Specifying the Scale Factors

Distributed Processing in Extraction

Using Advanced Virtual Metal Fill in Extraction

Pre-Requisites for RC Extraction
RC extraction refers to the extraction of resistance (R) and capacitance (C) values in a design to
generate the RC database. The inputs for perfroming extraction are detailed below.

The following files are required for extraction:

Capacitance table - Used by preRoute extraction engine and native detailed extraction
engines for above 32nm technology. For more information, see Generating a Capacitance
Table.

Quantus technology file(s) - Used by preRoute extraction engine for 32nm and below
technology, TQuantus/IQuantus, and Standalone Quantus engines.

Standalone
Quantus

Used during chip assembly and timing
sign-off processes.

September 2022 1287 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

Before running extraction, provide the RC scale factor values in the Edit RC Corner form for the
MMMC design environment. Scale factor values provide better correlation between the Innovus
estimated parasitics and the signoff extraction results by multiplying the extracted resistance and
capacitance. For example, a capacitance scale factor of 1.1 increases the extracted values by ten
percent.

Use of scale factors is recommended for preRoute and Native Detailed extraction engines, and is
optional for TQuantus. The IQuantus scale factor also allows for optional fine tuning for optimal
correlation with third party signoff extractor. In addition, all scale factors allow you to use simple
scaling for non-typical corners as an alternative for the recommended use of corner-specific
capacitance tables (captables) and Quantus technology files.

Note: Scaling for engine with effortLevel set to signoff is not supported.

Results

Binary RC Database (RCDB) is created. It contains parasitics for each process corner.

An ASCII SPEF file can be generated from the parasitics database for the specified process
corner, if required.

Specifying Temporary File Locations

You can specify a temporary file location for TQuantus and IQuantus extraction. The temporary file
location is chosen based on the following order of precedence:

1. If you specify a directory using the FE_TMPDIR environment variable, the software uses that
directory as the temporary file location.

2. If you specify a directory using the TMPDIR environment variable, the software uses that
directory as the temporary file location.

3. Saves the files to the current directory (if writable).

4. Saves the files to the /tmp directory.

Note: For IQuantus /TQuantus extraction in the distributed processing mode using different
machines, do not store the cache or temporary data to the /tmp directory. The temporary data must
be visible on all machines used for distributed processing. Either use the current directory, or
specify a directory using the TMPDIR or FE_TMPDIR environment variable.

Related Information

September 2022 1288 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusMR/File_Menu.html#FileMenu-EditRCCorner

RC Extraction

Performing Extraction in Innovus
The extraction flow in Innovus is shown below.

To extract resistance and capacitance data in innovus and generate the RC database, perform the
following steps.

1. Load the design.

2. Specify the process technology value, to automatically set the technology node dependent
parameters, by using the following syntax: setDesignMode -process processnode
Note: For maximum accuracy and optimal automatic threshold setting, use the -
process processnode parameter of the setDesignMode command prior to running extractRC.

3. Read in the captable file(s) for extracting interconnect capacitance values with preRoute and
postRoute -effortLevel engine choices for above 32nm technology. For more information,
see Correlating Native Extraction With Sign-Off Extraction.
When using preRoute extraction (for 32nm and below), TQuantus, IQuantus, or Standalone
Quantus extraction, read in the Quantus Techfile that contains the interconnect models used

September 2022 1289 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/setDesignMode.html
../innovusTCR/setDesignMode.html

by these engine choices. For more information, see Reading a Quantus Techfile.
Note: If the design is half node and the layout scale value is not specified in the captable, you
can specify it using the setShrinkFactor command.

4. Use the setExtractRCMode command to set up extraction parameters and to specify the
extraction engine to be used for subsequent extraction.

5. Run extractRC command to perform extraction. You can also use the Specify RC Extraction
Mode and Extract RC GUI forms to perform extraction. An RCDB is created. This database
contains extracted parasitics.

6. Optionally, use the rcOut command to retrieve SPEF files (corresponding to each active RC
corner) with the parasitics results. Timing and SI analysis commands use the RC database
directly.

7. Use the spefIn command to load the existing SPEF files with the parasitic data.

8. For hierarchical designs, use the read_parasitics command for reading both the top-level
and block-level parasitic data in either the RCDB format or the SPEF format, or a mix of both.
This command generates a flat-level RCDB for the complete design after performing
hierarchical stitching of the RC data.

Related Information

RC Extraction

Types of RC Extraction
RC extraction refers to the extraction of parasitics in a design to generate the RC database. This
RC parasitic database can be output in specified formats. The parasitic database that is generated
is required for timing analysis and signal integrity (SI) anaysis.

Depending upon when extraction is performed in the flow, the extraction is classified into two types.

PreRoute RC Extraction
Provides quick parasitic extraction for design prototyping.

PostRoute RC Extraction
Generates more accurate parasitics for cross-coupling and signal integrity analysis, timing
and SI optimization flow, or obtain sign-off quality detailed parasitic extraction.

September 2022 1290 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/setShrinkFactor.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/extractRC.html
../innovusTCR/rcOut.html
../innovusTCR/spefIn.html
../innovusTCR/read_parasitics.html

PreRoute RC Extraction
RC extraction is classified into two types, preRoute and postRoute, pepending upon when
extraction is performed in the flow.

PreRoute Extraction provides a quick parasitic extraction for design prototyping. It is used during
optimization, both before and after clock tree synthesis (CTS). It is only used for static timing
analysis (STA).

This type of extraction does not require a Quantus license.

PostRoute RC Extraction
PostRoute Extraction is a detailed parasitic extraction. It generates more accurate parasitics than
preRoute extraction for cross-coupling and signal integrity (SI) analysis, and Timing and SI
optimization flows. It is also used to obtain sign-off quality detailed parasitic extraction. The
postRoute extraction engine has four variants that allow selection based on the performance versus
accuracy needs.

Native Detailed - Used during postRoute and SI optimization flow in older technologies. It
does not require a Quantus license.

TQuantus - Used during postRoute optimization flow in newer technologies. It does not
require a Quantus license.

Integrated Quantus (IQuantus) - Used after ECO and for near signoff. It requires a Quantus XL
license.

Standalone Quantus - Used during chip assembly and timing sign-off processes. It requires
a Quantus license.

Native Detailed

In the native detailed mode:
RC values that are generated can be used for both standard timing analysis (including cross-
coupling) and signal integrity (SI) analysis to provide more accurate results for a particular
process technology.

The software calculates the coupling capacitance component for each segment by
considering the actual geometries of neighboring nets on the same metal layer and on the
adjacent metal layer when a full captable is provided during design import.

September 2022 1291 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

To invoke native detailed extraction, use the following command:

setExtractRCMode -engine postRoute -effortLevel low

TQuantus Extraction
The TQuantus extraction engine is an advanced extraction engine that is enabled by default
for postRoute effort-level medium extraction.

setExtractRCMode -engine postRoute -effortLevel medium

The TQuantus engine is tightly integrated with NanoRoute and drives track assignment-based
timing and SI optimization/postRoute optimization, and timing-driven routing. The use model is
detailed below.

The TQuantus flow is enabled by default. In this mode, the software instructs optDesign/timeDesign
-postRoute to use the TQuantus model file for optimization. You can specify a file name for the
TQuantus model file by using the -tQuantusModelFile parameter of
the setExtractRCMode command. If this file is not specified, it is generated automatically by the
software.

The TQuantus extraction engine supports the following setExtractRCMode parameters:

-capFilterMode relAndCoup

Note:
It does not support the relOnly and relOrCoup arguments of the –capFilterMode parameter as
they are for old nodes only.

-relative_c_th

-total_c_th

-coupling_c_th

-extraCmdFile

-coupled

The TQuantus extraction engine does not support the following parameters of
the setExtractRCMode command:

-hardBlockObs

-lefTechFileMap

September 2022 1292 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/setExtractRCMode.html
../innovusTCR/optDesign.html
../innovusTCR/timeDesign.html
../innovusTCR/setExtractRCMode.html

TQuantus versus IQuantus

TQuantus and IQuantus are more accurate as compared to native detailed extraction. These are
based on the same technology as the Standalone Cadence signoff extraction tool, Quantus. The
TQuantus extraction engine is recommended for the implementation phase because it is optimized
for performance with a small tradeoff for accuracy. The IQuantus extraction engine is recommended
for the ECO flow, as it has near-signoff accuracy.

In IQuantus , there are two modes for RC extraction:

Full-chip extraction
Forces full extraction on the complete design.

Incremental extraction
Enables incremental extraction on the design. The software recognizes the changes that have
taken place since the last extraction. If the changes are less than the pre-defined threshold,
the software incrementally extracts the changed regions of the design and then stitches the
new data with the previously extracted parasitic data.

By default, the incremental mode is enabled. In TQuantus there is no incremental extraction. This is
not needed due to the high speed of this extraction engine.

Note: The performance and accuracy of TQuantus falls between that of native detailed extraction
and IQuantus. IQuantus provides superior accuracy compared to TQuantus. Both IQuantus and
TQuantus support distributed processing. TQuantus does not require a Quantus license while
IQuantus requires a Quantus XL license.

IQuantus Extraction
To invoke IQuantus, use the following command:

setExtractRCMode -engine postRoute -effortLevel high

To invoke TQuantus, use the following command:

setExtractRCMode -engine postRoute -effortLevel medium

The following figure shows the IQuantus extraction flow.

IQuantus Extraction Flow

September 2022 1293 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

Examples of Incremental Extraction Support

Following are some of the examples for incremental extraction flow in Innovus:

Example of Interactive ECO Commands:
setExtractRCMode -engine postRoute -effortLevel high
extractRC

ecoAddRepeater -net netName - Name

...
ecoPlace

ecoRoute

extractRC

Example of Wire Edit Commands:
setExtractRCMode -engine postRoute -effortLevel high
extractRC
editSelect -area areaValue -net netName

September 2022 1294 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/setExtractRCMode.html
../innovusTCR/extractRC.html
../innovusTCR/ecoAddRepeater.html
../innovusTCR/extractRC.html
../innovusTCR/editSelect.html

editMove y distance

...
extractRC

Example of Timing Optimization Command: In the postRoute optimization cycle, extraction
is called multiple times. Depending upon the type of changes, the extraction called may be
either full-chip or incremental.
setExtractRCMode -engine postRoute -effortLevel high -incremental true
optDesign -postRoute

Note: Incremental extraction is not supported for all designs or for all types of changes in the
design. For example, incremental extraction will not take place if the design contains 45-degree
wire(s). In such cases, the software automatically goes info the full-chip extraction mode after
printing an appropriate message citing the reason for selecting full-chip extraction.

Standalone Quantus for Signoff Extraction

Running Standalone Quantus from within Innovus

Standalone Quantus extraction is accessible through Innovus for generating detailed signoff quality
parasitics. You can perform signoff extraction after the detailed routing phase.

Note: Standalone Quantus extraction requires a separate license and requires installation of the
EXT software package.

Inputs for Quantus Sign-Off Extraction

When you perform signoff extraction through the Innovus interface, either a routed DEF is created or
an OA database is saved automatically. The Quantus technology file is required before you can
start signoff extraction:

Quantus technology file: Contains the process-dependent model files and manufacturing
effects used by the extractor to calculate resistance and capacitance.

Quantus command file: Providing a Quantus command file is optional. It contains commands
and variables that define the extraction environment (technology filename, library name, and
so on), specifies which net(s) to extract and how to extract them, controls the resistance and
capacitance extraction, and specifies the extraction outputs. This is applicable only for partial
and custom command files.

Use Model

September 2022 1295 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/editMove.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/optDesign.html

You can run Quantus extraction by using the extractRC command after setting the Quantus
extraction mode using the -effortLevel_effort_level signoff option of the setExtractRCMode
 command.

By default, Standalone Quantus extraction is a Design Exchange Format (DEF)-based flow.
However, you can specify the OpenAccess (OA)-based flow for invoking Quantus extraction. For
this, set the setExtractRCMode -useQRCOAInterface_use_qrc_oa_interface option to true.

Note: For TSV designs, you are required to provide the name of the layer map file for IQuantus and
Standalone Quantus.

Running Standalone Quantus outside Innovus

You can invoke standalone Quantus from outside Innovus. For this, you need to generate the
Quantus command file or the Common Command language (CCL) file using the
write_extraction_spec command. Before running this command, you need to load the design, set
up the MMMC environment, and specify the CCL layer map file, if required. You can specify a
directory path where technology library file, LEF list file (for DEF-based flow), and DEF or OA
design will be stored. However, if no directory path is specified, then a directory will be created in
the current directory. You can also specify whether you want to save the design data or not by
using the -no_design_data parameter of this command.

Note: For OA-based flow, ensure that the setExtractRCMode -useQRCOAInterface parameter is set
to true.

Related Information

Pre-Requisites for RC Extraction

Performing Extraction in Innovus

Setting the Scale Factors
To better correlate native extraction results, both in preRoute and postRoute stages with sign-off
extraction, Innovus allows you to set scale factors for total capacitance, cross-coupling capacitance,
and resistance. As the accuracy of the different engines varies, engine-dependent scale factors can
be entered when using different extraction engines in the flow.

To generate scale factors, you can also use the generateRCFactor command.

Related Information

Specifying the Scale Factors

Correlating Native Extraction With Sign-Off Extraction

September 2022 1296 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/extractRC.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/setExtractRCMode.html
../innovusTCR/generateRCFactor.html

Generating a Capacitance Table
When the Quantus technology files are unavailable, a capacitance table is needed for extraction by
the preRoute and postRoute effort level low extraction engines for above 32nm technology nodes.
The table contains three parts:

Header: Contains process information and manufacturing effects. The information in the
header is used for resistance extraction and to correct the extracted values for the specified
manufacturing effects. For preRoute extraction, the header section also provides default
values for scale factors.

Basic Captable Part: Contains the coefficients used by the preRoute capacitance extraction
engine. This part contains the area, fringe, and lateral coupling capacitance coefficients
organized per conductor layer for wires with different width and spacing. The basic captable
part is presented in a readable tabular format.

Extended Captable Part: Contains the coefficients used by the preRoute capacitance
extraction engine and the postRoute -effortLevel low capacitance extraction engine. This
part is much larger compared to the basic captable part because the coefficients are
generated on more complex profiles, which account for geometries on multiple layers. The
extended captable part is an ASCII dump of the binary stored data.

Each technology requires one capacitance table. To consider process corner variations, you must
generate a capacitance table for each process corner.

For higher than 32nm technology nodes, either Quantus technology files or capacitance tables
need to be specified. If neither of these is provided, Innovus generates a basic capacitance table
using the default process parameters and heuristic equations for calculation. However, this severely
compromises accuracy.

For 32nm and below technology nodes, Quantus technology files must always be provided.

Inputs for Generating a Capacitance Table

Capacitance Table Generation Flow

Capacitance Table Examples

Generating Capacitance Table with Specified Scale Factors

September 2022 1297 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

Inputs for Generating a Capacitance Table
To generate a capacitance table, you need an ICT file and a technology LEF file (optional). The
technology LEF file provides the capacitance generated with design specific widths and spacings
used in non-default routing rules. In addition, it provides information on the actual spacing between
regular wires as defined by the PITCH statement. The use of a LEF file increases the simulation
points and consequently reduces the need of the extractor to use interpolation. The LEF file is used
for the extended captable part only.

Fabrication process information in the ICT file can consist of the following:

The minimum spacing and minimum width of the conductors as specified in the design rules
for the conductor layers.

The thicknesses of the conductor layers.

The heights of the conductor layers above the substrate (measuring height from the field) or as
a delta from a previously-defined lower-level conductor layer.

The resistivities of the conductor layers: The ICT file can contain a constant sheet resistance
value, a width-dependent sheet resistance vector, or a resistivity (rho) table.

The interlayer planar dielectric constant, its height above the substrate (measuring height
above the field), and its thickness.

The names of the top conductor layer of a via, the bottom conductor layer of the via, and the
contact resistance of the via with their associated cut resistance.

For more information on the syntax of the ICT file, see Creating the ICT File.

Capacitance Table Generation Flow
The following figure shows the flow for generating a process corner-specific capacitance table:

September 2022 1298 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusUG/Creating_the_ICT_File.html

Note: You can also use the scale factor to convert a typical corner capacitance table to a different
corner capacitance table. For more information, see the section titled, Generating Capacitance
Table with Specified Scale Factors.

To generate a capacitance table, perform the following steps:

Generate an ICT file for each process corner. For an example of an ICT file, see the chapter
titled, Creating the ICT File.

Generate a capacitance table for each ICT file. Use the generateCapTbl command within
Innovus or the generateCapTbl standalone executable.

Note: Generating a capacitance table is CPU-intensive and can take several hours to run for newer
technologies. The generateCapTbl standalone executable which can be found in the bin directory
of your Innovus hierarchy runs independent of Innovus. It has the same syntax as
the generateCapTbl command.

September 2022 1299 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/generateCapTbl.html

Capacitance Table Examples

Example 1: Capacitance Table

PROCESS_VARIATION ...

LAYER M1

MinWidth 0.09000

MinSpace 0.09000

Height 0.54000

Thickness 0.20260

TopWidth 0.12100

BottomWidth 0.09300

WidthDev 0.00000

ThermalC1 2.65000e-03

ThermalC2 -2.64100e-07

WireEdgeEnlargement

WeeWidths 0.107 0.127 0.152 0.197 0.287 0.377 0.467 0.557 0.647 0.917 1.017 2.017 3.017

4.517 7.517 12.017

WeeSpacings 0.073 0.093 0.118 0.163 0.253 0.343 0.433 0.523 0.613 0.883 0.983 1.483

1.983 2.483 2.983 4.983

WeeAdjustments -0.001 -0.003 -0.003 -0.009 -0.009 -0.01 -0.01 -0.011 -0.016 -0.018 -

0.018 -0.019 -0.019 -0.019 -0.019 -0.019

0.003 -0.002 -0.003 -0.009 -0.009 -0.01 -0.01 -0.011 -0.016 -0.018 -0.018 -0.019 -0.019

-0.019 -0.019 -0.019

0.008 0.003 0 -0.009 -0.009 -0.01 -0.01 -0.011 -0.016 -0.018 -0.018 -0.019 -0.019 -

0.019 -0.019 -0.019
...

0.027 0.019 0.011 -0.009 -0.009 -0.01 -0.01 -0.011 -0.016 -0.018 -0.018 -0.019 -0.019 -

0.019 -0.019 -0.019

Rho

September 2022 1300 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

RhoWidths 0.09 0.11 0.135 0.18 0.27 0.36 0.45 0.54 0.63 0.9 1 2 3 4.5 7.5 12

RhoSpacings 0.09 0.11 0.135 0.18 0.27 0.36 0.45 0.54 0.63 0.9 1 1.5 2 2.5 3 5

RhoValues 0.0301 0.0288 0.0272 0.0257 0.0236 0.0225 0.0218 0.0216 0.0216 0.0216 0.0216

0.0216 0.0216 0.0216 0.0215 0.0215

0.0294 0.0286 0.0272 0.0257 0.0235 0.0224 0.0218 0.0216 0.0216 0.0216 0.0216 0.0216

0.0216 0.0216 0.0215 0.0215

0.0286 0.0279 0.0269 0.0257 0.0235 0.0224 0.0218 0.0216 0.0215 0.0216 0.0216 0.0216

0.0216 0.0215 0.0215 0.0215

...

0.0264 0.0262 0.0259 0.0257 0.0235 0.0224 0.0218 0.0216 0.0215 0.0215 0.0215 0.0215

0.0215 0.0214 0.0213 0.0213

WireThicknessRatio

WtrMinThicknessRatio 0.914688

WtrMaxThicknessRatio 1.03875

WtrTileWidth 100 100

WtrStepperWindowWidth 50 50

WtrMaxSpacing 5

WtrWidthRanges 0.09 0.18 12

WtrDensityPolynomialOrder 4

WtrWidthPolynomialOrder 4

WtrPolynomialCoefficients

{

0 7180.07 -3744.08 625.29 -33.3498

0 -8418.26 4361.73 -720.647 37.5707

0 3011.8 -1560.96 257.063 -13.1704

0 -369.306 193.11 -31.9649 1.58144

0 -2.73935 -0.912962 0.476445 0.0054143

}

September 2022 1301 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

{

-0.00355249 0.0134349 -0.377017 2.18449 -1.14899

0.0086884 0.0669357 0.00360917 -3.62062 1.91715

-0.0108639 -0.126014 0.84772 1.42329 -0.92238

0.00784181 0.0469798 -0.580639 0.11264 0.0642999

-0.00204508 -0.00330229 0.125923 -0.179971 0.100731

}

END

LAYER M2

...

...

...

VIA VIA1

TopLayer M2

BottomLayer M1

ThermalC1 7.81500e-04

ThermalC2 -2.57400e-06

Resistance 3.00000

END

...

END_PROCESS_VARIATION

BASIC_CAP_TABLE ...

M1

width(um) space(um) Ctot(Ff/um) Cc(Ff/um) Carea(Ff/um) Cfrg(Ff/um)

0.090 0.072 0.3549 0.1313 0.0502 0.0123

0.090 0.090 0.3115 0.1248 0.0502 0.0147

0.090 0.270 0.1803 0.0237 0.0502 0.0418

0.090 0.450 0.1728 0.0074 0.0502 0.0541

September 2022 1302 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

0.090 0.630 0.1721 0.0023 0.0502 0.0587

0.090 0.810 0.1720 0.0007 0.0502 0.0602

0.090 0.990 0.1720 0.0002 0.0502 0.0607

0.090 1.170 0.1720 0.0001 0.0502 0.0608

0.270 0.072 0.3797 0.1114 0.1267 0.0151

...

9.000 0.990 4.2967 0.0002 4.2226 0.0369

9.000 1.170 4.2967 0.0001 4.2226 0.0370

M2

width(um) space(um) Ctot(Ff/um) Cc(Ff/um) Carea(Ff/um) Cfrg(Ff/um)

0.100 0.080 0.3330 0.1275 0.0458 0.0161

0.100 0.100 0.2659 0.0919 0.0458 0.0182

'''''

END_BASIC_CAP_TABLE

EXTENDED_CAP_TABLE ...

SolverExe: coyote

Solver Type: coyote

1.02 8 8 t 1

0.5385 0.2046 3.9 0 0

0.017 0 3 2 1

3 0

....

END_EXTENDED_CAP_TABLE

Example 2: Rho (Resistivity Table) Included in the Capacitance Table

Rho

RhoWidths 0.14 0.28 10

RhoSpacings 0.14 0.28 1

September 2022 1303 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

RhoValues 0.0351 0.02 0.0176

0.0451 0.03 0.01

0.0702 0.04 0.02

Example 3: Wire Edge Enlargement - Resistance Included in the

Capacitance Table

WireEdgeEnlargementR

WeeWidths 0.12 0.16 0.24

WeeSpacings 0.108 0.17 0.24

WeeAdjustments 0 0 0.002

0.011 0.007 0.002

0.022 0.012 0.002

Example 4: Wire Edge Enlargement - Capacitance Included in the

Capacitance Table

WireEdgeEnlargementC

WeeWidths 0.12 0.16 0.24

WeeSpacings 0.108 0.17 0.24

WeeAdjustments 0.01 0.01 0.02

0.01 0.07 0.02

0.02 0.02 0.02

Generating Capacitance Table with Specified Scale Factors
You can specify scale factors to convert a corner-specific capacitance table into another
capacitance table for a different process corner. Use the generateCapTbl command to input a
capacitance table and to specify the scale factors. Use the following parameters of
the generateCapTbl command:

-incaptable fileName

September 2022 1304 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/generateCapTbl.html

Specifies the name of an existing capacitance table in ASCII format.

-cap totalCapFactor

Specifies the capacitance scale factor.

-xcap crossCouplingFactor

Specifies the cross-coupling capacitance scale factor.

-res resistanceFactor

Specifies the resistance scale factor.

Related Information

Performing Extraction in Innovus

Pre-Requisites for RC Extraction

Reading a Capacitance Table
To consider process corner variations in MMMC design setup, you must read multiple capacitance
tables. For each corner created by the create_rc_corner command, use the -cap_table parameter
to specify the appropriate captable file to be used for a specific corner. Information related to the
specified corner can be modified using the update_rc_corner command. This information is saved
in the viewDefinition.tcl file, which is read in the subsequent Innovus sessions during design
import.

For more information, see Configuring the Setup for Multi-Mode Multi-Corner Analysis in Importing
and Exporting Designs.

Examine the command log for any possible error messages. The number of metal layers specified
in the ICT and the LEF file (if used) at the time of capacitance table generation must either match or
be higher than the actual number of layers used in your design (current LEF/DEF).

The capacitance table contains standard names for metal layers (M1, M2…). It does not contain
names used in the LEF file.

Note: You must read the capacitance table before specifying the extraction mode.

Related Information

Generating a Capacitance Table

Performing Extraction in Innovus

September 2022 1305 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/create_rc_corner.html
../innovusTCR/update_rc_corner.html
../innovusUG/Importing_and_Exporting_Designs.html

Reading a Quantus Techfile
Quantus Techfiles are required by preRoute (32nm and below), TQuantus, IQuantus, and signoff
Quantus extraction engines. Use the -qx_tech_file parameter of the create_rc_corner command
to read in the Quantus Techfile for each process corner.

create_rc_corner -name rcCornerName -qx_tech_file fileName

This information is saved in the viewDefinition.tcl file, which is read in the subsequent Innovus
sessions during design import.

Related Information

See Configuring the Setup for Multi-Mode Multi-Corner Analysis in Importing and Exporting
Designs.

Pre-Requisites for RC Extraction

PreRoute Extraction Flow without Capacitance Table
Data
Quantus techfiles are essential for performing RC Extraction on designs at 32nm or below nodes.
Captable-based extraction is not supported for these designs, and so captables need not be
specified for them. PreRoute extraction uses Quantus techfiles (instead of captable files) and
postRoute extraction invokes setExtractRCMode -engine postRoute -effortLevel medium (which
is TQuantus).

Use Model

Extraction Flow without Capacitance Table Data

September 2022 1306 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/create_rc_corner.html
../innovusUG/Importing_and_Exporting_Designs.html

For Designs at 32nm or Below Nodes

Note: The design mode is set in the software using the setDesignMode -process command.

Captable files are not needed and Quantus techfiles are specified - preRoute extraction uses
Quantus techfiles even when captable files are provided. PostRoute extraction uses
TQuantus extraction engine and detailed extraction is not allowed. This is shown as Scenario
1 in the above table.

September 2022 1307 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/setDesignMode.html

For Designs above 32nm

Captable files are not specified and Quantus techfiles are specified - preRoute extraction uses
Quantus techfiles. PostRoute extraction uses TQuantus extraction engine. Detailed extraction
is not allowed. This is shown as Scenario 2 in the above table.

Captable files are specified and the Quantus techfiles are not specified - preRoute extraction
uses the captable files. PostRoute extraction is called with -effortLevel low (detailed
extraction) that uses captable files. This is shown as Scenario 3 in the above table.

Captable files and Quantus Techfiles are specified - preRoute extraction uses the captable
files. PostRoute extraction uses TQuantus extraction engine for designs at 65 nm and below
nodes. Detailed extraction is run for designs above 65 nm. This is shown as Scenario 4 in the
above table.

Note: When neither captables nor Quantus techfiles are specified, the software gives an error.

Related Information

PreRoute RC Extraction

RC Extraction

Correlating Native Extraction With Sign-Off
Extraction
The software accommodates an extraction flow that uses process-dependent scale factors to
generate extraction values that are close to the signoff extraction values. With these scale factors,
the results generated by the native extraction correlate to the results of signoff extraction. The run
time for the native extraction flow is much less than that for signoff extraction.

To generate RC scale factors, use the generateRCFactor command. Alternatively, complete the
following steps to generate them to correlate native extraction results with sign-off extraction:

From the routed DEF, generate a SPEF file using the sign-off extraction engine. For more
information on generating a SPEF file, see Standalone Quantus for Signoff Extraction.

1. Specify the process technology value to automatically set the technology node dependent
parameters, by using the following syntax:
setDesignMode -process processnode

2. Read in the capacitance table file(s) for extracting interconnect capacitance values with

September 2022 1308 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/generateRCFactor.html

preRoute and postRoute -effortLevel low engine choices.
When using preRoute (32nm and below), TQuantus or IQuantus, read in the Quantus Techfile
that contains the interconnect models used by these engine choices. For more information,
see "Reading a Quantus Techfile".

3. Generate native extraction SPEF file(s) using the extractRC and rcOut commands.

4. For preRoute mode, extraction should be run in the preRoute design stage and not on the
final routed design. This way the scale factors to improve correlation will also take into
account the difference between early global routes and final routes. For postRoute mode,
extraction should be run on the same routed design that was used for the signoff extraction
SPEF file generation.

5. Compare the SPEF file from native extraction with the SPEF file from signoff extraction using
the Ostrich parasitics correlation utility. Use the correlation utility to generate RC factors
(scale factors) for total capacitance, cross-coupling capacitance, and resistance. For more
information, see Correlating SPEF Files Using the Ostrich Utility.

6. Specify these scale factors using the -pre* and -post* parameters of the create_rc_corner
command before future runs of native extraction. For more information, see the section titled,
Defining the Scale Factor.

7. Rerun the extractRC command to generate a new SPEF file. This file contains capacitance
and resistance values that correlate to the values in the Quantus signoff SPEF file.

The following figure shows the flow for generating RC scale factors.

September 2022 1309 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/extractRC.html
../innovusTCR/rcOut.html
../innovusTCR/create_rc_corner.html
../innovusTCR/extractRC.html

Correlating SPEF Files Using the Ostrich Utility
Use Ostrich to correlate the SPEF files generated using native (-engine postRoute -effortLevel
low) extraction and signoff extraction. Ostrich is a standalone utility in Innovus. Ostrich generates
the scale factors after correlating the SPEF files. You can then set the scale factors for the next
extraction cycle.

To correlate the SPEF files, complete the following steps:

1. Type ostrich at the Innovus prompt. This opens the main Ostrich window.
Note: As an alternative for the GUI, you can also use the command line mode by adding -
nowin as an argument when starting the tool.

September 2022 1310 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

2. In the Ostrich window, click on File - Import - SPEF. This opens the SPEF Import form.

3. In the SPEF Import form, specify the name of the sign-off SPEF file and a name in the Data
Set Name field. Next, click on the Import button to add the SPEF values in the Ostrich window.

4. Similarly, import the native extraction SPEF file using the SPEF Import form.

5. Click on Correlate - Build Plot option in the Ostrich Window. This opens the Build Correlation
Plot window.

September 2022 1311 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

6. Select the Golden Setname and Target Setname corresponding to the sign-off SPEF, and
native extraction SPEF respectively.

7. Select Build TCAP plots, Build RES plots, and Build XCAP plots options. Click Build.

8. In the Ostrich main window, click Correlate, and then Draw Plot. This opens the plot window.

The plot window displays the suggested scale factor.

Related Information

PostRoute RC Extraction

Reading a Capacitance Table

Reading a Quantus Techfile

Specifying the Scale Factors
You can specify the scale factors in the following manner:

Change the technology file. You can change the ScaleFactor in the technology file. This
scaling is used for each technology.

Use the -pre* and -post* parameters of the create_rc_corner command.

You can set scale factors for the resistors and capacitors that are extracted in either preRoute

September 2022 1312 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/create_rc_corner.html

or postRoute extraction mode. You can set different postRoute scale factors for the postRoute
engine variants by specifying them as duplets and triplets. For example, {value1 value2
value3}

Where:

Single value: If you specify one value, the scale factor applies to effort level low. Scale
factor value of 1 is used for medium and high by default.

Duplet: If you specify two values, the first value is used for effort level low and the second
value is used for medium. Scale factor value of 1 is used for high by default.

Triplet: If you specify three values, the first value is used for effort level low, the second
value is used for medium, and the third value is used for high.

Example

create_rc_corner -postRoute_xcap {1.1 1.05} -postRoute_cap 1.2 -postRoute_res 1.1

-preRoute_cap 1.3 -preRoute_res 1.4 -preRoute_clkcap 1.11

Note: When saving the design with the saveDesign command, the scale factors that are specified
with the create_rc_corner command are saved in the viewDefinition.tcl file, which can be later
restored.

Note: The default value for all scale factors, except clock net scale factors, is 1.0. The default value
for all clock net scale factors is a symbolic value 0. This indicates that the value of the specific clock
net scale factor follows the matching signal net scale factor.

Related Information

Setting the Scale Factors

Distributed Processing in Extraction
Multiple CPUs can be used to improve the overall turn-around time of extraction. The run-time
improvement may vary depending on multi-CPU configuration, design size and type. Generally,
performance improvement will start to diminish beyond 8 CPUs.

September 2022 1313 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/create_rc_corner.html
../innovusTCR/saveDesign.html

Setting-up Distributed Processing

The distributed processing is supported with two modes:

Local Mode: In this mode, you can specify the number of CPUs to use on local machine.
setDistributeHost -local
setMultiCpuUsage-localCpu 8

Distributed Mode: In this mode, you can specify one or more CPUs to use on network hosts.
setDistributeHost -rsh -add {host1 host2 host3}
setMultiCpuUsage -remoteHost 3

Note: RC Extraction ignores the -cpuPerRemoteHost parameter of
the setMultiCpuUsage command. You must have rlogin access to remote host machines.

If you run a job in both local (-localCpu)and distributed mode (-remoteHost), the -
remoteHost parameter takes precedence.

You can specify LSF and SGE queue or custom job submission script for multi-CPU mode.

setDistributeHost

-lsf [-queue queue_name] [-resource resource_string] [-args arguments] | -custom [-

custom_script script]

Generating a Capacitance Table in Multi-CPU Mode

You can use the Multiple-CPU Processing Commands to generate a capacitance table in parallel
mode when you use the generateCapTbl command within Innovus. This functionality is not
available for standalone capacitance table generation.

TCL Script to Run the generateCapTbl Command in the Distributed Mode

 To run the generateCapTbl command in the parallel mode on different hosts, specify the following
commands:

setDistributeHost -rsh -add { host1 host2 host3}

setMultiCpuUsage -remoteHost

generateCapTbl -ict sample.ict -output sample.capTbl

September 2022 1314 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/Multiple-CPU_Processing_Commands.html
../innovusTCR/generateCapTbl.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html

TCL Script to Run the generateCapTbl Command in the Local Mode

To run the generateCapTbl command with three CPUs on a local machine, specify the following
commands:

setDistributeHost -local
setMultiCpuUsage -localCpu 3
generateCapTbl -ict sample.ict -output sample.capTbl

Performing IQuantus, TQuantus, and Standalone Quantus Extraction in Multi-CPU Mode

IQuantus, TQuantus, and Standalone Quantus Extraction engines support distributed processing.
You can use the Multiple-CPU Processing Commands to invoke IQuantus, TQuantus, and
Standalone Quantus Extraction in the multi-CPU mode.

TCL Script for IQuantus, TQuantus, and Standalone Quantus Extraction

Invoked in the Distributed Mode

To run IQuantus, TQuantus, and Standalone Quantus Extraction in the parallel mode on different
hosts, specify the following commands:

setDistributeHost -rsh -add { host1 host2 host3 }
setMultiCpuUsage -remoteHost 3
setExtractRCMode -engine postRoute -effortLevel [medium | high | signoff]
extractRC

TCL Script for IQuantus, TQuantus, and Standalone Quantus Extraction Invoked in the Local
Mode

To run IQuantus , TQuantus, and Standalone Quantus Extraction with three CPUs on a local
machine, specify the following commands:

setDistributeHost -local
setMultiCpuUsage -localCpu 3
setExtractRCMode -engine postRoute -effortLevel [medium | high | signoff]
extractRC

Related Information

Performing Extraction in Innovus

Types of RC Extraction

September 2022 1315 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/Multiple-CPU_Processing_Commands.html

Using Advanced Virtual Metal Fill in Extraction
Quantus, IQuantus, and TQuantus support Advanced Virtual Metal Fill (VMF). Advanced VMF gives
better metal-fill effect estimation as compared to the original default VMF. To use Advanced VMF
with IQuantus and TQuantus, an extra command file containing the Quantus CCL commands is
required. This file can be specified by using the setExtractRCMode -extraCmdFile
qrc.cmd command. Include the set-up detailed below in the qrc.cmd file.

Setting-up the Advanced VMF Rules

To use Advanced VMF, specify the external VMF rule files. These files will be used regardless of
whether VMF rules are included in the qrcTechFile or not.

To use the external VMF rule files, use the combination of the following three commands inside the
qrc.cmd file:

metal_fill -type virtual \

 -enable_advanced_virtual_fill true \

 -vmf_metal_scheme_file <metal_scheme_file_name> \

 -vmf_rule_file <param_file_name>

When specified, the above options overwrite the VMF specification in the ICT file. This feature lets
you use the specified external VMF rule files at runtime. In this case, if the qrcTechFile does not
contain the VMF rules, Quantus, IQuantus, and TQuantus will use the external VMF rule files. If the
qrcTechfile contains the VMF rules, the rules in the external VMF rule file will supersede the VMF
rules specified in the qrcTechFile.

-enable_advanced_virtual_fill true
Enables Advanced VMF feature. The default value is "false".

-vmf_metal_scheme_file metal_scheme_file_name
Specifies the metal scheme file. This file defines the mapping between layer names and layer
types. The format of the file is provided below:
Layer: metal layer name in ICT file
Type: layer type (1, x, y, z, …)
Dir: routing direction

An example of a metal scheme file is provided below:

September 2022 1316 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

../innovusTCR/setExtractRCMode.html

-vmf_rule_file param_file_name
Specifies the param file. This file defines the VMF rules, such as size, x/y fill-fill spacing, and
net-fill spacing, per metal type defined in the scheme file. The format of the file is provided
below:
Type: layer type defined in scheme file
L: VMF length
W: VMF width
nf_sp: minimum net-fill spacing
ff_sl: fill-fill spacing along with length
ff_sw: fill-fill spacing along with width

An example of a param file is provided below.

Note: For Quantus, XL+AA license is required when –enable_advanced_virtual_fill CCL
option is set to true. For IQuantus, when Innovus Advanced VMF is turned on, XL+AA license is
required.

Related Information

Pre-Requisites for RC Extraction

Layer type Directory

M2 M1 H

M2 Mx V

M3 Mx H

M4 Mx V

Type L W nf_sp ff_sl ff_sw

M1 1.00 0.12 0.60 0.12 0.12

Mx 1.00 0.12 0.60 0.12 0.12

My 1.20. 0.50 0.30 0.30 0.30

Mz 0.80 0.80 0.60 0.40 0.40

September 2022 1317 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--RC Extraction

Base Delay Analysis

Overview

Base Delay Analysis Flow

Base Delay Analysis Inputs

Base Delay Reporting

Limitations of Traditional Delay Calculators

Base Delay Analysis with Equivalent Waveforms

Equivalent Waveform Model (EWM)

Waveform Propagation

EWM-Only vs Waveform Propagation

Timing Library Requirement for Accurate Analysis for 20nm and Below

ECSM Libraries with 8-Piece Pin Capacitances

September 2022 1318 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

Overview
Innovus enables you to perform fast and precise signal integrity-aware delay calculations for cell-
based designs. The software combines signal integrity (SI) analysis with timing analysis to check
for functional failures due to SI glitch and performs accurate timing calculations (that account for
both the SI and IR-drop effects). Innovus utilizes the multi-threaded circuit simulation methods to
deliver accuracy, capacity, and performance needed for nano meter designs.

This chapter describes the delay analysis flow and reporting.

Base Delay Analysis Flow
The base delay analysis flow is given below:

Base Delay Analysis Flow

Sample Base Delay Calculation Script

 You can use the following script to calculate base delay:

1. Load the design data:
restoreDesign

2. Use timeDesign to run Early Global Route, extraction, and timing analysis:
timeDesign -postCTS

3. Debug timing further, if required:
report_timing

4. Report details of base delay calculation for an arc:
reportDelayCalculation –from inst1/A –to inst1/Y

September 2022 1319 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

../innovusTCR/restoreDesign.html
../innovusTCR/timeDesign.html
../innovusTCR/report_timing.html
../innovusTCR/reportDelayCalculation.html

Base Delay Analysis Inputs
Netlist

SDC (timing information)

Routed Innovus database or DEF file (placement and routing information)

LEF file (physical library)

XILM data (for hierarchical designs)

Liberty library (.lib)

Innovus extended capacitance table file

Quantus QRC standalone extraction technology file and library (optional)

Base Delay Reporting
The following commands can be used to generate reports on base delay:

timeDesign

report_timing

reportDelayCalculation

Using the timeDesign Command

You can use the timeDesign command to run Early Global Route, extraction, and timing analysis.
The timeDesign command generates detailed timing and DRV reports. For example,

Innovus > timeDesign -postCTS

--

 timeDesign Summary

--

Setup views included:

mission+worst-rcMax test+worst-rcMax mission+worst-rcTyp

+-----------------+-------+---------+---------+

| Setup mode | all | reg2reg | default |

September 2022 1320 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

../innovusTCR/timeDesign.html
../innovusTCR/report_timing.html
../innovusTCR/reportDelayCalculation.html
../innovusTCR/timeDesign.html

+-----------------+-------+---------+---------+

| WNS (ns): | 2.320 | 4.140 | 2.320 |

| TNS (ns): | 0.000 | 0.000 | 0.000 |

| Violating Paths:| 0 | 0 | 0 |

| All Paths: | 377 | 368 | 9 |

+-----------------+-------+---------+---------+

+-------------+----------------------------+----------------+

| | Real | Total |

| DRVs +----------------+-----------+----------------|

| | Nr nets(terms) | Worst Vio | Nr nets(terms) |

+-------------+----------------+-----------+----------------+

| max_cap | 0 (0) | 0.000 | 0 (0) |

| max_tran | 19 (19) | -0.056 | 27 (27) |

| max_fanout | 101 (101) | -58 | 111 (111) |

| max_length | 0 (0) | 0 | 0 (0) |

+-------------+----------------+-----------+----------------+

Density: 40.649%

 (100.000% with Fillers)

Routing Overflow: 0.06% H and 0.06% V

--

Reported timing to dir ./timingReports

Using the report_timing Command

You can use the report_timing command to report timing paths. It is recommended to use
the report_timing –net parameter to produce a comprehensive report. For example,

Innovus > set_global report_timing_format {hpin cell slew delay arrival}

Innovus > report_timing –net

Path 1: VIOLATED Setup Check with Pin seg3/u9/CK
Endpoint: seg3/u9/D (v) checked with leading edge of 'CLK_W_3'

Beginpoint: seg3/u3/Q (v) triggered by leading edge of 'CLK_W_3'

Path Groups: {CLK_W_3}

Other End Arrival Time 1.104

- Setup 0.152

+ Phase Shift 2.000

- Uncertainty 0.050

September 2022 1321 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

../innovusTCR/report_timing.html
../innovusTCR/report_timing_format.html

= Required Time 2.902

- Arrival Time 3.151

= Slack Time -0.249

Clock Rise Edge 0.000
+ Clock Network Latency (Prop) 1.135
= Beginpoint Arrival Time 1.135

Pin Cell Slew Delay Arrival

 Time

seg3/u3/CK - 0.091 - 1.135

seg3/u3/Q -> DFF 0.318 0.303 1.438
seg3/u4/A BUF 0.318 0.008 1.446
seg3/u4/Y BUF 0.003 0.158 1.604
seg3/u5/A INV 0.005 0.003 1.607
seg3/u5/Y INV 0.499 0.140 1.748
seg3/u6/A INV 0.549 0.152 1.900
seg3/u6/Y INV 0.793 0.528 2.427
seg3/u7/A BUF 0.794 0.003 2.430
seg3/u7/Y BUF 0.596 0.404 2.835
seg3/u7_a/A BUF 0.596 0.060 2.895
seg3/u7_a/Y BUF 0.003 0.250 3.145
seg3/u8/A BUF 0.003 0.001 3.146
seg3/u8/Y BUF 0.042 -0.023 3.123
seg3/u9/D DFF 0.072 0.029 3.151
--

Using the reportDelayCalculation Command

You can use the reportDelayCalculation command to report the delay calculation information for a
cell or net timing arc. For example,

innovus > reportDelayCalculation -from seg3/u5/Y -to seg3/u6/A

From pin : seg3/u5/Y
Cell : INV
Library : cell_w
To pin : seg3/u6/A

September 2022 1322 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

../innovusTCR/reportDelayCalculation.html

Cell : INV
Library : cell_w
Delay type: net

--
RC Summary for net seg3/n5
--
Number of capacitance : 17
Net capacitance : 0.293534 pF
Total rise capacitance : 0.320849 pF
Total fall capacitance : 0.320780 pF
Number of resistance : 17
Total resistance : 567.671387 Ohm
--
 Rise Fall
--
Net delay : 0.151900 ns 0.119000 ns

From pin transition time : 0.499000 ns 0.211500 ns

To pin transition time : 0.549100 ns 0.248000 ns

--

September 2022 1323 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

Limitations of Traditional Delay Calculators
Traditional delay calculators use delay as a function of the input slew and output load. With
traditional delay calculators, a single linear slew value is used as the input to analyze a stage. This
methodology cannot produce the desired accuracy that new technologies demand.

This is illustrated in the figure below.

Traditional Delay Calculation using Delay as function of slew and load

The advanced technologies (28nm and below) require waveform-based delay calculators to
accurately calculate the delays based on waveforms. The waveform-based delay calculators use
real waveforms as input to analyze a stage, as shown in the figure below.

 Ideal Waveform based Delay Calculation

September 2022 1324 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

There are several shortcomings when you use traditional delay calculators. Some of these are:

Traditional delay calculators use single slew to calculate stage delays. This may not produce
accurate results.

Different waveforms with the same slew value produce the same delays.

September 2022 1325 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

Shortcomings of Traditional Delay Calculation

In the above figure, the grey waveforms indicate the input waveforms in an ideal case. The black
lines indicate the linear input slew values and slew waveforms, respectively.

Here, the linear input slew value and the input waveforms use the same slew, however, the delay
numbers are different. The long curve of the input waveform (grey) can produce larger delays as
compared to the one produced with the linear input slew (black). Also, the measurement point shift
can contribute to delay inaccuracy.

Base Delay Analysis with Equivalent Waveforms
To overcome the shortcomings of traditional delay calculators, Innovus provides two different
approaches for performing delay calculations. These are described below:

Equivalent Waveform Model

Waveform Propagation

September 2022 1326 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

Equivalent Waveform Model (EWM)
To achieve accuracy, the waveform shapes are required to be included during delay calculations.
The equivalent waveform model (EWM) computes equivalent receiver output based on the input
waveform shapes and adjusts the interconnect delay accordingly. The adjustment in delay
compensates for any inaccuracies that delay calculation might cause in the next stage due to lack
of waveform shape information. The EWM approach provides a technique for producing higher
accuracy results when compared to Spice.

When a stage is analyzed during delay calculation, a pre-defined waveform from the library (based
on single input slew value) is used as a stimulus. When the EWM mode is not enabled, the input
slew is measured from the actual waveform computed during the previous stage analysis. This may
have entirely different characteristics compared to the pre-defined waveform used in the current
stage. As a result, the delay impact due to waveform shape differences may be affected.

The following figure illustrates delay calculation without EWM.

September 2022 1327 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

The following figure illustrates delay calculation without EWM.

Delay Calculation without EWM

The following figure illustrates delay calculation with EWM.

Delay Calculation with EWM

When EWM is enabled, the software computes the delay impact of waveform shapes on receiver
cells, and computes the delay impact - thus providing an overall improvement in path delay
accuracy. When EWM is enabled in SI analysis, the software provides delay adjustments based on
the receiver noise response to a noisy transition. This helps to reduce the SI pessimism that will be
reported if the total delay is measured on noisy waveforms at the receiver input.

September 2022 1328 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

Use Model

Equivalent waveform model can be enabled by using the following setting:

setDelayCalMode -equivalent_waveform_model no_propagation

Waveform Propagation
The waveform shapes have a significant impact on delay calculations. Traditionally, delay
calculation uses a single pre-driver waveform for specific slew value at the cell input to compute the
response on the output of a cell.

Consider two libraries characterized with pre-driver cells, BUFX16 and BUFX2. An accurate delay
on all the instances driven by BUFX16 will be reported, when the library uses BUFX16 as a pre-
driver cell. In this case, the instance I4 produces more accurate results as the input waveform
matches with the pre-driver waveform. The accuracy of other cells is impacted due to a difference in
results for the pre-driver cell versus the actual driving cell. To facilitate actual waveform propagation
through a path, the waveform propagation feature stores the actual waveform instead of a single
slew value at the input of each cell.

As shown in the figure below, both the BUFX16 slew (in grey) and BUFX2 slew (in black) have the
same value but their waveform shapes are different. The same slew having different waveform
shapes can produce different delays. The delay accuracy is a function of input waveform shapes,
even if the slew values are same. If the input waveform shape is different from the input waveform
used for cell characterization, the delay accuracy will be significantly affected.

The following figure illustrates waveform impact on delay.

Waveform impact on delay

September 2022 1329 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

../innovusTCR/setDelayCalMode.html

Requirements for Waveform Propagation

The waveform propagation using ECSM models will be more accurate with additional receiver
pincap points. Cadence recommends at least eight points. The last three points can be the lower
slew threshold, delay measurement point, and upper slew threshold. The rest of the five points must
be selected to represent the tail waveform accurately. It is also recommended to have actual pre-
driver waveform in the ECSM libraries.

Use Model

Waveform propagation can be enabled by using the following setting:

setDelayCalMode -equivalent_waveform_model propagation

EWM-Only vs Waveform Propagation
EWM-Only

Real waveform tail impact on the next stage is predicted and added to the current wire delay.

The receiver cell is assumed to be the driver lumped load.

Waveform Propagation

Real waveforms are stored and used as input for the next stage. The input waveform tail
impact is used at the appropriate point.

Unlike EWM-Only, the waveform propagation computes accurate impact of the tail as it uses
distributed parasitics of wires.

EWM and Waveform Propagation - Impact on the Flow

Using Equivalent Waveform Model or Waveform Propagation methodology can impact the flow in
the following ways:

Waveform propagation is only supported in Innovus for post-route timing analysis. For pre-
route STA, even if waveform propagation has been enabled, delay calculation is with EWM-
only (that is, no propagation).

Enabling equivalent waveform modeling increases runtime by 10% with no significant
increase in memory.

September 2022 1330 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

../innovusTCR/setDelayCalMode.html

Enabling waveform propagation increases runtime by 15%. In graph-based analysis mode,
there is an 8% increase in the memory.

Normalized Driver Waveform in Library

The normalized driver waveform (pre-driver waveform) should be added to a library while
characterizing so that delay can be computed accurately (as there can be different waveforms with
the same slew). There are two types of pre-drivers – active and analytical. Cadence recommends
that you use the active pre-driver. The active pre-driver waveform has a longer tail than the
analytical pre-driver, and thus represents the real design scenario. In the absence of NDWs
(normalized driver waveform) in a library, Innovus auto-generates analytic pre-driver waveforms.

An example of normalized driver waveform in a library is given below:

normalized_driver_waveform (waveform_template_name) {
 driver_waveform_name : "PreDriver20.25:rise";
 index_1 ("0.00233, 0.01301, 0.05092, 0.1233, 0.2361, 0.3943, 0.6026");
 index_2 ("0, 0.083, 0.166, 0.25, 0.333, 0.417, 0.5, 0.583, 0.666, 0.75, 0.833,

0.917,1");
 values (\
 "0, 0.00037, 0.0005041, 0.0006424, 0.0008009, 0.0009783, 0.001179, 0.00140,

0.00166, 0.001995 0.002375, 0.002833, 0.003389", \
 "0, 0.00220 0.0029643 0.003777, 0.004709, 0.005752, 0.006935, 0.00828374,

0.00988784, 0.0117336, 0.013969, 0.0166759, 0.0199283", \
 "0, 0.00862494, 0.0116002, 0.01473, 0.0184297, 0.0225117, 0.0271421, 0.0324164,

0.0386937, 0.0459165, 0.05466, 0.06571, 0.0779846", \
 "0, 0.0208867, 0.0280917, 0.0357977, 0.0446304, 0.0545157, 0.065729, 0.0785015,

0.0937029, 0.111194, 0.132378, 0.15803, 0.188852", \
 "0, 0.0399897, 0.0537844, 0.0685384, 0.0854496, 0.104376, 0.125845, 0.150299,

0.179404, 0.212893, 0.253452, 0.302566, 0.361577", \

Timing Library Requirement for Accurate Analysis for 20nm and
Below
The ECSM library characterization for 20nm static timing analysis (STA) signoff meets the
challenges of accurate timing analysis in 20nm. To produce more accurate results for the 20nm
process nodes, you can use the following:

8-piece pin capacitances in ECSM timing libraries

September 2022 1331 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

2% - 98% ECSM waveform range

ECSM Libraries with 8-Piece Pin Capacitances
The 8-piece pin capacitance in the ECSM timing libraries are required to accurately model back
miller current. Traditionally, the receiver pin capacitance in an ECSM library characterization is
measured at the slew thresholds - that may be 30% to 70% of the VDD. As a result, the use of such
thresholds in the ECSM libraries may result in some missing important data at the tail of the
waveform. The 3-piece capacitance tables are extended to 8-piece tables for 20nm nodes to better
capture the waveform distortions due to back miller current at the waveform tail. The selection of 8-
piece pin capacitance is made such that the required 20nm waveform distortion information can be
captured correctly. Since the waveform distortion happens mostly at the tail of waveforms, the pin-
cap thresholds are selected so that there are more points on the tail.

September 2022 1332 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Base Delay Analysis

Timing Analysis
Overview

Timing Analysis Features

MMMC-On By Default Functionality

Before You Begin

Calculating Clock Latency

Path Exception Priorities

Timing Analysis Modes

Definition of Early and Late Paths

Single Timing Analysis Mode

Performing Timing Analysis in Single Analysis Mode

Best-Case Worst-Case (BC-WC) Timing Analysis Mode

Performing Timing Analysis in Best-Case Worst-Case Analysis Mode

On-Chip Variation (OCV) Timing Analysis Mode

Performing Timing Analysis in OCV Mode

Clock Path Pessimism Removal

Clock Reconvergence and CPPR

Supported CPPR Global Variables

Timing Analysis Results Before and After CPPR

Analyzing Timing Problems

Resolving Buffer-Related Problems

September 2022 1333 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Overview
The goal of timing analysis is to verify that a design meets timing requirements under a specified set
of timing constraints, such as arrival and required times, operating conditions, slew rates, false
paths, and path delays. Performing timing analysis allows you determine how fast a design can run
without incurring timing violations. You can use the results of timing analysis to fine tune and debug
the speed-limiting, critical paths in a design.

You can perform timing analysis using Cadence® and third-party constraint formats and timing
libraries (dotlib).

Timing Analysis Features
Timing analysis includes the following features and capabilities:

Static Timing Analyzer (STA)

Performs setup time analysis, which analyzes violating paths due to timing

Performs hold time analysis

Performs analysis in ideal and propagated mode

Reports asynchronous violating paths

Reports violating paths after running pre-clock tree synthesis (CTS) skew

What-If Timing Analysis

Use what-if timing analysis to modify instance cell timing information to reach top level timing
requirements, after which you can manually change the timing model of a standard cell or modify
the timing arcs of black boxes. Once you have defined the initial timing model of the black boxes,
you can modify arc definitions and verify the consequences in timing analysis.

Minimum and Maximum Timing Analysis

To read in libraries with multiple operating conditions for minimum and maximum analysis, you can:

September 2022 1334 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Create a MMMC configuration file. You can use the Innovus System GUI.

Specify the operating conditions using the create_delay_corner command.

Specify the setAnalysisMode command.

Timing Analysis Ideal and Propagated Modes

* Both -clockPropagation sdcControl and set_propagated_clock are required.

** The closest (set_clock_latency or set_propagated_clock) assertion to the clock endpoint
determines ideal vs. propagated mode.

MMMC-On By Default Functionality
The software supports MMMC-based designs during initializiation. Innovus follows the
init_design based flow. This flow requires a valid MMMC specification to provide the necessary
timing, SI, constraint, and extraction related data for the system. The default MMMC objects are
treated as real user MMMC objects and are saved/restored from the MMMC view definition
(viewDefinition.tcl) file.

Before You Begin
Before running timing analysis, read in the timing libraries, timing constraints, and the netlist.

Optionally, you can also set the following conditions:

Specify the delay calculation and RC extraction data.
Use the Timing and Power pages in the Design Import form to specify these values. For more
information, see File Menu in the Innovus Menu Reference.

Specify the operating/timing conditions to use for timing analysis.

setAnalysisMode Clock Propagation Clock Latency

-skew false Forced Ideal No Effect

-skew true -clockPropagation forcedIdeal Forced Ideal SDCs in Effect

-skew true -clockPropagation sdcControl *SDCs in Effect **SDCs in Effect

September 2022 1335 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/create_delay_corner.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/init_design.html
../innovusMR/File_Menu.html

Use the operating conditions to specify process, voltage, and temperature (PVT) values.
Operating conditions are defined in the timing library and read into the Innovus session when
you import the design. You can use a single set of operating conditions for setup and hold
analysis, or you can specify minimum and maximum conditions.

Check and report timing libraries by generating the timing library report.

Check and report cell footprints by generating the cell footprint report.

Define RC corners for extraction. In the MMMC configuration file you can define three different
types of RC corners - typical, best, and worst. Several RC corners can be defined.

Specify the analysis mode you want to use for timing analysis. There are three types of
analysis modes: single, best-case worst-case (BC-WC), and on-chip variation. For more
information, see Timing Analysis Modes.

For more information, see "Importing and Exporting Designs" chapter of the Innovus User Guide.

September 2022 1336 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Calculating Clock Latency
The Innovus software calculates clock latency based on the following two settings:

Analysis mode set using the setAnalysisMode command.

The set_propagated_clock and set_clock_latency constraints values.

Depending on these settings, the clock latency can be equal to either 0.0 or the value of
the set_clock_latency constraint, or the delay computed by propagation along the clock path.

The Innovus software sets the clock latency for various combinations of analysis mode settings as
follows:

setAnalysisMode -skew true -clockPropagation sdcControl (Default Setting)

Latency is defined by the precedence of set_propagated_clock and set_clock_latency in the
SDC.

If both set_propagated_clock and set_clock_latency are not specified, no clock latency is
reported (ideal mode).

setAnalysisMode -skew true -clockPropagation forcedIdeal

If set_clock_latency command is in the timing constraint file, the clock latency specified in
the constraint is used (ideal mode).

If set_clock_latency is not specified, 0ns clock latency is reported (ideal mode).

Note: The -clockPropagation forcedIdeal option forces ideal clock mode, even if
the set_propagated_clock command is specified in the constraints file.

setAnalysisMode -skew false -clockPropagation sdcControl
Or,
setAnalysisMode -skew false -clockPropagation forcedIdeal

No latency is reported (ideal mode).

Note: When you use the -skew false parameter, clock latencies are ignored.

Path Exception Priorities
The following are the path exception priorities if a path in the design matches more than one
path exception:

September 2022 1337 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/setAnalysisMode.html
../innovusTCR/set_propagated_clock.html
../innovusTCR/set_clock_latency.html

set_false_path

set_min_delay

set_max_delay

set_multicycle_path

If there is more than one exception of a given type, for example,
the set_multicycle_path command, the path exception that is more specific has higher priority. A
path exception is more specific if it specifies a longer path than the other. For example, the -from, -
to options will have
priority over the -from option.

If the path has the same number of reference points, then:

-from option has priority over the -to option

-to option has priority over the -through option

Note: To check for ignored path exceptions, use the report_path_exceptions -ignored command.

The following list shows the priorities (from highest to lowest) for path exceptions applied to
the same path.

Path Exception Priorities

1. set_false_path (Highest)

2. set_max_delay -from pin_list

3. set_max_delay -to pin_list

4. set_max_delay -through pin_list

5. set_max_delay -from clkwave_name

6. set_max_delay -to clkwave_name

7. set_max_delay (The most constraining adjustment has higher priority over less constraining
adjustments.)

8. set_multicycle_path -from pin_list

9. set_multicycle_path -to pin_list

September 2022 1338 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/set_false_path.html
../innovusTCR/set_min_delay.html
../innovusTCR/set_max_delay.html
../innovusTCR/set_multicycle_path.html
../innovusTCR/report_path_exceptions.html

Timing Analysis Modes
The Innovus software provides different timing analysis modes and accordingly performs
calculations for setup and hold checks for each mode. The timing analysis mode types are:

Single Timing Analysis Mode

Best-Case Worst-Case (BC-WC) Timing Analysis Mode

On-Chip Variation (OCV) Timing Analysis Mode

For a better understanding of these modes, it is important to understand the impact of early and late
paths in a design, as explained in the following section.

Definition of Early and Late Paths
Early and late paths are referred to as the shortest and longest paths, respectively, and are used for
delay calculations. The early or minimum path delay is the minimum delay through cells and nets in
the path. The late or maximum path delay is the maximum delay through cells and nets in the path.
The following figure shows a setup check with late launch clock and early capture clock:

Illustration of Setup Check- Setup check with early and late paths

The following figure shows hold check with early launch clock (shown in dotted line), and late
capture clock (shown in solid line).

Illustration of Hold Check - Hold check with early and late paths

September 2022 1339 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Single Timing Analysis Mode
In this mode, the Innovus software uses a single set of delays (using one library group) based on
one set of process, temperature, and voltage conditions.

To set the timing analysis mode as single, you can use the following command:
setAnalysisMode -analysisType single

In single analysis mode, only maximum delay values are used for delay calculation. The -
max options of commands in constraints are used for both minimum and maximum analysis in single
analysis mode. For example, set_annotated_delay –max 10 command will be used for both
minimum and maximum analysis.

Even with single library group, cell delay can have variation in maximum delay based on sdf_cond,
timing derates, and other inputs. In single analysis mode, early and late path delays are the
minimum and maximum, respectively, of this range of maximum delay.

Single Timing Analysis Mode - Setup and Hold Checks

These are explained in the sections below.

Setup Check in Single Timing Analysis Mode

For setup check, the software checks the late launch clock and late data paths against early capture
clock path.

September 2022 1340 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/setAnalysisMode.html#setAnalysisMode-setAnalysisMode

Setup Check in Single Timing Analysis Mode

For zero slack value in a setup check, the following condition should be met:

launch clock late path (tLAUNCH_CLK) + data clock late path (tDATA_DLY) <= capture clock early
path (tCAPTUE_CLK) + clock period - setup

The following figure shows the setup check on the path from FF1 to FF2.

Setup Check in Single Timing Analysis Mode

The software uses a library to calculate the maximum delay. For setup check, the software
considers two paths between the two registers, FF1 and FF2 - the late path delay is used to
calculate slack during setup check.

The following values are assumed in this example:

September 2022 1341 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Clock period = 4 ; Clock source latency = none ; Clock mode = Propagated

Hold Check in Single Timing Analysis Mode

For hold check the software compares the early arriving data against the late arriving clock at the
endpoint.

Hold Check in Single Timing Analysis Mode

For zero slack value in a hold check, the following condition should be met:

launch clock early path (tLAUNCH_CLK) + data early path (tDATA_DLY) => capture clock late
path (tCAPTUE_CLK) + hold

The following example shows the hold check on a path from FF1 to FF2.

Data late path delay 3.6

Data early path delay 1.9

Launch clock late path delay 0.8 + 0.6 =1.4

Capture clock early path delay 0.8 + 0.5 = 1.3

Setup 0.2

Data arrival time 1.4 + 3.6 = 5

Data required time 4 + 1.3 - 0.2 = 5.1

Setup Slack 5.1 - 5 = 0.1

September 2022 1342 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Hold Check in Single Timing Analysis Mode

The following values are assumed in this example:

Clock period = 4 ; Clock source latency = none ; Clock mode = Propagated

Performing Timing Analysis in Single Analysis Mode
To perform Timing Analysis in Single Analysis Mode, follow the steps given below:

1. Create a single corner MMMC configuration file and set the init_mmmc_file variable to point
to it.

2. To create library sets, corners, and modes, use the following set of commands:
create_library_set -name my_max_library_set

Data late path delay 2.6

Data early path delay 1.0

Launch clock early path delay 0.6 + 0.4 = 1.0

Capture clock late path delay 0.6 + 0.3 = 0.9

Hold 0.2

Data arrival time 1 + 1 = 2

Data Required Time 0.2 + 0.9 = 1.1

Hold Slack 2 – 1.1 = 0.9

September 2022 1343 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/init_mmmc_file.html
../innovusTCR/create_library_set.html

-timing [list /icd/libs/syn/stdcell/slow/slow.lib]

create_constraint_mode -name my_constraint_mode

-sdc_files [list ./constraints/design.sdc]

create_rc_corner -name my_wc_corner_worst

-qx_tech_file /icd/libs/tech/6mlv-wc.tch

create_delay_corner -name my_delay_corner_max -library_set my_max_library_set

-rc_corner my_wc_corner_worst

-opcond slow

create_analysis_view -name my_wc_analysis_view -constraint_mode my_constraint_mode

-delay_corner my_delay_corner_max

set_analysis_view -setup my_wc_analysis_view

-hold my_wc_analysis_view

3. Load the design using the following commands:
source init.globals

init_design

4. Set the analysis mode to single, setup and propagated clock mode:
setAnalysisMode -analysisType single -checkType setup

-skew true -clockPropagation sdccontrol

5. Generate the timing reports for setup:
report_timing

6. Set the analysis mode to hold and propagated clock mode:
setAnalysisMode -checkType hold

-skew true -clockPropagation sdcControl

7. Generate the timing reports for hold:
report_timing

September 2022 1344 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/create_constraint_mode.html
../innovusTCR/create_rc_corner.html
../innovusTCR/create_delay_corner.html
../innovusTCR/create_analysis_view.html
../innovusTCR/set_analysis_view.html
../innovusTCR/source.html
../innovusTCR/init_design.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/report_timing.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/report_timing.html

Best-Case Worst-Case (BC-WC) Timing Analysis Mode
In best-case worst-case (BC-WC) analysis mode, the software uses delays from the maximum
library group for all the paths during setup checks and minimum library group for all the paths during
hold checks. In this mode, the Innovus software considers two operating conditions and checks
both operating conditions in one timing analysis run. To set the timing analysis mode as BC-WC,
you can use the following command:
setAnalysisMode -analysisType bcwc

You can use the set_clock_latency constraint to set the source latency for a clock in both ideal and
propagated mode for setup and hold checks. You can also use this constraint to set the network
latency for an ideal clock. The specified source or network latency affects the early and late clock
paths for both capture and launch clocks for both minimum and maximum operating conditions.

Note: The software considers the network latency, specified using the set_clock_latency -
max (or -min) command, for ideal clocks only. In propagated mode, actual clock propagated latency
values will be used.

Setup Check in Best-Case Worst-Case Mode

For setup check, the software calculates delay values from the maximum library group for data
arrival time, and network delay of both launch and capture clocks (in propagated mode).

The source latency in both ideal and propagated modes for setup checks is defined in the
constraints used by various clock paths as follows:

The network latency in ideal mode for setup checks is defined in the constraints used by various
clock paths as follows:

The following example shows the setup check on a path from FF1 to FF2.

Clock Path
(Operating Condition)

Constraint Used

Launch clock late path (max) set_clock_latency -source -late -max value

Capture clock early path (max) set_clock_latency -source -early -max value

Clock Path (Operating Condition) Constraint Used

Launch clock late path (max) set_clock_latency -max value

Capture clock early path (max) set_clock_latency -max value

September 2022 1345 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/setAnalysisMode.html#setAnalysisMode-setAnalysisMode
../innovusTCR/set_clock_latency.html

Setup Check in Best-Case Worst-Case Analysis Mode

The software uses the max library to scale all delays at worst-case conditions.

The following values are assumed in this example:
Clock period = 4 ; Clock source latency = none ; Clock mode = Propagated

HOLD Check in Best-Case Worst-Case Mode

For hold check, the software uses the delay values from the min library for the data arrival time, and
network delay of both launch and capture clocks (in propagated mode).

The source latency in both ideal and propagated modes for hold checks is defined in the constraints
used by various clock paths as follows:

Data late path delay 3.5

Data early path delay 1.9

Launch clock early path delay 0.7 + 0.6 = 1.3

Capture clock late path delay 0.7 + 0.5 = 1.2

Setup 0.2

Data arrival time 1.3 + 3.5 = 4.8

Data Required Time 4 + 1.2 - 0.2 = 5

Setup Slack 5 - 4.8 = 0.2

September 2022 1346 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

The network latency in ideal mode for hold checks is defined in the constraints used by various
clock paths as follows:

Note: You can also use one library containing two operating conditions in this mode.

The following shows the setup check on the path from FF1 to FF2.

Hold Check in Best-Case Worst-Case Timing Analysis Mode

The software uses the min library to scale all delays at best-case conditions.

The following values are assumed in this example:

Clock period = 4 ; Clock source latency = none ; Clock mode = Propagated

Clock Path (Operating Condition) Constraint Used

Launch clock early path (min) set_clock_latency -source -early -min value

Capture clock late path (min) set_clock_latency -source -late -min value

Clock Path (Operating Condition) Constraint Used

Launch clock early path (min) set_clock_latency -min value

Capture clock late path (min) set_clock_latency -min value

Data late path delay 2.3

Data early path delay 1.0

Launch clock early path delay 0.5 + 0.4 = 0.9

September 2022 1347 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Performing Timing Analysis in Best-Case Worst-Case Analysis
Mode
To perform timing analysis in best-case worst-case (BC-WC) analysis mode, complete the following
steps:

1. Create a BC-WC MMMC configuration file, and set init_mmmc_file variable to point to it.

2. To create library sets, corners, and modes, use the following set of commands:
create_library_set -name my_max_library_set

-timing [list /icd/libs/syn/stdcell/slow/slow.lib]

create_library_set -name my_min_library_set

-timing [list /icd/libs/syn/stdcell/fast/fast.lib]

create_constraint_mode -name my_constraint_mode

-sdc_files [list ./constraints/design.sdc]

create_rc_corner -name my_wc_corner_worst

-qx_tech_file /icd/libs/tech/6mlv-wc.tch

create_rc_corner -name my_bc_corner_worst

-qx_tech_file /icd/libs/tech/6mlv-wc.tch

create_delay_corner -name my_delay_corner_max

 -library_set my_max_library_set

-rc_corner my_wc_corner_worst

 -opcond slow

create_delay_corner -name my_delay_corner_min

Capture clock late path delay 0.3 + 0.5 = 0.8

Hold 0.1

Data arrival time 0.9 + 1 = 1.9

Data required time 0.1 + 0.8 = 0.9

Hold Slack 1.9 - 0.9 = 1

September 2022 1348 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/init_mmmc_file.html
../innovusTCR/create_library_set.html
../innovusTCR/create_constraint_mode.html
../innovusTCR/create_rc_corner.html
../innovusTCR/create_delay_corner.html

-library_set my_min_library_set

 -rc_corner my_bc_corner_worst

 -opcond fast

create_analysis_view -name my_wc_analysis_view

-constraint_mode my_constraint_mode

 -delay_corner my_delay_corner_max

create_analysis_view -name my_bc_analysis_view

-constraint_mode my_constraint_mode

 -delay_corner my_delay_corner_min

set_analysis_view -setup my_wc_analysis_view -hold my_bc_analysis_view

3. Load the design using the following commands:
source init.globals

init_design

4. Set the analysis mode to BC-WC, setup and propagated clock mode:
setAnalysisMode -analysisType bcwc -checkType setup -skew true -clockPropagation

sdcControl

5. Generate the timing reports for setup:
report_timing

6. Set the analysis mode to hold and propagated clock mode.
setAnalysisMode -checkType hold

7. Generate the timing reports for hold.
report_timing

On-Chip Variation (OCV) Timing Analysis Mode
In on-chip variation (OCV) mode, the software calculates clock and data path delays based on
minimum and maximum operating conditions for setup analysis and vice-versa for hold analysis.
These delays are used together in the analysis of each check.

The OCV is the small difference in the operating parameter value across the chip. Each timing arc
in the design can have an early and a late delay to account for the on-chip process, voltage, and

September 2022 1349 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/create_analysis_view.html
../innovusTCR/set_analysis_view.html
../innovusTCR/source.html
../innovusTCR/init_design.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/report_timing.html

temperature variation.

OCV Timing Analysis Mode - Setup and Hold Checks

These are explained in the sections below.

Setup Check in OCV Mode

In OCV mode setup check, the software uses the timing delay values from the late library set and
operating conditions for the data and the launch clock network delay. The software uses the delay
values from the early library set and operating conditions for the capturing clock network delay
assuming that the clocks are set in propagated mode.

Note: You can use one library instead of both maximum and minimum libraries, and apply timing
derates for performing min/max analysis, respectively.

The source latency in both ideal and propagated modes for setup checks is defined in the
constraints used by various clock paths as follows:

The network latency in ideal mode for setup checks is defined in the constraints used by various
clock paths as follows:

Clock Path (Operating Condition) Constraint Used

Launch clock late path (max) set_clock_latency -source -late -max value

Or,
set_clock_latency -source -late value

Capture clock early path (min) set_clock_latency -source -early -min value
Or,
set_clock_latency -source -early value

Clock Path (Operating Condition) Constraint Used

Launch clock late path set_clock_latency -max value

Capture clock early path set_clock_latency -min value

September 2022 1350 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Setup Check in OCV Mode

The software uses the max library for all late path delays and min library for all early path delays.

The following values are assumed in this example:
Clock period = 4 ; Clock source latency = none ; Clock mode = Propagated

Hold Check in OCV Mode

For OCV hold check, the software uses the timing delay values from the early library set and
operating conditions for the data arrival time and launch clock network delay. The software uses
delay values from the late library set and operating conditions for the capturing clock network delay
assuming that the clocks are set in propagated mode.

The source latency in both ideal and propagated modes for hold checks is defined in the constraints
used by various clock paths as follows:

The network latency in ideal mode for hold checks is defined in the constraints used by various
clock paths as follows:

Clock Path (Operating Condition) Constraint Used

Launch clock early path (min) set_clock_latency -source -early -min value
Or,
set_clock_latency -source -early value

Capture clock late path (max) set_clock_latency -source -late -max value
Or,
set_clock_latency -source -late value

September 2022 1351 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

The following example shows the hold check on the path from FF1 to FF2.

Hold Check in OCV Mode

The software uses the max library to scale all delays at WC conditions and min library to scale all
delays at BC conditions.

The following values are assumed in this example:
Clock period = 4 ; Clock source latency = none ; Clock mode = Propagated

Clock Path (Operating Condition) Constraint Used

Launch clock early path set_clock_latency -min value

Capture clock late path set_clock_latency -max value

Data early path delay (max)

Data early path delay(min) 1.2

Launch clock early path delay (min) 0.5 + 0.4 = 0.9

Capture clock late path delay (max) 0.7 + 0.5 = 1.2

Hold 0.1

Data arrival time 0.9 + 1.2 = 2.1

Data required time 0.1 + 1.2= 1.3

Hold Slack 2.1 - 1.3 = 0.8

September 2022 1352 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Performing Timing Analysis in OCV Mode
To perform Timing Analysis in OCV Mode, follow the steps given below:

1. Create a MMMC configuration file for OCV analysis.
Note: You do not need to create special MMMC configurations, specifically for BC-WC vs.
OCV analysis. But if you wish to perform OCV with specific libraries and/or operating
conditions for early or late mode, these options should be coded within a single delay corner
object.

2. To create library sets, corners, and modes, use the following set of commands:
create_delay_corner -name my_delay_corner_max -early_library_set

my_max_library_set_1p3_V

-late_library_set my_max_library_set_1p1_V

-rc_corner my_wc_corner_worst

-early_opcond slow_1p3V

-late_opcond slow_1p1V

create_analysis_view -name my_wc_analysis_view

-constraint_mode my_constraint_mode

-delay_corner my_delay_corner_max

set_analysis_view -setup my_wc_analysis_view -hold my_wc_analysis_view

3. Load the design using the following commands:
source init.globals

init_design

4. Set the analysis mode to OCV and propagated clock mode.
setAnalysisMode -analysisType onChipVariation -skew true -clockProagation

sdcControl

5. Generate the timing reports for setup.
report_timing -late

6. Generate the timing reports for hold.
report_timing -early

September 2022 1353 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/create_delay_corner.html
../innovusTCR/create_analysis_view.html
../innovusTCR/set_analysis_view.html
../innovusTCR/source.html
../innovusTCR/init_design.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/report_timing.html

Using set_timing_derate with OCV Analysis Mode

When the set_timing_derate command is used, the following paths in OCV mode are affected:

Clock Path Pessimism Removal
Clock Path Pessimism Removal (CPPR) is the process of identifying and removing pessimism
introduced in slack reports for clock paths when launch and capture clock paths have a segment in
common.

You can introduce early or late delay variations using the setAnalysisMode -analysisType
onChipVariation command or by using the set_timing_derate for early and late clock paths. In
CPPR calculations, the difference between late and early delays (for the common clock segment
between launch and capture clock path) is calculated first and then this number is adjusted in the
slack calculations to remove the pessimism, which existed because of considering common clock
path to be both late and early at the same time. To remove this pessimism in propagated clock
mode, you can use the following command:
setAnalysisMode -cppr true

Consider the following figure for setup check between flops FF1 and FF2.

Example Signal Path

Violations Data Launch Clock Capture Clock

SETUP -late -data -late -clock -early -clock

HOLD -early -data -early -clock -late -clock

September 2022 1354 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/set_timing_derate.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/set_timing_derate.html
../innovusTCR/setAnalysisMode.html

Here,

t1max + t2max + t3max <= t4min + tcp - tsu

where tcp is the clock period and tsu is the setup requirement at D pin of flop FF2.

The above setup check equation incorrectly implies that the common clock network, B1, can
simultaneously use maximum delay for the launch clock late path (clock source to FF1/CLK) and
minimum delay for the capture clock early path (clock source to FF2/CLK). Using the CPPR to
remove this pessimism, the setup check equation is as follows:

t1max + t2max + t3max <= t4min + tcp - tsu + tcppr

where tcppr is the difference in the maximum and minimum delay from the clock source to the
branching node.

Similarly, hold check equation using CPPR is as follows:

t1min + t2min + t3min + tcppr
 <= t4max + tH

where tH is the hold requirement at D pin of flop FF2.

Clock Reconvergence and CPPR
If a design contains reconvergent logic on the clock path, the timing analysis software might
assume certain pessimism while calculating slack.

The following figure shows a circuit for which timing analysis is done in single analysis mode.

September 2022 1355 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Illustration of Clock Reconvergence

In this case, if the set_case_analysis command has not been set at point S of the multiplexer, the
timing analysis software will assume different delay values for early and late paths. For example, if
common early clock path from the clock source to the common clock point has a delay of 0.5ns, and
the same common late clock path has delay of 1ns, then a pessimism equal to 0.5ns is introduced
in the design. The above pessimism is not specific to single analysis mode only; it also applies to
best-case/worst-case and on-chip variation methodologies. You can use CPPR to remove
pessimism introduced due to reconvergence.

Innovus uses a default threshold of 20ps during pessimism removal. This means that 20ps of
uncertainty remains in the analysis. To reset the threshold value, you can
set timing_cppr_threshold_ps. When specified, all the paths might be reported without having their
pessimism removed.

September 2022 1356 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/set_case_analysis.html
../innovusTCR/timing_cppr_threshold_ps.html
../TCRcom/timing_Category_Attributes.html

CPPR Flow

To remove pessimism, use the setAnalysisMode -cppr parameter. Follow the steps given below to
support the CPPR feature:

1. Load the design.

2. Set the analysis mode to setup, propagated clock and CPPR:
setAnalysisMode -checkType setup -skew true

-clockPropagation sdcControl -cppr both

3. Set the derating values:
set_timing_derate -late 1 -early 0.9 -clock

4. You use the report_timing command to remove delay pessimism from paths that have a
portion of the clock network in common. To generate timing report, use the following
command:
report_timing

Supported CPPR Global Variables
In Innovus software, multiple global variables control CPPR behavior. These can be changed
based on the use case requirements. Changing these global variables will cause changes in
common clock path pessimism removal in terms of accuracy, common point selection, SI behavior,
and so on.

Some of these global variables include:

timing_cppr_remove_clock_to_data_crp

timing_cppr_self_loop_mode

timing_cppr_skip_clock_reconvergence

timing_cppr_threshold_ps

timing_cppr_transition_sense

timing_enable_pessimistic_cppr_for_reconvergent_clock_paths

timing_enable_si_cppr

timing_cppr_opposite_edge_mean_scale_factor

timing_cppr_opposite_edge_sigma_scale_factor

September 2022 1357 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/setAnalysisMode.html
../innovusTCR/setAnalysisMode.html
../innovusTCR/set_timing_derate.html
../innovusTCR/report_timing.html
../innovusTCR/timing_cppr_remove_clock_to_data_crp.html
../innovusTCR/timing_cppr_self_loop_mode.html
../innovusTCR/timing_cppr_skip_clock_reconvergence.html
../innovusTCR/timing_cppr_threshold_ps.html
../innovusTCR/timing_cppr_transition_sense.html
../innovusTCR/timing_enable_pessimistic_cppr_for_reconvergent_clock_paths.html
../innovusTCR/timing_enable_si_cppr.html
../innovusTCR/timing_cppr_opposite_edge_mean_scale_factor.html
../innovusTCR/timing_cppr_opposite_edge_sigma_scale_factor.html

Innovus uses a default threshold of 20ps during pessimism removal. This means that 20ps of
uncertainty remains in the analysis. To set the threshold value you can use
the timing_cppr_threshold_ps global variable. Setting this global to a specified value means that
all the paths may be reported without having pessimism removed by the given value of the global
variable. During SI analysis, the CPPR behavior for setup and hold checks can be controlled by
setting timing_enable_si_cppr global variable.

Timing Analysis Results Before and After CPPR
The following example shows a full clock path timing report generated before CPPR analysis.
Timing slack is 7.388 without any CPPR adjustments:

Path 1: MET Setup Check with Pin ff2/CK

Endpoint: ff2/D (v) checked with leading edge of 'clk'

Beginpoint: ff1/Q (v) triggered by leading edge of 'clk'

Path Groups: {clk}

Other End Arrival Time 0.972

- Setup 0.335

+ Phase Shift 10.000

= Required Time 10.637

- Arrival Time 3.249

= Slack Time 7.388

Clock Rise Edge 0.000

= Beginpoint Arrival Time 0.000

Timing Path:

Instance Cell Arc Delay Arrival Required

 Time Time

 clk ^ 0.000 7.388

c1 CLKBUFX1 A ^ -> Y ^ 0.312 0.312 7.700

c2 CLKBUFX1 A ^ -> Y ^ 0.343 0.655 8.042

c3 CLKBUFX1 A ^ -> Y ^ 0.175 0.829 8.217

c4 CLKBUFX1 A ^ -> Y ^ 0.126 0.956 8.343

c5 CLKBUFX1 A ^ -> Y ^ 0.152 1.108 8.496

mux1 MX2X1 B ^ -> Y ^ 0.211 1.319 8.706

cp11 CLKBUFX1 A ^ -> Y ^ 0.146 1.465 8.852

cp12 CLKBUFX1 A ^ -> Y ^ 0.131 1.596 8.983

cp13 CLKBUFX1 A ^ -> Y ^ 0.157 1.752 9.140

September 2022 1358 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/timing_cppr_threshold_ps.html
../innovusTCR/timing_enable_si_cppr.html

ff1 DFFHQX1 CK ^ -> Q v 0.422 2.175 9.562

u2 BUFX1 A v -> Y v 0.309 2.483 9.871

u4 BUFX1 A v -> Y v 0.279 2.762 10.150

u5 BUFX1 A v -> Y v 0.258 3.020 10.408

u6 BUFX1 A v -> Y v 0.228 3.248 10.636

ff2 DFFHQX1 D v 0.001 3.249 10.637

Clock Rise Edge 0.000

= Beginpoint Arrival Time 0.000

Other End Path:

--

Instance Cell Arc Delay Arrival Required

 Time Time

--

 clk ^ 0.000 -7.388

c1 CLKBUFX1 A ^ -> Y ^ 0.124 0.124 -7.264

c2 CLKBUFX1 A ^ -> Y ^ 0.160 0.284 -7.103

cp21 CLKBUFX1 A ^ -> Y ^ 0.150 0.434 -6.954

cp22 CLKBUFX1 A ^ -> Y ^ 0.133 0.566 -6.821

cp23 CLKBUFX1 A ^ -> Y ^ 0.120 0.687 -6.701

cp24 CLKBUFX1 A ^ -> Y ^ 0.112 0.799 -6.589

cp25 CLKBUFX1 A ^ -> Y ^ 0.093 0.891 -6.496

cp26 CLKBUFX1 A ^ -> Y ^ 0.081 0.972 -6.416

ff2 DFFHQX1 CK ^ 0.000 0.972 -6.416

When CPPR adjustment is made, timing slack improvement is seen as pessimism is removed by
“CPPR Adjustment”. In the below example “c2” is common clock point after which clock diverges:

Path 1: MET Setup Check with Pin ff2/CK

Endpoint: ff2/D (v) checked with leading edge of 'clk'

Beginpoint: ff1/Q (v) triggered by leading edge of 'clk'

Path Groups: {clk}

Other End Arrival Time 0.972

- Setup 0.335

+ Phase Shift 10.000

+ CPPR Adjustment 0.370

= Required Time 11.008

- Arrival Time 3.249

= Slack Time 7.758

Clock Rise Edge 0.000

= Beginpoint Arrival Time 0.000

Timing Path:

September 2022 1359 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Instance Cell Arc Delay Arrival Required

 Time Time

 clk ^ 0.000 7.758

c1 CLKBUFX1 A ^ -> Y ^ 0.312 0.312 8.070

c2 CLKBUFX1 A ^ -> Y ^ 0.343 0.655 8.413

c3 CLKBUFX1 A ^ -> Y ^ 0.175 0.829 8.588

c4 CLKBUFX1 A ^ -> Y ^ 0.126 0.956 8.714

c5 CLKBUFX1 A ^ -> Y ^ 0.152 1.108 8.866

mux1 MX2X1 B ^ -> Y ^ 0.211 1.319 9.077

cp11 CLKBUFX1 A ^ -> Y ^ 0.146 1.465 9.223

cp12 CLKBUFX1 A ^ -> Y ^ 0.131 1.596 9.354

cp13 CLKBUFX1 A ^ -> Y ^ 0.157 1.752 9.511

ff1 DFFHQX1 CK ^ -> Q v 0.422 2.175 9.933

u2 BUFX1 A v -> Y v 0.309 2.483 10.242

u4 BUFX1 A v -> Y v 0.279 2.762 10.520

u5 BUFX1 A v -> Y v 0.258 3.020 10.778

u6 BUFX1 A v -> Y v 0.228 3.248 11.007

ff2 DFFHQX1 D v 0.001 3.249 11.008

--

Clock Rise Edge 0.000

= Beginpoint Arrival Time 0.000

Other End Path:

--

Instance Cell Arc Delay Arrival Required

 Time Time

 clk ^ 0.000 -7.758

c1 CLKBUFX1 A ^ -> Y ^ 0.124 0.124 -7.634

c2 CLKBUFX1 A ^ -> Y ^ 0.160 0.284 -7.474

cp21 CLKBUFX1 A ^ -> Y ^ 0.150 0.434 -7.325

cp22 CLKBUFX1 A ^ -> Y ^ 0.133 0.566 -7.192

cp23 CLKBUFX1 A ^ -> Y ^ 0.120 0.687 -7.072

cp24 CLKBUFX1 A ^ -> Y ^ 0.112 0.799 -6.960

cp25 CLKBUFX1 A ^ -> Y ^ 0.093 0.891 -6.867

cp26 CLKBUFX1 A ^ -> Y ^ 0.081 0.972 -6.786

ff2 DFFHQX1 CK ^ 0.000 0.972 -6.786

--

September 2022 1360 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

Analyzing Timing Problems
In addition to the detailed timing violation report, the following report commands are helpful in
analyzing timing problems:

check_timing

Performs a variety of consistency and completeness checks on the timing constraints
specified for a design. Use the check_timing command after setting all constraints, but before
any timing analysis commands, such as report_timing, to verify that the timing environment
is complete and self-consistent.

get_property

Retrieves timing information for the specified property on the given pin, net, timing arc, or
clock.

report_analysis_coverage

Provides information about the timing checks in the design.

report_annotated_check

Reports coverage of annotated timing checks.

report_annotated_delay

Reports SDF design annotations coverage.

report_annotated_parasitics

Reports the back-annotated parasitics of the design.

report_case_analysis

Reports ports and pins with set_case_analysis constraint.

report_cell_instance_timing

Reports instance pin and delay arc timing information.

report_clock_timing

Generates a clock skew report for the current design.

report_clocks

Reports clock waveform, clock arrival point and clock uncertainty information.

report_inactive_arcs

Reports all disabled timing arcs and checks.

report_path_exceptions

September 2022 1361 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/check_timing.html#check_timing-check_timing
../innovusTCR/report_timing.html#report_timing-report_timing
../innovusTCR/get_property.html#get_property-get_property
../innovusTCR/report_analysis_coverage.html#report_analysis_coverage-report_analysis_coverage
../innovusTCR/report_annotated_check.html#report_annotated_check-report_annotated_check
../innovusTCR/report_annotated_delay.html
../innovusTCR/report_annotated_parasitics.html
../TCRcom/report_annotated_parasitics.html
../innovusTCR/report_case_analysis.html#report_case_analysis-report_case_analysis
../innovusTCR/report_cell_instance_timing.html#report_cell_instance_timing-report_cell_instance_timing
../innovusTCR/report_clock_timing.html#report_clock_timing-report_clock_timing
../innovusTCR/report_clocks.html#report_clocks-report_clocks
../innovusTCR/report_inactive_arcs.html#report_inactive_arcs-report_inactive_arcs
../innovusTCR/report_path_exceptions.html#report_path_exceptions-report_path_exceptions

Reports design path exceptions such
as set_false_path, set_multicycle_path, set_max_delay, and set_min_delay.

report_timing

Generates a timing report that provides information about the various paths in the design. The
report typically contains data on the delay through the entire path. The start node and the end
node of each path is identified.

report_constraint

Reports constraint information of current design.

report_fanin

Allows a cone traversal that is not tied to the timing graph, that is, not blocked
by set_disable_timing and case analysis.

report_fanout

Allows a cone traversal that is not tied to the timing graph, that is, not blocked
by set_disable_timing and case analysis.

timeDesign

 Performs routing, extraction, timing analysis and generates detailed timing reports.

Resolving Buffer-Related Problems
You may encounter some of the following buffer-related problems when running timing analysis:

The logical cell or buffer equivalence, based on cell functionality not used during timing
optimization, can cause timing optimization to ignore timing violations.

If an incorrect buffer footprint name was entered for the set of buffers to run timing optimization,
use the reportFootPrint command to list the current footprint information.

If the in_place_swap_mode:match_footprint statement is in the timing library, then timing
optimization matches up all the cells with same cell_footprint name, and logical cell or
buffer equivalence will not be used.

If the in_place_swap_mode:match_footprint statement does not exist, then timing optimization
derives logical cell equivalence based on matching function:boolean_eq.

If you want the logical cell equivalence based on matching, comment out
the in_place_swap_mode:match_footprint statement in the timing library.

September 2022 1362 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Timing Analysis

../innovusTCR/report_timing.html#report_timing-report_timing
../innovusTCR/report_constraint.html
../innovusTCR/report_fanin.html
../innovusTCR/report_fanout.html
../innovusTCR/timeDesign.html
../innovusTCR/reportFootPrint.html

Debugging Timing Results
Overview

Timing Debug Flow

Generating Timing Debug Report

Displaying Violation Report

Analyzing Timing Results

Viewing Power Domain Information

Creating Path Categories

Creating Predefined Categories

Creating New Categories

Creating Sub-Categories

Hiding path categories

Reporting Path Categories

Using Categories to Analyze Timing Results

Analyzing MMMC Categories

Manual Slack Correction of Categories

Editing Table Columns

Cell Coloring

Viewing Schematics

Running Timing Debug with Interface Logic Models

September 2022 1363 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Overview
Innovus provides the Global Timing Debug feature for debugging the timing results. The various
Timing Debug forms provide easy visual access to the timing reports and debugging tools.

You can group all paths that are failing for the same reason and apply solutions for faster timing
closure. You can cross-probe between the timing paths in the timing report and display area in the
Layout window.

Note: If you have a previously saved timing debug report, you can use the timing debug feature
even when the design is not loaded in the Innovus session.

Timing Debug Flow
You can generate a detailed violation report to list the details of all violating paths. You can then
use the timing debug capability to visually identify problems with critical paths in this report. After
identifying the problems, you group all paths with the same problem under a single category. You
can define several categories to capture all problems related to the violating paths before fixing the
problems and running timing analysis again.

Following is the flow for debugging timing results.

September 2022 1364 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Note: The gtd.pref.tcl file is loaded automatically at launch.

Generating Timing Debug Report
Innovus uses a machine readable timing report to display timing debug information. The report is
generated in the ASCII format and contains details of all violating paths. By default, the report
has .mtarpt extension.

To generate a violation report, use one of the following options, use the report_timing command.

You can also generate text-format report from a machine readable report.

To generate the text report, use the following:

Use the write_text_timing_report command.

Use the Write Textual Timing Report form

September 2022 1365 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/report_timing.html
../innovusTCR/write_text_timing_report.html

Displaying Violation Report
To analyze the timing results, you need to load the machine readable timing report in Innovus.

To display the violation report, use one of the following options:

Specify the file name in the Display/Generate Timing Report form.

Note: To select an existing file, deselect the Generate option before clicking on the directory
icon to the right of the Timing Report File field.
By default, the global timing debug engine uses the following command to generate a
machine-readable timing analysis report for the GUI display:
report_timing -machine_readable -max_points 10000 -max_slack 0.75

Use the load_timing_debug_report command.

Note: Use the Append to Current Report option in the Display/Generate Timing Report form to load
multiple reports in a single session.

Analyzing Timing Results
Innovus provides Timing Debug feature to visually analyze timing problems.

You can analyze the following data in the Timing Debug form:

Visual display of passing and failing paths as a histogram. Failing paths are represented in
red and passing paths are represented in green color. The goal of timing debug process is to
identify paths that fall in red category.

Details of the critical paths in the Path list. You identify a critical path in this list for further
analyses using the Timing Path Analyzer form.

Visual display of paths reported in different timing reports. When you load multiple debug
reports in a single timing debug session, the paths are displayed in different colors
corresponding to the report file they are coming from. You can move the cursor over a path to
display the name of the report file.

You analyze the following data in the Timing Path Analyzer form:

Slack calculation bars for arrival and required times. You can identify clock skew issues,
latency balancing or large clock uncertainty issues using these bars.

The following examples illustrate the problems that you can identify using the slack calculation bars

September 2022 1366 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/load_timing_debug_report.html

in the Timing Path Analyzer form.

Example 9-1

Launch and capture latency components are not aligned. Therefore there can be large clock-
latency mismatch in this path.

Example 9-2

The cycle adjustment bar in the required time indicates presence of multicycle path.

Example 9-3

Large input delay in an I/O path is represented by the blue bar in the arrival time.

Example 9-4

Path Delay bar in the required time indicates a set_max_delay constraint.

Path details including launch and capture. This information is provided as tabs in the Timing
Path Analyzer form. You can click on a single path to display it in the design display area. You
can select each element consecutively to trace the entire path in the design display area. This
form has a Status column that indicates the status of the path as follows:

Flag Description

a Assign net

September 2022 1367 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/set_max_delay.html

SDC related to the path. The Path SDC tab displays the SDC constraints related to the
selected path. The list contains the name of the SDC file, the line number that indicates the
position of the constraint in the SDC file, and the constraint definition.

The commands that can be displayed in the Path SDC tab are:

create_clock

create_generated_clock

group_path

set_multicycle_path

set_false_path

set_clock_transition

set_max_delay

set_min_delay

set_max_fanout

set_fanout_load

b Blackbox instance

c Clock net

cr Cover cell

f Preplaced instance

i Ignore net

s Skip route net

t "don't touch" net

t instance marked as "don't touch"

T instance not marked as "don't touch" when the module it belongs to is marked as "don't
touch"

u Unplaced cell

x External net

September 2022 1368 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/create_clock.html
../innovusTCR/create_generated_clock.html
../innovusTCR/group_path.html
../innovusTCR/set_multicycle_path.html
../innovusTCR/set_false_path.html
../innovusTCR/set_clock_transition.html
../innovusTCR/set_max_delay.html
../innovusTCR/set_min_delay.html
../innovusTCR/set_max_fanout.html
../innovusTCR/set_fanout_load.html

set_min_capacitance

set_max_capacitance

set_min_transition

set_max_transition

set_input_transition

set_drive

set_driving_cell

set_logic_one

set_logic_zero

set_dont_use

set_dont_touch

set_case_analysis

set_input_delay

set_output_delay

set_annotated_check

set_clock_uncertainty

set_clock_latency

set_propagated_clock

set_load

set_disable_clock_gating_check

set_clock_gating_check

set_max_time_borrow

set_clock_groups

When you create a constraint on the command line, the Path SDC tab interactively displays the
result of the additional constraint.

Note: MMMC views are not displayed interactively.

September 2022 1369 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/set_min_capacitance.html
../innovusTCR/set_max_capacitance.html
../innovusTCR/set_min_transition.html
../innovusTCR/set_max_transition.html
../innovusTCR/set_input_transition.html
../innovusTCR/set_drive.html
../innovusTCR/set_driving_cell.html
../innovusTCR/set_logic_one.html
../innovusTCR/set_logic_zero.html
../innovusTCR/set_dont_use.html
../innovusTCR/set_dont_touch.html
../innovusTCR/set_case_analysis.html
../innovusTCR/set_input_delay.html
../innovusTCR/set_output_delay.html
../innovusTCR/set_annotated_check.html
../innovusTCR/set_clock_uncertainty.html
../innovusTCR/set_clock_latency.html
../innovusTCR/set_propagated_clock.html
../innovusTCR/set_load.html
../innovusTCR/set_disable_clock_gating_check.html
../innovusTCR/set_clock_gating_check.html
../innovusTCR/set_max_time_borrow.html
../innovusTCR/set_clock_groups.html

Note: You can create a path category directly from SDC constraints in the Path SDC form. When
you right-click a constraint and view the Create Path Category form, to see the line number (from the
SDC file) and the name of the constraint.

In Innovus, you can also ceate a path category based on SDC constraint using the -sdc parameter
of the create_path_category command:

create_path_category -name category_name -sdc {file_name line_number}

where file_name is the name of the constraint file and line_number is the line number of the SDC
constraint.

Schematic display of the path. The Schematics tab displays the gate-level schematic view of
the critical path. For more information, see Viewing Schematics.

Timing interpretation for the path. This feature provides rule-based path analysis to help you
discover sources of potential timing problems in a path. By default, the software performs the
following checks on the following rules:

Path structure

Transparent Latch in Path

Clock Gating

Hard Macros

HVT Cells

Buffering List

Net Fanout

Level Shifters

Isolation Cells

Net too long

Couple capacitance ratio

Timing and constraints

Large Skew

Divider in Clock Path

Total SI Delay

SI Delay

September 2022 1370 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/create_path_category.html

External Delay

Floorplan

Fixed Cells

Distance from start to end

Distance of repeater chain

Detour

Multiple power domains

DRVs

Max transitions

Max capacitance

Max fanout

You can customize the type of timing information reported. The Edit Timing Interpretation GUI
Innovus lets you add, modify, or delete rules you want the tool to check and report.

Timing bar to analyze delays associated with instances and nets in a path. Use this
information to identify issues related to large instance or net delays, repeater chains, paths
with large number of buffers, and large macro delays. The small bars superimposed on net
delays or within element delays show incremental (longer or shorter) delays due to noise
effects:

Hierarchical representation of the path in the Hierarchy View field. This representation of the
path-delay shows the traversal of a path through the design hierarchy drawn on the time axis.
A longer arrow means that there are more instances on its path. Use this information to see
the module where the path is spending more time or to identify inter-partition timing problems.

Viewing Power Domain Information
While debugging critical paths on MSV designs, it is useful to be able to identify power domains
and low power cells. The Timing Debug feature displays this information in the following ways:

The level shifters and isolation cells are listed in the Timing Interpretation tab of the Timing
Path Analyzer.

September 2022 1371 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

The delay bar of the Timing Path Analyzer can display the level shifters and isolation cells.
You can also use the Preferences form to specify the colors in which the level shifters and
isolation cells are displayed.

September 2022 1372 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Creating Path Categories
After analyzing the paths in the timing report, you identify problems in various paths. Then you
create a group of paths such that all paths in that group have the same timing problem and can be
fixed at the same time. In timing debug such a group of paths is called a category. In Innovus, you
can either define your own category or use predefined categories to group your paths. The
categories that you define are then displayed in the Path Category field in the Analysis tab. The
form also displays the paths associated with each category.

Creating Predefined Categories
There are following predefined categories:

Basic Path Group
Creates standard path categories according to basic path groups.

The basic path groups are:

Register to register

Input to register

Register to output

Input to Output

Registers can be macros, latches, or sequential-celltypes. To create categories by basic path
groups, choose the Analysis tab - Analysis drop-down menu - Path Group Analysis option.

Clock Paths
Creates categories according to launch clock - capture clock combinations.

Following categories are created:

Paths with clock fully contained in a single domain, clk1.

Paths with clocks starting one clock domain and ending at another, clk1->clk2.

To create categories for clock paths, choose the Analysis tab - Analysis drop-down menu -
Clock Analysis option.

Hierarchical Floorplan
Creates categories according to the hierarchical characteristics of a path.

September 2022 1373 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

View
Creates categories according to the view for which the path was generated.

To create view path categories, choose the Analysis tab - Analysis drop-down menu - View
Analysis option.

False Paths
Creates a category with paths defined as False paths.

To create view path categories, choose the Analysis tab - Analysis drop-down menu - Critical
False Path option.

Bottleneck
Creates categories based on instances that occur often in critical paths.

To create view path categories, choose the Analysis tab - Analysis drop-down
menu - Bottleneck Analysis option.

DRV Analysis
Generates or loads a DRV report containing capacitance, transition, or fanout violations.
Paths that are affected by the selected DRV types are grouped in a category.

To create or load this report, choose the Analysis tab - Analysis drop-down menu - DRV
Analysis option.

Creating New Categories
To define a new category, use the Create Path Category form. The Create Path Category form
contains drop-down menus with conditions that you use to define a path category. The conditions
are characteristics that a path must have to be added to the named category. You can define
multiple conditions that a path must meet to be added to the category.

September 2022 1374 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

The category that you create is added in the Path Category field in the Analysis tab. All paths that
meet the conditions set for this category are grouped under the category name. Paths are separated
automatically according to MMMC views into different categories, for example:

CLOCK1<View_test_mode>

CLOCK2<View_mission_mode>

Double-click on the category name in the Path Category field in the Analysis tab to display the
list of paths in the Path List field.

Note: You can add a comment in the Comment field to record any notes that you would like to
include with the category. The comment appears in the category report file.

Creating Sub-Categories
You can create sub-categories based on existing categories. While analyzing a sub-category,
global timing debug will traverse the paths in the master category instead of all the paths in the
current report.

Creating Sub-Categories through the GUI

Creating Sub-Categories through Command Line

September 2022 1375 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Creating Sub-Categories through the GUI

In the GUI, you can create a sub category as follows:

Right-click a path category, and select Nested Category.

The Create Path Category form is displayed.

September 2022 1376 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

In the Master category name field, the name of the category you selected previously is
displayed. Create one or more subcategories as explained in Creating Path Categories.

Note: You can create nested sub-categories, that is, you can further create sub-categories for a
sub-category.

You can also use the Category - Create menu command to bring up the Create Path Category form.
In the Master category name field, type the name of the category for which you want to create the
sub-category, and then create one or more subcategories as explained in Creating Path
Categories.

Creating Sub-Categories through Command Line

Use the -master parameter of the create_path_category command to create sub-categories. The
category created will be a sub-category of the category name specified with the -master parameter.

The following other commands also support sub-categories; to run these commands only on the
sub-categories of a particular master category, specify the master category name with the -
master parameter.

analyze_paths_by_basic_path_group

analyze_paths_by_bottleneck

analyze_paths_by_clock_domain

September 2022 1377 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/create_path_category.html
../innovusTCR/analyze_paths_by_basic_path_group.html
../innovusTCR/analyze_paths_by_bottleneck.html
../innovusTCR/analyze_paths_by_clock_domain.html

analyze_paths_by_critical_false_path

analyze_paths_by_drv

analyze_paths_by_hierarchy

analyze_paths_by_view

Note: If the parent category of a sub-category is deleted, the sub-category cannot be edited or
changed anymore. However, the sub-category is still displayed in case you want to refer to it.

Viewing Sub-Categories

The subcategories for a master category are displayed in a hierarchically numbered list below the
master category. As an illustration, consider the example shown here:

In this example:

master_category1 is the master category

nested_category_1a and nested_category_1b are the sub-categories of master_category1.
The prefix (1) is displayed with nested_category_1a and nested_category_1b.

nested_category_2 is the sub-category of nested_category_1a.
The prefix (2) is shown with nested_category_2.

Hiding path categories
To remove a path category from the histogram display, right-click on a path and
select Hide Category. The category name in the category list is not hidden, but is marked with an
"H" as hidden.

September 2022 1378 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/analyze_paths_by_critical_false_path.html
../innovusTCR/analyze_paths_by_drv.html
../innovusTCR/analyze_paths_by_hierarchy.html
../innovusTCR/analyze_paths_by_view.html

Reporting Path Categories
To generate a report containing information about path categories, use the following options:

The write_category_summary command

The Write Category Report File GUI

The text file contains the following information:

Category name

Total number of paths

Number of passing paths

Number of failing paths

Worst negative slack

Total negative slack

TNS

Sample report:

September 2022 1379 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

../innovusTCR/write_category_summary.html

Using Categories to Analyze Timing Results
You can use the categories that you create to group the timing paths, and display them as
histogram in the Analysis tab. The Analysis tab displays the category details in the Path Category
field. You can perform the following tasks in the Analysis tab to analyze the timing results:

Double-click on any category to display the details of the paths grouped in that category in the
Path List field.

Right-click on the category name and select Add to Histogram option. The paths related to the
selected category are highlighted in a different color in the histogram. This gives you a visual
representation of the number of paths that meet the conditions in that category and can
possibly have the same timing problem.

For example, in the following figure the new category was added to the histogram.

September 2022 1380 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Analyzing the Analysis tab gives you information for fixing problems related to larger sets of timing
paths. After identifying the problems, you can make the required changes such as modify floorplan,
script or SDC files and run timing analysis again for further analysis.

Analyzing MMMC Categories
Paths are separated automatically according to MMMC views into different categories, for example,
the following figure shows multiple categories based on MMMC views.

September 2022 1381 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Right-click on one of the categories and choose List Paths.

Right-click on one the paths and choose Show Timing Path Analyzer.
The Timing Path Analyzer is displayed.

 Click on the Path SDC tab to display the SDCs:

September 2022 1382 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Note that the SDCs relative to mode mission_140MHz that produced the path are highlighted.

September 2022 1383 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Manual Slack Correction of Categories
Use the Set Category Slack Correction form to specify the estimated slack correction for the
selected category of paths. A slack correction that you apply to a category modifies all the paths in
that category. If a path belongs to several categories, all the correction from the categories are
added. The worst negative slack and total negative slack values of a category can be affected by
the correction applied to another category.

Once you enable the slack correction, the histogram is updated to reflect the slack correction. An
asterisk (*) is added next to the slack value of paths that belong to this category in the Path List field
in the Analysis tab. Paths are reordered based on new specified slack. This allows you to filter out
the paths that can be fixed and work on the remaining paths.

To access the Set Category Slack Correction form complete the following steps:

Click on the Analysis Tab in the main Innovus window.

Right click on the category name in the Path Category field.

Choose the Set Category Slack Correction option.

To disable the set slack correction value:

Right click on the category name in the Path Category field.

Choose the Deactive Category Slack correction option.

Editing Table Columns
You can customize the dimensions and contents of table columns to suit your needs.

To begin customizing a table, click on the Analysis tab, then right-click on a path.
A drop-down menu is displayed.

 Select Edit Table Column.

The Edit Table Column form is displayed.

September 2022 1384 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Choose the timing window that contains the table to want to customize.

Choose the table whose columns you want to customize. The selections change according to
the timing window you choose.

Choose a column item or specify a command.

For commands, specify the procedure you want to use to determine the information you want to
include in the column. Source the file containing the procedure before you specify the procedure
here.

For example:

Combine fedge (from edge) and tedge (to edge) #information into a single field

proc my_get_edge {id var} {

 upvar #0 $var p

 if {$p(type) == "inst"} {

 return "$p(fedge) -> $p(tedge)"

 } elseif {$p(type) == "port" } {

 return $p(fedge)

 } else {

 return ""

 }

}

Build the column list.

Add adds a column to the column list.

Modify let you modify characteristics. Click on a column in the column list. Edit the

September 2022 1385 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

information, then click Modify.

Delete removes a column from the column list.

Move Up moves a column up in the column list. This effectively moves a column to the
left in the table.

Move Down moves a column down in the column list. This effectively moves a column to
the right table.

(Optional) Click Load. The opens the GTD (Global Timing Debug) Preferences form. Specify
a file name.

Cell Coloring
Use the Cell Coloring page of the Timing Debug Preferences form to choose colors for specific
cells in the delay bar.

When you assign colors, this same colors will be restored when you start a new session.

September 2022 1386 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

In the Cell Name Selection Elements field for each color, you can choose whether you are
providing one of the following:

Cell name

Instance

Procedure that you have defined

The procedure is invoked with the full instance name as the argument. You must source the file
containing the procedure before you use this feature.

For example:

Colors when the instance name contains "core/block1"

proc belongs_to_block1 {inst_name} {

 if [regexp {core/block1} $inst_name] {

 return 1

 } else {

 return 0

 }

}

Viewing Schematics
The Critical Path Schematic Viewer displays the gate-level schematic view of the critical path. To
display the Schematic Viewer, click on the schematics icon in the Path List field of the Analysis tab.
You can display additional paths in the Schematic Viewer by using the middle mouse button to drag
the path from path list to Schematic Viewer.

You can also display the Schematics by selecting the Schematics tab in the Timing Path Analyzer
form. The form is displayed when you double-click on a critical path in the Path List in the Analysis
tab.

On displaying the Schematic Viewer, you can see the power instance colored and the power
domain information displayed in a popup message box as well as in terminal.

September 2022 1387 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

You can perform the following tasks in the Module Schematic Viewer:

View the Gate-level design elements.

Select an element in the schematic.

Click on an object in the schematic to select and highlight it. When you move the cursor
to an object, the object type and name of the object appear in the information box.

Scroll over an object to display the object type and name of the object in the Object field.

Cross-probe between the Schematics window and Path List field.

Select a path and left-click on the Schematics button above the Path List Table. (This is
the button at the far-right side, just above the table).

To show multiple paths, select another path, and drag and drop it to the Schematics
window.

Use the menu options provided in the Schematic Viewer. To access the menu options, you
can either click on the menu bar or right-click on an object in the schematic. You can use the
menu options to perform the following tasks:

Manipulate schematic views of fan-in and fan-out cones.

Trace connectivity between drivers, objects, and loads.

Move between different levels of instance views.

Running Timing Debug with Interface Logic Models
You can use the timing debug feature with designs containing Interface Logic Models (ILMs).

The Timing Path Analyzer - Path SDC form displays ILM SDCs rather than the original SDCs.

The software highlights the entire ILM module instead of the instances and nets inside the
ILM. The instances and the nets inside the ILMs are greyed out in the Timing Path Analyzer -

September 2022 1388 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Path SDC form.

September 2022 1389 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Power and Rail Analysis
Overview

Early Rail Analysis

Early Rail Analysis Key Features

Setting up and Running Early Rail Analysis

Viewing Early Rail Analysis Results

Signoff-Rail Analysis

TCL Command

Innovus and Voltus Menu Differences

September 2022 1390 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Debugging Timing Results

Overview
Voltus Power Integrity Solution sign-off power and rail analysis engines are fully integrated in
Innovus Implementation System (Innovus). The TCL and GUI use-models are identical in stand-
alone Voltus and its integration in Innovus, allowing a smooth transition from early power planning
to sign-off power analysis. The power and rail analysis in Innovus is available under the Power
menu (Voltus is under Power & Rail menu). These menus are arranged differently between the two
products (See Innovus and Voltus Menu Differences).
The ERA feature provides rail analysis at the early stage of design with the same use model as
Signoff Rail Analysis. Static ERA can also be run with Innovus base license. ERA is not intended
for sign-off; if you want to include custom power-grid views or do dynamic analysis, then a Voltus
license is required. ERA is intended for early stage analysis and can run on a power-grid floorplan
before placement and routing.

Early Rail Analysis
The Early Rail Analysis (ERA) feature inside Innovus works using the set_rail_analysis_mode and
analyze_rail commands. This flow utilizes the same power-grid extraction engine used in Voltus to
have seamless transition between early and signoff power-grid analysis. The flow also supports
advanced features such as what-if wires, what-if vias, and flexible create current region, along with
the ERA flow parameters of the set_rail_analysis_mode command. Refer to Voltus User Guide for
flow details related to the advanced features.

ERA has the ability to analyze power-grid integrity early in the floorplanning stage, after placement,
as well as postrouting. It helps fix power-grid problems early in the flow, rather than waiting for when
the layout is mostly done and the problems are much more difficult to correct. ERA will take
whatever blocks, macros, standard cells, and routing that is available to help improve the accuracy
of early rail analysis. The following diagram illustrates the ERA flow:

September 2022 1391 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

 The following steps describe the ERA flow:

Grid Completion: The ERA engine checks if the followpin routing has been done or not in the
design; if not, it creates virtual followpin automatically and drops required virtual vias. Missing
virtual vias between stripes are also dropped by default at this stage.

Power Estimation and User-Defined Distribution: In the ERA static flow, you can specify
total power and the ERA power engine will distribute that internally to all placed and unplaced
instances in the design. For unplaced instances, current regions are created. You can also
selectively assign a specific power value to placed macros, cell or instances using an ASCII
file. User-specified power can be enforced for unplaced instances using an explicit current
regions file.

Static IRdrop and EM Analysis: Run static IRdrop and electromigration analysis.

Dynamic Analysis: Run dynamic IRdrop analysis. For this, you need to specify explicit
dynamic current region file or the dynamic instance current file.

ERA uses Voltus extractor and rail analysis engines. They can be used during power-grid
prototyping to analyze power, IRdrop and power-grid integrity. This section includes:

Early Rail Analysis Key Features

Setting up and Running Early Rail Analysis

September 2022 1392 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Early Rail Analysis Key Features
Static and Dynamic Rail analysis during the floorplanning stage using grid based interactive
current specification use-model. Static and Dynamic Rail Analysis requires the VTS-L/VTS-
XL license. Static Power Analysis can be run using the Innovus license.

Interactive current specification use-model to enable static and dynamic rail analysis at the
floor-planning stage

Power and rail analysis during the placement stage using ERA driven virtual follow pin
routing and virtual via for grid completion.

Automatic current region generation accounting for unplaced instance in the design, and
automatic distribution of power among placed instances in the design.

Support of user-specified explicit power value at macro, cell and instance level in an ASCII
file format, hence, enabling flexible power distribution.

PGV library is optional. If not provided, it is generated on the fly using the specified technology
file.

Static Power and Rail Analysis without PGV can also be run using the Innovus license.

Power and rail analysis on a placed and routed database.

Early power-switch analysis to refine power-switch placement.

Support for multi-CPU in static/dynamic power and rail analysis, and static and dynamic
power and rail analysis. For information on how to set up multi-CPU analysis, see the
"Distributed Processing" chapter in Voltus User Guide.

Support for the unplaced flow during static and dynamic analysis.

What-if shape analysis to guide power-grid optimization.

Support for native power-up analysis.

Setting up and Running Early Rail Analysis
To setup and run early rail analysis, perform the following steps.

1. Select Power - Rail Analysis - Setup Rail Analysis Mode menu. The following form appears:

September 2022 1393 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

September 2022 1394 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Note: The content of the two tabs of this form change depending on the selection of the
analysis method.

2. Set Analysis Stage as Early .

3. Set Analysis Method as Static or Dynamic.
By default, XD is selected as the Accuracy mode. HD is disabled for early rail analysis.

4. Specify Power-Grid Libraries or Extraction Tech File.
See the "Power-Grid Library Generation" chapter of the Voltus User Guide for details on
generating power-grid libraries.

5. If CPF is loaded, select Analysis View.

6. If it is a power gated design, optionally specify Switched off Nets.

7. For optional Electromigration analysis, specify either EM Analysis Models or Process EM
rules in Extraction Tech File.

Note: If you do not specify an Electromigration model file, the software will select the
Electromigration models from the Quantus technology file. You can use the command
set_rail_analysis_mode -em_models file to override these settings.

8. Select the Advanced tab of the Set Rail Analysis Mode form. The following form appears:

September 2022 1395 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

9. You can specify one or more of the following advanced options:

Generate Boundary Voltage File if using hierarchical view for the block

GDS for Flip-chip RDL or Full-chip GDS if needed.
Note: ERA would work only when virtual connections between GDS and DEF are not
required.

Specify Current Region to specify a file that includes a list of regions and the amount of
current to be distributed within them for the power-grid. When you select this checkbox,
the Create button gets enabled that lets you create current regions for Static and
Dynamic analysis. See "Creating Regions for Static and Dynamic Analysis".

Power Gate File to specify a power-gate file to analyze nets which are power-gated. The
power-gate file syntax is as follows:
CELL cellname SUPPLY unswitched_net_name SWITCHED switched_net_name

RON r_value IDSAT idsat_value ILEAK ileak_value

September 2022 1396 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

CELL cellname - the name of the cell.
SUPPY unswitched_net_name - the name of the unswitched power net. This is the pin that
the leakage current is attached to if the power gate is in the off state.
SWITCHED switched_net_name - the name of the switched power net.
RON r_value - the on-resistance value in ohms.
IDSAT idsat_value - the value of the saturation current in milliamps.
ILEAK ileak_value - the value of the leakage current in milliamps.
If this file is specified, it is expected that the power-switches are fully connected to the
appropriate alwaysOn and switched power nets. ERA will extract the power-grid and
perform steady state IRdrop analysis. For information about power gate analysis, see
"Power Gate (Switch) Analysis" in the Voltus User Guide.

Layer Mapping File to specify a layer map file to generate a techonly view. If a layer map
file is not provided, it would be automatically inferred by the tool.

Skip Layer (Pair)s for Virtual Via Insertion to skip via insertion between stripes and non-
stripes, on the specified LEF layer pairs.

Skip Virtual Via Insertion for Shape Type to skip a given via type. By default, ERA
generates all virtual via layer types.
whatif - vias are virtual vias that have connectivity to user-defined what if shapes.
def - vias are virtual vias between two metal shapes defined in DEF.
all - will skip all virtual via generation.

Current Distribution Layer for Unplaced Instances to specify the layer name for
distributing unplaced current in the early rail analysis mode.

Enable Current Distribution for to control the behavior of era current distribution.
set_power_data -format area based power, or -era_current_region_file need to be
specified for ERA current distribution to work. Placed instanced without uti or ascii
based power can also be considered for era current distribution.
Unplaced: Enable current distribution only for unplaced instances. If set_power_data -
format area based power is specified, -era_current_distribution_layer will be
required.
Placed: Enable current distribution for placed instances without any power specified.
All: Both unplaced and placed instances without power specified; will have ERA
current.
None: Disable ERA current distribution.

September 2022 1397 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Virtual Followpin Insertion to generate virtual followpins. The extended followpins will
create followpins that extend from one stripe to another. The standard followpins may
extend to previous stripe but does not reach the next stripe.

Current Distribution Factor for Placed Macros to control the current distribution factors for
the placed instances, hence power allocated for area-based power calculation. For
example, if you specify 0.5, the software will assume all placed instances to be 50% of
its actual size and distribute current accordingly.

Enable Manufacturing Effects to honor DFM effects.

10. Click OK to save and apply the early rail analysis setup information.

11. Select Power - Rail Analysis - Run Rail Analysis to run early rail analysis.
The following form appears:

12. Select Net-Based or Domain-Based Analysis. Domain Name is populated automatically if
using CPF.

September 2022 1398 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Power and Ground net names are populated automatically if using CPF, otherwise these will
need to be entered.

13. Specify power data type and information.

14. Specify power pads. This can be DEF pins, I/O pad cell file, X/Y location file, or if doing a
hierarchical analysis, a boundary voltage file.

15. Specify package information if available. This includes a spice subckt and a mapping file to
power pads.

16. Specify results directory.

17. Click OK to run early rail analysis.
Upon successful completion of the analysis, the Power & Rail Results form appears. In
the Basic tab, the State Directory field is automatically filled with the most recent analysis run.
The automatic run naming convention: is VSS_25C_avg_2 (VSS rail analysis, at 25 degrees
Celsius, average or static power, run number 2). Running VSS analysis again will increment 2
to 3.

Creating Regions for Static and Dynamic Analysis

You can create regions for Static and Dynamic analysis.

When you set Analysis Method as Static, the following form appears:

September 2022 1399 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

When you set Analysis Method as Dynamic, the following form appears:

You can do the following:

1. Draw Current Regions to create a Current Region List.
Use this when you have an area that has not been placed, but you would like to have its
power consumption influence the overall grid. You can specify the coordinates of the region,

September 2022 1400 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

the layer, and the current.

Power Domain lets you specify a power domain based current region. You can
use the Power Domain field to select a power domain name and click Get
Coordinates to automatically get the coordinates of the power domain. When the
power domain is selected, the label name of the current region will be the power
domain name and the boundary box coordinates will be the power domain
boundary, and you cannot modify these fields.

Label specifies a name for the region. If not specified, Voltus will provide a name
(region1, region2...). The Draw button lets you draw a window where you want
the current to be applied. If you click Draw, and then select a box in the main
window, the coordinate of this box will be automatically populated in x1 y1 x2 y2.
Use the left mouse button to draw the box.
x1, y1, x2, and y2 specifies a rectangular region that the current will be
distributed within.

Rectilinear specifies the rectilinear current region that the current will be
distributed within. You can specify a rectilinear box to add a current region. The
rectilinear box enables you to specify multiple x,y points to add current regions in
the areas that are not rectangular in shape. To draw the rectilinear box, use the
left mouse button and select multiple points. Use the `Esc' key to the last point of
the rectilinear box to finish and capture the box co-ordinates.
Note: In the static mode, ERA splits the rectilinear region into several rectangular
regions and distributes current to the rectangular regions based on the area.
Current in rectangular region = Area of the rectangle / Area of the rectilinear

Layer specifies the metal layer that the current sink will be placed on.

Static Current specifies the current to be attached in the window.

For dynamic current regions, the PWL waveform is specified in time (ns) and
current (mA) pairs. In addition to the dynamic current, you can specify loading
capacitance and cell intrinsic capacitance which impacts dynamic IRdrop. If this
information is not available for the region, you can click the Estimate button to
populate these values automatically. These capacitance values are derived by
calculating loading capacitance of the design using wire-load models and using
percentage ratio of loading capacitance to estimate cell intrinsic capacitance in
the region.
Note: The effect of loading capacitance depends upon on-resistance through
which it is connected to the global power-grid. Generally, this on-resistance value

September 2022 1401 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

is high and limits the effectiveness of loading capacitance. Therefore,
specification of loading capacitance is optional and when specified, you must
also specify the on-resistance value.

2. Click the Add button to add the region to the Current Region List section. The Delete button
will delete a selected item on the list. If you click View after selecting an item in the list, the
selected region will be displayed in the main window.
You can create multiple current regions and add it to the Current Region List section.

3. Click Save to save the current regions to a file (For example, vss.curRegion).

4. Click OK to close the Create Current Region window.

Viewing Early Rail Analysis Results
Selecting Power - Report - Power & Rail Result menu item will bring up the following form:

Power & Rail Results

September 2022 1402 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

You can use this form to browse to other analysis runs and load them as well to view early analysis
results and compare runs. You can specify the type of plot (Rail Analysis, Power Analysis, or
Capacitance) and then select the specific plot type. An instance power (ip), load capacitance (load),
and irDrop (ir) plot are shown in Instance Power Plot , Load Capacitance Plot, and irDrop Plot,
respectively.

For Early Rail Analysis, the viewing of Power & Rail Results is the same as that used for Sign-off

September 2022 1403 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Analysis. For additional information on viewing the plots, see "Static Power Analysis Plots" and
"Static Rail Analysis plotting steps" in the Voltus User Guide.

Instance Power Plot

Load Capacitance Plot

September 2022 1404 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

irDrop Plot

September 2022 1405 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Signoff-Rail Analysis
For details on running Signoff Power and Rail Analysis within Innovus, see Voltus User Guide
chapters 5-12.

TCL Command
An example TCL command for Floorplan stage design grid analysis with current regions is as
follows:

read_lib -lef design/full.lef

read_verilog design/test.v.gz

set_top_module test

September 2022 1406 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

read_def design/full.def

set_rail_analysis_mode -method era_static -accuracy xd -extraction_tech_file

design/tech.tch -era_current_region_file design/current_region

set_pg_nets -net VDD -voltage 1.1 -threshold 1.067

set_power_pads -net VDD -format xy -file pads/vdd.pp

analyze_rail -type net -results_directory early_vdd VDD

An example TCL command for Power Gate Design with area based power distribution is as follows:

read_design -physical_data design.dat CHIP

set_pg_nets -net VDD -voltage 1.1 -threshold 0.9

set_power_pads -net VDD -format xy -file design/vdd.pad

set_power_data -bias_voltage 1.2 -power 1.2 -format area

set_rail_analysis_mode -method era_static -accuracy xd -extraction_tech_file

design/tech.tech -era_power_gate_file design/power_gate_file

analyze_rail -type net VDD

An example TCL command for MSMV dynamic analysis is as follows:

read_verilog design/test.v.gz

set_top_module test

read_def design/full.def

set_pg_nets -net VSS -voltage 0 -threshold 0.18

set_pg_nets -net VDDm -voltage 0.84 -threshold 0.756

set_pg_nets -net VDD -voltage 0.84 -threshold 0.756

set_power_pads -net VDD -format xy -file design/vdd.pp

set_power_pads -net VDDm -format xy -file design/vddm.pp

set_power_pads -net VSS -format xy -file design/vss.pp

set_power_data -format current { instance_current_files/dynamic_VSS.ptiavg

instance_current_files/dynamic_VDD.ptiavg instance_current_files/dynamic_VDDm.ptiavg

instance_current_files/dynamic_VDDlu.ptiavg

instance_current_files/dynamic_VDDau.ptiavg}

set_rail_analysis_mode -method era_dynamic -accuracy xd -power_grid_library {

stdcells_accurate/accurate_stdcells.cl lpcells_accurate/accurate_stdcells.cl

memories_accurate/MEM.cl } -off_rails VDDau

set_rail_analysis_domain -name PD -pwrnets {VDD VDDm} -gndnets VSS

analyze_rail -type domain PD

Innovus and Voltus Menu Differences

September 2022 1407 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Form Innovus Menu Voltus Menu

Set Power Analysis Mode Power - Power
Analysis

Power & Rail

Run Power Analysis Power - Power
Analysis

Power & Rail

Set PG Library Mode Power - Rail
Analysis

 Power & Rail

Generate PG Library Power - Rail
Analysis

 Power & Rail

Setup Rail Analysis Mode Power - Rail
Analysis

Power & Rail

Analyze ESD Power - Rail
Analysis

Power & Rail

Optimize ESD Power - Rail
Analysis

Power & Rail

Set Power Network
Optimization Mode

Power - Rail
Analysis

Power & Rail

Run Rail Analysis Power - Rail
Analysis

Power & Rail

Run Resistance Analysis Power - Rail
Analysis

Power & Rail

PowerGrid Library Report Power - Report Power & Rail - Textual
Reports

Power Report Power - Report Power & Rail - Textual Report

Power Histograms Power - Report Power & Rail Analysis -
Histograms

Power & Rail Results Power - Report Power & Rail

Dynamic Movies Power - Report Power & Rail - Dynamic
Results

September 2022 1408 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Dynamic Waveforms Power - Report Power & Rail - Dynamic
Results

September 2022 1409 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Power Analysis and Reports
Static Power Analysis Overview

Vector-based Average Power Calculation

Propagation-based average power calculation

Static Power Analysis Flow

Static Power Reports

Static Power Analysis Plots

Viewing and Debugging Static Plots

Interactive Queries of Power Data

Static Power Histograms and Pie-charts

September 2022 1410 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power and Rail Analysis

Static Power Analysis Overview

Type of power (internal, leakage, switching)

Static Average Power is consumed in three basic ways in integrated circuits:

1. Switching power, which is the power consumed in the charging and discharging of
interconnect capacitances. In most cases, this type of power consumption dominates because
of large drivers having to drive large capacitive loads.

P = 0.5*CLV2 F*A

where CL is the output capacitive loading, V is the voltage, F is frequency, and A is the

average switching activity either from VCD or computed.

2. Internal Power, which is the power consumed in charging and discharging of interconnect and
device capacitances internal to cell. Internal power can be divided into two parts:

Pin Power

Arc Power
Internal power is calculated by using the internal power tables provided in the .lib, which
capture the characterized internal power over a range of input slew rates and external
loading. The tables reflect the combination of both the internal switching and internal
feedthough power. Tables are generated as a result of spice simulation during library
characterization. If k-factor power scaling parameters (for process, temperature, and
voltage) are specified in the .lib file, the power engine will take them into consideration
when calculating internal power (Note: timing related scaling factors are not handled by
the power engine).

3. Leakage power, which is the power consumed by devices when they are not switching. It
includes state-dependent leakage, which is leakage that depends on the state of the gate, that
is, whether a transistor is on or off. This value comes from the .lib file if it exists. If k-factor
power scaling parameters (for process, temperature, and voltage) are specified in the .lib
file, the power engine will take them into consideration when calculating leakage power
(Note: timing related scaling factors are not handled by the power engine).

September 2022 1411 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Definition of activity, duty cycle, and transition density

Activity means the probability of all signal nets in design switching from 0 ->1 or 1 -> 0 in one clock
cycle.

For instance, if an activity of net or instance is 0.1 then the power engine assumes that net or
instance will switch from 0->1 or 1->0 once every ten clock cycles.

For the above diagram,
Activity = (Number of (0->1 or 1->0) transitions / Number of clock cycles) = 2/5 = 0.4

Duty Cycle means the probability that a signal net has the value of 1.

For instance, if signal a net is 1 for 2ns in total simulation time of 10ns then duty cycle of net is 0.2.
The duty cycle of the signal in the previous diagram is 0.5 (2.5/5) However, if a signal is Z or X for
some time and 0 for rest of time then duty cycle of signal is 0.

Transition Density means number of times signal toggle from 0->1 or 1->0 in 1 second.

For the previous diagram and assuming one clock cycle is 4ns, then Transition Density = 1e+08
(2/20ns)

How PM calculates internal, leakage and switching power including

state dependency

The power calculation methods employed inside the power engine are split into 4 components:

1. State dependent internal power associated with input pins

2. State dependent internal power associated with output pins

3. State dependent leakage power

4. Switching Power due to charging or discharging the net loading on the output pins.

September 2022 1412 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

When looking at the output power numbers generated by the power engine, the following
information is reported in the power file for each instance in the design:

Instance Name

Internal Power = sum of (1) and (2) above.

Switching Power = (4) above.

Total Power

Leakage Power = (3) above.

Cell-type Name

The ordering was chosen to be consistent with previous tools used in the industry. The following
sections describe how the power engine calculates the power for each instance based on each of
the above 4 components.

State Dependent Internal Power (input pins)

Inputs can have several sets of power table pairs, each associated with a `when' clause that
specifies the logical condition of inputs that the tables apply to. A call to the table lookup function
utilizes a procedure that returns a weighted sum of the energies based on the `when' clause
functions and the signal activity.The weighting of energies is similar to the propagation of static
probabilities (duty cycles):

The procedure for the weight calculation is similar. However one complication of the energy
weighting is that the coverage of the `when' clauses might not be complete. For example, one set of
state dependent tables includes only two `when' clauses:

when : "A & !B";

when : "!A & B";

This set of clauses does not account for cases where A and B are either both high or both low. In
normal operation, neither of these conditions may appear, so the incomplete coverage may not
matter. However, the transition density data is static and lacks signal correlation; the conditions not
included in the `when' clauses should be accounted for, or else the internal power will be
underestimated. Scaling can resolve this. But it turns out that the most common situation for
incomplete clauses is in memories, where assuming the energy to be 0 is the more correct thing to
do. As a result, the power engine assumes energy of 0 for missing clauses.

September 2022 1413 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Implementation for state-based internal power on the inputs is straightforward. The implementation
for the internal power contribution from a single input port is:

For multiple input ports, each port has a set of energy tables, instead of just one pair, and each pair
includes a `when' clause, from which a probability can be calculated:

As an example, consider a port with the following data, and with P(A) = 0.25 and P(B) = 0.50:

The calculation of energy for a single transition on this input would be:

State Dependent Arc-based Internal Power (output pins)

Output internal energy is a weighted sum of values extracted from internal power tables that are
associated with timing arcs. These tables are indexed by input transition time and output load
capacitance. The values for each arc are weighted by the transition density of the corresponding
inputs. The resulting energy value is multiplied by the transition density of the output pin to calculate
the power.

When state dependent arc-based (output) internal power tables are present, if two or more tables
apply to the same arc, they are weighted by the `when' clauses in the same manner as described in
the previous section for "state dependent internal power (input pins)". As an example, we will
calculate the output internal power for an AND gate with inputs A and B and output Y. The goal is to
calculate the internal power contributed by the output Y. This example does not include any state-

Index When Rise Energy Fall Energy

0 !A&B 3.0nJ 4.1nJ

1 A&!B 3.2nJ 5.0nJ

2 !A&!B 7.0nJ 9.0nJ

September 2022 1414 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

dependency.

The first step is to determine the output load capacitance on Y. The output load is the sum of the
parasitic net capacitance on the net connected to the Y pin of the instance, plus the pin
capacitances of all of the input pins that the net drives. In the example shown, this value is
0.0085pF + 0.03pF = 0.0385pF. Convert this value as required to the units specified in the .lib file
for capacitive loads:

capacitive_load_unit (1,pf);

The next step is to convert the input transition time for each input. The transition time provided is
assumed to be extrapolated to 0-100. To convert it, find the bounds in the .lib file:

slew_lower_threshold_pct_fall : 10.0;

slew_upper_threshold_pct_fall : 90.0;

slew_lower_threshold_pct_rise : 10.0;

slew_upper_threshold_pct_rise : 90.0;

For this case, the time needs to be converted to 10-90. Assuming that in our example that the given
transition time for both of the inputs is 0.5ns, the result would be:

If there are no slew threshold options set in the .lib file, or they are commented out, the default is
20-80.

The resulting time should be converted, if necessary, to the time units provided in the .lib:

time_unit : "1ns";

The next step is to associate the timing arcs with the tables in the .lib file. An AND gate has eight
arcs, each corresponding to a change in output logic level in response to a change in an input logic
level:

September 2022 1415 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Normally, these eight arcs are represented by four tables in the .lib file. This is the correspondence.

The energy for a transition has two components, rise (EY,rise) and fall (EY,fall). These two values
are averaged, because output Y rises as often as it falls, for the total energy for one transition. Note
that in the following equations, the rise and fall contributions are averaged as well for the same
reason.

In the above equations, D(A) is the transition density on input A, and E(Y*A*) is the energy value
looked up from the corresponding table as described above.

For this example, the energy is:

September 2022 1416 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

The power is:

State Dependent Leakage Power

As the leakage component of power dissipation increases, accurate estimation of it becomes more
and more critical. Originally, the leakage component of a cell's power dissipation was modeled in
Liberty libraries as a single number. However, nowadays it is more common to associate different
leakage power values with different input combination ("state-dependence").

The method to compute leakage power is as follows. Extract the state-dependent leakage data from
a cell's Liberty .lib description and compute a weighted sum of the leakage values based on the
instance's input probabilities.

The state-dependence is expressed as a set of logical functions describing various input
conditions. This set of functions may or may not be complete (e.g. covering all possible input
combinations). In addition, a generic leakage power value may also be provided. The power engine
covers all of the possible combinations of available data.

State-dependent leakage data appears in a Liberty library in the following form:

cell_leakage_power : 14.335 ;

leakage_power() {

when : "!A1 !A2" ;

value : 9.120 ;

}

leakage_power() {

September 2022 1417 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

when : "!A1 A2" ;

value : 16.467 ;

}

leakage_power() {

when : "A1 !A2" ;

value : 12.364 ;

}

leakage_power() {

when : "A1 A2" ;

value : 19.390 ;

}

Note that the set of `when' clauses are complete; all possible combinations of the inputs A1 and A2
are accounted for. Also note that there is a generic leakage power value that is not associated with
any condition.

We assume the following combinations of input data for our approach:

1. Complete clause set with or without generic leakage value

2. Incomplete clause set with generic leakage value

3. Incomplete clause set without generic leakage value

4. Over-complete clause set with generic leakage value (error condition)

5. Over-complete clause set without generic leakage value (error condition)

If the clause set is complete, we expect the sum of the probabilities of all of the clauses to add up to
1.0. Verification of a complete clause set requires logical analysis of the statements. As extensive
library verification is not within the functional requirements of the power engine, we base our
assessment of the clause set's completeness by the sum of the probabilities. If this sum is equal to
1.0, the set is complete. If the sum is less than 1.0, we will assume the set is incomplete. If the sum
is greater than 1.0 (which would indicate over-coverage), we assume that there is an error in the
library data. In order to decide which of the above five conditions we have, we need two pieces of
information: whether or not we have a generic leakage value and the sum of the clause
probabilities.

We find the probability sum as follows:

September 2022 1418 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Then we use the following equations and procedures to detect and calculate the five input
conditions:

1. Complete clause set with or without generic leakage value
This condition is assumed if probTotal is equal to 1.0. For this case we calculate the weighted
sum of all available clauses:

2. Incomplete clause set with generic leakage value
For this case, we use the generic leakage value to "fill in" the missing clauses. We do this by
weighting the generic leakage value with 1.0 minus probTotal.
leakagePower = leakSum + (cell_when_generic_value () * (1.0 -probTotal))

3. Incomplete clause set without generic leakage value
For this case we simply scale up the leakSum value to accommodate the missing clauses.
We accomplish this by dividing it by probTotal.

4. Over-complete clause set with generic leakage value (error condition)
This case occurs when probTotal is greater than one, and there is a generic leakage value.
For this case, we simply revert to the generic value (a warning is also printed to alert the user
that there is a possible problem with the library).

5. Over-complete clause set without generic leakage value (error condition)
Without a generic leakage value, we must use the incorrect leakage data as best as we can.
We do this by calculating leakSum and scaling it down. It uses the same equation as
condition 3. (A warning is also be printed).

Switching Power

Switching power is calculated using the basic equation:

SwitchingPower = CAV2F

Where:

September 2022 1419 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

C = Loading net capacitance (SPEF/DSPF or a default load value)
V = Voltage
A = Nodal activity
F = Operating frequency

The product of "A*F" is the transition density (D) calculated during the activity propagation inside
the power engine. Since the calculated transition density includes both rising and falling transitions,
the equation is modified for a given power rail as:

SwitchingPower = 1/2CV2D

Where a net is driven by multiple outputs, a good example is a clock mesh driven by parallel clock
drivers, the capacitance is split or divided amongst the output drivers.

Vector-based Average Power Calculation
The vector-driven approach uses the VCD or TCF output of a logic simulator to obtain the number
of transitions for each net. PM requires gate-level VCD or TCF with good functional coverage for
accurate power calculation results.

You can use VCD or TCF information to calculate accurate power consumption figures, if the
following conditions apply:

Gate-level simulation is possible at the full-chip level.

Gate-level simulation provides sufficient functional coverage for the design.

The vectors include those that cause the highest power consumption.

The power engine calculates the number of transitions from 0<->1, 0/1<->X and 0/1<->Z. The 0<->1
transition is counted as 1, 0/1 <-> X transitions are counted as 0.5 by default and 0/1<->Z transitions
are counted as 0.25 by default. You can use the set_power_analysis_mode -x_transition_factor
and -z_transition_factor options for changing the default value of 0/1<->X or 0/1 <->Z transitions.
The power engine also calculates the duty cycle of each net for state dependent internal or leakage
power calculation as described previously. The power engine also takes clock definition from VCD
or TCF and gives higher priority to clock definition from VCD or TCF if there is discrepancy between
clock frequency in SDC or TWF and VCD or TCF.

September 2022 1420 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Propagation-based average power calculation
The power engine calculates the switching probability, as well as static state probability, of each net
in the design. The propagation based approach is vector-independent and provides coverage for all
nets in a design.

However, the accuracy depends on good starting values, that is, information about the switching
probabilities at the primary inputs in a design. Simple examples are clock and reset or enable
inputs. Obtaining an accurate prediction without information about the switching probabilities of
these special inputs is difficult, and in most cases an inaccurate prediction causes an over
estimation of the power consumption.

Activity Propagation in the power engine

Activity propagation inside the power engine can be divided into following categories.

Activity propagation through combinational cells

Activity propagation through combinational cells is easier. The power engine gets function of
combinational cell from .lib and uses the function to propagate activity through combinational
cells. The power engine also propagates duty cycle through combinational cells. The only tricky
part is when there are combinational loops inside design. In this case the power engine seeds
activity at input to break combinational loop. The seeded activity is based upon internal heuristic of
power engine and takes into account activity of other neighboring pins.

Activity propagation through sequential Cells

Activity Propagation through sequential cell is based upon activity of input pin, set or reset pin, and
scan enable pin. However most of sequential cells are in sequential loops like state machines
which make activity propagation through sequential cell based on heuristics by seeding activity at
input of sequential cell. Therefore it is recommended to provide activity at outputs of sequential
cells. With the power engine you can use either the set_default_switching_activity command to
specify the average activity on sequential cells or use RTL, VCD, or TCF for seeding activity at
sequential cells.

As seen in the example below, the activity at the output of the sequential cell in the loop can not be
resolved using propagation. In this case, iterating the loop to determine the activity at the output Q of
the sequential cell will result in diminishing activity towards 0. It proves that using heuristic method
to compute activity in sequential loop is an intractable problem for propagation based power

September 2022 1421 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

calculation. Therefore, in order to get good average power numbers for the design under test, user
should always specify average activity at the output of sequential cell using above mentioned
command. In addition, user can override this default activity using VCD or TCF.

Activity propagation through macros

The major component of power in macros is internal power. Internal power of macros is highly
sensitive to activity on read and writes signals. Small change in activity of read or write signal can
cause large change in internal power numbers. Therefore it is recommended that users specify
activity at the read and write signals of macros.

Activity propagation through clock network and clock gates

For accurate propagation through clock network it is important that user specifies TWF file which
has clock frequency of generated clocks as well. The activity propagation of clock through clock
gating cells depends upon activity of clock enable signal. Since clock enable is a signal net, it will
generally have low activity unless specified, which will cause lot of optimism in power calculation.
Therefore it is recommended that user should specify activity at enable of clock gating cells for
proper propagation through clock network. You can use set_default_switching_activity
command in Innovus for specifying average activity at enable signal of all clock gating cells.

September 2022 1422 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Recommended methodology for activity propagation

The above diagram explains the recommended methodology for activity propagation. The accuracy
of results increase as you specify more inputs to the power engine. At the very least user should
specify the average sequential activity, which is MUST for accurate activity propagation.

Here are some of examples which depict how well the above methodology works:

 The table clearly shows that if you specify just activity on inputs then the result vary from -25% from
+45% whereas if you specify average sequential activity of design then results are pessimistic by
25-30%, which is expected because combinational activity propagation is meant to be pessimistic.

Here are another two examples which show how well results correlate after specifying activity at
Macros and clock gating cells.

Testcase 5:

Expected power = ~375mW

September 2022 1423 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Power after specifying default input activity = 225mW

Power after specifying default input activity + macro activity = 254mW

Power after specifying default input activity + macro activity + clock gating activity = 370mW

Testcase 6:

Expected power = 10W

Power after specifying default input activity = 5.5W

Power after specifying clock gating activity + Macro activity = 10.8W

Static Power Analysis Flow
To perform static analysis one must setup the analysis mode and then run power analysis.

Set Power Analysis Mode

To setup the static power analysis mode do the following steps:

1. Select Power - Power Analysis - Setup form.
The following form appears:

September 2022 1424 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

2. Specify Analysis Method as Static

3. Specify a CPF Analysis View or Corner to use for power calculation

4. Specify Switched Off Net if it is a power-gated design

5. Specify Power-grid library

6. Select OK or Apply

Run Power Analysis

1. Select Power - Power Analysis - Run.
The following form appears:

September 2022 1425 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

2. Select Basic tab if not already selected.

3. Specify Primary Input Activity (recommended)

4. Specify Dominant Clock Frequency

5. Specify Flop Activity (recommended)

6. Specify Clock Gate Enable Activity (recommended)

7. Specify the VCD file (full or partial), if available.

a. Select VCD.

b. Specify the appropriate values in the four fields.

c. Select the Add button.

d. Repeat until all needed scopes are covered.

8. Select the Activity tab.
The following form appears:

September 2022 1426 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

9. Global activity can be assigned for specific parts of the hierarchy.

a. Select Global Activity and specify a value.

b. Select Hierarchy if needed and select the Add button. Continue until all necessary
hierarchy global activities are defined.

10. Specify TCF or SAF file (full or partial), if available.

a. Select Activity or Transition Density, depending on how you want to specify the values.

b. Select Net, Pin, or Port to specify the type of activity that you want to specify.

c. Specify a Duty or Period, if needed.

d. Select the Add Button. Continue until all activities are specified.

11. Select the Power tab.
The following form appears:

September 2022 1427 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

12. Specify Custom Power for Cell, Instance Name if available.

13. Select Add and repeat until done.

14. Select OK or Apply.

TCL Command:

The example TCL command for static power calculation is as follows:

set_power_analysis_mode -method static -corner max -off_pg_nets VDDau

 -create_binary_db true -write_static_currents true

set_default_switching_activity -input_activity 0.2 -period 10.0 -seq_activity 0.1

read_activity_file -format tcf design.tcf

set_default_switching_activity -global_activity 0.0 -hier top/block

set_switching_activity -activity 0 -net reset

set_power -type cell BUFX2MTL 0.010w

set_power_output_dir static_power_max

report_power -outfile design.rpt

Note: If you do not have a SPEF file, you can use wire load models for load specification which can
then be used for static power analysis. The commands to specify wire load models are :

September 2022 1428 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Note: If you have the following commands,

set_power_output_dir static_power_max

report_power -outfile design.rpt

then design.rpt will be dumped to static_power_max directory.

If you explicitly specify a directory in -outfile option such as below,
report_power -outfile my_dir/design.rpt

then design.rpt is deposited to my_dir directory and the path setting by set_power_output_dir will
be ignored.

MMMC mode default views

If set to MMMC mode, it is recommended to specify the view by one of the below commands,

set_power_analysis_mode -analysis_view viewname

or

report_power -view viewname

If you do not, then the default power view is the first setup or hold view depending on the
set_analysis_mode -checkType command.

Power analysis runs on only one view at a time, and therefore, the argument to the -view parameter
must specify only one view. If you give multiple view names to the -view parameter of report_power
or you do not activate the view using set_analysis_mode -checkType, a warning message will be
displayed.

For multiple views, you need to have multiple runs, one for each view. Also, you need to make the
view active in order to do power analysis.

If specified as shown below,

set_analysis_view -setup {view1 view2} -hold {view3 view4}

read_spef -rc_corner best design.spef

set_analysis_mode -checkType setup

report_power

then the power view in this case is the first setup view which is view1.The default for -checkType is
setup.

If specified as shown in the next example,

September 2022 1429 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

set_analysis_view -setup {view1 view2} -hold {view3 view4}

read_spef -rc_corner best design.spef

set_analysis_mode -checkType hold

report_power

then the power view in this case is the first hold view which is view3.

Note: When CPF or MMMC views are loaded, SPEFs must be read after the set_analysis_view
command as shown in the above examples.

If multiple command types specify the view, the priority is given as follows (from highest to lowest):
report_power, set_power_analysis_mode, set_analysis_mode

For additional MMMC details see the "Configuring the Setup for Multi-Mode Multi-Corner Analysis"
section in the Importing and Exporting Designs chapter of the user guide.

Static Power Reports
The incremental power reports can be generated using Power - Report - Power which will bring up
the form shown below. Select the items you want to report and Apply.

September 2022 1430 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

TCL Command:

TCL command for generating the incremental report is shown below.

report_power -clock_network all -outfile clock.rpt

report_power -instances inst1

report_power -cell CKBUF

report_power -cell_type all

September 2022 1431 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

report_power -nworst 10

Static Power Analysis Plots
The calculated static power can be debugged in the context of physical layout using interactive
power analysis plots. To view the static plots you take the steps as follows:.

1. Select Power - Report - Power & Rail Result.
The Power & Rail Plots form appears. This form is the main window for displaying the power
analysis results.

September 2022 1432 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

2. If power is calculated during the session, select the Power radio button and select a power
analysis type from the drop-down list. See Viewing and Debugging Static Plots for details of
the various plot types and how they can be accessed.
The following figure illustrates the design layout overlaid with power information.

September 2022 1433 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

TCL Command:

Some TCL commands for viewing power analysis plots:

read_power_rail_results -power_db power.db

set_power_rail_display -plot ip_s

set_power_rail_display -plot freq

 Viewing and Debugging Static Plots
Static Power can be read in two ways:

From calculated power stored in memory during the session

From power.db generated during static power calculation

The following static power plots can be displayed in the GUI:

Total Power - ip
Total power plots show power distribution of all the instances in the design. It can be used to
debug regions of high IRdrop in the design

September 2022 1434 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Internal Power - ip_i
Internal power is a component of total power and displayed for all instances in the design. It
can be used to debug instances that consume unexpectedly a large total power. The internal
power is derived from .lib file.

Switching Power - ip_s
Switching power is a component of total power and displayed for all instances in the design.
The switching power plot can be used in conjunction with transition density and loading
capacitance plots to understand the switching profile for the design (i.e. high activity and
loading capacitance for the instance translates to high switching power).

Leakage Power - ip_l
Leakage power is a component of total power and displayed for all instances in the design.
The leakage power plot can be used to debug high leakage power instances.

Frequency Domain - freq
The frequency domain plot displays the operating frequency of all instances in the design.
The instances operating with multiple clock domains are displayed using the fastest clock
frequency for the instance. The power is directly proportional to the frequency, so this plot can
be used to debug instances with high power consumption.

Transition Density - td
Transition density is the product of frequency and activity. It is plotted for all instances in the
design. This plot can be used to debug instances with high power consumption and regions of
high activity.
Transition density is plotted for the off domains in power-gated design. However, switching
power plot correctly displays that no power is calculated for the off domains

Loading Capacitance - load
Loading capacitance is directly proportional to the power. It is plotted for all instances in the
design. This plot can be used to debug instances that drive large output capacitance resulting
in high power consumption.

Slack - slack
Slack for the instance is derived by Common Timing Engine or external Timing Window File.
This plot is primarily used to identify time critical instances and can be useful when performing
timing aware decap optimization and IRdrop aware timing analysis.

September 2022 1435 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Interactive Queries of Power Data
The power data can be queried interactively in GUI by selecting an instance using left mouse button
and pressing "Q" on keyboard. The Attribute Viewer displays total, internal, switching and leakage
power for the instance. In addition it lists frequency domain, transition density and associated power
domains of the instance.

Static Power Histograms and Pie-charts
The calculated static power can be debugged using pie-charts and histograms. To see the
histograms, perform the following steps:

1. Select Power - Report - Power Histogram menu.
The Power Debug form appears.

2. Double click on the hierarchy model (at the right of the pie chart) to explode its power
distribution. Use up level to go up one level.

3. Selecting the Histograms tab will bring up various histograms that you can view. After this
form appears, you can select other tabs to view the histograms with various types of data.
You can search for net(s) in the By Net, Net Toggle, and Net Probability tabs using wildcard
entries (*) and filter any net(s) to display in the histogram when debugging static power. This
displays 50 nets at a time, starting with the first 50 nets. The net that you select in the
histogram gets highlighted in the table, and similarly, the net that you select in the table gets
highlighted in the histogram.
Information about the selected net is displayed across all the three tabs - By Net, Net Toggle,
and Net Probability.

September 2022 1436 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Analyzing and Repairing Crosstalk
Overview

Inputs for SI Analysis

Setting Up Innovus for SI Analysis

RC Extraction Settings

Noise Analysis Settings

Static Timing Analysis (STA) Settings

Advanced Settings for SI Analysis

Example of Setting Up Innovus for SI Analysis

Preventing Crosstalk Violations

Fixing Crosstalk Violations

Data Preparation

Using optDesign to Fix Setup Violations with Effects

Using RC Data Generated by an External Tool for SI Fixing

Using SDF Data Generated by an External Tool for SI Fixing

Using optDesign to Fix Hold Violations with Crosstalk Effects

Using optDesign to Fix Transition Time Violations with Crosstalk Effects

Performing XILM-Based SI Analysis and Fixing

September 2022 1437 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Power Analysis and Reports

Overview
Crosstalk is the undesired electromagnetic coupling between signal lines that causes functional
failures and delay variation. The effects of crosstalk might slow down or speed up the delay
depending on the transition direction of the two coupling nets.

The Innovus™ Implementation System supports signal integrity (SI) operations that include
crosstalk prevention during detail routing and analysis and repair afterwards. The crosstalk repair
features all optimization techniques currently used for regular base timing postRoute optimization.

Inputs for SI Analysis
The design input files required are the same as needed for regular base postRoute timing
optimization:

Netlist

SDC (timing information)

Routed Innovus database or DEF file (placement and routing information)

LEF file (physical library)

XILM data (for hierarchical designs)

Liberty library (.lib)

Innovus extended capacitance table file

Quantus QRC standalone extraction technology file and library (optional)

If available you can also supply the following which will be used by the Advanced Analysis Engine
(AAE) timing analysis tool for extra accuracy:

.cdB noise library

Setting Up Innovus for SI Analysis
RC Extraction Settings

Noise Analysis Settings

Static Timing Analysis (STA) Settings

Advanced Settings for SI Analysis

September 2022 1438 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

Example of Setting Up Innovus for SI Analysis

RC Extraction Settings
The RC extraction settings for SI analysis include the extraction engine and the extraction filters.

Extraction Engine

You can use one of the following postRoute extraction engines:

PostRoute

TQuantus

Integrated Quantus QRC (IQuantus)

Standalone Quantus QRC

For 65nm technology and above, Innovus software uses PostRoute extraction for postRoute timing
and/or optimization. However, for 65nm and below technology, if Quantus QRC technology files
are available, the Innovus software uses TQuantus as the default postRoute extraction engine. For
superior correlation with signoff extraction, use of TQuantus and IQuantus extraction engine is
recommended. The IQuantus extraction engine provides the highest accuracy in implementation
flow and is particularly recommended at ECO for incremental extraction.

Note: IQuantus extraction requires a separate QRC license.

To use the TQuantus, IQuantus, or the Standalone Quantus QRC extraction engine (the latter
comes with a CPU penalty so is not usually recommended), use the following setting:

setExtractRCMode -engine postRoute -effortLevel [medium | high | signoff]

Where:

medium: Invokes the Turbo-Quantus QRC (TQuantus) extraction engine.

high: Invokes the Integrated-Quantus QRC (IQuantus) extraction engine.

signoff: Invokes the Standalone Quantus QRC extraction engine.

September 2022 1439 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setExtractRCMode.html#setExtractRCMode-setExtractRCMode

Extraction Filters

Extraction filters enable you to reduce the total number of parasitic capacitors in the design by
grounding some net to net coupling capacitance based on total net capacitance, absolute coupling
capacitance size, or relative coupling capacitance size compared to total capacitance.

Effect of RC Extraction Settings on SI Analysis

Extraction coupled capacitance filtering has a significant impact on SI analysis and run time. The
Innovus software automatically sets the default values for the RC extraction filters based on the
process node specified using the following settings:

setDesignMode -process process_node

Note: For more information on the default values assigned to the filtering parameters with respect to
the specified process node, see the setDesignMode command.

If you do not want to use the default filtering values for RC extraction, specify the following
parameters of the setExtractRCMode command to adjust the coupling capacitance filters:

-total_c_th: Specifies the threshold value (femtoFarads) that determines when the extractor
lumps a net's coupling capacitance to ground. The software grounds the coupling
capacitances for nets which have a total capacitance value less than the value specified with
this parameter.

-coupling_c_th: Specifies the threshold value that determines when the extractor lumps a
net's coupling capacitance to ground. The software decouples the coupling capacitance of
nets when the total coupling capacitance between the pair of nets is lower than the threshold
specified with this parameter.

-relative_c_th: Sets a ratio threshold value that determines when the extractor lumps a net's
coupling capacitance to ground. If the total coupling capacitance between a pair of nets is less
than the percentage (specified with this parameter) of the total capacitance of the net with the
smaller total capacitance in the pair, the coupling capacitance between these two nets will be
considered for grounding.

Guidelines for RC Extraction Settings

Use the following guidelines while setting up extraction:

Note that the detailed extraction engine is significantly faster compared to TQuantus or

September 2022 1440 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setDesignMode.html
../innovusTCR/setDesignMode.html#setDesignMode-setDesignMode
../innovusTCR/setExtractRCMode.html#setExtractRCMode-setExtractRCMode

IQuantus. However, it trades off accuracy of the extraction results for performance. TQuantus
is about 30% faster than IQuantus. TQuantus and IQuantus both support distributed
processing and their use is strongly recommended to offset longer runtime. Moreover, the
IQuantus engine takes advantage of incremental extraction capability in SI optimization flow
to reduce runtime in subsequent cycles.

Ensure that the filters that you are using in the Innovus software for SI fixing are the same as
the ones used for SI signoff analysis.

The default filtering values set by the Innovus software based on the process node (see
section Effect of RC Extraction Settings on SI Analysis) attempt to capture the most significant
effects of coupling capacitances on SI analysis. It is strongly recommended that you correlate
your RCs using these default filters (set by the Innovus software) with the RCs from your
signoff extractor.

While setting the filtering thresholds, ensure that you retain small coupling capacitors
because AAE-SI analysis lumps these together into a single virtual attacker model. Multiple
small coupling capacitors can result in a significant virtual attacker.

Exercise caution while setting low-value filters because this can increase the run time
significantly.

Noise Analysis Settings
Noise analysis settings include loading the input noise model, configuring the timing windows,
setting the delta delay threshold and specifying the virtual attacker mode.

Timing Models for SI Delay Calculation

Innovus supports NLDM, ECSM, and CCS-based Liberty (.lib) timing libraries for performing SI
delay calculation. To help improve ECSM and CCS library loading times, the dotlib files may be
converted into the ldb format by using the write_ldb command. The cdB noise libraries are also
supported.

Note: For hierarchical designs, you need XILM data. For more information on XILM-based SI
analysis, see the Top-level Timing Closure Methodologies chapter in the Innovus User Guide.

September 2022 1441 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/write_ldb.html

Timing Windows

Timing windows are used to filter out signals that are not switching simultaneously. The internal
timing engine computes the timing windows and slew rates automatically.

Delta Delay Threshold

You can set the delta delay threshold for noise-on-delay analysis by using the following command:
setSIMode -delta_delay_threshold value

If you have a separate delta delay threshold for clock nets, you can use the following command:
setSIMode -clock_delta_delay_threshold value

Note: This will override any value specified by -delta_delay_threshold parameter for the clock
nets.

Static Timing Analysis (STA) Settings
Static timing analysis (STA) settings include the timing analysis engine and the analysis conditions.

Input Timing Library

The primary input for timing analysis is a Liberty (.lib) library.

STA Engine

Analysis Conditions

The important analysis conditions for running SI analysis include:

Setting Up the OCV Analysis Mode & removing common path pessimism

Innovus provides different timing analysis modes and performs various calculations for setup
and hold checks for each mode. For SI analysis, you can set the analysis mode by using the
following command:

setAnalysisMode -analysisType onChipVariation

The OCV mode assumes that capture clock, launch clock, and data path can have maximum

September 2022 1442 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setSIMode.html#setSIMode-setSIMode
../innovusTCR/setSIMode.html#setSIMode-setSIMode
../innovusTCR/setAnalysisMode.html

or minimum delays in setup and hold analysis. This is the recommended analysis mode for
noise analysis and must be set before AAE analysis can be performed.

To remove the common path pessimism (recommended), you use the following command:
setAnalysisMode -cppr both

The -cppr parameter removes pessimism from clock paths that have a portion of the clock
network in common between the clock source and clock destination paths. The pessimism is
introduced when the timing analysis tools assume that the common path has different delay
values for two different paths in case of on-chip variation.

Enabling Accurate CPPR Analysis When Incremental Delays are Present

To enable accurate CPPR analysis in the presence of incremental delays, set the following
variable:
set_global timing_enable_si_cppr true

When this variable is set to true, the incremental delay is not included in the CPPR
calculation during setup analysis, but is included in the CPPR calculation during hold
analysis.

Advanced Settings for SI Analysis
Multi-CPU Processing Settings

Path Group Settings for SI Optimization

Multi-CPU Processing Settings

Innovus supports multi-threaded, distributed, and super-threaded noise analysis. Multi-CPU
processing support, in general, reduces the noise analysis run time significantly.

The following command considers the multi-CPU processing settings during noise analysis:

opt_design -post_route -hold

time_design -post_route -hold

September 2022 1443 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setAnalysisMode.html
../innovusTCR/timing_enable_si_cppr.html
../TCRcom/opt_design.html
../TCRcom/time_design.html

For information on multi-CPU processing, see "Accelerating the Design Process by Multiple-CPU
Processing".

Setting Up Multi-Threading for Noise Analysis

Multi-threading enables you to run noise analysis on multiple CPUs of a single host - the host
machine on which you are running Innovus or a different host. You can use the following settings:

To setup multi-threaded noise analysis on the same host, use the following commands:
setMultiCpuUsage -localCpu string

optDesign -postRoute

To setup multi-threaded noise analysis on a different host, use the following commands:
setDistributeHost -rsh -add {name}

setMultiCpuUsage -remoteHost 1 -cpuPerRemoteHostcpu_per_ integer

optDesign -postRoute

Setting Up Distributed Processing for Noise Analysis

Distributed processing enables you to divide a noise analysis job between two or more networked
computers running concurrently.

To setup distributed processing using RSH, specify the following commands:
setDistributeHost -rsh -add string

setMultiCpuUsage -remoteHost integer

optDesign -postRoute

To setup distributed processing using LSF, specify the following commands:
setDistributeHost -lsf -queue string

setMultiCpuUsage -remoteHost integer

optDesign -postRoute

When setting up distributed processing, ensure that there is a corresponding host computer for each
view definition. For example, if the design has four view definitions, divide these between four host
computers.

September 2022 1444 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html

Setting Up Super-Threaded Noise Analysis

Super-threading enables you to run a noise analysis job on both distributed processing and multi-
threaded modes; that is, two or more networked computers, each with multiple processors, can be
called to concurrently run noise analysis.

To setup super-threading using RSH, use the following commands:
setDistributeHost -rsh -add string

setMultiCpuUsage -remoteHost integer -cpuPerRemoteHostcpu_per_ integer

optDesign -postRoute

To setup super-threading using LSF, use the following commands:
setDistributeHost -lsf -queue string

setMultiCpuUsage -remoteHost integer -cpuPerRemoteHostcpu_per_ integer

optDesign -postRoute

Examples of Setting Up Multi-CPU Processing

The following settings distribute the analysis & optimization on host1 and host2 machines
using RSH:
setDistributeHost -rsh -add {host1 host2}

setMultiCpuUsage -remoteHost 2

optDesign -postRoute

The following multi-threading settings distribute the analysis & optimization on eight threads
on the local machine:
setMultiCpuUsage -localCpu 8

optDesign -postRoute

The following settings distribute the analysis & optimization on the 5 specified host machines
using RSH:
setDistributeHost -rsh -add {host1 host2 host3 host4 host5}

setMultiCpuUsage -remoteHost 5 -localCpu 4

optDesign -postRoute

September 2022 1445 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html
../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html

Note: When used together, the -remoteHost parameter is given preference over
the -localCpu parameter, if the number of remote hosts specified is more than the number of
CPUs specified with the -localCpu parameter. The -localCpu parameter is given preference if
the number of CPUs specified with the parameter is higher than the number of remote hosts.
In this case, the -localCpu parameter is ignored. If you use multiple hosts and multiple threads
at the same time during SI optimization, use the -remoteHost and -cpu_per_ parameters
instead.

The following super-threading settings distribute the analysis & optimization on host1 and
host2 machines using RSH, and run eight threads on each:
setDistributeHost -rsh -add {host1 host2}

setMultiCpuUsage -remoteHost 2 -cpu_per_ 8

optDesign -postRoute

Note: In this case, a total of 16 CPUs will be used.

Path Group Settings for SI Optimization

The SI optimization flow accounts for any user-specified path groups. If path groups are not
defined, the software uses the default groups - reg2reg, reg2cgate, and default (all other
paths). This feature enables you to take full advantage of all the path group capabilities during
SI optimization.

You can use the following settings:

setPathGroupOptions -slackAdjustment parameter for slack adjustment of any group.

setPathGroupOptions -weight parameter to control the relative optimization priority for each
group.

To create, modify, and report path groups, use the following commands:

group_path

report_path_groups

createBasicPathGroups

setPathGroupOptions

reportPathGroupOptions

September 2022 1446 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setDistributeHost.html
../innovusTCR/setMultiCpuUsage.html
../innovusTCR/optDesign.html
../innovusTCR/setPathGroupOptions.html#setPathGroupOptions-setPathGroupOptions
../innovusTCR/setPathGroupOptions.html#setPathGroupOptions-setPathGroupOptions
../innovusTCR/group_path.html
../innovusTCR/report_path_groups.html#report_path_groups-report_path_groups
../innovusTCR/createBasicPathGroups.html#createBasicPathGroups-createBasicPathGroups
../innovusTCR/setPathGroupOptions.html#setPathGroupOptions-setPathGroupOptions
../innovusTCR/reportPathGroupOptions.html#reportPathGroupOptions-reportPathGroupOptions

Example of Setting Up Innovus for SI Analysis
The following example script provides a summary of the settings that are required for performing SI
analysis:

Extraction Settings

setDesignMode -process 20

setExtractRCMode -engine postRoute -effortLevel high

SI Settings (unless otherwise recommended it is best to use the defaults & skip

this) ##

setSIMode -individual_attacker_threshold 0.01

STA settings

setAnalysisMode -analysisType onChipVariation -cppr both

CPPR Removal for Incremental delays (optional)

set_global timing_enable_si_cppr true

Decide what Timing Tool you will be signing off on & set the engine to match (this

is the default)

setSIMode -analysisType aae

Ensure SI Delay Cal is on (this is the default)

setDelayCalMode -SIAware true

Preventing Crosstalk Violations
To prevent crosstalk violations, here are some recommendations:

1. Set reasonable max transition thresholds and ensure they are fixed before detail routing.

2. Fix transition time violations on the clock tree aggressively.

3. Shield the clock tree root to prevent Clock SI.

4. Run timing and signal integrity driven routing - use the following commands:
setNanoRouteMode -route_with_timing_driven true -route_with_si_driven true

routeDesign option

September 2022 1447 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setNanoRouteMode.html
../innovusTCR/routeDesign.html

See SI Prevention Techniques for PreRoute using Innovus System application note for more
advanced experiments.

Fixing Crosstalk Violations
Data Preparation

Using optDesign to Fix Setup Violations with Effects

Using optDesign to Fix Hold Violations with Crosstalk Effects

Using optDesign to Fix Transition Time Violations with Crosstalk Effects

Data Preparation

Extraction:

There are 4 options for postRoute extraction: detailed extraction, Turbo QRC, Integrated QRC
& standalone QRC sign-off extraction. To correlate native extraction results with QRC sign-off
extraction, compare the SPEF files from basic and sign-off extraction to generate the new scaling
factors for total capacitance, cross-coupling capacitance, and resistance. Using these scaling
factors, the native extraction results are closer to the sign-off extraction results, while only taking a
fraction of the run time required for sign-off extraction. For more information, see "Correlating Native
Extraction With Sign-Off Extraction".

Using optDesign to Fix Setup Violations with Effects
By default, using the optDesign -postRoute command will fix both setup base and SI timing at the
same time. It will also correct glitch violations caused by incremental delays, which occur due to
coupling capacitance.

If you want to run the base timing optimization alone (without the crosstalk incremental delay),
set the following:
setDelayCalMode -SIAware false

If you want to run the SI delay Optimization but turn off SI Glitch Optimization, set the
following:
setOptMode -opt_post_route_fix_glitch false

September 2022 1448 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/optDesign.html
../innovusTCR/setDelayCalMode.html
../innovusTCR/setOptMode.html

If you want to turn on the SI Slew Optimization, set the following:
setOptMode -opt_post_route_fix_si_transitions true

For best results, set up Innovus SI analysis to match Sign-off Tool analysis before using
the optDesign command.

Using RC Data Generated by an External Tool for SI Fixing
The RC data needs to be regenerated using a third-party tool to perform SI analysis and generate
reports after optimization is complete. To perform SI fixing, load the generated RC data generated
by using the spefIn command.

Note: Ensure that you use the spefIn command to load parasitic data for each corner.

Using SDF Data Generated by an External Tool for SI Fixing
You can use the SDF data generated by an external tool in Innovus to do limited SI fixing. SDF data
needs to be regenerated with the external tool to perform SI analysis and generate reports after
fixing.

Fixing Setup Violations Using External SDF

Use the read_sdf command to load an SDF file for each view. For each view, two SDFs are
required from the external tool; one with base timing only and the other full timing with base and SI
Timing.

Use the following commands to load separate SDF files for two setup views:
setDelayCalMode -SIAware false

read_sdf -view viewname1 -overwrite_incremental_delay view1.sdf

read_sdf -view viewname2 -overwrite_incremental_delay view2.sdf

September 2022 1449 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/setOptMode.html
../innovusTCR/optDesign.html
../innovusTCR/spefIn.html#spefIn-spefIn
../innovusTCR/spefIn.html#spefIn-spefIn
../innovusTCR/read_sdf.html#read_sdf-read_sdf
../innovusTCR/setDelayCalMode.html

Using optDesign to Fix Hold Violations with Crosstalk Effects
By default, the optDesign -postRoute -hold command will fix both hold base and SI timing at the
same time. If you want to run the base hold timing optimization alone (without the crosstalk
incremental delay), set the following:
setDelayCalMode -SIAware false

Using RC Data Generated by an External Tool for SI Hold Fixing

You can load the RC data generated by an external tool by using the spefIn command in Innovus
to do limited SI hold fixing. RC data needs to be regenerated with the external tool to perform SI
analysis and generate reports after fixing.

Note: Ensure that you use the spefIn command to load the parasitic data for each corner.

Using optDesign to Fix Transition Time Violations with
Crosstalk Effects
To fix SI induced maximum transition violations, set the following:
setOptMode -opt_post_route_fix_si_transitions true

optDesign -postRoute

Performing XILM-Based SI Analysis and Fixing
The model-based flow in Innovus involves generating timing accurate interface logic models (ILMs)
for hierarchical blocks. To perform SI analysis, the model data generation process should account
for the characterized noise library of the blocks, the timing window information of non-ILM timing
path nets inside the blocks, and cross-coupling information. This data, which is an extension to
ILMs, is called eXtended Interface Logic Model (XILM). An XILM is built with:

Cells and RC network (including cross-coupling data) connected from each I/O pin to and
from the first latch or flip-flop.

eXtended Timing Window Format (XTWF) file that contains timing window and slew
information of non-ILM timing paths inside the block, which might be aggressors to the nets on
the ILM timing path or the top-level nets.

September 2022 1450 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

../innovusTCR/optDesign.html
../innovusTCR/setDelayCalMode.html
../innovusTCR/spefIn.html#spefIn-spefIn
../innovusTCR/spefIn.html#spefIn-spefIn
../innovusTCR/setOptMode.html
../innovusTCR/optDesign.html

Note: For more information on XILM-based SI analysis, see the Top-level Timing Closure
Methodologies chapter of the Innovus User Guide.

September 2022 1451 Product Version 22.10

 Innovus User Guide
Analysis Capabilities--Analyzing and Repairing Crosstalk

9

Verification Capabilities

Identifying and Viewing Violations

Verifying Well Pins and Bias Pins

Integration with LPA and CCP

September 2022 1452 Product Version 22.10

 Innovus User Guide
Verification Capabilities

Identifying and Viewing Violations
Overview

Interrupting Verification

Verifying Connectivity

Verifying Metal Density

Verifying DRC

Verifying Process Antennas

Verifying Well-Process-Antenna Violations

Verifying End Cap Violations

Verifying Maximum Floating Area Violations

Verifying AC Limit

Verifying Isolated Cuts

Verifying Tie Cells

Viewing Violations With the Violation Browser

Saving Violations

Clearing Violations

September 2022 1453 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Overview
The verification commands in the Innovus™ Implementation System check and report on the
following types of violations:

Connectivity: Checks for opens, unconnected wires (geometrical antennas), loops, and partial
routing.
Verify the connectivity of the design after the following design step:

Detailed routing: For more information, see:

Verifying Connectivity

verifyConnectivity in the Verify Commands chapter of the Innovus Text Command
Reference document.

Metal density: Checks that the metal density of the metal layers is within the minimum and
maximum metal density values specified by the LEF file or the setMetalFill command. Also
checks the density of the cut layers.
Verify the metal density after the following design step:

Inserting metal fill: For more information, see verifyMetalDensity and verifyCutDensity in
the Verify Commands chapter of the Innovus Text Command Reference document.

DRC: Checks the physical layout of the design, including width, length, spacing, area,
overlap, enclosure, wire extension, and via stacking violations. If you modify or edit any part of
the design, run verify_drc to make sure the design is still DRC clean.
Verify the DRC of the design after the following design steps:

Placement

Power routing

Detailed routing

Wire editing: For more information, see

Verifying DRC

verify_drc in the Verify Commands chapter of the Innovus Text Command Reference
document. This command is currently used for 28nm and above designs.

Process antennas and unconnected metal segments (floating areas): Checks the charge that
builds up on pins caused by routing that does not have a discharge path to a gate.
The verifyProcessAntenna command checks for pin routing that violates the maximum

September 2022 1454 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyConnectivity.html
../innovusTCR/Verify_Commands.html
../innovusTCR/setMetalFill.html
../innovusTCR/verifyMetalDensity.html
../innovusTCR/verifyCutDensity.html
../innovusTCR/Verify_Commands.html
../innovusTCR/verify_drc.html
../innovusTCR/verify_drc.html
../innovusTCR/Verify_Commands.html
../innovusTCR/verifyProcessAntenna.html

antenna charge for the pins, and reports violations on pins that have an antenna ratio larger
than the maximum allowed antenna ratio specified for the routing layer.

The verifyProcessAntenna command also checks for unconnected metal segments that
violate the maximum area specified in the LEF file. An unconnected (floating) metal segment
is a segment that is not connected to diffusion (or a polysilicon gate) through the same layer or
a lower layer.

Verify process antenna and maximum floating area violations after the following design step:

Detailed routing

For more information, see verifyProcessAntenna in the Verify Commands chapter of
the Innovus Text Command Reference document.

AC limit: Checks for AC current violations on signal nets.
Verify the AC limit after the following design step:

Detailed routing

For more information, see verifyACLimit in the Verify Commands chapter of the Innovus
Text Command Reference document.

Lithography hotspots: The software can interpret hotspot interchange format (HIF) files.
For more information, see loadViolationReport in the Verify Commands chapter of
the Innovus Text Command Reference document.

Placement:
For more information on the types of violations, see checkPlace in the "Placement
Commands" chapter of the Innovus Text Command Reference document.

Violation markers
You can use text commands or GUI forms to check the violations and create the reports.

You create violation markers with the Innovus commands, or import markers from another

verification tool, such as Assura™ or Calibre, and view the markers with the Violation
Browser. The Innovus software saves the markers with the database.

For more information, see the Viewing Violations With the Violation Browser section.
.

September 2022 1455 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyProcessAntenna.html
../innovusTCR/verifyProcessAntenna.html
../innovusTCR/Verify_Commands.html
../innovusTCR/verifyACLimit.html
../innovusTCR/Verify_Commands.html
../innovusTCR/loadViolationReport.html
../innovusTCR/Verify_Commands.html
../innovusTCR/checkPlace.html

Interrupting Verification
The following verification commands support "Interrupt" (Ctrl+C):

verifyACLimit

verifyConnectivity

verify_drc

verifyMetalDensity

verifyPowerVia

verifyProcessAntenna

If you press Ctrl+c while one of the above verification commands is being executed, the verification
process stops and the software displays the Interrupt menu. For information on the Interrupt menu,
see "Interrupting the Software" in the Getting Started chapter.

September 2022 1456 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyACLimit.html
../innovusTCR/verifyConnectivity.html
../innovusTCR/verify_drc.html
../innovusTCR/verifyMetalDensity.html
../innovusTCR/verifyPowerVia.html
../innovusTCR/verifyProcessAntenna.html

Verifying Connectivity
Verify the connectivity of your design to detect and report conditions such as opens, unconnected
pins, dangling wires, loops, and partial routing. You can use the command to create violation
markers in the design window and generate a violation report. There is no database impact from
using this command unless you save the design, which saves the violation markers.

For regular wires, the Innovus software checks connectivity by using the center line of the wire
segments and center of the vias. For special wires, the command checks the whole DRC. If a via or
wire is slightly offset from where it should be, the software reports an error.

The software also detects connectivity loops based on the end points of a regular wire segment
center line or the center of a via. It reports DRC loop violations.

Note: The Verify Connectivity feature now uses setMultiCpuUsage and other multi-CPU commands
for multi-threading.

For more information, see the Multiple-CPU Processing Commands chapter in the Innovus Text
Command Reference document.

Before You Begin
Before you verify connectivity, the following conditions must be met:

The design must be routed.

The design must be loaded into the current Innovus session.

Types of Connectivity Violations Reported
Antennas (Dangling wires)
Unconnected wires (dangling wires).

Opens
Parts of nets, such as wires or pins, that are connected to each other but are missing a
connection to the net as a whole. Marks each part of a net that is missing a connection as an
open and displays a violation marker between the parts.

Violation markers for opens are displayed as polygons that include all wires, pins, and vias

September 2022 1457 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/setMultiCpuUsage.html
../innovusTCR/Multiple-CPU_Processing_Commands.html

that connect to an island.

By default, verifyConnectivity checks the connectivity on masterslice layers. If the -
noSoftPGConnect option is specified, connectivity on these layers is ignored and checking of
soft Power/Ground connects is disabled.

Loops

Unconnected pins
Pins that are not connected to any other objects

Note: In releases prior to 7.1, verifyConnectivity marked nets with connected pins but without any
wiring as unrouted nets. verifyConnectivity no longer marks these nets as unrouted, so they do
not cause violations.

Note: From the 10.1 release, verifyConnectivity recognizes the PG pin with DIRECTION OUT or
CLASS CORE/BUMP as a strong connection. So, if you define PG PIN DIRECTION as OUTPUT
or any PORT with CLASS CORE/BUMP, verifyConnectivity would treat that PIN as strongly
connected.

For more information, see Verify Connectivity in the Verify Menu chapter of the Innovus Menu
Reference document.

Results
After verifying connectivity, you can use information in the violation report to repair connectivity
violations. You can use the Violation Browser for interactive viewing and highlighting of violation
markers. You can see incremental results in the Violation Browser.

Debugging Opens Interactively

Debugging an open net can be difficult, especially when the island is big. An island is a broken
segment of the net including pin, wires, and via The open markers may overlap each other, making
it hard to find the island boundary. Starting from the 14.1 release, you can interactively colorize
open net markers. This makes it easier to identify the open island boundary.

Suppose your design has multiple Open violations. Initially, all violations are marked in white in the
main window by default.

September 2022 1458 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyConnectivity.html
../innovusTCR/verifyConnectivity.html
../innovusTCR/verifyConnectivity.html
../innovusTCR/verifyConnectivity.html
../innovusMR/innovusMRTOC.html

Follow the steps below to use the colorize feature to identify different open island boundaries:

1. In the Violation Browser, click on an Open violation to auto-zoom to the open marker location.

2. Click the open net marker to which you have zoomed into in the main window. Each open
net marker is then automatically assigned with a unique color. In this case, the open net
markers are colored red, white, and blue.

September 2022 1459 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Note: Clicking any colorized marker again to remove the colors.

3. Press the F12 key or select Edit > Dim Background to dim the background and view the open
more clearly.
This helps you identify the cause of the open. Typical causes are missing wires, missing vias,
or unconnected pins. You can then take appropriate steps to debug the open net violation.

September 2022 1460 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Verifying Metal Density
Verify the metal density of the design for each routing layer, to ensure that it is within the minimum
and maximum density values specified in the LEF file or by the setMetalFill command.

Before You Begin
Before you verify metal density, the following conditions must be met:

Metal density values must be specified in the LEF file or by the setMetalFill command.
The setMetalFill setting overwrites the LEF rules.

The design must be detail routed.

The design must be loaded into the current Innovus session.

Metal Density Statements in the LEF File

The following statements in the Layer (Routing) section of the LEF file define the minimum and
maximum metal density and how to analyze the density.

MINIMUMDENSITY

MAXIMUMDENSITY

DENSITYCHECKWINDOW

DENSITYCHECKSTEP

FILLACTIVESPACING

For more information, see the LEF Syntax chapter in the LEF/DEF Language Reference.

Results
The verification process generates a report file containing information about the metal density that is
not within the minimum and maximum density range.

September 2022 1461 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/setMetalFill.html
../innovusTCR/setMetalFill.html
../lefdefref/LEFSyntax.html

Verifying Metal Density in Multi-Thread Mode
Accelerate metal density checking by running the software in multi-thread mode. To do so, run
the setMultiCpuUsage command before running verifyMetalDensity. For example:

setMultiCpuUsage -localCPU 4

verifyMetalDensity

Related Topics

Accelerating the Design Process By Using Multiple-CPU Processing

Multiple-CPU Processing Commands chapter in the Innovus Text Command Reference

September 2022 1462 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/setMultiCpuUsage.html
../innovusTCR/verifyMetalDensity.html
../innovusTCR/Multiple-CPU_Processing_Commands.html

Verifying DRC
Verify the physical layout of the design by checking the width, spacing, internal DRC, and other
characteristics of objects. Use the verify_drc command to specify the checks to perform, disable
checking, and set limits for errors and warnings to report.

The disable feature is useful when false violations arise because of discrepancies in the way mask-
level data is presented. For example, cell internal obstructions and pins might be represented in a
way that causes the verifier to report design rule violations that do not exist in the mask-level layout.

Verify DRC at the following stages in the design flow:

After placing the design.

After adding power stripes and rings and running power routing.

After running detailed routing.

Before You Begin
Ensure the following LEF statements are specified:

CLEARANCEMEASURE

USEMINSPACING statements for obstructions and pins
For more information, see the LEF Syntax chapter in the LEF/DEF Language Reference.

If you run verify_drc in multiple-CPU processing mode, use the Innovus multiple-CPU
commands or select the appropriate options on the Multiple CPU Processing form. For more
information, see the Verifying DRC in Multi-Thread Mode section.

Route the design.

Set global parameters for verify_drc using the set_verify_drc_mode command.

Note: Check the current global settings for verify_drc using
the get_verify_drc_mode command.

Verify DRC Statements in the LEF File

The following statements in the LEF file can be used to define how to verify DRC.

ADJACENTCUTS

September 2022 1463 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verify_drc.html
../lefdefref/LEFSyntax.html
../innovusTCR/verify_drc.html
../innovusTCR/verify_drc.html
../innovusTCR/set_verify_drc_mode.html
../innovusTCR/verify_drc.html
../innovusTCR/get_verify_drc_mode.html

CORNERFILLSPACING

CUTCLASS SPACINGTABLE

ENCLOSURE

ENCLOSUREEDGE

ENDOFLINE

EOLENCLOSURE

EOLKEEPOUT

EOLSPACING

EXCEPTRECTANGLE

JOGTOJOGSPACING

MANUFACTURINGGRID

MAXVIASTACK

MINSTEP

MINWIDTH

OPPOSITEEOLSPACING

PINMASK

SPACING

VOLTAGESPACING

WIDTH

For more information, see the LEF Syntax chapter in the LEF/DEF Language Reference.

Verifying DRC in Multi-Thread Mode
You can accelerate DRC checking by running the software in multi-thread mode. Use one of the
following methods:

On the text command line:

September 2022 1464 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../lefdefref/LEFSyntax.html

Run the setMultiCpuUsage command before running verify_drc. For example:
setMultiCpuUsage -localCPU 4

verify_drc

In the GUI:

a. On the Verify DRC - Advanced page, click the Set Multiple CPU button to open the
Multiple CPU Processing form.

b. On the Multiple CPU Processing form, specify the number of local CPUs.

c. Optionally, select Release License.

d. Click OK to close the Multiple CPU Processing form and return to the Verify DRC form.
When you return to the Verify DRC form, the Number of Local CPU(s) option in this form
is updated with the value you specified on the Multiple CPU Processing form.

e. Run verify_drc.

Related Topics

Accelerating the Design Process By Using Multiple-CPU Processing

Multiple-CPU Processing Commands chapter in the Innovus Text Command Reference

Verify DRC - Advanced in the Verify Menu chapter of the Innovus Menu Reference document

Spacing Violation Checks
verify_drc uses the minimum dimension of an object to check for spacing violations. The
minimum dimension is the width of the object.

The command does not detect objects with width greater than WIDTH and length greater
than LENGTH that exist within a distance (WITHIN) greater than 10 µm for the MINIMUMCUT check
in the LEF file.

The command categorizes spacing violations as SameNet, NonDefault,
and ParallelRun violations. If it finds a violation caused by a blockage between two instances
of different cells, it treats the violation as a SameNet violation because it does not belong to a
net.

The command considers OBS CUT layer shapes as within the same metal if they are within the

September 2022 1465 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/setMultiCpuUsage.html
../innovusTCR/verify_drc.html
../innovusTCR/Multiple-CPU_Processing_Commands.html
../innovusMR/innovusMRTOC.html
../innovusTCR/verify_drc.html

same OBS ROUTING layer shape (the layer above or below). This avoids -sameCellViol flags
on SPACING violations inside the cells.

To check implant layers for violations, specify an implant rule in the LEF file. To skip implant
layer checking, specify the set_verify_drc_mode -check_implant false parameter.

To check spacing between cut layers and metal layers, specify a cut-metal spacing rule in the
LEF file. For example, the following rule triggers a check of the spacing
between CUT1 and MET5 layers:
LAYER CUT1 TYPE CUT ;

 SPACING 0.42 ;

 SPACING 0.28 LAYER MET5 ;

END CUT1

For more information, see the LEF Syntax chapter of the LEF/DEF Language Reference.

Support for Via Rules
verify_drc uses the drc rules in the tech lef file to check for violations caused by vias. The
command verify_drc does not flags violations on instance of the via by default. Run verify_drc
with the -check_same_via_cell parameter to report viaCell violations for all instances.

Results
verify_drc creates markers corresponding to DRC violations in the database. Use the Violation
Browser to see the markers.

September 2022 1466 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../lefdefref/LEFSyntax.html
../innovusTCR/verify_drc.html
../innovusTCR/verify_drc.html
../innovusMR/Tools_Menu.html#ToolsMenu-ViolationBrowser

Verifying Process Antennas
Verify process antenna violations by checking for routing that violates the maximum charge caused
by the process antenna effect (PAE) on pins. The software finds violations when a pin's process
antenna ratio is larger than the maximum ratio specified in the LEF file for the routing layer.

The report file lists all the violated nets and includes process antenna information. Optionally, it can
also report all other nets.

Before You Begin
Before performing process antenna verification, complete the following tasks:

Perform signal routing.

Ensure the antenna keywords are specified in the LEF file. For example:

ANTENNAAREARATIO for LEF layers

ANTENNAGATEAREA and ANTENNADIFFAREAfor macro pins

Note: By default, when verifyProcessAntenna (VPA) is run on a design, the value
of AntennaInputGateArea is added to the gate area of instances connected to the antenna cell.
This means that if antenna cells are inserted by NanoRoute, VPA uses a gate area value
larger than the value used in NanoRoute antenna calculation. To avoid such an optimistic
analysis, you might want VPA to ignore the default AntennaInputGateArea for antenna cell. To
do so, you can specify ANTENNAGATEAREA 0.0 in macro pin antenna definition in LEF and set
the gateArea of the macro's pin to 0.

For more information, see the LEF Syntax chapter in the LEF/DEF Language Reference.

Verifying PAE
Checks for pin routing that violates the maximum antenna charge for the pins and reports violations
on pins that have an antenna ratio larger than the maximum allowed antenna ratio specified for the
routing layer. Handles PAE violations on any metal layer on flat or hierarchical designs. Uses a
DRC-based approach and does not double count metal areas for vias or wires. Provides a detailed
process antenna report including the metal area, diffusion area, and target ratio for each pin. The
report file lists all violated nets with process antenna information. Optionally, it can also report all
other nets. For more information on PAE, see the Calculating and Fixing Process Antenna
Violations appendix in the LEF/DEF Language Reference.

September 2022 1467 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyProcessAntenna.html
../lefdefref/LEFSyntax.html
../lefdefref/PAE.html

Results
After verifying process antenna violations, you can use information in the violation report to r epair
process antenna violations. You can use the Tools - Violation Browser command for interactive
viewing and highlighting of violation markers.

Sample Process Antenna Report
The following example shows a section of a detailed process antenna report file:

The report uses the following terms:

D1 (2)

 U0 (BUF) A

[1] MET: Area: 1.10 S.Area: 2.10 G.Area: 100.00 D.Area: 0.00

 Fact: 0.90 PAR: 0.01 Ratio: 0.10 (Area)

 Fact: 1.00 PAR: 0.02 Ratio: 0.10 (S.Area)

 CAR: 0.01 Ratio: 0.00 (C.Area)

 CAR: 0.02 Ratio: 0.00 (C.S.Area)

[1] THO: Area: 0.20 S.Area: 0.00 G.Area: 100.00 D.Area: 0.00

 Fact: 1.00 PAR: 0.00 Ratio: 0.00 (Area)

 CAR: 0.00 Ratio: 0.00 (C.Area)

[1] WMET: Area: 13.27 S.Area: 51.20 G.Area: 100.00 D.Area: 300.00

 Fact: 1.10 PAR: 0.15 Ratio: 2.50 (Area)

 Fact: 0.90 PAR: 0.46 Ratio: 0.00 (S.Area)

 CAR: 0.16 Ratio: 0.00 (C.Area)

 CAR: 0.48 Ratio: 0.00 (C.S.Area)

Area: Metal area

September 2022 1468 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

S.Area: Metal side area

G.Area: Gate area

D.Area: Diffusion area

Fact: Metal (side) area adjusted factor

PAR: Partial antenna ratio

CAR: Cumulated antenna ratio

Ratio: Target antenna ratio

(Area) Metal area

(S.Area) Metal side area

(C.Area) Cumulated metal area

(C.S.Area) Cumulated metal side area

September 2022 1469 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Verifying Well-Process-Antenna Violations
Use the verifyWellAntenna command to check for any CORE rows that have well-process-antenna
violations. Well-process-antenna violations are normally caused by rows with decap cells that do
not have any protecting cells in the same row. This command marks with a violation marker any
such CORE cell. You can then write a Tcl script to put in a well-antenna cell (protection cell) next to
the violation marker.

Normally, the decap cells are the only cells that need protection. However, if the standard cell
library in your design has one of the ENDCAP cells with a well-antenna protection device built-in, and
the filler, well-tap, tie-high and tie-low cells are just class CORE rather than with the
correct CORE subclass, you can use the following command:

verifyWellAntenna -needToProtect decap* -changeToProtect wellAntEndCap -

changeToNotProtect {filler* welltap* tie*} -report wellant.rpt

Sample verifyWellAntenna Report
The following example shows a section of a detailed well-process-antenna report file:

###

Generated by: Cadence Innovus 15.10-b031_1

OS: Linux x86_64(Host ID rlno-leenap)

Generated on: Fri Apr 17 12:25:27 2015

Design: DTMF_CHIP

Command: verifyWellAntenna -needToProtect decap* -changeToProtect...

###

Innovus WellAntenna Verification Report

Design: DTMF_CHIP

Protects needToProtect Name Class [subclass]

1 0 ZLLLN550V15 CORE

1 0 ZHHHN550V15 CORE

1 0 XORSN550V15 CORE

1 0 XORLN550V15 CORE

..........................

...........................

September 2022 1470 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyWellAntenna.html

0 1 EC_RTC10 ENDCAP

1 0 EC_RTC CORE

1 0 EC_RTE10 CORE

1 0 EC_RTE CORE

1 0 EC_LTE10 CORE

1 0 EC_LTE CORE

1 0 EC_BE16 CORE

1 0 EC_BE8 CORE

1 0 EC_BE4 CORE

1 0 EC_BE2 CORE

1 0 EC_BE1 CORE

1 0 EC_BE CORE

0 1 EC_TE16 CORE [FEEDTHRU]

0 1 EC_TE8 CORE [TIEHIGH]

0 1 EC_TE4 CORE [TIELOW]

0 1 EC_TE2 CORE [SPACER]

0 1 EC_TE1 CORE [ANTENNACELL]

1 0 EC_TE CORE

1 0 EC_LE10 CORE

1 0 EC_RE10 CORE

1 0 EC_LE CORE

1 0 EC_RE CORE

1 0 BCMF001N550 CORE

Here, cells like EC_TE16 CORE [FEEDTHRU] are marked as need to protect cells while cells
like EC_LE10 CORE are marked as protect cells.

September 2022 1471 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Verifying End Cap Violations
Use the verifyEndCap command to verify whether pre/post cap cells are inserted correctly. By
default, the command marks the beginning/end of each site row where specified cap cell is is not
inserted. The candidate cell lists are specified by setEndCapMode. If no pre/post cap cell lists are
specified in setEndCapMode, verifyEndCap ignores the check.

You can also use verifyEndCap with the -wrongLocation option to check whether the cap cells are
inserted in the right location (any location except the beginning/end of the row and the boundary of
the design/ block design).

In the following example, cell A has been specified as pre cap cell and cell B has been specified as
post cap cell using setEndCapMode. As shown in the diagram, verifyEndCap marks the following as
violations:

Specified cap cell is missing. In the diagram, these locations where cap cells were expected

but are missing are marked with a red cross enclosed in a rectangle .

Inserted cap cell is of wrong type, that is cell B is inserted where A is expected and vice versa.

Cap cell is inserted in wrong location. In the diagram, cell A is inserted in the wrong location
in the instance highlighted in red.

You can also use the verifyEndCap command to check triple well insertions. Triple well technology
is used to isolate p-well from substrate using a deep n-well. verifyEndCap marks any location where
the specified well cell is not inserted with a violation marker. It only checks the cell lists specified
in setEndCapMode.

September 2022 1472 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyEndCap.html
../innovusTCR/setEndCapMode.html
../innovusTCR/setEndCapMode.html
../innovusTCR/verifyEndCap.html
../innovusTCR/verifyEndCap.html
../innovusTCR/setEndCapMode.html
../innovusTCR/verifyEndCap.html
../innovusTCR/verifyEndCap.html
../innovusTCR/verifyEndCap.html
../innovusTCR/setEndCapMode.html

Results
After verifying end cap violations, you can use information in the violation report to repair such
violations. You can use the Tools - Violation Browser command for interactive viewing and
highlighting of violation markers.

Sample Verify End Cap Report
The following example shows a section of a verify end cap report file:

###

Generated by: Cadence Innovus 15.10-b031_1

September 2022 1473 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

OS: Linux x86_64(Host ID rlno-leenap)

Generated on: Fri Apr 17 12:25:27 2015

Design: DTMF_CHIP

Command: verifyEndCap

###

Innovus EndCap Verification Report

Design: DTMF_CHIP

Endcap instance is not found at (-4738.720 4726.800 -4738.160 4732.000) on row ROW_0

 should: RightEdge

Endcap instance is not found at (-2523.360 4726.800 -2522.800 4732.000) on row ROW_0

 should: LeftEdge

Endcap instance is not found at (-2411.920 4726.800 -2411.360 4732.000) on row ROW_0

 should: RightEdge

Endcap instance is not found at (-56.000 4726.800 -55.440 4732.000) on row ROW_0

 should: LeftEdge

Endcap instance is not found at (55.440 4726.800 56.000 4732.000) on row ROW_0

 should: RightEdge

Endcap instance is not found at (2411.360 4726.800 2411.920 4732.000) on row ROW_0

 should: LeftEdge

...

..

Endcap instance is not found at (55.440 -4732.000 56.000 -4726.800) on row ROW_1819

 should: RightEdge

Endcap instance is not found at (2411.360 -4732.000 2411.920 -4726.800) on row ROW_1819

 should: LeftEdge

Endcap instance is not found at (2522.800 -4732.000 2523.360 -4726.800) on row ROW_1819

 should: RightEdge

Endcap instance is not found at (4738.160 -4732.000 4738.720 -4726.800) on row ROW_1819

 should: LeftEdge

September 2022 1474 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Verifying Maximum Floating Area Violations
Verify maximum floating area violations (unconnected metal segments whose area is greater than
the maximum area specified in the LEF file) by using the verifyProcessAntenna command. The
Innovus software checks for maximum floating area violations by default when you run this
command. For more information, see verifyProcessAntenna in the Innovus Text Command
Reference document.

The LEF 5.6 property MAXFLOATINGAREA specifies the maximum area. The following global
properties are also associated with this property:

GATEISGROUND
Does not check metal layer connected to a polysilicon gate.

CONNECTED
Checks the sum of areas on the same metal that are connected through a lower metal layer.

For more information, see "Defining Routing Layer Properties to Create 45 nm and 65 nm Rules" in
the LEF Syntax chapter of the LEF/DEF Language Reference.

Note: To skip maximum floating area violation verification, but run process antenna verification,
type the following command:

verifyProcessAntenna -noMaxFloatArea

September 2022 1475 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyProcessAntenna.html
../innovusTCR/verifyProcessAntenna.html
../lefdefref/LEFSyntax.html

Verifying AC Limit

Overview
The charged particles of conductor in an electric field give up kinetic energy when they collide with
atomic ions. The increase in this kinetic energy of the ions manifests itself as heat and a rise in
temperature. Wire self-heating or Joule Heating describes a phenomenon where high AC currents
flowing through the resistive interconnects causes extreme temperature. The following diagram
illustrates signal net experiencing AC current as load capacitance is charged and discharged:

To prevent wire self-heating or AC signal electromigration (EM), signal interconnects should be
analyzed for their AC current carrying capacity and measured against the AC current limits
specified by foundry.

In previous versions, AC current density limits could be defined only in the Technology LEF file and
only root-mean-square (RMS) current limit check was supported. From Innovus 11.1 onwards, peak
AC current and average AC current limit check are also supported in addition to RMS current limit
checks. Peak AC current and average AC limits must be defined in the Quantus Technology file.
However, RMS current limits can be defined in both Technology LEF and Quantus Technology
files.

To check peak AC current and average AC current, you must choose delay calculator Advanced
Analysis Engine (AAE). To achieve more accurate results, Cadence recommends that you use
Effective Current Source Models (ECSM) timing library.

Calculating Irms Waveform

The software estimates the current waveform from the worst-case (fastest) transition time
(Trise, Tfall) given by the delay calculator.

September 2022 1476 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

The following diagram shows the V(t) square waveform for a given net:

Trise and Tfall are computed by normal delay calculation between Vhigh and Vlow thresholds.

The following diagram shows the associated I(t) waveform with a square and triangle wave
approximation super-imposed:

TriseIrms and TfallIrms are linear projections of the slew for a full transition from 0 to Vdd,
or Vdd to 0, respectively.

The choice of triangle and square waveform depends on you. However, if it is based upon empirical
data square waveform, it gives the best accuracy, and is used for current estimation by the software.

If

Cnet = total capacitance on the net

Vdd = power supply voltage

Vlow = 20% of Vdd

Vhigh = 80% of Vdd

then

September 2022 1477 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

TriseIrms = Trise / (.8 - .2) = Trise * 1.67

TfallIrms = Trise / (.8 - .2) = Tfall * 1.67

and, in order to match the total current for each transition, we have:

Itrianglepeak(rise) = 2 * Cnet * Vdd / TriseIrms

Itrianglepeak(fall) = 2 * Cnet * Vdd / TfallIrms

Isquarepeak(rise) = Cnet * Vdd / TriseIrms

Isquarepeak(fall) = Cnet * Vdd / TfallIrms

Then, doing the integral for Irms for a triangle waveform approximation gives:

where, S = Switching Factor. As charging and discharging the loading capacitor makes one
switching cycle, so switching factor is 1.0 in one period for clock net, and for a signal net, you can
use verifyACLimit -toggle to specify this value. Tsw = Period of one switching cycle (rising +
falling). And the effective frequency Feff=S/Tsw.

The difference is a constant sqrt(4/3) = 15%. You can scale the Irms value during analysis (using

the -current_scale_factor option) if you prefer the triangle approximation. Spice analysis of some
typical 90nm cells shows a square-wave approximation which gives the best correlation.

The Irms accuracy depends on the delay calculator and delay models used, which is controlled by

the setDelayCalMode -engine option and contents of the .lib
files. verifyACLimit with setDelayCalMode -engine feDC, will use a square-wave current waveform
(current is constant for the slew-time extrapolated to a 100% voltage transition) which is normally
slightly pessimistic. For long wires with large resistance, it has been measured up to 20-30% worse
than Spice.

Note: For increased accuracy, you should use either SignalStorm® or AAE delay calculator instead
of the default feDC engine to calculate Irms. To enable SignalStorm or AAE calculation, run one of
the following command before running verifyACLimit:

setDelayCalMode -engine signalStorm

setDelayCalMode -engine aae

September 2022 1478 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyACLimit.html
../innovusTCR/verifyACLimit.html

Calculating Ipeak Waveform

The software estimates the peak AC current waveform from the AAE delay calculator. The
measured peak AC current, used to check against Ipeak provided by foundry, is defined as

following:

peak_measured = Ipeak * sq. root[r]

Where, r is the duty ratio which is defined as pulse duration divided by the period.

r = Td/t

The pulse duration Td can be defined for a transition from when it reaches ½ Ipeak value to when it

declines to ½ Ipeak value as shown in the above figures.

The effective duty ratio for asymmetric rising and falling waveforms is computed as follows:

Duty ratio r for Ipeak(rising)

Duty ratio r(rising) = [Td(rising) + (Ipeak(falling)/Ipeak(rising))^2 * Td(falling)] /

t

September 2022 1479 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Duty ratio r for Ipeak(falling)

Duty ratio r(falling) = [Td(falling) + (Ipeak(rising)/Ipeak(falling))^2 * Td(rising)] /

t

Using the above duty ratios for rising and falling peak waveforms,

Ipeak(rising)*sq.root[r(rising)] == Ipeak(falling)*sq.root[r(falling)]

Therefore, the software can pick either of these values to compare against the Ipeak limit provided

by the foundry. If the value of the measured peak AC current is larger than the Ipeak limit, it will be

considered as violation. Currently, the Ipeak limit has to be defined in the Quantus Technology file.

According to the DRM from foundry, only signal nets with effective frequency equal or larger than
the minimum effective frequency (1MHz by default) will be checked for their peak AC current. If the
signal nets have an effective frequency lower than the minimum frequency, the software will issue a
warning message stating that the net will be ignored for peak current check. You can use
the verifyACLimit -minPeakFreq parameter to change the minimum effective frequency. If the duty
ratio r for a signal net is equal or lower than the minimum duty ratio (0.05 by default), then the
minimum duty ratio will be used. You can use the verifyACLimit -minPeakDutyRatio parameter to
change the default value.

Calculating Iavg Waveform

The software uses the AAE delay calculator to calculate the average current considering the
recovery factor. For a rising (positive) and falling (negative) waveform, Iavg is calculated using the

following equation:

Equation1:

Iavg. = abs. max (rising, falling) - EM_recovery_factor * abs. min (rising, falling)

where, the EM_recovery_factor is defined in the Quantus Technology file. You can overwrite this
value. The default value of the EM recovery factor is 1, that is, Iavg will be zero. If you do not specify

the EM recovery factor, the software will issue a warning message when avg analysis is selected
and no EM recovery factor is defined.

For digital CMOS circuits that are charging and discharging a fixed load, by
definition, abs.Iavg(rising) = abs.Iavg(falling).

September 2022 1480 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

where, S = Switching Factor

Tsw = Period of one switching cycle (rising + falling)

Therefore, according to Equation1:

Iavg =S/Tsw* (C*Vdd - EM_Recovery*C*Vdd) = Feff *(C*Vdd - EM_Recovery*C*Vdd)

where, C is the total loading capacitance including pin cap and Vdd is the supply voltage

Here is an example:

In this example:

Iavg(rising) = 2mA

Iavg(falling) = -2mA

em_recovery_factor = 0.5

Based on the equation, Iavg calculation is as follows:

Iavg = 2 - 0.5*2 = 1mA

September 2022 1481 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Calculating Effective Frequency
For clock nets, Tsw is already given in the timing constraints, and S, the switching factor, is

always 1.0, so the effective frequency is, Feff = 1/Tsw.

For signal nets, there are two choices:

You can specify the switching factor (S) for the signal nets using the verifyACLimit -
toggle parameter. The specified switching factor will be applied to all signal nets and
multiplied with the switching frequency (1/Tsw) to calculate the effective frequency of the

signal net. The default switching factor of 1.0 (100%) signifies that the signal net will switch
twice at every period of the switching cycle (rising + falling). The switching factor of the clock
net will not change with the verifyACLimit -toggle parameter as it always equals to 1.0. The
switching frequency (1/Tsw) for the net is derived from the frequency of the associated clock

(fastest clock will be used if more than one is associated) using the integrated static timing
analysis engine when running this software.
default switching factor of 100% on data network

verifyACLimit \

-detailed \

-toggle 1.0 \

-report AC.1.0.rpt

If using the global activity on all nets is too pessimistic or optimistic, you can set the effective
frequency (frequency * activity) using the TCF, or VCD files generated by netlist simulators.
Optionally, you can set input and flop activities and propagate them to generate a TCF file as
follows:
set_default_switching_activity \

-input_activity 0.2 \

-seq_activity 0.15 \

-clock_gates_output 2.0 \

September 2022 1482 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

-period 7.0

propagate_activity

write_tcf <design>.tcf

read_activity_file \

-format TCF \

-set_net_freq true \

dma_mac.tcf

verifyACLimit \

-method avg \

-detailed \

-avgRecoveryavg_recovery 0.5 \

-useQrcTech \

-use_db_freq \

-report AVG.tcf.rpt

Computing Irms/Ipeak/Iavg for each Routing Segment

For a routed net, the wire widths can taper as they reach the sink pins, and the routing can branch to
multiple sinks. In order to avoid false violations, a local Irms/Ipeak/Iavg value must be computed for

each wire segment of the net.

The Irms/Ipeak/Iavg value of each wire segment should only be the current required to charge the

September 2022 1483 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

capacitance of the "downstream" wire segments and sinks. The following diagram
illustrates Irms/Ipeak/Iavg calculation on "downstream" wire segments:

In this diagram, a) shows that the wire segment s1 must carry current to charge/discharge the entire
net. Therefore, the Irms/Ipeak/Iavg at the driver output is the correct value to check for s1. In b), the

wire segment s2 only carries current to charge/discharge s2, s4, s5 and the pin-caps of i2 and i3. In
c), wire segment s5 only carries current for s5 and the pin-cap of i3.

The total wire capacitance (Cwire) comes from extraction (SPEF), and the pin-capacitance for each
instance pin from the timing libraries. The total Irms/Ipeak/Iavg will be calculated using the total

wire capacitance (Cwire). The software estimates the "downstream capacitance" that must be
charged/discharged through individual wire segments by using the total area of the "downstream
wire segments" relative to the total area of the wire plus the pin-caps of the sinks.

In example b) for Irms, the result is:

Cwire(total net) is already known from extraction

Cnet(total net) = Cwire(total net) + Cpin for all the sinks (driver's Cpin is not included)

Irms(total net) is computed from Cnet, the slew rate and frequency is as described earlier

Area(total net) = Area (s1 + s2 + s3 + s4 + s5)

Cwire(downstream of s2) = Cwire(total net) * [Area(s2 + s4 + s5) / Area(total net)]

Cnet(downstream of s2) = Cwire(downstream of s2) + Cpin(i2) + Cpin(i3)

Irms is proportional to Cnet, so we can estimate Irms(s2) as:

Irms(s2) = Irms(total net) * Cnet(downstream of s2) / Cnet(total net)

September 2022 1484 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Checking the AC Current Limits
You can verify AC current violations on signal nets by using
the verifyACLimit command. verifyACLimit checks for the following types of AC current violations
on signal nets:

Root-mean-square (RMS) current limit violations (Irmsviolations)

Peak current limit violations (Ipeakviolations)

In addition, verifyACLimit can be used for average current limit (Iavg) analysis.

AC current limit violations are sometimes also referred as wire self-heat violations. Design Rule
Check (DRC) manuals have these current limits to avoid over-heating a signal-net wire with too
much AC current. To prevent wire self-heating or AC signal electromigration, signal interconnects
should be analyzed for their AC current carrying capacity and measured against the AC current
limits specified by foundry.

Use the verifyACLimit -method parameter to specify the waveform calculation method to be used
(rms, peak, or avg).

Only the Advanced Analysis Engine (AAE) delay calculation engine
supports Ipeak and Iavg calculation. If you specify -method as peak or avg but AAE is not enabled,

the tool displays the following error message:

**ERROR(ENCVAC-92): verifyACLimit checks for -method peak or avg requires the AAE delay

calculation engine. You must use 'setDelayCalMode -engine aae' in Innovus, before

running verifyACLimit for peak or avg checks.

Note: SignalStorm can still be used for Irms calculations, but it does not

support Ipeak or Iavg calculations.

RMS/Peak/Avg Current Limit Violations
By default, verifyACLimit only checks for Irms violations. The tool calculates the Irms at the driver

output and compares it to the ACCURRENTDENSITY tables in the LEF file that contain the Irms limits for

each routing layer. It generates an error and attaches a violation marker to a net if the
calculated Irms for a net exceeds the ACCURRENTDENSITY Irms limit for a routing layer or width used by

the net.

Note: You can use verifyACLimit -useQrcTech to force Irms checks to use the EM rules defined in

the Quantus Technology file (.ict file) instead of the technology LEF file. If

September 2022 1485 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyACLimit.html
../innovusTCR/verifyACLimit.html
../innovusTCR/verifyACLimit.html

either Ipeak or Iavg current limit checks are also turned on, then all checks, including Irms, will use

the EM rules defined in the Quantus Technology file.

The software support checks the RMS table for all layers. To get access to the width-dependent
syntax, we must add an arbitrary single frequency value. Therefore, a typical table might look like:

LAYER met1

 ...

 #RMS AC current limits for met1, at 100 C, allowing max temp change of 20 C

 ACCURRENTDENSITY RMS

 FREQUENCY 1 ; #syntax needs one frequency value

 WIDTH

 0.15 0.3 0.6 1.2 15 ; #values in microns from min to max width

 TABLEENTRIES

 10.0 9.2 8.8 8.7 8.6 ; #mA/um for each width

END met1 ;

The tables are interpreted as piece-wise-linear tables indexed by width and frequency. In the
example above, a wire of width 0.15um can carry 10.0 mA/um * .15um = 1.5mA of current.

The Irms limits in the table can also be scaled for other factors like temperature. For example,

the Irms limits table should be computed for a specific "maximum allowed temperature change"

(maxTchange). The Irms limits are normally proportional to the square-root of the maxTchange.

Therefore, if the table used a maxTchange of 20 degrees, and you want a maxTchange of 10 degrees,
you would use a scale value of sqrt(10/20) = 0.71. The scale value would be given with the -
current_scale_factor parameter of the verifyACLimit command.

The software checks the ACCURRENTDENSITY tables for the following conditions:

If more than one frequency is given, verify_AC_limit will warn that it is only using width
values from the first frequency in the table.

There must be at least two width values, otherwise verify_AC_limit gives an error message
and quits.

The widths must be increasing in value, and the current limits must be increasing in value,
otherwise the software gives an error message and quits.

If no table exists for a routing layer, a warning message is given, and the limit is assumed to

September 2022 1486 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyACLimit.html

be infinite for that layer.

verifyACLimit also checks the ACCURRENTDENSITY tables for the following conditions and takes the
following actions:

If there is no table for a routing layer, the software gives a warning and assumes an infinite
limit for the layer.

If PEAK and AVERAGE tables are present, the software ignores them.

Note: When AAE is used to do Irms check, only hold check is supported as the worst Irms occurs in

hold check.

For Irms, signal EM analysis not only supports the rules defined in the technology LEF file, but also

the rules defined in the Quantus Technology file. But for Ipeak and Iavg, only the rules defined in the

Quantus Technology file are supported. If no EM rule is defined in the Quantus Technology file, the
software will stop checking and give an error message.

These rules defined in the Quantus Technology file are represented in the form of an equation, as
opposed to PWL, which when processed for each wire segment individually results in a more
accurate EM limit calculation.

To perform this analysis, you must load the qrcTechFile file in Innovus using the -
qx_tech_file parameter of create_rc_corner or update_rc_corner. verifyACLimit processes the
limits defined as polynomials inside the qrcTechFile file to determine layer-based AC current
density limits. The Quantus Technology file attached to the current timing view (current RC corner)
is used.

The qrcTechFile file is generated from an ASCII input file called the ICT file. For each layer, the ICT
file includes em_model construct that defines AC and DC current density polynomials. Here's a
sample em_model construct for a metal layer with current limits as an equation (EQU):

em_model {

 em_jmax_dc_avg EQU 1 * 1.594 * (w - 0.003) jmax_factor 105 1.434 110 1.000 115 0.704

120 0.500 125 0.358 L > 5 W < 0.21

 em_jmax_dc_avg EQU 2 * 1.594 * (w - 0.003) jmax_factor 105 1.434 110 1.000 115 0.704

120 0.500 125 0.358 L > 5 W >= 0.21

 em_jmax_dc_avg EQU 4 * 1.594 * (w - 0.003) jmax_factor 105 1.434 110 1.000 115 0.704

120 0.500 125 0.358 L <= 5

 em_jmax_dc_peak EQU 18.04 * (w - 0.003)

 em_jmax_ac_peak EQU 18.04 * (w - 0.003)

 em_jmax_ac_rms EQU sqrt(12.66 * deltaT * (w - 0.003)^2 * (w - 0.003 + 0.264) / (

September 2022 1487 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyACLimit.html
../innovusTCR/verifyACLimit.html

w - 0.003 + 0.0443))

 em_jmax_ac_avg EQU 2.17 (w - 0.003)

 em_recover 0.5

 }

The peak, RMS, and average current limits for this layer are computed using the equations for the
following three em_jmax_ac models.

em_jmax_ac_peak: Peak current limits for this layer.

em_jmax_ac_rms: RMS current limits for this layer.

em_jmax_ac_avg: Average current limits for this layer.

The syntax of EQU for these three em_jmax_ac equations is a numeric expression ending in a
newline. The expression follows normal expression syntax with normal precedence rules:

1. exponentiation (^)

2. * or /

3. + or -

The following reserved names (case-insensitive) can be used in the equations to pass in
parameters.

w: Width of the wire being checked (required for metal layers that should be checked)

deltaT: Delta temperature allowed. Normally only used for RMS limits to specify the max
change in temperature allowed (optional).

jmax_factor: For temperature based derating (optional).

jmax_lifetime: Maximum years/hours of operation for lifetime derating (optional)

The following built-in functions are supported:

^ (exponentiation)

* / (multiply, divide)

+ - (addition, subtraction)

() (grouping of expressions for precedence)

sqrt

log

September 2022 1488 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Specification of derating for lifetime or hours of operation in ICT:

jmax_lifetime lifetime1scale1 [lifetime2scale2.......]

jmax_lifetime provides the ability to set the scaling factor that applies to the current density limits
for different lifetimes. Based on the lifetime value that you specify (using
the em_lifetime_units parameter defined in the process section of the ICT file), the appropriate
multiplication factor is applied to the nominal current density limit. The unit should be specified in
accordance with the setting defined by the em_lifetime_units parameter defined in the process
definition of the ICT file.

Sample extract from the ICT file:

process "name" {

[em_lifetime_units hours | years]

}

conductor "M1" {

em_model {

em_jmax_ac_avg EQU 1 * 1.594 * (w - 0.003) jmax_lifetime 5 4.3 10 1 15 0.4

}

}

Specification for temperature based derating:

jmax_factor temp1scale1 [temp2scale2 ...]

jmax_factor is an optional scaling factor that can be used at different temperatures compared to the
reference temperature (defined by em_tref in the process definition). The temperature
for jmax_factor should be specified in degrees Celsius. Scaling factor is a positive integer: >1 to
scale up, <1 to scale down, or 1 for no scale effect.

Note: When setting scale factors for multiple temperatures, they should be specified in ascending
sequence to enable interpolation.

Sample extract from the ICT file:

September 2022 1489 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

process "name" {

[em_tref value_in_degrees_Celsius]

}

conductor "M1" {

em_model {

em_jmax_ac_avg EQU 1 * 1.594 * (w - 0.003) jmax_factor 105 1.434 110 1.000 115 0.704

120 0.500 125 0.358

}

}

Area dependent parameters for via layers:

Area-based EM limits for vias can be defined using a PWL pair of area value

The PWL keyword in the syntax below signifies the use of area based EM limits.

em_jmax_ac_peak [value | PWL value1area1 | EQU fn(E)]

Sample ICT file for a via layer:

via "via1" {

 em_model {

 em_vcwidth 0.32400

 em_jmax_ac_avg PWL 12.308 0.104976

}

}

September 2022 1490 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Units for EM limits:

You can control the EM units in the ICT file using the following parameters:

process "name" {

EM_Model parameters

[em_tref value]

[em_output_wlt silicon | drawn]

[em_variables variable1 [variable2 [...]]]

[em_conductor_unit A/cm^2 | mA/um]

[em_via_unit A | mA]

[em_via_area_unit A/cm^2 | mA/um^2]

[em_lifetime_units hours | years]

}

The default units are highlighted in bold.

For more information on the ICT file, see the EM_Model section in the "Creating the
ICT File chapter of the Quantus Techgen Reference Manual.

For MMMC design, if you want to choose one view to do the Irms/Ipeak/Iavg check, you need to use

the set_default_view command to specify the view name or else the first defined view will be used
by default.

Before You Begin
Before verifying AC limit, complete the following tasks:

Perform RC extraction.

Perform timing analysis.

September 2022 1491 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Results
After verifying AC limit violations, you can use information in the violation report to repair AC current
limit violations. Use the fixACLimitViolation command to repair the violations. You can use
the Tools - Violation Browser command for interactive viewing and highlighting of violation markers
generated after you use this command.

September 2022 1492 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/fixACLimitViolation.html

Verifying Isolated Cuts
Use the verifyIsolatedCut command to check cuts in all or specified cut layers against the
spacing rules set by setIsolatedCutRule. Verify the isolated cut of the design after the detailed
routing design step.

For more information, see setIsolatedCutRule and verifyIsolatedCut in the Verify
Commands chapter of the Innovus Text Command Reference document.

September 2022 1493 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyIsolatedCut.html
../innovusTCR/setIsolatedCutRule.html
../innovusTCR/setIsolatedCutRule.html
../innovusTCR/verifyIsolatedCut.html
../innovusTCR/Verify_Commands.html

Verifying Tie Cells
Use the verifyTieCell command to check whether or not the tie high/low cells specified
with setTieHiLoMode -cell are connected to the tie high/low nets.

The expected flow is as follows:

1. Specify the tie cell names and other settings with the setTieHiLoMode command.

2. Add tie high/low cells with addTieHiLo.

3. Run verifyTieCell to check whether tie cell connections are correct.

verifyTieCell flags any tie high/low nets that are not connected to tie high/low cells.

The first part of the above figure presents verifyTieCell violation, the second presents no violation
flagged by verifyTieCell.

verifyTieCell -noTieCell filename can be used to verify that pins specified in the file are not
connected to tie cells.

The first part of the above figure presents that no violation is flagged by verifyTieCell -noTieCell,
the second presents that verifyTieCell -noTieCell has detected a violation.

September 2022 1494 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/verifyTieCell.html
../innovusTCR/setTieHiLoMode.html
../innovusTCR/addTieHiLo.html
../innovusTCR/verifyTieCell.html
../innovusTCR/verifyTieCell.html
../innovusTCR/verifyTieCell.html
../innovusTCR/verifyTieCell.html

Viewing Violations With the Violation Browser
Use the Violation Browser form or the violationBrowser text command to view and highlight
violation and lithography hotspot markers interactively.

Viewing DRC or Metal Density Violations
The Violation Browser updates violation markers generated by
the verify_drc and verifyMetalDensity commands incrementally in an Innovus session--that is, it
displays the markers generated the first time you run either of these commands and adds new
markers, or deletes markers, from subsequent runs during the same session. If the software finds
violations during a subsequent run that were already found previously, the browser display does not
change, as there is no incremental update.

The browser can make the incremental changes because verify_drc and verifyMetalDensity can
check a small area of the design and update the database. As a result of this behavior, the Innovus
software saves the information from the first verification run.

Viewing Connectivity, Process Antenna, or AC Limit Violations
The Violation Browser overwrites violation markers from the

verifyConnectivity, verifyProcessAntenna, and verifyACLimit commands if they are run more
than once during an Innovus session. These commands are net-based, not area-based, so the
browser does not make incremental updates for connectivity, process antennas, or AC limit. As a
result of this behavior, the software does not keep the information from the first verification run.

Viewing Violation Markers From Assura, Calibre, Pegasus, or
Other Software Applications
To view violation markers from Assura, Calibre, or Pegasus, or other software applications with the
Violation Browser, use the following commands or forms:

createMarker

September 2022 1495 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/violationBrowser.html
../innovusTCR/verify_drc.html
../innovusTCR/verifyMetalDensity.html
../innovusTCR/verify_drc.html
../innovusTCR/verifyMetalDensity.html
../innovusTCR/verifyConnectivity.html
../innovusTCR/verifyProcessAntenna.html
../innovusTCR/verifyACLimit.html
../innovusTCR/createMarker.html

This command creates markers from data imported from Assura or Calibre. For more
information, see createMarker in the Innovus Text Command Reference document.

loadViolationReport (Tools - Violation Browser - Load Violation Report)
This command loads a report file from Assura, Calibre, Pegasus, or other software
applications and converts it to a format that the Innovus software can interpret. For more
information, see loadViolationReport in the Innovus Text Command Reference document.

violationBrowser (Tools - Violation Browser)
This command displays the markers in the Violation Browser. For more information,
see violationBrowser in the Innovus Text Command Reference document.

Violation Browser Features
Click a violation on the violation list on the form to see a description of the violation. The
description includes actual and target values for AC limit violations, process antenna
violations, and DRC spacing violations.

An actual value is the current value

A target value is the value defined in the LEF file.

Click the + or - sign to collapse or expand the listings of each violation type.

Use the First, Previous, Next, Last, Up, and Down buttons to navigate through the list of
violations.

The browser displays the violations in the following hierarchical order:
+ tool

 + type

 + subtype

 Description

where the tool, type, and subtype value correspond to the value you specify using
the createMarker command.

Use cross probing between the design display area and the Violation Browser.
To display the details of a violation in the Violation Browser form, double-click the violation
marker in the design display area.

September 2022 1496 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

../innovusTCR/createMarker.html
../innovusTCR/loadViolationReport.html
../innovusTCR/loadViolationReport.html
../innovusTCR/violationBrowser.html
../innovusTCR/violationBrowser.html
../innovusTCR/createMarker.html

If there are violation markers for overlapped objects, select the top-most marker in the design
display area and press the space bar on your keyboard to navigate through the other markers.
The type and name of the selected violation is displayed in the lower-left corner of the Innovus
main window. Use the q keyboard shortcut key to select a violation and highlight it in the
Violation Browser form.

Use the Zoom buttons to change the magnification level of a violation.

Use any of the following buttons to change the display for a selected violation:

Highlight Color

Highlight Violations

De-Highlight Violations

Delete Violations

Mark Violations as False

Mark Violations as True

Generate a report file by clicking the Save button.
The report file includes information on the violations shown in the violation browser.

Limit the number of violations to display by using the Show Types panel in the Settings page
of the form.

Limit the area to display by using the Show Area panel in the Settings page of the form.

Filter the violations to display by using the Other Filters panel in the Settings page of the form.

Saving Violations
Choose the Tools - Violation Browser menu item and then click the Save DRC button to save the
violation markers to a file. The DRC file can be read back with the loadDrc command. Alternatively,
you can load the DRC file by using the GUI form. To do so, choose the Tools - Violation
Browser menu item and then click the Load DRC button.

September 2022 1497 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Clearing Violations
Choose the Tools - Violation Browser menu item and then click the Clear Violation button to clear
the violation markers in your design.

September 2022 1498 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Identifying and Viewing Violations

Verifying Well Pins and Bias Pins
With the increase in usage of multiple power supplies, the need to be able to define well-layer
information has increased. The software supports defining and verifying well pins and bias pins.
The requirements for verification include:

The verifyConnectivity command should detect floating wells, which are wells with no well
tap connection.

The verify_drc command should detect shorts between two wells with different connections.

The saveNetlist -phys command should output connections for LVS checking purposes.

The sroute command should ignore masterslice layer during followpin wiring.

Related Information

High-Level Flow for Verifying Well Pins and Bias Pins

Adding Information to the Technology and Cell LEF Files

Specifying Connections of Pins to Wells

Validating Connections of Pins to Wells

Exporting the Verilog Netlist

Important Considerations for Defining Well-Layer Information

High-Level Flow for Verifying Well Pins and Bias Pins
Following is the high-level flow for verifying well pins and bias pins:

Adding information to the technology and cell LEF files to identify well taps and well layers,
and the ports on those layers

Specifying connections of pins to wells using globalNetConnect (or CPF) command

Validating connections using verifyConnectivity command

Validating width, spacing, and shorts with verify_drc command

Exporting the verilog netlist with saveNetlist -phys command for LVS

September 2022 1499 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Verifying Well Pins and Bias Pins

../innovusTCR/verifyConnectivity.html
../innovusTCR/verify_drc.html
../innovusTCR/saveNetlist.html
../innovusTCR/sroute.html
../voltustxtcmdref/globalNetConnect.html

Note: The output verilog physical netlist will contain the port connections to these pins for outside
LVS runs.

Related Information

Important Considerations for Defining Well-Layer Information

Verifying Well Pins and Bias Pins

Adding Information to the Technology and Cell LEF
Files
The following information is required to be provided in the LEF files:

Add type property to LEF LAYER MASTERSLICE to represent *WELL layers

PROPERTY LEF58_TYPE "TYPE NWELL ; " ; See Example 1 below

PROPERTY LEF58_TYPE "TYPE PWELL; "; See Example 2 below

Note: TYPE PWELL is optional. It is added, if required, for triple well and substrate
modeling.

Add MACRO/PIN/PORT shapes for *WELL layers

For well tap cells, the layer *WELL shapes will be in the same PIN/PORT to which the
physical connection is made. This could be the existing power/ground pin or a special
well bias PIN. See Figure 1.

These PIN/PORTs would need to have connections available to the routing layers. See
Figure 2.

For regular standard cells, the *WELL layers shapes will be in their own PIN. See Figure
3.

LEF File Example (Row-Based Checking)

Example 1: PROPERTY LEF58_TYPE "TYPE NWELL

LAYER NWELL

September 2022 1500 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Verifying Well Pins and Bias Pins

TYPE MASTERSLICE ;

PROPERTY LEF58_TYPE "TYPE NWELL ; " ;

PROPERTY LEF58_SPACING "SPACING … ; " ;

PROPERTY LEF58_WIDTH "WIDTH … ; "]

END NWELL

Example 2: PROPERTY LEF58_TYPE "TYPE PWELL

LAYER PWELL

TYPE MASTERSLICE ;

PROPERTY LEF58_TYPE "TYPE PWELL ; " ;

PROPERTY LEF58_SPACING "SPACING … ; " ;

PROPERTY LEF58_WIDTH "WIDTH … ; "]

END PWELL

Figure 1: LEF File Example for WellTap MACRO (CORE)

Figure 2: LEF File Example for VBIAS MACRO (CORE)

September 2022 1501 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Verifying Well Pins and Bias Pins

Figure 3: LEF File Example for Standard Cell MACRO (CORE), Including Filler Cells

Note: The names of the NWELLPIN and VBIAS pins should be the same the ones in the Circuit
Description Language (CDL) definitions that are used for LVS.

September 2022 1502 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Verifying Well Pins and Bias Pins

LEF File Example (Block-Based Checking)

In LEF files for block-based checking, overlapping different wells is considered OK within the same
cell. Also, blocks may typically model wells as obstruction (OBS) information, unlike CORE (ROW
based) which would use PINS.

LAYER NWELLA

TYPE MASTERSLICE ;

PROPERTY LEF58_TYPE "TYPE NWELL ; " ;

PROPERTY LEF58_SPACING "SPACING … ; " ;

PROPERTY LEF58_SPACING "SPACING … LAYER NWELLB ; " ;

PROPERTY LEF58_SPACING "SPACING … LAYER NWELLC ; " ;

PROPERTY LEF58_WIDTH "WIDTH … ; "

END NWELLA

Related Information

Verifying Well Pins and Bias Pins

Important Considerations for Defining Well-Layer Information

Specifying Connections of Pins to Wells
Connections of pins to wells are specified using the globalNetConnect or (CPF) command. Global
net connections connect terminals and nets to the appropriate power and ground nets so that power
planning, power routing, detail routing, and power analysis functions operate correctly for the entire
design.

Related Information

Power Planning and Routing

Connect Global Nets in the Power Menu chapter

Verifying Well Pins and Bias Pins

High-Level Flow for Verifying Well Pins and Bias Pins

September 2022 1503 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Verifying Well Pins and Bias Pins

../innovusUG/Power_Planning_and_Routing.html
../innovusMR/Power_Menu.html#PowerMenu-GlobalNetConnect

Validating Connections of Pins to Wells
The width, spacing, and shorts between wells are verified using the verify_drc command. Use this
command to specify the checks to perform, disable checking, and set limits for errors and warnings
to report. This command creates and saves violation markers in the design database.

Validating Width, Spacing, and Shorts

After the connections are specified, they are validated using the verifyConnectivity command.
This command detects conditions such as opens, unconnected wires (geometric antennas),
unconnected pins, loops, partial routing, and unrouted nets; generates violation markers in the
design window; reports violations.

Also, the -noSoftPGConnect parameter of this command is used to check connections that are only
complete through the wells. This parameter disables the checking of soft power/ground connects.

Related Information

Verifying Connectivity

Verifying Well Pins and Bias Pins

High-Level Flow for Verifying Well Pins and Bias Pins

Exporting the Verilog Netlist
The saveNetlist command is used to write the netlist file of the design. The -phys parameter of this
command is used to write out physical cell instances, and insert power and ground nets in the
netlist. This command is used to output connections for LVS.

Related Information

Importing and Exporting Designs

September 2022 1504 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Verifying Well Pins and Bias Pins

../innovusUG/Identifying_and_Viewing_Violations.html#IdentifyingandViewingViolations-VerifyingConnectivity
../innovusTCR/saveNetlist.html

Important Considerations for Defining Well-Layer
Information
Consider the following aspects while defining well-layer information:

The usage is applicable only for power and ground PINs

Most PINs will be DIRECTION INOUT

PINs on the *WELL layers do not need "SHAPE" attribute as that it only used to guide the
sroute followpin behavior and the *WELL layers are connected by abutment only, no
additional routing is added

The *WELL layer shapes can abut to the boundary of the cell or extend outside

Typically derived directly from the layout information (GDSII or OA layout view)

In the case of substrate modeling, the PWELL shapes are typically created from an
ANDNOT operation from the cell's boundary and NWELL shape

If all the cells have an implied connection to the substrate and there is no "tap" connection
from the topside for the PWELL, then all the PWELL shapes are included in the VSS PINs of
all of the CLASS CORE cells (instead of VSS for the tap and PWELLPIN for the non-tap cells)

Related Information

Verifying Well Pins and Bias Pins

High-Level Flow for Verifying Well Pins and Bias Pins

September 2022 1505 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Integration with LPA and CCP
Overview

Results

Before You Begin Running LPA

Running LPA from Innovus

Routing Layers Only Mode

Sign-Off Mode

Before You Begin Running CCP

Running CCP from Innovus

CCP Flow in Innovus

Running CCP in Cadence Model Flow

Viewing Hotspots

September 2022 1506 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Overview
The integration of Litho Physical Analyzer (LPA) and Cadence CMP Predictor (CCP) with
Innovus™ Implementation System allows you to perform the foundry-recommended or mandatory
lithography and CMP checks at the block and chip level in your design directly from the Innovus
GUI, much earlier in the development cycle. You can run LPA during the Routing and Sign-Off
phases, and CCP during the Sign-Off phase.

LPA enables you to identify litho hotspots, Design for Manufacturing hotspots, layout optimization
opportunities, and predict contours across process windows based on foundry-qualified technology
files. It accurately predicts manufacturing variations associated with lithography and etch. Once
detected, you can fix these litho hotspots using the NanoRoute routing technology.

Note: To learn more about the Cadence Litho Physical Analyzer tool, refer to the Litho Physical
Analyzer User Guide.

CCP, on the other hand, allows you to identify the potential yield issues that are due to the
variations in interconnect thickness caused by Chemical and Mechanical Polishing (CMP). CCP
accurately predicts the thickness of the interconnect and dielectric for any design and any
manufacturing process that has been calibrated. The resulting prediction is then used to minimize
performance loss and to identify thickness-related yield issues.

Note: To learn more about the Cadence CMP Predictor tool, refer to the Cadence Chemical
Mechanical Polishing Predictor User Guide.

You use the DFM menu of the main Innovus window to configure LPA and CMP runs on the design.
However, the DFM menu might not appear on your Innovus window or one of its submenu options
might be disabled if the prerequisite conditions are not satisfied (See Before You Begin Running
LPA and Before You Begin Running CCP).

Results
The output of an LPA or CCP run is an HIF file containing information about all detected hotspots.
You can view this HIF file in the Innovus Violation Browser and fix the reported hotspots using
NanoRoute.

Before You Begin Running LPA
Before you can run LPA from Innovus, the following conditions must be met:

You must have the LPA license to run litho sign-off from Innovus. However, to run LPA in
Routing Layers Only mode, the Innovus DFM Option license is sufficient and no separate LPA

September 2022 1507 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

license is required.

You must have either the Encounter Advanced Node GXL Option or Innovus DFM
Option license.

You must be able to launch version 9.2 (or a later version) of LPA from Innovus. In other
words, the installation path to LPA must be present in your path variable.

You must have LPA TechFiles that are compatible with the design technology.

Running LPA from Innovus
The integration of LPA with Innovus allows you to check for litho hotspots and predict contours
across process windows earlier in the development cycle, much before the Sign-Off phase. The
integration is smooth and easy to configure, and does not require any user intervention to stream
out or set up LPA.

You can run LPA from Innovus in two modes:

Routing Layers Only Mode

Sign-Off Mode

Further, both these modes also support the DRC+ verification methodology from
GLOBALFOUNDRIES, in addition to the standard LPA flow. The DRC+ methodology utilizes a
foundry-supplied DRC+ Pattern technology file, but the use model is otherwise identical to the
standard LPA flow. For guidance on the choice of technology files, consult with your foundry.

Routing Layers Only Mode
Routing Layers Only mode is the fast mode of LPA to flag L1 hotspots in a design at the block level
during the Implementation phase. In this mode, LPA runs about 100X faster than Sign-Off Mode and
helps you identify and fix most hotspots as routing is completed.

Note: LPA in Routing Layers Only mode is enabled only when you have the Innovus DFM Option
license.

The following diagram shows the design flow for running LPA in Routing Layers Only mode.

September 2022 1508 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Running LPA in Routing Layers Only Mode from the GUI

To run LPA in Routing Layers Only mode, launch Innovus by using the innovus command and load
the design. When Innovus is invoked, it automatically loads all the required LPA files from the LPA
installation path. Once the Innovus GUI is displayed, perform the following steps:

1. Choose Tools -> DFM -> Litho -> Verify Litho from the Innovus menu.

September 2022 1509 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

2. This opens the Litho Verify form, with the Routing Layers tab selected by default. In the LPA
TechFile field, specify the path and name of the qualified LPA Mx- technology file that
includes process-specific hotspot checking options and the LPA model. Alternatively, if you
want to enable the GLOBALFOUNDRIES DRC+ flow, you specify the path to the foundry-
supplied DRC+ Pattern technology file in the LPA TechFile field.

September 2022 1510 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

3. In the Stream Map field, specify the stream out map file, which maps the GDS stream to the
layers in the Innovus database. Ensure that the GDS layer numbers in the stream out layer
map matches the numbers in the LPA layer map.

4. In the Run Directory field, specify the LPA output directory that will contain one subdirectory
for each layer when LPA is run with the configuration file for that layer.

5. LPA Conf is an optional field. Select this check box and specify the name and path of the LPA
custom configuration file. This file, if specified, controls all run options of LPA.

6. Incr. HIF is also an optional field. Select this check box and specify the name and path of the
HIF file that you want to use for incremental validation. This HIF file includes the locations that
identify the areas affected by each hotspot fix. LPA reads these locations and performs
incremental checking only in these areas. This reduces the time for validation.

7. Another optional field is Previous Run Dir. You use this option when the design has been
changed but no HIF file that identifies the changed areas is available. In this field, you specify
the path to the run directory of a previous Verify Litho run that you want to use for XOR-based
incremental validation. When this option is selected, the previous run results are compared to
the new design and LPA is run only in locations where the layout has changed and where
hotspots previously existed, thereby reducing the overall validation run time.

8. By default, LPA uses the LSF settings from the Multi-CPU Settings GUI in Innovus. However,
you can change the multi-CPU settings for the LPA run by selecting the Multi CPU Settings
button and specifying the new settings in the Multiple CPU Processing form. Note that this will

September 2022 1511 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

also change the distributed options for all Innovus commands.

9. On the Basic tab of the Multiple CPU Processing form, if running locally, use the Number of
Local CPU(s) field to set the number of local CPUs used. If using LSF to run, the field Number
of Remote Machine(s) field specifies the number of LSF machines that you want to use for the
LPA run.

10. On the Host Setup tab, select the lsf radio button to set the distribution method as LSF and
specify the LSF arguments in the LSF Arguments field or select the local radio button to use
local cpu(s) only.
Note: It is recommended to use local or LSF distribution method for the Innovus-LPA
integration.

September 2022 1512 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

11. Specify the queue and resource string that is needed for the LSF launch in
the Queue and Resource fields.

12. Select the OK button to confirm the multiple CPU settings and close the form.

13. Select the Submit button in the Litho Verify form to launch the LPA run with the specified
settings.
Note: In Routing Layers Only mode, LPA runs in blocking mode. You cannot perform any
operations in the Innovus GUI until the LPA run is completed.

During the LPA run, the output is sent to the Innovus Shell window. After LPA is successfully
completed, the LPA summary file with hotspot count is presented in the Innovus Shell window.

September 2022 1513 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Running LPA in Routing Layers Only Mode from the Command Line

You can also run LPA in the Routing Layers Only mode from the Innovus command line by using
the verifyLitho -routingLayersOnly option. You must have the LPA techfile and the streamMap
file to run LPA in this mode. The streamMap file is same as the one used by the
Innovus streamOut command.

To run run LPA in the Routing Layers Only mode from the command line, launch Innovus by using
the innovus command and load the design. When invoked, Innovus automatically loads all the
required LPA files from the LPA installation path. Once the innovus> prompt is displayed, run the
following command at the prompt:

innovus> verifyLitho -routingLayersOnly -techFile LPATechFile_dir -dCUIirdirection

./LPA/Results

September 2022 1514 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

../innovusTCR/streamOut.html

Viewing Hotspots

You can load the HIF file (created in the output directory by the LPA run) in
the Violation Browser directly to view the detected litho hotspots. To do this, perform the following
set of steps:

1. Select Tools -> Violation Browser -> Load Violation Report.

2. This opens the Load Violation Report form. Specify the path and name of the HIF file in
the File Name field.

3. Select the CDNLitho radio button to specify the HIF format and select the OK button to view
the hotspots in the Violation Browser.

September 2022 1515 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

You can also load the hotspots from the Litho Status window (Tools -> DFM-> Litho -> Check
Litho Status) by specifying the results directory name in the Run Directory field and selecting
the Load HIF button. This will open up the Violation Browser to show the hotspot details.

September 2022 1516 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Note: You can also specify a different run directory name in the Run Directory field of the Litho
Status window and then click the Update button to check the output of the specified LPA run.

Fixing Hotspots

Next, you fix the hotspots identified by the LPA run by using Nanoroute. There can be several ways
to fix hotspots depending on the design technology. Please ask your Cadence representative for
technology specific applications notes, which may provide advanced methodologies. To use the
standard fixing approach, perform the following set of steps:

1. At the Innovus command line, type the following to set up Nanoroute and run it on the design
to repair the litho hotspots.
innovus> setNanoRouteMode -droutePostRouteLithoRepair true

innovus> globalDetailRoute

2. After Innovus has competed globalDetailRoute, save the design for verification. This will also
save the markers within the design, indicating the areas of change.
innovus> saveDesign Litho_Fixed.enc

3. The Innovus router marks the areas of change and you can run Litho only on these areas of
change rather than on the complete design, thereby saving time. Write out the incremental HIF

September 2022 1517 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

../innovusTCR/globalDetailRoute.html

file that will be used to run Litho only on the changed areas.
innovus> writeHif -fCUIile IncrVerify.hif

4. Now, run LPA in the incremental area to check for hotspots after Innovus has fixed the litho
hotspots. Open the Litho Verify form, with the Routing Layers tab selected by default. Specify
the name of the incremental HIF file in the Incr. HIF field and click Submit to run LPA only on
the changed areas.

If LPA reports no more litho hotspots in this run, the verification task is complete. However, if there
are litho hotspots reported, repeat the steps to load the HIF file (created in the output directory by
the latest LPA run) in the Violation Browser, and fix the hotspots using Nanoroute. The design is
marked as verified when the LPA run on the incremental HIF file reports zero litho hotspots.

Selecting and Excluding Nets

While fixing hotspots, you can choose to exclude certain or areas in the design. verifyLitho allows
you to specify many options for selecting or excluding areas within a design by area, layer
identification, or cell. These options can be added to a configuration file which can be passed
to verifyLitho by file with the -config config_file_name option. For information about these
options, refer to the Litho Physical Analyzer User Guide in the MVS distribution.

Besides the native verifyLitho options for selection and exclusion, you can use Innovus
commands to specify which should be affected by routing. To prevent a net from being moved
during routing, simply specify that the net should not be touched during routing by using the
following command:

setAttribute -nCUIet net_name -skip_routing true

This will prevent the net from being modified during detail route. Be sure to turn this attribute to false
after litho fixing is complete.

Sign-Off Mode
You run LPA in Sign-Off mode for Litho sign-off, as mandated by foundries. Unlike Routing Layers
Only mode where no user input is required, Sign-Off mode requires you to provide the LPA
configuration file containing the Techfile and other settings. You must run LPA Sign-Off mode
before handing off the design to the top-level or tape-out.

The following diagram shows the design flow for running LPA in Sign-Off mode.

September 2022 1518 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Running LPA in the Sign-Off Mode from the GUI

To run LPA in Sign-Off mode, launch Innovus by using the innovus command and load the design.
When Innovus is invoked, it automatically loads all the required LPA files from the LPA installation
path. Once the Innovus GUI is displayed, perform the following steps:

1. Choose Tools -> DFM -> Litho -> Verify Litho from the Innovus menu.

September 2022 1519 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

2. This opens the Litho Verify form, with the Routing Layers tab selected by default. Select
the Sign-Off tab.

September 2022 1520 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

3. Specify the path and name of the LPA output directory in the Run Directory field. All output
data from the LPA run will be stored under this directory.

4. Specify the name and path of the LPA configuration file in the LPA Conf field. This
configuration file should contain the Techfile location for all layers and any additional LPA
commands that you want to execute during the LPA run.
Alternatively, if you want to enable the GLOBALFOUNDRIES DRC+ flow, specify the name
and path of the configuration file that points to the foundry-supplied DRC+ Pattern technology
file.

5. In the Additional CPUs field, specify the number of additional CPUs you want to use for the
current sign-off LPA run. This number is in addition to the total number of CPUs specified in
the Total CPUs field. A higher number of additional CPUs results in decreased run time.

6. Optionally, you can specify the name and path of the GDS list file and Stream Out Map file in
the GDS List File and Stream Out Map fields, if you want to run Poly, Diffusion, or Metal1. The
GDS list file is a text file containing the list of GDS files for LEF abstracts. The Stream Out
Map file is created by Innovus to map the GDS stream to the layers in the Innovus database.
By default, LPA runs on the interconnect layers in Sign-Off mode but if the GDS List file and
Stream Out Map file are specified, LPA runs on the potential IP blocks defined in these files.

7. If you have already run LPA in Sign-Off mode once and are running it again to check if all
detected hotspots have been fixed, specify the name and path of the HIF file that you want to

September 2022 1521 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

use for incremental validation in the Incr. HIF field. This HIF file includes the locations that
identify the areas affected by each hotspot fix. LPA reads these locations and performs
incremental checking only in these areas. This reduces the time for validation.

8. If you have already run LPA in Sign-Off mode once and are running it again, but there is no
HIF file that identifies the changed areas, you use the Previous Run Dir field to specify the
path to the run directory of the previous Verify Litho run for XOR-based incremental validation.
When this option is selected, the previous run results are compared to the new design and
incremental checking is performed only in locations where the layout has changed and where
hotspots previously existed, thereby reducing the overall validation run time.

9. By default, LPA uses the LSF settings from the Multi-CPU Settings GUI in Innovus. However,
you can change the multi-CPU settings for the LPA run by selecting the Multi CPU
Settings button and specifying the new settings in the Multiple CPU Processing form. Note
that this will also change the distributed options for all Innovus commands.

10. On the Basic tab of the Multiple CPU Processing form, if running locally, use the Number of
Local CPU(s) field to set the number of local CPUs used. If using LSF to run, the Number of
Remote Machine(s) field specifies the number of LSF machines that you want to use for the

September 2022 1522 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

LPA run.

11. On the Host Setup tab, select the the lsf radio button to set the distribution method as LSF and
specify the LSF arguments in the LSF Arguments field or select the local radio button to use
local CPUs only.
Note: It is recommended to use local or LSF distribution method for the Innovus-LPA
integration.

12. Specify the queue and resource string that is needed for the LSF launch in
the Queue and Resource fields.

13. Select the OK button to confirm the multiple CPU settings and close the form.

14. Select the Submit button in the Litho Verify form to launch the sign-off LPA run with the
specified settings.
Note: In Sign-Off mode, LPA runs in non-blocking mode. You can continue working with the
Innovus GUI and perform design activities in parallel with Litho sign-off. If you exit Innovus
during this period, a warning is displayed informing you that LPA is still running and you can
load the results later.

15. On the successful launch of LPA, the Litho Verify form closes and the Litho Status window is

September 2022 1523 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

automatically displayed. The Run Directory field of this window is automatically populated
from the Litho Verify form.
The Litho Status window provides updated information about the status of the LPA run.
The Run Status field provides information on the completion percentage and approximate
remaining time of the LPA run. The run status is periodically updated in the Detail Status area.
You can click the Update button to manually update the status. To terminate the current LPA
run, click the Kill button.

On completion of the LPA run, the Litho Status window displays the summary of the hotspots
detected by the run. You can close the Litho Status window anytime during the LPA run and
open it again by selecting Tools -> DFM-> Litho -> Check Litho Status.

September 2022 1524 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Note: You can also specify a different run directory name in the Run Directory field of the Litho
Status window and then click the Update button to check the output of the specified LPA run.

Running LPA in the Sign-Off Mode from the Command Line

You can also run LPA in the Sign-Off mode from the Innovus command line by using
the verifyLitho -signOff option. You must have the LPA techfile and the GDS to LPA layer map
file to run LPA in this mode. By default, LPA runs on the interconnect layers in sign-off mode but if
the GDS List file and Stream Out Map file are specified, LPA runs on the potential IP blocks defined
in these files.

To run run LPA in the sign-off mode from the command line, launch Innovus by using
the innovus command and load the design. When invoked, Innovus automatically loads all the
required LPA files from the LPA installation path. Once the innovus prompt is displayed, run the
following command:

verifyLitho -signOff -dCUIirdirection ./LPA/Results -cpu 1 -config lpa.conf -gdsList

<leaf/*.gds> -mapFile innovusGds.map

The GDS to LPA layer map file should have path of the lpa configuration file (lpa.conf). Its syntax is
as follows:

#userDefined name GDSlayer FAB_techFile_layer_name

M1 31:0 M1

September 2022 1525 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

M2 32:0 M2

For more details, refer to the Litho Physical Analyzer User Guide.

Viewing Hotspots

You can load the HIF file (created in the output directory by the LPA run) in
the Violation Browser directly to view the detected hotspots. To do this, you perform the following
set of steps:

1. Select Tools -> Violation Browser -> Load Violation Report.

2. This opens the Load Violation Report form. Specify the path and name of the HIF file in
the File Name field.

3. Select the CDNLitho radio button to specify the HIF format and select the OK button to view
the hotspots in the Violation Browser.

September 2022 1526 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

4. You can also load the HIF file from the Litho Status window (Tools -> DFM-> Litho -> Check
Litho Status) by specifying the results directory name in the Run Directory field and selecting
the Load HIF button. This will open up the Violation Browser to show the hotspot details.

September 2022 1527 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Fixing Hotspots

Next, you fix the hotspots identified by the LPA run by using Nanoroute. The Innovus router marks
the areas of change in the design, which you can use to write out the incremental HIF file. The steps
to perform this task are similar to the steps performed in the Routing Layers Only mode (see Fixing
Hotspots). Once you create the incremental HIF file, use it to run LPA only on the changed areas
rather than on the complete design, thereby saving time. Here, you run LPA from the Sign-Off tab by
specifying the name of the incremental HIF file in the Incr. HIF field.

September 2022 1528 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Before You Begin Running CCP
Before you can run CCP from Innovus, the following conditions must be met:

You must have the CCP license to run CCP from Innovus.

You must have either the Encounter Advanced Node GXL Option or Innovus DFM
Option license.

You must be able to launch version 9.2 (or a later version) CCP from Innovus. In other words,
the installation path to CCP must be present in your path variable.

You must haveCCP TechFiles that are compatible with the design technology.

Running CCP from Innovus
The integration of CCP with Innovus allows you to check for the potential yield issues that are
caused by variations in interconnect thickness for any design and any manufacturing process that
has been calibrated. You can run CCP to identify L1 hotspots on full chip or on blocks larger
than 1mm x 1mm.

Following are the main advantages of running CCP from within Innovus.

Supports manufacturability checks of routed blocks

Supports fast check and sign-off verification

Eliminates translation and setup hassles

Runs with default out-of-the-box setup

You need to use the Cadence model flow to verify your design.

CCP Flow in Innovus
The following diagram shows the design flow for running CCP in Sign-Off mode.

September 2022 1529 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

Running CCP in Cadence Model Flow
To run CCP analysis on your design using the Cadence model flow, launch Innovus by using
the innovus command and load the design. When Innovus is invoked, it automatically loads all the
required CCP files from the CCP installation path. Once the Innovus GUI is displayed, perform the
following steps:

1. Choose Tools -> DFM -> CMP -> Verify CMP from the Innovus menu.

September 2022 1530 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

2. This opens the CMP Verify form, with the Sign-Off tab selected by default. In
the VMP Files field, specify the name and path of the vmp.xml file to be used for the CMP
run. These files can be downloaded from the foundries. These files are usually packaged in a
DDK kit. The extraction and prediction results of the CMP analysis are based on the process
specifications in your vmp file.

September 2022 1531 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

3. In the Output Directory field, specify the CMP output directory that will contain the extraction
and prediction results of the CMP run.

4. In the VMP Name field, specify the name of the metal scheme from the vmp.xml file.

5. Optionally, you can specify the name and path of the CMP configuration file in
the CCP Conf field. This file, if specified, controls all run options of the CMP simulation.

6. The Start Level and End Level fields allow you to control the number of layers for prediction.
These fields are optional. You can specify the starting metal level and end metal level in
the Start Level and End Level fields for the CMP simulation. You can select them from the
drop-down menus associated with these two fields.

7. GDS List File and Stream Out Map fields are also optional. You can specify the name and
path of the GDS list file and Stream Out Map file in these fields. The GDS list file is a text file
containing the list of GDS files for LEF abstracts. The Stream Out Map file is created by
Innovus to map the GDS stream to the layers in the Innovus database.
CMP runs on the interconnect layers by default, but if the GDS List file and Stream Out Map
file are specified, CMP runs on the potential IP blocks defined in these files.

8. By default, CMP uses the multiple CPU settings from the Multi-CPU Settings GUI in Innovus.
However, you can change the multi-CPU settings for the CMP run by selecting the DP
Settings button and specifying the new settings in the Multiple CPU Processing form. For
example, if you enter 8 in the Number of Remote Machine(s) field, eight jobs will be farmed

September 2022 1532 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

out to LSF.
Note: If you modify the multi-CPU settings for CMP analysis, this will also change the
distributed options for all Innovus commands.

9. On the Host Setup tab, select the rsh radio button to set the distribution method as RSH and
add the RSH host name to the Hosts section.

September 2022 1533 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

10. Select the OK button to confirm the multiple CPU settings and close the form.

11. Select the Submit button in the CMP Verify form to launch the CMP run with the specified
settings.
Note: CMP runs in non-blocking mode. You can continue working with the Innovus GUI and
perform design activities while the CMP simulation is running. If you exit Innovus during this
period, a warning will be displayed informing you that CMP is still running and you can load
the results later.
On the successful launch of the CMP simulation, the CMP Verify form closes and
the CMP Status window is automatically displayed. This window provides updated
information about the status of the CMP run.

September 2022 1534 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

On completion of the CMP run, the CMP Status window displays the summary of the hotspots
detected by the run and an rdb format output file is generated in the results directory.

You can close the CMP Status window anytime during the CMP run and open it again by
selecting Tools -> DFM-> CMP -> Check CMP Status.

Note: You can also specify a different run directory name in the Run Directory field of the CMP
Status window to check the output of another CMP run.

Viewing Hotspots
You can load the HIF file (created in the output directory by the CMP run in the rdb format) in
the Violation Browser directly to view the detected hotspots. To read how to load the HIF file in
the Violation Browser, refer to Viewing Hotspots.

You can also load the HIF file from the CMP Status window (Tools -> DFM-> CMP -> Check CMP
Status) by specifying the results directory name in the Run Directory field and selecting the Load

September 2022 1535 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

HIF button. This will open up the Violation Browser to show the hotspot details.

September 2022 1536 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

September 2022 1537 Product Version 22.10

 Innovus User Guide
Verification Capabilities--Integration with LPA and CCP

10

ECOs and Interactive Design Editing

ECO Flows

ECO Directives

Interactive ECO

Editing Wires

September 2022 1538 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing

../innovusTCR/defOut.html

ECO Flows
This appendix summarizes the variety of Engineering Change Order (ECO) flows possible with
Innovus, and outlines the current approach for each flow.

Overview

Pre-Mask ECO Changes from a New Verilog File

Pre-Mask ECO Changes from a New DEF File

Pre-Mask ECO Changes from an ECO File

Post-Mask ECO Changes from a New Verilog Netlist (Using Spare Cells Flow)

Post-Mask ECO Changes from a New Netlist (Using Gate Array Cells Flow)

Post-Mask ECO Changes from a New Verilog Netlist (Using Gate Array Filler Cells Flow)

September 2022 1539 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

Overview
Many types of ECO flows are possible. The ones outlined in this appendix cover the most common
cases. You can use these flows directly, or you can modify them for your design.

For an example ECO file, see the ECO Directives chapter in the Innovus User Guide.

Assumptions
The ECO flows in this appendix assume the following:

The old Verilog netlist and the new Verilog netlist have already been uniquified so that no
Verilog module is instantiated more than once.

Your design uses an existing floorplan.

Your old placement, special routing, and routing information is saved in one of the Innovus
formats, DEF, and so forth.

Flows
This appendix describes various types of ECO flows:

Pre-Mask ECO Changes from a New Verilog File
If you make changes to the netlist, use this flow to load the new netlist and restore all the
physical data from the previously saved design.

Pre-Mask ECO Changes from a New DEF File
Allows you to make external changes that include new cell placements from a DEF file, while
preserving your previous placement, optimization, and optionally, previous routing
information; for example, a clock tree with placements and specialized buffer insertion with
placements.

Pre-Mask ECO Changes from an ECO File
Allows you to use an ECO file to make changes to the netlist.

September 2022 1540 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

Post-Mask ECO Changes from a New Verilog Netlist (Using Spare Cells Flow)
Allows you to make late logic changes after the masks are made. This flow uses pre-existing
spare cells, so no poly/diffusion changes are allowed and only the routing is modified. You
can direct the software to make routing changes only on specific layers.

Post-Mask ECO Changes from a New Netlist (Using Gate Array Cells Flow)
Allows you to make late logic changes after the masks are made. This flow uses pre-existing
Gate Array Cells (GACORE Site), so no poly/diffusion changes are allowed, and only the
routing is modified. You can direct the software to make routing changes only on specific
layers.

Post-Mask ECO Changes from a New Verilog Netlist (Using Gate Array Filler Cells Flow)
Allows you to make late logic changes after the masks are made. This flow uses pre-existing
Gate Array Style Filler Cells (CORE Site) to create new cells. No poly/diffusion changes are
allowed, and only the routing is modified.

Pre-Mask ECO Changes from a New Verilog File
In this flow, your design is placed and possibly routed, and you want to make a few changes. The
changes are done before the masks are made, so it is a pre-mask ECO flow and there is no need to
keep the original poly/diffusion patterns.

September 2022 1541 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

Preparation
Before starting the flow steps, you should have the following files available:

oldchip.fp.gz
oldchip.fp.spr.gz
Create these files (floorplan, special routing, placement, and routing) by using the saveFPlan
 command.

or

root.init (oldchip)

oldchip.globals
oldchip.def

Create this file (DEF formats for floorplan, placement, special routing, optionally routing) by
using the defOut command.

newchip.v
The new Verilog file is typically created by manually editing the old Verilog netlist.

Note: If you want to preserve routing, your existing design must contain the antenna diode
cells that were added during the previous routing.

Flow
1. Read the new netlist

2. Load old floorplan/placement/routing data

3. Add level shifter or isolation cell for low power design (optional).

4. Remove filler cells and notches (optional)

5. Perform incremental placement

6. Add filler cells (optional)

7. Perform incremental or final route
Or,

Use the ecoDesign command to perform the pre-mask ECO operations.

September 2022 1542 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/saveFPlan.html
../innovusTCR/defOut.html
../innovusTCR/ecoDesign.html

Steps

1. Read the new netlist.

source newchip.globals # same as oldchip.globals except use newchip.v
init_design

or
source oldchip.globals
set init_verilog "newchip.v"
init_design

The netlist includes old libraries, global power connections, and so forth. It typically uses
old timing constraints. However, new timing constraints can be used.

2. Read the old floorplan, special routes, placements and routing from the old floorplan and def
files.

loadFPlan oldchip.fp ecoDefIn -reportFile inecoDef.rpt oldchip.def

applyGlobalNets

During this step,

Matching instances receive old placements.
Soft matching happens when a DEF net name does not have an equivalent name and
another net is found in memory, that has the same connections as described in the DEF.
The most common case for soft matching is when nets have multiple aliases in a
hierarchical design "net1" = "inst1/net2" = "inst1/inst2/net3" and so on. Any of
these net names can be used in the DEF and can have the same connections.
Without soft matching, net `a', for example, is removed and net `b' is created in it's place,
resulting in ripping of the wire.

Instances existing only in the oldchip.def file are ignored, so they are not added to the
current netlist.

Changed instances (new cell) are assigned a new cell and are left unplaced.

Physical-only cells in the old netlist (marked with +SOURCE DIST in the DEF) get
added (for example, well taps, end caps, and filler cells).

Instances that are only in the new netlist are left unplaced.

Routing for existing or modified nets is restored (possibly with opens or shorts).

Routing for deleted nets is removed.

September 2022 1543 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/init_design.html
../innovusTCR/loadFPlan.html
../innovusTCR/ecoDefIn.html
../innovusTCR/applyGlobalNets.html

3. (Optional) Add level shifter or isolation cell for low power design.

readpowerintent -cpf test.cpf
commit_power_intent -keepRows

During this step, level shifters or isolation cells will be added to new ECO nets that cross
the power domain. Retain the old design row definitions. The newly added cells will be
unplaced. The ecoPlace command will place them in their respective power domain
boundaries.

4. Remove filler cells or notch fill (if present).

deleteFiller -prefix FILL
deleteNotchFill

5. Perform incremental placement.

ecoPlace

Unplaced instances are placed, previously placed cells are not moved, and routing is
unaffected. You can manually preplace critical cells before using the ecoPlace command
by placing the cell in the bottom, left corner, selecting it, and then moving it graphically.

placeInstance i1/i2/i3 0 0
selectInst i1/i2/i3

6. Add filler cells back into the rows.

addFiller -cell {FILL4 FILL 2 FILL 1} -prefix FILL

Global power connections are performed automatically based on rules loaded from the
globals file or floorplan file earlier.

7. Perform incremental or final route.

ecoRoute

NanoRoute automatically detects modified and new nets and incrementally routes any nets
that are incomplete or have violations.
Or,

Use the ecoDesign command to perform ECO operations. For example, the following
command performs a pre-mask ECO:
ecoDesign original.enc.dat top_cell newchip.v

Use the ecoDesign -noEcoPlace or ecoDesign -noEcoRoute command to perform ECO

September 2022 1544 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/read_power_intent.html
../innovusTCR/commit_power_intent.html
../innovusTCR/ecoPlace.html
../innovusTCR/deleteFiller.html
../innovusTCR/deleteNotchFill.html
../innovusTCR/placeInstance.html
../innovusTCR/selectInst.html
../innovusTCR/addFiller.html
../innovusTCR/ecoRoute.html
../innovusTCR/ecoDesign.html

operations. The command interrupts before ecoPlace or ecoRoute. This provides user more
flexibility to control separate steps or perform some interactive ECO operations.

Pre-Mask ECO Changes from a New DEF File
In this flow, your design is placed and possibly routed, and you can make a few changes with
known cell placements from a new DEF file.

Examples of this flow include:

Bringing in an external clock tree after placement

Bringing in external optimizations such as new buffers or cell resizing

Bringing in external postRoute fixes such as new buffers or cell resizing

Preparation
Before starting the flow steps, you should have the following files available:

oldchip.enc

oldchip.enc.dat/

Create these files by using the saveDesign command after the previous placement,
optimization, and routing steps.

or

oldchip.globals

oldchip.v

oldchip.def

Create these files by using the saveNetlist and defOut commands after the previous
placement, optimization and routing steps.

newchip.def
The new DEF file is typically created by an external tool, or possibly done manually to fix a
few critical postRoute violations with specific placements required. Any necessary physical

September 2022 1545 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/saveDesign.html
../innovusTCR/saveNetlist.html
../innovusTCR/defOut.html

cells (+SOURCE DIST) are expected to also be in the new DEF.

You must start with the old Verilog and update the Verilog modules with new ports and nets
as required to match the new DEF netlist. You need to make sure the DEF instance names
match the expected Verilog names (for example, a new buffer added to the output of
instance /i1/i2/i3 should have a name such as /i1/i2/mynewbuf_i100), otherwise
spurious Verilog ports will be created.

Flow
1. Read the old floorplan/netlist/placements and optionally the old routing.

2. Compare the old netlist to DEF

3. Load the ECO file

4. Write the modified netlist (optional)

5. Read the new placement data

6. Perform incremental or final routing

Steps
1. Read the old Verilog netlist, floorplan, and placement information into Innovus by doing one of
the following:

restoreDesign oldchip.enc.dat top_name
or
source oldchip.globals
init_design defIn oldchip.def

This step reads in the following information:

Old libraries and global power connections

Old timing constraints (could be new constraints if necessary)

Special routing, placements and optionally old routing

Old filler cells, end caps, well taps, and other cell information

September 2022 1546 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/restoreDesign.html
../innovusTCR/init_design.html
../innovusTCR/defIn.html

2. Compare the current old netlist to the new DEF netlist to create an ECO file.

ecoCompareNetlist -def newchip.def -outFile oldchip.eco

The ECO file has all the changes required to make the current netlist match the new netlist.
Physical-only cells are ignored (for example, +SOURCE DIST cells such as filler, end caps, and well
taps). Examine the ECO file to ensure it is correct.

4. Load the ECO file to incrementally update the current netlist to match the new netlist.

loadECO oldchip.eco
During this step,

Instances and nets that are only in the old Verilog are deleted (for example, an old clock
tree). Some Verilog ports may now be unconnected due to deleted nets.

New instances are still unplaced.

New ports and nets are created in Verilog modules as needed to connect instances in
different Verilog modules.

If any nets are deleted, then any routing attached to the net is also deleted.

If any nets are modified, then any routing on those nets is left unchanged for later repair.

Global power connections are done automatically based on the rules from the globals
file or floorplan file loaded earlier.

5. (Optional) Write out the modified Verilog netlist.

saveNetlist oldchip_after_eco.v

The oldchip_after_eco.v file should be the same netlist as newchip.def, although it is
possible for the net names to be different (any new DEF net names that connect across multiple
Verilog modules may be renamed). If you need a DEF file that has exactly the same net names,
you can use the command.

6. Read in the new placements.

defIn newchip.def

During this step,

All instance placements are updated, including unplaced instances. Typically any
existing old instances are not moved, but nothing prevents them from moving if the new
DEF moved them.

Use the deleteFiller command before using defIn if the new DEF contains different

September 2022 1547 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/ecoCompareNetlist.html
../innovusTCR/loadECO.html
../innovusTCR/saveNetlist.html
../innovusTCR/defIn.html
../innovusTCR/deleteFiller.html

fill, end cap, or well tap cells (+SOURCE DIST). If the filler cells are not changed,
the deleteFiller command is not necessary. If the new DEF does not have any filler
cells, the filler cells (if any) from the old DEF are left in place.

If any instances are still unplaced, the ecoPlace command can be used to place them
after removing any notch-fill or metal-fill wiring using the editDelete command.

If only legalization of the placement is needed, the refinePlace command can be
used.

If routing is in the new DEF file (typically from the routing done on the old netlist), the
routing will also be read in, and it will replace the routing on existing nets.

7. Perform incremental or final routing.

ecoRoute

ecoRoute automatically detects opens and shorts, and incrementally routes any nets that are
incomplete or have violations.

8. Continue with the normal post-routing flow (analysis, repair, notch-fill, metal-fill, verify, sign-off,
and so forth).

Pre-Mask ECO Changes from an ECO File
In this flow, your design is placed and possibly routed, and you can make a small number of
changes using an ECO file methodology. The changes are done before the masks are made so it is
a pre-mask ECO flow, and there is no need to keep the original poly/diffusion patterns.

For example, you might want to apply a small number of late logical changes, but you want to keep
as much of the previous placement, optimization, clock tree, and routing to avoid disturbing
previous timing/SI optimization and repair.

September 2022 1548 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/ecoPlace.html
../innovusTCR/editDelete.html
../innovusTCR/refinePlace.html
../innovusTCR/ecoRoute.html

Preparation
Before starting the flow steps, you should have the following files available:

oldchip.enc
oldchip.enc.dat/
Create these files by using the saveDesign command after the previous placement,
optimization, and routing steps.
or

oldchip.globals
oldchip.v
oldchip.def
Create the first three files by using the saveNetlist and defOut commands after the
previous placement, optimization and routing steps. The new Verilog file (newchip.v) is
typically created by manually editing the old Verilog netlist.

Note: If you want to preserve routing, your existing design must contain the antenna diode
cells that were added during the previous routing.

or

oldchip.eco
This file contains the list of changes to be applied to the old netlist. The changes required (see
the loadECO command syntax) are typically created manually. You might be able to create
an ECO file more easily by using ADDINST and DELETEINST rather than creating a new Verilog
file.

September 2022 1549 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/saveDesign.html
../innovusTCR/saveNetlist.html
../innovusTCR/defOut.html
../innovusTCR/loadECO.html

Flow
1. Read the old netlist

2. Load the ECO file

3. Write the new netlist (optional)

4. Remove filler cells or notch fill (if present)

5. Perform incremental placement

6. Add filler cells

7. Perform incremental or final routing

1. Read the old Verilog netlist, floorplan, and placement information into Innovus.
restoreDesign oldchip.enc.dat top_name

or
source oldchip.globals
init_design

defIn oldchip.def

This step reads in the following information:

Old libraries and global power connections

Old timing constraints or new constraints, if necessary

Special routing, placement, and optionally, old routing information

Old filler cells, end caps, well taps, and other cell information

2. Load the ECO file to incrementally update the current netlist to match the new netlist.
loadECO oldchip.eco

During this step,

Instances and nets that are only in the old Verilog are deleted (for example, an old clock

September 2022 1550 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/restoreDesign.html
../innovusTCR/init_design.html
../innovusTCR/defIn.html
../innovusTCR/loadECO.html

tree). Some Verilog ports may now be unconnected due to deleted nets.

New instances are still unplaced.

New ports and nets are created in Verilog modules as needed to connect instances in
different Verilog modules.

If any nets are deleted, the routing attached to the net is also deleted.

If any nets are modified, the routing on those nets is left unchanged for later repair.

Global power connections are done automatically based on the rules from the globals
file or floorplan file loaded earlier.

3. (Optional) Write out new Verilog netlist.
saveNetlist oldchip_after_eco.v

The oldchip_after_eco.v and newchip.v netlists should be identical, with one exception:
the newly created Verilog module ports and nets might have different names because they are
automatically generated whenever a new connection is made between separate Verilog
modules.

4. Remove filler cells or notch fill (if present).
deleteFiller -prefix FILL

deleteNotchFill

5. Perform incremental placement.
ecoPlace

Unplaced instances are placed; however, previously placed cells are not moved and routing
is unaffected.

Note: You can manually preplace critical cells before using the ecoPlace command by
placing the cell in the bottom, left corner, selecting it, and then moving it graphically. For
example:

placeInstance i1/i2/i3 0 0
select_obj inst:i1/i2/i3

6. Add filler cells back into the rows.
addFiller -cell FILL4 -prefix FILL

September 2022 1551 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/saveNetlist.html
../innovusTCR/deleteFiller.html
../innovusTCR/deleteNotchFill.html
../innovusTCR/ecoPlace.html
../innovusTCR/placeInstance.html
../innovusTCR/addFiller.html

Global power connections are done automatically based on rules loaded from the globals file
or floorplan file earlier.

7. Incremental or final route.
setNanoRouteMode -route_with_eco true # set for incremental routing
globalDetailRoute

NanoRoute automatically detects opens and shorts, and incrementally routes any nets that
are incomplete or have violations.
Or,
You can instead use the ecoRoute command to perform incremental or final routing.

8. Continue with the normal post-routing flow (analysis, repair, add metal fill, notch fill, verify,
sign-off, and so forth).

Note: ECO file contains ECO directive commands. The syntax of these commands is different
from that of ECO tcl commands. For detailed information, refer the ECO Directives section of
the Innovus Text Command Reference.

Post-Mask ECO Changes from a New Verilog Netlist
(Using Spare Cells Flow)
Use this flow when:

The design is taped out but has errors, or you need to add new features to the taped-out
design.

There is a new Verilog file that has only a few logical changes from the old Verilog file.

You want to use the pre-existing spare cells so the poly/diffusion and lower layers are not
changed, and only the metal and via layer masks need to be modified.

To save mask costs, you can direct the software to perform routing changes only on specific layers.

For this flow, you need the following files:

oldchip.enc* (or oldchip.globals, oldchip.fp*, oldchip.def)

September 2022 1552 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/setNanoRouteMode.html
../innovusTCR/globalDetailRoute.html
../innovusTCR/ecoRoute.html

newchip.v (this can be output from Conformal ECO Designer)

The original Verilog file already has spare cells because they are typically added by creating spare
cells at the top-level or inside a Verilog module(s) just to hold the spare cells. The placer spreads
the spare cells evenly throughout the design. If the design is hierarchical, you can add more spare
cells inside modules that are likely to change.

Steps

1. Read the new netlist.
source newchip.globals

init_designor
source oldchip.globals
set init_verilog "newchip.v"
init_design

The netlist includes old libraries, global power connections, and so forth. It typically uses old
timing constraints, but new timing constraints can be used.

2. Load old floorplan/placement/routing data.
loadFPlan oldchip.fp #(Optional: To be done if the DEF file does not include the

floorplan information)
ecoDefIn -postMask -reportFile InDefeco.rpt G1.pr.def

applyGlobalNets

During this step, the following happens:

The -postMask option ensures that deleted items are also restored.

Matching instances get old placements.

When a DEF net name does not have a matching name in memory, soft matching
happens. The tool matches the DEF net name to another net that has the same
connections, as described in the DEF. The most common case for soft matching is when
nets have multiple aliases in a hierarchical design. For example, "net1" =

September 2022 1553 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/init_design.html
../innovusTCR/loadFPlan.html
../innovusTCR/ecoDefIn.html

"inst1/net2" = "inst1/inst2/net3". Any of these net names can be used in the DEF
and can have the same connections. Without soft matching, net "a", for example, is
removed and net "b" is created in its place, resulting in ripping of the wire.

Any instance that exists only in the oldchip.def file (deleted cells) is kept in the design,
and its name is appended with the string specified by -suffix.

For example, if you specify -suffix _spare, instance i1/i2/i3 is changed to i1/i2/i3_spare.

Changed instances (new cell) are assigned a new cell and are left unplaced.

Physical-only cells in the oldchip.def file (marked with +SOURCE DIST in the DEF) are
added; for example, well taps, end caps, and filler cells.

Instances that are only in the new netlist are left unplaced.

Routing for existing or modified nets is restored (possibly with opens or shorts).

Routing for deleted nets is also restored. The ecoRoute command removes the nets
according to the -modifyOnlyLayers option.

All unplaced cells are mapped to spare cells during ECO placement in a later step.

3. (Optional) Low power related changes.
read_power_intent -cpf test.cpf
commit_power_intent -keepRows
During this step, the following happens:

Level shifters or isolation cells will be added to new ECO nets that cross the power
domain.

Old design row definitions are retained.

Newly added cells are unplaced. The ecoPlace command will map them to spare cells.

4. Specify the spare cell list.
specifySpareGate -inst SPARE*

5. (Optional) Remove notch fill (if present).
deleteNotchFill

Note: Do not perform this step if you plan to freeze metal layers, because this command
modifies all layers.

September 2022 1554 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/ecoRoute.html
../innovusTCR/read_power_intent.html
../innovusTCR/commit_power_intent.html
../innovusTCR/ecoPlace.html
../innovusTCR/specifySpareGate.html
../innovusTCR/deleteNotchFill.html

6. Perform incremental placement.
ecoPlace -useSpareCells true

In the post-mask flow, you must specify -useSpareCells to ensure that ecoPlace is switched to
mapping mode. In this mode, ecoPlace maps all unplaced cells to spare cells with the same
cell type.

7. (Optional) Swap spare cells.
ecoSwapSpareCell i_9649 spare1

At this step of the flow, all the newly added cells should be mapped. In this step, you can use
the ecoSwapSpareCell command to change the mapping manually.
i_9649 is the instance name of the placed cell that ecoSwapSpareCell swaps with spare
cell spare1 must be a spare cell specified in the previous step. Use
the specifySpareGate command if necessary.

8. (Optional) Make tie connections.
addTieHiLo -postMask [-cell "tieHighCellName tieLowCellName"] [-createHierPort

{true | false}]

During this step, the software reuses the existing tie cells to tie off a newly created spare
instance in the design, instead of adding or deleting tie cells.

9. Perform incremental or final routing.
ecoRoute -modifyOnlyLayers 2:3

You can use the -modifyOnlyLayers option to restrict the modifications to a specified range of
metal layers. If the -modifyOnlyLayers range begins with layer 2, and the spare cell pins are
only available from metal 1, then the ecoRoute command automatically drops a VIA12 via.
This behavior is not available if the -modifyOnlyLayers range does not begin with 2.

The ecoRoute command might not be successful if the specified layer range is not sufficient to
meet the changes required. You must restore the design from the previous step, then use a
different range, such as 2:4, 1:3, and so on.

September 2022 1555 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/ecoPlace.html
../innovusTCR/ecoSwapSpareCell.html
../innovusTCR/addTieHiLo.html
../innovusTCR/ecoRoute.html

The unused routing segments of deleted and modified nets will appear in the SPECIALNETS
section of the DEF file.

OR,

Use eco_design command to perform post-mask ECO operations. The following command and
options are used to implement a post-mask ECO:

eco_design -post_mask -route_only_layers 2:3 -user_gate_array_cells GACORE -suffix

_spare oldchip.enc.dat top_name newchip.v

OR,
Use the ecoDesign command to perform post-mask ECO operations. The following command and
options are used to implement a post-mask ECO:
ecoDesign -postMask -modifyOnlyLayers 2:3 -spareCells *spare* original.enc.dat top_cell

newchip.v

Post-Mask ECO Changes from a New Netlist (Using
Gate Array Cells Flow)
Use this flow when:

The design is taped out but has some errors, or you need to add new features to the taped-out
design.

There is a new Verilog netlist that has a few logical changes from the old Verilog netlist.

You want to use pre-existing gate array style filler cells that can be programmed with metal
layers so the poly/diffusion and lower layers are not changed, and only the metal and via layer
masks need to be modified.

The new netlist can be output from Conformal ECO or created through manual changes. The
new instances can be a combination of standard cells and GACells (with GACORE site).

Before running the flow, the GACORE library should be ready and GACORE filler cells must
be inserted into the design. The prepared files include old design database and new netlist
(this may be the output from Conformal ECO).

The GACORE library has the following features:

All cells have a common transistor pattern.

September 2022 1556 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/ecoDesign.html

The cells are a fixed number of GACORE sites wide. For example, the width of a
GACORE site might be four times the width of a CORE site.

The logical cells are programmed by metal1 for various AND and OR type gates.

Filler cells use the same transistor pattern (for example, GAfiller).

Steps
1. Read the new netlist.

source newchip.globals # same as oldchip.globals except use newchip.v
init_design

or
source oldchip.globals
set init_verilog "newchip.v"
init_design

The netlist includes old libraries, global power connections, and so on. It typically uses old
timing constraints, but new timing constraints can also be used.

2. Read the old floorplan, special routes, placements, and routing from the old netlist files.

loadFPlan oldchip.fp # Optional: To be done if DEF file does not include the

floorplan information:
ecoDefIn -useGACells GACORE -suffix _spare -reportFile InDefeco.rpt G1.pr.def

applyGlobalNets

During this step:

GACORE cells that are only in the old DEF are deleted (it will leave a hole in the layout
and this space can be reused through placing a new instance of GACORE). There are
some GACORE function cells that do not exist in new netlist, if you do not use the
option -reportFile for ecoDefIn, these cells will become spare cells like regular
standard cells.

This procedure reads in the following information:

Special routing, placements, and old routing

Old filler cells, end caps, well taps, and other cell information

Regular standard cells that are only in the old DEF file are implicitly deleted by leaving
them in place and changing the name from i1/i2/i3 to i1/i2/i3_SPARE. The input pins of

September 2022 1557 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/init_design.html
../innovusTCR/ecoDefIn.html
https://g1.pr

these new spare cells are tied to the ground net or tie-low cell.

New instances are left unplaced.

Global power connections are made automatically based on the rules from the globals
file or floorplan file loaded earlier.
Any GACORE rows in the old design are restored; normal CORE rows are also
restored. GACORE rows could optionally come from a separate DEF file if they are not
saved with the old design.

3. (Optional) Specify spare gates
specifySpareGate -inst *SPARE*

4. (Optional) Remove notch fill
deleteNotchFill

Note: Do not do this step if you plan to freeze metal layers, because this command modifies
all layers.
5. Perform incremental placement.
ecoPlace -useSpareCells true (#optional)
deleteFiller -prefix GAFILL

Fixed all cells in the design
ecoPlace -reportFile GACORE
addFiller -cell GAFiller -prefix GAFILL

This step does the following:

If there are standard cells (such as site CORE) and GAcells (such as site GACORE),
both need to be placed. You need to use the ecoPlace command twice. First, using the
spare cell for unplaced standard cells, and then using the GA filler cells for unplaced GA
function cell.

Removes GACORE filler cells to leave gaps for the ecoPlace. The ecoPlace command
snaps GACORE cells to the GACORE row sites. Routing is unaffected.

Puts back the GACORE filler cells in any leftover gaps.

ecoPlace maps unplaced std cell to the same function spare cell. ecoPlace places the
GACORE cells in a legal placement location.

September 2022 1558 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../TCRcom/set_spare_insts.html
../TCRcom/delete_notch_fill.html
../TCRcom/place_eco.html
../TCRcom/delete_filler.html
../TCRcom/place_eco.html
../TCRcom/add_fillers.html

5. (Optional) Swap spare cells.
ecoSwapSpareCell i_9649 spare1

During this step, all the newly added cells should be mapped.
In this step, you can use the ecoSwapSpareCell command to manually change the mapping.
i_9649 is the instance name of the placed cell that ecoSwapSpareCell swaps with spare
cell spare1. spare1 must be a spare cell specified in the previous step. Use
the specifySpareGate command if necessary.

6. (Optional) Make tie connections.
addTieHiLo -postMask [-cell "tieHighCellName tieLowCellName"] [-createHierPort

{true | false}]

During this step, the software reuses the existing tie cells to tie off a newly created spare
instance in the design, instead of adding or deleting tie cells.

7. Perform incremental or final route.
ecoRoute -modifyOnlyLayers 2:3

During this step:

NanoRoute automatically detects opens and shorts, and incrementally routes any nets
that are incomplete or have violations.

The insertion of antenna diode cells is disabled. The poly/diffusion layers cannot be
modified, so only layer-hopping can be used to avoid process antenna violations.

You can use the -modifyOnlyLayers option to restrict the modifications to a specified
range of metal layers.

The ecoRoute command might not be successful if the specified layer range is not
sufficient to meet the changes required. You must restore the design from the previous
step, then use a different range, such as 2:4, 1:3, and so on.

The unused routing segments of deleted and modified nets will appear in the
SPECIALNETS section of the DEF file.

OR,
Use the ecoDesign command to perform post-mask ECO operations. The following command and
options are used to implement a post-mask ECO:
ecoDesign -postMask -modifyOnlyLayers 2:3 -useGACells GA_site top.enc.dat top new.v

September 2022 1559 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../TCRcom/eco_swap_spare_cell.html
../TCRcom/add_tieoffs.html
../TCRcom/route_eco.html
../innovusTCR/ecoDesign.html

Post-Mask ECO Changes from a New Verilog Netlist
(Using Gate Array Filler Cells Flow)
Currently, ecoPlace supports GACells and GAFillerCells flows. GACells flow is GACORE site
based filler insertion while GAFillerCells is CORE site based filler insertion. Using the
GAFillerCells flow, the tool can insert a GA Filler at any arbitrary grid rather than at the GACORE
site grid to provide more available locations for post-mask ECOs.

The following diagrams illustrate the insertion of GA Fillers for GACells flow and GAFillerCells flow.

Figure 2 GA Fillers Insertion for GACells Flow

Figure 3

September 2022 1560 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/ecoPlace.html

GA Fillers Insertion for GAFillerCells Flow

To perform incremental placement:

ecoPlace -useSpareCells true (#optional)

Unfix all GAFillers in the design

ecoPlace -useGAFillerCells {List of GAFillerCells }

This procedure does the following:

If you need to place standard cells (such as site CORE) and GACells (such as site GACORE),
you need to use the ecoPlace command twice. First, using the spare cell for unplaced
standard cells, and then using the GA filler cells for unplaced GA function cell. Since the tool
cannot distinguish standard cells from gate-array cells, you must first specify the GAFillerCell
list. Change the GAFillers status from fixed to placed status.

ecoPlace maps unplaced std cells to the same function spare cell (optional).

ecoPlace placed GACells overlap with existing GA Fillers based on the connectivity, deleting
the overlapping original GA Fillers and filling in the gap using new smaller GA Fillers.

Figure 3 and 4 illustrate the replacement of GA Fillers:

Figure 4

Before ecoPlace -useGAFillerCells {GAFILL1 GAFILL2 GAFILL3}

September 2022 1561 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

../innovusTCR/ecoPlace.html
../innovusTCR/ecoPlace.html

Figure 5

After ecoPlace -useGAFillerCells {GAFILL1 GAFILL2 GAFILL3}

September 2022 1562 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Flows

ECO Directives
The ECO directives, presented in alphabetical order, are:

ADDHIERINST

ADDINST

ADDMODULEPORT

ADDNET

ATTACHMODULEPORT

ATTACHTERM

CHANGECELL

CHANGEINST

CHANGEINSTNAME

DELETEBUFFER

DELETEINST

DELETEMODULEPORT

DELETENET

DETACHMODULEPORT

DETACHTERM

INSERTBUFFER

Example ECO File

This appendix describes the directives that you specify in an ECO directives file. After you complete
the file, you can then read it into the Innovus™ Implementation System (Innovus) by using
the loadECO command on the Innovus command line. The following command
loads myDirectivesFile:

loadECO myDirectivesFile

September 2022 1563 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

../innovusTCR/loadECO.html

You can use these directives only in an ECO directives file.

You cannot use these directives on the Innovus command line.

You cannot source this file to run the directives.

You must use the loadECO command to read the file.

The names of the directives appear in this appendix in uppercase characters to distinguish them
from interactive Innovus commands with the same names; however, the software is case-
insensitive.

The ECO File directives do not support Verilog® escape name syntax. For directives that modify or
delete existing objects, you cannot specify the name of the object using Verilog escape name
syntax.

File format requirements are shown in the section Example ECO File.

ADDHIERINST
ADDHIERINST

instName

moduleName

Creates an instance of a new hierarchical module. You can later use the ADDINST directive to add
spare cells inside the new hierarchical instance. The software automatically creates new ports for
the hierarchical module when you run the ATTACHTERM directive. Currently, there are no directives
available that allow you to manually create new ports for the new hierarchical module.

These are ECO directives, not Innovus Tcl commands.

September 2022 1564 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Example

The following directive creates a new hierarchical cell, sparecell, and an instance of
sparecell named i1/i2/i3/spare1:
ADDHIERINST i1/i2/i3/spare1 sparecell

If the instance i1/i2/i3 does not exist, or instance i1/i2/i3/spare1 already exists, the
directive stops and the software displays an error message.

ADDINST
ADDINST [-moduleBased moduleName]

instName cellName nrTerm

INSTTERM

termName netName

Adds an instance.

When instName is specified, the new instance is bound with the correct cell in the power domain.

Note: If nrTerm is greater than zero, then you specify nrTerm lines of INSTTERM... after the line
ADDINST...nrTerm.

If ADDINST is module based, the syntax is:

ADDINST -moduleBased moduleNamecellNameinstName

If ADDINST is not module-based, the syntax is:

ADDINST instName cellName nrTerm addPortAsNeeded INSTTERM termName netName

instName Specifies the name of the new hierarchical instance. If the instance
already exists, or if the module containing the instance does not exist, the
directive stops and the software displays an error message.

moduleName Specifies the name of the new hierarchical module. If the module already
exists, the software uses the module definition and creates a new
hierarchy.

September 2022 1565 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Example

The following directive adds an instance BUF1 having two terminals A and Y connecting to nets
net_a and net_b:
ADDINST BUF1 BUF 2

INSTTERM A net_a

INSTTERM Y net_b

ADDMODULEPORT
ADDMODULEPORT

moduleName |'-'

portName

{input | output | bidi}

[-bus n1:n2]

Adds a port or a bussed port to a module.

cellName Specifies the master of the instance.

instName Specifies the name of the instance to add and place.

moduleName Adds the new instance to the specified verilog module.

netName Specifies the net name.

termName Specifies the terminal name.

nrTerm Number of terminals of an instance.

September 2022 1566 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Examples

The following directive creates an input port p1 on instance i1/i2/i3. The port p1 must be a
new port name in instance i1/i2/i3. Instance i1/i2/i3 contains no nets name p1:
ADDMODULEPORT i1/i2/i3 p1 input

The following set of directives adds a hierarchical block and then adds a bussed port to the
block.
ADDHIERINST i_block1 i_block

ADDMODULEPORT i_block1 data output -bus 31:0

ADDNET
ADDNET

[-moduleBased verilogModule]

netName

[-physical]

[-bus startID:endID]

Adds a net to the design. The net can be logical or physical.

-bus n1:n2 Adds a bussed port to the module. Specify the bus range (the beginning
and end of the bus). Use integers to specify the range.

moduleName

| '-'
Specifies the module to which you want to attach the port. To specify the
top module, enter '-'.

portName Specifies the name of the port to be added.

The specified portName can be a new port name or any of the existing net
names to which you want to add the port.

The new port name can be the same as the existing net name. This port is
attached directly to the existing net name if you specify the port direction
(scalar port).

input |

output |

bidi

Specifies whether the port is input, output, or bidirectional.

September 2022 1567 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Example

The following directive adds net i1/i2/net26 to the netlist:
ADDNET i1/i2/net26

If the module i1/i2 does not exist, or if the net i1/i2/net26 already exists, the software
displays an error message and the directive stops.

ATTACHMODULEPORT
ATTACHMODULEPORT

{moduleName | '-'}

portName

netName

Attaches a port in the specified instance (or top level) to a net.

-bus

startID:endID
Creates a bussed Verilog net. The startID and endID indicate the first
and last bits on the bus. You must separate the start and end IDs with a
colon (:).

-moduleBased

verilogModule
Adds the new net to the specified verilog module.

netName Specifies the name of the net to add. If the module containing the net
does not exist, or if the net already exists, the software displays an
error message and the directive stops.

-physical Adds a physical net.

September 2022 1568 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Naming convention for directive ATTACHMODULEPORT module port net:

1. It does not allow to attach any module port to net inside the model.

2. A module port can be always attached to a net as long as all parent modules of the net do not
reside inside the module where the port resides. For example,
ATTACHMODULEPORT u1 port1 u2/u3/n1
New hnets and new ports could be created with the similar naming convention to 1).

3. Attach module port to its parent (higher) level net.
No new hnets are created except for those down hnets associated with new ports
Port naming convention is similar to 1.

Note:

Term can be instance term or hterm. for an instance term, the rules are as stated above. For
hterm, it will automatically treated as a module port and processing it as stated in section 2
below.

Net is a flatten net. All newly created hnet in this directive will be hooked on to net.

Whenever an existing port can be used for the connection, no new ports will be created.

Whenever new port name has any conflict with current DB objects, naming it to "p", "p_1",...
until no name conflicts.

According to current DB data model, whenever a new port is created, a down hnet with the
same name of the port is automatically created to hold the port.

moduleName

| '-'
Specifies the module to which you want to attach the port. To specify the
top module, enter '-'.

netName Specifies the net to which you want to create to attach to the port.

portName Specifies the port you want to create on the module.

September 2022 1569 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Examples

The following directives create a port p1 on instance i1/i2/i3 and a net i1/i2/n1. The
ATTACHMODULEPORT directive then connects the created port p1 on instance i1/i2/i3 to the net
i1/i2/n1:
ADDMODULEPORT i1/i2/i3 p1 input

ADDNET i1/i2/n1

ATTACHMODULEPORT i1/i2/i3 p1 i1/i2/n1

The following directive attaches port in on the top module to net123:
ATTACHMODULEPORT - in net123

ATTACHTERM
ATTACHTERM

[-moduleBased verilogModule]

[-noNewPort]

instName

termName

netName

[-port portName | -pin refInstName refPinName]

Attaches a terminal to a net. If the terminal already connects to the net, the software first detaches
the terminal from the current net, then attaches it to the new net.

September 2022 1570 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Naming convention for directive ATTACHTERM term net:
This directive assumes term and flatten net must exist, or error message will be issued.
When term and net are not at the same hierarchical levels, some new port and new hnet nets may
be added to complete connection between the term and the net.

instName Specifies the instance containing the terminal. If the instance name
does not exist, the software displays an error message and the
directive stops.

-moduleBased

verilogModule
Attaches the terminal to the specified verilog module.

netName Specifies the name of the net to attach to the terminal. If the net name
does not exist, Innovus displays an error message and the directive
stops.

-noNewPort Prohibits Innovus from creating hierarchical ports when it attaches a
terminal. If the terminal cannot connect to the net through existing
ports, Innovus displays an error message and the directive stops.
Default: If you do not specify this parameter, Innovus creates
hierarchical ports as needed.

-

pin refInstName

refPinName

Specifies the pin refPinName on instance refInstName connected to
the net that Innovus connects to the terminal. You cannot specify the
-port parameter if you use this parameter.

-port portName Specifies the hierarchical port used to connect the terminal with the
net. If you specify this parameter, the hierarchical port must exist in
the module that contains the instance. The hierarchical port must
connect to the net. This parameter lets you use a specific port to
maintain the same netlist topology, which simplifies equivalence
checking later in the design flow. You cannot specify the -pin
parameter if you use this parameter.
Default: If you do not specify this parameter, Innovus uses existing
ports or creates new hierarchical ports as necessary to connect the
terminal to the net.

termName Specifies the name of the terminal that Innovus connects to the
specified net. If the terminal name does not exist, Innovus displays
an error message and the directive stops.

September 2022 1571 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

1. When attach high level term to lower level hierarchical net, names of new net and new port is:
hnet name: U/<net_base_name> where U is name of the module where the term resides.
port name: U1/<net_base_name>, U1/U2/<net_base_name>, ...

U1/U2/.../Un/<net_base_name> where U1, U2, ... Un are names of modules among the
hierarchy from the term down to the net and Un is name of the module where the net resides.

For example:
ATTACHTERM u1/i1 t1 u1/u2/u3/n1

Here the net base name is n1. One new hnet module u1 and two new ports at module u2 and
u3, respectively, are needed for this connection:
hnet name: u1/n1

port names: u1/u2/n1 and u1/u2/u3/n1 (two down hnets with the same name are also
internally created to hold these two ports)

If net is a bus bit u1/u2/u3/n[1], then the blasted name is used, i.e.
hnet name: u1/n_1 (for 15.1 or later), u1/n_1_ (for 14.2 or older)
port names: u1/u2/n_1 and u1/u2/u3/n_1 (for 15.1 or later), u1/u2/n_1_ and u1/u2/u3/n_1_
(for 14.2 or older)

2. When attach lower level term to higher level hierarchical net, names of new net and new port
is:

No hnets are needed to be created expect for those down hnets associated with the new ports
Port naming is similar to 1.

Examples

The following directive attaches terminal in1 of instance i1/i2/i3 to net i1/i2/net26:
ATTACHTERM i1/i2/i3 in1 i1/i2/net26

If i1/i2/i3 does not exist, or if in1 is not a terminal of i1/i2/i3, or if i1/i2/net26 does not
exist, the software displays an error message and the directive stops.

The following directive attaches terminal in2 of instance i1/i2/i3 to net net27, using
hierarchical port myPort:
ATTACHTERM i1/i2/i3 in2 net27 myPort

September 2022 1572 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

The myPort port must exist in the module definition for i1/i2, and myPort must already
connect to net27. If this is not the case, the software displays an error message and the
directive stops.

The following directive attaches terminal in3 on instance i1/i2/i3 through existing ports to
net28:
ATTACHTERM -noNewPorts i1/i2/i3 in3 net28

If ports do not exist, the software displays an error message and the directive stops.

The following directive attaches terminal Y of instance testInst to the verilog module hier_t3
using the port testPort:
ATTACHTERM -moduleBased hier_t3 testInst Y testPort

CHANGECELL

CHANGECELL

instName

newCellName

[oldCellName]

Changes the cell type of an instance to a new cell type. You can only change cells that have the
same footprint and functionality. If you provide the existing cell type (oldCellName), this directive
verifies that the specified instance (instName) is a current instance of the existing cell type before
changing the cell type to a new type (newCellName).

If the current instance is already placed, the modified instance keeps the existing placement.
Keeping the old placement might cause overlap violations between the modified instance and
neighboring instances if the new cell is larger than the existing cell.

September 2022 1573 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Example

The following directive changes the instance i1/i2/i3 of type and2_1x to cell type and2_2x:

CHANGECELL i1/i2/i3 and2_2x and2_1x

If i1/i2/i3 does not exist, the software displays an error message and the directive stops. If
and2_2x does not exist in the library, or if all terminals of and2_2x do not exactly match the terminals
of the current cell, or if the current cell is not and2_1x, the software displays an error message and
the directive stops.

CHANGEINST

CHANGEINST

instName

newCellName

oldCellName

nrNewCellFTerm

TERM newTermName oldTermName

Changes the cell type (master) for an instance. Unlike the CHANGECELL directive, you can exchange
the cell type for one with a different footprint but identical functionality. If you provide the existing cell
type (oldCellName), the CHANGEINST directive verifies that the specified instance (instName) is a
current instance of the existing cell type before changing the cell type to a new type (newCellName).

If the current instance is already placed, the modified instance keeps the existing placement.
Keeping the old placement might cause overlap violations between the modified instance and
neighboring instances if the new cell is larger than the existing cell.

instName Specifies the name of the instance whose cell type you want to change.

newCellName Specifies the new cell type. The newCellName must exist in the library; otherwise,
the software displays an error message and the directive stops.

oldCellName Specifies the existing cell type. If the current cell is not oldCellName, the software
displays an error message and the directive stops.

September 2022 1574 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Example

The following directives exchange a three-terminal flip-flop master (FF3) for a four-terminal master
(FF4) for instance i1/i2.

CHANGEINST i1/i2 FF4 FF3 4

TERM D D

TERM Q Q

TERM CK CLK

Suppose that FF3 has input D connected to net n1, clock terminal CK connected to net clock, and
output Q connected to n2. FF4 has input D connected to n1, clock terminal CLK connected to net clock,
output Q connected to n2. Flip-flop FF4 also has output QN. When the master for i2/i2 is changed to
FF3, QN is not connected to a net.

CHANGEINSTNAME
CHANGEINSTNAME

instName

baseName

instName Specifies the name of the instance you want to change.

newCellName Specifies the new cell type. The newCellName must exist in the library and all
terminals of newCellName must match the terminals of the current cell type
exactly; otherwise, the software displays an error message and the directive
stops.

nrNewCellFTerm Specifies the number of terminals belonging to the new cell type.

oldCellName Specifies the existing cell type. If the current cell is not oldCellName, the
software displays an error message and the directive stops.

TERM Specifies the old and new terminal names for the instance. You must specify
a TERM directive for every terminal name that must change.

newTermName: Specifies the name of the terminal on the changed instance.

oldTermName: Specifies the name of the terminal on the existing instance.

September 2022 1575 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Changes the base name of the specified instance to the given base name.

Note: The CHANGEINSTNAME directive does not change the path of hierarchy.

Parameters

DELETEBUFFER
DELETEBUFFER

instName

keepNetName

[deleteNetName]

Deletes a buffer instance after merging the nets on both sides of the buffer into one net.

instName Specifies the name of the instance.

baseName Specifies the new base name to use for the instance.

The ecoDeleteRepeater command provides the equivalent functionality.

September 2022 1576 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

../innovusTCR/ecoDeleteRepeater.html#ecoDeleteRepeater-ecoDeleteRepeater

Parameters

Example

The following directive deletes buffer i1/i2/i3 and merges the nets from the buffer's two
terminals into net net26:
DELETEBUFFER i1/i2/i3 net26 i1/net25

Net net26 already connects to one of the instance's terminals. Net i1/net25 connects to the
terminal opposite the terminal that connects to net net26. If buffer i1/i2/i3 does not exist, or if
net net26 and net i1/net25 are not already attached to two terminals of buffer i1/i2/i3, the
software displays an error message and the directive stops.

DELETEINST
DELETEINST

[-moduleBased verilogModule]

instName

deleteNetName Specifies the name of the net connected to the terminal on instName
opposite to the terminal that connects to keepNetName. If deleteNetName
is not connected to the terminal on instName opposite to the terminal
that connects to keepNetName, the software displays an error message
and the directive stops. For example, if keepNetName connects to the
input of instName, deleteNetName specifies the name of the net
connecting to the output. The software uses the deleteNetName for error
checking only. When the DELETEBUFFER directive merges the nets, it
might detach connections to hierarchical ports, but does not change
the direction of hierarchical ports.

instName Specifies the name of the buffer instance that the DELETEBUFFER
directive deletes. The instance must have exactly one input terminal
and one output terminal, and one of the terminals must connect to
keepNetName.

keepNetName Specifies the name of the existing net into which the nets from both of
the instance's terminals are merged. The keepNetName net must
connect to one of the instance's terminals.

September 2022 1577 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Deletes an instance after deleting all the instance terminal connections to nets.

Parameters

Example

The following directive deletes instance i1/i2/i3:
DELETEINST i1/i2/i3

If instance i1/i2/i3 does not exist, the software displays an error message and the directive
stops.

The following directive deletes the instance insta from the verilog module HIER_2:
DELETEINST -moduleBased HIER_2 insta

DELETEMODULEPORT
DELETEMODULEPORT

moduleName| '-'

portName

[netName]

Disconnects the specified port from its net and deletes the port.

You can use wildcards (*?) to specify the nets you want Innovus to delete.

instName Specifies the name of the instance to delete. If the specified instance
does not exist, the software displays an error message and the
directive stops.

-moduleBased

verilogModule
Deletes the instance from the specified verilog module.

September 2022 1578 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Example

The following directive deletes port1 from the top-level module:

DELETEMODULEPORT - port1

DELETENET
DELETENET

[-moduleBased verilogModule]

netName

Deletes a net after deleting all the instance terminal connections to the net. If routing is connected to
the net, the routing is deleted.

You can use wildcards (*?) to specify the nets you want Innovus to delete.

Parameters

Example

The following directive deletes net i1/i2/net26:
DELETENET i1/i2/net26

If net i1/i2/net26 does not exist, the software displays an error message and the directive
stops.

moduleName

| '-'
Specifies the module from which you want to delete the port. To specify
the top module, enter '-'.

netName Specifies the name of the net from which you want to delete the port.

portName Specifies the name of the port to be deleted

-moduleBased verilogModule Deletes the net from the specified verilog module.

netName Specifies the name of the net to delete.

September 2022 1579 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

DETACHMODULEPORT
DETACHMODULEPORT

moduleName

portName

Detaches the net connected to the specified port on the specified instance.

Parameters

Example

The following directive detaches port p1 from moduleA:

DETACHMODULEPORT moduleA p1

DETACHTERM
DETACHTERM

[-moduleBased verilogModule]

instName

termName

[netName]

Disconnects a terminal from a net.

Note: Detaching a terminal that drives an output terminal of a module produces a Verilog violation
at the output terminal if you use DETACHTERM. Instead, use ATTACHTERM to attach the terminal to a new
net. The ATTACHTERM directive automatically detaches the terminal from the net connecting to the
output terminal, then attaches the terminal to the net you specify.

moduleName Specifies the module from which you want to detach the net. To specify
the top module, enter '-'.

portName Specifies the port on the module.

September 2022 1580 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Parameters

Example

The following directive disconnects terminal in1 of instance i1/i2/i3:

DETACHTERM i1/i2/i3 in1 i1/i2/net26

If instance i1/i2/i3 does not exist, or terminal in1 is not a terminal of i1/i2/i3, the software
displays an error message and the directive stops. The net i1/i2/net26 is specified, so if net
i1/i2/net26 does not exist, or if the terminal is not already connected to net i1/i2/net26, the
software displays an error message and the directive stops.

INSERTBUFFER
INSERTBUFFER

[-noNewPorts]

netName

nrNetTerm

nrBuffer

INST instName cellName nrInstTerm

INSTTERM termName netName [portName]

…

instName Specifies the instance that contains the terminal you want to detach.

-moduleBased

verilogModule
Detaches the terminal from the verilog module.

netName Specifies the net that is already connected to the terminal. If the
terminal does not connect to the specified net, or if the net does not
exist, the software displays an error message and the directive stops.
The software uses this parameter for error checking only.

termName Specifies the terminal to disconnect. If the terminal does not exist on
the specified instance, the software displays an error message and the
directive stops.

September 2022 1581 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

NETTERM instName termName netName

…

Inserts a buffer on a net.

Note: You must specify the INST, INSTTERM, and NETTERM directives in the order given in the syntax.
You must enter each of these directives on its own line, at the beginning of that line. You can add
these directives only after you have specified the [-noNewPorts] netNamenrNetTermnrBuffer
parameters.

This directive has been replaced by addRepeaterByRule command.

September 2022 1582 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

../innovusTCR/addRepeaterByRule.html

Parameters

netName Specifies the name of the net on which to insert the buffer. You must
specify this parameter.

-

noNewPorts
Specifies that Innovus must not add new ports when inserting the buffer. If
you try to insert a buffer that needs a new port, Innovus issues an error
message and does not insert the buffer.

nrBuffer Specifies the number of buffers attached to the net.

nrNetTerm Specifies the original number of terminals attached to the net.

INST Specifies a buffer instance. You must specify the INST directive for each
buffer you want to add.

 instName Specifies the name of the buffer instance to insert.

 cellName Specifies the cell master for the buffer instance.

 nrInstTerm Specifies the number of instance terminals contained in the
buffer. Buffers have one input and one output terminal, so
specify 2.

INSTTERM Specifies a terminal on a buffer instance. The termName and netName
parameters are required. you must specify the INSTTERM directive for each
buffer you want to add.

 termName Specifies the name of the terminal on the buffer.

 netName Specifies the net to connect with the terminal.

 portName Specifies the physical port corresponding to the terminal.

NETTERM Specifies the net connection between a driver terminal and the added
buffer.

 instName Specifies the instance containing the terminal.

 netName Specifies the net connected to the terminal.

 termName Specifies the terminal connected to the net.

September 2022 1583 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Example

The following directives insert three buffers, b1, b2, and b3, on net0, which originally connects
terminal out on instance i0 to receivers i1, i2, and i3. After the three buffers are added, terminal
out drives one terminal: b1/in.

INSERTBUFFER net0 4 3

INST b1 buffer 2

INSTTERM in net0

INSTTERM out net1

INST b2 buffer 2

INSTTERM in net1

INSTTERM out net2

INST b3 buffer 2

INSTTERM in net1

INSTTERM out net3

NETTERM i0 out net0

NETTERM i1 in net2

NETTERM i2 in net1

NETTERM i3 in net3

Buffer b1 has terminal in, connected to net0 and out, connected to net1. Buffer b1 drives
buffers b2 and b3, and connects to receiver i2.

Buffer b2 has terminal in, connected to b1 through net1, and out, connected to receiver
i1 through net2.

Buffer b3 has terminal in, connected to b2 through net2, and out, connected to receiver
i3 through net3.

Example ECO File

The file format consists of directives, each ending with a newline. The keywords are case
insensitive.

Comments must begin with a pound symbol (#) as the leading, non-white space character, and end
with a newline.

September 2022 1584 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

#

FORMATVERSION

#

FORMATVERSION 2

#

ADDINST: Add at top level, no connectivity

#

ADDINST eco_inst_19 BUFX1

#

ADDINST: Add at block level, no connectivity

#

ADDINST DTMF_INST/TDSP_CORE_INST/eco_inst_1 BUFX1

#

ADDINST: Add at top level, with connectivity

#

ADDINST eco_inst_2341 BUFX1 2

INSTTERM A test_mode

INSTTERM Y reset

#

ADDINST: Add at block level, with connectivity

#

ADDINST DTMF_INST/TDSP_CORE_INST/eco_inst_3 BUFX1 2

The first directive in the file must be FORMATVERSION 2.

September 2022 1585 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

INSTTERM A scan_en

INSTTERM Y reset

#

DELETEINST: Delete block level instance

#

DELETEINST DTMF_INST/m_clk__L6_I6

#

ADDNET: Add new top level net

#

ADDNET eco_new_top_net

#

ADDNET: Add new block level net

#

ADDNET DTMF_INST/eco_new_block_net

#

DELETENET: Delete top level net

#

DELETENET n_7875

#

DELETENET: Delete block level net

#

DELETENET DTMF_INST/TDSP_CORE_INST/ALU_32_INST/n_1496

September 2022 1586 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

#

ATTACHTERM: Attach block level inst term to existing net

#

ATTACHTERM DTMF_INST/TDSP_CORE_INST/ACCUM_STAT_INST/i_9529 A

DTMF_INST/TDSP_CORE_INST/ACCUM_STAT_INST/n_73

#

DETACHTERM: Detach block level inst term

#

DETACHTERM DTMF_INST/TDSP_CORE_INST/ACCUM_STAT_INST/i_9529 A

#

ADDHIERINST: create a new module + inst

#

ADDHIERINST DTMF_INST/ECO_NEW_HIER_INST ECO_NEW_HIER

HECO Directives
The HECO directives are used to edit a netlist hierarchically similar to what is done in case of a
logic-synthesis tool, such as a Genus - specify a hierarchical instance to work on and edit ports,
subports, and pins (referred to as "term" below), and their connectivity.

The HECO directives must reside inside a START_HECO/END_HECO pair; ECO directives, such as
ADDINST or ADDNET must be outside such a pair. Otherwise, ECO and HECO directives can be
freely mixed in the same ECO file. Only HECO directives are used in this section.

HECO Syntax

CURRENT_INST hinst Specifies the hierarchical instance to work on. Omit hinst to
work on the top instance/cell

September 2022 1587 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

CREATE_INST inst

cell
Creates a leaf instance with the specified cell master.

REMOVE_INST inst Removes net connections on the specified leaf instance and delete it

REMOVE_BUFFER inst

termin termout
Removes the specified leaf instance and short the nets connected to the
specified input term and output term (both must belong to the
leaf instance).

RENAME_INST

oldInstName

newInstName

Renames instances simultaneously in master/clone design.

CONNECT term term Connects two terms together, merging their old nets into one. Neither
term can be 1'b1/1'b0.

CONNECT_NET net

term
Connects a term to a net.

CREATE_NET net Creates the specified net.

DISCONNECT term Makes term a singleton. The term will no longer be connected to any
other term or 1'b1/1'b0.

DISCONNECT_INST

inst
Disconnects all terms on the specified leaf instance.

REMOVE_NET Removes the specified net. If there is any logical connection, the net is
not removed.

TIE_1 term/

TIE_0 term
Connects term directly to 1'b1/1'b0.

TIE_1_NET net/

TIE_0_NET net
Makes the net a 1'b1/1'b0 net ("assign net = 1'b1/1'b0;" in the Verilog).

UN_TIE_NET net Removes the 1'b1/1'b0 property from "net." Note that this applies to the
current scope only. The (flat) DEF net that "net" belongs to may still be a
1'b1/1'b0 net because of the 1'b0/1'b1 property on another "local net" that
is part of the DEF net.

September 2022 1588 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Examples

##

Example Verilog

module sub (

in,

in2,

out);

input in;

input in2;

output out;

BUFX4 u1 ();

BUFX4 u2 ();

endmodule

module top (

x,

y,

z);

input x;

output y;

output z;

// Internal wires

wire net;

assign z = 1'b1 ;

BUFX4 i (.A(z));

BUFX4 i0 (.Y(net),

.A(x));

BUFX4 i1 (.A(net));

BUFX4 i2 ();

port1

INPUT/OUTPUT/INOUT

...

portn

INPUT/OUTPUT/INOUT

Creates the specified scalar ports on the hierarchical instance
CREATE_PORT number_of_lines.

port1

...

portn

Removes the specified scalar ports on the hierarchical instance
REMOVE_PORT number_of_lines.

September 2022 1589 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

sub i3 ();

endmodule

##

Example ECO file. Comments start with "#"

FORMATVERSION 2

START_HECO

create two ports for i3

CURRENT_INST i3

CREATE_PORT 2

fin INPUT

fout OUTPUT

and add a feedthrouh

CONNECT fin fout

switch context to the top instance

CURRENT_INST

and make i1 drive i2 through i3's feedthrough

CONNECT i1/Y i3/fin

CONNECT i3/fout i2/A

z is no longer a 1'b1 port but i/A is still a 1'b1 term

DISCONNECT z

remove buffer i0 so that x drives i1/A directly

REMOVE_BUFFER i0 A Y

connect i3's in port to 1'b1

TIE_1 i3/in

can't use "TIE_0" on a port or subport; tie the net 1'b0 instead

TIE_0_NET y

make i3/u1/A a 1'b1 term (through i3's in port)

CURRENT_INST i3

CONNECT in u1/A

END_HECO

##

Result after the above ECO file is loaded with "loadECO"

module sub (

in,

in2,

out,

fin,

September 2022 1590 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

fout);

input in;

input in2;

output out;

input fin;

output fout;

assign fout = fin ;

BUFX4 u1 (.A(in));

BUFX4 u2 ();

endmodule

module top (

x,

y,

z);

input x;

output y;

output z;

// Internal wires

wire n2;

wire n1;

wire n;

assign n2 = 1'b1 ;

assign y = 1'b0 ;

BUFX4 i (.A(n2));

BUFX4 i1 (.Y(n),

.A(x));

BUFX4 i2 (.A(n1));

sub i3 (.in(1'b1),

.fin(n),

.fout(n1));

endmodule

Support for Sizing Down the Bus Bit

HECO supports BUS bit trimming for both the top and submodules.

Top Level Bus Bit Port

September 2022 1591 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

For the top-level bus bit port trimming:

Bus bit ports to be deleted must be adjacent with each other and adjacent to either msb or lsb
of existing bus.

Bus bit port to be deleted must be a one pin net.

Bus bit port net with the same name will be deleted together with its port.

Syntax:
REMOVE_PORT <bportName> n:m

The following ECO file removes four top level bits topIn[7], topIn[6], topIn[5], and topIn[4] from
existing topIn [7:0]:
FORMATVERSION 2

START_HECO

REMOVE_PORT topIn 7:4

END_HECO

In the following example, the ECO file tries to remove top-level bits topIn[5] from existing
topIn[7:0], which results in ERROR as it is not adjacent to msb or lsb:
FORMATVERSION 2

START_HECO

REMOVE_PORT topIn 5:5

END_HECO

ERROR: (xxxx-xxx): Bus bit port %s specified by REMOVE_PORT must be adjacent to

msb or lsb of existing bus bit port %s.

Note: If the bus bit port to be deleted is not connected to a one-pin net, the tool will issue an
error:
ERROR: (xxxx-xxx): Bus bit port %s cannot be deleted because the net connected to

it is not floating.

Submodules Bus Bit Net

For the bus modules bus bit net trimming:

Bus bit nets to be deleted must be adjacent to each other and adjacent to msb or lsb of the
existing bus.

Bus bit net to be deleted must be floating.

September 2022 1592 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Syntax

REMOVE_NET <bnetName> m:n

The following ECO file removes two bus bit nets n1[0] and n1[1] on module bot1 (bot1 is
instantiated as u0 under model mid) from existing bus n1[0:5]:
FORMATVERSION 2

START_HECO

CURRENT_INST u1/u0

REMOVE_NET n1 0:1

END_HECO

In the example below, the ECO file tries to remove two bus bit nets n1[2] and n1[3] on module
bot1 (bot1 is instantiated as u0 under model mid) from existing bus n1[0:5], which will result in
an ERROR as they are not adjacent to msb or lsb:
FORMATVERSION 2

START_HECO

CURRENT_INST u1/u0

REMOVE_NET n1 2:3

END_HECO

ERROR: (xxxx-xxx): Bus bit net %s specified by REMOVE_NET must be adjacent to msb

or lsb of existing bus bit net %s.

Note: If the bus bit net to be deleted is not floating at the other side, an ERROR will be issued:
ERROR: (xxxx-xxx): Bus bit net %s cannot be deleted because the net is not

floating.

September 2022 1593 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--ECO Directives

Interactive ECO
Overview

Before You Begin

Results

Adding Buffers

Changing the Cell

Deleting Buffers

Displaying Buffer Trees

Running ECO Placement

Naming Conventions for Interactive ECO

September 2022 1594 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

Overview
The Interactive ECO feature enables you to run manual incremental updates to the design to repair
timing or transition time violations. You can run Interactive ECO after running placement, timing
optimization, or signal integrity analysis (CeltIC NDC).

If you performed RC extraction on the design, and the timing graph was built before running an
ECO, then the RC extraction data and timing graph are incrementally updated.

Before You Begin
Before you can perform interactive ECO, the following conditions must be met:

You must place and route the design

You must load the design into the current session

Results
The following output files are generated:

Updated netlist

Updated placement

Adding Buffers
You can add a single buffer or a pair of inverters at a time on a net.

1. To open the Interactive ECO form, select ECO - Interactive ECO from the Innovus menu. This
opens the Interactive ECO form. The Add Repeater page is selected.

September 2022 1595 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

 2. Enter the net name in the Net field.Type the net name, or click on a displayed net in the design
display window and click get selected.

 3. To select the terminals, choose one of the following:

To connect the added buffer to drive all the receivers, specify All Terminals. Use this to
reduce the delay and output transition time of a weak driver driving a large capacitive
load.

To connect the added buffer to drive the listed receivers, specify Listed Terminals. This
provides full flexibility for building an arbitrary buffer connection.

Draw Terminal button - Allows you to draw an area covering the terminals to which you
want to add the buffer.

4. In the New Cell field, enter the cell type name of the repeater to add, or click on the arrow to right
of the field and select a buffer from the list.

5. In the Place Modepane, you can choose one among several options:

Default

September 2022 1596 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

The software automatically determines a location and places the new cell.

Don't Place Cells
Specifies that the inserted cells should not be placed. Only the logical change in
connectivity will be made.

Location
Enter the location for the buffer using one of the following methods:

You can use the automatically assigned locations, enter the locations, or click on
an area in the design display window and click get coord.

Relative Distance to the Sink
Specifies the location of the buffer based on its distance from the sink or the driver pin.
The value is a number between 0 and 1. A low value (0.1) places the buffer near the
sink; a high value (0.9) places the buffer near the driver. The fraction is based on the
length of the wire.

This option works when one term is provided; it does not work if no term or multiple terms are
specified.

Offload

a. To connect the added buffer to drive only noncritical receivers, select By Slack.
This checks the timing graph for noncritical receivers and offloads those from the
critical path, and could improve critical path timing by penalizing noncritical path
delays.

b. To add a buffer at a specific location, select By Location and enter the x, y
coordinates.

6. Specify a radius.

Specify the radius in which the added instances are free to move. If no legal location can
be found in the specified radius, the cells would be placed at the specified location
resulting in an overlap with other cells. In that case, you should perform legalization.

7. (Optional) To legalize placement of the ECO changes, click Do Refine Placement.

8. Click Apply.

9. (Optional) Click the Eval button to evaluate the effect on timing if you add a new cell. The
values are not applied in the database.

10. (Optional) Click the Eval All button to evaluate the effect on timing for all the cell types
available for the new cell. The timing report shows the effects of all the cell types, enabling

September 2022 1597 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

you to select the best cell for your design. The values are not applied in the database.

Note: You can add a buffer around the I/O pin of a block using the attachIOBuffer command.

Note: By clicking the Mode button, you can open the Set Interactive Mode form to select different
modes that control the behavior of ECO commands.

The following text command and parameters provide equivalent or additional functionality:

ecoAddRepeater

Note: When ecoAddRepeater is used in the post-mask ECO, ensure that it is used with the -
noPlace option to avoid base layer change. Also, call ecoPlace -
useSpareCells or ecoSwapSpareCell to map the new repeater to the spare cell. If you plan to
call ecoRoute -modifyOnlyLayers bottomLayer:topLayer later, ensure that the added repeater can
be connected through the specified layer. Otherwise, please do not use
the ecoAddRepeatercommand. You can also use loadECO <ecofile> -postMask to add repeaters in
the post-mask ECO.

For more information, see Interactive ECO Commands in the Innovus Text Command Reference.

Changing the Cell
You can upsize or downsize instances. Upsizing an instance that drives a large load can improve
the driver delay and the transition time at the receivers. You can also downsize an instance on the
noncritical path to reduce the loading of its driver on the critical path.

1. To open the Interactive ECO form, select ECO - Interactive ECO from the Innovus menu, and
click the Change Cell tab. The Change Cell page is displayed.

September 2022 1598 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

../innovusTCR/attachIOBuffer.html
../innovusTCR/ecoAddRepeater.html
../innovusTCR/ecoPlace.html
../innovusTCR/ecoSwapSpareCell.html
../innovusTCR/Interactive_ECO_Commands.html

2. In the Instance field, enter the hierarchical instance name to be changed. Type the instance
name, or click an instance in the design display window and click get selected. Select either upsize,
downsize, or specified cell. If you select specified cell, enter the replacement cell name in the
adjacent field.

3. Type the cell name, or use the pull-down menu to select a cell.

4. (Optional) Specify the pin mapping for the new cell based on the old cell. This field is required if
the new master cell has different pin names than the original cell.

5. (Optional) Click the Eval button to evaluate the effect on timing if you add a new cell. The values
are not applied in the database.

6. (Optional) Click the Eval All button to evaluate the effect on timing for all the cell types available
for the new cell. The timing report shows the effects of all the cell types, enabling you to select the
best cell for your design. The values are not applied in the database.

7. (Optional) To legalize placement of ECO changes, click Do Refine Placement.

September 2022 1599 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

8. Click Apply.

Note: By clicking the Mode button, you can open the Set Interactive Mode form to select different
modes that control the behavior of ECO commands.

The following text command and parameters provide equivalent or additional functionality:

ecoChangeCell

Note: The ecoChangeCell command cannot be used in the post-mask ECO. Please use loadECO
<ecofile> -postMaskto change cells in post-mask ECO.

For more information, see Interactive ECO Commands in the Innovus Text Command Reference.

Deleting Buffers
You can delete redundant buffers that cause extra delay. Buffers are typically over-added by
synthesis tools based on wireload models.

1. To open the Interactive ECO form, select ECO - Interactive ECO from the Innovus menu, and
click the Del Repeater tab. The Delete Repeater page is displayed.

September 2022 1600 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

../innovusTCR/ecoChangeCell.html
../innovusTCR/Interactive_ECO_Commands.html

2. Enter the buffer instance name to be removed in the Instance field. Type the instance name, or
click an instance in the design display window and click get selected.

3. Select a deletion option: Only This Instance or Whole Buffer Tree.

4. (Optional) Click the Eval button to evaluate the effect on timing if you delete the cell. The values
are not applied in the database.

5. (Optional) To legalize placement of ECO changes, click Do Refine Placement.

6. Click Apply.

Note: By clicking the Mode button, you can open the Set Interactive Mode form to select different
modes that control the behavior of ECO commands.

The following text command and parameters provide equivalent or additional functionality:

ecoDeleteRepeater

September 2022 1601 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

../innovusTCR/ecoDeleteRepeater.html

Note: The ecoDeleteRepeater command cannot be used in the post-mask ECO. Please
use loadECO <ecofile> -postMask to delete repeaters in the post-mask ECO.

For more information, see Interactive ECO Commands in the Innovus Text Command Reference.

Displaying Buffer Trees
You can inspect the routing topology of the buffer tree after it is created. If the buffer tree requires
correction, you can rebuild or modify it through the other three pages in the Interactive ECO form.

1. To open the Interactive ECO form, select ECO - Interactive ECO from the Innovus menu, and
click the Display Buffer Tree tab. The Display Buffer Tree page is displayed.

2. To select a buffer tree, enter the net name in the Net field. You can type the net name, or click a
net in the design display window and click get selected.

September 2022 1602 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

../innovusTCR/Interactive_ECO_Commands.html

3. (Optional) To legalize placement of ECO changes, click Do Refine Placement.
4. Click Apply.

Note: By clicking the Mode button, you can launch the Set Interactive Mode form to select different
modes that control the behavior of ECO commands.

The following text command provides equivalent or additional functionality:

displayBufTree

For more information, see Interactive ECO Commands in the Innovus Text Command Reference.

Running ECO Placement
ECO placement updates the placement from a prior Innovus session to reflect the netlist changes,
merging the new netlist changes into the prior netlist's placement. The modified netlist can then be
imported into an Innovus session so that the result is a new placement that reflects the changes
made in the modified netlist.

You can run either an incremental timing or logic change to the design. You can run ECO after
running placement, although ECO is usually run after analyzing speed or RC data.

To update the placement with the ECO netlist, complete the following steps:

1. Save the pre-ECO netlist placement data.

2. Start a new Innovus session.

3. Import the (ECO) design.

4. Load the floorplan.

5. Run ECO Placement.
This references the pre-ECO netlist placement data. ECO is performed on the new netlist during the
pre-ECO placement. All designs are placed in the resulting placement.

After running ECO successfully, you can analyze the design for timing.

September 2022 1603 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

../innovusTCR/displayBufTree.html
../innovusTCR/Interactive_ECO_Commands.html

Naming Conventions for Interactive ECO
After running interactive ECO, you can use the Design Browser to view the newly added instance
names, prefixed with FE_. The interactive ECO operation naming conventions are described in the
following table:

Name Prefix Description

FE_ECON A net added by interactive ECO

FE_ECOC An instance added by interactive ECO

September 2022 1604 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Interactive ECO

Editing Wires
Overview

Before You Begin

Using Keyboard Shortcuts

Selecting Wires

Deleting Wires

Moving Wires

Copying Wires

Adding Wires

Cutting Wires

Trimming Antennas on Selected Stripes

Changing Special Wire Width

Repairing Maximum Wire Width Violations

Duplicating Special Wires

Stretching Wires

Changing Wire Layers

Splitting and Merging Special Wires

Adding Vias

Changing Vias

Moving Vias

Reshaping Routes

Controlling Cell Blockage Visibility

Parallel Editing Capability

September 2022 1605 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Overview
You can edit the wires and vias in your design manually by using the Edit Route form, the wire
editing commands, and a combination of keyboard shortcuts (bindkeys) and tool widgets.

For signal wires, you can perform the following actions:

Add wires

Cut wires

Move wires

Change the wire to another layer

Change wire width

Change vias

Delete wires

Merge selected wires

Force wires to use specified widths

Add vias

Trim selected wires

Copy/paste wires

For power wires, you can perform all of the actions available for signal wires, as well as the
following additional actions:

Split selected wires

Duplicate selected wires

Fix wires wider than the maximum width

Force wires associated with special nets to be created as signal wires

Patch wires are small, rectangular pieces of metal that do not follow the width restrictions of a
regular wire. These non-standard wire patches are used to improve routability and fix Design Rule
Check (DRC) violations. For instance, to fix a notch or overhang, a regular wire may not be effective
and you may need to add a wire of arbitrary width. In such cases, you can use patch wires. As of
now, you can perform the following actions on patch wires:

Create a patch wire

Select/deselect wires

September 2022 1606 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Move wires

Delete wires

Change the net name of a wire

Copy/paste wires

You can control the display and selection of patch wires by using
the Visibility and Selectability toggles for the new Patch Wire option under Route on the control
panel.

For description of tabs and fields on the Edit Route form, see the Edit Menu chapter in the Innovus
Menu Reference.

Before You Begin
Before you can use the wire editing features, load the design into the current Innovus session.

Wire Editor complies with the latest Multi-Mask Patterning (MMP) spec. It dynamically colorizes the
wire segment and via being edited by automatically assigning and flipping the color on the active
wire segment to avoid color conflict with neighboring objects on the same DPT layer. If multiple
color conflicts cannot be resolved by flipping the maskNum/color, a color violation marker is flagged
immediately. You then have a choice to override the default mask color as needed.

You can use the setEditMode parameter -assign_multi_pattern_color {Auto | Mask1 | Mask2 |
Mask3} to specify how to assign the mask color on the DPT layer of the wire segment to be created.
The default value is Auto. Alternatively, you can use the Assign Multi-Pattern Color drop-down in
the Advanced tab of the Edit Route form to assign a mask color manually.

September 2022 1607 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusMR/Edit_Menu.html
../innovusTCR/setEditMode.html

Note: After you use the wire editing features, the Innovus software saves the new and modified
wires and vias in the database.

Using Keyboard Shortcuts
The Innovus software includes keyboard shortcuts for use with the wire editing features. Type the
keyboard shortcuts while the main Innovus window is active and the cursor is in the design display
area. Some of the keyboard shortcuts provide functionality that is not available through the Edit
Route form or the wire editing commands.

Keyboard Shortcuts That Open Forms
Click in the design display area, then use one of the following shortcuts:

D Opens or closes the Select/Delete/Deselect Route form

E Opens or closes the Edit Route form

September 2022 1608 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Keyboard Shortcuts That Are Equivalent to Tool Widgets

For more information, see "Tool Widgets" in the Menu Reference.

A Select

Shift+A Edit Wire

M Move/Resize Wire

O Add Via

Shift+R Move/Resize/Reshape
(non-connectivity-based move/resize/stretch)

S Move/Resize Wire

Shift+X Cut Wire

September 2022 1609 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusMR/The_Main_Window.html#TheMainWindow-toolwidgets

Keyboard Shortcuts Used in Auto Query Mode

These keyboard shortcuts work only while you are in auto query mode--they do not work while you
are drawing a wire. For more information, see "Auto Query" in the Innovus Menu Reference.

N Toggles to next object under cursor.

P Toggles to previous object under cursor.

Shift+S Populates the Edit Route form with net name, width, layers, and shape of
highlighted (queried) wire or pin. The Nets field of the Select/Delete Routes
form is also populated.

If the queried object is a pin, the layer and width information is set for both
horizontal and vertical directions. If the queried object is a wire, the width
information is set for both horizontal and vertical directions, but only one of the
layers is set. That is, only the horizontal layer is set for a horizontal wire and
only the vertical layer is set for vertical wires. This keyboard shortcut does not
populate the form with spacing information.

Ctrl+W Deletes the queried segment or via.

September 2022 1610 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusMR/The_Main_Window.html#TheMainWindow-autoquery

Keyboard Shortcuts Used in Edit Wire Mode

Keyboard Shortcuts Used in Stretch Wire Mode

For more information, see Stretching Wires.

Keyboard Shortcuts Used to Change Vias

For more information, see Changing Vias.

D Changes the added wire to the layer below the current layer.

U Changes the added wire to the layer above the current layer.

Backspace Deletes the last segment created in the design area. This allows you to
remove one segment of the route at a time.

Esc Removes the entire route.

Number
keys

Change the added wire to a specific layer number. If you want the wire to
be added to metal layer 1, use the 1 keyboard shortcut, use the 2 keyboard
shortcut for metal layer 2, and so forth.

Single-
click

Ends the segment, allowing you to continue the route in either the same
direction or the orthogonal direction.

Double-
click

Ends the route.

1 Stretches or reduces horizontal wires from the left and vertical wires from the bottom,
using the Shift key and the arrow keys.

2 Stretches or reduces horizontal wires from the right and vertical wires from the top,
using the Shift key and the arrow keys.

Shift+N Changes the selected via to the next available via.

Shift+P Changes the selected via to the previous available via.

September 2022 1611 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Selecting Wires
1. Click the Select By Box widget in the Tool Widgets area of the Innovus main window or press

the A keyboard shortcut while the cursor is in the design display area.

2. Click a wire.

Deleting Wires
To delete a wire without deleting the vias connected to it, complete the following steps:

1. Turn on Auto Query.

2. Move the cursor over the wire to delete.

3. Use the N (next) or P (previous) keyboard shortcut to select the correct wire.

4. Press Ctrl+W or the Delete key.

Note: To delete a wire and the vias connected to it, use the editDelete command. To delete a wire
without deleting the vias connected to it, you can use the editDelete command with the -
wires_only option.

By default, when you delete a wire or via with editDelete, the tool searches and deletes all related
DRC markers. If you do not want the related DRC markers to be cleared when you delete a wire or
via, set the to false before using editDelete. This can improve the run time if have to delete a
large number of wires and vias.

During post-mask ECO, you can freeze wires and vias by changing their status to COVER. The
Innovus software does not delete wires or vias with status COVER. Type the following commands to
freeze the wires and vias on metal layers 1 and 2:

deselectAll

editSelect -layer {METAL1 METAL2 VIA12} -object_type {Wire Via}

editChangeStatus -to COVER

Tip
If multiple objects exist at the location of the cursor, press the space bar to toggle the
selection among them. To select multiple objects, press the Shift key while clicking.

September 2022 1612 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusMR/The_Main_Window.html#TheMainWindow-autoquery
../innovusTCR/editDelete.html
../TCRcom/delete_routes.html

Moving Wires
You can move wires in the orthogonal direction by using the editMove command, mouse, or the
keyboard arrow keys (in conjunction with the Shift key).

Using the Mouse to Move Wires

1. Click the Move/Resize Wire icon in the Tool Widgets area of the Innovus main window.
The equivalent keyboard shortcut is M.

2. Click the wire to be moved.
The selected wire is highlighted.

3. Move the cursor slightly within the selected wire.
The cursor changes to a circle shape.

4. Click and release the mouse.
The wire moves with the cursor in the orthogonal direction (up or down for a horizontal wire,
left or right for a vertical wire). Wires connected to the moved wires stretch to maintain
connectivity.
Note: The display area auto pans 20-25% at a time while moving the wire. For example, if you
are moving a wire to the right of the area currently visible in the main window, the display area
automatically pans to the right as you move the wire.

5. Click the mouse again to place the wire in the new location.
Note: To cancel the move before you click the mouse, press the Esc key. The wire returns to
its original location.

Note: If you select the Snap to Track option, the wire automatically snaps to the appropriate
routing track.

September 2022 1613 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusTCR/editMove.html

Using Arrow Keys to Move Wires
1. Choose Edit - Wire - Edit from the menu.

The Edit Route form opens.
The equivalent keyboard shortcut is E.

2. Click the Misc tab.

3. Specify a value, in microns, in the Arrow Increment field.
This value defines the distance that the wire is to move each time you press an arrow key
while holding the Shift key. You can specify either a positive or negative number.

4. Click the Move/Resize Wire icon in the Tool Widgets area of the Innovus main window.
The equivalent keyboard shortcut is M.

5. Click the wire to be moved.
The selected wire is highlighted.

6. Hold the Shift key, then press the up or down arrow key for a horizontal wire or the left or right
key for a vertical wire.
The selected wire moves in the direction of the arrow.

Copying Wires
You can copy wires and vias by using the following methods:

Using the editCopy command (all wires and vias)

Using the mouse (all wires and vias)

Duplicating and moving (only special wires and vias)

Using the editCopy Command
To copy a wire or via to a specific location, use the editCopy command. You can specify whether or
not the copied object should retain the net name of the original object. You can also assign a
specific net to the copied object. If required, you can copy the selected wires multiple times by using
the -times parameter.

September 2022 1614 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusTCR/editCopy.html

Using the Mouse to Copy Wires or Vias
To copy wires or vias using the mouse, complete the following steps:

1. Select the wire or via to be copied.

2. Use the C bindkey or click the Copy icon () to switch to Copy mode.

3. (Optional) Press F3 to open the Copy form. Select the direction in which you want to move the
copied object from the Move Direction drop-down. You also choose to retain net name of the
original object in the copied object. Alternatively, you can assign a specific net to the copied
object.

4. Move the mouse over any of the selected objects. The cursor changes to a black dot.

5. Click once to start copying the selected object. A ghost image of the original object will move
along with the cursor.

6. Click again to place the copy at the desired location.

Copying and Moving Special Wires or Vias
To copy/paste and then move selected special wires or vias, complete the following steps:

1. Select wires or vias.

2. Type the editDuplicate command (or use the C keyboard shortcut) to copy the objects. The
duplicate object is created directly on top of the original object.

3. Use the Shift+R keyboard shortcut or click the Move/Resize/Reshape icon to switch
to non-connectivity-based move mode.

4. Move the mouse over any of the selected objects. A black dot appears.

5. Click once to start moving the selected objects.

6. Click again to place the objects in the desired location.

Note: To cut and paste, and move selected special wires or vias, skip step 2.

September 2022 1615 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusTCR/editDuplicate.html

Adding Wires
You can add one or more wires interactively to single or multiple nets. When you add wires, the
flight lines to routed pins are displayed in the pin color (by default, yellow) and flight lines to
unrouted pins are displayed in the wire color (by default, blue).

By default, the routing status for newly added signal wires is FIXED. A FIXED routing status means
that the automated routers do not rip up and reroute preroutes. Signal wires that are moved, cut, or
otherwise changed by wire editing commands maintain the routing status that was set before the
wire editing commands were issued.

Adding a Wire for a Single Net

1. Click the Edit Wire widget (or press Shift+A).
This places the Innovus software in the Edit Wire mode and the mouse cursor changes to a

pencil . In addition, Innovus is automatically placed in the Auto Query mode, even if
the Q widget below the design display area is not enabled.

2. If pins are not visible, select Pin Shapes. in the Cell group on the Layer
Control bar.

3. Place the cursor over the pin or wire at the starting point for the wire to be drawn, and then
type Shift+S while the cursor is in the design display window.
This populates the Edit Route form with the net name, layer, and width information that is used
in creating new wires.
Note: If multiple objects exist at a particular point, use the N or P keyboard shortcut to cycle
through the objects.

4. (Optional) Choose Edit - Wire - Edit from the menu or use the E keyboard shortcut.

September 2022 1616 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

The Edit Route form opens, and has been automatically populated with the net name, layers,
and widths. The form is not populated with spacing information, which only applies while
editing multiple nets.

5. Click the Basic tab on the Edit Route form and adjust the values in the Layer and Width fields.

6. (For special wires only) Select a shape from the Shape drop-down menu on the Basic tab.
Note: Shapes are only defined for power/special wires. This value is ignored for signal wires.

7. Click the start point for the wire you want to add, then move the mouse to a new point.
The wire is drawn interactively as you move the mouse.

8. Click a new location to change the direction of the wire or continue in the same direction with
a different segment.
Note: If there is a layer change, a via is automatically created.

9. Double-click the mouse.
The wire ends at the location of the cursor.
Note: After double-clicking, you cannot use the Backspace key to erase segments that you
drew. Instead, click the undo widget to remove the entire route, or use the Edit Delete form.

Note: Widths for signal wires depend on the applicable LEF rule, no matter what value is populated
in the GUI. To specify a wire width that is different from the default wire width value, select a non-
default rule other than Default from the Rule drop-down menu on the Basic tab of the Edit Route
form.

Tips

Press a number key to change the layer of the wire being added.
When the software is in the Edit Wire mode, number keys can be used as
keyboard shortcuts, with the number indicating the layer number of the wire being
drawn. For example, if you press the number 2, the segment is added to metal
layer 2. Alternatively, you can use the U or D keyboard shortcuts to change the
layer of the segment. The U keyboard shortcut changes the segment to the next
higher layer, and the D keyboard shortcut changes the segment to the next lower
layer.

Press the Backspace key to erase the most recently drawn segment.
You can do this for as many segments as needed.

September 2022 1617 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Adding Parallel Wires for Multiple Nets
To add parallel wires for multiple nets at the same time, complete the following steps:

1. Click the Edit Wire widget (or press Shift+A).
This places the Innovus software in the Edit Wire mode and changes the mouse pointer to a
pencil.

2. Choose Edit - Wire - Edit from the menu or use keyboard shortcut E.
The Edit Route form opens.

3. Select the appropriate Route Action - Create Regular Wire or Create Special Wire.

4. Click the Basic tab on the Edit Route form and enter the net names in the Nets field.
Note: You can also specify a file that contains a list of nets. See Adding Wires that
Automatically Extend to a Target for more information.

5. (Optional) Select horizontal and vertical layer names and specify width and spacing values.
Note: To use different width or spacing values for different nets, use the Multi-Net tab. See
Using Override to Add Wire Groups with Multiple Widths and Spacing for more information.

6. (Optional) Specify a value in the Drawing Wire field on the Multi-Net tab.
This specifies which of the nets (specified in the Nets field) corresponds to the mouse pointer
location. By default, this value is 1, meaning the mouse position corresponds to the position of
the left-most or bottom-most net of the group.
For example, if the Nets field contains VSS VDD VDDA VSSA, the VSS net is the bottom-most net
for horizontal segments, and the left-most net for vertical segments. If the value in the Drawing
Wire field is set to 1, the mouse location corresponds to wires on the VSS net.

7. (For special wires only) Click the Basic tab and select a shape from the drop-down menu.
Note: Shapes are only defined for power wires. This value is ignored for signal wires.

8. Click the start point for the wires you want to add, then move the mouse to a new point.
The wires are drawn interactively as you move the mouse.

September 2022 1618 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

9. (Optional) Click a new location to change the direction of the wires or to continue in the same
direction with a different segment.
Note: If there is a layer change, a via is automatically created.

10. Double-click the mouse.
The wires end at the location of the cursor.
Note: After double-clicking, you cannot use the Backspace key to erase segments that you
drew. Instead, click the undo widget to remove the entire route, or use the Edit Delete form.

Adding Wires that Automatically Extend to a Target
To create a wire group for multiple nets that automatically extend to targets, complete the following
steps:

1. Click the Edit Wire widget .
This places the Innovus software in the Edit Wire mode and changes the mouse pointer to a
pencil.

2. Choose Edit - Wire - Edit Route from the menu.
The Edit Route form opens.

3. Select the appropriate Route Action - Create Regular Wire or Create Special Wire.

4. Create a text file that contains the names of multiple nets.
Make sure that each line in the file contains the name of one net, and that the nets are listed in
the order in which you want to create the wire group.

5. Click the Load button on the Basic tab of the Edit Route form.
This opens the Open form.

6. Select the file you created in step 4, then click OK.
The Nets field now contains the net names in the file.

7. On the Basic tab, select horizontal and vertical layer names and specify width and spacing
values.

Tip
Press the Backspace key to erase the most recently drawn set of segments. You can do
this for as many sets of segments as needed.

September 2022 1619 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Note: To use different widths or spacing values for different nets, use the Multi-Net tab. See
Using Override to Add Wire Groups with Multiple Widths and Spacing for more information.

8. Click the Misc tab, and select the Extend Start Wires and Extend End Wires options. These
options extend both ends of the wires until they connect to a target.

9. Click the point in the design display area where the left-most or bottom-most wire should start.
Note: The start point does not have to be at a target.

10. Move the mouse horizontally or vertically.
The wires are drawn interactively.

11. Double-click the mouse.
The start point and end point of the wire extend until they connected to a target. If no target is
present, the wire does not extend.

Using Override to Add Wire Groups with Multiple Widths and
Spacing
To add pairs of power and ground wires, where wires have different widths and spacing, complete
the following steps:

1. Click the Edit Wire widget .
This places the Innovus software in the Edit Wire mode and changes the mouse pointer to a
pencil.

2. Choose Edit - Wire - Edit from the menu. The Edit Route form opens.

3. Click the Create Special Wire option button.

4. Click the Basic tab on the Edit Route form and enter the net names into the Nets field. For
example, "vdd vss vdd" for illustration purpose.
Note: You can also specify a file that contains a list of nets. See Adding Wires that
Automatically Extend to a Target for more information.

5. On the Basic tab, select the horizontal and vertical layer names and specify the width and
spacing values. These settings will be used for non-overrided nets.

6. Click the Mutli-Net tab and then enter a set of width and spacing values for the nets that do not
have default width and spacing values.
For example, if you specify the following values:

September 2022 1620 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

1 0.1 0.2 1

2 0.2 0.4 2

3 0.3 0.6 3

The first line indicates that the first net (vdd) has a width of 0.1 microns; the spacing value
between the first and second net is 0.2 microns; and the first net is routed only on layer 1. The
second line indicates that the second net (vss) has a width of 0.2 microns; the spacing value
between the second and third net is 0.4 microns; and the second net is routed only on layer
2. To specify the same constraints for multiple nets, use ',' to separate the net numbers. For
example, if you specify "netNum1,netNum2,netNum3 width spacing layer", all three nets will
have the same width, spacing, and layer number.
Note: To specify a value of less than 1, you must include a 0 before the decimal point. For
example, a value of .6 is not valid, and must be expressed as 0.6.

7. Close the Edit Route form.

8. Click the point in the design display area where the leftmost stripe should start.
Note: The start point does not have to be at a target.

9. Double-click the mouse.
The wires end at the location of the cursor.

Cutting Wires
You can use the Cut Wire widget to cut wires and bus guides on the visible layers. There are two
operating modes:

Cut Wire by Line (default): When you click this widget, the cursor changes to scissors in the
design display area. Move the cursor to draw a draw a line indicating where to cut a wire. The
cut must go all the way through the wire. You can cut special wires horizontally and vertically.

September 2022 1621 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

The results retain the same direction as the original wire. You can also cut rectangles.

Cut Wire by Box: Select the Cut by Box option from the drop-down menu to switch to the Cut

Wire by Box mode. A square appears on the Cut Wire widget () to indicate that you are
now in the Cut Wire by Box mode. In this mode, you can cut a wire or bus guide by drawing a
cut-box to indicate the places from which the wire should be cut. This mode makes it possible
to cut off a wire in a single step. Only the wires that are perpendicular to the cut-box edge are
cut. In addition, the cut-box edge must pass across the wire, bus guide, or rectangle
completely.

You can also use the drop-down menu of the widget to choose between cutting all visible wires or
selected wires overlapping with the cut line or box.

Given below are steps for cutting wires using the default Cut Wire by Line mode:

1. Click the Cut Wire widget .
The cursor changes to the shape of a scissors, indicating that the Innovus software is in
the Cut Wire mode.

2. Click the location at which you want to start cutting the shields.

3. Move the mouse so that the drawn line is touching or overlaps the wire orthogonally.

4. Click to complete the cut.

5. Use the A keyboard shortcut to enter the Select mode.
The cursor changes to an arrow shape.

6. Click the piece of wire to be deleted.
The selected piece of wire is highlighted.

7. Use the D keyboard shortcut to delete the selected objects.

Note: Wires can only be cut in the orthogonal direction. If you cut multiple wires, including
wires in the same direction as the cut, the cut only affects wires in the orthogonal direction to
the cut. Once cut, signal wire pieces maintain a 1/2 wire width extension, but power wires are
not extended.

Alternatively, you can cut wires from the command line by using the editCutWire command.

Tip
If multiple objects exist at the location of the cursor, press the space bar to toggle the
selection among them. To select multiple objects, press the Shift key while clicking.

September 2022 1622 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusTCR/editCutWire.html

Trimming Antennas on Selected Stripes
If your completed power structure contains stripes in a mesh configuration, physical antennas might
remain on some stripes.

1. Use the D keyboard shortcut to display the Select/Delete Routes form.

2. Choose Select from the Action drop-down menu.

3. (Optional) Click Nets, then specify one or more nets for the wires to be trimmed.

4. (Optional) Click Direction, then click H to trim horizontal wires or V to trim vertical wires.

5. Click Shapes, then select STRIPE.

6. Click Apply.
The selected wires are highlighted in the design display area.

7. Use the Shift+T keyboard shortcut or click the widget at bottom of the Edit Route form to
trim the selected wires.
The selected power wires are trimmed back to the last connection point and deselected.

Changing Special Wire Width
After running power analysis, you might need to increase the width of some power stripes to
alleviate any IR drop or EM issues.

1. Make sure the software is in Select mode (you can use the A keyboard shortcut), then click the
wire segment to be widened.

2. Use the E keyboard shortcut.
This displays the Edit Route form without placing the software in the Edit Wire mode.

3. Click the Create Special Wire option.

4. Click the Basic tab on the Edit Route form and enter values in the Width fields.
Specify a width value in the Horizontal section for horizontal wires and a width value in
the Vertical section for vertical wires.

5. Use the Shift+W keyboard shortcut or click the widget at bottom of the Edit Route form.
This changes the width of the selected wire. Any via connected to that the wire is also
updated based upon the new width.

September 2022 1623 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Repairing Maximum Wire Width Violations
Violations occur if you specify wires widths greater than the maximum width defined by the
MAXWIDTH value in the LEF file.

1. Use the E keyboard shortcut.
This displays the Edit Route form without placing the software in the Edit Wire mode.

2. Click the Fix Wires Wider than Max Width widget at the bottom of the Edit Route form.
This executes the editFixWideWires command, which finds any wires violating
the MAXWIDTH value and splits up both the wires and the associated vias as minimally as
possible while maintaining the same footprint.

Duplicating Special Wires
After running power analysis, you might need to add some power stripes to alleviate any IR drop or
EM issues. Instead of creating new wires interactively, you can duplicate existing special wires.

1. Make sure the software is in the Select mode (you can use the A keyboard shortcut), then click
the wire segment to duplicate.

2. Click the Duplicate Selected Wires widget or use the C keyboard shortcut.
The duplicated wire is automatically selected and placed directly on top of the original wire.
Note: The width and layer of the duplicated wire are always the same as the original wire. To
duplicate a wire and change the layer, use the editDuplicate command and specify the layer
for the duplicate wire. For more information, see editDuplicate in the "Wire Edit Commands"
chapter of the Text Command Reference.

3. Use the M keyboard shortcut.
This places the software in the Move mode, allowing you to use the mouse or the arrow keys
(while holding down the Shift key) to move the newly created wire segment to the desired
location.

September 2022 1624 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusTCR/editFixWideWires.html

Stretching Wires
1. Click the Select By Box widget in the Tool Widgets area of the Innovus main window.

The cursor shape is an arrow, indicating that Innovus software is in the Select mode. The
equivalent keyboard shortcut is A.

2. Click the wire to stretch.
The selected wire is highlighted.

3. Click the Move/Resize Wire widget in the Tool Widgets area of the Innovus main window.
The equivalent keyboard shortcut is S.

4. Move the cursor to the end point of the wire to be stretched. The cursor changes to a T shape

.

5. Click the end point, then release the mouse button and move the cursor to a new location and
click again. The wire stretches to the new location.

Alternatively, you can use the Shift key in conjunction with the arrow keys to stretch or shrink
the wire. When the software is in the Move/Resize Wire mode, you can use 1 and 2 as
keyboard shortcuts to set the edge of the wire to be stretched. By default, the wire is stretched
from the top or the right using the arrow keys regardless of the cursor location. To stretch the
wire from the bottom or the left, use the 1 keyboard shortcut. The Move/Resize Wire widget

reverses so that the outer arrow points to the left. To return to stretching wires from the top
or right, use the 2 keyboard shortcut. The Move/Resize Wire widget changes back to the
original picture and the software is in the default stretch mode.

The Floorplan Move/Size/Reshape command (Shift + R bindkey) can also be used to resize
and stretch wires, in addition to moving, without checking the DRC. Use the editResize
-no_conn parameter to specify whether the tool should honor wire connectivity and drop vias
between wires in different layers. If you set -no_conn to:

1: No via will be created or removed.

0: Tool will create or remove via, if necessary.

Currently, resizing or stretching using Shift+R is supported only for horizontal and vertical wires
and not for 45-degree wires. Only special wires support resizing.

September 2022 1625 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusTCR/editResize.html

Changing Wire Layers
You may need to change sections of wires to different layers in order to relieve congestion on a
specific layer or to fix process antenna violations.

1. Make sure the software is in the Select mode (you can use the A keyboard shortcut), then click
the wire segment to be updated.

2. Use the E keyboard shortcut.
This displays the Edit Route form without placing the software in the Edit Wire mode.

3. Click the Basic tab on the Edit Route form and enter values in the Layer fields.
Specify a layer value in the Horizontal section for horizontal wires and a layer value in
the Vertical section for vertical wires.

4. Use the Shift+L keyboard shortcut or click the widget at the bottom of Edit Route form.
This changes the layer of the selected wire. Any via connected to that wire is also updated
automatically based on the new layer.

You can also change the wire layers easily by using the drop-down of the Change Layer of
Selected Wire widget on the Wire Edit toolbar on the main window. After selecting the wire, choose
the required layer from the horizontal or vertical layer submenus in the drop-down of the widget.

Splitting and Merging Special Wires
Stripes that spread over the entire die may need to be altered only in specific locations. In this case,
a stripe that is represented as a single piece of wire segment must be split into multiple segments
before any local editing. You can split a single stripe into multiple cut stripes at each crossover
automatically:

1. Make sure the software is in the Select mode (you can use the A keyboard shortcut), then click
the wire segment to be split.

2. Use the Ctrl+S keyboard shortcut.
This automatically splits the single wire segment into multiple segments at points connected
to other othogonal wires.

September 2022 1626 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

After splitting a wire, you can merge those wire segments that align back into a single segment.

1. Select a single segment.

2. Use the Shift+M keyboard shortcut.
This merges the wire segments into a single segment.

In the following picture, the second horizontal stripe (vss) is split into 3 wire segments due to two
crossover points.

Adding Vias
1. Select the Add Via widget . The equivalent keyboard shortcut is O.

2. Press the F3 key.
This displays the Edit Via form.

3. Select Geometry in the Create Via by field.

4. Fill all of the fields in the form. For more information, see "Edit Via" in Edit Menu chapter of the
Menu Reference.

5. Move the cursor to the location to which the via is to be added, then click the mouse.

A via with the exact configuration specified in the Edit Via form is added at that location.

Changing Vias

September 2022 1627 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusMR/Edit_Menu.html

Using the editChangeVia command
You can change one or more vias using this command. For example, to change
all VIA_XX vias of a specified net located within a specified region to VIA_YY vias, type the
following command:
editChangeVia -net netName -area {x1 y1 x2 y2} -from VIA_XX -to VIA_YY

For more information, see editChangeVia in the Text Command Reference.

Using keyboard shortcuts
You can change one via at a time using keyboard shortcuts.

a. Place the cursor on the via to be changed in Auto Query mode.

b. Use the N (next) or P (previous) keyboard shortcuts to select the correct via if multiple
vias exist in the same location on different layers.

c. Without moving the mouse, use the Shift+N (next) or Shift+P(previous) keyboard
shortcut to display a via that has the same LEF rule as the selected via.

If a via is available, the display is updated with the new via when you press the
keyboard shortcut.

If another via is not available, you will hear a warning beep when you press the
keyboard shortcut. This can occur when only one via is defined in the LEF file,
when the currently queried object is not a via, or when no object is currently
queried.

Note: By default, if the net is routed with a Non Default Rule (NDR), the Wire Editor
circles through the list of NDR vias defined in the LEF for that NDR rule plus the
default vias, each time the Shift + N bindkey is used. If you want the Wire Editor to
consider only the NDR vias when Shift + N is pressed, set the setEditMode -
circle_NDR_vias_only parameter to 1. This restricts circle list to NDR vias only.

Using the Edit Power Vias form
For information, see Edit Power Vias in the Innovus Menu Reference.

Note: You cannot change vias using the Edit Route form.

Moving Vias

Select vias. Use the Shift+R keyboard shortcut or click the Move/Resize/Reshape icon to
switch to non-connectivity-based move mode then move the vias. The Innovus software moves vias
without considering connectivity.

September 2022 1628 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusTCR/editChangeVia.html
../innovusMR/Power_Menu.html#PowerMenu-EditPowerVias

Reshaping Routes
You can reshape routes by specifying that wires at the corner of a route are to be trimmed after
adding wires within an area that makes the existing corner wires obsolete. In addition, if you add a
wire that circumvents an existing path, the existing route is trimmed after the new wires are added.

1. Click the Edit Wire widget .
This places the Innovus software in the Edit Wire mode and changes the mouse pointer to a
pencil. In addition, it places the software in the Auto Query mode.
The equivalent keyboard shortcut is Shift+A.

2. Choose Edit - Wire - Edit from the menu. The Edit Route form opens.
The equivalent keyboard shortcut is E.

3. Click the Misc tab.

4. Select the Reshape option on the form.

5. Add wires to the design, as described in Adding Wires.

The following illustrations show the results of using the Reshape option:

September 2022 1629 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Controlling Cell Blockage Visibility
If you see a spacing violation when adding or editing a via or wire, it might be caused by a cell
blockage that is not currently visible.

To see cell blockages, select the Cell Blkg option on the Routing color control display (click the
slidebar to display this option). Alternatively, you can click the All Colors button to display the Color
Preferences form, then select the Cell Blockage visibility option. In addition, depending on whether
the blockage is outside or inside a cell, you must do one of the following:

Cell blockages outside a cell are visible by default. To control the visibility of these blockages
for particular layers, click the Wire Layers tab of the Color Preferences form. Use the buttons
in the fifth column, Blkg, to deselect the visibility of blockages for particular layers. By default,
all layers are selected.

Cell blockages within a cell are not visible by default. To see these cell blockages, click the
Wire Layers tab of the Color Preferences form, then use the buttons in the sixth column, V
Blkg, to select the visibility of blockages for each cut layer that you want to see. By default, all
layers are deselected.

Parallel Editing Capability
In large designs, it can be challenging to fix all DRC violations by automatic
physical implementation tools. The traditional flow in which violations are fixed one at a time by an
engineer can consume a lot of time. To address such issues, Innovus provides the parallel editing
capability through merge DB. This capability enables multiple users to make wire editing changes
in the same database in parallel.
The parallel editing capability can be used to fix DRC violations and ECO in parallel at the sign-off
stage in the physical implementation flow.

September 2022 1630 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Parallel Edit Flow
The parallel editing flow can enable multiple users to make physical and logic ECO changes at the
same time on different areas of a design. It can support a wide range of basic wire editing and ECO
operations, such as modifying or adding a wire or via or modifying logical connections.

This flow consists of three commands: start_parallel_edit, end_parallel_edit, and
read_parallel_edit_files. All the physical and logical information modified in the area selected
through start_parallel_edit is recorded in the related ECO file by end_parallel_edit. The
read_parallel_edit_files command is then used to load all the ECO files to complete the entire
ECO operation.

The parallel edit flow can be represented as follows:

The steps in the parallel edit flow are detailed below:

1. Import or restore the design in which you want to make parallel edits along with other users.
The other users can start their own Innovus session on the same database in parallel.

2. Initialize parallel editing by using the start_parallel_edit command.
The start_parallel_edit command is used to define the area where you need to perform

September 2022 1631 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

../innovusTCR/start_parallel_edit.html
../innovusTCR/end_parallel_edit.html
../innovusTCR/read_parallel_edit_files.html

DRC fixing or ECO operations. The command draws a yellow square on the main window to
indicate the edit area and saves the physical data, net attributes, via cell names, and Non-
Default Rules (NDRs) to multiple binary files. Use the -region {x1 y1 x2 y2} parameter to
specify the coordinates of the edit area. Specify the -area_restricted parameter to write out
only the different objects inside or touching the specified edit area. This is a strict
interpretation of the region, and ignores the changes made outside of the region. The other
engineers should also initialize start_parallel_edit in their sessions separately to specify
their own operating areas. Area overlap is not recommended because it might cause ECO
conflicts.

The following example shows the report information generated by start_parallel_edit.

3. Make DRC fixes on ECO changes in your assigned area in the design. Multiple engineers
can work simultaneously on different areas in the design in the parallel edit mode.

September 2022 1632 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

4. After all your changes are done, use the end_parallel_edit command in your session to save
the ECO file of the edits. The end_parallel_edit command compares the data in memory
with the original data saved in the binary files by start_parallel_edit and writes the parallel
edit information to the specified file. The following example shows the report information
generated by end_parallel_edit.

Multiple end_parallel_edit commands are allowed after one start_parallel_edit. Others
users should also issue the end_parallel_edit command in their respective sessions after
completing their changes. Similarly, other engineers also save their modifications in
corresponding files after he corrections for the different areas of the chip are saved in different
files.

5. Load all parallel edit files by using the read_parallel_edit_files command.
The read_parallel_edit_files command loads all the specified parallel edit files and
implements the editing changes recorded in them. In case of any conflict in the parallel edit
files, the tool implements changes as per the specified conflict mode and writes the conflicting
information to a report file.

Parallel Editing Example for DRC Corrections
By using the parallel editing capability, you can divide the entire chip into different areas to enable
multiple engineers to correct DRC violations in different areas of the design at the same time. After
all the changes are done, you can apply the correction results to the entire chip. The following
example shows how DRC corrections are done in a specific area of a real chip in parallel editing
mode:

Step 1

Load the entire chip into Innovus and use start_parallel_edit -region {x1 y1 x2 y2} to specify
the area in which DRC correction is required.

September 2022 1633 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

The specified area is highlighted in the GUI at this point. The verify_drc command can report all
DRC violations in the highlighted area as shown below:

September 2022 1634 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

As shown above, there are 5 DRC violations in the defined area. At this point, you can fix the DRC
violations manually or through some automated method in the tool. After DRC fixing is complete,
use the verify_drc command again to check whether or not the DRC violations are completely
fixed.

Step 2

After the DRC violations in the specified area are completely fixed, you need to save the changes
made to the design. end_parallel_edit -out_file drc_diff will save all the changes to the
drc_diff file as shown below:

September 2022 1635 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

The content of the saved drc_diff file is shown below:

Step 3

Reload the original chip, and use read_parallel_edit_files -files drc_diff to read in the
corrections from the previous step. The DRC corrections will be applied to the original chip layout
so that DRC violations will be removed from the original area as shown below.

September 2022 1636 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

The process described above can also be applied to a multi-user collaboration. The only additional
step you need to do is to divide the whole chip into specific areas in the first step and assign them to
different engineers.

Parallel Editing Example for ECO Changes
In this example, the chip is divided into three areas as shown below.

September 2022 1637 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Step 1

Load the entire chip into Innovus and use start_parallel_edit -region {Area1_coordinates} to
specify the area in which ECO changes are required. After the relevant operation is completed, use
the end_parallel_edit -out_file 1.eco command to record the changes to the chip in the
1.eco file. The specific example script and ECO file are as follows:

Example script

Example ECO File

In the above step, ECO changes were made in Area1 in the parallel editing mode. Similarly, ECO

September 2022 1638 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

changes are made in Area2 and Area3, and then end_parallel_edit is used to write the modified
physical and logical information in these areas to the 2.eco and 3.eco files, respectively.

Step 2

Load the entire chip first and then read the eco files generated in the previous step by using the
read_parallel_edit_files command. All the changes in different areas will be reflected in the chip.
The script example for this step is as follows:

Sometimes, there may be a conflict between the changes in two eco files. In such cases,
read_parallel_edit_files will follow the first eco file and will issue a warning message when a
conflicting eco file is read in. For example, Wire A belongs to two different areas in the design
below: Area1 and Area2.

Suppose, both users have corrected this wire. Assuming that 1.eco and 2.eco are saved at the end
of the first step, then changes to Wire A in Area1 are ignored when the following command is run:

read_parallel_edit_files -files 2.eco 1.eco

For more details on handling conflict, see the Handling Conflicts in Parallel Edit Files section.

Parallel Edit File Content
You can record changes to the following objects/attributes in a parallel edit file:

Object Name Attribute Name ACTION

add delete modify

Net Name y y y

September 2022 1639 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

dont_touch y

rule y

skip_routing y

weight y

bottom_preferred_routing_layer y

top_preferred_routing_layer y

shield_net y

Wire net y y y

ext y

pts y y y

layer y y y

mask y y

rule y

status y y

is_patch y y

trimmetal_box y y

trimmetal_mask y y

sWire net y y y

box y y y

layer y y y

mask y y

status y y

shape y y

shield_net y

September 2022 1640 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

type y

width y

subclass y

style_id y

poly y y y

is_patch y y

trimmetal_box y y

trimmetal_mask y

dont_touch y

Via Cell name y

rule y

top_layer y

cut_layer y

bot_layer y

is_colored y

p_cell y

cut_pattern y

type y

is_regular y

contact_id y

cut_width y

cut_height y

x_pitch y

y_pitch y

September 2022 1641 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

x_times y

y_times y

cut_box y

top_rects y

bot_rects y

cut_rects y

mask_array y

Via net y y y

pt y y y

status y y

via_cell y y y

top_mask y y

cut_mask y y

bot_mask y y

sVia net y y y

pt y y y

status y y

orient y

via_cell y y y

dont_touch y

shape y y

shield_net y

top_mask y y

cut_mask y y

September 2022 1642 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

bot_mask y y

subclass y

NDR name y y

hard_spacing y y

layer y y

min_cut y y

via_cell y y

via_rule y y

via_cut_class y y

Instance name y y y

cell y y

pt y y

is_physical_only y y

place_status y y

orient y y

mask_shift y y

Instance Term name y

inst y

net y

Pin name y y y

net y y

is_special y

direction y

type y

September 2022 1643 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

place_status y y

port y

Pin Shape name y y

layer y y

mask y

box y y

poly y y

Routing Blockage layer y y y

name y y

mask y y

slots y y

fills y y

pushdown y y

except_pgnet y y

pgnet_only y y

inst y y

spacing y y

width y y

box y y y

poly y y y

Placment Blockage box y y y

pushdown y y

inst y y

name y y

September 2022 1644 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Parallel Edit File Format
Each entry in the parallel edit file has the following format:

<action command> <object type> <{{attribute value} ...}>

action command specifies the type of action to be carried out on the given object-attributes
combination. Three types of action commands are supported: ADD, DEL, and MODIFY.

For example:

MODIFY NET {{Attribute1 Value1} {Attribute2 Value2} ...}

Sample Parallel Edit File

Here's an extract from a sample parallel edit file:

###

Generated by: Cadence Innovus 17.10-d111_1

OS: Linux x86_64(Host ID noi-leenap)

Generated on: Wed Mar 8 16:46:37 2017

Design: design_top

###

###

The difference for each wire/via

###

MODIFY WIRE {{is_patch 1} {layer M1} {mask 1} {net clk_i} {pts {10904 275220 11048

275300}} {status routed} {trimmetal_box {10752 275300 11200 275420}} {trimmetal_mask 1}

}

MODIFY WIRE {{is_patch 1} {layer M1} {mask 1} {net clk_i} {pts {18968 279060 19112

279140}} {status routed} {trimmetal_box {18816 279140 19264 279260}} {trimmetal_mask 1}

}

MODIFY WIRE {{is_patch 1} {layer M1} {mask 1} {net clk_i} {pts {18968 278300 19112

type y y

density y y

Area box y

September 2022 1645 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

278380}} {status routed} {trimmetal_box {18816 278180 19264 278300}} {trimmetal_mask 1}

}

MODIFY WIRE {{is_patch 1} {layer M1} {mask 1} {net clk_i} {pts {14488 274260 14632

274340}} {status routed} {trimmetal_box {14336 274340 14784 274460}} {trimmetal_mask 1}

}

MODIFY WIRE {{is_patch 1} {layer M1} {mask 1} {net clk_i} {pts {6872 137940 7016

138020}} {status routed} {trimmetal_box {6720 138020 7168 138140}} {trimmetal_mask 1} }

...

....

Handling Conflicts in Parallel Edit Files
During parallel editing, there is a possibility of a conflict if the same attribute of an object is changed
in different parallel edit files.

Some cases in which a conflict can occur are listed below:

Two users edit the layer of the same wire segment.

Two users edit the width of the same NDR rule.

One user cuts the wire segment, and another user changes the status of the same wire.

In the following examples of parallel edits, there is no conflict:

One user edits the layer of wire, and another user edits its mask.

One user edits the width of an NDR rule, and another user edits its spacing.

Whenever a conflict occurs in parallel editing, the way the conflict is addressed depends on
the read_parallel_edit_files -conflict_mode setting, if specified. The two possible settings for
this parameter are:

only_one - In case of conflicting commands, one of the command is implemented and the
other command is recorded in the conflict report.

stop_all - In case of conflicting commands, the tool implements neither of the conflicting
commands and records both of them in the conflict report.

Consider the following examples.

September 2022 1646 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

Example 1

Two parallel editing files, pEdit_1.txt and pEdit_2.txt, have have different definitions for the
same via cell V12_1X1:

Via Cell V12_1x1 in pEdit_1.txt

Via Cell V12_1x1 in pEdit_2.txt

September 2022 1647 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

When both files are read, the tool will keep the via cell name in pEdit_1.txt and rename the via cell
name to V12_1x1_1 in pEdit_2.txt. The tool will also print the following message on the console
and record it in the conflict report file:

Warning: Rename the via cell name fromV12_1x1 to V12_1x1_1 in file pEdit_2.txt.

Example 2

Two parallel editing files, pe2 and pe3, modify the same attribute of a wire.

If the read_parallel_edit_files -conflict_mode parameter is specified and set to only_one when
reading the files, the tool implements the changes in pe2 but gives the following error:

**ERROR: (IMPDBPE-104): 2 files 'pe2:17, pe3:19' modify the same wire. Only command in

file pe2 will be executed. Following commands didn't get executed:

pe3:15

pe3:16

pe3:14

pe3:19

pe3:13

pe3:17

pe3:18

September 2022 1648 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

If the read_parallel_edit_files -conflict mode parameter is set to stop_all, the tool does not
implement either of the conflicting commands and records both of them in the conflict report in
File_name:line_num format:

**ERROR: (IMPDBPE-105): 2 files 'pe2:17, pe3:19' modify the same wire. Following

commands didn't get executed:

pe2:16

pe2:17

pe2:18

pe2:13

pe2:14

pe2:19

pe2:15

pe3:13

pe3:17

pe3:15

pe3:16

pe3:19

pe3:18

pe3:14

September 2022 1649 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

September 2022 1650 Product Version 22.10

 Innovus User Guide
ECOs and Interactive Design Editing--Editing Wires

11

Design Methodology for 3D IC with
Through Silicon Via

Overview

TSV/Bump/Back Side Metal Modeling in Innovus

Defining Keep Out Area in Hard Macros

Design Import

Stacked IC Verilog Input

Stack Configuration Input

Power Connectivity Input

Interface Synchronization and Information Exchange between Dies

TSV and Bump Manipulation

Feedthru Handling

TSV and Bump Routing

Cross Die Connectivity Verification

Export Files

September 2022 1651 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via

Overview
A 3D IC system usually contains several dies connected in three dimensions. In conventional IC,
the IO pins are implemented by either bumps or bonding pads on one side of the chip. To enable
the 3D interconnection, several additional components are created on the chip. Firstly, several Re
Distributed Layers (RDL) are formed on the back side of the chip. Therefore, bumps can be placed
on both front side and back side. Secondly, the Through Silicon Via (TSV) is dropped on the silicon
substrate between the front-side metal and the back side RDL. Finally, when the dies are stacked,
the aligned bumps between them constitute the data path from one die to the other.

Figure 1 Scheme of 3D IC Profile

Innovus supports TSV designs. In Innovus, all the dies of the 3D ICs are divided into several tiers.
Each tier contains several dies, and each die can be flipped, rotated and with offset related to the
package. With Innovus, the designers are able to specify the multi-die system configuration (the
interconnection between dies, the related position of each die), manipulate TSVs and bumps,
perform co-design, and sync-up the interface among all the dies.

Related Topics

"Through Silicon Via Design Commands" chapter of the Innovus Text Command Reference.

"TSV Tool Box" section of the Tools Menu chapter in the Innovus Menu Reference.

September 2022 1652 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via-- Overview

TSV/Bump/Back Side Metal Modeling in
Innovus
Back Side Metal (MB), TSV, and Micro bump are introduced to establish 3D stacked
interconnection between dies. MB is the Redistribution Layer on the back side of the substrate. TSV
is the via which penetrates the silicon substrate. The top cap layer of TSV is usually the first normal
routing layer (1) and the bottom cap layer of TSV is MB, therefore, the back side metal and the 1st
metal layer is connected through TSV.

To connect the die with the others, some solder balls (or pillars) are placed on the top metal layer or
back side metal layer. These solder balls and the underneath metal pad are called bumps in
Innovus. The aligned bump between dies is called micro bump or landing pad. The cross die signal
or power goes to/comes from the adjacent die through the micro bump. The bump between the die
and the package substrate is called flip chip bump.

Figure 2 TSV and Bump Cross-Section

TSV and Bump Cross-Section

All the physical information for back side metal, TSV, and bump is defined in the LEF file (the
version for the LEF file should be LEF 57 or later). MB is modeled as ROUTING layer before the
first normal metal, and a LEF property "BACKSIDE" is assigned to MB. TSV is model as a CUT
layer with a LEF property "TYPE TSV". Below is an example of the additional information in LEF
file for TSV and back side metal definition.

The pad metal of the bump is also described in the LEF file. In the LEF file, the bump is modeled as
a cell. The bump cell has a pin which has the same shape and layer with the pad metal of the
bump. The solder ball information is not described in the LEF. The other way to categorize the
bump is based on the bump pad layer. If a bump is on top metal layer, it could be called as front
bump, and if a bump is on back side metal layer it is back bump. Micro Bump could be either front
bump or back bump depending how the die is stacked.

September 2022 1653 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via-- TSV/Bump/Back Side Metal Modeling in

Innovus

Example
The statement in LEF to describe the TSV is given below:

PROPERTYDEFINITIONS

 LAYER LEF58_BACKSIDE STRING ;

 LAYER LEF58_TYPE STRING ;

 …

END PROPERTYDEFINITIONS

 LAYER MB # Back side metal layer

 TYPE ROUTING ;

 PROPERTY LEF58_BACKSIDE "BACKSIDE ; " ;

 …

END MB

LAYER TSV # TSV cut layer between 1 & MB

 TYPE CUT ;

 PROPERTY LEF58_TYPE "TYPE TSV ; " ;

 SPACING 20.0 LAYER OVERLAP ;

 …

END TSV

 LAYER METAL1 # 1

 TYPE ROUTING ;

 …

END METAL1

 …

VIA VIAB1

 RESISTANCE 0.01 ;

 LAYER MB ;

 RECT -11.00 -11.00 11.00 11.00 ;

September 2022 1654 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via-- TSV/Bump/Back Side Metal Modeling in

Innovus

 LAYER TSV ;

 RECT -5.00 -5.00 5.00 5.00 ;

 LAYER METAL1 ;

 RECT -7.0 -7.0 7.0 7.0 ;

END VIAB1

Defining Keep Out Area in Hard Macros
You can define keep-out area constraints inside macros to avoid overlap between bumps/adjacent
die edges and these areas. Innovus will report warning if creating bumps inside the keep-out area,
and this keep-out area information can be passed to the adjacent die.

Blockage area can be specified in hard macros by creating the following layers of OBS in the macro
LEF file:

Passivation layer in front side

Passivation layer in back side

Master slice layer for top die

Master slice layer for bottom die

Use the passivation layers in the LEF file for defining bump keep-out area, and Master Slice layers
in LEF for defining die edge checking. The statement in the LEF file to define blockage for die edge
checking and bump keep-out area is given below:

Layer for back bump keep out region

LAYER BACKPASSIV

 TYPE CUT ;

 PROPERTY LEF58_TYPE "TYPE PASSIVATION ; " ;

 PROPERTY LEF58_BACKSIDE "BACKSIDE ; " ;

END BACKPASSIV

Layer for front bump keep out region

LAYER TOPPASSIV

 TYPE CUT ;

 PROPERTY LEF58_TYPE "TYPE PASSIVATION ; " ;

END TOPPASSIV

A new layer for top die edge

September 2022 1655 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Defining Keep Out Area in Hard Macros

LAYER TOPDIE

 TYPE MASTERSLICE ;

 PROPERTY LEF58_TYPE "TYPE ABOVEDIEEDGE ; " ;

END TOPDIE

A new layer for bottom die edge

LAYER BOTTOMDIE

 TYPE MASTERSLICE ;

 PROPERTY LEF58_TYPE "TYPE BELOWDIEEDGE ; " ;

END BOTTOMDIE

Then, define the OBS layers in the macro for these constraints. The sample syntax for OBS layer
definition is given below:

……

OBS

LAYER TOPDIE

SPACING 10 ;

RECT -10 -20 100.940 70.885 ;

LAYER BOTTOMDIE

SPACING 5 ;

RECT 50 10 580 80.885 ;

LAYER TOPPASSIV

SPACING 20 ;

RECT 200 -10 300 20 ;

LAYER BACKPASSIV ;

RECT 400 0 500 50 ;

To control the visibility of the OBS layers, click the Wire/Via tab of the Color Preferences form
(Options - All Colors) and select these layers.

To control the visibility of the OBS layers on BACKPASSIV and TOPPASSIV, click the Layer tab of
the Color Preferences form, and select these layers. To control the visibility of the OBS layers on
BOTTOMDIE and TOPDIE, click the All Colors button, select Custom tab, and then select these
layers.

Figure 3 OBS Layers Example

September 2022 1656 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Defining Keep Out Area in Hard Macros

Check Bump Keep Out Area Violation
eUse the verify_stacked_die -check_type {bump_keepout} command parameter to check the
overlap between the OBS layer and bumps (both front and back bumps). You can use
the verify_stacked_die -check_type {die_edge} command parameter for die edge violation
checking between adjacent dies. Once you define an OBS layer inside a macro, the adjacent die
edge should not overlap this OBS area. If there is any violation between macro OBS and adjacent
die edge, it will be marked in the GUI window. The verify_stacked_die command must be used
after readDieAbstract to input adjacent die’s die abstract file. Both top and bottom die edge
violation is checked at the same time.

3D IC Flow in Innovus
The following figure shows the general Innovus 3D IC design flow. Only 2 dies are included in this
flow chart, and it can be extended to multiple dies.

Figure 4 3D IC Design Flow in Innovus

September 2022 1657 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Defining Keep Out Area in Hard Macros

../innovusTCR/verify_stacked_die.html
../innovusTCR/readDieAbstract.html

Innovus designs one die at a time. When designing one die, the micro bump and the instance on
the adjacent die are honored and the micro bump on the current die is synchronized and optimized
accordingly. The design flow for each die is quite similar to the normal design, except the following
steps:

1. In the design import stage, additional configuration for stacked die should be imported.

2. In the floorplan stage, interface between each dies is ensured to be synchronized, and
TSV/Bumps is created and assigned.

3. After floorplanning, the TSV and bump should be routed.

4. In the verification stage, the connectivity between dies should be verified.

Figure 5 shows the detailed floorplan flow for a 3D IC design.

Figure 5 Detailed Floorplan Flow for One of the Dies

September 2022 1658 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Defining Keep Out Area in Hard Macros

Innovus provides TSV Tool Box to perform various 3D IC flow task. It contains the forms used in the
3D IC flow, including TSV/Bump manipulation, data exchange, TSV/Bump routing, and design
verification. Choose Tools -TSV to open it.

Figure 6 GUI Form of TSV Tool Box

September 2022 1659 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Defining Keep Out Area in Hard Macros

Related Topic

"TSV Tool Box" section of the Tools Menu chapter in the Innovus Menu Reference.

Design Import
Innovus takes the conventional and the additional information for stacked dies as inputs for each
die design.

September 2022 1660 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Design Import

Stacked IC Verilog Input
Innovus inputs an additional top-level net list to describe the die-to-die interconnection and die to
package interconnection. In the top-level netlist, package is set as the top module; each die is
instantiated and the connectivity among dies is described. Figure 7 shows an example of the top-
level netlist.

Figure 7 Top-Level Netlist Example

The design .globals file needs to be modified to import the top-level netlist. Except for the module of
the die to be designed, the top-level netlist should also be included in the design .globals file.
init_top_cell should be set as the module name of the die to be designed. Considering Figure 7
as an example, the following setting in the design configuration is for Die1 design.

set init_top_cell {Die1}

set init_verilog { Die1.v top.v }

Stack Configuration Input
Innovus inputs an xml file that describes the position, flipping, and the orientation for each die
related to the package. The xml file could be loaded by the readTSVConfig command directly or
generated and edited through the Stacked Config Editor form.

<StackChip>

 <TopDesign name="top" offsetX=0.0 offsetY=0.0 orientation="R0" />

 <Tier number=1>

 <Chip name="Interposer" orientation="R0" faceUp="yes" llx=0 lly=0

sizeX=3740 sizeY=2340 scaleFactor=1 />

September 2022 1661 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Stacked IC Verilog Input

../innovusTCR/readTSVConfig.html

 </Tier>

 <Tier number=2>

 <Chip name="mother_die" orientation="R0" faceUp="no" llx=100 lly=100

sizeX=2140 sizeY=2140 scaleFactor=0.8 />

 <Chip name="daughter_die" orientation="R0" faceUp="no" llx=2300 lly=500

sizeX=1340 sizeY=1340 scaleFactor=1 />

 </Tier>

</StackChip>

Figure 8 Stack Config File Example

For more information, see the "Stacked Config Editor" form in the Tools Menu chapter of the
Innovus Menu Reference Guide.

Power Connectivity Input
A text file is used to set up P/G net configuration on each die.

There are four types of P/G nets: frontside, backside, sharable, feedthru.

frontside: The P/G net is connected to the front side bump only

backside: The P/G net is connected to the back side bump only

sharable: The P/G net is connected to both front and back side bumps and other instance in
the chip

feedthru: The P/G net is connected to front and back side bumps directly, without the

September 2022 1662 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Power Connectivity Input

connection to any instance of current chip; use alias to define the same P/G net on different
dies

Figure 9 shows an example of a power connectivity file.

Figure 9 Example of Power Configuration File

Related Information

readTSVConfig command in the "Through Silicon Via Design Commands" chapter of
the Innovus Text Command Reference.

"Load Stacked Die Config" form in "TSV Tool Box" section of the "Tools Menu" chapter in the
Innovus Menu Reference.

Interface Synchronization and Information
Exchange between Dies
In 3D ICs, the micro bump is the data/power path between dies. As shown in Figure 2, the pad of
micro bump should be exactly aligned to build the connection between the dies. Innovus uses the
bump file to transfer the bump information from one die to the adjacent die. The bump file contains
all the bump information of a die. Firstly, the bump file is dumped out
by writeBumpLocation command from one die. Then readBumpLocation command should be called
on the adjacent die. The readBumpLocation command creates and assigns micro bumps on the
current die according to the bumps on the adjacent die, as shown in the following picture.

Figure 10 Interface Sync-Up Flow

September 2022 1663 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Interface Synchronization and Information

Exchange between Dies

../innovusTCR/readTSVConfig.html
../innovusTCR/writeBumpLocation.html
../innovusTCR/readBumpLocation.html

The write/read bump information process could be iterated between the two adjacent dies. If the
micro bump on one of the dies is changed, the bump information should be written out and read by
the other die.

When designing one die, the adjacent die information should be honored and displayed. This step
is not essential, but helpful for optimization across the dies and for manual debug. Firstly, the die
abstract file is dumped out by the writeDieAbstract command from one die. Then, the
readDieAbstract command should be called on the adjacent die. The readDieAbstract command
imports the adjacent die information. This information is displayed and honored by the die being
designed.

Related Information

writeBumpLocation, readBumpLocation, writeDieAbstract, and readDieAbstract commands
in the "Through Silicon Via Design Commands" chapter of the Innovus Text Command
Reference.

"Exchange Information Between Dies" form in the "TSV Tool Box" section of the "Tools
Menu" chapter in the Innovus Menu Reference Guide.

September 2022 1664 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Interface Synchronization and Information

Exchange between Dies

../innovusTCR/writeDieAbstract.html
../innovusTCR/readDieAbstract.html
../innovusTCR/writeBumpLocation.html
../innovusTCR/readBumpLocation.html
../innovusTCR/writeDieAbstract.html
../innovusTCR/readDieAbstract.html

TSV and Bump Manipulation
Innovus provides the capability to create/delete and assign/unassign TSV and bumps.

TSV/Bump Generation
There are multiple ways to create TSV/Bumps in Innovus.

Create TSV/Bumps according to bumps on adjacent die
If there are some micro bumps fixed on adjacent dies, user could export the bump file for the
adjacent die with writeBumpLocation command. Then in the current die, import the bump file
with readBumpLocation command and specify -frontBump, -backBump, and –tsvViaName option
in read_bump_location to create corresponding front side bump, back side bump and TSV.

Create TSV/Bumps on current die by command
If there’s no micro bump fixed on adjacent dies, run addTSV -addTSV, -frontBump, and
-backBump to create corresponding cells and specify -lowerLeftLoc, -pitchxy, and
-upperRightLoc options to create expected TSV/Bump array.

Since TSVs and bumps are the path between the dies, place TSVs and back bumps close to the
IOs/Blocks whose pin connects to the adjacent dies on the back side. Keep TSVs outside the core
area, unless a TSV has to be connected with a block inside the core area because the TSVs will
break the follow pin.

Figure 11 TSV/Bumps in GUI

September 2022 1665 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--TSV and Bump Manipulation

../innovusTCR/writeBumpLocation.html
../innovusTCR/readBumpLocation.html
../innovusTCR/addTSV.html

TSV/Bump Assignment
After creating TSV/Bump, user can now assign signal and PG TSV, frontside and backside bumps.

Assign TSV/Bumps according to bumps on adjacent die

If there are some micro bumps fixed on adjacent dies, read_bump_locations help user create and
assign bumps automatically.

Create TSV/Bumps on current die by command

Run assignTSV to assigns nets to TSVs, front side and back side bumps, and/or feedthrus.

assignTSV -frontBump help user assign front side bumps with the IO pins.

assignTSV -backBump help user assign back side bumps and TSVs.

assignTSV -tsvViaName help user assign specified TSV cell only.

Feedthru Handling
In a 3D IC design, there is a special kind of net called feedthrough net. The feedthrough net has
only two pins: one is the IO pin on the front side and the other is the IO pin on the back side. It does
not connect to any instance on the die. The feedthrough net on one die is defined for the connection
between the adjacent dies on the front side and back side, as shown in Figure 12.

Figure 12 Logic Concept and Physical Components of Feedthrough

You can define the feedthrough net in the Verilog netlist by assigning the two IO pins on the front
side and back side together. To create a feedthrough, specify the -tsvFeedthru parameter of
the addTSV command. The assignTSV command assigns the feedthrough net and the normal net
simultaneously or separately by turning on and off the -feedthru and -nonFeedthru parameters.
The embedded TSV, which is modeled as a pin on the back side metal can also be supported

September 2022 1666 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Feedthru Handling

../innovusTCR/assignTSV.html
../innovusTCR/addTSV.html
../innovusTCR/assignTSV.html

by assignTSV. The assignTSV will not assign this back side pin to TSV.

Related Information

 addTSV, deleteTSV, assignTSV, and unassignTSV commands in the "Through Silicon Via
Design Commands" chapter of the Innovus Text Command Reference.

"TSV/Bump Manipulation" form in the "TSV Tool Box" section of the "Tools Menu" chapter in
the Innovus Menu Reference.

TSV and Bump Routing

In a 3D IC design, user usually needs to route TSV/Bump to bumps, PG stripes, instance pins, and
IO pads routing. Innovus provides several route engines to support routing for TSV/Bumps.

September 2022 1667 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--TSV and Bump Routing

../innovusTCR/addTSV.html
../innovusTCR/deleteTSV.html
../innovusTCR/assignTSV.html
../innovusTCR/unassignTSV.html

TSV to IO Pads/ Bumps/ PG Stripes Routing
1. Route TSV to IO Pad. Use fcroute with aio mode to support TSV to IO pad routing. For

example:
fcroute -type signal -designStyle aio -connectTsvToPad -routeWidth 3 -

layerChangeTopLayer METAL4 -layerChangeBotLayer METAL1

2. Route TSV to bump. Innovus cannot route front side bump and back side bump at the same
time, which needs to route separately.For example, to route TSV and back side bump, set
both top and bottom routing layer as back side layer and define extra configuration
srouteExcludeBumpType. Use the following commands:

fcroute -type signal -designStyle aio -routeWidth 8 -layerChangeTopLayer MB -

layerChangeBotLayer MB -connectTsvToBump -extraConfig ./conf/backside.extraConf

In the backside.extraConf, user needs to define "srouteExcludeBumpType FRONT_BUMP",
"FRONT_BUMP" is the cell name of the front side bump.

To route TSV and front side bump, set both top and bottom routing layer as front side layer
and define extra configuration srouteExcludeBumpType:

fcroute -type signal -designStyle aio -routeWidth 8 -layerChangeTopLayer METAL4 -

layerChangeBotLayer METAL1 -connectTsvToBump -extra_config

./conf/frontside.extraConf

In the frontside.extraConf, user need to define "srouteExcludeBumpType BACK_BUMP",
"BACK_BUMP" is the cell name of the back side bump.

3. Route TSV to power ground stripe. Use fcroute with type -connectTsvToRingStripe to route
TSV and power groundstripes, for example:
fcroute -type power -connectTsvToRingStripe -routeWidth 6 -layerChangeTopLayer

METAL2 -layerChangeBotLayer METAL1

The embedded TSV is modeled as a pin on back side metal. It is supported by fcroute, which
will honor the pin on back side metal.

September 2022 1668 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--TSV and Bump Routing

../innovusTCR/fcroute.html

Figure 13 TSV/Bumps Routing

Bump to Bump Routing
Front Bump to Front Bump Routing
An interposer design has no instance in the design and requires front bump connect to front bump
directly. You can use nano route to route them. Use the following setting and commands:

setNanoRouteMode -route_selected_net_only

setNanoRouteMode -route_connect_to_bumps

routeDesign

Figure 14 Bump to Bump Routing

September 2022 1669 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--TSV and Bump Routing

../innovusTCR/setNanoRouteMode.html
../innovusTCR/routeDesign.html

Front Bump to Front Bump Bus Routing
In interposer design that connects HBM dies and SoC dies, usually bus routing is required to
connect HBM dies and SoC dies to ensure the signal transmission performance. This section
illustrates the routing methodology for bus routing in interposer design.

Routing Steps:

1. Create Non-Default Rule (NDR) and Bus Routing Constraints.

a. Following command defines the NDR (2 um width and 3 um spacing on layer METAL2
and METAL4) to be used on bus routing:
add_ndr -width {METAL2 2.0 METAL4 2.0} -spacing {METAL2 3 METAL2 3} -name

bus_ndr

b. Following command defines bus net constraints to be used in routing. It requires tool
using only METAL2 as bus routing layer and bus_ndr as routing rule. Tool may switch
layers of last few wire segments when connecting to bump pins.
setIntegRouteConstraint -type bus -topLayer METAL2 -bottomLayer METAL2 -rule

bus_ndr -net {bus_net_1 bus_net_2 …}

2. Set interlayer shielding constraints
In some scenarios, user may want to create shielding wires between signal routing layers. It is
named as “interlayer shielding”.

a. Interlayer Shielding offset
Following example defines the offset (2.8 um) between centerline of signal wires and
centerline of interlayer shielding wires on METAL1 and METAL3 layer.

September 2022 1670 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--TSV and Bump Routing

setNanoRouteMode -route_interposer_interlayer_shielding_offsets {METAL1 2.8

METAL3 2.8}

b. Interlayer Shielding Width
Following example defines routing width (2 um) of interlayer shielding wires on layer
METAL1 and METAL3.
setNanoRouteMode -route_interposer_interlayer_shielding_widths {METAL1 2.0

METAL3 2.0}

c. Interlayer shielding layers
Following example defines interlayer shielding wires are routed below M2 and M4 layer,
respectively.
setNanoRouteMode -route_interposer_interlayer_shielding_layers {METAL2 bottom

METAL4 bottom}

d. Interlayer shielding net name
Following example defines shielding net name is VSS for shielding wires in the layer
range of METAL1 to METAL4
setNanoRouteMode -route_interposer_interlayer_shielding_nets {METAL1:METAL4

VSS}

3. Set same-layer interleaved shielding constraints
In some scenarios, user may want to create shielding wires between signal routing wires on
same layer. It is named as “interleaved shielding”.

a. setFlipChipMode -constraintFile fc_shield.const

b. fc_shield.const file content.
Following example defines shielding width to be 1.0 um, shielding-to-signal spacing to
be 2.0 um and shielding net is VSS
SHIELDWIDTH 1.0

SHIELDGAP 2.0

SHIELDSTYLE c

SHIELDNET VSS

4. Create PG stripes over PG bumps

5. Route constrained Bus nets and shielding
routeDesign -bump

September 2022 1671 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--TSV and Bump Routing

../innovusTCR/routeDesign.html

Figure 15 Shielding Pattern

Front Bump to TSV-Bump Feedthru Net Routing
In some situations, TSV via and back side bump are packed together and formed a new bump cell.
It is named TSV bump. TSV bump usually has multiple geometries on both front-side, TSV layer
and back-side. fcroute has the capability to route from front bump to TSV-bumps by using option -
connectTsvToBump and constraint BUMP_AS_PAD.

fcroute -type connect_bump_to_pad -connectTsvToBump -layerChangeTopLayer METAL4 -

layerChangeBotLayer METAL1 --constraintFile fc.const -nets “net1 net2 …”

In the flipchip.const, user need to define "BUMP_AS_PAD" constraint, "TSV_bump_cell_name" is
the cell name of TSV-bumps.

BUMP_AS_PAD

<TSV_bump_cell_names>

END BUMP_AS_PAD

 Figure 16 TSV-Bump cell

September 2022 1672 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--TSV and Bump Routing

TSV/Bump to Instance Pin Routing
In 3D stacked die design, sometimes there is no IO pads. TSVs and front bumps connect to
instance pins directly. Innovus supports it by using nano route. Use the following setting and
commands:

setNanoRouteMode -route_selected_net_only true

setNanoRouteMode -route_connect_to_bumps true

routeDesign

Related Information

fcroute command in the "Flip Chip Commands" chapter of the Innovus Text Command
Reference.

"Route TSV/Bump" form in the "TSV Tool Box" section of the "Tools Menu" chapter in
the Innovus Menu Reference.

"Flip Chip Methodology" chapter of the Innovus User Guide.

add_ndr and routeDesign commands in the "Route Commands" chapter of the Innovus Text
Command Reference.

setIntegRouteConstraint command in the "Mixed Signal Commands" Chapter of the Innovus
Text Command Reference.

September 2022 1673 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--TSV and Bump Routing

../innovusTCR/fcroute.html
../innovusTCR/add_ndr.html
../innovusTCR/routeDesign.html
../innovusTCR/setIntegRouteConstraint.html

Cross Die Connectivity Verification
The verifyConnectivity command checks whether the connectivity between the dies is correctly
implemented, that is, the micro bumps on the adjacent die with the same signal are aligned.

To check the micro bump alignment on one die, you need to dump the die abstract of all the
adjacent dies, and then run the command verifyConnectivity -tsv. The violation will be shown
on the violation browser, and the violation marker will be displayed on the layout window.

readBumpLocation -checkAlignment can also be used for checking bump alignment.

Related Information

verifyConnectivity command in the "Verify Commands" chapter of the Innovus Text
Command Reference.

readBumpLocation command in the "TSV Design Commands" chapter of the Innovus Text
Command Reference.

"Verify Connectivity" form in the "Verify Menu" section of the Tools Menu chapter in
the Innovus Menu Reference.

 "Identifying and Viewing Violations" chapter in the Innovus User Guide.

September 2022 1674 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Cross Die Connectivity Verification

../innovusTCR/verifyConnectivity.html
../innovusTCR/readBumpLocation.html

Export Files
After design is finished, innovus could export extra files for 3D IC designs excepted conventional
files like DEF, GDSII etc. The extra files are used for downstream analysis tools for purposes of
STA, extraction and rail analysis.

For STA
Innovus is able to create a top-level SPEF that describes the connectivity between dies. The
RC is 0 in this SPEF file, but only inter-die connectivity is written. This SPEF file, together with
the SPEF for each die, is the input of Tempus for static timing analysis. Use following
commands:
createTSVNoLoadSPEF

For RC Extraction and Rail Analysis
Innovus is able to write micro bump mapping file for Quantus and Voltus. It describes the
connections of micro bumps between adjacent dies.
writeMicroBumpMappingFile

Related Information

createTSVNoLoadSPEF and writeMicroBumpMappingFile commands in the "Through Silicon
Via Design Commands" chapter of the Innovus Text Command Reference.

September 2022 1675 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Export Files

../innovusTCR/createTSVNoLoadSPEF.html
../innovusTCR/createTSVNoLoadSPEF.html
../innovusTCR/writeMicroBumpMappingFile.html

September 2022 1676 Product Version 22.10

 Innovus User Guide
Design Methodology for 3D IC with Through Silicon Via--Export Files

12

Syntax and Scripts

CCOpt Properties

Creating the ICT File

Supported CPF 1.0 Commands

CPF 1.0 Script Example

Supported CPF 1.0e Commands

CPF 1.0e Script Example

Supported CPF 1.1 Commands

CPF 1.1 Script Example

Supported SAI Commands

September 2022 1677 Product Version 22.10

 Innovus User Guide
Syntax and Scripts

CCOpt Properties
add_driver_cell

add_exclusion_drivers

add_port_driver

add_port_driver_max_distance_from_port

add_port_driver_max_distance_from_port_rows

additional buffer_depth

additional_buffer_depth_skew_group_fraction

adjacent_rows_legal

adjust_sink_grid_for_aspect_ratio

allow_non_standard_inputs_clock_gate

annotated_delay_to

annotated_transition

auto_limit_insertion_delay_factor

auto_limit_insertion_delay_factor_skew_group

auto_limit_insertion_delay_max_increment

auto_limit_insertion_delay_max_increment_skew_group

balance_mode

blackbox_default_driver_base_pin

blackbox_default_load_base_pin

buffer_cells

cannot_clone_reason

cannot_fix_pre_route

cannot_merge_reason

capacitance_override

case_analysis

ccopt_auto_limit_insertion_delay

ccopt_auto_limit_insertion_delay_factor

ccopt_merge_clock_gates

ccopt_merge_clock_logic

ccopt_worst_chain_report_timing_too

cell_density

cell_halo_mode

cell_halo_rows

cell_halo_sites

September 2022 1678 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

cell_halo_x

cell_halo_y

check_route_follows_guide

check_route_follows_guide_min_length

clock_gate_buffering_location

clock_gating_cells

clock_gating_depth

clock_gating_depth_top_down

clock_gating_only_optimize_above_flops

clock_period

clock_source_cells

clock_tree

clock_tree_generator_sink_is_leaf

clock_tree_source_group

clock_trees

clone_clock_gates

clone_clock_logic

cloning_inst_name_suffix

cloning_inst_name_suffix_source_group_assignment

compatibility_warning

consider_during_latency_update

consider_power_management

constrains

cts_clock_gate_movement_limit

cts_merge_clock_gates

cts_merge_clock_logic

def_lock_clock_sinks_after_routing

delay_cells

detailed_cell_warnings

effective_clock_halo_x

effective_clock_halo_x_source

effective_clock_halo_y

effective_clock_halo_y_source

effective_clock_period

effective_clock_period_sources

September 2022 1679 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

effective_sink_type

enable_all_views_for_io_latency_update

enable_nanoroute_layer_check_failure

error_on_problematic_slew_violating_nets

error_on_problematic_slew_violating_nets_max_printout

exclusive_sinks_rank

exit_if_stage_delay_sigma_target_over_constrained

extract_balance_multi_source_clocks

extract_clock_generator_skew_group_name_prefix

extract_clock_generator_skew_groups

extract_clock_group_skew_group_name_prefix

extract_cts_case_analysis

extract_faster_sdc_clocks_as_clock_trees

extract_network_latency

extract_no_exclude_pins

extract_pin_insertion_delays

extract_skew_group_sinks_at_clock_node_timing_endpoints

extract_source_latency

extract_through_multi_output_cells_with_single_clock_output

extracted_from_clock_name

extracted_from_constraint_mode_name

extracted_from_delay_corners

filter_cell_lists_for_frequency_dependent_max_cap_constraints

final_cell

flexible_htree

flexible_htree_placement_legalization_effort

force_all_virtual_delay_updates

force_clock_objects_to_propagated

force_clock_tree

force_update_io_latency

frequency_dependent_max_cap_usability_check_max_cap_fanout_factor

generated_by_sinks

htree_sinks

hv_balance

ideal_net

September 2022 1680 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

ignore_pins

ignore_problematic_skew_as_result_of_dont_touch_nets

image_directory

implicit_sink_type

include_source_latency

insertion_delay

insertion_delay_sources

inst_name_prefix

inverter_cells

inverting

is_active

isolated

is_genus_clock_gate

is_sdc_clock_root

layer_density

leaf_buffer_cells

leaf_inverter_cells

legalized_on_clock_spine

load_capacitance_cells

library_trace_through_to

lock_on_clock_spine

log_precision

log_special_case_cell_selections

logic_cells

long_path_removal_cutoff_id

long_path_removal_percentile

manage_power_management_illegalities

max_buffer_depth

max_cell_height

max_clock_cell_count

max_driver_distance

max_fanout

maximum_insertion_delay

max_root_distance

max_source_to_sink_net_length

September 2022 1681 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

max_source_to_sink_net_resistance

mixed_fanout_net_type

mode

move_clock_gates

move_logic

move_middle_cell_first_when_adding_wire_delay

net_name_prefix

net_type

net_unbufferable

node_type

omit_symmetry

opt_ignore

original_names

override_minimum_max_trans_target

override_minimum_skew_target

override_vias

override_zero_placeable_area

parents

partition_boundary_polarity

partition_groups

pin

pin_capacitance_sources

pin_insertion_delay_histogram_bin_size

pin_route_type

pin_route_type_propagation

pin_target_max_trans

place_driver_in_center_of_fanout

post_conditioning

post_conditioning_enable_drv_fixing

post_conditioning_enable_drv_fixing_by_rebuffering

post_conditioning_enable_routing_eco

post_conditioning_enable_skew_fixing_by_rebuffering

power_weight

preserve_from_deletion

primary_delay_corner

September 2022 1682 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

primary_reporting_skew_groups

primary_reporting_skew_groups_log_min_max_sinks

pro_enable_drv_fixing_by_rebuffering

recluster_ignore_pins

remove_bufferlike_clock_logic

rename_clock_tree_nets

repair_congestion

report_only_skew_group_with_target

report_only_timing_corners_associated_with_skew_groups

route_balancing_buffers_with_default_rule

route_type

route_type_autotrim

routing_override

routing_preferred_layer_effort

routing_top_fanout_count

routing_top_min_fanout

routing_top_transitive_fanout

schedule

sink_grid

sink_grid_box

sink_grid_exclusion_zones

sink_instance_prefix

sink_grid_sink_area

sink_type

sink_type_reasons

sinks

sinks_active

size_clock_gates

size_clock_source

size_logic

skew_band_size

skew_group_report_columns

skew_group_report_histogram_bin_size

skew_groups_active

skew_groups_active_sink

September 2022 1683 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

skew_groups_ignore

skew_groups_constraining

skew_groups_constraining_sink

skew_groups_sink

skew_groups_source_pin

skew_passes

skew_passes_ideal_mode

skew_passes_per_cluster

source_driver

source_group_clock_trees

source_input_max_trans

source_latency

source_max_capacitance

source_output_max_trans

source_pin

spec_config_create_reporting_only_skew_groups

stack_via_rule

stack_via_rule_required

sources

stop_at_sdc_clock_roots

target_insertion_delay

target_insertion_delay_wire

target_max_stage_delay_sigma

target_max_capacitance

target_max_trans

target_max_trans_sdc

target_multi_corner_allowed_insertion_delay_increase

target_skew

target_skew_wire

timing_connectivity_based_skew_groups

timing_connectivity_based_skew_groups_balance_master_clocks

timing_connectivity_info

top_buffer_cells

top_inverter_cells

trace_bidi_as_input

September 2022 1684 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

trace_through_to

transitive_fanout

trunk_cell

trunk_override

update_io_latency

use_estimated_routes_during_final_implementation

use_inverters

use_receiver_model_capacitance_for_drv

use_macro_model_pin_cap_only

useful_skew_implementation_cache_hold_slacks

useful_skew_clock_gate_movement_limit

useful_skew_max_delta

useful_skew_min_delta

useful_skew_post_implement_db

useful_skew_pre_implement_db

virtual_delay

September 2022 1685 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

To set the value of any CCOpt property, use the set_ccopt_property command:

set_ccopt_property use_inverters –clock_tree ct1 true

To get the current value of any CCOpt property, use the get_ccopt_property command:

get_ccopt_property property_name

Example:

get_ccopt_property cell_density

The software returns the following information:

1

To get a description of any CCOpt property, use the following command:

get-ccopt_property -help property_name

For more information, see "CCOpt Property System" in the Clock Tree Synthesis chapter of the Innovus User Guide.

add_driver_cell

Specify a driver cell to add for clock tree after root.

Default: {}

Optional applicable arguments: "-clock_tree <name>".

add_exclusion_drivers

By default, this property is set to true, which causes CCOpt to add extra drivers above exclude pins to remove them from the clock
tree.

Default: true

This global property does not use additional arguments.

add_port_driver

Specifies a cell type or pair of cell types, so that a cell instance can be added above an output port or below an input port. The port
is specified by the argument pin. If the pin specified is not a design IO pin or it is not in the clock network then CCOpt will issue a
warning and will not add cell instances at that position. No more than two cell types may be specified. A warning will be emitted if
no AON cells are specified.

Default: {}

Applicable arguments: "-pin <name>". Required: "-pin <name>".

add_port_driver_max_distance_from_port

This property specifies the allowable distance, in um if no units suffix is specified, that a port driver is allowed to be placed from the
port being buffered. If the driver cannot be added close enough to the port, it will not be added at all. This property, if set, overrides
any value set in the property add_port_driver_max_distance_from_port_rows.
Default: auto

This global property does not use additional arguments.

September 2022 1686 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/get_ccopt_property.html

add_port_driver_max_distance_from_port_rows

This property specifies the allowable distance, in standard cell row heights, that a port driver is allowed to be placed from the port
being buffered. If the driver cannot be added close enough to the port it will not be added at all. The property,
add_port_driver_max_distance_from_port, if set, overrides this value.

Default: 50

This global property does not use additional arguments.

additional buffer_depth

Relaxes the max_buffer_depth constraint by additional N stage depths, but only for the shortest paths.

Allows the constraint on the maximum number of buffers that CTS can add on a source to sink path to be relaxed by adding an
additional additional_buffer_depth stage depths to the constraint, but only for the shortest paths in a skew group. This can help
make power/area savings while still fixing skew.

Refer to the help for the property, additional_buffer_depth_skew_group_fraction for how to control the number of paths where
this property is applied.

Default: auto

Optional applicable arguments: "-skew_group <name>".

additional_buffer_depth_skew_group_fraction

When using additional_buffer_depth, apply the relaxed constraint to specified fraction of the skew group's shortest paths. The
number of paths to apply additional buffering to is found by multiplying the number of paths in a skew group by this fraction, and
then selecting the shortest N paths.

Valid values: Numbers in the range 0.0 to 1.0.

Default: 0.05

This global property does not use additional arguments.

adjacent_rows_legal

Defines the clock halo in the y direction. If set to true, the y direction clock halo is zero and other clock instances are allowed in
adjacent rows.

The following properties can be used to assign y direction clock halos within CCOpt:

cell_halo_y

adjacent_rows_legal

cell_halo_rows

Only one of these properties is used to determine the clock halo in the y direction. The following rules determine which:

If cell_halo_y is set to a non-auto value, then this defines the y direction clock halo. The properties adjacent_rows_legal
and cell_halo_rows have no effect.

If cell_halo_y is set to auto and adjacent_rows_legal is set to a non-auto value then adjacent_rows_legal defines the clock
halo in the y direction. The property cell_halo_rows has no effect.

September 2022 1687 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

If both cell_halo_y and adjacent_rows_legal are set to auto then cell_halo_rows defines the clock halo in the y direction.

Valid values: true false

See also:
. cell_halo_y

. cell_halo_rows

Default: false

This global property does not use additional arguments.

adjust_sink_grid_for_aspect_ratio

By default, this property is set to true and it adjusts the sink grid for the aspect ratio of the sink grid box.

Valid values: true false

Default: true

Optional applicable arguments: "-flexible_htree name".

allow_non_standard_inputs_clock_gate

If this property is set, CTS will allow the use of clock gates with non-standard pins. CCOpt considers the following pin types to be
standard: clock pins, enable pins, test enable pins, retention pins and power gating pins. Before starting CTS CCOpt will emit a
warning, indicating which pin(s) it considers non-standard.

Type: boolean

Default: false

This global property does not use additional arguments.

annotated_delay_to

Overrides any clock tree timing engine-computed cell arc or net arc delays to the specified pin, in a manner similar to that of SDC
set_annotated_delay command.

For cell arcs: The format is dict where the keys are pins and the values are a rise fall delay pair. For example:
"<from pin 1> {<from rise delay 1> <from fall delay 1>} <from pin 2> {<from rise delay 1> <from fall delay 2>}"

For net arcs: The format is dict where the keys are pins and the values are the delay. For example:
"<from pin 1> <delay 1> <from pin 2> <delay 2>}"

For convenience, set the property using a single value that will apply to all available delays from pins and rise/fall from edges. For
example, "0.100".

Default: ""

Applicable arguments: "-delay_corner <name>", "-pin <name>", "-early", "-late", "-rise" and "-fall". Required: "-pin
<name>".

September 2022 1688 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

annotated_transition

Overrides any clock tree timing engine-computed transition at the specified pin, in a manner similar to that of SDC
set_annotated_transition command.

Default: auto

Applicable arguments: "-delay_corner <name>", "-pin <name>", "-early", "-late", "-rise" and "-fall". Required: "-pin
<name>".

auto_limit_insertion_delay_factor

CCOpt attempts to keep the insertion delays of each clock tree a fixed multiple of the longest insertion delay that would result from
a global skew approach. This multiple can be modified by design timing and the presence of other clock trees, but will start at a
fixed fraction above the global skew insertion delay. This property specifies that fixed fraction.

Valid values: real

See also: auto_limit_insertion_delay_factor_skew_group

Default: 1.5

This global property does not use additional arguments.

auto_limit_insertion_delay_factor_skew_group

CCOpt uses this property to generate a maximum insertion delay for any skew groups on which it is set. This is done by
multiplying the insertion delay for that skew group that would result from a global skew approach by the specified factor. For any
skew groups where this property is not set, a limit based on the longest global skew insertion delay across all skew groups is
used; see the auto_limit_insertion_delay_factor property.

Valid values: real

See also: auto_limit_insertion_delay_factor

Default: auto

Optional applicable arguments: "-skew_group <name>".

auto_limit_insertion_delay_max_increment

CCOpt attempts to keep the insertion delays of each clock tree to the longest insertion delay that would result from a global skew
approach plus the given increment. This property specifies that fixed duration. If this property is set to auto, the value specified
using the auto_limit_insertion_delay_factor property is used. The increment is specified in library time units, which are often
but not always nanoseconds. When setting the property you can optionally specify the units to make sure the value given
is interpreted correctly. For example:

set_ccopt_property auto_limit_insertion_delay_max_increment 200ps

get_ccopt_property auto_limit_insertion_delay_max_increment 0.2

set_ccopt_property auto_limit_insertion_delay_max_increment 0.25ns

get_ccopt_property auto_limit_insertion_delay_max_increment 0.25

set_ccopt_property auto_limit_insertion_delay_max_increment 0.1

get_ccopt_property auto_limit_insertion_delay_max_increment 0.1

September 2022 1689 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Valid values: real

See also: auto_limit_insertion_delay_max_increment_skew_group

Default: auto

This global property does not use additional arguments.

auto_limit_insertion_delay_max_increment_skew_group

CCOpt uses this property to generate a maximum insertion delay for any skew groups on which it is set. This is done by adding the
insertion delay for that skew group that would result from a global skew approach with the specified increment. For any skew
groups where this property is not set, a limit based on the longest global skew insertion delay across all skew groups is used; see
the
auto_limit_insertion_delay_max_increment property.

Valid values: real

See also: auto_limit_insertion_delay_max_increment

Default: auto

Optional applicable arguments: "-skew_group <name>".

balance_mode

Replaces the CCOpt mode setting, set_ccopt_mode -cts_opt_type {full | cluster | trial}. If not set to full, causes CCOpt
and CCOpt CTS to halt before final completion of the clock tree creation to facilitate clock tree inspection.

The possible values for this property are as follows:

full - default value, a full CTS is performed.

cluster - a cluster-only CTS is performed. The clock tree has no balancing delay applied.

trial - The clock has only virtual (numeric annotation) balancing delays applied.

Type: string

Default: full

This global property does not use additional arguments.

blackbox_default_driver_base_pin

Base pin that will be used for all timing and capacitance modeling for clock roots with a source pin at a blackbox output.

Default: {}

This global property does not use additional arguments.

blackbox_default_load_base_pin

Base pin that will be used for all timing and capacitance modeling for clock sinks at blackbox inputs. Any capacitance_override
property will be used in preference to this.

Default: {}

September 2022 1690 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

This global property does not use additional arguments.

buffer_cells

Specifies the buffer cells for CTS. If none are specified CCOpt will choose buffers from the libraries. Cell names may be specified
as a Tcl list of names, or as a Tcl list of patterns to be expanded to match names.

If set explicitly, CCOpt will ignore any don't use settings for the cells specified. Different buffer cells may be specified for any
combination of clock tree and power domain.

To use different buffers for each net type set the top_buffer_cells and leaf_buffer_cells properties.

Some examples are provided below:

To specify buffer cells for all clock trees and all power domains:

set_ccopt_property buffer_cells {bufAX* bufBX*}

To specify buffer cells for a particular clock tree and all power domains:

set_ccopt_property -clock_tree clk buffer_cells {bufX20 bufX18}

To specify buffer cells for a particular clock tree and power domain:
set_ccopt_property -clock_tree clk -power_domain pd buffer_cells {bufX12 bufX8}

Valid values: a list of library cell names, or a list of patterns to expand to library cell names

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

cannot_clone_reason

A list of reasons to explain why the instance could not be cloned. This property will not be set if
properties clone_clock_gates/clone_clock_logic are false. The property returns a list of reasons why the instance cannot be
cloned.

The reasons why an instance cannot be cloned can be divided into three categories:

1. The inst is marked as dont_touch

2. Reasons specific to the clock node

3. General reasons

The possible dont_touch reasons are:

dont_touch.add_driver_cell Set if the cell was added below the root via property
add_driver_cell

dont_touch.clock_root Set during clock tree extraction if identified as having the root pin

dont_touch.clock_sink Set on cell if any pin is a clock sink in a clock tree

dont_touch.clock_tree_generator_path Set if nodes and wires are in clock tree generator paths

dont_touch.clock_wire Set on cell if clock input wire is user dont_touch

dont_touch.clockgate_no_power_domain Set if clockgate/clocklogic is a clocknode in a no
clockgate/clocklogic power domain

September 2022 1691 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

The possible reasons specific to the clock node are:

dont_touch.dft_observability_test_mode_pin Set if a cell has the dft_observability_test_mode_pin

dont_touch.drives_multi_driver_net Set if the cell drives wires with other drivers

dont_touch.external_skew_group_pin Set if a pin on the cell is a skew group sink, source or ignore pin for
a skew group created by the user

dont_touch.flexible_htree Set if the cell was added to a flexible H-tree

dont_touch.internal_skew_group_pin Set if a pin on the cell is a skew group sink, source or ignore pin for
a skew group created by CCOpt

dont_touch.neg_edge_clock_gate Set if a clock gate gates the falling edge
(extract_enable_neg_edge_clock_gate_handling is true)

dont_touch.non_flop_clock_gating Set by SetDontTouchBlackBoxGating

dont_touch.non_standard_inputs_clock_gate Set if a cell is a clock gate with 'non-standard' inputs, to avoid
disconnecting them, or if property
consider_all_clock_gates_to_have_non_standard_inputs is true

dont_touch.observability_clock_gate Set if a cell is a clock gate with an observability output pin

dont_touch.placer.lock Set if a cell is user locked or locked by DEF

dont_touch.power_management Set if a cell is a power management cell

dont_touch.sdc Set if constrained by SDC timing

dont_touch.sdc_path_group Set if there is an SDC path group start/endpoint on one of the pins
of this cell

dont_touch.sub_block Set if cell is in dont_touch module

dont_touch.unmergeable_composite_clock_gate Set if some of the clock gate is dont_touch

dont_touch.user Set by user

Contact Cadence Support if any of the following reasons are listed:

dont_touch.cannot_understand_clock_gate Set if clock gate not recognized,
extract_enable_neg_edge_clock_gate_handling is false

dont_touch.composite_clock_gate_enable_test_or_gate

dont_touch.initial_netlist

dont_touch.output_wire

dont_touch.port_preservation_prevents_cg_opt

dont_touch.prevent_assign

PowerManagement Set if cell is power management cell and property clone_power_management_cells is false

PowerManagementInconsistency Set if a disconnection of the cell from the netlist would cause a power management
inconsistency

September 2022 1692 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

 The possible General Reasons are:

Valid values: list string

Default: {}

Applicable arguments: "-inst <name>". Required: "-inst <name>".

cannot_fix_pre_route

Mark a net as having violations that cannot be fixed with current opt settings.

PreservedUMPB Set if cell is a User Module Port Bit which is preserved

 Contact Cadence Support if any of the following reasons are listed:

ClockGatesAlways Set if cell is clock gate, considered always dont_touch

ClockLogicAlways Set if cell is clock logic, considered always dont_touch

NodeIsRoot Set if the cell is the clock root (cannot be cloned)

NoRoot Set if the clock node has no root

RootIgnored Set if the clock root is ignored

SpineCell Set if cell is a clock spine cell and is marked as dont_touch

DrivesAcrossPowerDomains The cell drives across power domain boundaries

NodeHasSGConstraints The cell has user mode skew group constraints in default mode and property
clone_clock_cells_with_skew_group_constraints is false

InvertingClockGate The cell is an inverting clock gate and cloning of these is not supported

ClockDriverCannotCloneInverter

ClockDriverCreatedByBuffLongNets Need to keep cell as created by 'Buffering long nets' and property
clustering_leave_cmf_drivers_alone is true

ClockDriverInverterCloningDisabled The cell is an inverter and cloning inverters is disabled (property clone_inverters is
false)

 Contact Cadence Support if any of the following reasons are listed:

ClockLogicMultiOutputCell

InIgnoredTree

IsUnclonable

NonIntegratedClockGate

NotTreeViewNode

OutputPinCellPinNull

ClockDriverNeedToKeep

September 2022 1693 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Default: false

Applicable arguments: "-net <name>". Required: "-net <name>".

cannot_merge_reason

A list of reasons to explain why the instance could not be merged. The reasons why an instance cannot be merged can be divided
into two categories:

1. The merge is prevented by user settings

2. The instance could not be merged with another inst due to mismatched attributes

The possible user-controlled reasons are:

The possible mismatched attributes are:

Valid values: list string

Default: {}

Applicable arguments: "-inst <name>". Required: "-inst <name>".

capacitance_override

Specifies an overridden capacitance value for this pin. Can be specified in pF, fF, F (default pF). Can set per delay corner
(delay_corner) and with reference to an event (rise|fall). If set to auto, CCOpt will calculate the capacitance value using the library
information.

IsDontTouch Set if the cell is marked as dont_touch

ClockGateMergingDisabledOnTree Set if cts_merge_clock_gates is false on the clock tree

UniqueUnderParent Set if two clock nodes have the same enables but different parents

DifferentNumberOfParents Set if two clock gates have different number of parents

HasSkewGroupConstraints Set if two clock nodes have different skew group constraints

DifferentSkewGroupForInputs Set if two clock nodes have different skew group constraints for inputs

DifferentSkewGroupForOutputs Set if two clock nodes have different skew group constraints for outputs

NoClockOutputPin Set if two clock nodes have no clock output pin

DifferentNonStandardInputs Set if two clock gates have different non standard inputs

MismatchingPowerDomains Set if two clock gates with non standard inputs have mismatching power domains

DifferentCellFamilies Set if two clock gates with non standard inputs have different cell families

DifferentNumberOfInputPins Set if two clock gates with non standard inputs have different number of input pins

MismatchingNonClockInputs Set if two clock gates with non standard inputs have mismatching non clock inputs

MismatchingClockInputs Set if two clock gates with non standard inputs have mismatching clock inputs

IncompatibleRestrictedRegions Set if two clock nodes have incompatible restricted regions

September 2022 1694 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Valid values: Library dependent

Default: auto

Applicable arguments: "-delay_corner <name>", "-pin <name>", "-rise" and "-fall". Required: "-pin <name>".

case_analysis

Specifies a constant value to be used as pin signal when analyzing timing within CTS. Only applies to input pins of cells in the
clock tree. If set to 'none' (the default), CTS will consider the input as non-constant.

Valid values: 0 1 none

Default: auto

Applicable arguments: "-pin <name>". Required: "-pin <name>".

ccopt_auto_limit_insertion_delay

If set to true, CCOpt will automatically limit the insertion delay of clock trees. The limits are determined by looking at the value of
the ccopt_auto_limit_insertion_delay_factor property, and also taking into considering the timing of the design and the
insertion delay of other clock trees in the design.

Type: boolean

Default: true

This global property does not use additional arguments.

ccopt_auto_limit_insertion_delay_factor

If the ccopt_auto_limit_insertion_delay property is true, CCOpt will attempt to keep the insertion delays of each clock tree a
fixed multiple of the longest insertion delay that would result from a global skew approach. This multiple can be modified by design
timing and the presence of other clock trees, but will start at a fixed fraction above the global skew insertion delay. This property
gives that fixed fraction.

Type: real

Default: 1.5

This global property does not use additional arguments.

ccopt_merge_clock_gates

If set to true, clock gate merging is enabled. If this is false, merging of all clock gates is disabled, including clock gates which may
have been cloned by CTS.

This property also impacts the early clock flow.

Note that this property has no impact on 'ccopt_design -cts'. See also property cts_merge_clock_gates.

Valid values: true false

Default: true

Optional applicable arguments: "-clock_tree <name>".

September 2022 1695 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

ccopt_merge_clock_logic

If set to true, clock logic merging is enabled. If this is false, merging of all clock logics is disabled, including clock logics which
may have been cloned by CTS.

Note that this property has no impact on 'ccopt_design -cts'. See also property cts_merge_clock_logic.

Valid values: true false

Default: true

Optional applicable arguments: "-clock_tree <name>".

ccopt_worst_chain_report_timing_too

When CCOpt runs the worst chain report, additionally run report_timing.

Valid values: true false

Default: false

This global property does not use additional arguments.

cell_density

Specifies the clock halo in the x direction. Any x direction clock halo defined by this property is proportional to the cell width.

The constant of proportionality is defined by the property value. For example:

If cell_density = 0.25 then the x direction clock halo equals 3 * cell width.

If cell_density = 0.5 then the x direction clock halo equals cell width.

If cell_density = 0.75 then the x direction clock halo equals cell width / 3.

If cell_density = 1 then the x direction clock halo equals zero.

This property can specify the x direction clock halo for all clock trees via:
set_ccopt_property cell_density 0.8

This property can specify the x direction clock halo per-clock tree via:
set_ccopt_property -clock_tree clk cell_density 0.9

The following properties can be used to assign x direction clock halos within CCOpt:

cell_halo_x

cell_density

cell_halo_sites

Only one of these properties is used to determine the clock halo in the x direction. The following rules determine which:

If cell_halo_x is set to a non-auto value, then this defines the x direction clock halo. The properties cell_density and
cell_halo_sites have no effect.

If cell_halo_x is set to auto and cell_density is set to a non-auto value then cell_density defines the clock halo in the x
direction. The property cell_halo_sites has no effect.

If both cell_halo_x and cell_density are set to auto then cell_halo_sites defines the clock halo in the x direction.

September 2022 1696 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/report_timing.html

Valid values: 0.01 to 1

See also:
. cell_halo_x

. cell_halo_sites

Default: 0.75

Optional applicable arguments: "-clock_tree <name>".

cell_halo_mode

Specifies how clock halos are used to determine the minimum legal separation between a pair of clock instances. There are two
possible modes, 'max' and 'sum'. When set to 'max' the minimum legal separation is the larger of the two clock halos. When set to
'sum' the minimum legal separation is the sum of the two clock halos.

Valid values: max sum

See also:
. cell_halo_x
. cell_halo_y

. cell_density

. adjacent_rows_legal

. cell_halo_sites

. cell_halo_rows

. effective_clock_halo_x

. effective_clock_halo_y

. effective_clock_halo_x_source

. effective_clock_halo_y_source

Default: max

This global property does not use additional arguments.

cell_halo_rows

Specifies the clock halo in the y direction in rows for all clock cells.

The following properties can be used to assign y direction clock halos within CTS:

cell_halo_y

adjacent_rows_legal

cell_halo_rows

Only one of these properties is used to determine the clock halo in the y direction. The following rules determine which:

If cell_halo_y is set to a non-auto value, then this defines the y direction clock halo. The properties adjacent_rows_legal
and cell_halo_rows have no effect.

If cell_halo_y is set to auto and adjacent_rows_legal is set to a non-auto value then adjacent_rows_legal defines the clock
halo in the y direction. The property cell_halo_rows has no effect.

If both cell_halo_y and adjacent_rows_legal are set to auto then cell_halo_rows defines the clock halo in the y direction.

See also:
. cell_halo_y

. adjacent_rows_legal

September 2022 1697 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Default: 1

This global property does not use additional arguments.

cell_halo_sites

Specifies the clock halo in the x direction in sites for all clock cells.

The following properties can be used to assign x direction clock halos within CTS:

cell_halo_x

cell_density

cell_halo_sites

Only one of these properties is used to determine the clock halo in the x direction. The following rules determine which:

If cell_halo_x is set to a non-auto value, then this defines the x direction clock halo. The properties cell_density and
cell_halo_sites have no effect.

If cell_halo_x is set to auto and cell_density is set to a non-auto value then cell_density defines the clock halo in the x
direction. The property cell_halo_sites has no effect.

If both cell_halo_x and cell_density are set to auto then cell_halo_sites defines the clock halo in the x direction.

See also:
. cell_halo_x
.cell_density

Default: 4

This global property does not use additional arguments.

cell_halo_x

Specifies the clock halo distance in the x direction. The default value of this property is auto.

The following properties can be used to assign x direction clock halos within CTS:

cell_halo_x

cell_density

cell_halo_sites

Only one of these properties is used to determine the clock halo in the x direction. The following rules determine which:

If cell_halo_x is set to a non-auto value, then this defines the x direction clock halo. The properties cell_density and
cell_halo_sites have no effect.

If cell_halo_x is set to auto and cell_density is set to a non-auto value then cell_density defines the clock halo in the x
direction. The property cell_halo_sites has no effect.

If both cell_halo_x and cell_density are set to auto then cell_halo_sites defines the clock halo in the x direction.

See also:
. cell_density

. cell_halo_sites

Default: auto

September 2022 1698 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Optional applicable arguments: "-clock_tree <name>", "-power_domain <name>", and "-cell <name>".

cell_halo_y

Specifies the clock halo distance in the y direction. The default value of this property is auto.

The following properties can be used to assign y direction clock halos within CCOpt:

cell_halo_y

adjacent_rows_legal

cell_halo_rows

Only one of these properties is used to determine the clock halo in the y direction. The following rules determine which:

If cell_halo_y is set to a non-auto value, then this defines the y direction clock halo. The properties adjacent_rows_legal
and cell_halo_rows have no effect.

If cell_halo_y is set to auto and adjacent_rows_legal is set to a non-auto value then adjacent_rows_legal defines the clock
halo in the y direction. The property cell_halo_rows has no effect.

If both cell_halo_y and adjacent_rows_legal are set to auto then cell_halo_rows defines the clock halo in the y direction.

See also:
. adjacent_rows_legal

. cell_halo_rows

Default: auto

Optional applicable arguments: "-clock_tree <name>", "-power_domain <name>", and "-cell <name>".

check_route_follows_guide

Specifies whether to run diagnostic checks to ensure that clock nets routed by NanoRoute follow route guides. The diagnostic
checks compare lengths of estimated routes to the final detailed wiring.

The check_route_follows_guide_min_length property lets you specify a minimum route length for diagnostic checks. Only nets
longer than this minimum are checked.

Valid values: true false

See also:
. check_route_follows_guide_min_length

Default: true

This global property does not use additional arguments.

check_route_follows_guide_min_length

Minimum net length to perform guide route diagnostics when check_route_follows_guide is set to true.

Valid values: double (in microns) | auto

Auto: computed automatically based on design

See also:
. check_route_follows_guide

September 2022 1699 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Default: auto

This global property does not use additional arguments.

clock_gate_buffering_location

Specifies where CCOpt should place delay buffers relative to clock gates during clock tree synthesis.

If set to below, delay buffers will be put underneath clock gates. This is best for power, but may be detrimental to timing.

If set to above, delay buffers will be put above clock gates; this is best for timing.

Valid values: above below

Default: above

Optional applicable arguments: "-clock_tree <name>".

clock_gating_cells

Specifies the clock gates for CTS. If none are specified CCOpt will choose clock gates from the libraries. Cell names may be
specified as a Tcl list of names, or as a Tcl list of patterns to be expanded to match names.

If set explicitly, CCOpt will ignore any dont_use settings for the cells specified.

A list of lists can be used to specify separate clock gate sub-lists. All CCOpt transforms will resize clock gates within the clock gate
sub-list they are initially part of. If an incoming clock gate is not part of any clock gate sub-list, it will be resized to the first clock gate
sub-list.

Different clock gates may be specified for any combination of clock tree and power domain.

Some examples follow:

To specify clock gates for all clock trees and all power domains:

set_ccopt_property clock_gating_cells {cgAX* cgBX*}

To specify clock gates for a particular clock tree and all power domains:

set_ccopt_property -clock_tree clk clock_gating_cells {cgX20 cgX18}

To specify clock gates for a particular clock tree and power domain:
set_ccopt_property -clock_tree clk -power_domain pd clock_gating_cells {cgX12 cgX8}

To specify separate clock gate sub-lists:
set_ccopt_property clock_gating_cells {{cgX12A1 cgX8A1} {cgX12A2 cgX8A2}}

Valid values: a list of library cell names, or a list of patterns to expand to library cell names, a list of lists
to specify separate clock gate sub-lists

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

clock_gating_depth

The depth of gating at and below a clock gate, counted either top-down or bottom-up as determined by the value of the
clock_gating_depth_top_down property. This property has a value of 0 for any cell that is not a clock gate in a defined clock tree.

Valid values: int

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

September 2022 1700 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Applicable arguments: "-inst <name>". Required: "-inst <name>".

clock_gating_depth_top_down

Determines whether the clock_gating_depth counts gates top-down or bottom-up. In the former case, all gates immediately below
a non-generated clock root are assigned the same level. In the latter, all gates immediately above sinks are assigned the same
level. In both cases, lower numbers are closer to sinks, and higher numbers closer to roots. Both true and false scenarios for this
property are illustrated in the figure below.

Type: boolean

Default: true

This global property does not use additional arguments.

clock_gating_only_optimize_above_flops

Allows CCOpt to work around spurious warnings and failures in downstream tools. If set to true, CCOpt does not optimize clock
gating above RAMs, latches, black boxes, or any other clock tree sink that is not a flop. Power optimizations are achieved by
transferring flops to a clone of the affected clock gating path. (Note that if CCOpt is run with -cg_opt off, flops are not transferred
to a cloned clock gating path.)

Setting to false increases power saving opportunities, but may cause spurious formal equivalence issues with some third-party
tools.

Type: boolean

Default: true

This global property does not use additional arguments.

clock_period

Setting a non-auto value for this property annotates a clock period on this pin (e.g. setting a period of '1ps' will annotate the pin
with that period). Normally, clock tree extraction (performed by running create_ccopt_clock_tree_spec) will annotate appropriate
clock_periods on clock roots. These clock periods will propagate downwards from the clock roots. The effective_clock_period
property can be queried to see the minimum clock_period that applies at any clock pin.

Valid values: 'auto' or a time value with optional units

September 2022 1701 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Default: auto

Applicable arguments: "-pin <name>". Required: "-pin <name>".

clock_source_cells

Specifies the cells available for CTS to size clock sources if the property 'size_clock_source' is set to true. If none are specified
CCOpt will choose cells from the libraries. Cell names may be specified as a Tcl list of names, or as a Tcl list of patterns to be
expanded to match names.

If set explicitly, CCOpt will ignore any don't use settings for the specified cells.

Different cells may be specified for clock trees or power domains. Only clock sources that are buffers, inverters, logic, and clock
gating cells with a single output can be resized.

Valid values: a list of library cell names, or a list of patterns to expand to library cell names

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

clock_tree

The clock tree to which this object belongs. Flops do not belong to a clock tree, but their clock pins do.

Valid values: clock_tree

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

clock_tree_generator_sink_is_leaf

Controls whether the input pin of generator sinks is considered to be a leaf for clock tree routing rules and slew constraints.

Type: boolean

Default: false

This global property does not use additional arguments.

clock_tree_source_group

Specifies the clock tree source group to which this clock tree belongs.

Valid values: list clock_tree_source_group

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Optional applicable arguments: "-clock_tree <name>".

clock_trees

A list of clock trees the pin is contained within. This includes parents of generated clock trees and all relevant parents when clock
trees overlap.

September 2022 1702 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Valid values: list clock_tree

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

clone_clock_gates

Specifies whether CCOpt should clone clock gates in an attempt to improve timing. This is bad for power, congestion and
utilization, but may in some cases improve clock gate enable timing. The clock_gate_buffering_location property
controls whether CCOpt always clones (if it is "above"), never clones (if it is "below").

Note: In multi-tap CTS, cloning is enabled by default. This includes cloning across the taps, which is only the cloning necessary to
spread the sinks efficiently across the taps.

Set the global property to disable clock gate cloning for all clock trees:

set_ccopt_property clone_clock_gates false

Set the per-clock tree property to disable clock gate cloning for a particular clock tree:

set_ccopt_property clone_clock_gates false -clock_tree clk

Valid values: true false

See also:
. clock_gate_buffering_location

. clone_clock_logic

Default: false

Optional applicable arguments: "-clock_tree <name>".

clone_clock_logic

Specifies whether CCOpt should clone clock logic in an attempt to improve timing. This is bad for power, congestion and
utilization, but may in some cases improve clock gate enable timing. The clock_gate_buffering_location property controls whether
CCOpt always clones (if it is "above"), never clones (if it is "below").

Set the global property to disable clock logic cloning for all clock trees:

set_ccopt_property clone_clock_logic false

Set the per-clock tree property to disable clock logic cloning for a particular clock tree:

set_ccopt_property clone_clock_logic false -clock_tree clk

Valid values: true false

See also:
. clock_gate_buffering_location

. clone_clock_gates

Default: false

Optional applicable arguments: "-clock_tree <name>".

cloning_inst_name_suffix

If set, the suffix will be used generally for all insts cloned by CTS, else the suffix will default to "clone".

September 2022 1703 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Default: clone

This global property does not use additional arguments.

cloning_inst_name_suffix_source_group_assignment

Specifically controls the suffix used for multi tap cloning. If this is set to a non-empty string, that string will be used as a suffix when
naming cloned instances created by multi-tap cloning. Otherwise, the name suffix will be controlled by the
cloning_inst_name_suffix property.

Default: {}

This global property does not use additional arguments.

compatibility_warning

Compatibility warning.

Valid values: true false

Default: true

This global property does not use additional arguments.

consider_during_latency_update

Determines whether to consider the sink when updating the IO latencies.

Valid values: true false auto

true: Consider this pin during latency update.

auto: Consider this pin during latency update only if it is an active sink of a non-reporting only skew group. This is the default
value.

false: Do not consider this pin during latency update. This setting is appropriate for sinks that have a large user pin insertion delay
applied.

Default: auto

Applicable arguments: "-pin <name>". Required: "-pin <name>".

consider_power_management

Enables checking of effective power domain for all pins in the clock tree. Setting this property to false causes CTS to ignore
effective power domain violations when constructing the clock tree.

Valid values: true false

Default: true

This global property does not use additional arguments.

constrains

Specifies how this skew group constrains the balancing of sinks during CCOpt.

September 2022 1704 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

If set to "default", this skew group will constrain sinks during "ccopt_design -cts" and during the initial global balancing step of a
regular "ccopt_design" run.

If set to “all”, then this skew group will constrain both "ccopt_design -cts" and the whole of "ccopt_design”.

If set to "none", this specifies that the skew group will only be used for reporting purposes.

Valid values: default all none

Default: default

Optional applicable arguments: "-skew_group <name>".

cts_clock_gate_movement_limit

Each clock gate is restricted to a Manhattan ball centered on its original location with the CTS flow. The radius of the ball is a
multiple of the clock gate height. This property controls the default value of that multiple.

Default: 10

This global property does not use additional arguments.

cts_merge_clock_gates

If set to true, clock gate merging is enabled. If this is false, merging of all clock gates is disabled, including clock gates which may
have been cloned by CTS.

This property only impacts 'ccopt_design -cts'. See also property ccopt_merge_clock_gates.

Note: You can also use the name, merge_clock_gates for this property. The un-prefixed version is a synonym for the
corresponding cts_* version.

Valid values: true false

Default: false

Optional applicable arguments: "-clock_tree <name>".

cts_merge_clock_logic

If set to true, clock logic merging is enabled. If this is false, merging of all clock logics is disabled, including clock logics which
may have been cloned by CTS.

This property only impacts 'ccopt_design -cts'. See also property ccopt_merge_clock_logic.

Note: You can also use the name, merge_clock_logic for this property. The un-prefixed version is a synonym for the
corresponding cts_* version.

Valid values: true false

Default: false

Optional applicable arguments: "-clock_tree <name>".

def_lock_clock_sinks_after_routing

If set to true, we will DEF lock clock tree sinks after routing in addition to any clock node locking (fixed).

September 2022 1705 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

If set to soft, we will DEF lock clock tree sinks after routing in addition to any clock node soft_locking (softFixed).

Valid values: true false soft

Default: false

This global property does not use additional arguments.

delay_cells

Specifies the delay cells available for CTS. If none are specified CCOpt will not use delay cells. Setting this property to the string
'auto' means that CCOpt will choose delay cells from the libraries to use.
Cell names may be specified as a Tcl list of names, or as a Tcl list of patterns to be expanded to match names. If set explicitly,
CCOpt will ignore any dont_use settings for the cells specified.

Different delay cells may be specified for any combination of clock tree and power domain, or by omitting those arguments a global
setting can be applied.

Some examples follow:

To specify delay cells for all clock trees and power domains:

set_ccopt_property delay_cells {delayAX* delayBX*}

To specify delay cells for a particular clock tree and all power domains:

set_ccopt_property -clock_tree clk delay_cells {delayX1 delayX2}

To specify delay cells for a particular clock tree and power domain:

set_ccopt_property -clock_tree clk -power_domain pd delay_cells {delayX2 delayX3}

Valid values: a list of library cell names, or a list of patterns to expand to library cell names, or the string 'auto'

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

detailed_cell_warnings

If set to true, CCOpt outputs detailed cell warning diagnostics when it encounters issues with library cell selection, power domains
and/or signal levels.

Valid values: true false

Default: false

This global property does not use additional arguments.

effective_clock_halo_x

This read only property shows the x component of the clock halo The units are um. The following properties can be used to assign
x direction clock halos within CCOpt:

cell_halo_x

cell_density

cell_halo_sites

See also:

September 2022 1706 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

effective_clock_halo_x_source

effective_clock_halo_y_source

effective_clock_halo_y

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-inst <name>". Required: "-inst <name>".

effective_clock_halo_x_source

This read only property shows which property defines the x component of the clock halo. The following properties can be used to
assign x direction clock halos within CCOpt:

cell_halo_x

cell_density

cell_halo_sites

See also:

effective_clock_halo_x

effective_clock_halo_y_source

effective_clock_halo_y

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-inst <name>". Required: "-inst <name>".

effective_clock_halo_y

This read only property shows the x component of the clock halo. The units are um. The following properties can be used to assign
y direction clock halos within CCOpt:

cell_halo_y

adjacent_rows_legal

cell_halo_rows

See also:

effective_clock_halo_x_source

effective_clock_halo_y_source

effective_clock_halo_x

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-inst <name>". Required: "-inst <name>".

effective_clock_halo_y_source

This read only property shows which property defines the y component of the clock halo. The following properties can be used to
assign y direction clock halos within CCOpt:

September 2022 1707 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

cell_halo_y

adjacent_rows_legal

cell_halo_rows

See also:

effective_clock_halo_x

effective_clock_halo_y

effective_clock_halo_x_source

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-inst <name>". Required: "-inst <name>".

effective_clock_period

The effective_clock_period for a pin corresponds to the clock_period property for the pin, if the user explicitly sets the
clock_period property at the pin. Otherwise, the effective_clock_period is computed by taking the minimum clock_period of all
clocks that are present at the pin and that possess a clock_period annotated at their root pin.

A value of 'auto' for this property indicates either that the pin is not in the clock tree network, or that no clock_period annotations
were found, either at the pin or for any clocks present at the pin.

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

effective_clock_period_sources

This property lists the set of pins that define the effective_clock_period at a given pin (i.e. which clock_period property settings
defined this pin's effective_clock_period).

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property .

Applicable arguments: "-pin <name>". Required: "-pin <name>".

effective_sink_type

Indicates how CCOpt will treat a given pin, taking into account both its implicit_sink_type, and any sink_type settings. Setting a
non-default value for the sink_type property will override the implicit_sink_type property.

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

enable_all_views_for_io_latency_update

If set, enables all views before updating IO latencies, and restores the set of enabled views after.

Valid values: true false

Default: true

September 2022 1708 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

This global property does not use additional arguments.

enable_nanoroute_layer_check_failure

Before running CCOpt, a check is made to verify that the routing configuration selects preferred layer ranges that are wholly
contained within the routing layer range specified in the NanoRoute configuration. If the check fails then an error message is
emitted.

This validation ensures that the estimated routes used during CTS can in principle be realised during clock net routing. Estimates
constructed using routing layers outside of the range specified in the NanoRoute configuration will likely cause a routing
correlation issue.

If this property is set to true, and the check fails, CCOpt will not continue running.

This check can be disabled by setting this property to false. In this case the error messages are still emitted but CCOpt will
continue to run.

Valid values: true false

Default: false

This global property does not use additional arguments.

error_on_problematic_slew_violating_nets

 Post slew-fixing, CCOpt will identify nets with slew violations that probably can not be fixed and return an error. Set the property to
false to bypass this error. Common problems include setting a net that requires buffering as constant. Review your design carefully
before setting this property, as it may lead to poor results.

Type: boolean

Default: false

This global property does not use additional arguments.

error_on_problematic_slew_violating_nets_max_printout

Early on on the CCOpt flow nets that are marked as e.g. don't touch but have violations are identified. Set this property to control
how many nets with each kind of violation will be printed. Setting the property to -1 will print all violating nets.

Type: integer

Default: 5

This global property does not use additional arguments.

exclusive_sinks_rank

The rank of this skew_group. Sinks will be considered as a sink of all skew groups with a rank equal to the greatest rank of all
skew groups of which they are defined as sinks.

Valid values: integer

Default: 0

Optional applicable arguments: "-skew_group <name>".

September 2022 1709 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

exit_if_stage_delay_sigma_target_over_constrained

If set, allows any max stage delay sigma target to be set. If the target is too low, it is likely to lead to runtime problems.

Default: true

This global property does not use additional arguments.

extract_balance_multi_source_clocks

Causes create_ccopt_clock_tree_spec to set up a clock tree source group for SDC clocks with multiple source pins. If this
property is set to active, create_ccopt_clock_tree_spec defines one clock tree for each source pin and then uses the
create_ccopt_clock_tree_source_group command to collect those clock trees together, so that CTS can allocate sinks among
clock trees. If this property is set to inactive or true, the source groups are also created during create_ccopt_clock_tree_spec,
but they will be defined as inactive.

Only active source groups will take part in sink allocation.

By default, it is set to false, which means that no source groups are extracted from SDC multiple pin clocks.

Default: false

This global property does not use additional arguments.

extract_clock_generator_skew_group_name_prefix

This property controls the skew group name prefix used for skew groups generated to balance generator flops with their adjacent
flops. Default is "_clock_gen". The default has a start underscore at the beginning to cause listings of skew groups ordered by
name to collect such skew groups together at the end of a list.

Type: string

Default: _clock_gen

This global property does not use additional arguments.

extract_clock_generator_skew_groups

 This property will cause the create_ccopt_clock_tree_spec command to create skew groups for sequential generators and their
adjacent registers. Such skew groups will be specified with the same highest rank so that they can be balanced from the other
normal skew groups that share some sinks of them. The adjacent registers of a generator are registers that have a datapath timing
path to talk with the generator directly. When this property is set to true, one skew group will be created per sequential generator
instance, master clock and generated clock tree triple. The resulting skew groups will by default be named in the pattern:

_clock_gen_<master_clock_name>_<generator_local_name><_optional_number>/<constraint_mode_name>.

For example, for a pair of generators, with the same local name "reg_clkgen", CCOpt creates generated clock trees from the same
master clock named "fclk" in a constraint mode named "func" the skew groups emitted into the clock tree specification file would
be named:

_clock_gen_fclk_reg_clkgen_1/func

_clock_gen_fclk_reg_clkgen_2/func

The prefix for the names of such skew groups is controlled by the extract_clock_generator_skew_group_name_prefix CCOpt
property and defaults to "_clock_gen" (the start underscore is used to group
such skew groups at the end of any skew group listing ordered by name).

September 2022 1710 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/create_ccopt_clock_tree_spec.html
../innovusTCR/create_ccopt_clock_tree_source_group.html
../innovusTCR/create_ccopt_clock_tree_spec.html

Type: boolean

Default: true

This global property does not use additional arguments.

extract_clock_group_skew_group_name_prefix

This property controls the skew group name prefix used for skew groups derived from SDC set_clock_group and similar
assertions. Default is "_clock_group". The default has a start underscore at the beginning to cause listings of skew groups ordered
by name to collect such skew groups together at the end of a list.

Type: string

Default: _clock_group

This global property does not use additional arguments.

extract_cts_case_analysis

During create_ccopt_clock_tree_spec, set case_analysis properties for any clock tree cell inputs determined to have constant
values. CTS considers timing through cells according to the case_analysis properties of the cell's input pins. If this property is set
to false, create_ccopt_clock_tree_spec will not set any case_analysis properties and CTS will assume worst-case timing.

Type: boolean

Default: true

This global property does not use additional arguments.

extract_faster_sdc_clocks_as_clock_trees

If set to true, this property causes create_ccopt_clock_tree_spec to create a separate clock tree for SDC clocks that are faster
than the parent clock.

Type: boolean

Default: true

This global property does not use additional arguments.

extract_network_latency

When true, this property causes create_ccopt_clock_tree_spec to use the clock network latency as the insertion delay target for
the representative clock tree. An SDC command of the form set_clock_latency <clock> <delay>; will result in the
create_ccopt_clock_tree_spec command setting the -target_insertion_delay on the corresponding
create_ccopt_skew_group command.

Type: boolean

Default: true

This global property does not use additional arguments.

September 2022 1711 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/create_ccopt_clock_tree_spec.html
../innovusTCR/create_ccopt_skew_group.html

extract_no_exclude_pins

When the clock tree extraction algorithm finds a pin on the clock tree that has no outgoing timing arcs (for example a design output,
black box input, or flop D input), it will normally exclude that pin from the clock tree. The pin will still be clocked, but the clock tree
will include as a sink a point higher up in the clocking structure that drives this excluded pin, rather than the pin itself. If this
property is true, the clock tree will instead include as sinks all pins with no outgoing timing arcs, which may lead to the extraction
algorithm following convoluted paths in the clock tree with the subsequent effect that CCOpt will attempt to meet the clock tree's
slew target on these paths.

Type: boolean

Default: false

This global property does not use additional arguments.

extract_pin_insertion_delays

If set to true, create_ccopt_clock_tree_spec will extract pin insertion delay settings from SDC set_clock_latency assertions on
clock sinks, if the clock network latency specified for the sink differs from the network latency specified for the corresponding clock.

Type: boolean

Default: true

This global property does not use additional arguments.

extract_skew_group_sinks_at_clock_node_timing_endpoints

If set, create_ccopt_clock_tree_spec will emit skew_group sinks at clock node inputs which are timing endpoints for a SDC
clock. If not set, then create_ccopt_clock_tree_spec will emit skew_group ignores at such inputs and they will not be considered
for balancing. Typical examples of clock node timing endpoints include flops that are used as generators for one clock (typically
the functional clock) but are strictly sinks for another clock (typically a scan clock). Usually such endpoints are fine to be balanced
as skew group ignore pins since there are normally relatively few of them and they have loose timing constraints. In addition
relatively few designs have the correct logic structures above such timing endpoints to balance them correctly as sinks, hence the
default value of false.

For example, in the image below, d1 is the generator for clock func and a sink (timing endpoint) for clock scan.

If this property is set to false (default), then skew group scan includes f3 and f4. If it is set to true, skew group scan includes d1, f3,
and f4.

September 2022 1712 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Type: boolean

Default: false

This global property does not use additional arguments.

extract_source_latency

When true, this property causes create_ccopt_clock_tree_spec to use the clock source latency as the source delay for the
representative clock tree. An SDC command of the form set_clock_latency -source <clock> <delay> will result in the
create_ccopt_clock_tree_spec command setting the source_latency property.

Type: boolean

Default: true

This global property does not use additional arguments.

extract_through_multi_output_cells_with_single_clock_output

This property controls whether and how create_ccopt_clock_tree_spec will extract through cells that have multiple outputs but
where only one of those outputs has a clock emanating from it; call these types of instance multi-output single-clock instances.

If the feature is disabled, spec creation will not trace through multi-output single-clock instances. The resulting clock spec will
specify a generated clock tree on the clock-carrying outputs of every multi-output instance. Clock-carrying inputs that are
connected to each clock output by way of timing arcs will be generator inputs to the corresponding generated clock tree. The

September 2022 1713 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/create_ccopt_clock_tree_spec.html

presence of these generated clock trees may impact CTS operations on the instance such as sizing, moving, and cloning.

If the feature is enabled, the resulting clock spec will include trace_through_to settings for multi-output single-clock instances.
These settings will allow the instance to be treated as a normal clock instance, most commonly as a clock logic. In this case there
will be no need for the generated clock tree on the clock-carrying output. The treatment of instances with multiple clock-
carrying outputs is unchanged: on such an instance each clock-carrying output will take a generated clock trees, as before.

The feature may be enabled conditionally, such that it is only applied to multi-output single-clock instance which are
combinational. In this case, multi-output single-clock instances which are sequential will continue to take a generated clock tree on
the clock output.

The possible values for this property are as follows:

false - The feature is completely disabled.

true - The feature is enabled for all cell types; both combinational and sequential.

combinational - The feature is enabled for combinational cells, but disabled for sequential cells.

Valid values: false true combinational
Default: combinational

This global property does not use additional arguments.

extracted_from_clock_name

This contains the name of the SDC clock that this skew group has been created to represent the balancing constraints in CCOpt.

Valid values: string

Default: {}

Optional applicable arguments: "-skew_group <name>".

extracted_from_constraint_mode_name

This contains the name of the constraint mode that this skew_group has been created to represent the balancing constraints in
CCOpt.

Valid values: string

Default: {}

Optional applicable arguments: "-skew_group <name>".

extracted_from_delay_corners

This contains the delay corners associated with this skew_group that has been created to represent the balancing constraints in
CTS.

Valid values: string

Default: {}

Optional applicable arguments: "-skew_group <name>".

September 2022 1714 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

filter_cell_lists_for_frequency_dependent_max_cap_constraints

This property can be used to enable or disable filtering out cells that have low max cap values at some frequencies used in the
design. CCOpt will then not use those cells.

Valid values: true or false
Default: true

This global property does not use additional arguments.

final_cell

The library cell to use for the H-tree sinks.

Valid values: string
Default: {}

Optional applicable arguments: "-flexible_htree <name>".

flexible_htree

Returns the name of the flexible H-tree, if any, associated with the given object. This property is read-only, which means it cannot
be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

flexible_htree_placement_legalization_effort

The legalization effort for finding placement unblocked points on the synthesis grid for flexible H-trees. High placement legalization
effort can avoid having to relax placement constraints when implementing H-trees but may lead to increased runtime.

Valid values: low, high
Default: low

This global property does not use additional arguments.

force_all_virtual_delay_updates

If this is set to true, any call to set or reset a virtual delay, even if that call doesn't change the stored value, will push through into
the timing engine. Normally we'll avoid calling into CTE if the annotation is left unchanged - saves runtime.

Valid values: true false

Default: false

This global property does not use additional arguments.

force_clock_objects_to_propagated

Determine whether or not to put the propagated_clock assertion on all clocks within ccopt_design.

Valid values: true false

Default: false

September 2022 1715 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

This global property does not use additional arguments.

force_clock_tree

Can be used to make sure a clock tree sink pin gets driven by a particular clock tree. The clock tree can alternatively be specified
as the tree's root pin, in case extraction renumbers the clock trees defined from a single SDC
clock. By default CCOpt automatically selects appropriate pins.

Valid values: clock_tree | list of pins

Default: {}

Applicable arguments: "-pin <name>". Required: "-pin <name>".

force_update_io_latency

If false (default), I/O latencies are updated if and only if all SDC clocks are in ideal mode. If true, run I/O latency updates even when
clocks are in propagated mode.

Valid values: true false

Default: false

This global property does not use additional arguments.

frequency_dependent_max_cap_usability_check_max_cap_fanout_factor

The minimum number of instances of the same type of cell a cell needs to be able to drive at all used frequencies.

Valid values: numbers > 1.0

Default: 4

This global property does not use additional arguments.

generated_by_sinks

The list of parent clock tree sinks for which timing to this clock tree should be considered, if any.

Valid values: list pin

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Optional applicable arguments: "-clock_tree <name>".

htree_sinks

Specifies H-tree sinks as approximate rectangular areas for locations of final cells (given by -final_cell) or pins to wire to.

Valid values: list {pin | {xmin ymin xmax ymax}}
Default: {}

Optional applicable arguments: "-flexible_htree <name>".

September 2022 1716 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

hv_balance

Specifies whether horizontal and vertical wires can only be balanced against other wires of the same orientation (true), or whether
any wire can be balanced against any other wire (false).

Valid values: true false
Default: true

Optional applicable arguments: "-flexible_htree <name>".

ideal_net

If set the clock tree timing engine will consider this net as ideal.

Valid values: true false
Default: false

Required argument: "-net <name>"

ignore_pins

A list of ignore pins for this skew group.

Valid values: list pin

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Optional applicable arguments: "-skew_group <name>".

ignore_problematic_skew_as_result_of_dont_touch_nets

If set to true, sinks directly connected to nets that are causing unfixable skew problems will be ignored for skew balancing.

Valid values: true false

Default: false

This global property does not use additional arguments.

image_directory

Specifies the name of the directory to which the images are written.

The images are PNG files describing the tree as generated by the H-tree synthesis algorithm

White: Unobstructed edges of the synthesis grid

Red: Grid points that are blocked for trunk cell placement in all modules

Orange: Grid points that are blocked for final cell placement in all modules

Red orange: Grid points that are blocked for trunk and final cell placement in all modules

Yellow circle: The grid point of the source

Yellow crosses: Candidate grid points of H-tree sinks

Yellow rectangle: The sink area containing target grid point candidates of H-sinks, adjusted to the synthesis grid

September 2022 1717 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Brown: If specified, the sink grid box snapped to the synthesis grid

Green/blue: The edges of the synthesized H-tree

Purple: H-tree repeaters

Default: {}

Optional applicable arguments: "-flexible_htree <name>".

implicit_sink_type

Indicates the type of sink that CCOpt classified this pin as. Note that the sink_type property can override these internal
classifications.

Possible values are:

exclude Indicates that this pin is a sink which represents a non-clock pin.
ignore Indicates that CCOpt has determined not to search for more clock tree through this pin. Additionally, this pin will not be
balanced.
stop Indicates that CCOpt has determined not to search for more clock tree through this pin.

An empty value for this property indicates either that this pin is either not a sink, or that it is a sink that is not implicitly exclude or
ignore or stop.

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

include_source_latency

Specifies whether clock tree source latency should be included when timing the skew group.

Valid values: true false

Default: false

Optional applicable arguments: "-skew_group <name>".

insertion_delay

Specifies the amount of insertion delay under this pin. Clock tree synthesis will attempt to make the insertion delay to this pin less
than that to other sinks in the same skew group by this amount if a positive value is set. A negative value should be used if you
would like the insertion delay to this pin to be greater than that to other sinks. The value 'auto' means there is no insertion delay
offset for the pin.

Valid values: double | ignore | min | auto

Default: auto

Applicable arguments: "-delay_corner <name>", "-pin <name>", "-early", "-late", "-rise", "-fall", "-max" and "-min". Required: "-
pin <name>".

September 2022 1718 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

insertion_delay_sources

The amount of insertion delay under this pin, broken down by the source of the pin insertion delay (PID). The value of this property
is a Tcl dictionary of PID values, keyed on the source of that PID. This provides an 'exploded' view into the
total pin insertion delay that is present, categorizing the various contributions by their origin.

Valid Tcl dict keys:

user Asserted by user Tcl scripting or restored from an older DB.
sdc Extracted from SDC set_clock_latency by spec creation.
ilm Records the mean clock latency of the ILM clock network that is rooted at this pin.
useful_skew A useful skew generated by pre-CTS optimization.
incremental An incremental offset, used to specify useful skews to incremental CTS.
total The formal sum of the above contributions. This value is the 'overall' pin insertion delay accessible via the insertion_delay
property.

Valid Tcl dict values: double | ignore | min | auto

Reading the property returns a dict value that exposes the current state of the PID, recording all the PID sources and the
associated PID value of each one. Sources whose value are auto are omitted. If there are no non-auto sources, the returned dict is
empty. For convenience, the total is always included in the dict if it is non-auto.

Writing a dict value to the property will update each of the specified sources with the specified PID value. The total PID value will
then be updated. Sources in the dict that are assigned a value of 'auto' will be reset. Sources omitted from the dict are left
unchanged from their current value:
assigning an empty dict is a no-op.

Resetting the property will clear all the sources and the total back, resetting them to the default value of 'auto', thereby completely
removing the PID from the pin.

Valid values: A Tcl dictionary of PID values, keyed on PID source.

Default: {}

Applicable arguments: "-delay_corner <name>", "-pin <name>", "-early", "-late", "-rise" and "-fall". Required: "-pin <name>".

inst_name_prefix

The name prefix of instances created by CTS. The default value is
"CTS". The default names of instances are CTS_*.

Valid values: string

Default: CTS

This global property does not use additional arguments.

inverter_cells

Specifies the inverter cells available for CTS. If none are specified CCOpt will choose inverters from the libraries. Cell names may
be specified as a Tcl list of names, or as a Tcl list of patterns to be expanded to match names. If set explicitly, CCOpt will ignore
any don't use settings for the cells specified.

Different inverter cells may be specified for any combination of clock tree and power domain.

To use different inverters for each net type set the top_inverter_cells and leaf_inverter_cells properties.

Some examples are provided below:

To specify inverter cells for all clock trees and all power domains:

September 2022 1719 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

set_ccopt_property inverter_cells {invAX* invBX*}

To specify inverter cells for a particular clock tree and all power domains:

set_ccopt_property -clock_tree clk inverter_cells {invX20 invX18}

To specify inverter cells for a particular clock tree and power domain:
set_ccopt_property -clock_tree clk -power_domain pd inverter_cells {invX12 invX8}

Valid values: a list of library cell names, or a list of patterns to expand to library cell names

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

inverting

Specifies whether the flexible H-tree will invert its input or not.

Valid values: true, false

Default: false

Optional applicable arguments: "-flexible_htree <name>".

is_active

Determines whether the clock tree source group is active or not. Only active source groups will take part in sink allocation.

Valid values: true false.

Default: true

Optional applicable arguments: "-clock_tree_source_group <name>".

isolated

Indicates whether this is an isolated pin. CTS does not cluster isolated pins with any other pins. This is shown in the figure below.

Valid values: true false

Default: false

Applicable arguments: "-pin <name>". Required: "-pin <name>".

September 2022 1720 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

is_genus_clock_gate

Set by the tool in the iSpatial flow to indicate that this integrated clock gating instance was added by Genus clock gating.

Default: false

Applicable arguments: "-inst <name>". Required: "-inst <name>".

is_sdc_clock_root

Specifies whether the given pin is the root (source pin) of an SDC clock. The create_ccopt_clock_tree_spec populates this
property with the location of the SDC clock root (source) pins.

This property controls the behavior of clock tree definition commands, create_ccopt_clock_tree and
create_ccopt_generated_clock_tree, when the -stop_at_sdc_clock_roots argument is specified. In such a case, pins and ports
for which this property is true will be treated as being SDC clock root pins.

Valid values: true false

Default: false

Applicable arguments: "-pin <name>". Required: "-pin <name>".

layer_density

The assumed layer density used to compute the parasitics for timing estimates of H-tree nets during H-tree synthesis based on the
non default rule for top nets.

Valid values: Any float in the range 0 to 1.
Default: 1

Optional applicable arguments: "-flexible_htree <name>".

leaf_buffer_cells

Specifies the buffer cells available for CTS to use on leaf nets. If none are specified, CCOpt will use the same buffers as on trunk
nets - as specified in the buffer_cells property. Cell names may be specified as a Tcl list of names, or as a Tcl list of patterns to
be expanded to match names. If set explicitly, CCOpt will ignore any don't use settings for the cells specified.

Different leaf buffer cells may be specified for any combination of clock tree and power domain.

Valid values: a list of library cell names, or a list of patterns to expand to library cell names

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

leaf_inverter_cells

Specifies the inverter cells available for CTS to use on leaf nets. If none are specified, CCOpt will use the same inverters as on
trunk nets - as specified in the inverter_cells property. Cell names may be specified as a Tcl list of names, or as a Tcl list of
patterns to be expanded to match names. If set explicitly, CCOpt will ignore any don't use settings for the cells specified.

Different leaf inverter cells may be specified for any combination of clock tree and power domain.

Valid values: a list of library cell names, or a list of patterns to expand to library cell names

September 2022 1721 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

legalized_on_clock_spine

The name of the clock spine to which the specified pin has been assigned by CCOpt, if any. Pins which have been aligned with a
clock spine report the name of that spine in this property. Clock spine cell placement inside CCOpt CTS will record the clock spine
that it chose to place the pin on (or near, in the case of placement failure).

When setting the property if a clock spine name is specified which does not correspond to an existing clock spine then the
command will fail.

When setting the property if a clock spine name is specified which is not in the corresponding list in the lock_on_clock_spine
property then the clock spine name will be added to that property as well.

Valid values: string

Default: {}

Applicable arguments: "-pin <name>". Required: "-pin <name>".

load_capacitance_cells

Specifies the load capacitance cells available for CTS. CTS will use cells from this collection for load capacitance optimizations.
Cell names may be specified as a Tcl list of names, or as a Tcl list of patterns to be expanded to match names.

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

library_trace_through_to

Clock tree definition will, by default, not continue through certain types of cell arc (for instance, the clock to Q arc in a DFF). This
property allows you to override the default behavior by specifying the output library pin to which the clock tree should propagate,
when it arrives at an instance of the given input library pin. The specified output library pin must be another pin on the same library
cell as the given input pin. The configured value is applicable to all instances of the library cell in the netlist.

The output pin may be specified either by its fully qualified name (i.e. inclusive of the library cell name), or else simply by its local
(cell-relative) name.

Note: If both trace_through_to and library_trace_through_to are applicable at a given netlist instance pin, the trace_through_to
value takes precedence.

Valid values: lib_pin

Default: {}

Optional applicable arguments: "-lib_pin <name>".

lock_on_clock_spine

A set of clock spine names restricting where the pin should be located. If the set contains more than one item, the pin may be
placed on any of the specified clock spines. Clock tree nets above pins locked on a clock spine pins will automatically be routed
as top nets.

When setting the property if a clock spine name is specified which does not correspond to an existing clock spine then the

September 2022 1722 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

command will fail.

When setting the property if the list of clock spine names no longer contains the clock spine referred to by the property
legalized_on_clock_spine for this pin then that property will be unset.

Valid values: list string

Default: {}

Applicable arguments: "-pin <name>". Required: "-pin <name>".

log_precision

The number of significant figures printed in floating point numbers written to the log

Type: integer

Default: 3

This global property does not use additional arguments.

log_special_case_cell_selections

When specified, CCOpt will provide additional log information on the lists of cells that it will consider using when determining if a
cell can be resized. This information is only provided for the more "specialized" cases.
Specialized cases include logic cells and any cells marked (either by the user or by an internal constraint) as dont touch.

Valid values: true false

Default: false

This global property does not use additional arguments.

logic_cells

Specifies the clock logics for CTS. If none are specified CCOpt will choose clock logics from the libraries. Cell names may be
specified as a Tcl list of names, or as a Tcl list of patterns to be expanded to match names. If set explicitly, CCOpt will ignore any
dont_use settings for the cells specified.

Different logic cells may be specified for any combination of clock tree and power domain.

Some examples follow:

To specify logic cells for all clock trees and all power domains:

set_ccopt_property logic_cells {and* mux*}

To specify logic cells for a particular clock tree and all power domains:

set_ccopt_property -clock_tree clk logic_cells {andX20 andX18}

To specify logic cells for a particular clock tree and power domain:
set_ccopt_property -clock_tree clk -power_domain pd logic_cells {andX12 andX8}

Valid values: a list of library cell names, or a list of patterns to expand to library cell names

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

September 2022 1723 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

long_path_removal_cutoff_id

A per-skew-group control for the "Artificially removing long paths" algorithm. For a skew group where it is set, the paths with the
greatest insertion delay will be artificially shortened by means of a pin insertion delay, preventing CTS from increasing the average
ID towards these long paths, which are assumed to be acceptable outliers.

The property gives the ID beyond which all sinks will be removed as outliers.

Valid values: Numbers in the range 0-inf.

Default: auto

Optional applicable arguments: "-skew_group <name>".

long_path_removal_percentile

A per-skew-group control for the "Artificially removing long paths" algorithm. For a skew group where it is set, the paths with the
greatest insertion delay will be artificially shortened by means of a pin insertion delay, preventing CTS from increasing the average
ID towards these long paths, which are assumed to be acceptable outliers.

The property gives the percentile of the sink with the maximum acceptable ID. Sinks with IDs longer than this maximum ID will
have insertion delay offsets set so that the sink ID becomes equal to the new maximum. In a skew group with a 100 sinks, setting
this property to 0.95 would select the sink with the 5th longest delay (the 95th sink) to be the new maximum, with sinks 96, 97, 98,
and 99 having IDs now equal to the 95th.

Valid values: Numbers in the range 0-1.0.

Default: auto

Optional applicable arguments: "-skew_group <name>".

manage_power_management_illegalities

If this property is set, the CTS algorithm will work around power management illegalities in the clock tree, as opposed to failing
with an error when it encounters them. This allows the clock tree to be synthesized, but any power
management illegalities will remain in the exported design.

Valid values: true false

Default: true

This global property does not use additional arguments.

max_buffer_depth

Constrains CTS to ensure that at most this many buffers are present along each path from source to sink in the skew group.

Default: auto

Optional applicable arguments: "-skew_group <name>".

max_cell_height

When selecting cells for use, CTS will filter the selection to remove all buffers, inverters and clock gates taller than this many row
heights. This helps quickly eliminate very large cells that are unlikely to be useful.

Default: 3

September 2022 1724 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

This global property does not use additional arguments.

max_clock_cell_count

The maximum number of clock cells taken from a library before a warning is printed. Parts of CCOpt can exhibit poor runtime
performance when the list of possible library cells to consider becomes too large. A warning is printed when the list of cells
exceeds the limit set in this property. It may indicate that the number of cells specified should be reduced. If done properly, this will
have little effect on results.

Valid values: Any positive number or 0 to disable.

Type: integer

Default: 15

This global property does not use additional arguments.

max_driver_distance

When specified, the software ignores DRVs and uses the given value as the maximum length of the nets connecting the H-tree
drivers.

Valid values: float

Default: auto

Optional applicable arguments: "-flexible_htree <name>".

max_fanout

The maximum fanout at any point in the clock tree.

Valid values: integer ranged between 2 and 1000 inclusive

Default: 100

Optional applicable arguments: "-lib_pin <name>".

maximum_insertion_delay

For instances in the clock tree, specifies a maximum desired insertion delay beneath that instance. For instances not in the clock
tree, this property has no effect.

Because it relies on the existence of the clock tree, this property can only be set after clock trees have been created.

Valid values: double

Default: -1.79769e+308

Applicable arguments: "-inst <name>". Required: "-inst <name>".

max_root_distance

If specified, the software ignores DRVs and uses the given value as the maximum length of the net connecting the root and the first
driver of the H-tree. This value overrides the property max_driver_distance of this net and can only be specified if
create_ccopt_flexible_htree -max_driver_distance is also specified.

September 2022 1725 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/create_ccopt_flexible_htree.html

Valid values: float

Default: auto

Optional applicable arguments: "-flexible_htree <name>".

max_source_to_sink_net_length

The maximum routing length in microns between driving source pin and driven sink pin on each net that clock tree synthesis
should observe. This constraint can be applied to either a pin, a clock tree, or a net type. By default (if this property is not set) no
explicit clock tree net length constraint is enforced. However, other clock tree constraints such as maximum slew (transition) and
maximum capacitance will indirectly limit the maximum net length.

Valid values: double

Default: auto

Optional applicable arguments: "-clock_tree <name>", "-lib_pin <name>" and "-net_type <name>".

max_source_to_sink_net_resistance

The maximum routing resistance (in resistance library units) between source and sink that clock tree synthesis should observe.

Valid values: double

Default: auto

This global property does not use additional arguments.

mixed_fanout_net_type

Controls how CCOpt considers nets that have fanout consisting partially but not entirely of sinks. By default, having any sinks, for
example DFFs, will make the net be considered leaf, but when set to trunk, a net has to drive only sinks to be considered as leaf.
For example, a net driving a clock gate and a DFF would no longer count as a leaf net.

Valid values: leaf trunk

Default: leaf

This global property does not use additional arguments.

mode

Specifies the driver insertion mode for the H-tree.

If set to drv, the algorithm inserts drivers to avoid DRVs.
If set to distance, the properties max_driver_distance and max_root_distance determine the maximum net lengths allowed.
Transitions and delays are not computed in this case.

Valid values: drv distance

Default: drv

Optional applicable arguments: "-flexible_htree <name>".

September 2022 1726 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

move_clock_gates

If this property is set, the CTS algorithm will move clock gates that appear in the clock tree. Setting this property may cause the
clock tree to have a lower insertion delay, but might break datapath timing. During optimization, this is not a problem, because the
timing will be automatically recovered during the optimization process. If this property is false, CTS permits small movements of
ICGs for legalization.

Type: boolean

Default: true

This global property does not use additional arguments.

move_logic

If this property is set, the CTS algorithm will move logic that appears in the clock tree. "Logic" does not include clock gates, buffers,
and inverters in a clock tree, which are always moved unless they are locked, or clock generators that are above the root of the
clock tree. Usually, this will affect multiplexers used for selecting one of a number of clocks, or for switching between a test clock
and the main clock. Setting this property may cause the
clock tree to have a lower insertion delay, but might break datapath timing. During optimization, this isn't a problem, because the
timing will be automatically recovered during the optimization process.

Valid values: true false

Default: true

This global property does not use additional arguments.

move_middle_cell_first_when_adding_wire_delay

When moving three cells to add wire delay, move middle cell first, followed by the other added cell and then lastly the parent or
child of the middle cell.

Default: false

This global property does not use additional arguments.

net_name_prefix

The name prefix of instances/nets created by CTS. The default value is "CTS". The default names of nets are CTS, CTS_1,
CTS_2... ...The default names of instances are CTS_*.

Valid values: string

Default: CTS

This global property does not use additional arguments.

net_type

For a net, return the CTS net type. It will be one of the following:

"top" - A clock net that has fanout above routing_top_transitive_fanout.

"trunk" - A CTS clock net that is not a "top" net nor a "leaf" net.

"leaf" - A CTS clock net that has fanout to only clock sinks.

September 2022 1727 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

"unknown" - A CTS clock net that has not been analyzed.

"" - Not a CTS clock net.

See also the get_ccopt_clock_tree_nets command.

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-net <name>". Required: "-net <name>".

net_unbufferable

This property contains a list of reasons why CCOpt was not able to buffer the clock net attached to the specified pin.

Valid values: string

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

node_type

For a pin, return the CTS node type. One of the following will be returned:

"", "sink", "source", "generator", "inverter", "buffer", or "clock_gate".

A value of "" indicates the pin is not in a clock tree.

See also the get_ccopt_clock_tree_sinks and get_ccopt_clock_tree_cells commands.

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

omit_symmetry

Controls the omission of symmetry features to balance a flexible H-tree.

Symmetry drivers are drivers that are added to balance pin capacitances at branch points. For example, if buffer pairs are inserted
at branch points, one of these buffers may not drive any fanout and is inserted to match other buffer pairs at the same level of the
flexible H-tree. Omitting symmetry drivers can reduce the power of the H-tree but increase its skew. Drivers that are added to
terminate symmetry branches do not count as symmetry drivers and are never omitted.

Similarly, symmetry branches are branches that are needed to balance the wire load at branch points. They are added to match
other branchpoints at the same level of the flexible H-tree. By default, symmetry branches and drivers are added. Symmetry
branches are always terminated with drivers, which are not counted as symmetry drivers.

Possible values for this property:

false Add symmetry branches and drivers
true Omit both symmetry drivers and branches
drivers Omit symmetry drivers
branches Omit symmetry branches
{drivers branches} Omit both symmetry drivers and branches
{} Add symmetry branches and drivers

Default: auto

September 2022 1728 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/get_ccopt_clock_tree_nets.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/get_ccopt_clock_tree_sinks.html
../innovusTCR/get_ccopt_clock_tree_cells.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Optional applicable arguments: "-flexible_htree <name>".

opt_ignore

Specifies whether CCOpt will balance this clock tree. If set to true, CCOpt will not balance or optimize this clock tree. The default is
false.

Valid values: true false

Default: false

Optional applicable arguments: "-clock_tree <name>".

original_names

Specifies for a clock gate or clock logic which has been merged or is a clone, a list of names from the original netlist which are
equivalent to the clock gate/clock logic. For example:

If A and B are merged to form C then original_names for C is { A B }.

If D_clone is a clone of D then original_names for D_clone is { D }.

If E is a clone of C then original_names for E is { A B } (remembering C was a merger of A and B).

Valid values: list string

Default: {}

Applicable arguments: "-inst <name>". Required: "-inst <name>".

override_minimum_max_trans_target

Specifies that CCOpt should allow any slew target to be used, even if it is likely to lead to runtime problems. By default, CCOpt
computes a minimum slew target which should not lead to runtime problems, and does not allow any slew target to be set lower
than this minimum. This property overrides that check, and allows any slew target to be used.

Valid values: true false

Default: false

This global property does not use additional arguments.

override_minimum_skew_target

Specifies that CCOpt should allow any skew target to be used, even if it is likely to lead to poor results. By default, CCOpt
computes a minimum skew target which should not lead to excessive buffering, and does not allow any
skew target to be set lower than this minimum. This property overrides that check, and allows any skew target to be used.

Valid values: true false

Default: false

This global property does not use additional arguments.

September 2022 1729 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

override_vias

When specified, this property defines the vias to be used in RC extraction from routing estimates. The listed vias will be used in
place of those configured on the routing rules for the clock network. The order of the list is irrelevant. The vias may also be
overridden for each non-default rule (NDR). In this case, the name of the NDR is given as the first element in the list with
subsequent entries being the via names. Multiple NDRs can be specified, e.g. {via1d {NDR1 via2d} {NDR2 via2d}} will override
via1d in the default rule, and both via1d and via2d in NDR1 and NDR2.

Valid values: list via_call

Default: {}

This global property does not use additional arguments.

override_zero_placeable_area

If set CCOpt will allow CTS to run on a design which has zero placeable area. Setting this property may be useful to temporarily
work-around problems with row definition and/or blockages causing placeable area to be zero.

Valid values: true false

Default: false

This global property does not use additional arguments.

parents

The list of parent clock trees from which this clock tree is generated, if any.

Valid values: list clock_tree

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Optional applicable arguments: "-clock_tree <name>".

partition_boundary_polarity

Specifies polarity of the clock signal with regard to the source of the flexible H-tree when entering partitions. The following values
can be specified:

non_inverting: When specified, allows only non-inverting polarity at partition entry points.

inverting: When specified, allows only inverting polarity at partition entry points.

ignore: When specified, allows inverting and non-inverting polarity at partition entry points.

Valid values: non_inverting inverting ignore

Default: non_inverting

Optional applicable arguments: "-flexible_htree <name>".

September 2022 1730 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

partition_groups

Specifies the groups in which partitions are clustered in channelless designs. Nested lists imply allowed crossings between
groups. Each group has zero or one input port and each partition must only be specified once. Optionally, a maximum pre-route net
length from the boundary of a partition group can be specified. The maximum pre-route net length must be specified as the second
parameter of a nested partition group. Optionally, the next argument specifies the clock phase when entering the partition group in
relation to the root pin of the H-tree. Allowed values are 'inverting' and 'non_inverting'. If no value is specified, the clock phase is
unconstrained. The clock phase is unconstrained when crossing the boundaries of partitions within the same group. All specified
clock phases must be either inverting or non_inverting.

For example, if the following partitions are specified:

{{A} {{C D} 50 non_inverting {{E F}} {{G}}}}

It means the following:

The H-tree starts in partition A and descends into group C/D.

From partition group C/D, the tree descends into groups E/F and G.

Any clustering of sinks inside the C/D and E/F groups is allowed, potentially crossing internal partition boundaries several
times.

Partition A has no clock input port and one clock output port

Partition group C/D has one clock input port and two clock output ports

Partition group E/F and G have one clock input port and no clock output port

The maximum net length from the entry point into partition group C/D is 50um (pre-route)

The clock phase is non_inverting when entering parition group C/D. The clock phase is unconstrained when entering other
partition groups.

Valid values: string

Default: {}

Optional applicable arguments: "-flexible_htree <name>".

pin

The pin under which the H-tree is created. This pin must be part of a clock tree at the time of synthesis.

Valid values: pin
Default: {}

Optional applicable arguments: "-flexible_htree <name>".

pin_capacitance_sources

Consists of a list of the places the capacitance could be retrieved from. Requesting this property for a pin not in the clock tree will
result in an error. The possible places are:

library - CTS will retrieve capacitance values from the library for one or more timing_corner/event combinations.

capacitance_override - CTS retrieves capacitance values from the capacitance_override property for one or more
timing_corner/event combinations.

blackbox_default_load_base_pin - CTS retrieves capacitance values from the blackbox_default_load_base_pin property

September 2022 1731 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

for one or more timing_corner/event combinations.

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

pin_insertion_delay_histogram_bin_size

This property specifies the preferred size of the histogram bins that should be used when reporting the distribution of pin insertion
delays. The bin size is specified in time units and must be greater than zero. A value of auto (the default) leaves it to the tool to
calculate a bin size.

This property affects pin insertion delay histograms that are logged during various flow commands. It also determines the preferred
histogram bin size that is used by the report_ccopt_pin_insertion_delays command when an explicit -bin_size argument has
not been specified.

Valid values: auto, time value in library units

Default: auto

This global property does not use additional arguments.

pin_route_type

This property, when set on a pin, forces all the routing of the specified net_type generated by buffering the net driven by the
specified pin to be routed with the given route_type. This property has no effect when set on non-output pins.

For example, if there exists a clock gate, XXX with an output pin, ECK driving some flops that need buffering during CTS to meet
the DRV limits, then the following setting would cause the leaf nets generated by buffering the fanout of the clock gate to be
routed with a route_type named rt_a and the trunk nets to be routed with a route_type named rt_b:

set_ccopt_property pin_route_type -pin XXX/ECK -net_type leaf rt_a

set_ccopt_property pin_route_type -pin XXX/ECK -net_type trunk rt_b

If a net_type is unspecified, the route_type will apply to nets of any net_type, for example the following setting will cause all nets
generated by buffering pin, YYY/ECK to have route_type rt_c, irrespective of whether they are classified as leaf or trunk:

set_ccopt_property pin_route_type -pin YYY/ECK rt_c

Default: default

Applicable arguments: "-pin <name>" and "-net_type <name>". Required: "-pin <name>".

pin_route_type_propagation

Describes how the pin_route_type property should be applied to the net driven by the specified pin. The possible values are:

none - it applies to net driven by the pin and only that net, irrespective of whether the net is buffered or not.

net - it applies to all nets generated by buffering the pre-CTS net driven by pin.

Default: net

This property overrides any global setting for the specified pin. This property, set on a pin would do nothing if the pin has no
pin_route_type setting.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

September 2022 1732 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/report_ccopt_pin_insertion_delays.html

pin_target_max_trans

The per-pin target slew used for clock tree synthesis. This overrides any target set by target_max_trans. If set to auto (the
default) the transition target used for optimization falls back the clock_tree, global target, liberty max_transition or the value of
target_max_trans_sdc.

Valid values: double or auto

Default: auto

Applicable arguments: "-delay_corner <name>", "-pin <name>", "-early" and "-late". Required: "-pin <name>".

place_driver_in_center_of_fanout

When set, this property tells the CTS clustering code to put drivers in the center of the bounding box of their fanout. There are
multiple methods for calculating the cluster center available.

Valid values: true, false, leaf_only

Default: leaf_only

This global property does not use additional arguments.

post_conditioning

Enable post-conditioning optimization after clock nets are routed.

Valid values: true false

Default: true

This global property does not use additional arguments.

post_conditioning_enable_drv_fixing

If set to false, post-conditioning will skip its DRV-fixing step.

Valid values: true false

Default: true

This global property does not use additional arguments.

post_conditioning_enable_drv_fixing_by_rebuffering

If set, post-conditioning will fix DRVs by adding buffers.

Valid values: true false

Default: true

This global property does not use additional arguments.

September 2022 1733 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

post_conditioning_enable_routing_eco

If set to false, post-conditioning will skip its ECO-routing step.

Valid values: true false

Default: false

This global property does not use additional arguments.

post_conditioning_enable_skew_fixing_by_rebuffering

If set to true, post-conditioning will attempt skew-fixing using rebuffering.

Valid values: true false

Default: false

This global property does not use additional arguments.

power_weight

The power versus insertion delay trade-off. Valid values are between 0 and 1, specifying the weight that is put on power
optmization during the synthesis of flexible H-trees.

Default: 1

Optional applicable arguments: "-flexible_htree <name>".

preserve_from_deletion

Do not allow this instance to be deleted. This property can be used to build clone-only CTS flows where a clock tree structure is
pre-inserted in combination with multi-tap/Flex-h and then cloned for DRVs.

When this property is set to true, the specified instance is preserved from any operation in CTS that would remove it, except
when delete_clock_tree_repeaters -force is set. The instance is also prevented from merging. To ensure symmetry across
multiple passes of merging and cloning, when cloning this instance, CTS will leave the value of this property as false.

Valid values: true false

Default: false

Applicable arguments: "-inst <name>". Required: "-inst <name>".

primary_delay_corner

This specifies the delay corner in which clock tree balancing applies the slew and insertion delay targets. If more than one timing
corner is defined, this must be set before running CCOpt. By default, this is set to the first defined delay corner.

Valid values: corner name, or empty

Default: {}

This global property does not use additional arguments.

September 2022 1734 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/delete_clock_tree_repeaters.html

primary_reporting_skew_groups

Specifies the primary skew groups used for reporting. By default, the value is specified as auto that automatically takes the skew
group with maximum number of sinks as the primary reporting skew group. For invalid values, the default (auto) will be considered.

Valid values: a list of existing skew group names, auto or none

Default: auto

This global property does not use additional arguments.

primary_reporting_skew_groups_log_min_max_sinks

If set to on, the sinks with the shortest and longest paths in each primary reporting skew group will be logged. If set to logv, they will
be logged only to the logv file.

Valid values: on, off, logv

Default: logv

This global property does not use additional arguments.

pro_enable_drv_fixing_by_rebuffering

If set, PRO will fix DRVs by adding buffers.

Default: false

This global property does not use additional arguments.

recluster_ignore_pins

Enable a reclustering step to find and fix ignore pins which have broken slew.

Valid values: true false

Default: true

This global property does not use additional arguments.

remove_bufferlike_clock_logic

When set to true, CCOpt will identify and remove clock tree logic that is logically equivalent to buffering.

Valid values: true false

Default: false

Optional applicable arguments: "-clock_tree <name>".

rename_clock_tree_nets

Tells CCOpt to rename all clock tree nets for easy identification later in the flow.

Valid values: true false

September 2022 1735 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Default: true

This global property does not use additional arguments.

repair_congestion

If set, congRepair is called during CTS. This can reduce congestion and ease later routing issues.

Valid values: true false

Default: true

This global property does not use additional arguments.

report_only_skew_group_with_target

The skew groups report (run using the report_ccopt_skew_groups command) displays insertion delay, skew, and min/max path
information for different combinations of skew group, timing corner, and early/late path. Set the
report_only_skew_group_with_target property to false (the default) to report on all skew group/timing corner/path combinations
regardless of whether a skew target has been set. Set the report_only_skew_group_with_target property to true to report only
on skew group/timing corner/path combinations where a skew target has been set (either explicitly or using the 'auto' setting).

Type: boolean

Default: false

This global property does not use additional arguments.

report_only_timing_corners_associated_with_skew_groups

Specifies whether the skew groups report displays all skew groups, in all corners or only corners associated with the timing
configs from which the skew group was extracted.

Type: boolean

Default: false

This global property does not use additional arguments.

route_balancing_buffers_with_default_rule

If set CCOpt will always use the default routing rule for balancing buffers.

Valid values: true false

Default: false

This global property does not use additional arguments.

route_type

Specifies the route type. Setting this property binds an existing user-defined route_type to one or more types of clock tree nets.
Binding a route_type to a type of clock tree nets means that all nets of that type (including the nets created by CTS) will be routed
according to the specification of that route_type.

In the most common usage, the route_type is bound to one of the three types of clock tree nets (top, trunk, or leaf) with the optional

September 2022 1736 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/report_ccopt_skew_groups.html

–net_type argument. Omitting the –net_type argument causes the route_type to be bound to all three types of clock tree nets. The
optional –clock_tree <pattern> argument limits the binding to the clock trees whose name matches <pattern>. Omitting the –
clock_tree argument causes the binding to apply to all clock trees.

For a route_type to be used in CTS, it must be bound to at least one net type. If net type is not bound to any route_type, a default
route_type will be created for that net type at the start of CTS.

Examples:

The following commands will cause all ‘trunk’ type clock tree nets to be routed using route_type ‘CTS_2w2s’ and all ‘leaf’
type clock tree nets to be routed using route_type ‘CTS_1w2s’:
set_ccopt_property route_type –net_type trunk CTS_2w2s

set_ccopt_property route_type –net_type leaf CTS_1w2s

The following command will cause all ‘trunk’ clock tree nets for clock trees matching pattern “MAIN*” to be routed with
route_type ‘NDR_xtra_wide’:
set_ccopt_property route_type –net_type trunk –clock_tree MAIN* NDR_xtra_wide

Valid values: internal

Default: default

Optional applicable arguments: "-clock_tree <name>" and "-net_type <name>".

route_type_autotrim

Enable/disable autotrimming for all route types. If set, the allowed range of layers to use for routing may be restricted to a subset of
the user-defined range in order to improve performance.

Valid values: true false

Default: true

This global property does not use additional arguments.

routing_override

The value auto means the pin has no routing override (either the user has not set an override, or the pin does not support routing
overrides).
The value top means the pin has a routing override in place, forcing the net attached to the pin to be treated as a top net.
The value trunk means the pin has a routing override in place, forcing the net attached to the pin to be treated as a trunk net.
The value leaf means the pin has a routing override in place, forcing the net attached to the pin to be treated as a leaf net.

Valid values: auto top trunk leaf

Default: auto

Applicable arguments: "-pin <name>". Required: "-pin <name>".

routing_preferred_layer_effort

Controls preferred layer effort for clock routing. The following settings may be specified:

standard (default) - No change made to current early global route settings.

high - enables a package of early global route settings to increase layer adherence, possibly at the expense of wire length

September 2022 1737 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

and via count.

auto - maps to high effort only if the effective routing effort level for the vast majority of nets of net_type trunk, for all clock
trees resolves to high. Otherwise, the auto setting maps to standard.

Default: standard

This global property does not use additional arguments.

routing_top_fanout_count

The number of clock sinks this sink counts for when applying the top routing rules. Note that this property is only valid for sink pins,
and it returns auto for non-sink pins. For a sink pin, a non-auto value means that this sink is counted as though it were multiple
sinks, for the purposes of determining which nets should have top routing. An auto value for a sink pin means that the sink counts
as a single sink.

Valid values: integer > 0

Default: auto

Applicable arguments: "-pin <name>". Required: "-pin <name>".

routing_top_min_fanout

Minimum number of transitive fanout in the clock tree for a net to be routed as a top net. Nets with at least this many sinks in their
transitive fanout in the clock tree will have the special routing rules applied to them.

Valid values: integer

Default: unset

Optional applicable arguments: "-clock_tree <name>".

routing_top_transitive_fanout

The number of clock sinks in the transitive fanout of the pin as counted for applying the top routing rules. This property is very
similar to the transitive_fanout property but counts sink fanout using the routing_top_fanout_count property instead of always
counting sinks as a single item of fanout.

Requesting this property for a pin not in the clock tree will result in an error.

Valid values: integer

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

schedule

Controls what CCOpt can do with the schedule for this pin.

Allowed values are:

auto: Move the sink to make timing better during CCOpt optimization, and to make the clock tree QoR better where possible.

timing_only: Move the sink for timing if necessary, but otherwise leave it near the original schedule.

off: Leave the sink as close as possible to the original schedule, even if this breaks timing.

September 2022 1738 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Valid values: auto timing_only off

Default: auto

Applicable arguments: "-pin <name>". Required: "-pin <name>".

sink_grid

Specifies the columns and rows of a grid of H-tree sinks.

Valid values: {columns rows}

Default: {}

Optional applicable arguments: "-flexible_htree <name>".

sink_grid_box

The box describing the area that the grid of H-tree sinks should cover. This property only has an effect if the sink_grid property of
the flexible H-tree is set.

Valid values: {xmin ymin xmax ymax}

Default: {}

Optional applicable arguments: "-flexible_htree <name>".

sink_grid_exclusion_zones

Specifies zones from which sinks of the sink grid are excluded if the zones completely cover the respective sink area. This
property only has an effect if the sink_grid property of the flexible H-tree is set.

Valid values: list {xmin ymin xmax ymax}
Default: {}

Optional applicable arguments: "-flexible_htree <name>".

sink_instance_prefix

Prefix used for instance names of final cells (given by -final_cell). The name of the cell will be <prefix>_<htree_name>_<id>,
where id is a running index.

Valid values: string

Default: {}

Optional applicable arguments: "-flexible_htree <name>".

sink_grid_sink_area

The approximate size of the rectangle describing valid locations for final cells (given by -final_cell) per H-tree sink in the grid.
This property only has an effect if the sink_grid property of the flexible H-tree is set.

Valid values: {width height}

September 2022 1739 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Default: {}

Optional applicable arguments: "-flexible_htree <name>".

sink_type

The type of sink this pin represents. For this property to take effect, set it before running create_ccopt_clock_tree_spec.

Valid values are as follows:

auto: The pin type will be automatically determined by CCOpt
through: Through pin. Trace the clock tree through this pin.
stop: Stop pin. When defining clock trees, CCOpt stops searching for parts of the clock tree at stop pins.
ignore: Ignore pin. CCOpt stops searching for parts of the clock tree at ignore pins and it does not attempt to balance the insertion
delay of ignore pins.
min: Min pin. Keep the pin at minimal insertion delay.
exclude: Exclude pin. Exclude this pin from the clock tree.

Valid values: auto through stop ignore min exclude

Default: auto

Applicable arguments: "-pin <name>". Required: "-pin <name>".

sink_type_reasons

Provides the reasons why the specified pin has the given sink_type. This property is configured by the
create_ccopt_clock_tree_spec command in order to record the reasons that the sink_type property has been configured for
the given pin.

This property is a list of values. Valid values are as follows:

auto: The sink_type property is set to 'auto'
implicit: The pin is an implicit sink (flop/latch)
user: The user has set the sink_type property
design_io: This pin is a design I/O
multiple_outputs: This pin is on an instance with multiple outputs and the trace_through_to property has not been set
set_disable_timing: SDC set_disable_timing stops the clock at this pin
set_case_analysis: SDC set_case_analysis stops the clock at this pin
generated_clock_tree: This pin is the generator input to an SDC generated clock
no_sdc_clock: The SDC clock is stopped at this pin for other reasons
ilm: The create_ccopt_clock_tree_spec command has detected an ILM below this pin

Valid values: auto, implicit, user, design_io, multiple_outputs, set_disable_timing, set_case_analysis,
generated_clock_tree, no_sdc_clock, ilm

Default: auto

Applicable arguments: "-pin <name>".

Required: "-pin <name>".

sinks

A list of sinks for this skew group.

September 2022 1740 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Valid values: list pin

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Optional applicable arguments: "-skew_group <name>".

sinks_active

Returns the list of active sinks for this skew group. All sink pins that have this skew group in the skew_groups_active_sink
property are included.

Note that only endpoint sink pins are included. Non-sink pins through which this skew group passes are not included.

Valid values: list pin

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Optional applicable arguments: "-skew_group <name>".

size_clock_gates

When set to true (the default), the CTS algorithm sizes clock gates that appear in the clock tree. Setting this property may cause
the clock tree to have a lower insertion delay, but might change the cell types of logic gates in the clock tree, which in turn may
require them to be moved slightly to find a legal location for the new cell.

Default: true

This global property does not use additional arguments.

size_clock_source

When set to true, CTS will try to size the clock source. Only clock sources that are buffers, inverters, logic, and clock gating cells
with a single output will be sized. The cells available for CTS to size clock sources can be set specified using the property
'clock_source_cells'.

Note: Clock sources may be prevented from sizing, for example, if their placement status is 'fixed' or if they are connected to pre-
routed. However, the software will ignore cells whose placement status was set 'fixed' by a previous step, such as H-tree
synthesis, and it will also reset the skip_routing attribute for nets connected to clock tree sources for which
the size_clock_source property is true.

Valid values: true false

Default: false

Optional applicable arguments: "-clock_tree <name>".

size_logic

When set to true (the default), the CTS algorithm sizes logic that appears in the clock tree. "Logic" does not include clock gates,
buffers, and inverters in a clock tree, which are always sized unless they are locked, or clock generators that are above the root of
the clock tree. Usually, this affects multiplexers used for selecting one of a number of clocks, or for switching between a test clock
and the main clock. Setting this property may cause the clock tree to have a lower insertion delay, but might change the cell types
of logic gates in the clock tree, which in turn may require them to be moved slightly to find a legal location for the new cell.

Valid values: true false

September 2022 1741 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Default: true

This global property does not use additional arguments.

skew_band_size

Internal property to control ccopt_design flow.

Valid values: internal

Default: 0.1

This global property does not use additional arguments.

skew_group_report_columns

A Tcl list of columns to include in skew group reports produced by the skew group report. You can use this property to specify the
columns you would like to include in the skew group report, and the order in which the columns should appear. Most of the legal
values are straightforward. However, the set of legal values of the following form deserve further explanation:

summaryType_summaryLocation[_event]

These values let you report the delay value for other paths that go through the pin.

summaryType is one of: max (show the longest delay), min (show the shortest delay), or skew (show the skew, that is the difference
between the longest and the shortest delay).

summaryLocation is one of: above (show the delay/skew above this pin), below (show the delay/skew below this pin), or through
(show the delay/skew for paths through this pin).

event is one of: rise (show the delay/skew for the rise event at this pin), fall (show the delay/skew for the fall event at this pin), or
both (show the delay/skew for both events at this pin).

Valid values:
capacitance

distance

event

fanout

increment

lib_cell

location

name

slew

status

time

Default: {name lib_cell event increment time slew capacitance location distance fanout status}

This global property does not use additional arguments.

skew_group_report_histogram_bin_size

When set to a numeric value, that numeric value will be used as the histogram range size (in library units). For example, if the
library time units are set to 1 nanosecond, a value of 0.010 for report_skew_groups_histogram_bin_size will result in histogram
ranges of 10 picoseconds.

When set to auto, the size of the histogram ranges are dependent on the skew targets that are set. If a skew target is set for a given

September 2022 1742 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

half corner and skew group combination, then the histogram range size will be 10% of the skew target for that half corner and skew
target combination. If no skew target is set for a half corner and skew group combination but a skew target is set for the primary half
corner and skew group combination, then the histogram range size will be 10% of the skew target for the primary half corner and
skew group combination.

In the event that no skew targets are set and report_skew_groups_histogram_bin_size is set to auto, a default value of
10 picoseconds will be used for the histogram range size.

Valid values: auto | string

Default: auto

This global property does not use additional arguments.

skew_groups_active

Returns the list of active skew groups for this pin. For sink pins, this property lists both skew groups that pass through this pin and
skew groups for which this sink is an endpoint. For non-sink pins, shows skew groups that pass through this pin.

Valid values: list skew_groups

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

skew_groups_active_sink

Returns the list of skew groups for which this pin is an active sink. For sink pins, this property lists the skew groups for which this
sink is an endpoint. Skew groups that pass through this pin are not included. For non-sink pins, this property always returns null.

Valid values: list skew_groups

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

skew_groups_ignore

The list of skew groups for which paths through this pin are ignored.

Valid values: list skew_groups

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

skew_groups_constraining

The list of delay-constraining skew groups which are active at this pin.

This property reports similar data to skew_groups_active. The only difference is that the reporting-only skew groups are not
included in this property's value.

For sink pins, this property lists both delay-constraining skew groups that pass through this pin and delay-constraining skew
groups for which this sink is an endpoint.

For non-sink pins, shows delay-constraining skew groups that pass through this pin.

September 2022 1743 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Valid values: list skew_groups

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

skew_groups_constraining_sink

The list of delay-constraining skew groups for which this pin is an active sink. This property reports similar data
to skew_groups_active_sink. The only difference is that the reporting-only (constrains none) skew groups are not included in this
property's value.

For sink pins, this property lists the delay-constraining skew groups for which this sink is an endpoint. Skew groups that pass
through this pin are not included.

For non-sink pins, this property always returns null.

Valid values: list skew_groups

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

skew_groups_sink

The list of skew groups for which this pin is a sink.

Valid values: list skew_groups

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

skew_groups_source_pin

The list of skew groups for which this clock tree or pin is specified as a source.

Valid values: list skew_groups

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

skew_passes

Internal property to control ccopt_design flow.

Valid values: internal

Default: 250

This global property does not use additional arguments.

skew_passes_ideal_mode

Internal property to control ccopt_design flow.

September 2022 1744 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html
../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Valid values: internal

Default: 250

This global property does not use additional arguments.

skew_passes_per_cluster

Internal property to control ccopt_design flow.

Valid values: internal

Default: 25

This global property does not use additional arguments.

source_driver

Specifies the library pin which is assumed to drive this clock tree. It is either a single lib_pin (in which case all arcs to that lib_pin
shall be used when timing the clock tree root) or a pair of lib_pins (in which case only arcs from the first specified pin to the second
will be considered). By default this is generated from clock tree extraction.

Valid values: lib_pin | {lib_pin lib_pin}

Default: {}

Optional applicable arguments: "-clock_tree <name>".

source_group_clock_trees

A list of the clock trees relevant to this source group.

Valid values: list clock_trees

Default: {}

Optional applicable arguments: "-clock_tree_source_group <name>".

source_input_max_trans

The slew which will be assumed at the input of the root driver.

Valid values: double

Default: 0

Optional applicable arguments: "-delay_corner <name>", "-clock_tree <name>", "-early" and "-late".

source_latency

Specifies a delay value between the global clock source and this clock tree. This additional delay will be included in all timing
analysis involving skew groups for which this clock tree is a source. The default is 0.

Valid values: double

Default: 0

September 2022 1745 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Optional applicable arguments: "-delay_corner <name>", "-clock_tree <name>", "-early", "-late", "-rise" and "-fall".

source_max_capacitance

The maximum capacitive load which this clock tree is permitted to drive.

Valid values: double | auto
Auto: from clock tree extraction

Default: auto

Optional applicable arguments: "-clock_tree <name>".

source_output_max_trans

If non-zero, the slew which will be assumed at the output of the root driver. This overrides the value from SDC.

Valid values: double

Default: 0

Optional applicable arguments: "-delay_corner <name>", "-clock_tree <name>", "-early" and "-late".

source_pin

The source pin for this clock_tree.

Valid values: pin

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Optional applicable arguments: "-clock_tree <name>".

spec_config_create_reporting_only_skew_groups

Controls whether spec creation will synthesize reporting-only skew groups. A reporting-only skew group is a skew group whose
constrains property is set to 'none'. Such a skew group imposes no clock balancing constraint and will not be considered by
CTS. The typical example is a generated clock that is synchronous to its master clock. The relationship between the two clocks
implies that the sinks of both clocks should be balanced together. To model this, a clock spec created for such a design will have
the skew group corresponding to the master clock span the domain of both the master clock and also the generated clock. The
skew group of the generated clock is then a subset of the master clock skew group: as such it is a redundant constraint, and may
be safely omitted. If it is synthesized, such a skew group will be created as a reporting-only skew group.

When this property is set to false, reporting-only skew groups are completely omitted from the generated spec. When set to
true, reporting-only skew groups are included in the generated spec, but are marked with the constrains property set to none.
Either way, they impose no balancing constraint.

Valid values: true false

Default: true

September 2022 1746 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

stack_via_rule

The preferred stack via rule for terminal connections. This property helps guide the choice of stack via rule (via pillar) used for
connecting routes to netlist terminals. If the specified value names a valid candidate for terminal in question (it is a member of list
the candidate rules associated with the terminal's cell pin), then it will be used as the preferred stack via rule for connecting to that
terminal.

Valid values: 'auto' or stack via rule name

Default: auto

Optional applicable arguments: "-clock_tree <name>", "-lib_pin <name>" and "-net_type <name>".

stack_via_rule_required

Specifies the pin-specific required field for stack via rule connections.

Default: false

Optional applicable arguments: "-clock_tree <name>", "-lib_pin <name>" and "-net_type <name>".

sources

A list of sources for this skew group.

Valid values: list pin

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Optional applicable arguments: "-skew_group <name>".

stop_at_sdc_clock_roots

If specified, stop searching for parts of the clock tree through SDC clock roots when defining generated clock trees for H-tree sinks.

Default: false

Optional applicable arguments: "-flexible_htree <name>".

target_insertion_delay

The target insertion delay used for clock tree synthesis. This may be set to the following values:

auto - Allow the minimum clustered insertion delay to be pushed up a little (around 5%) to facilitate clock tree power reduction.

A numeric value - Attempt to balance the clock tree to the specified insertion delay (specified in library units). CTS will attempt to
have a longest clock path delay of no more than this value plus half of the skew target, and a shortest path delay of no less than
this value minus half the skew target.

Valid values: auto | double

Default: auto

Optional applicable arguments: "-skew_group <name>".

September 2022 1747 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

target_insertion_delay_wire

The target wire insertion delay used for clock tree synthesis.

Valid values: auto | double

Default: auto

Optional applicable arguments: "-skew_group <name>".

target_max_stage_delay_sigma

The max per-stage SOCV delay sigma target to use for CTS.

Default: auto

Optional applicable arguments: "-delay_corner <name>", "-early" and "-late".

target_max_capacitance

The target maximum capacitive load to allow during clock tree synthesis. This property specifies a maximum (combined pin and
wire) capacitance that the clock tree synthesis algorithm will allow any given library pin to drive in a given clock tree when driving
a given net_type. It is specified in library units. It currently only constrains the primary delay corner capacitance values -
other delay corners can be specified but will not be constrained. This property is applied in addition to the max_capacitance
constraints read from the liberty library data - the tightest (lowest) of the constraint specified by this property and the constraint
present in the liberty data will be used. It also
doesn't apply at the root pins of clock trees - to constrain those nets the source_max_capacitance CCOpt property should be used
instead.

Valid values: auto | double

Default: auto

Optional applicable arguments: "-delay_corner <name>", "-clock_tree <name>", "-lib_pin <name>", "-net_type <name>", "-early"
and "-late".

target_max_trans

The target slew used for clock tree synthesis. This property specifies a maximum slew time that the clock tree synthesis algorithm
will allow in this clock tree, in library units. 'default' means 'auto' in primary half corner and 'ignore' in other half corners. If set to
'auto', CTS picks an appropriate value based on the collection of allowed buffer sizes and library parameters, although this may
not give optimal quality of results. If set to 'ignore', CTS does not constrain the corner. The tightest (lowest) of the constraint
specified by this property and the constraint present in the liberty data (max_transition) will be used.

Valid values: default | auto | ignore | double

Default: default

Optional applicable arguments: "-delay_corner <name>", "-clock_tree <name>", "-power_domain <name>", "-net_type <name>", "-
early" and "-late".

target_max_trans_sdc

If non-zero, the target slew used for clock tree synthesis, overriding the SDC. This property specifies a maximum slew time that the
clock tree synthesis algorithm will allow, in library units obtained from SDC.

September 2022 1748 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Valid values: double

Default: 0

Optional applicable arguments: "-delay_corner <name>", "-clock_tree <name>", "-net_type <name>", "-early" and "-late".

target_multi_corner_allowed_insertion_delay_increase

This slack is the factor by which we will permit the insertion delay target of this skew group to increase for the purposes of multi
corner balancing in general, and wire/cell delay balancing in particular. If a wire/cell delay balance is not possible even after
increasing insertion delays by the allowed amount, we will not permit further insertion delay increases.

Values less than 1.0 are not permitted.

A value of 1.0 means "do not allow insertion delay to increase at all".

A value of 2.0 means "allow the insertion delay to at most double."

A value of infinity means "allow any amount of insertion delay increase".

An undefined value ("auto") is treated as infinite.

Valid values: auto | double

Default: auto

Optional applicable arguments: "-skew_group <name>".

target_skew

This specifies the target skew for clock tree balancing. This may be set to a numeric value, or one of 'auto', 'ignore' or 'default'.

If set to 'auto' this indicates that an appropriate skew target should be computed.

If set to 'ignore' this indicates that skew should not be balanced for this corner/path combination.

If unspecified then the value of this property is 'default'.

If the value of the property is 'default' the target skew for late delays in the primary delay corner is interpreted as 'auto' and as
'ignore' otherwise.

Valid values: default | auto | ignore | double

Default: default

Optional applicable arguments: "-skew_group <name>", "-delay_corner <name>", "-early" and "-late".

target_skew_wire

This specifies the target wire skew for clock tree balancing. This may be set numeric value, or one of 'auto', 'ignore' or 'default'.

If set to 'auto' this indicates that an appropriate skew target should be computed.

If set to 'ignore' this indicates that skew should not be balanced for this corner/path combination.

If unspecified then the value of this property is 'default'.

If the value of the property is 'default' the target skew for late delays in the primary delay corner is interpreted as 'auto' and as
'ignore' otherwise.

Valid values: default | auto | ignore | double

September 2022 1749 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Default: default

Optional applicable arguments: "-skew_group <name>", "-delay_corner <name>", "-early" and "-late".

timing_connectivity_based_skew_groups

SDC false path assertions may render a generated SDC clock asynchronous to its master clock. Under such a condition, the sinks
of the generated clock need not be balanced against the sinks of the master clock: there are no timing paths between the two
clocks that can be affected by inter-clock skew. This balancing 'relaxation' is realized by adjusting the skew groups that
are generated for the two clocks.

This property specifies which SDC assertions are considered when deciding whether a generated clock is asynchronous to its
master. Valid values for this property are as follows:

off: In this mode, every generated SDC clock is treated as being synchronous to its master SDC clock.

clock_false_path: In this mode, only clock/clock set_false_path and set_clock_group assertions are considered.

Valid values: off clock_false_path

Default: off

This global property does not use additional arguments.

timing_connectivity_based_skew_groups_balance_master_clocks

This property has no effect if timing_connectivity_based_skew_groups is set to 'off'. With timing connectivity based skew
groups enabled, this property controls how CCOpt will address the synchrony of disjoint (i.e. non-overlapping) master (i.e. non-
generated) SDC clocks.

When this property is set to false, all disjoint master clocks are assumed to be mutually asynchronous. The skew groups
generated by create_ccopt_clock_tree_spec will not constrain the sinks of two such clocks to be balanced together.

When this property is set to true, the synchrony of disjoint master clocks is determined by consulting the SDC assertions in
accordance with the value of property timing_connectivity_based_skew_groups. Additional skew groups will be generated by
create_ccopt_clock_tree_spec, such that the sinks of each pair of synchronous disjoint master clocks
will be balanced together by CTS.

Valid values true false

Default: false

This global property does not use additional arguments.

timing_connectivity_info

This property is populated by clock spec creation when timing connectivity based skew groups are enabled. Configuration of this
property will be written to the generated spec. It documents the clock/clock balancing relationships that were determined for the
production of timing connectivity based skew groups. This property is documenting only.

If timing connectivity based skew groups are not enabled, this property is not populated by spec creation.

The value of the property is a set of nested Tcl dictionaries, four levels in total. The top-level dictionary indicates the
information category. Currently there is only one such category: 'clock_relationships'. The
second level is keyed on constrained mode name; the lowest level dictionaries are both keyed on SDC clock name. These keys
taken together identify two SDC clocks in a given constraint mode. The leaf value specifies the resolved balancing relationships
between the two SDC clocks. It an enum with the following members:

September 2022 1750 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/create_ccopt_clock_tree_spec.html

direct - The two clocks are determined to belong to the same clock group and must be balanced together.

indirect - The two clocks do not belong to the same clock group; however by transitive closure they must balance together.

Clocks in a direct or indirect balancing relationship will share one or more skew groups so as to ensure that their sinks are
balanced together by CTS.

Missing entries should be taken as 'need not balance'; i.e. the pair of SDC clocks have neither a direct nor indirect balancing
relationship.

The indirect balancing relationship can be explored in more detail using this same Tcl dictionary to probe out the transitive closure
over the direct balancing relationships that link two indirect balance clocks together. For example if clock A directly balances with
clock B only, and clock B directly balances with clock C only; then clock A indirectly balances with clock C.

Below is an example dict value, corresponding to clock groups {clkA clkB} {clkB clkC} in constraint mode cm1, and clock groups
{clkP clkQ} {clkR clkS} in constraint mode cm2.

{clock_relationships \

 {cm1 {clkA {clkB direct clkC indirect} \

 clkB {clkA direct clkC direct} \

 clkC {clkA indirect clkB direct}} \

 cm2 {clkP {clkQ direct} \

 clkQ {clkP direct} \

 clkR {clkS direct} \

 clkS {clkR direct}}}}

Notice that although they are in separate clock groups, clkA and clkC nevertheless indirectly balance. This is due to fact that clkB
is present in both clock groups. Note also that we omit information about the relationship between clkP and clkS: they are 'need
not balance'.

Default: {}

This global property does not use additional arguments.

top_buffer_cells

Specifies the buffers cells available for CTS to use on top nets. If none are specified, CCOpt will use the same buffers as on trunk
nets - as specified in the buffer_cells property. Cell names may be specified as a Tcl list of names, or as a Tcl list of patterns to
be expanded to match names. If set explicitly, CCOpt will ignore any don't use settings for the specified cells.

Different top buffer cells may be specified for any combination of clock tree and power domain.

Valid values: a list of library cell names, or a list of patterns to expand to library cell names

Default: {}

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

top_inverter_cells

Specifies the inverter cells available for CTS to use on top nets. If none are specified, CCOpt will use the same inverters as on
trunk nets - as specified in the inverter_cells property. Cell names may be specified as a Tcl list of names, or as a Tcl list of
patterns to be expanded to match names.If set explicitly, CCOpt will ignore any don't use settings for the cells specified.

Different top inverter cells may be specified for any combination of clock tree and power domain.

Valid values: a list of library cell names, or a list of patterns to expand to library cell names

Default: {}

September 2022 1751 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Optional applicable arguments: "-clock_tree <name>" and "-power_domain <name>".

trace_bidi_as_input

Trace bi-directional pins as input pins during create_ccopt_clock_tree_spec.

Valid values: true false

Default: true

This global property does not use additional arguments.

trace_through_to

Clock tree definition will, by default, not continue through certain types of cell arc (for instance, the clock to Q arc in a DFF). This
property allows you to override the default behavior by specifying the output pin to which the clock tree should propagate, when it
arrives at a given input pin. The specified output pin must be another pin on the same instance as the given input pin.

The output pin may be specified either by its fully qualified name (i.e. inclusive of the instance name), or else simply by its local
(cell-relative) name.

Note: If both trace_through_to and library_trace_through_to are applicable at a given netlist instance pin, the
trace_through_to value takes precedence.

Valid values: pin

Default: {}

Applicable arguments: "-pin <name>". Required: "-pin <name>".

transitive_fanout

The number of clock sinks in the transitive fanout of the pin, within the clock tree. Requesting this property for a pin not in the clock
tree will result in an error.

Valid values: int

Read-only: This property cannot be modified by set_ccopt_property or unset_ccopt_property.

Applicable arguments: "-pin <name>". Required: "-pin <name>".

trunk_cell

The library cell to use inside the H-tree.

Valid values: string
Default: {}

Optional applicable arguments: "-flexible_htree <name>".

trunk_override

Prefer trunk routing rules for this pin. Only applies to clock tree sinks.

Valid values: true false

September 2022 1752 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

../innovusTCR/set_ccopt_property.html
../innovusTCR/unset_ccopt_property.html

Default: false

Applicable arguments: "-pin <name>". Required: "-pin <name>".

update_io_latency

Determine whether to update IO latencies within ccopt_design.

Valid values: true false

Default: true

This global property does not use additional arguments.

use_estimated_routes_during_final_implementation

Use route estimates, instead of NanoRoute during the final implementation clock routing phase.

Valid values: true or false

Default: false

This global property does not use additional arguments.

use_inverters

Specifies whether clock tree synthesis should prefer to use inverters rather than buffers when balancing the clock tree. If set to true,
CTS will use inverters for the clock tree balancing process. If set to false, CTS will use the minimum number of levels of inverters
required to maintain logical correctness. If set to auto (the default) CTS will use what it considers to be the best combination of
buffers and inverters to get optimal quality of results.

Valid values: auto true false

Default: auto

Optional applicable arguments: "-clock_tree <name>".

use_receiver_model_capacitance_for_drv

When this property is set to auto, CCOpt will use receiver model capacitance for drv if global variable,
timing_report_use_receiver_model_capacitance is true. When set to true, CCOpt will use receiver model capacitance for drv even
if timing_report_use_receiver_model_capacitance is false.

By default, this property is set to false, which means that CCOpt will not use receiver model capacitance for drv.

Valid values: auto true false

Default: false

This global property does not use additional arguments.

use_macro_model_pin_cap_only

This property is for translating the Macro Model capacitance constraint from FE-CTS spec format Macro Model constraints to
CCOpt. The default is false, implying that the Macro Model pin capacitance will be added to the library pin capacitance. If the
property is set to true only the Macro Model pin capacitance will be used.

September 2022 1753 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Type: boolean

Default: false

This global property does not use additional arguments.

useful_skew_implementation_cache_hold_slacks

If set, CCOpt will gather hold slacks for constructing implementation slack windows. Setting this to true will temporarily switch to
the hold analysis mode and gather hold slacks for the purposes of building implementation slack windows that factor in a
contribution from the hold views. This incurs extra timing updates.

Valid values: true false

Default: true

This global property does not use additional arguments.

useful_skew_clock_gate_movement_limit

Each clock gate is restricted to a Manhattan ball centered on its original location with CCOpt flow. The radius of the ball is a
multiple of the clock gate height. This controls the default value of that multiple.

Default: 10

This global property does not use additional arguments.

useful_skew_max_delta

The maximum delta for useful skew.

Type: real

Default: 1000

This global property does not use additional arguments.

useful_skew_min_delta

The minimum non-zero delta which useful skew will apply.

Valid values: double | auto

Default: auto

This global property does not use additional arguments.

useful_skew_post_implement_db

Filename to save design state to after useful skew implementation.

Type: file

Default: {}

This global property does not use additional arguments.

September 2022 1754 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

useful_skew_pre_implement_db

Filename to save design state to prior to useful skew implementation.

Type: file

Default: {}

This global property does not use additional arguments.

virtual_delay

The amount of virtual delay that has been applied under this pin.

Valid values: double

Default: 0

Applicable arguments: "-delay_corner <name>", "-pin <name>", "-early", "-late", "-rise" and "-fall". Required: "-pin <name>".

September 2022 1755 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CCOpt Properties

Creating the ICT File
The first step involved in modeling the parasitic interconnect capacitance and resistance of your design is to specify the fabrication
process information in an Interconnect technology (ICT) file by using the syntax defined in this section. You can use any text editor
to enter this information.

Note: Although there are no file-naming restrictions for ICT files, you should name your ICT file by using the process name with
the .ict file extension, as follows:

process_name.ict (ICT file)

Fabrication process information consists of the following requirements:

Minimum spacing and minimum width of the conductors as specified in the design rules for the conductor layers

Thicknesses of the conductor layers

Heights of the conductor layers above the substrate (measuring height from the field) or as a delta from a previously defined
lower-level conductor layer

Resistivities of the conductor layers

Interlayer planar dielectric constant, its height above the substrate (measuring height above the field), and its thickness

Names of the top conductor layer of a via, the bottom conductor or diffusion layer of the via, and the contact resistance of the
via

Names of the wells

The following sections below describe the syntax and format of the ICT file containing the process information for your design.

For more information on generating the ICT files, see the Quantus Techgen Reference manual.

Format
Lines in the ICT file are in the following general format:

command name {argument_list}

where argument_list is a list of field-value pairs. The fields in this syntax are separated by white space. ViewICT, IceCaps, and
RCgen ignore blank lines.

Note: A backslash (\) is generally required for line continuation, but it is not required if you are using braces ({}) to define a list.

Data
All data entered into the ICT file should be the actual physical fabrication process information, not the drawn data.

Comments
A pound-sign character (#) at the beginning of a line indicates text that ViewICT, IceCaps, and RCgen are treated as comments.

Case Sensitivity
All keywords in the ICT file are case-insensitive. However, the arguments are case-sensitive. Keywords consist of all command
and field names.

September 2022 1756 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

Warnings and Errors
The ViewICT utility displays all errors, warnings, and informational messages on screen and writes them in a log file. Warnings
and errors include the corresponding line number.

Invalid Layer Names
The "NX" string is an invalid layer name.

ICT File Commands

Sample ICT File

ICT File Commands
This topic describes the commands available in the ICT file. All command fields are enclosed in braces ({}).

Process

Well

Conductor

Dielectric

Passivation

Via

Process
The process command specifies the background dielectric constant. Use it only once in the ICT file.

Syntax

process name {background_dielectric_constant value}

or

 process name {

 background_dielectric_constant value

}

This syntax contains the following parameters:

name
Specifies the name of the process.

background_dielectric_constant value
Specifies the dielectric constant for the region above the top passivation layer or last dielectric layer. This field is required.

September 2022 1757 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

Example

process "Process_Example" {

 background_dielectric_constant 1.0

}

Well
The well command which defines the well layers is an optional command that you can use to differentiate capacitance to a well
from capacitance to the substrate.

Syntax

well name { }

name specifies the name of the well layer.

Anything placed in the brackets is ignored.

Example

well nwell { }

well pwell { }

Conductor
The conductor command defines conductor layers.

You can specify the height of a conductor layer in three ways:

Height (absolute)

Delta height (relative)

Upto (maximum top down)

You can use more than one of these methods per conductor definition, as long as the numbers are valid.

All measurements are in microns, unless otherwise specified.

Syntax

conductor name {field1 value1 ... fieldN valueN}

or

conductor name {

 field1 value1

 ...

 fieldN valueN

September 2022 1758 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

}

You can specify the field-value pairs in any order.

This syntax contains the following parameters:

name
Specifies the name of the conductor layer.

min_spacing value
Specifies the minimum spacing permitted by the technology between two conductors (wires) on a layer.

min_width value
Specifies the minimum width of a conductor.

height value
Specifies the layer's height above the substrate.

delta_height value
Specifies the layer's height relative to the top of another layer. This parameter must be used with delta_layer.

delta_layer layer_name
Specifies the reference layer for delta_height. It must be a layer that has already been defined. The reference layer must be
a conducting layer, a dielectric layer, or a passivation layer. This parameter must be used with delta_height.

thickness value
Specifies the layer's thickness.

upto value
Specifies the layer's top surface height above the substrate. This value is equal to the height plus the thickness. You only
need to specify two of the three or four parameters (height, {delta_height, delta_layer}, thickness, upto) to complete the
geometrical definition of a conductor layer.

resistivity value|[value width]+
Specifies the layer's sheet resistance, in ohms per square. You can enter the resistivity value as a constant, or you can enter
value-width pairs as a piecewise linear function. You may want to use the value-width pairs to account for width-dependent
resistivity.

If you enter value-width pairs, the syntax is as follows:
resistivity value1 width1 value2 width2 ... valuen widthn
If the width of the wire is less than the minimum width, width1, use the minimum value, value1. If the width of the wire is
greater than the maximum width, widthn, use the maximum value, valuen. For widths between value-width pairs, the
resistivity value through linear interpolation.

Note: The width in the value-width pair refers to the silicon width of the wire.

rho

 rho_widths W1 ... Wn

 rho_spacings S1 ... Sm

 rho_values R11 R1n

....

Rm1 ... Rmn
This parameter is for specifying resistivity as a function of both width and spacing. For values that fall between
specified points, linear interpolation is applied. When values are outside of the boundary values, it uses the boundary

September 2022 1759 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

values.

gate_forming_layer [true|false]
Specifies that this layer forms the gate. The polycide or polysilicon layer is a typical gate-forming conducting layer.

field_poly_diffusion_spacing value
Specifies the lateral spacing between field polycide and diffusion for transistor-level parasitic extraction. There is no lateral
separation between gate polycide and diffusion.

PnR_widths [value]+, PnR_spacings [value]+
Allows you to provide design widths and spacings used in the layout to the technology file generation program. These are
not necessary for accurate extraction of parasitics if the design widths and spacings are within small perturbations of the
minimum process widths and spacings. However, if the design widths and spacings are routinely different from the specified
process parameters, it is recommended that you provide these values to the technology file generator.

capacitor_only_layer_to layer_name
Specifies that the current layer be used solely to create high capacitance values in the design and that it is located a few
angstroms above or below the layer_name layer. Layers having the capacitor_only_layer_to keyword set are not extracted.

wire_top_enlargement_c Etop

wire_top_enlargement_r Etop

Specifies the enlargement, either positive or negative, of the top edge of the wire. Specify values for both R and C to account
for different bias values for R and C. See Figure 1 below.

wire_bottom_enlargement_c Ebottom

wire_bottom_enlargement_r Ebottom

Specifies the enlargement, either positive or negative, of the bottom edge of the wire. Specify values for both R and C to
account for different bias values for R and C. See the figure below.

Figure 1: Trapezoidal Wire Shape Resulting from Manufacturing Processes

wire_edge_enlargement | wire_edge_enlargement_[r|c]

wee_widths W1 ... Wn

wee_spacings S1 ... Sm

wee_adjustments E11 ... E1n

 .

 .

 .

September 2022 1760 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

 Em1 ... Emn

Models the effect of wire-edge enlargement, if the wire_edge_enlargement, wee_width, wee_spacings, and wee_adjustments
keywords are specified. The wee_adjustments table describes the amount of enlargement applied when certain spacings
and widths are observed. For example, the wire is enlarged by Eij for spacing Si and width Wj. Positive enlargements

oversize and negative enlargement undersize the wire. A piecewise constant interpolation is used to obtain enlargements for
intermediate spacings and widths. For width/spacings outside of the boundary width/spacing points, the boundary values are
used.

Wire_edge_enlargement_r and wire_edge_enlargement_c can be used if one wants to specify different values for resistance
and capacitance.

wee_widths W1 ... Wn

Specifies the widths of the wires in the design. Typically, variation is only seen for widths less than 1.5 microns.

wee_spacings S1 ... Sm

Specifies the spacings of the wires in the design. Typically, variation is only seen for spacings less than 1.5 microns.

wee_adjustments E11...E1n ... Em1...Emn

Specifies the enlargement, either positive or negative, of the wire edge.

See Wire-Width Values for information on the wire-width values to use.

Required Conductor Command Fields

The required fields in this syntax are min_spacing, min_width, resistivity, gate_forming_layer, min_net_fill_spacing,
X_fill_fill_spacing, Y_fill_fill_spacing, unit_fill_region, and two of the following three parameters:

height (or delta_height and delta_layer)

thickness

upto

The figure below illustrates these parameters.

Figure 2: Geometric Fields in a Conducting Layer

September 2022 1761 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

Wire-Width Values
You can use the wire_edge_enlargement statement with the wire_top_enlargement statement or the wire_bottom_enlargement
statement, or both in the ICT file. If you use the wire_edge_enlargement statement with either or both of these statements, the width
of the wires defined by wee_widths must be biased as follows:

drawn_width + ((top + bottom) / 2)

When calculating resistivity as a function of width, you must use the wire_top_enlargement and wire_bottom_enlargement values
to correct the resistance-width pairs. If a table of wire-edge enlargement values is available, the RC extractor uses the wire widths
in the table, which always include biasing and wire-edge enlargement. If this table is not available, the resistance is calculated as
follows:

rho* L / (drawn_width + (top + bottom) / 2 + (top + bottom) / 2)

where rho is the sheet resistivity.

Wire-width values are used in the following order:

1. Drawn width

2. Biased width

3. Edge-enlarged width

4. Resistivity as a function of width

The figure below illustrates the defining of the conductor layer.

Figure 3: Example Conductor Definition

Example File for Conductor Definition

conductor "POLYCIDE" {

 min_spacing 0.25

 min_width 0.16

 height 0.35

 upto 0.55

 resistivity 8.6

 gate_forming_layer true

}

conductor "M1" {

 min_spacing 0.30

September 2022 1762 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

 min_width 0.30

 delta_layer POLYCIDE

 delta_height 0.30

 thickness 0.25

 resistivity 8.0

 gate_forming_layer false

 wire_top_enlargement 0.01

 wire_bottom_enlargement -0.01

 wire_edge_enlargement {

 wee_widths 0.18 0.00 0.26 0.30 0.34

 wee_spacings 0.18 0.00 0.26 0.30 0.34 0.38

 wee_adjustments 0.00 0.00 -0.10 -0.10 -0.20

 0.00 0.00 0.00 -0.10 -0.20

 0.10 0.00 0.00 0.00 -0.10

 0.10 0.10 0.00 0.00 0.00

 0.20 0.20 0.10 0.00 0.00

 0.30 0.20 0.20 0.10 0.00

 }

}

Dielectric
The dielectric command defines dielectric layers.

All measurements are in microns unless otherwise specified.

Syntax

dielectric name {conformal value field1 value1 ... fieldN valueN}

or

dielectricname{

 conformalvalue

 field1 value1

 ...

 fieldN valueN

}

You can specify the field-value pairs in any order.

September 2022 1763 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

The syntax for planar dielectrics contains the following parameters:

name
Specifies the name of the dielectric layer.

conformal false
Specifies that the dielectric is planar. This field is required.

height value
Specifies the layer's height above the substrate.

thickness value
Specifies the layer's thickness.

dielectric_constant value
Specifies the dielectric constant for this material.

delta_height value
Specifies the layer's height relative to the top of another layer.

delta_layer layer_name
Specifies the reference layer for delta_height. It must be a layer that has already been defined. A reference layer can be a
conducting layer or a dielectric layer.

upto value
Specifies the layer's top surface height above the substrate. This value is equal to the height plus the thickness. You only
need to specify two of the three parameters (height (or {delta_height, delta_layer}), thickness, upto) to complete the
geometrical definition of a dielectric layer.

The required fields in the specification for planar dielectrics are conformal, dielectric_constant, and two of the following three
parameters:

height (or {delta_height and delta_layer})

thickness

upto

The figure below illustrates the planar dielectric syntax.

Figure 4: Planar Dielectric Syntax

Passivation
The passivation command defines passivation layers. The passivation layers are usually placed on top of the last metal layer and
should be placed higher than the dielectric layers.

September 2022 1764 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

Syntax

The syntax of this command is the same as that of the dielectric command, except that name specifies the name of the
passivation layer. See the "Dielectric" section for information on this syntax. The passivation layers are usually placed on top of
the last metal layer and should be placed higher than the dielectric layers.

The figure below illustrates the defining of the passivation layer.

Figure 5: Passivation Syntax

Example

passivation "NonuniformConformalPass1" {

 conformal TRUE

 expandedFrom METAL_6

 height 7.70

 thickness 0.30

 topThickness 0.20

 sideExpand 0.20

 dielectric_constant 5.70

}

Via
The via command defines vias or contacts.

Syntax

via name {top_layer value bottom_layer value contact_resistance value}

This syntax contains the following parameters:

top_layer value
Specifies the name of the top conductor.

bottom_layer value
Specifies the name of the bottom conductor or diffusion layer.

contact_resistance value
Specifies the contact resistance of the via, in ohms.

September 2022 1765 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

Example

via "V A1" {

 top_layer METAL_2

 bottom_layer METAL_1

 contact_resistance 7.9

}

Following is a sample specification of a local interconnect via layer. The name of the conductor and the name of the via are the
same.

conductor "LI" {

 min_spacing 0.3

 min_width 0.35

 height 0.55

 thickness 0.60

 resistivity 0.40

 gate_forming_layer FALSE

}

via "LI" {

 top_layer LI

 bottom_layer POLYCIDE

 contact_resistance 2.000

}

Note: Local interconnect is a layer, usually thicker than the polysilicon layer, that can be deposited after polysilicon and can
connect to source-drain regions on the polysilicon layer.

Sample ICT File
A sample ICT file is provided below.

#

Copyright (c) 2003 Cadence Design Systems, Inc.

#

###

Process declaration.

###

process "DIFFERENT_KINDS_OF_DIELECTRIC" {

 background_dielectric_constant 1.0

}

###

Well declarations.

September 2022 1766 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

###

well nwell {}

well pwell {}

###

Diffusion declarations.

###

diffusion "N_SOURCE_DRAIN" {

Tox is (height of POLYCIDE - thickness of diffusion) = (0.35 - 0.3455) = 0.0045um

 thickness 0.3455

 resistivity 7.7

}

diffusion "P_SOURCE_DRAIN" {

 thickness 0.3455

 resistivity 8.3

}

###

Conducting layer declarations.

###

conductor "POLYCIDE" {

 min_spacing 0.25

 min_width 0.16

 height 0.35

 thickness 0.20

 resistivity 8.6

 gate_forming_layer true

}

conductor "METAL_1" {

 min_spacing 0.23

 min_width 0.23

 height 1.05

 thickness 0.53

 resistivity 0.086

 gate_forming_layer false

}

conductor "METAL_2" {

 min_spacing 0.28

 min_width 0.28

September 2022 1767 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

 height 2.38

 thickness 0.53

 resistivity 0.086

The key words TRUE and FALSE are not case sensitive.

 gate_forming_layer FALSE

}

conductor "METAL_3" {

 min_spacing 0.28

 min_width 0.28

 height 3.71

 thickness 0.53

 resistivity 0.086

 gate_forming_layer false

}

conductor "METAL_4" {

 min_spacing 0.28

 min_width 0.28

delta_height + delta_layer is an alternative to height.

 delta_height 0.80

 delta_layer METAL_3

"height" is then redundant but it's okay to specify.

height 5.04

 thickness 0.53

 resistivity 0.086

 gate_forming_layer false

}

conductor "METAL_5" {

 min_spacing 0.28

 min_width 0.28

 height 6.37

 thickness 0.53

 resistivity 0.086

 gate_forming_layer false

}

conductor "METAL_6" {

 min_spacing 0.46

 min_width 0.44

September 2022 1768 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

 height 7.70

 thickness 0.99

 resistivity 0.035

 gate_forming_layer false

}

###

Dielectric and passivation layer declarations.

###

###

Base dielectric from substrate...

###

dielectric "First_dielectric" {

Starts at height zero.

 conformal FALSE

 height 0.00

 thickness 0.35

 dielectric_constant 3.90

}

Simple planar dielectric starts at the bottom of POLYCIDE

and ends at 1.08um which is 0.03um above the bottom of M1.

dielectric "SimplePlanar1" {

Starts at height of Poly

 conformal FALSE

 height 0.35

 thickness 0.73

 dielectric_constant 4.00

}

###

M1 level...

###

Now a planar intra-metal (M1) dielectric starts 0.03um above from the

bottom of M1.

dielectric "PlanarIntraMetal1" {

 conformal FALSE

#

Starts at height of M1

 height 1.08

September 2022 1769 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

Laterally intersect with M1

 thickness 0.03

 dielectric_constant 7.00

}

The second intra-metal dielectric across M1

and on top of "PlanarIntraMetal1".

dielectric "PlanarIntraMetal2" {

Yet another intra-metal planar dielectric layer.

 conformal FALSE

 height 1.11

 upto 1.15

OR

thickness 0.04

 dielectric_constant 3.00

}

A conformal dielectric.

When specifying a conformal dielectric (whether it is uniform or

non-uniform, we must use "conformal TRUE", "expandedFrom", "sideExpand",

and "topThickness" together.

#

1. "conformal" must be set to TRUE.

2. "expandedFrom" can be a metal layer or a dielectric/passivation layer.

The conformal dielectric layer must be expanded from its immediate

lower (metal/dielectric/passivation) layer. It cannot be expanded

from a planar dielectric layer.

3. "thickness" is the bottom dielectric thickness.

4. "sideExpand" specifies the side thickness.

5. "topThickness" is the thickness of the dielectric above the

top of the "expandedFrom" layer.

dielectric "conformalAtTopOFM1" {

Conformal above M1

 conformal TRUE

 expandedFrom METAL_1

and starts from the top of "PlanarIntraMetal2"

 height 1.15

Base/Bottom thickness of the conformal dielectric.

 thickness 0.43

September 2022 1770 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

The thickness of the dielectric above the "expandedFrom" object, i.e. M1.

 topThickness 0.43

This is the side thickness of the dielectric.

 sideExpand 0.43

 dielectric_constant 4.10

}

dielectric "SimplePlanar2" {

From top of M1 to bottom of M2

 conformal FALSE

 height 1.58

 thickness 0.80

 dielectric_constant 4.00

}

###

M2 level...

###

An uniform conformal dielectric starting from the bottom of M2.

dielectric "UniformConformal1" {

 conformal TRUE

 expandedFrom METAL_2

Height of M2

 delta_height 0.00

 delta_layer SimplePlanar2

height 2.38

 thickness 0.50

 topThickness 0.50

 sideExpand 0.50

 dielectric_constant 3.00

}

A nonuniform conformal dielectric is one when any one of "thickness",

"sideExpand", and "topThickness" are different.

dielectric "NonuniformConformal1" {

 conformal TRUE

 height 2.88

 thickness 0.10

 expandedFrom UniformConformal1

 sideExpand 0.03

September 2022 1771 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

 topThickness 0.05

 dielectric_constant 7.00

}

dielectric "SimplePlanar3" {

 conformal FALSE

 height 2.98

 thickness 0.73

 dielectric_constant 4.10

}

###

M3 level...

###

A special case of conformal dielectric.

dielectric "NonuniformConformal2" {

Humps over M3 with side and top thicknesses equal to 0.17 um and 0.50 um, respectively.

 conformal TRUE

 expandedFrom METAL_3

 height 3.71

Note that the bottom thickness is thicker than M3!

 thickness 0.90

 topThickness 0.50

 sideExpand 0.17

 dielectric_constant 4.10

}

dielectric "SimplePlanar5" {

 conformal FALSE

 height 4.61

Upto the bottom of M4.

 upto 5.04

 dielectric_constant 3.00

}

###

M4 level...

###

dielectric "NonuniformConformal3" {

 conformal TRUE

 expandedFrom METAL_4

September 2022 1772 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

Height of M4

 height 5.04

 thickness 0.30

 topThickness 0.30

 sideExpand 0.10

Special case. See SimplePlanar6.

 dielectric_constant 4.10

}

dielectric "PlanarIntraMetal3" {

Planar intrametal dielectric.

 conformal FALSE

 height 5.34

 upto 5.44

 dielectric_constant 3.10

}

dielectric "PlanarIntraMetal4" {

Top off the top of NonuniformConformal3.

 height 5.44

 upto 5.87

 dielectric_constant 3.00

}

dielectric "SimplePlanar6" {

 conformal FALSE

 height 5.87

Upto the bottom of M5.

 upto 6.37

NOTE that it has the same dielectric constant as NonuniformConformal3.

This makes "NonuniformConformal3" a special case.

 dielectric_constant 4.10

}

###

M5 level...

###

dielectric "UniformConformal3" {

 conformal TRUE

 expandedFrom METAL_5

 height 6.37

September 2022 1773 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

 thickness 0.10

 topThickness 0.10

 sideExpand 0.10

 dielectric_constant 7.20

}

dielectric "PlanarIntraMetal5" {

Special planar dielectric which intersects "UniformConformal3"

 conformal FALSE

 height 6.47

 thickness 0.40

 dielectric_constant 3.00

}

dielectric "PlanarIntraMetal6" {

Another special planar dielectric which intersects "UniformConformal3"

 conformal FALSE

 height 6.87

 thickness 0.10

 dielectric_constant 4.00

}

dielectric "PlanarIntraMetal7" {

Yet another special planar dielectric which intersects "UniformConformal3"

 conformal FALSE

 height 6.97

 thickness 0.03

 dielectric_constant 7.00

}

###

passivation "PlanarPass1" {

From top of M5 to bottom of M6.

 conformal FALSE

 height 7.00

 thickness 0.70

 dielectric_constant 4.00

}

###

M6 level...

###

September 2022 1774 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

passivation "NonuniformConformalPass1" {

 conformal TRUE

 expandedFrom METAL_6

 height 7.70

 thickness 0.30

 topThickness 0.20

 sideExpand 0.20

 dielectric_constant 5.70

}

passivation "PlanarPass2" {

 conformal FALSE

 height 8.00

 upto 8.89

 dielectric_constant 4.30

}

###

passivation "PlanarPass3" {

 conformal FALSE

 height 8.89

 thickness 1.00

 dielectric_constant 3.00

}

###

Contacts and Via declarations.

###

via "CONT" {

 top_layer METAL_1

 bottom_layer POLYCIDE

 contact_resistance 7.8

}

via "CONT" {

 top_layer METAL_1

 bottom_layer N_SOURCE_DRAIN

 contact_resistance 11

}

via "CONT" {

 top_layer METAL_1

September 2022 1775 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Creating the ICT File

 bottom_layer P_SOURCE_DRAIN

 contact_resistance 10

}

via "VA1" {

 top_layer METAL_2

 bottom_layer METAL_1

 contact_resistance 7.9

}

via "VA2" {

 top_layer METAL_3

 bottom_layer METAL_2

 contact_resistance 8.2

}

via "VA3" {

 top_layer METAL_4

 bottom_layer METAL_3

 contact_resistance 8.1

}

via "VA4" {

 top_layer METAL_5

 bottom_layer METAL_4

 contact_resistance 8.0

}

via "VA5" {

 top_layer METAL_6

 bottom_layer METAL_5

 contact_resistance 4.0

}

Related Information

Creating the ICT File

Supported CPF 1.0 Commands
Note: The following commands are supported unless otherwise noted.

Command Name Option Notes

September 2022 1776 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0 Commands

N/A = not available in
this release

create_analysis_view

-name

-mode

-domain_corners

create_bias_net

-net

-driver N/A

-user_attributes Accessible by
getCPFUserAttr

-peak_ir_drop_limit N/A

-average_ir_drop_limit N/A

create_global_connection

-net

-pins

-domain

-instances

create_ground_nets

-nets

-voltage N/A

-internal N/A

-user_attributes Accessible by
getCPFUserAttr

-peak_ir_drop_limit N/A

-average_ir_drop_limit N/A

create_isolation_rule

-name

-isolation_condition

-pins

-from

-to

September 2022 1777 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0 Commands

-isolation_target N/A

-isolation_output

-exclude

create_level_shifter_rule

-name

-pins

-from

-to

-exclude

create_mode_transition N/A

-start_condition

create_nominal_condition

-name

-voltage

-pmos_bias_voltage N/A

-nmos_bias_voltage N/A

create_operating_corner

-name

-voltage

-process

-temperature

-library_set

create_power_domain

-name

-default

-instances

-boundary_ports

-shutoff_condition

-default_restore_edge

-default_save_edge

-power_up_states N/A

September 2022 1778 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0 Commands

create_power_mode

-name

-domain_conditions

-default

create_power_nets

-nets

-voltage

-external_shutoff_condition

-internal

-user_attributes Accessible by
getCPFUserAttr

-peak_ir_drop_limit N/A

-average_ir_drop_limit N/A

create_power_switch_rule

-name

-domain

-external_power_net

-external_ground_net

create_state_retention_rule

-name

-domain

-instances

-restore_edge

-save_edge

define_always_on_cell -cells

-power_switchable

-power

-ground_switchable

-ground

define_isolation_cell

-cells

-library_set

September 2022 1779 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0 Commands

-always_on_pin

-power_switchable

-ground_switchable

-power

-ground

-valid_location

-non_dedicated N/A

-enable

define_level_shifter_cell

-cells

-library_set

-always_on_pin N/A

-input_voltage_range

-output_volage_range

-direction

-output_voltage_input_pin N/A

-input_power_pin

-output_power_pin

-ground

-valid_location

define_open_source_input_pin

-cells

-pin

-library_set

define_power_clamp_cell N/A

-cells

-data

-ground

library_set

-power

define_power_switch_cell

September 2022 1780 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0 Commands

-cells

-library_set

-stage_1_enable

-stage_1_output

-stage_2_enable

-stage_2_output

-type

-power_switchable

-power

-ground

-ground_switchable

-on_resistance Accessible by
::CPF::getCpfPsoCell

-
stage_1_saturation_current

Accessible by
::CPF::getCpfPsoCell

-
stage_2_saturation_current

Accessible by
::CPF::getCpfPsoCell

-leakage_current Accessible by
::CPF::getCpfPsoCell

define_state_retention_cell

-cells

-library_set

-always_on_pin N/A

-clock_pin N/A

-restore_function

-restore_check N/A

-save_function

-save_check N/A

-power_switchable

-ground_switchable

-power

-ground

define_library_set

September 2022 1781 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0 Commands

-name

-libraries

end_design

identify_always_on_driver N/A

identify_power_logic

-type

-instances

set_array_naming_style

set_cpf_version

set_design

-ports

module

set_hierarchy_separator

set_instance

-port_mapping

-merge_default_domains

hier_instance

set_power_target N/A

set_power_unit N/A

set_register_naming_style

set_switching_activity

-all

-pins

-instances

-hierarchical

-probability

-toggle_rate

-clock_pins N/A

-toggle_percentage N/A

-mode N/A

set_time_unit

September 2022 1782 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0 Commands

update_isolation_rules

-names `

-location

-cells

-library_set

-prefix

-combine_level_shifting N/A

-open_source_pins_only

update_level_shifter_rules

-names

-location

-cells

-library_set

-prefix

update_nominal_condition

-name

-library_set

update_power_domain

-name

-internal_power_net

-internal_ground_net

-min_power_up_time N/A

-max_power_up_time N/A

-pmos_bias_net N/A

-nmos_bias_net N/A

-user_attributes Accessible by
::CPF::getCpfUserAttr

-rail_mapping N/A

-library_set

update_power_mode

-name

September 2022 1783 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0 Commands

CPF 1.0 Script Example
The following section contains an example of the CPF 1.0 file using a sample design and library.

For list of supported CPF commands and options within Innovus product family, see "Supported CPF 1.0 Commands".

set_cpf_version 1.0

##

#

-activity_file N/A

-activity_file_weight N/A

-sdc_files

-peak_ir_drop_limit N/A

-average_ir_dropt_limit N/A

-leakage_power_limit N/A

-dynamic_power_limit N/A

update_power_switch_rule

-name

-enable_condition_1

-enable_condition_2

-acknowledge_receiver

-cells

-library_set

-prefix

-peak_ir_drop_limit Accessible by
::CPF::getCpfUserAttr

-average_ir_drop_limit Accessible by
::CPF::getCpfUserAttr

update_state_retention_rules

-name

-cell_type

-cell

-library_set

September 2022 1784 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

Technology portion of the CPF:

Defining the special cells for low-power designs

#

##

################################

High-to-Low level shifters

################################

define_level_shifter_cell -cells LVLH2L* \

-input_voltage_range 0.8:1.0:0.1 \

-output_voltage_range 0.8:1.0:0.1 \

-direction down \

-output_power_pin VDD \

-ground VSS \

-valid_location to

##

Always-on High-to-low level shifters

##

define_level_shifter_cell -cells AOLVLH2L* \

-input_voltage_range 0.8:1.0:0.1 \

-output_voltage_range 0.8:1.0:0.1 \

-direction down \

-output_power_pin TVDD \

-ground VSS \

-valid_location to

################################

Low-to-High Level Shifters

################################

define_level_shifter_cell -cells LVLL2H* \

-input_voltage_range 0.8:1.0:0.1 \

-output_voltage_range 0.8:1.0:0.1 \

-input_power_pin VDDI \

September 2022 1785 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

-output_power_pin VDD \

-direction up \

-ground VSS \

-valid_location to

##

Low-to-High level shifting plus isolation combo cells

##

define_level_shifter_cell -cells LVLCIL2H* \

-input_voltage_range 0.8:1.0:0.1 \

-output_voltage_range 0.8:1.0:0.1 \

-output_voltage_input_pin ISO \

-input_power_pin VDDI \

-output_power_pin VDD \

-direction up \

-ground VSS \

-valid_location to

####################

Isolation cells

####################

define_isolation_cell -cells LVLCIL2H* \

-power VDD \

-ground VSS \

-enable ISO \

-valid_location to

#################################

Power switch cells: headers

#################################

define_power_switch_cell -cells {HEADERHVT HEADERAOPHVT} \

-power_switchable VDD -power TVDD \

-stage_1_enable !ISOIN1 \

-stage_1_output ISOOUT1 \

-stage_2_enable !ISOIN2 \

September 2022 1786 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

-stage_2_output ISOOUT2 \

-type header

#################

SRPG cells

#################

define_state_retention_cell -cells { SRPG2Y } \

-clock_pin CLK \

-power TVDD \

-power_switchable VDD \

-ground VSS \

-save_function "SAVE" \

-restore_function "!NRESTORE"

##

Always-on cells: buffers and level shifters

##

define_always_on_cell -cells {AOBUFF2Y AOLVLH2L*} \

-power_switchable VDD -power TVDD -ground VSS

###

#

Design part of the CPF

#

###

set_design top

set_hierarchy_separator "/"

set constraintDir ../CONSTRAINTS

set libdir ../LIBS

##

create the power and ground nets in this design

September 2022 1787 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

##

VDD will connect the power follow-pin of the instances in the always-on

#power domain

VDD_core_SW will connect the power follow-pin of the instances in the

#switchable power domain and is the power net that can be shut-off

VDD_core_AO is the always-on power net for the switchable power domain

create_power_nets -nets VDD -voltage {0.8:1.0:0.1}

create_power_nets -nets VDD_core_AO -voltage 0.8

create_power_nets -nets VDD_core_SW -internal -voltage 0.8

create_power_nets -nets AVDD -voltage 1.0

create_ground_nets -nets VSS

create_ground_nets -nets AVSS

###

Creating three power domains:

AO is the default always-on power domain

CORE is the switchable power domain

PLL is another always-on power domain

Also specifying the power net-pin connection in each power domain

##

#########################

For power domain "AO"

#########################

create_power_domain -name AO -default

update_power_domain -name AO -internal_power_net VDD

create_global_connection -domain AO -net VDD -pins VDD

create_global_connection -domain AO -net VSS -pins VSS

create_global_connection -domain AO -net VDD_core_SW -pins VDDI

###########################

For power domain "CORE"

September 2022 1788 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

###########################

create_power_domain -name core -instances CORE_INST \

-shutoff_condition {PWR_CONTROL/power_switch_enable}

update_power_domain -name core -internal_power_net VDD_core_SW

create_global_connection -domain CORE -net VSS -pins VSS

create_global_connection -domain CORE -net VDD_core_AO -pins TVDD

create_global_connection -domain CORE -net VDD_core_SW -pins VDD

###########################

For power domain "PLL"

###########################

PLL conatins a single PLL macro and five top-level boundary ports which

#connect to the PLL macro directly

create_power_domain -name PLL -instances PLLCLK_INST -boundary_ports \

{refclk vcom vcop ibias pllrst}

update_power_domain -name PLL -internal_power_net AVDD

create_global_connection -domain PLL -net AVDD -pins avdd!

create_global_connection -domain PLL -net AVSS -pins agnd!

create_global_connection -domain PLL -net VDD -pins VDDI

create_global_connection -domain PLL -net AVDD -pins VDD

create_global_connection -domain PLL -net AVSS -pins VSS

##

##

set lib_1p1_wc "$libdir/technology45_std_1p1.lib"

set lib_1p3_bc "$libdir/technology45_std_1p3.lib"

set lib_1p0_bc "$libdir/technology45_std_1p0.lib"

set lib_0p8_wc "$libdir/technology45_std_0p8.lib"

set lib_ao_wc_extra "\

September 2022 1789 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

$libdir/technology45_lvll2h_1p1.lib \

"

set lib_ao_bc_extra "\

$libdir/technology45_lvll2h_1p3.lib \

"

set lib_core_wc_extra "\

$libdir/technology45_lvlh2l_0p8.lib \

$libdir/technology45_headers_0p8.lib \

$libdir/technology45_sprg_ao_0p8.lib \

"

set lib_core_bc_extra "\

$libdir/technology45_lvlh2l_1p0.lib \

$libdir/technology45_headers_1p0.lib \

$libdir/technology45_srpg_ao_1p0.lib \

"

set lib_pll_wc "\

$libdir/pll_slow.lib \

$libdir/ram_256x16_slow.lib \

$libdir/rom_512x16_slow.lib \

"

set lib_pll_bc "\

$libdir/pll_fast.lib \

$libdir/ram_256x16_fast.lib \

$libdir/rom_512x16_fast.lib \

"

########################

Define library sets

########################

define_library_set -name ao_wc_0p8 -libraries "$lib_0p8_wc $lib_ao_wc_extra"

define_library_set -name ao_bc_1p0 -libraries "$lib_1p0_bc $lib_ao_bc_extra"

define_library_set -name ao_wc_1p1 -libraries "$lib_1p1_wc_base $lib_ao_wc_extra"

define_library_set -name ao_bc_1p3 -libraries "$lib_1p3_bc_base $lib_ao_bc_extra"

define_library_set -name core_wc_0p8 -libraries "$lib_0p8_wc $lib_core_wc_extra"

define_library_set -name core_bc_1p0 -libraries "$lib_1p0_bc $lib_core_bc_extra"

September 2022 1790 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

define_library_set -name pll_wc_1p1 -libraries "$lib_pll_wc"

define_library_set -name pll_bc_1p3 -libraries "$lib_pll_bc"

#############################

Create operating corners

#############################

create_operating_corner -name BC_PVT_AO_L \

-process 1 -temperature 0 -voltage 1.0 \

-library_set ao_bc_1p0

create_operating_corner -name WC_PVT_AO_L \

-process 1 -temperature 125 -voltage 0.8 \

-library_set ao_wc_0p8

create_operating_corner -name BC_PVT_AO_H \

-process 1 -temperature 0 -voltage 1.3 \

-library_set ao_bc_1p3

create_operating_corner -name WC_PVT_AO_H \

-process 1 -temperature 125 -voltage 1.1 \

-library_set ao_wc_1p1

create_operating_corner -name BC_PVT_CORE \

-process 1 -temperature 0 -voltage 1.0 \

-library_set core_bc_1p0

create_operating_corner -name WC_PVT_CORE \

-process 1 -temperature 125 -voltage 0.8 \

-library_set tdsp_wc_0p8

create_operating_corner -name BC_PVT_PLL \

-process 1 -temperature 0 -voltage 1.3 \

-library_set core_bc_1p3

September 2022 1791 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

create_operating_corner -name WC_PVT_PLL \

-process 1 -temperature 125 -voltage 1.1 \

-library_set tdsp_wc_1p1

###

Create and update nominal conditions

###

create_nominal_condition -name high_ao -voltage 1.1

update_nominal_condition -name high_ao -library_set ao_wc_1p1

create_nominal_condition -name low_ao -voltage 0.8

update_nominal_condition -name low_ao -library_set ao_wc_0p8

create_nominal_condition -name low_core -voltage 0.8

update_nominal_condition -name low_core -library_set core_wc_0p8

create_nominal_condition -name high_pll -voltage 1.1

update_nominal_condition -name high_pll -library_set pll_wc_1p1

create_nominal_condition -name off -voltage 0

######################################

Create and upDate four power modes

######################################

create_power_mode -name PM_HL_FUNC \

-domain_conditions {AO@high_ao CORE@low_core PLL@high_pll} \

-default

update_power_mode -name PM_HL_FUNC -sdc_files ${constraintDir}/top_func.sdc

create_power_mode -name PM_HL_TEST \

-domain_conditions {AO@high_ao CORE@low_core PLL@high_pll}

update_power_mode -name PM_HL_TEST -sdc_files ${constraintDir}/top_test.sdc

create_power_mode -name PM_HO_FUNC \

September 2022 1792 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

-domain_conditions {AO@high_ao CORE@off PLL@high_pll}

update_power_mode -name PM_HO_FUNC -sdc_files ${constraintDir}/top_func.sdc

create_power_mode -name PM_LO_FUNC \

-domain_conditions {AO@low_ao CORE@off PLL@high_pll}

update_power_mode -name PM_LO_FUNC -sdc_files ${constraintDir}/top_slow.sdc

#################################

Creating ten analysis views

#################################

create_analysis_view -name AV_HL_FUNC_MIN_RC1 -mode PM_HL_FUNC \

-domain_corners {AO@BC_PVT_AO_H CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_HL_FUNC_MIN_RC2 -mode PM_HL_FUNC \

-domain_corners {AO@BC_PVT_AO_H CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_HL_FUNC_MAX_RC1 -mode PM_HL_FUNC \

-domain_corners {AO@WC_PVT_AO_H CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

create_analysis_view -name AV_HL_FUNC_MAX_RC2 -mode PM_HL_FUNC \

-domain_corners {AO@WC_PVT_AO_H CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

create_analysis_view -name AV_HL_SCAN_MIN_RC1 -mode PM_HL_TEST \

-domain_corners {AO@BC_PVT_AO_H CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_HL_SCAN_MAX_RC1 -mode PM_HL_TEST \

-domain_corners {AO@WC_PVT_AO_H CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

create_analysis_view -name AV_HO_FUNC_MIN_RC1 -mode PM_HO_FUNC \

-domain_corners {AO@BC_PVT_AO_H CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_HO_FUNC_MAX_RC1 -mode PM_HO_FUNC \

-domain_corners {AO@WC_PVT_AO_H CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

create_analysis_view -name AV_LO_FUNC_MIN_RC1 -mode PM_LO_FUNC \

-domain_corners {AO@BC_PVT_AO_L CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_LO_FUNC_MAX_RC1 -mode PM_LO_FUNC \

-domain_corners {AO@WC_PVT_AO_L CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

###

September 2022 1793 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

Creating and updating the rules for the insertion

of power switch, level shifter, isolation cell

###

###########################

One power switch rule

###########################

create_power_switch_rule -name PWRSW_CORE -domain CORE \

-external_power_net VDD_core_AO

update_power_switch_rule -name PWRSW_CORE \

-cells HEADERHVT \

-prefix CDN_SW_ \

-acknowledge_receiver SIWTCH_ENOUT

###

One isolation rule using level-shifting and isolation combo cells

###

create_isolation_rule -name ISORULE -from CORE \

-isolation_condition "!PWR_CONTROL/isolation_enable" \

-isolation_output high

update_isolation_rules -names ISORULE -location to -cells LVLCIL2H2Y

################################

Three level shifting rules

################################

For signals from AO to CORE

create_level_shifter_rule -name LSRULE_H2L -from AO -to CORE \

-exclude {PWR_CONTROL/power_switch_enable PWR_CONTROL \

 /state_retention_enable PWR_CONTROL/state_retention_restore}

update_level_shifter_rules -names LSRULE_H2L -cells LVLH2L2Y -location to

Only for the control signals from AO to CORE

September 2022 1794 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0 Script Example

create_level_shifter_rule -name LSRULE_H2L_AO -from AO -to CORE \

-pins {PWR_CONTROL/power_switch_enable PWR_CONTROL/state_retention_enable\ PWR_CONTROL/state_retention_restore}

update_level_shifter_rules -names LSRULE_H2L_AO -cells AOLVLH2L2Y -location to

For signals from PLL to AO

create_level_shifter_rule -name LSRULE_H2L_PLL -from PLL -to AO

update_level_shifter_rules -names LSRULE_H2L_PLL -cells LVLH2L2Y -location to

####################

One SRPG rule

####################

create_state_retention_rule -name SRPG_CORE \

-domain CORE \

-restore_edge {!PWR_CONTROL/state_retention_restore} \

-save_edge {PWR_CONTROL/state_retention_enable}

update_state_retention_rules -names SRPG_CORE \

-cell SRPG2Y \

-library_set tdsp_wc_0v792

end_design

Supported CPF 1.0e Commands
Note: The following commands and options are supported unless otherwise noted.

Command Name Option Notes

create_analysis_view

-name

-mode

-domain_corners

-group_views

-user_attributes

create_assertion_control

September 2022 1795 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

-name Unsupported

-assertions Unsupported

-domains Unsupported

-shutoff_condition Unsupported

-type Unsupported

create_bias_net

-net

-driver

-user_attributes Supported: query
getCPFUserAttributes

-peak_ir_drop_limit

-average_ir_drop_limit

create_global_connection

-net

-pins

-domain

-instances

create_power_domain

-name

-instances

-boundary_ports

-default

-shutoff_condition

-external_controlled_shutoff

-default_isolation_condition

-default_restore_edge

-default_save_edge

-default_restore_level Supported

-default_save_level Supported

-power_up_states Unsupported

-active_state_condition Unsupported

September 2022 1796 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

-secondary_domains

create_ground_nets

-nets

-voltage

-external_shutoff_condition

-user_attributes Supported: query
getCPFUserAttributes

-peak_ir_drop_limit

-average_ir_drop_limit

create_isolation_rule

-name

-isolation_condition

-no_condition Unsupported

-pins

-from

-to

-exclude

-isolation_target

-isolation_output

-secondary_domain

create_level_shifter_rule

-name

-pins

-from

-to

-exclude

create_mode_transition

-name

-from

-to

-start_condition

September 2022 1797 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

-end_condition

-cycles

-clock_pin

-latency

create_nominal_condition

-name

-voltage

-ground_voltage

-state Unsupported

-pmos_bias_voltage Unsupported

-nmos_bias_voltage Unsupported

create_operating_corner

-name

-voltage

-ground_voltage Unsupported

-pmos_bias_voltage Unsupported

-nmos_bias_voltage Unsupported

-process

-temperature

-library_set

create_power_mode

-name

-default

-group_modes

-domain_conditions

create_power_nets

-nets

-voltage

-external_shutoff_condition

-user_attributes Supported: query
getCPFUserAttributes

September 2022 1798 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

-peak_ir_drop_limit

-average_ir_drop_limit

create_power_switch_rule

-name

-domain

-external_power_net

-external_ground_net

create_state_retention_rule

-name

-domain

-instances

-exclude

-restore_edge

-save_edge

-restore_precondition

-save_precondition

-target_type

-secondary_domain

define_always_on_cell

-cells

-library_set

-power_switchable

-ground_switchable

-power

-ground

define_isolation_cell

-cells

-library_set

-always_on_pins

-power_switchable

-ground_switchable

September 2022 1799 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

-power

-ground

-valid_location

-enable

-no_enable Unsupported

-non_dedicated

define_level_shifter_cell

-cells

-library_set

-always_on_pins

-input_voltage_range

-output_voltage_range

-
ground_output_voltage_range

Unsupported

-
groung_output_voltage_range

-direction

-input_power_pin

-output_power_pin

-input_ground_pin Unsupported

-output_ground_pin Unsupported

-ground

-power Unsupported

-enable

-valid_location

define_library_set

-name

-libraries

-user_attributes cdb: specify cdb
libraries for the library
set

aocv: specify aocv
libraries for the library
set

September 2022 1800 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

define_power_clamp_cell

-location Unsupported

-within_hierarchy Unsupported

-cells Unsupported

-prefix Unsupported

define_power_switch_cell

-cells

-library_set

-stage_1_enable

-stage_1_output

-stage_2_enable

-stage_2_output

-type

-enable_pin_bias Unsupported

-gate_bias_pin Unsupported

-power_switchable

-power

-ground_switchable

-ground

-on_resistance Supported (for use
with
addPowerSwitch)

-stage_1_saturation_current Supported (for use
with
addPowerSwitch)

-stage_2_saturation_current Supported (for use
with
addPowerSwitch)

-leakage_current Supported (for use
with
addPowerSwitch)

define_state_retention_cell

-cells

-library_set

September 2022 1801 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

-cell_type

-always_on_pins

-clock_pin

-restore_function

-save_function

-restore_check

-save_check

-always_on_components Unsupported

-power_switchable

-ground_switchable

-power

-ground

end_design

end_macro_model

end_power_mode_control_group

get_parameter

include

identify_power_logic

-type Only "isolation" is
supported for the -
type

-instances Supported

-module Supported

set_array_naming_style

set_cpf_version

set_hierarchy_separator

set_design

-ports

-
honor_boundary_port_domain

-parameters

set_equivalent_control_pins

September 2022 1802 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

-master Unsupported

-pins Unsupported

-domain Unsupported

-rules Unsupported

set_floating_ports

set_input_voltage_tolerance

-ports Unsupported

-bias Unsupported

set_instance

-design

-model

-port_mapping

-domain_mapping

-parameter_mapping

set_macro_model

set_power_mode_control_group

-name

-domains

-groups Unsupported

set_power_target

-leakage Unsupported

-dynamic Unsupported

set_power_unit

set_register_naming_style

set_switching_activity

-all Supported

-pins Supported

-instances Supported

-hierarchical Supported

-probability Supported

-toggle_rate Supported

September 2022 1803 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

-clock_pins Unsupported

-toggle_percentage Unsupported

-mode Supported

set_time_unit

set_wire_feedthrough_ports

update_isolation_rules

-names

-location

-within_hierarchy

-cells

-prefix

-open_source_pins_only Supported

update_level_shifter_rules

-names

-location

-within_hierarchy

-cells

-prefix

update_nominal_condition

-name

-library_set

update_power_domain

-name

-primary_power_net

-primary_ground_net

-pmos_bias_net Unsupported

-nmos_bias_net Unsupported

-user_attributes Supported: query
getCPFUserAttributes

-transition_slope Unsupported

-transition_latency Unsupported

September 2022 1804 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.0e Commands

CPF 1.0e Script Example
The following section contains an example of the CPF 1.0e file using a sample design and library.

For list of supported CPF commands and options within Innovus product family, see "Supported CPF 1.0e Commands".

#--

-transition_cycles Unsupported

update_power_mode

-name

-activity_file Unsupported

-activity_file_weight Unsupported

-sdc_files

-peak_ir_drop_limit

-average_ir_drop_limit

-leakage_power_limit Unsupported

-dynamic_power_limit Unsupported

update_power_switch_rule

-name

-enable_condition_1

-enable_condition_2

-acknowledge_receiver

-cells

-gate_bias_net Unsupported

-prefix

-peak_ir_drop_limit

-average_ir_drop_limit

update_state_retention_rules

-names

-cell_type

-cells

-set_rest_control Unsupported

September 2022 1805 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

setting

#---

set_cpf_version 1.0e

set_hierarchy_separator /

#---

define library_set/cells

#---

define_library_set -name wc_0v81 -libraries { \

../LIBS/timing/library_wc_0v81.lib }

define_library_set -name bc_0v81 -libraries { \

../LIBS/timing/library_bc_0v81.lib }

define_library_set -name wc_0v72 -libraries { \

../LIBS/timing/library_wc_0v72.lib }

define_library_set -name bc_0v72 -libraries { \

../LIBS/timing/library_bc_0v72.lib }

define_always_on_cell -cells {PTLVLHLD* AOBUFF*} -power_switchable \

VDD -power TVDD -ground VSS

define_isolation_cell -cells { LVLLH* } -power VDD -ground VSS -enable \

NSLEEP -valid_location to

define_isolation_cell -cells { ISOHID* ISOLOD* } -power VDD -ground VSS \

-enable ISO -valid_location to

define_level_shifter_cell -cells { LVLHLD* } -input_voltage_range \

0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction down \

-output_power_pin VDD -ground VSS -valid_location to

define_level_shifter_cell -cells { PTLVLHLD* } -input_voltage_range \

0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction down \

-output_power_pin TVDD -ground VSS -valid_location to

define_level_shifter_cell -cells { LVLLHCD* } -input_voltage_range \

0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 \

-output_voltage_input_pin NSLEEP -direction up -input_power_pin VDDL \

-output_power_pin VDD -ground VSS -valid_location to

define_level_shifter_cell -cells { LVLLHD* } -input_voltage_range \

0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction up \

September 2022 1806 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

-input_power_pin VDDL -output_power_pin VDD -ground VSS -valid_location to

define_power_switch_cell -cells { HEADERHVT1 HEADERHVT2 } \

-stage_1_enable NSLEEPIN1 -stage_1_output NSLEEPOUT1 -stage_2_enable \

NSLEEPIN2 -stage_2_output NSLEEPOUT2 -type header -power_switchable VDD \

-power TVDD

define_state_retention_cell -cells { MSSRPG* } -cell_type \

master_slave -clock_pin CP -restore_check !CP -save_function !CP \

-always_on_components { DFF_inst } -power_switchable VDD -power TVDD \

-ground VSS

define_state_retention_cell -cells { BLSRPG* } -cell_type ballon_latch \

-clock_pin CP -restore_function !NRESTORE -save_function SAVE \

-always_on_components { save_data } -power_switchable VDD -power TVDD \

-ground VSS

#---

macro models

#---

#---

top design

#---

set_design top

create_operating_corner -name PMdvfs2_bc -voltage 0.88 -process 1 -temperature \

0 -library_set bc_0v72

create_operating_corner -name PMdvfs1_bc -voltage 0.99 -process 1 -temperature \

0 -library_set bc_0v81

create_operating_corner -name PMdvfs1_wc -voltage 0.81 -process 1 -temperature \

125 -library_set wc_0v81

create_operating_corner -name PMdvfs2_wc -voltage 0.72 -process 1 -temperature \

125 -library_set wc_0v72

create_power_nets -nets VDD -voltage { 0.72:0.81:0.09 } -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_power_nets -nets VDD_sw -voltage { 0.72:0.81:0.09 } -internal \

September 2022 1807 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

-peak_ir_drop_limit 0 -average_ir_drop_limit 0

create_power_nets -nets VDDL -voltage 0.72 -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_power_nets -nets VDDL_sw -voltage 0.72 -internal -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_power_nets -nets Avdd -voltage 0.81 -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_power_nets -nets VDD_IO -voltage { 0.72:0.81:0.09 } \

-external_shutoff_condition { io_shutoff_ack } -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_ground_nets -nets Avss -voltage 0.00 -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_ground_nets -nets VSS -voltage 0.00 -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_nominal_condition -name nom_0v81 -voltage 0.81

create_nominal_condition -name nom_0v72 -voltage 0.72

#---

create power domains

#---

create_power_domain -name PDdefault -default

create_power_domain -name PDshutoff_io -instances { IOPADS_INST/Pspifsip \

IOPADS_INST/Pspidip } -boundary_ports { spi_fs spi_data } \

-external_controlled_shutoff -shutoff_condition io_shutoff_ack

create_power_domain -name PDpll -instances { INST/PLLCLK_INST \

IOPADS_INST/Pibiasip IOPADS_INST/Ppllrstip IOPADS_INST/Prefclkip \

IOPADS_INST/Presetip IOPADS_INST/Pvcomop IOPADS_INST/Pvcopop } -boundary_ports { ibias reset \

refclk vcom vcop pllrst }

create_power_domain -name PDram_virtual

create_power_domain -name PDram -instances { INST/RAM_128x16_TEST_INST } \

-shutoff_condition !INST/PM_INST/power_switch_enable \

-secondary_domains { PDram_virtual }

create_power_domain -name PDtdsp -instances { INST/RAM_128x16_TEST_INST1 \

INST/DSP_CORE_INST0 INST/DSP_CORE_INST1 } -shutoff_condition \

!INST/PM_INST/power_switch_enable -secondary_domains { PDdefault }

September 2022 1808 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

#---

set instances

#---

set_instance INST/RAM_128x16_TEST_INST1/RAM_128x16_INST -domain_mapping \

{ {RAM_DEFAULT PDtdsp} }

set_macro_model ram_256x16A

create_power_domain -name RAM_DEFAULT -boundary_ports { A* D* CLK CEN WEN Q* } \

-default -external_controlled_shutoff

create_state_retention_rule -name RAM_ret -instances { mem* } -save_edge !CLK

update_power_domain -name RAM_DEFAULT -primary_power_net VDD \

-primary_ground_net VSS

end_macro_model

#---

create power modes

#---

create_power_mode -name PMdvfs1 -default -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v81 PDtdsp@nom_0v81 PDram@nom_0v72 PDshutoff_io@nom_0v81 \

PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs1_off -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v81 PDshutoff_io@nom_0v81 PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs1_shutoffio_off -domain_conditions { \

PDpll@nom_0v81 PDdefault@nom_0v81 PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs2 -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v72 PDtdsp@nom_0v72 PDram@nom_0v72 PDshutoff_io@nom_0v72 \

PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs2_off -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v72 PDshutoff_io@nom_0v72 PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs2_shutoffio_off -domain_conditions { \

PDpll@nom_0v81 PDdefault@nom_0v72 PDram_virtual@nom_0v72 }

create_power_mode -name PMscan -domain_conditions { PDpll@nom_0v81 \

September 2022 1809 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

PDdefault@nom_0v81 PDtdsp@nom_0v81 PDram@nom_0v72 PDshutoff_io@nom_0v81 \

PDram_virtual@nom_0v72 }

create_analysis_view -name AV_dvfs1_BC -mode PMdvfs1 -domain_corners { \

PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDtdsp@PMdvfs1_bc PDram@PMdvfs2_bc \

PDshutoff_io@PMdvfs1_bc }

create_analysis_view -name AV_dvfs1_WC -mode PMdvfs1 -domain_corners { \

PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDtdsp@PMdvfs1_wc PDram@PMdvfs2_wc \

PDshutoff_io@PMdvfs1_wc }

create_analysis_view -name AV_dvfs1_off_BC -mode PMdvfs1_off -domain_corners { \

PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDshutoff_io@PMdvfs1_bc }

create_analysis_view -name AV_dvfs1_off_WC -mode PMdvfs1_off -domain_corners { \

PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDshutoff_io@PMdvfs1_wc }

create_analysis_view -name AV_dvfs1_shutoffio_off_BC -mode \

PMdvfs1_shutoffio_off -domain_corners { PDpll@PMdvfs1_bc \

PDdefault@PMdvfs1_bc }

create_analysis_view -name AV_dvfs1_shutoffio_off_WC -mode \

PMdvfs1_shutoffio_off -domain_corners { PDpll@PMdvfs1_wc \

PDdefault@PMdvfs1_wc }

create_analysis_view -name AV_dvfs2_BC -mode PMdvfs2 -domain_corners { \

PDpll@PMdvfs1_bc PDdefault@PMdvfs2_bc PDtdsp@PMdvfs2_bc PDram@PMdvfs2_bc \

PDshutoff_io@PMdvfs2_bc }

create_analysis_view -name AV_dvfs2_WC -mode PMdvfs2 -domain_corners { \

PDpll@PMdvfs1_wc PDdefault@PMdvfs2_wc PDtdsp@PMdvfs2_wc PDram@PMdvfs2_wc \

PDshutoff_io@PMdvfs2_wc }

create_analysis_view -name AV_PMdvfs2_off_BC -mode PMdvfs2_off -domain_corners \

{ PDpll@PMdvfs1_bc PDdefault@PMdvfs2_bc PDshutoff_io@PMdvfs2_bc }

create_analysis_view -name AV_PMdvfs2_off_WC -mode PMdvfs2_off -domain_corners \

{ PDpll@PMdvfs1_wc PDdefault@PMdvfs2_wc PDshutoff_io@PMdvfs2_wc }

create_analysis_view -name AV_dvfs2_shutoffio_off_BC -mode \

PMdvfs2_shutoffio_off -domain_corners { PDpll@PMdvfs1_bc \

PDdefault@PMdvfs2_bc }

create_analysis_view -name AV_dvfs2_shutoffio_off_WC -mode \

PMdvfs2_shutoffio_off -domain_corners { PDpll@PMdvfs1_wc \

PDdefault@PMdvfs2_wc }

create_analysis_view -name AV_scan_BC -mode PMscan -domain_corners { \

PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDtdsp@PMdvfs1_bc PDram@PMdvfs2_bc \

September 2022 1810 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

PDshutoff_io@PMdvfs1_bc }

create_analysis_view -name AV_scan_WC -mode PMscan -domain_corners { \

PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDtdsp@PMdvfs1_wc PDram@PMdvfs2_wc \

PDshutoff_io@PMdvfs1_wc }

#---

create rules

#---

create_power_switch_rule -name PDram_SW -domain PDram -external_power_net VDDL

create_power_switch_rule -name PDtdsp_SW -domain PDtdsp -external_power_net \

VDD

create_isolation_rule -name ISORULE1 -isolation_condition { \

!INST/PM_INST/isolation_enable } -from { PDtdsp } -to { PDdefault } \

-isolation_target from -isolation_output high

create_isolation_rule -name ISORULE3 -isolation_condition { \

!INST/PM_INST/isolation_enable } -from { PDram } -to { PDdefault } \

-isolation_target from -isolation_output high

create_isolation_rule -name ISORULE4 -isolation_condition { \

!INST/PM_INST/spi_ip_isolate } -from { PDshutoff_io } \

-isolation_target from -isolation_output low

create_level_shifter_rule -name LSRULE_H2L3 -from { PDdefault } -to { PDram } \

-exclude { INST/PM_INST/power_switch_enable }

create_level_shifter_rule -name LSRULE_H2L_PLL -from { PDpll }

create_level_shifter_rule -name LSRULE_L2H2 -from { PDram } -to { PDdefault }

create_state_retention_rule -name \

INST/DSP_CORE_INST0/PDtdsp_retention_rule -instances { \

INST/DSP_CORE_INST0 } -save_edge !INST/DSP_CORE_INST0/clk

create_state_retention_rule -name \

INST/DSP_CORE_INST1/PDtdsp_retention_rule -instances { \

INST/DSP_CORE_INST1 } -restore_edge \

!INST/PM_INST/state_retention_restore -save_edge \

INST/PM_INST/state_retention_save

#---

September 2022 1811 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

update domains/modes

#---

update_nominal_condition -name nom_0v81 -library_set wc_0v81

update_nominal_condition -name nom_0v72 -library_set wc_0v72

update_power_domain -name PDdefault -primary_power_net VDD -primary_ground_net \

VSS

update_power_domain -name PDshutoff_io -primary_power_net VDD_IO \

-primary_ground_net VSS

update_power_domain -name PDpll -primary_power_net Avdd -primary_ground_net \

Avss

update_power_domain -name PDram_virtual -primary_power_net VDDL \

-primary_ground_net VSS

update_power_domain -name PDram -primary_power_net VDDL_sw -primary_ground_net \

VSS

update_power_domain -name PDtdsp -primary_power_net VDD_sw -primary_ground_net \

VSS

update_power_mode -name PMdvfs1 -sdc_files ../RELEASE/mmmc/dvfs1.sdc

update_power_mode -name PMdvfs1_off -sdc_files ../RELEASE/mmmc/dvfs1.sdc

update_power_mode -name PMdvfs1_shutoffio_off -sdc_files \

../RELEASE/mmmc/dvfs1.sdc

update_power_mode -name PMdvfs2 -sdc_files ../RELEASE/mmmc/dvfs2.sdc

update_power_mode -name PMdvfs2_off -sdc_files ../RELEASE/mmmc/dvfs2.sdc

update_power_mode -name PMdvfs2_shutoffio_off -sdc_files \

../RELEASE/mmmc/dvfs2.sdc

update_power_mode -name PMscan -sdc_files ../RELEASE/mmmc/scan.sdc

#---

update rules

#---

update_power_switch_rule -name PDram_SW -cells { HEADERHVT1 } -prefix \

CDN_SW_RAM -peak_ir_drop_limit 0 -average_ir_drop_limit 0

update_power_switch_rule -name PDtdsp_SW -cells { HEADERHVT2 } -prefix \

CDN_SW_TDSP -peak_ir_drop_limit 0 -average_ir_drop_limit 0

update_isolation_rules -names ISORULE1 -location to -prefix CPF_ISO_

September 2022 1812 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

update_isolation_rules -names ISORULE3 -location to -prefix CPF_ISO_

update_isolation_rules -names ISORULE4 -location to -prefix CPF_ISO_

update_level_shifter_rules -names LSRULE_H2L3 -location to -cells { LVLHLD* \

} -prefix CPF_LS_

update_level_shifter_rules -names LSRULE_H2L_PLL -location to -prefix CPF_LS_

update_level_shifter_rules -names LSRULE_L2H2 -location to -prefix CPF_LS_

update_state_retention_rules -names \

INST/DSP_CORE_INST0/PDtdsp_retention_rule -cell_type master_slave

update_state_retention_rules -names \

INST/DSP_CORE_INST1/PDtdsp_retention_rule -cell_type ballon_latch

#---

end

#---

end_design

September 2022 1813 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.0e Script Example

Supported CPF 1.1 Commands
Note: The following commands and options are supported unless otherwise noted.

Command Name Option Notes

asset_illegal_domain_configurations

-domain_conditions

-group_modes

-name

create_analysis_view

-domain_corners

-group_views

-mode

-name

-user_attributes

create_assertion_control

-assertions Unsupported

-domains Unsupported

-exclude

-name Unsupported

-shutoff_condition Unsupported

-type Unsupported

create_bias_net

-average_ir_drop_limit

-driver

-net

-peak_ir_drop_limit

-user_attributes Supported: query
getCPFUserAttributes

create_global_connection

-domain

-instances

-net

September 2022 1814 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-pins

create_ground_nets

-average_ir_drop_limit

-external_shutoff_condition

-nets

-peak_ir_drop_limit

-user_attributes Supported: query
getCPFUserAttributes

-voltage

create_isolation_rule

-exclude

-from

-isolation_condition

-isolation_output

-isolation_target

-name

-no_condition

-pins

-secondary_domain

-to

-force

create_level_shifter_rule

-exclude

-from

-name

-pins

-to

-force

create_mode_transition

-clock_pin

-cycles

September 2022 1815 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-end_condition

-from

-latency

-name

-to

-start_condition

create_nominal_condition

-ground_voltage

-name

-nmos_bias_voltage Unsupported

-pmos_bias_voltage Unsupported

-state Unsupported

-voltage

create_operating_corner

-ground_voltage Unsupported

-library_set

-name

-nmos_bias_voltage Unsupported

-pmos_bias_voltage Unsupported

-process

-temperature

-voltage

create_power_domain

-active_state_condition Unsupported

-base_domains

-boundary_ports

-default

-default_isolation_condition

-default_restore_edge

-default_restore_level Supported

September 2022 1816 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-default_save_edge

-default_save_level Supported

-external_controlled_shutoff

-instances

-name

-power_up_states Unsupported

-shutoff_condition

create_power_mode

-default

-domain_conditions

-group_modes

-name

create_power_nets

-average_ir_drop_limit

-external_shutoff_condition

-nets

-peak_ir_drop_limit

-user_attributes Supported: query
getCPFUserAttributes

-voltage

create_power_switch_rule

-domain

-external_ground_net

-external_power_net

-name

create_state_retention_rule

-domain

-exclude

-instances

-name

-restore_edge

September 2022 1817 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-restore_precondition

-save_edge

-save_precondition

-secondary_domain

-target_type

define_always_on_cell

-cells

-ground

-ground_switchable

-library_set

-power

-power_switchable

define_isolation_cell

-always_on_pins

-cells

-enable

-ground

-ground_switchable

-library_set

-no_enable

-non_dedicated

-power

-power_switchable

-valid_location

define_level_shifter_cell

-always_on_pins

-cells

-direction

-enable

-ground

-ground_input_voltage_range

September 2022 1818 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-
ground_output_voltage_range

-input_ground_pin

-input_power_pin

-input_voltage_range

-library_set

-output_ground_pin

-output_power_pin

-output_voltage_range

-power

-valid_location

define_library_set

-libraries

-name

-user_attributes cdb: specify cdb
libraries for the library
set

aocv: specify aocv
libraries for the library
set

define_power_clamp_cell

-cells Unsupported

-data Unsupported

-power pin Unsupported

-ground Unsupported

-library_set

define_power_switch_cell

-cells

-enable_pin_bias Unsupported

-gate_bias_pin Unsupported

-ground

-ground_switchable

September 2022 1819 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-leakage_current Supported (for use
with
addPowerSwitch)

-library_set

-power

-power_switchable

-stage_1_on_resistance

-stage_2_on_resistance

-stage_1_enable

-stage_1_output

-stage_1_saturation_current Supported (for use
with
addPowerSwitch)

-stage_2_enable

-stage_2_output

-stage_2_saturation_current Supported (for use
with
addPowerSwitch)

-type

define_state_retention_cell

-always_on_components Unsupported

-always_on_pins

-cell_type

-cells

-clock_pin

-ground

-ground_switchable

-library_set

-power

-power_switchable

-restore_check

-restore_function

-save_check

September 2022 1820 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-save_function

end_design

end_macro_model

end_power_mode_control_group

get_parameter

include

identify_power_logic

-instances Supported

-module Supported

-type Only "isolation" is
supported for the -
type

set_array_naming_style

set_cpf_version

set_hierarchy_separator

set_design

module

-ports

-
honor_boundary_port_domain

-parameters

set_equivalent_control_pins

-domain Unsupported

-master Unsupported

-pins Unsupported

-rules

set_floating_ports

set_input_voltage_tolerance

-bias Unsupported

-ports Unsupported

set_instance

-design

September 2022 1821 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-domain_mapping

-model

-parameter_mapping

-port_mapping

set_macro_model

set_power_mode_control_group

-domains

-groups Unsupported

-name

set_power_target

-dynamic Unsupported

-leakage Unsupported

set_power_unit

set_register_naming_style

set_switching_activity

-all Supported

-clock_pins Unsupported

-hierarchical Supported

-instances Supported

-mode Supported

-pins Supported

-probability Supported

-toggle_percentage Unsupported

-toggle_rate Supported

set_time_unit

set_wire_feedthrough_ports

update_isolation_rules

-cells

-location

-names

September 2022 1822 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

-open_source_pins_only Supported

-prefix

-within_hierarchy

update_level_shifter_rules

-cells

-location

-names

-prefix

-within_hierarchy

update_nominal_condition

-name

-library_set

update_power_domain

-equivalent_ground_nets

-equivalent_power_nets

-name

-nmos_bias_net Unsupported

-pmos_bias_net Unsupported

-primary_ground_net

-primary_power_net

-transition_cycles Unsupported

-transition_latency Unsupported

-transition_slope Unsupported

-user_attributes
{{disable_secondary_domains
{list of domains}}}

Supported: query
getCPFUserAttributes

update_power_mode

-activity_file Unsupported

-activity_file_weight Unsupported

-average_ir_drop_limit

-dynamic_power_limit Unsupported

September 2022 1823 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported CPF 1.1 Commands

CPF 1.1 Script Example
The following section contains an example of the CPF 1.1 file using a sample design and library.

For list of supported CPF commands and options within Innovus product family, see "Supported CPF 1.1 Commands".

#--

setting

#---

set_cpf_version 1.1

set_hierarchy_separator /

#---

define library_set/cells

-leakage_power_limit Unsupported

-name

-peak_ir_drop_limit

-sdc_files

update_power_switch_rule

-acknowledge_reciever_1

-acknowledge_reciever_2

-average_ir_drop_limit

-cells

-enable_condition_1

-enable_condition_2

-gate_bias_net Unsupported

-name

-peak_ir_drop_limit

-prefix

update_state_retention_rules

-cell_type

-cells

-names

-set_rest_control Unsupported

September 2022 1824 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

#---

define_library_set -name wc_0v81 -libraries { \

../LIBS/timing/library_wc_0v81.lib }

define_library_set -name bc_0v81 -libraries { \

../LIBS/timing/library_bc_0v81.lib }

define_library_set -name wc_0v72 -libraries { \

../LIBS/timing/library_wc_0v72.lib }

define_library_set -name bc_0v72 -libraries { \

../LIBS/timing/library_bc_0v72.lib }

define_always_on_cell -cells {PTLVLHLD* AOBUFF*} -power_switchable \

VDD -power TVDD -ground VSS

define_isolation_cell -cells { LVLLH* } -power VDD -ground VSS -enable \

NSLEEP -valid_location to

define_isolation_cell -cells { ISOHID* ISOLOD* } -power VDD -ground VSS \

-enable ISO -valid_location to

define_level_shifter_cell -cells { LVLHLD* } -input_voltage_range \

0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction down \

-output_power_pin VDD -ground VSS -valid_location to

define_level_shifter_cell -cells { PTLVLHLD* } -input_voltage_range \

0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction down \

-output_power_pin TVDD -ground VSS -valid_location to

define_level_shifter_cell -cells { LVLLHCD* } -input_voltage_range \

0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 \

-output_voltage_input_pin NSLEEP -direction up -input_power_pin VDDL \

-output_power_pin VDD -ground VSS -valid_location to

define_level_shifter_cell -cells { LVLLHD* } -input_voltage_range \

0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction up \

-input_power_pin VDDL -output_power_pin VDD -ground VSS -valid_location to

define_power_switch_cell -cells { HEADERHVT1 HEADERHVT2 } \

-stage_1_enable NSLEEPIN1 -stage_1_output NSLEEPOUT1 -stage_2_enable \

NSLEEPIN2 -stage_2_output NSLEEPOUT2 -type header -power_switchable VDD \

-power TVDD -stage_1_on_resistance 10 - stage_2_on_resistance 10

September 2022 1825 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

define_state_retention_cell -cells { MSSRPG* } -cell_type \

master_slave -clock_pin CP -restore_check !CP -save_function !CP \

-always_on_components { DFF_inst } -power_switchable VDD -power TVDD \

-ground VSS

define_state_retention_cell -cells { BLSRPG* } -cell_type ballon_latch \

-clock_pin CP -restore_function !NRESTORE -save_function SAVE \

-always_on_components { save_data } -power_switchable VDD -power TVDD \

-ground VSS

#---

macro models

#---

#---

top design

#---

set_design top

create_operating_corner -name PMdvfs2_bc -voltage 0.88 -process 1 -temperature \

0 -library_set bc_0v72

create_operating_corner -name PMdvfs1_bc -voltage 0.99 -process 1 -temperature \

0 -library_set bc_0v81

create_operating_corner -name PMdvfs1_wc -voltage 0.81 -process 1 -temperature \

125 -library_set wc_0v81

create_operating_corner -name PMdvfs2_wc -voltage 0.72 -process 1 -temperature \

125 -library_set wc_0v72

create_power_nets -nets VDD -voltage { 0.72:0.81:0.09 } -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_power_nets -nets VDD_EQ -voltage { 0.72:0.81:0.09 } -peak_ir_drop_limit 0\

-average_ir_drop_limit 0

create_power_nets -nets VDD_sw -voltage { 0.72:0.81:0.09 } -internal \

-peak_ir_drop_limit 0 -average_ir_drop_limit 0

create_power_nets -nets VDDL -voltage 0.72 -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_power_nets -nets VDDL_sw -voltage 0.72 -internal -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

September 2022 1826 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

create_power_nets -nets Avdd -voltage 0.81 -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_power_nets -nets VDD_IO -voltage { 0.72:0.81:0.09 } \

-external_shutoff_condition { io_shutoff_ack } -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_ground_nets -nets Avss -voltage 0.00 -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_ground_nets -nets VSS -voltage 0.00 -peak_ir_drop_limit 0 \

-average_ir_drop_limit 0

create_nominal_condition -name nom_0v81 -voltage 0.81

create_nominal_condition -name nom_0v72 -voltage 0.72

#---

create power domains

#---

create_power_domain -name PDdefault -default

create_power_domain -name PDshutoff_io -instances { IOPADS_INST/Pspifsip \

IOPADS_INST/Pspidip } -boundary_ports { spi_fs spi_data } \

-external_controlled_shutoff -shutoff_condition io_shutoff_ack

create_power_domain -name PDpll -instances { INST/PLLCLK_INST \

IOPADS_INST/Pibiasip IOPADS_INST/Ppllrstip IOPADS_INST/Prefclkip \

IOPADS_INST/Presetip IOPADS_INST/Pvcomop IOPADS_INST/Pvcopop } -boundary_ports { ibias reset \

refclk vcom vcop pllrst }

create_power_domain -name PDram_virtual

create_power_domain -name PDram -instances { INST/RAM_128x16_TEST_INST } \

-shutoff_condition !INST/PM_INST/power_switch_enable \

-base_domains { PDram_virtual }

create_power_domain -name PDtdsp -instances { INST/RAM_128x16_TEST_INST1 \

INST/DSP_CORE_INST0 INST/DSP_CORE_INST1 } -shutoff_condition \

!INST/PM_INST/power_switch_enable -base_domains { PDdefault }

#---

set instances

#---

set_instance INST/RAM_128x16_TEST_INST1/RAM_128x16_INST -domain_mapping \

September 2022 1827 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

{ {RAM_DEFAULT PDtdsp} }

set_macro_model ram_256x16A

create_power_domain -name RAM_DEFAULT -boundary_ports { A* D* CLK CEN WEN Q* } \

-default -external_controlled_shutoff

create_state_retention_rule -name RAM_ret -instances { mem* } -save_edge !CLK

update_power_domain -name RAM_DEFAULT -primary_power_net VDD \

-primary_ground_net VSS

end_macro_model ram 256x16A

#---

create power modes

#---

create_power_mode -name PMdvfs1 -default -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v81 PDtdsp@nom_0v81 PDram@nom_0v72 PDshutoff_io@nom_0v81 \

PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs1_off -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v81 PDshutoff_io@nom_0v81 PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs1_shutoffio_off -domain_conditions { \

PDpll@nom_0v81 PDdefault@nom_0v81 PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs2 -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v72 PDtdsp@nom_0v72 PDram@nom_0v72 PDshutoff_io@nom_0v72 \

PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs2_off -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v72 PDshutoff_io@nom_0v72 PDram_virtual@nom_0v72 }

create_power_mode -name PMdvfs2_shutoffio_off -domain_conditions { \

PDpll@nom_0v81 PDdefault@nom_0v72 PDram_virtual@nom_0v72 }

create_power_mode -name PMscan -domain_conditions { PDpll@nom_0v81 \

PDdefault@nom_0v81 PDtdsp@nom_0v81 PDram@nom_0v72 PDshutoff_io@nom_0v81 \

PDram_virtual@nom_0v72 }

create_analysis_view -name AV_dvfs1_BC -mode PMdvfs1 -domain_corners { \

PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDtdsp@PMdvfs1_bc PDram@PMdvfs2_bc \

September 2022 1828 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

PDshutoff_io@PMdvfs1_bc }

create_analysis_view -name AV_dvfs1_WC -mode PMdvfs1 -domain_corners { \

PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDtdsp@PMdvfs1_wc PDram@PMdvfs2_wc \

PDshutoff_io@PMdvfs1_wc }

create_analysis_view -name AV_dvfs1_off_BC -mode PMdvfs1_off -domain_corners { \

PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDshutoff_io@PMdvfs1_bc }

create_analysis_view -name AV_dvfs1_off_WC -mode PMdvfs1_off -domain_corners { \

PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDshutoff_io@PMdvfs1_wc }

create_analysis_view -name AV_dvfs1_shutoffio_off_BC -mode \

PMdvfs1_shutoffio_off -domain_corners { PDpll@PMdvfs1_bc \

PDdefault@PMdvfs1_bc }

create_analysis_view -name AV_dvfs1_shutoffio_off_WC -mode \

PMdvfs1_shutoffio_off -domain_corners { PDpll@PMdvfs1_wc \

PDdefault@PMdvfs1_wc }

create_analysis_view -name AV_dvfs2_BC -mode PMdvfs2 -domain_corners { \

PDpll@PMdvfs1_bc PDdefault@PMdvfs2_bc PDtdsp@PMdvfs2_bc PDram@PMdvfs2_bc \

PDshutoff_io@PMdvfs2_bc }

create_analysis_view -name AV_dvfs2_WC -mode PMdvfs2 -domain_corners { \

PDpll@PMdvfs1_wc PDdefault@PMdvfs2_wc PDtdsp@PMdvfs2_wc PDram@PMdvfs2_wc \

PDshutoff_io@PMdvfs2_wc }

create_analysis_view -name AV_PMdvfs2_off_BC -mode PMdvfs2_off -domain_corners \

{ PDpll@PMdvfs1_bc PDdefault@PMdvfs2_bc PDshutoff_io@PMdvfs2_bc }

create_analysis_view -name AV_PMdvfs2_off_WC -mode PMdvfs2_off -domain_corners \

{ PDpll@PMdvfs1_wc PDdefault@PMdvfs2_wc PDshutoff_io@PMdvfs2_wc }

create_analysis_view -name AV_dvfs2_shutoffio_off_BC -mode \

PMdvfs2_shutoffio_off -domain_corners { PDpll@PMdvfs1_bc \

PDdefault@PMdvfs2_bc }

create_analysis_view -name AV_dvfs2_shutoffio_off_WC -mode \

PMdvfs2_shutoffio_off -domain_corners { PDpll@PMdvfs1_wc \

PDdefault@PMdvfs2_wc }

create_analysis_view -name AV_scan_BC -mode PMscan -domain_corners { \

PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDtdsp@PMdvfs1_bc PDram@PMdvfs2_bc \

PDshutoff_io@PMdvfs1_bc }

create_analysis_view -name AV_scan_WC -mode PMscan -domain_corners { \

PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDtdsp@PMdvfs1_wc PDram@PMdvfs2_wc \

PDshutoff_io@PMdvfs1_wc }

September 2022 1829 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

#---

create rules

#---

create_power_switch_rule -name PDram_SW -domain PDram -external_power_net VDDL

create_power_switch_rule -name PDtdsp_SW -domain PDtdsp -external_power_net \

VDD

create_isolation_rule -name ISORULE1 -isolation_condition { \

!INST/PM_INST/isolation_enable } -from { PDtdsp } -to { PDdefault } \

-isolation_target from -isolation_output high

create_isolation_rule -name ISORULE3 -isolation_condition { \

!INST/PM_INST/isolation_enable } -from { PDram } -to { PDdefault } \

-isolation_target from -isolation_output high

create_isolation_rule -name ISORULE4 -isolation_condition { \

!INST/PM_INST/spi_ip_isolate } -from { PDshutoff_io } \

-isolation_target from -isolation_output low

create_level_shifter_rule -name LSRULE_H2L3 -from { PDdefault } -to { PDram } \

-exclude { INST/PM_INST/power_switch_enable }

create_level_shifter_rule -name LSRULE_H2L_PLL -from { PDpll }

create_level_shifter_rule -name LSRULE_L2H2 -from { PDram } -to { PDdefault }

create_state_retention_rule -name \

INST/DSP_CORE_INST0/PDtdsp_retention_rule -instances { \

INST/DSP_CORE_INST0 } -save_edge !INST/DSP_CORE_INST0/clk

create_state_retention_rule -name \

INST/DSP_CORE_INST1/PDtdsp_retention_rule -instances { \

INST/DSP_CORE_INST1 } -restore_edge \

!INST/PM_INST/state_retention_restore -save_edge \

INST/PM_INST/state_retention_save

#---

update domains/modes

#---

update_nominal_condition -name nom_0v81 -library_set wc_0v81

update_nominal_condition -name nom_0v72 -library_set wc_0v72

September 2022 1830 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

update_power_domain -name PDdefault -primary_power_net VDD -primary_ground_net \

VSS -equivalent_power_nets VDD_EQ

update_power_domain -name PDshutoff_io -primary_power_net VDD_IO \

-primary_ground_net VSS

update_power_domain -name PDpll -primary_power_net Avdd -primary_ground_net \

Avss

update_power_domain -name PDram_virtual -primary_power_net VDDL \

-primary_ground_net VSS

update_power_domain -name PDram -primary_power_net VDDL_sw -primary_ground_net \

VSS

update_power_domain -name PDtdsp -primary_power_net VDD_sw -primary_ground_net \

VSS

update_power_mode -name PMdvfs1 -sdc_files ../RELEASE/mmmc/dvfs1.sdc

update_power_mode -name PMdvfs1_off -sdc_files ../RELEASE/mmmc/dvfs1.sdc

update_power_mode -name PMdvfs1_shutoffio_off -sdc_files \

../RELEASE/mmmc/dvfs1.sdc

update_power_mode -name PMdvfs2 -sdc_files ../RELEASE/mmmc/dvfs2.sdc

update_power_mode -name PMdvfs2_off -sdc_files ../RELEASE/mmmc/dvfs2.sdc

update_power_mode -name PMdvfs2_shutoffio_off -sdc_files \

../RELEASE/mmmc/dvfs2.sdc

update_power_mode -name PMscan -sdc_files ../RELEASE/mmmc/scan.sdc

#---

update rules

#---

update_power_switch_rule -name PDram_SW -cells { HEADERHVT1 } -prefix \

CDN_SW_RAM -peak_ir_drop_limit 0 -average_ir_drop_limit 0

update_power_switch_rule -name PDtdsp_SW -cells { HEADERHVT2 } -prefix \

CDN_SW_TDSP -peak_ir_drop_limit 0 -average_ir_drop_limit 0

update_isolation_rules -names ISORULE1 -location to -prefix CPF_ISO_

update_isolation_rules -names ISORULE3 -location to -prefix CPF_ISO_

update_isolation_rules -names ISORULE4 -location to -prefix CPF_ISO_

update_level_shifter_rules -names LSRULE_H2L3 -location to -cells { LVLHLD* \

} -prefix CPF_LS_

September 2022 1831 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

update_level_shifter_rules -names LSRULE_H2L_PLL -location to -prefix CPF_LS_

update_level_shifter_rules -names LSRULE_L2H2 -location to -prefix CPF_LS_

update_state_retention_rules -names \

INST/DSP_CORE_INST0/PDtdsp_retention_rule -cell_type master_slave

update_state_retention_rules -names \

INST/DSP_CORE_INST1/PDtdsp_retention_rule -cell_type ballon_latch

#---

end

#---

end_design

September 2022 1832 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--CPF 1.1 Script Example

Supported SAI Commands
The Soc Architecture Information (SAI) methodology is a powerful and self-contained design planning capability. It provides an
ideal design/floorplan hand-off mechanism between front-end and back-end teams. Designers can turn a high-level block diagram
into a real netlist and timing constraint (.sdc) ready for floorplanning and timing analysis much earlier without having a netlist or just
with a partial netlist.

With SAI version 2.0, designers are able to specify floorplan constraints to guide module and/or macro placement, report floorplan
quality index, and any constraint violations.

The following are the supported SAI Commands:

add_clock

add_macro

connect

constrain

convertLefToSAI

create_module

delete_macro

delete_module

insert_boundary_flops

report_sai_constraint

set_floorplan

set_ref_flop

set_ref_gate

set_ref_macro

set_ref_memory

set_sai_version

Note: You can use these commands in the SAI interactive mode or write in the SAI file. The read_sai command can be used to
read the SAI file in batch mode.

September 2022 1833 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

add_clock
add_clock

[-help]

clockName
-buffer string

[-default]

[-inst string]

-period string

[-waveform string]

Allows the software to add new clocks. The add_clock command creates clock root in netlist and adds the create_clock constraint
in generated SDC along with connecting the clock root to clock port of hierarchical instances. If SDC is provided before SAI, then
the add_clock command only connects clock root to clock port of hierarchical instances.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

clockName Specifies the clock name.

-buffer string Specifies the buffer cell name. You can also specify “-” for clock port.

If buffer cell name is specified, instance of the cell is inserted as clock root in top level.

If “-” is specified, clock root is created for the external port on top level.

-default Specifies the default clock that will be used by the connect command.

-help Outputs a brief description that includes type and default information for each add_clock parameter.

-inst string Specifies the hinst in which the clock buffer is to be added.

-period string Specifies the clock period.

-waveform string Specifies the clock waveform.

September 2022 1834 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

add_macro
add_macro
[-help]
[ref_counts]
-cell targetModule
[-memory string]
[-names string]
[-prefix string]
[-update_memory_bit_count string]

Allows the software to add macro instances to the netlist.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Example

add_macro -cell ryon_mod1 {ram_128x16A 2} ...(A)
add_macro -cell ryon_mod1 {ram_128x16A 4} ...(B)

add_macro (A) creates

XM_PORT0/ram_128x16A_0
XM_PORT0/ram_128x16A_1

add_macro (B) creates

XM_PORT0/ram_128x16A_3
XM_PORT0/ram_128x16A_4

-cell targetModule Specifies target module to add macros.

-help Outputs a brief description that includes type and default information for each add_macro
parameter.

-memory string Specifies the reference memory name created using the set_ref_memory command.

For example,
set_ref_memory mem1 -bit_size 1024 -area_per_bit 1.1 -aspect_ratio 0.75
create_module iBlock -cell mBlock -memory_bit_count 4096
add_macro -cell mBlock -memory mem1

then, 4096 / 1024 = 4 “mem1” macros are added in mBlock module.

-names string Specifies the names for adding memory and macro.

-prefix string Specifies the prefix for adding memory and macro.

ref_counts Specifies a list of macro cell name and count pair.

For example,
{RAM1 12 RAM2 24 ...}

-

update_memory_bit_count string
Updates memory bit count for adding reference memory further.

September 2022 1835 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

XM_PORT0/ram_128x16A_5
XM_PORT0/ram_128x16A_6

Related Information

Supported SAI Commands

September 2022 1836 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

connect
connect

[-help]

src

[-bus_width integer]
[-clock string]

[-insert_driver_flop {auto | none | force}]

[-insert_receiver_flop {auto | none | force}]

[-pipeline_stages integer]
-to string

[-to_clock string]

[-weight integer]

Creates a net connection by connecting the source and destination clocks. You can use this command to connect top-module
ports.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

The connect SAI command supports bus split and accepts the bus bit order in the msb:lsb format. It supports the following bus-
oriented operations:

msb:lsb format bus order:
connect M3/out[0:63] -to M4/in[63:0] -clock clk

Bus split:
connect M4/out[0:15] -to M5/in[0:15] -clock clk

connect M4/out[16:31] -to M8/in[0:15] -clock clk

Note: The range of M4/out [0:15] and [16:31] should be continuous.

September 2022 1837 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

Parameters

Related Information

Supported SAI Commands

-bus_width integer Specified the bus width of connection. If not specified, single connection is created.

-clock string Specifies clock name of source and destination flops.

Note: The connect command uses the default clock (add_clock -default) if the clock
information is not specified. It displays a warning if a default clock is not defined.

-help Outputs a brief description that includes type and default information for each connect parameter.

-insert_driver_flop

{auto | none | force}
Inserts source boundary flops.

auto: If the specified source module is created by SAI, then inserts source boundary flops
automatically.

none: Does not insert source boundary flops.

force: Enforces the insertion of source boundary flops.

Default: auto

-insert_receiver_flop

{auto | none | force}
Inserts destination boundary flops.

auto: If the specified destination module is created by SAI, then inserts destination boundary
flops automatically.

none: Does not insert destination boundary flops.

force: Enforces the insertion of destination boundary flops.

Default: auto

-pipeline_stages integer Specifies the number of pipeline flops between source flops and destination flops. If not
specified, source flops and destination flops are connected directly.

src Specifies the source hierarchical port or macro pin name.

-to string Specifies the destination hierarchical port or macro pin name.

-to_clock string Specifies clock name of destination flops. If not specified, destination flops are connected to
clock_name1.

-weight integer Specifies the net weight.

September 2022 1838 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

constrain
constrain

[-help]

from_names

[-max_spacing float]

[-min_spacing float]

[-order {none clockwise counterclockwise both}]

[-rule ruleName]

[-weight float]

[-to objectNameList | -group | -to_edge string | -area float | {[-min_area float] [-max_area float]}]

The constrain SAI command enables you to set the following constraints/rules:

Place specified macros along the boundary.

Place modules that have a minimum spacing to core box.

Place modules at the minimum spacing from each other.

Modules/macros abutment

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

The specified constraint from a spreadsheet can be mapped directly to a constrain command. The following illustration explains
the mapping process.

September 2022 1839 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

Parameters

Example

The following command specifies that Module B2 should not be placed within 770 microns from the core boundary:
constrain B2 –to_edge * –min_spacing 770.0

The following command specifies that Modules B1, B2, B3, B4 should be placed far away from each other (-group) with a
minimum distance of 2000um.
constrain B1 B2 B3 B4 -group -min_spacing 2000.0

The following command abuts macro H1, H2, H3, H4 to the right edge (edge 2):
constrain H1 H2 H3 H4 –to_edge 1 –max_spacing 0 –order clockwise

The following command abuts modules B3 B23 B24 in either clockwise or counterclockwise order:
constrain B3 B23 B24 -group –max_spacing 0 -order both

The following command abuts macro H1, H2, H26~H28 to core boundary:
constrain H1 H2 H26 H27 H28 –to_edge * -max_spacing 0 \

–order clockwise -edge_orientation {0 R0 1 R0 2 MY 3 MX}

Related Information

Supported SAI Commands

-area float Specifies the area constraint of the specified module(s).

from_names Specifies module or macro name(s). It does not support mixed type objects.

-group Applies the specified constraint to all the specified objects in the list/group.

-help Outputs a brief description that includes type and default information for
each constrain parameter.

-max_area float Specifies the maximum area constraint of the specified module(s)

-max_spacing float Specifies the maximum spacing between specified objects. Objects will be abutted when the
maximum spacing is 0.

-min_area float Specifies minimum area constraint of the specified module(s)

-min_spacing float Specifies the minimum spacing between specified objects.

-order {none clockwise

counterclockwise both}
Applies constraints to objects in the specified order. The order can be clockwise, counter
clockwise, or either of them specified using the both option.

Default: none

-rule ruleName Specifies the rule name.

-to objectNameList Applies the specified constraint from the from_names to objectNameList.

-to_edge string Constrains from_names to the specified core boundary edge.
Note: Use * to constrain the specified module or macro to any core edge.

-weight float Specifies the rule weight.

September 2022 1840 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

convertLefToSAI
convertLefToSAI

[-help]

-cells string

-clock string

-ref_flop string

Converts the LEF macro cells to SAI netlist.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-cells string Specifies the LEF macro cells to convert.

-clock string Specifies the clock net name to attach the flops.

-help Outputs a brief description that includes type and default information for each convertLeftoSAI parameter.

-ref_flop string Specifies the flop cell name to be inserted along the boundary.

September 2022 1841 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

create_module
create_module
[-help]
name

[-aspect_ratio_range { min max }]

[-cell moduleName]

[–flop_count string]

[-flop_ref_clock clkName]

[-gate_count string]

[-memory_bit_count string]

[-util float]

[-incremental]

Generates hierarchical instance and creates the associated module if it does not exist yet. It automatically creates intermediate
level instances and modules if missing.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

September 2022 1842 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

Parameters

Related Information

Supported SAI Commands

-

aspect_ratio_range {min

max}

Specifies the aspect ratio range for proto_design. These aspect ratios will appear in the
sai_proto)design.seed file.

-cell moduleName Specifies the module name. A module is created if the specified module name does not exist.
If the module name is not specified, then the local hierarchical instance name is used as the
module name.

For example, add_macro A/B/C/D creates module D and its hierarchical instance A/B/C/D.

-flop_count string Specifies the number of flops to insert as intermediate flops. It uses the cell set for set_ref_flop.
To add flops with multiple clock domains, specify {numFlops1 clkName1 numFlops2 clkName2 ...
}.

Note: You can also specify the flop count using an integer value. However, if you specify an
integer, then you must specify the -flop_ref_clock clkName option.
In this case, all added flops’ clock pins are connected to the clkName port.

-flop_ref_clock clkName Specifies the flop's reference clock

-gate_count string Specifies the number of instance to insert. It uses the cell set for set_ref_gate.

-help Outputs a brief description that includes type and default information for each create_module
parameter.

-incremental Specifies to incrementally fill incomplete modules that might have only port definition or have
some logic inside.

-

memory_bit_count string
Specifies the number of memory bits in the module.

name Specifies hierarchical instance name to generate.

-util float Specifies the target utilization value for proto_design. This target utilization appears in the
sai_proto_design.seed file.

September 2022 1843 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

delete_macro
delete_macro
[-help]
[macroInstanceOrCellName]
[-cell moduleName]

Delete macro instances. It allows the software to delete macros created using the add_macro command.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-cell moduleName Specify the cell name that has the macro inside. Deletes all the macros that the
macroInstanceOrCellName in module specified by moduleName.

-help Outputs a brief description that includes type and default information for each delete_macro
parameter.

macroInstanceOrCellName Deletes the specified macro instance name or the macro's cell name if -cell is specified.

September 2022 1844 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

delete_module
delete_module

[-help]

hinstName

[-cell]

Deletes hierarchical instance and module. It allows the software to delete modules inserted using the create_module command.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-cell If specified, Verilog module of hinstName is also deleted.

-help Outputs a brief description that includes type and default information for each delete_module parameter.

hinstName Specifies hierarchical instance name to delete.

September 2022 1845 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

insert_boundary_flops
insert_boundary_flops

[-help]

-clock string

-module string

[-reset]

-terms string

Allows insertion of boundary flops for empty modules/blocks (instantiated in the top level) through SAI. The command options
specify the clock net name, the module name and the module pin name.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-clock string Specifies clock net name.

-help Outputs a brief description that includes type and default information for each insert_boundary_flops
parameter.

-

module string
Specifies the module name.

-reset Deletes all flops.

-terms string Specifies module pin name.

September 2022 1846 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

report_sai_constraint
report_sai_constraint

[-help]

[-area_weight float]

[-spacing_weight float]

[-order_weight float]

[-congestion_weight float]

[-rule {all | rule_name | rule_name_list}]

You can use the report_sai_constraint command to validate a floorplan result and to check whether the specified SAI
constraints are met.
This enables front-end designers to easily evaluate a floorplan provided by their physical designers against the specified floorplan
rules without requiring them to have much knowledge about using the Innovus System.

The report_sai_constraint command reports:

The general floorplan violations such as macro-to-macro overlap, fence-to-fence overlap, macro overlaps with fence, and/or if
macros are placed outside their parent module boundary.

SAI 2.0 constraint violations

The Floorplan Quality Index that enables you to estimate whether a floorplan is ready to be used. Floorplan Quality Index is
similar to the total negative slack (TNS) concept of timing analysis

Support area, spacing, net weight, order, and congestion quality indexes; and their index weights.

Besides generating a report, it also creates a violation marker if violations are detected. These violation markers will be displayed
in the Innovus artwork window and can be queried from the Innovus violation browser.

Based on the reported floorplan quality index, you can decide whether this floorplan is good to go or not. If the floorplan quality
index does not meet your requirements, you can further:

Adjust the wire length, congestion, and/or overlap cost factors and rerun proto_design to produce new floorplan result(s).

Improve the current floorplan by manual adjustment.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

September 2022 1847 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

Parameters

Related Information

Supported SAI Commands

-area_weight float Specifies the weight of the area index.

Default: 1.0

-

congestion_weight float
Specifies the weight of the congestion index.
Default: 1.0

-help Outputs a brief description that includes type and default information for each
report_sai_constraint parameter.

-order_weight float Specifies the weight of the order index.
Default: 1.0

-rule {all | rule_name | rule_name_list}

Checks and reports the violation(s) of the specified rule(s).
Default: all (All SAI rules of the current design)

-spacing_weight float Specifies the weight of the area index.
Default: 1.0

September 2022 1848 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

set_floorplan
set_floorplan

[-help]

[-aspect_ratio float]

[-height float]

[-side_spacing float]

[-util float]

[-width float]

Defines specifications for the floorplan command before netlist import. The aspect ratio and utilization values will be passed to
the floorplan command.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-

aspect_ratio float
Specifies the core dimensions of the chip as the ratio of the height divided by the width.
If a value of 1.0 is used, a square chip is defined.
A value of 2.0 will define a rectangular chip with height dimensions that are twice the width dimension.

-height float Specifies the height of the die.

-help Outputs a brief description that includes type and default information for each set_floorplan
parameter.

-

side_spacing float
Specifies the distance from all the sides to the core.

-util float Specifies the target utilization for the core.

-width float Specifies the width of the die.

September 2022 1849 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

set_ref_flop
set_ref_flop

[-help]

reference_flop_cell_name

[-clock_input_pin string]

[-data_input_pin string]

[-data_output_pin string]

Defines the reference flop cell. The reference flop cell is used for boundary flop (inserted by connect command) and dummy
flops (inserted by create_module command).

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-clock_input_pin string Specifies the cell CLK port name.

-data_input_pin string Specifies the cell D port name.

-data_output_pin string Specifies the cell Q port name.

-help Outputs a brief description that includes type and default information for each set_ref_flop
parameter.

reference_flop_cell_name Specifies the cell name of the reference flop.

September 2022 1850 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

set_ref_gate

set_ref_gate

[-help]

reference_unit_gate_cell

Defines reference gate cell. The reference gate cell is used for dummy gates (inserted by create_module command).

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-help Outputs a brief description that includes type and default information for each set_ref_gate
parameter.

reference_unit_gate_cell Specifies the cell name of the reference gate.

September 2022 1851 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

set_ref_macro
set_ref_macro

[-help]

name

[-edge_orientation string]

-height float

[-symmetry string]

[-type string]

-width float

Defines a reference macro. It helps specify the macro size, macro type, and symmetry information. This command generates a LEF
macro with 'SYMMETRY X Y R90'. This command supports OA based design import/export.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-

edge_orientation string
Specifies orientation of the macro that will be used when placing it on left, bottom, right, top core
boundary respectively.

-height float Specifies the height size.

-help Outputs a brief description that includes type and default information for each set_ref_macro
parameter.

name Specifies the macro name.

-symmetry string Specifies the macro symmetry.

Default: "X Y"

-type string Specifies the macro type.

Default: BLOCK

-width float Specifies the width size.

September 2022 1852 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

set_ref_memory
set_ref_memory

[-help]

name

-area_per_bit float

[-aspect_ratio float]

[-bit_size float]

[-symmetry string]

Allows the software to set reference memory cells in SAI mode. This command creates LEF MACRO. Reference memory is used
for macro insertion by create_module and add_macro command. This command supports OA based design import/export.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-

area_per_bit float
Specifies the area per bit.

-

aspect_ratio float
Specifies the aspect ratio of the memory cell.

Default: 1.0

-bit_size float Specifies the bit size. This size is used with create_module and add_macro command.

For example,
set_ref_memory mem1 -bit_size 1024 -area_per_bit 1.1 -aspect_ratio 0.75
create_module iBlock -cell mBlock -memory_bit_count 4096
add_macro -cell mBlock -memory mem1

then, 4096 / 1024 = 4 “mem1” macro are added in mBlock module.

-help Outputs a brief description that includes type and default information for each set_ref_memory
parameter.

name Specifies the reference memory cell name. It generates name.lef on the Innovus working directory.

-symmetry string Specifies the memory symmetry.

September 2022 1853 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

set_sai_version
set_sai_version

[-help]

version

Sets the version of the SoC Architecture Information (SAI) mode.

Note: Use this command in the SAI interactive mode or write it in the SAI file. The read_sai command can be used to read the SAI
file in batch mode.

Parameters

Related Information

Supported SAI Commands

-help Outputs a brief description that includes type and default information for each set_sai_version parameter.

version Specifies the SAI format version.

September 2022 1854 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported SAI Commands

../innovusTCR/read_sai.html

Supported UFC Commands
The Unified Floorplan Constraint (UFC) methodology is a powerful Innovus capability that can define several rules on floorplan
objects, check specified rules, and report the violations with rule name as well as severity. The violations can be shown in the
violation browser. UFC also provides the ability to automatically fix specific violations. It can add routing blockages, snap macro
location, adjust core shape to fix corresponding violations. In addition, UFC also provides the ability to exclude rules from checking
for specified objects.

The following are the supported UFC Commands:

set_area_rule

set_width_rule

set_spacing_rule

set_merge_and_reshape_spacing_rule

set_halo_rule

set_same_length_site_rule

set_track_rule

set_parallel_run_length_rule

set_reshape_object_rule

set_white_area_extension_rule

set_reshape_available_sites_rule

set_dont_use_base_cell_rule

exclude_rule

Note: You can write the supported UFC commands in a UFC file and then use the check_ufc command to check the floorplan
based on the rules defined in the file.

September 2022 1855 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

../innovusTCR/check_ufc.html

exclude_rule
exclude_rule

-name "ruleName"

[-obj string]

[-obj1 string]

[-ref string]

[-reason string]

[-same_base_cell]

[-check_orientation {none | mirror | partial | align}]

Excludes the specified rules if the object triggers the exclusion condition.

Note:

The exclude_rule command should be specified before the other UFC rules (set_*_rule).

The exclude_rule command only supports macro, routing_blockage and available_sites as -obj, -obj1 and -ref objects.

Parameters

Example

exclude_rule –name "GBL_ MACRO_SPACING" -obj [macros -if {.base_cell.name == “XYZ”}] \

 –reason “my spacing is included inside the macro”

set_spacing_rule {.spacing >=10.0} -name "GBL_ MACRO_SPACING" -obj [macros] -ref [macros] \

 -description {the spacing between macro to macro must be greater than 10.0.}

-check_orientation {none | mirror | partial | align}

Specifies the spacing check is valid
when the -obj and -ref objects are
mirror, partial or align.

Default: none

Data_type: enum, optional

-

name "ruleName"
Specifies the rule name.

-obj string Specifies the object to be excluded for
this rule.

-obj1 string Specifies the object to be excluded for
this rule.

-reason string Specifies the reason for exclusion of
the object.

-ref string Specifies the reference object to be
excluded for this rule.

-same_base_cell When specified, the rule will be only
valid when both -obj and -ref objects
are hard macros and identical.

September 2022 1856 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Related Information

Supported UFC Commands

September 2022 1857 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_area_rule
set_area_rule

expression_of_.area

-obj shapeObj

-name "ruleName"

[-description string]

[-severity string]

Specifies area constraints for specific object(s).

Parameters

Example

The following command specifies the rule name, the expression of .area to check for the valid area and the severity of the
rule.
set_area_rule –name "AREA_X1" {.area >= 8000.0} –obj [available_sites]}] –severity GUIDELINE

Violations of area rule:

Related Information

Supported UFC Commands

-description string Specifies the
description of this rule.

expression_of_.area Specifies the dimension
expression of .area to
check for the valid area.

-name "ruleName" Specifies the rule name.

-obj shapeObj Specifies the target
object to check against
this rule.

-severity string Specifies the severity.

September 2022 1858 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_dont_use_base_cell_rule
set_dont_use_base_cell_rule

-name "ruleName"

-obj string

[-description string]

[-severity string]

Specifies the cells which cannot be used in the design.

Parameters

Related Information

Supported UFC Commands

-

description string
Specifies the description of
this rule.

-name "ruleName" Specifies the name of the
rule that is shown on DRC
marker.

-obj string Specifies the list of cell
names to be defected.

-severity string Specifies the severity.

September 2022 1859 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_halo_rule
set_halo_rule

expression_of_.halo

-obj shapeObj1

-ref shapeObj2

-name "ruleName"

[-side {all | top | bottom | left | right | vertical | horizontal}]

[-type {inner | outer}]

[-detect_ref_enclosed {0|1}]

[-description string]

[-severity string]

[-shielding_obj shapeObj3]

Specifies halo constraints for specific object(s).

Parameters

-description string Specifies the description of this rule.

-detect_ref_enclosed

{0|1}
Checks if the reference object is completed enclosed by the main object.

Note: With -detect_ref_enclosed 1, only checks existence of specified edge.

Default: 0

expression_of_.halo Specifies the dimension expression of .halo to check for valid spacing.

-name "ruleName" Specifies the rule name.

-obj shapeObj1 Specifies the target object to check against this rule.

-ref shapeObj2 Specifies the reference object to check against this rule.

-severity string Specifies the severity.

September 2022 1860 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-

shielding_obj shapeObj3
Specifies the shielding object that the rule will waive off if the object is between -obj shapeObj1
and -ref shapeObj2.

-side {all | top | bottom | left | right | vertical | horizontal}

Specifies the side of the cell to use for checking. The halo rule is checked only on the specified
side.

Default: all

-type {inner | outer} Specifies the type of halo to be checked. The halo check types can be outer or inner.

Default: inner

September 2022 1861 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Example

set_halo_rule -name "MACRO.HALO.M4" -obj [route_blockages -if { .layer.name == Metal4}] -ref [macros] -type

outer -side all -detect_ref_enclosed {.halo >= 20.0} \

-description {The outer distance of routing halo on Metal4 enclose macro in all direction must be greater

than 20.0 }

Violations of halo rule:

set_halo_rule -name "DMTB.X3" -obj [available_sites] -ref [base_cells SRAM] -side left -type inner -

detect_ref_enclosed \

 -shielding_obj [base_cells SRAM] {.halo in {0.153}} \

 -description {set_halo_constraint -label DMTB.X3 -class1 useful_sites -lib_cell2 SRAM -halo_side left -

edge_type inner -must_enclosure true -shielding_lib SRAM -white_list 0.153}

Shielding halo rules:

Related Information

Supported UFC Commands

September 2022 1862 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_merge_and_reshape_spacing_rule
set_merge_and_reshape_spacing_rule

expression of .spacing

-name "ruleName"

-obj {[obj1], [obj2]}

-ref {[ref1], [ref2]}

-parallel_run_length float

-reshape_obj_element [index direction value]

-reshape_ref_element [index direction value]

-reshape_obj [direction value]

-reshape_ref [direction value]

-direction {all|horizontal|vertical|corner_distance|top|bottom|left|right}

Specifies spacing between merged and reshaped objects. This rule is used to check the spacing between merged objects.

Parameters

-direction {all|horizontal|vertical|corner_distance|top|bottom|left|right}

Specifies the direction of the edge or the target object to perform the
spacing check. For rectilinear objects, all edges of the specified
direction are checked.

Note: The corner-to-corner spacing check with the -direction
corner_distance option is only valid when the real parallel run length
between target and reference object is less than zero. When parallel run
length is larger than zero, there is no need to check the corner distance.

Note: The rule only checks the corner space between 90 degrees.

expression_of_.halo Specifies the expression of .spacing to check for valid spacing.

-name "ruleName" Specifies the rule name.

September 2022 1863 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-obj {[obj1], [obj2]} Specifies the target object to check against this rule.

Note: The -obj and -ref parameters are used to specify which objects
should be merged as one target object and one reference object
respectively.

Note: Before merging objects, objects should be reshaped using the -
reshape_obj_element and -reshape_ref_element parameters to
determine whether the specified objects can be merged. Only objects
which overlap with each other after reshaping can be merged. The
merged objects can still be reshaped by the -reshape_obj and -
reshape_ref parameters. The reshaped objects will be used to do
spacing check.

-

parallel_run_length float
Specifies the minimal parallel run length required to enable spacing
check. It is invalid when checked direction is corner_distance.

-ref {[ref1], [ref2]} Specifies the reference object to check against this rule.

Note: This parameter is used to specify which objects should be merged
as one reference object.

-reshape_obj [direction

value]
Specifies to reshape objects specified with the -obj parameter after they
are merged. The -reshape_obj parameter works on the -obj parameter.
Its format is:
{{direction value} {direction value} …}.

Note: The reshaped and merged target or reference objects can still be
reshaped before spacing check. The -reshape_obj and -reshape_ref
parameters are used to reshape target and reference objects.

direction: Specifies the direction of reshape. The valid value is
vertical, horizontal, left, right, top and bottom.

value: Specifies the reshape value. A positive value means extend
and a negative value means shrink.
For example, “-obj {[available_sites], [base_cells -if {.name ==
SRAM1}]} -reshape_obj_element {{0 horizontal 0.5} {1 vertical 0.6}} -
reshape_obj {{horizontal 0.3} {vertical 0.4}}” means target object
should extend 0.3 in horizontal and extend 0.4 in vertical.

The following diagram shows a reshaped merged object used as a
target object to do spacing check:

-reshape_obj_element [index direction value]

September 2022 1864 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Specifies to reshape objects specified with the -obj parameter and then
merge them into one object.

index: Specifies the objects element. The valid value is from 0 to 1.
For example, for index “-obj {[available_sites], [base_cells -if {.name
== SRAM1}]}”,
0 stands for available_sites and 1 stands for block SRAM1.

direction: Specifies the direction of reshape. The valid value is
vertical, horizontal, left, right, top and bottom.

value: Specifies the reshape value. A positive value means extend
and a negative value means shrink.
For example, “-obj {[available_sites], [base_cells -if {.name ==
SRAM1}]} -reshape_obj_element {{0 horizontal 0.5} {1 vertical 0.6}}”
means available_sites extends 0.5 in horizontal and block SRAM1
extend 0.6 in vertical.

Only reshaped object elements overlap with each other can be merged.

Reshape and merge object elements

The following diagram shows the process of reshape object elements
and then merge them as one target object. For this case, if the initial
spacing between available_sites and SRAM1 is larger than 0.5, then
they will not be merged after extension 0.5 in horizontal since the
reshaped objects do not abut or overlap with each other.

-reshape_ref [direction

value]
Specifies to reshape objects specified with the -ref parameter after they
are merged. The -reshape_ref parameter works on the -ref parameter.
Its format is:
{{direction value} {direction value} …}.

-reshape_ref_element [index direction value]

Specifies to reshape objects specified with the -ref parameter and then
merge them into one object.

-severity string Specifies the severity.

September 2022 1865 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Example

set_merge_and_reshape_spacing_rule -name “DTMB.S1” -obj {[available_sites] , [base_cells -if {.name ==

SRAM1}]} -ref {{[available_sites] , [base_cells -if {.name == SRAM2}]} -reshape_obj_element {{0 horizontal

0.5} {1 vertical 0.6}} -reshape_ref_element {{0 horizontal 0.5} {1 vertical 0.6}} -reshape_obj {{horizontal

0.3} {vertical 0.4}} -reshape_ref {{horizontal 0.3} {vertical 0.4}} -direction corner_distance {.spacing >=

5} \

-description {set_composite_space_constraint -lable “DTMB.S1” -object1 {{class useful_site} {lib_cell SRAM1}}

-object2 {{class useful_site} {lib_cell SRAM2}} -extension_obj_element {{0 horizontal 0.5} {1 vertical 0.6}}

-extension_ref_element {{0 horizontal 0.5} {1 vertical 0.6}} -extension_obj {{horizontal 0.3} {vertical 0.4}}

-extension_ref {{horizontal 0.3} {vertical 0.4}} -direction corner -min 5}

Example of rule DTMB.S1

Related Information

Supported UFC Commands

September 2022 1866 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_parallel_run_length_rule
set_parallel_run_length_rule

expression_of_.prl

-name "ruleName"

[-obj string]

[-ref string]

[-direction {all | horizontal | vertical}]

[-max_triggering_spacing float]

[-outside_projection [-triggering_prl float] [-obj_only]]

[-description string]

[-severity string]

Checks the projected edge length of macro or available_sites.

September 2022 1867 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Parameters

-description string Specifies the description of this rule.

-direction {all | horizontal | vertical}

Specifies the check direction.

Default: all

-

max_triggering_spacing float
Specifies that the rule will only be checked when the spacing between
two objects is smaller than or equal to the specified value.

Default: Infinite, that is all the parallel run lengths are checked in the
design.

-name "ruleName" Specifies the rule name.

-obj string Specifies the target object to check against this rule.

-obj_only When specified (true), only the side of object specified by the -obj
parameter is checked with the projection rule. If -obj_only is not
specified (false), both sides of objects specified by the -obj and -ref
parameters are checked for projection rule.

Default: false

Note: It must be used with the -outside_projection parameter.

-outside_projection When specified, it checks the outside projection between two objects
instead of checking parallel run length.

If -outside_projection is false, the parallel run length is checked.

If -outside_projection is true, projection length is checked.

-ref string Specifies the reference object to check against this rule.

-severity string Specifies the severity.

-triggering_prl float Specifies that the projection rule will only be checked when the prl
between two objects is larger than or equal to this value.

Default: 0

Note: It must be used with the -outside_projection parameter.

September 2022 1868 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Example

set_parallel_run_length_rule -name "DMTB.X6" -obj [base_cells BLK] -ref [available_sites] -direction vertical

-max_triggering_spacing 0 {.prl >= 0.6} \

 [-description {set_parallel_run_length_contraint -label "DMTB.X6" -lib_cell1 BLK -class2 useful_site -

direction vertical -space 0 -min 0.6}]

set_parallel_run_length_rule -name "DMTB.X7" -obj [base_cells BLK] -ref [base_cells BLK] -direction vertical

-max_triggering_spacing 0 {.prl >= 0.6} \

 [-description {set_parallel_run_length_contraint -label "DMTB.X7" -lib_cell1 BLK -lib_cell2 BLK -direction

vertical -space 0 -min 0.6}]

set_parallel_run_length_rule -name "DMTB.X8" -obj [base_cells BLK] -ref [available_sites] -direction

horizontal -max_triggering_spacing 0.5 {.prl >= 0.4} \

 [-description {set_parallel_run_length_contraint -label "DMTB.X8" -lib_cell1 BLK -class2 useful_site -

direction horizontal -space 0.5 -min 0.4}]

Example of parallel run length rules:

set_parallel_run_length_rule -name "DMTB.X9" -obj [base_cells BLK] -ref [base_cells BLK] \

 -direction vertical -max_triggering_spacing 0 -outside_projection {.prl ≥ 0.612} \

 [-description {set_projection_length_difference_constraint -label "DMTB.X9" -lib_cell1 BLK -lib_cell2 BLK

-direction vertical -space 0 -min 0.612}]

set_parallel_run_length_rule -name "DMTB.X10" -obj [base_cells BLK] -ref [available_sites] \

 -direction vertical -max_triggering_spacing 0 -outside_projection {.prl ≥ 0.612} \

 [-description {set_projection_length_difference_constraint -label "DMTB.X10" -lib_cell1 BLK -class2

useful_site -direction vertical -space 0 -min 0.612}]

set_parallel_run_length_rule -name "DMTB.X11" -obj [base_cells BLK] -ref [available_sites] \

 -direction vertical -max_triggering_spacing 0 -outside_projection -triggering_prl 0.8 {.prl ≥ 0.612} \

 [-description {set_projection_length_difference_constraint -label "DMTB.X10" -lib_cell1 BLK -class2

useful_site -direction vertical -space 0 -prl_value 0.8 -min 0.612}]

Example of outside_projection length difference rules:

September 2022 1869 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Note: This rule supports using extended objects. It enables the set_reshape_object_rule command to extend objects. The extend
objects honor orientation.

For example:
set_reshape_object_rule -name "DTMB.X11" -obj obj -direction horizontal -size 1

set_parallel_run_length_rule -obj [base_cells BLK] …

Related Information

Supported UFC Commands

September 2022 1870 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_reshape_available_sites_rule
set_reshape_available_sites_rule

-obj {available_sites | available_sites_no_merge}

-skip_cells cell_name

Recalculates the available_sites or available_sites_no_merge by skipping the specified cells. It takes the row sites under the cells
into account.

Note:

The set_reshape_available_sites_rule command should be specified before the other set_*_rule rules.

The set_reshape_available_sites_rule command only supports blocks as skip_cells.

Parameters

Example

The following command specifies the available_sites’ width check if macro1 is ignored.
set_reshape_available_sites_rule -obj available_sites -skip_cells macro1

In the following, the Diagram-A shows that the available_sites will be cut into many parts if macro1 and macro2 are taken into
account. The Diagram-B shows the available_sites only be cut by macro2 since macro1 is skipped by
set_reshape_available_sites_rule.
 A B

-obj {available_sites | available_sites_no_merge}

Specifies the object which will be reshaped. It only can be
available_sites or available_sites_no_merge.

Data_type: enum, required

-skip_cells cell_name Specifies the cells that are skipped while calculating the
available_sites or available_sites_no_merge. It take the row
sites under the cells into account.

This parameter supports wildcards (*).

Data_type: list, required

September 2022 1871 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Related Information

Supported UFC Commands

September 2022 1872 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_reshape_object_rule
set_reshape_object_rule

–name ruleName

–obj { all | obj |ref }

–direction { horizontal | vertical | top | bottom | left | right}

–size float

Reshapes the specified objects in specified rules.

Note: This rule can only work on set_spacing_rule and set_parallel_run_length_rule.

Parameters

–

name "ruleName"
Specifies the rules whose –
obj or –ref objects will be
reshaped.

–obj { all | obj

|ref }
Specifies the objects in the
specified rules to reshape.

all: Objects specified by
both the -obj and -ref
options will be reshaped.

obj: Only objects specified
by the -obj option in the
specified rules will be
reshaped.

ref: Only objects specified
by the -ref option in the
specified rules will be
reshaped.

–direction { horizontal | vertical | top |

bottom | left | right}

September 2022 1873 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Specifies the reshape
direction.

horizontal: Objects are
reshaped in the horizontal
direction.

vertical: Objects are
reshaped in the vertical
direction.

top: Objects are reshaped
in the top direction.

bottom: Objects are
reshaped in the bottom
direction.

left: Objects are reshaped
in the left direction.

right: Objects are
reshaped in the right
direction.

September 2022 1874 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

–size float Specifies the reshape value.
Objects are extended when a
positive value is specified and
shrunk when a negative value
is specified.

Example:

-direction vertical –

size 1

-direction bottom –size

1

-direction vertical –

size -1

September 2022 1875 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Example

The following example shows objects are reshaped based on PRL/PLD rule.
set_reshape_object_rule -name "rule_name" -obj obj -direction vertical –size 1

set_reshape_object_rule -name "rule_name" -obj ref -direction vertical –size 1

Related Information

Supported UFC Commands

September 2022 1876 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_same_length_site_rule
set_same_length_site_rule

[-obj shapeObj]

[-name "ruleName"]

[-min_site]

[-site_extension]

[-description string]

[-severity string]

Sets the same length site rule in a group of continuous poly stripes with the same length.

Parameters

-

description string
Specifies the description of this rule.

September 2022 1877 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-min_site Specifies the minimum number of poly for a group of continuous poly
with the same length.

Default:10

Note: The same length site rule is already supported with the minimal
number. However, UFC methodology also provides the capability to
shrink/extend 0.5 site on available_sites.

The following example shows the same length site rule with 0.5 site
shrinkage/extension.

-name "ruleName" Specifies the rule name.

-obj shapeObj Specifies the target object to check against this rule.

Default: available_sites

-severity string Specifies the severity.

September 2022 1878 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Example

set_same_length_site_rule -name "SL.CORE.1" -min_site 20 -site_extension 0.5 \

-description {The same length site must be greater than 20 with 0.5 site extension.}

Related Information

Supported UFC Commands

-site_extension Specifies the extension site number to be extend or shrink. If the
specified value is negative, it will shrink the same length site.

September 2022 1879 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_spacing_rule
set_spacing_rule

expression_of_.spacing

-obj shapeObj1

{-ref shapeObj2 [-check_edge {opposite | same | both }]}

-name "ruleName"

[-parallel_run_length float | -enclosure [-detect_ref_enclosed]]

[-no_overlap]

[-direction {all | vertical | horizontal | any | top | bottom | right | left | corner_distance | manhattan}]

[-description string]

[-severity string]

[-shielding_obj shapeObj3]

[-same_base_cell]

[-check_orientation {none | mirror | partial | align}]

[-bounding_box {none | both | obj | ref} [-ignore_orientation {none |both | obj | ref}]]

[-same_object]

Specifies the spacing or enclosure constraints between specific objects.

Parameters

-bounding_box {none | both | obj | ref}

September 2022 1880 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

When specified, uses extended bounding box instead of the actual shape to check
the spacing.

none: The actual shapes of the target and reference objects are used to check the
spacing.

both: Uses the bounding box of both the target object and the reference object to
check the spacing.

obj: Uses the bounding box of the target object and the actual shape of the
reference object to check the spacing.

ref: Uses the the actual shape of the target object and the bounding box of the
reference object to check the spacing. This ref option value is normally used for
checking spacing between design bounding box and macro.

The following example shows the use of the design bounding box as target object
box with option -bounding_box obj:
-obj [design_boundary] -bounding_box obj

Default: none

Data_type: enum, optional

-check_edge {opposite | same | both }

September 2022 1881 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Specifies that the spacing check is between edges of the same, opposite or both
sides of the target and reference objects.

For example, the following diagram shows the spacing check between the same and
opposite sides.

The -check_edge parameter is used to specify if all of -ref object edges should be
checked from. The following diagram shows how the -bounding_box, -check_edge
and -direction parameters determine the checked spacing.

Default: opposite

Data_type: enum, optional

-check_orientation {none | mirror | partial | align}

Specifies that the spacing check is valid when -obj shapeObj1 and -ref shapeObj2
have mirror, partial or align orientations. It checks the spacing between specified
orientations.

none: Checks the spacing between -obj shapeObj1 and -ref shapeObj2 without
taking orientation into account.

mirror: Checks the spacing between -obj shapeObj1 and -ref shapeObj2 with
mirror symmetry.
Example: -check_orientation mirror

September 2022 1882 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

partial: Checks the spacing between the same edges of -obj shapeObj1 and -
ref shapeObj2 without taking edges’ direction into account. It is similar to mirror
but the checked edges can have opposite direction.
Example: -check_orientation partial

align: Checks the spacing between -obj shapeObj1 and -ref shapeObj2 if they
align in the check direction.
Example: -check_orientation align

September 2022 1883 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-detect_ref_enclosed Checks if the reference object is completely enclosed by the target object.

Note: With the -enclosure parameter, the spacing check is only performed when the
target object encloses the reference object.

Note: With -detect_ref_enclosed, the target object must enclose the reference
object. Otherwise, it is a violation. Without -detect_ref_enclosed, no checking is
done and no violation is reported.

Default: 0

-description string Specifies the description of this rule.

-direction {all | vertical | horizontal | any | top | bottom | right | left | corner_distance |

manhattan}

Specifies the direction of the edges or the target object to perform the spacing check.
For rectilinear objects, all edges of the specified direction will be checked.

corner_distance: Corner distance is be modeled as spacing (corner_distance)

manhattan: Manhattan spacing means the -ref shapeObj2 must be enclosed by
the -obj shapeObj1 and the sum of the distance between -ref shapeObj2 corner
and -obj shapeObj1 boundary in X and Y direction must be equal or greater than
the specified value.

In the following example, the Manhattan spacing is only for enclosure check:

September 2022 1884 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

In the following example, manhattan spacing is checked if -obj shapeObj1 and -
ref shapeObj2 are rectilinear.

Default: all

Data_type: enum, optional

September 2022 1885 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-enclosure When specified, spacing check is only performed when the target object encloses the
reference object.

Note: With -detect_ref_enclosed, the target object must enclose the reference
object. Otherwise, it is a violation. Without -detect_ref_enclosed, no checking is
done and no violation is reported.

Default: 0

expression_of_.spacing Specifies the expression of .spacing to check for valid spacing.

-ignore_orientation {none |both | obj | ref}

September 2022 1886 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

When specified, the checked edge of the specified object should not rotate even if the
specified object rotates.

For example, -ignore_orientation ref means that the checked edge of the
reference object should not rotate even if the reference object rotates.

Note: This parameter can only be used with -bounding_box parameter.

When -ref object is a macro, -check_edge parameter is not both, and -
ignore_orientation is none, then the rotation of the macro is considered while
checking the spacing rules. The following diagram shows that the checked edge of
the reference object should also rotate if the reference object rotates.

If -ignore_orientation is ref, spacing check does not consider the macros’
rotation. The following diagram shows that the checked edge of the reference object
does not rotate if reference object rotates.

Default: none

Data_type: enum, optional

-name "ruleName" Specifies the rule name.

September 2022 1887 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-no_overlap When enabled, overlapping between the target and reference object is flagged.

Default: 0

-obj shapeObj1 Specifies the target object to check against this rule.

Note: This rule is not checked on objects (-obj object) that have R90 or R270
orientation.

September 2022 1888 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-

parallel_run_length float
Specifies the minimal parallel run length to enable spacing check. This spacing
check is valid only for horizontal, vertical, orthogonal spacing.

-ref shapeObj2 Specifies the reference object to check against this rule.

-same_base_cell When specified, the rule will be only valid when both -obj shapeObj1 and -
ref shapeObj2 are hard macros and identical. It checks the spacing between same
cells only.

September 2022 1889 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-same_object When specified, the spacing between between -obj shapeObj1 and -ref shapeObj2
is checked along with the spacing for objects themselves.

Note: This rule check is valid only when both -obj shapeObj1 and -ref shapeObj2
are available sites.

For example, the following diagram shows the spacing check in the horizontal
direction with and without option -same_object when both -obj and -ref are
specified as available sites:

The following diagram shows the spacing check in the vertical direction with and
without option -same_object when both -obj and -ref are specified as available
sites:

-severity string Specifies the severity.

September 2022 1890 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Example

set_spacing_rule -enclosure -name "EN.CORE.1" -obj [design_boundary] -ref [available_sites] -direction all

{.spacing >= 80.0} \

-description {The available sites to design boundary spacing in horizontal and vertical direction must be

greater than 80.0.}

set_spacing_rule -enclosure -name "EN.CORE.1" -obj [design_boundary] -ref [macros] -direction vertical -

detect_ref_enclosed {.spacing >=150.0} \

-shielding_obj shapeObj3 Specifies the shielding object that the rule will waive off if the object is between -
obj shapeObj1 and -ref shapeObj2.

Note: With option -parallel_run_length and a negative value, the spacing between
-obj and -ref is not checked if the parallel edges are fully shielded. Spacing is
checked if parallel edges are not fully shielded.

Example: With -shielding_obj

Example: With -shielding_obj and -parallel_run_length

September 2022 1891 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-description {The macro to design boundary spacing in vertical direction must be greater than 150.0.}

set_spacing_rule -name "MACRO.SP.1" -obj [macros] -ref [available_sites] -direction all -parallel_run_length

20 {.spacing >= 100.0} -severity ERROR-02\

-description {The horizontal and vertical spacing between macro and available sites must be greater than

100.0 when the PRL is greater than 20.}

Violations of spacing rule:

set_spacing_rule -name "DMTB.X2" -obj [base_cells SRAM] -ref [base_cells SRAM] -direction left -

parallel_run_length -0.42 \

 -shielding_obj [available_sites] {.spacing in {0.153}} \

 -description {set_space_constraint -label “DMTB.X2” -lib_cell1 SRAM -lib_cell2 SRAM -direction left -

prl -0.42 -shielding_class useful_site -white_list 0.153}

Shielding spacing rules:

September 2022 1892 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_spacing_rule -name "DMTB.X4" -obj [base_cells SRAM1 SRAM2] -ref [base_cells SRAM1 SRAM2] -

same_base_cell -check_orientation mirror

 -direction left -parallel_run_length -0.42 {.spacing >= 0.969} \

 -description {set_space_constraint -label "DMTB.X4" -lib_cell1 {SRAM1 SRAM2} -lib_cell2 {SRAM1 SRAM2}

-identical true -mirror true -direction left -prl -0.42 -min 0.969}

set_spacing_rule -name "DMTB.X4" -obj [base_cells SRAM1 SRAM2] -ref [base_cells SRAM1 SRAM2] -same_base_cell

\

 -direction left -parallel_run_length -0.42 {.spacing >= 0.787} \

 -description {set_space_constraint -label "DMTB.X4" -lib_cell1 {SRAM1 SRAM2} -lib_cell2 {SRAM1 SRAM2}

-identical true -direction left -prl -0.42 -min 0.787}

set_spacing_rule -name "DMTB.X4" -obj [base_cells SRAM1 SRAM2] -ref [base_cells SRAM1 SRAM2] -

check_orientation mirror \

 -direction left -parallel_run_length -0.42 {.spacing >= 0.686} \

 -description {set_space_constraint -label "DMTB.X4" -lib_cell1 {SRAM1 SRAM2} -lib_cell2 {SRAM1 SRAM2}

-mirror true -direction left -prl -0.42 -min 0.686}

Identical and mirror spacing rules:

set_spacing_rule -name "SRAM.L1" -obj [design_boundary] -ref [base_cells SRAM}] -check_edge same -

bounding_box obj -enclosure -direction left {.spacing >= 10} \

 -description {set_location_constraint -label "SRAM.L1" -lib_cell SRAM -origin bottom_left -direction

September 2022 1893 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

horizontal -location_type bottom_left -min 10}

Here, the spacings between the left edges of macro SRAM1 and the left edge of design bounding box will be checked.

Spacing check between IO pads and other objects (macros and available_sites) in horizontal direction

set_spacing_rule -name “DMTB.IO.1” -obj [base_cells pllclk] -ref [base_cells PDIDGZ] -direction horizontal

{on_grid(.spacing-0.1,0.2)}\

 -description {set_space_constraint -label “DMTB.IO.1” -lib_cell1 pllclk -lib_cell2 PDIDGZ -direction

horizontal -offset 0.1 -pitch 0.2}

set_spacing_rule -name “DMTB.IO.2” -obj [available_sites] -ref [base_cells PDIDGZ] -direction horizontal

{on_grid(.spacing-0.2,0.3)}\

 -description {set_space_constraint -label “DMTB.IO.2” -class1 useful_site -lib_cell2 PDIDGZ -direction

September 2022 1894 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

horizontal -offset 0.2 -pitch 0.3}

Related Information

Supported UFC Commands

September 2022 1895 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_track_rule
set_track_rule

-name "ruleName"

[-layer string]

[-mask string]

[-direction {horizontal | vertical}]

[-origin {core | design}]

[-grid float]

[-offset float]

[-description string]

[-severity string]

Checks the grid and offset of routing tracks on specified metal layers.

Parameters

-

description string
Specifies the description of this rule.

-direction Specifies the direction of track.

-grid Specifies the repeated grid of tracks.

Note: For track with grid 1 and offset 0, locations 0, 1, 2, 3, 4, 5, 6, 7… are
ok for tracks. It is also acceptable for the track to only have locations 1, 2,
4, or 5.
The UFC capability only checks whether the current tracks are on legal
locations. It does not check whether all the legal locations have tracks on
it.

-layer string Specifies the metal layer of routing track to be checked.

September 2022 1896 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-mask string Specifies the mask color of routing track to be checked.

Note: Multiple mask colors can be specified on DPT layer.

-name "ruleName" Specifies the rule name.

-offset float Specifies the legal offset values of track location.

Note: Offset can be a list of numbers to denote legal values of relative
track location % grid.

September 2022 1897 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Example

set_track_rule –name "DMTB.TRACK.1" -layer M1 -direction horizontal -origin core -grid 0.5 -offset {0 1 3 5

7}

Related Information

Supported UFC Commands

-origin {core |

design}
Specifies the origin of track. Origin used to determine track offset
calculation from design window or core boundary.

-severity string Specifies the severity.

September 2022 1898 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_white_area_extension_rule
set_white_area_extension_rule

-obj string

-direction {horizontal | vertical | top | bottom | left | right}

-size float

[-description string]

[-severity string]

Specifies the object extension to calculate white_area object. The default white_area is the core area except available_sites and
macros.

Notes:

The set_white_area_extension_rule command should be specified before the other set_*_rule rules.

The set_white_area_extension_rule command only supports available_sites and macros as -obj objects.

The enclosure, spacing, and width rules support white_area. The white_area can be enclosed by the design boundary,
spacing between white_area and white_area and the width of white_area.

September 2022 1899 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Parameters

-direction {horizontal | vertical | top | bottom | left | right}

Specifies the extend direction.

The following diagram shows white_area after extending
available_sites in vertical direction:

The following diagram shows white_area after extending macro in
horizontal direction:

-

description string
Specifies the description of this rule.

-obj string Specifies the target object to extend.

Note: The objects can only be available_sites and macros.

-size float Specify the extend size. A positive value means extend and a
negative value means shrink.

-severity string Specifies the severity.

September 2022 1900 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Example

set_white_area_extension_rule -obj [available_sites] -direction horizontal -size 10 \

 -description {set_white_space_object_extension -class useful_site -extend_side horizontal -extension

10}

set_white_area_extension_rule -obj [available_sites] -direction vertical -size 10 \

 -description {set_white_space_object_extension -class useful_site -extend_side vertical -extension 10}

set_white_area_extension_rule -obj [macros] -direction horizontal -size 10 \

 -description {set_white_space_object_extension -class macro -extend_side horizontal -extension 10}

set_white_area_extension_rule -obj [macros] -direction vertical -size 10 \

 -description {set_white_space_object_extension -class macro -extend_side vertical -extension 10}

White_area after defining the above rules:

Related Information

Supported UFC Commands

September 2022 1901 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_width_rule
set_width_rule

expression_of_.width

-obj shapeObj

-name "ruleName"

[-direction {all | vertical | horizontal | corner_distance}]

[-type {simple |concave | jog | incorner}]

[-description string]

[-severity string]

[{-exception_triggering_base_cell shapeObj | -triggering_base_cell shapeObj}

[-triggering_spacing float]

[-effective_extension float]]

Specifies width constraints for specific object(s).

Parameters

-description string Specifies the description of this rule.

-direction {all | vertical | horizontal | corner_distance}

Specifies the check direction.

September 2022 1902 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

-effective_extension float Specifies the effective extension value relative to the object or
exception object. The extension direction is perpendicular to the
direction specified by the -direction parameter.

Default: 0

The -effective_extension parameter must be used with the –
exception_triggering_base_cell or -triggering_base_cell
parameters at the same time. The following diagram shows the
relationship between them.

For example:

-exception_triggering_base_cell cell_A -triggering_spacing S

-effective_extension E

-exception_triggering_base_cell shapeObj

Specifies the base cell name that triggers the width check exception.

expression_of_.width Specifies the dimension expression of .width to check for the valid
width.

-name "ruleName" Specifies the rule name.

-obj shapeObj Specifies the target object to check against this rule.

-severity string Specifies the severity.

-

triggering_base_cell shapeObj
Specifies the base cell name that triggers the width check.

September 2022 1903 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Understanding width types and direction

The following image can be used as a quick reference for understanding the width direction and type.

-triggering_spacing float Specifies the maximum spacing from the excepted or included width
to the triggering base cell. The spacing direction is the same as the
direction specified by the -direction parameter.

Note: It must be used with the –exception_triggering_base_cell or
-triggering_base_cell parameters at the same time.

Default: 0

The -triggering_spacing parameter must be used with the –
exception_triggering_base_cell or -triggering_base_cell
parameters at the same time. The following diagram shows the
relationship between them.

For example:

-triggering_base_cell cell_A -triggering_spacing S -

effective_extension E

-type {simple | concave | jog | incorner}

Specifies the type of width to be checked.

September 2022 1904 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Where,

Example

The following command specifies the rule name, the expression of .width to check for the valid width and the type, direction
and description.
set_width_rule -name "WIDTH.CORE.1" -obj [available_sites] -type simple -direction horizontal {on_grid

(.width-0.66, 1.32)} \

-description {The simple width of available sites in horizontal direction must be 1.32*n+0.66.}

Violations of width rule:

A Simple width in vertical direction. (Width between
two horizontal edge directly project to each other)

B Simple width in horizontal direction.

C In-corner width in vertical direction. (Width
between two 270-degree corners)

D In-corner width in horizontal direction.

E Jog width in vertical direction. (Width between
one 90-degree corner and one 270-degree
corners)

F Jog width in horizontal direction.

G Concave width in vertical direction. (Width
between two horizontal edges PRL = 0)

H Concave width in horizontal direction.

September 2022 1905 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

set_width_rule -name "DMTB.X2" -obj [available_sites] -type simple -direction vertical -

exception_triggering_base_cell [base_cells SRAM}] \

 -effective_extension 0.153 {on_grid(.width-0.13,0.4)} \

 -description {set_width_constraint -label "DMTB.X2" -class useful_site -width_type simple -direction

vertical -except_project_lib SRAM -project_extension 0.153 -grid 0.4 -offset 0.13}

set_width_rule -name "DMTB.X3" -obj [available_sites] -type simple -direction vertical {on_grid(.width-

0.15,0.4)} \

 -description {set_width_constraint -label "DMTB.X3" -class useful_site -width_type simple -direction

vertical -grid 0.4 -offset 0.15}

set_width_rule -name "DMTB.X4" -obj [available_sites] -type simple -direction horizontal -

exception_triggering_base_cell [base_cells SRAM] {on_grid(.width-0.2,0.1)} \

 -description {set_width_constraint -label "DMTB.X4" -class useful_site -width_type simple -direction

vertical -except_project_lib SRAM -grid 0.1 -offset 0.2}

set_width_rule -name "DMTB.X5" -obj [available_sites] -type simple -direction horizontal {on_grid(.width-

0.12,0.1)} \

 -description {set_width_constraint -label "DMTB.X5" -class useful_site -width_type simple -direction

vertical -except_project_lib SRAM -grid 0.1 -offset 0.12}

The following command uses the -exception_triggering_base_cell, -effective_extension and -triggering_spacing width rules:
set_width_rule -name "DMTB.X6" -obj [available_sites] -type simple -direction vertical -

exception_triggering_base_cell [base_cells Macro}] \

 -effective_extension 0.15 -triggering_spacing 0.16 {on_grid(.width-3.2,0.4)} \

 -description {set_width_constraint -label "MTB.X6" -class useful_site -width_type simple -direction

vertical -except_project_lib Macro -project_extension 0.15 -project_spacing 0.16 -grid 0.4 -offset 3.2}

Here, for DMTB.X6, the spacing between the below macro and available_sites is 0.175 which is larger than 0.16 specified by
-triggering_spacing. So the available_sites area with extension 0.15 specified by -effective_extension will be checked:

September 2022 1906 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

Related Information

Supported UFC Commands

September 2022 1907 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

September 2022 1908 Product Version 22.10

 Innovus User Guide
Syntax and Scripts--Supported UFC Commands

	Contents
	About This Manual
	Audience
	How This Manual Is Organized
	Conventions Used in This Manual
	Related Documents
	Innovus Product Documentation
	Stylus Common UI Documentation

	Additional Learning Resources
	Online Trainings
	Videos

	Introduction and Setup Guide
	Product and Licensing Information
	Product Packages and Options
	Innovus Product Packaging
	Innovus Basic Product Packaging
	Virtuoso Digital Implementation Product Packaging
	First Encounter Product Packaging
	Product Options

	Licensing Information
	Dynamic Checkout Matrix
	Multi-CPU Matrix
	Optional License Requirement for 3/5/7/10/20/32nm Nodes

	Getting Started
	Product and Installation Information
	Setting Up the Run-Time Environment
	Supported and Compatible Platforms
	64-Bit Version of Innovus Applications

	Temporary File Locations
	OpenAccess
	Launching the Console
	Tab Completing Command Names, Parameter Names, Global Variable Names, and Enum Values
	Tab Completing Parameter Names
	Tab Completing Global Variable Names
	Tab Completing Enum Type Values for Parameters
	Tab Completing Unix file and directory names

	 Command-Line Editing
	Notes

	Setting Preferences
	Interrupting the Software
	Interrupt Behavior When Tool Is Idle
	Interrupt Behavior in Interactive Mode
	Interrupting the Execution of Batch Files
	Suspending the Execution of a Script
	Stopping the Software

	The Log Files and Controls
	Accessing Documentation and Help
	Launching Cadence Help From the Command Prompt
	Accessing Documentation and Help from the GUI
	Using the man and help Commands on the Command Line

	Customizing the User Interface
	Overview
	Creating a New Menu
	Modifying an Existing Menu
	Adding a Menu Element to an Existing Menu
	Replacing an Existing Menu Element

	Adding a New Toolbar and Toolbutton
	Supported Image Formats for Icons

	Querying and Configuring Interface Elements
	Iterating, Querying, and Configuring a Menu
	Setting the Main Window's Size and Title

	Accelerating the Design Process By Using Multiple-CPU Processing
	Overview
	Running Distributed Processing
	Running Multi-Threading
	Running Superthreading
	Memory and Run Time Control
	Checking the Distributed Computing Environment
	Setting and Changing the License Check-Out Order
	Limiting the Multi-CPU License Search to Specific Products
	Releasing Licenses Before the Session Ends
	Controlling the Level of Usage Information in the Log File

	Flows
	Design Implementation Flow
	Introduction
	Recommended Timing Closure Flow
	Software
	Data Preparation and Validation
	Data Preparation
	Data Validation

	Flow Preparation
	Setting the Design Mode
	Extraction
	Timing Analysis

	Pre-Placement Optimization
	Floorplanning and Initial Placement
	Ensuring Routability
	Validating the Floorplan

	GigaPlace
	Placement Analysis
	Guidelines for PreCTS Optimization
	PreCTS optDesign Command Sequences
	Checking and Debugging Timing Optimization Results
	Path Group Optimization

	Clock Tree Synthesis
	Configuring CCOpt-CTS or CCOpt
	Running CCOpt-CTS or CCOpt
	Reporting after CCOpt-CTS or CCOpt
	Visualization of Clock Trees after CCOpt-CTS or CCOpt

	PostCTS Optimization
	PostCTS SDC Constraints
	PostCTS Setup Optimization Command Sequences
	Hold Optimization

	Detailed Routing
	Routing Command Sequence
	Improving Timing during Routing
	PostRoute Extraction
	Checking Timing

	PostRoute Optimization
	Data Preparation for SI Analysis
	PostRoute Optimization Command Sequences
	Analysis and Debug of PostRoute Optimization Results
	Optimizing With Third-Party SPEF

	Chip Finishing
	Timing Sign Off
	Final Timing Analysis and Optimization using Tempus/Quantus
	Additional Resources

	Foundation Flow
	Hierarchical and Prototyping Flow
	Hierarchical and Prototyping Flow Overview
	Top-down and Bottom-up Hierarchical Methodologies
	Top-down Methodology
	Bottom-up Methodology

	Hierarchical Floorplan Considerations
	Hierarchical Methodologies

	Hierarchical Partitioning Flow and Capabilities
	Hierarchical Partitioning

	Chip Planning
	FlexModel
	Timing Net Delay Model with Pico-second Per Micron (psPM)
	Prototyping Flow

	Supporting Giga-Scale Designs in Planning stage
	Active-logic Reduction Technology

	Top-level Timing Closure
	Using Interface Logic Models (ILM)
	Using Flexible Interface Logic Models (FlexILM)

	Chip Assembly
	Integrated Hierarchical Database
	Overview
	Integrated Hierarchical Database Flow: Examples
	Integrated Hierarchical Database Repository Management
	Creating a Module Model
	Setting and Commit a Module Model
	Updating a Module Model
	Importing/Converting an Existing DB(*.enc.dat) to a Hierarchical Module Model
	Validating Budgeting Results
	Validating an ILM Model
	Working with Nested ILMs in the iHDB Flow
	Controlling the Physical View Visibility of ILMs
	Example of Using Hierarchical DB for Timing Debugging and Floorplan Editing
	Hierarchical Extraction
	Check-in Version Control (SVN)

	Machine Learning Flow
	Overview
	Innovus Machine Learning Options
	The Machine Learning Flow
	Data Preparation
	Model Training
	Deployment

	Correlation Test

	Design Import and Export Capabilities
	Data Preparation
	 Generating a Technology File
	Creating Technology Information Using LEF
	Creating Technology Information Using OpenAccess

	Preparing Physical Libraries
	Using LEF to Create Physical Libraries
	Creating OpenAccess Physical Libraries

	 Unsupported LEF and DEF Syntax
	Unsupported LEF 5.7 Syntax
	Unsupported DEF 5.7 Syntax

	Generating the I/O Assignment File
	Creating an I/O Assignment File
	Creating a Rule-Based I/O Assignment File
	I/O Pad and Pin Assignment Examples
	 Performing Area I/O Placement

	Preparing Timing Libraries
	Encrypting Libraries
	Preparing Timing Constraints
	Preparing Capacitance Tables
	Preparing Data for Delay Calculation
	Preparing Data for Crosstalk Analysis
	Checking Designs
	Preparing Data in the Timing Closure Design Flow
	Converting iPRT Format to LEF

	Importing and Exporting Designs
	Overview
	Verifying Data before Importing a Design
	Preparing the Design Netlist
	The init_design Import Flow
	init_design Simple Data Flow
	Supported init_design Invocation Methods

	Importing Designs using the GUI
	Importing an OpenAccess Design
	Importing a Design with LEF and Verilog

	Loading a Previously Saved Global Variables File
	Handling Verilog Assigns
	Configuring the Setup for Multi-Mode Multi-Corner Analysis
	Creating Library Sets
	Editing a Library Set
	Creating Virtual Operating Conditions
	Creating RC Corner Objects
	Creating Delay Calculation Corner Objects
	Editing a Delay Corner Object
	Adding a Power Domain Definition to a Delay Calculation Corner
	Creating Constraint Mode Objects
	Creating Analysis Views
	Setting Active Analysis Views
	Checking the Multi-Mode Multi-Corner Configuration
	Saving Multi-Mode Multi-Corner Configurations

	Saving Designs
	Saving an OpenAccess Design
	Transferring OpenAccess Data between Innovus and Virtuoso for ECO

	Loading and Saving Design Data
	Loading a Partition
	Loading Floorplan Data
	Loading an I/O Assignment File
	Saving a Partition
	Saving Floorplan Data
	Saving and Restoring Timing Graph

	Converting an Innovus Database to GDSII Stream or OASIS Format
	Creating Cells and Instances
	Renaming LEF Vias
	Merging GDSII Stream or OASIS Files
	Merge Examples

	About the GDSII Stream or OASIS Map File
	Map Files
	Using Multiple Layers and Data Types

	Updating Files During an Innovus Session
	SKILL to TCL Mapping

	Trimming the Design
	Advantages of Working on a Trimmed Design
	Use Model of Working on Trimmed Designs
	How Design Objects are Handled in the Trimmed Design
	Encrypting the Names of Instances and Nets

	Design Planning Capabilities
	Floorplanning the Design
	Overview
	Common Floorplanning Sequence
	Viewing the Floorplan
	Module Constraint Types
	Target Utilization Display
	Effective Utilization Display
	Calculating Density
	Standard Row Spacing

	Grouping Instances
	Defining the Bounding Box
	Adding Logical Hierarchy Without Creating Additional Hierarchy
	Logical Hierarchy Manipulation

	Creating and Editing Rows
	Using Vertical Rows
	Using Multiple-height Rows
	Using Integer Multiple-height Rows
	Using Non-Integer Multiple-height Rows
	Working with User-defined DEF Files that Contain NIMH Rows or Unaligned Rows
	Merging Hierarchical Floorplans from Partitions

	Performing I/O Row Based Pad Placement
	Prerequisites
	Enabling the I/O Row Flow in Innovus
	Use Models
	Resizing Rectilinear block-level floorplan

	Editing Pins
	Pin Snapping on Resized Boundaries
	Moving Pins
	Swapping Pins
	Using the Pin Editor
	Spreading Floating Pins

	Running Relative Floorplanning
	Orientation Key
	Instance Place Example
	Saving and Restoring Relative Floorplan

	Saving and Loading Floorplan Data
	Specific Floorplan Section TCL Export/Import

	Snapping the Floorplan
	Resizing the Floorplan
	Resize Floorplan Options
	Setting Resize Lines
	Specifying Resize Directions
	Snapping Resize Values
	Viewing Resize Lines using Color Preferences
	Distributing I/Os using Resize Floorplan
	Resizing Floorplan Bounding Box in GUI

	Checking the Floorplan
	Finishing the Floorplan
	FinFET Technology
	FinFET Support in Innovus

	Unified Floorplan Constraints
	Recommended UFC Flow
	Creating a UFC file with Floorplan Rules
	Sample UFC File
	Checking UFC rules
	Fixing reported violations

	Using Structured Data Paths
	Introduction to Structured Data Paths
	Benefits of Using SDP
	General SDP 2G Flow
	SDP Placement Flow
	Implementing SDP Capability
	Using the SDP TCL Commands
	Using the SDP Browser
	Using the SDP Relative Placement File

	Setting SDP Options
	SDP Online Editing
	Converting Failed SDPs
	Checking SDP Placement

	Bus Planning
	Overview
	Bus Planning Flow in Innovus
	Creating a Bus Guide
	Using the Edit Bus Guide GUI
	Using Text Commands
	Example

	Moving and Stretching a Bus Guide
	Cutting, Splitting, and Merging Bus Guides
	Customizing the Bus Guide Display
	Highlighting and Dehighlighting the Bus Guide

	Saving and Restoring Bus Guide Information
	Limitations of Bus Planning

	Power Planning and Routing
	Generating Special Power Vias Using Viagen
	Generating Default Special Via
	Inserting Vias with a Specific Cutclass
	Inserting a Via from Specific Viarule
	Trimming Redundant PG Stripes and Vias

	Design Implementation Capabilities
	Using the Mixed Placer
	Mixed Placer Overview
	Recommended Mixed Placement Flow
	License Requirement
	Using the Mixed Placer Flow
	Use Model
	Tuning the Design Using Incremental Flow
	Using the ECO Flow for the New Netlist
	Cadence Placement Guidance (CPG) Flow
	Multiple Supply Voltage flow (MSV)

	Supported Design Styles
	Best Design Configuration
	Design Limitations

	Mixed Place Constraints
	Macro Array Constraints
	Group Constraints
	Spacing Constraints
	Macro Orientation Constraints
	Maximum Stacking Length
	Fixed Macro Location
	I/O Pin Keep-out
	Macro Placement Halo

	Mixed Place Constraints Support List

	Low Power Design
	Overview
	Power Domain Shutdown and Scaling
	Support for the Common Power Format (CPF)
	CPF Version Support
	Innovus Commands Supporting CPF
	Loading and Committing a CPF File
	Loading the Design (init_design)
	CPF Documentation

	Support for IEEE1801
	Low Power Cell Definition
	Timing Information
	Load the Design for IEEE1801 Using the init_design Command
	Innovus IEEE1801 Low Power Flow
	Innovus IEEE1801 Command Set Support
	IEEE1801 Documentation

	Flow Special Handling for Low Power
	Low Power Cells and Usage
	Specifying Power Intent
	The Innovus Low Power Flow
	Low Power Planning and Routing
	Low Power Optimization
	Low Power Design Verification
	Low Power Debugging Commands

	Multiple Supply Voltage Top-Down Hierarchical Flow
	Overview
	Always-On Feedthrough Handling
	Chip Partitioning
	Block-level CPF Generation
	Top-Level CPF Generation
	Block-Level Implementation
	Top-Level Implementation
	Chip Assembly

	Example of Block-Level CPF Generated by Innovus
	Example of Top-Level CPF Generated by Innovus
	Multiple Supply Voltage Bottom-Up Hierarchical Flow
	Block-Level Implementation
	Top-Level Implementation
	Chip Assembly

	Leakage Power Optimization Techniques
	Multi-Vth Optimization
	Substrate Biasing

	Power Shutdown Techniques
	Data Preparation
	Buffer Styles
	Adding Column Switches
	Attaching the Acknowledge Receiver Pin
	Enable Chaining
	Controlling the Maximum Enable Chain Depth
	Synthesizing Acknowledge Trees
	Adding Power Switch Rings
	Ring Conventions
	Using Pitch Control and Offsets

	Power Switch Prototyping
	Power Domain Parameters and Specification
	Options Summary - Switch and Power Domain
	Options Summary - Prototyping Features
	Chain Style Impacts on Ramp Up Time and Rush Current
	Prototyping Results
	Optimal Switch Results
	Switch Number Enumeration Results
	Ramp Up Switch Enumeration Results
	Number of Switches Given Current Maximum Ramp Up
	Switch Delay Given Current Maximum Ramp Up Current
	Ramp Up Time

	Placing the Design
	 Overview
	Loading a Design
	Preparing for Placement
	Guiding Placement With Blockages
	Placement Treatment of Preroutes

	Adding Well-Tap Cells
	Controlling the Distance Between Well-Tap Cells
	Adding Well-Tap Cells to MSV Designs
	Deleting Well-Tap Cells

	Adding End-Cap Cells
	Adding End Cap Cells to MSV Designs
	Adding Different Kinds of End Cap Cells
	Deleting End-Cap Cells

	 Placing Spare Cells and Spare Modules
	Placing Spare Cells That Are Included in the Netlist
	Placing Spare Cells That Are Not Included in the Netlist
	Spare Cell Placement Behavior
	Running Hierarchy-Aware Spare Cell Placement

	Adding Padding
	Adding Instance or Module Padding
	Adding Cell Padding

	 Placing Standard Cells
	Running Placement in Multi-CPU Mode
	Multi-Threading Placement Steps

	Checking Placement
	Using the Amoeba View
	Using the Density Map

	Adding Filler Cells
	Adding Fillers to MSV Designs
	Deleting Filler Cells

	Placing Gate Array Style Filler Cells for Post-Mask ECO
	Adding Decoupling Capacitance
	Deleting Decoupling Capacitance

	 Adding Logical Tie-Off Cells
	Saving Placement Data
	 Specifying and Placing JTAG and Other Cells Close to the I/Os
	Optimizing and Reordering Scan Chains
	 Specifying Scan Cells
	 About Scan Chains
	Reordering Scan Chains

	Clock Tree Synthesis
	Overview
	Flow and Quick Start
	Quick Start Example

	Early Clock Flow
	Use Model

	Configuration and Method
	CCOpt Properties
	Route Types
	Library Cells
	Transition Target
	Skew Target
	Creating the Clock Tree Specification
	Configuration Check
	Controlling Useful Skew Effort in CCOpt
	Common Specification Modifications
	Restricting CCOpt Skew Scheduling
	Method

	Flexible H-Tree and Multi-Tap Clock Flow
	Concepts and Clock Tree Specification
	Graph-Based CTS
	Clock Trees and Skew Groups
	Pin Insertion Delays
	Automatic Clock Tree Specification Creation
	Manual Setup and Adjustment of the Clock Specification
	Deleting the Clock Tree Specification
	Chains

	Reporting
	Skew Groups
	Including Non-Reporting Skews in Reports
	Clock Trees
	Clock Tree Network Structure
	Pin Insertion Delays
	Timing Data for CTS-Specific Reports
	Worst Chain
	Halo Violations
	Cell Name Information
	Clock Tree Convergence
	Cell Filtering Reasons

	Retrieving Information using Get Commands
	Applying Library Cell Halos
	Setting Cell Halos
	Examples and Idiosyncrasies of the Clock Halo Properties
	Clock Halo Priority Rules
	Effective Clock Halos
	Density Halos and Large Cells
	Clock Halos and Siteless Cells
	Clock Halo Sum Mode

	Enabling Timing Connectivity-Based Skew Groups
	Default Balancing Constraints
	Timing Connectivity-Based Skew Groups
	Balancing Ultimate Master Clocks
	The Clock/Clock Balancing Relationships Report
	Related Properties

	CCOpt Clock Tree Debugger
	Launching the CCOpt CTD
	Key Features of the CTD

	Additional Topics
	Source Latency Update
	Converting Library Path Delays to Clock Latencies
	Debugging Unresolvable Skew Targets
	Updating Annotations After Clock Tree Specification Creation
	Preserving Components in the Clock Tree
	Power Management
	Shared Clock and Data Concerns
	Inverting Clock Gates (ICG) CTS Transforms

	CCOpt Property System
	Setting Properties
	Getting Properties

	Optimizing Timing
	Overview
	Before You Begin
	Results
	Interrupting Timing Optimization
	Adding Logical Tie-Off Cells
	Performing Optimization Before Clock Tree Synthesis
	Correcting Violations in PreCTS Mode for the First Time
	Performing Rapid Timing Optimization for Design Prototyping
	Using Additional PreCTS Timing Optimization Parameters
	Performing Incremental PreCTS Optimization
	Changing Default Settings in PreCTS Mode
	Using the Early Clock Flow
	Using the Multi-Bit Flip-Flop Flow
	Splitting Multi-Bit Flip-Flops
	Splitting Complex Flip-Flops

	Performing PostCTS Optimization
	Correcting Violations in PostCTS Mode
	Using Additional PostCTS Timing Optimization Parameters
	Performing Incremental PostCTS Optimization
	Changing Default Settings in PostCTS Mode

	Performing PostRoute Optimization
	About PostRoute Optimization
	Using the route_opt_design Flow
	Correcting Violations and Signal Integrity Issues using GigaOpt Technology in PostRoute Mode
	GigaOpt in PostRoute Setup Timing Flow
	GigaOpt in PostRoute Hold Timing Flow
	Changing Default Settings in PostRoute Mode

	Performing Target-Based PostRoute Optimization
	About Target-Based PostRoute Optimization
	Automatic Selection
	Using a Target File
	Using a Target File to Perform End Point Adjustment
	Using a Target File to do Area, Power, Max Transition, and SI Glitch Targeting
	Using the createTBOptFile Command to Generate the Target File
	Using Timing Debug to Generate the Target File
	Using a Target File to Perform Hold Optimization
	Default Naming Conventions for the TBOpt Flow

	Optimizing SI Slew and SI Glitches in PostRoute Optimization
	Optimizing Signal EM Violations at PostRoute Stage
	Initial Steps
	Optimization Strategies
	Setting the Switching Activity
	Reporting Signal EM Violations
	Optimizing Signal EM Violations

	Optimizing Power During optDesign
	Leakage Power Optimization
	Dynamic Power Optimization
	Leakage and Dynamic Power Optimization Combined
	Power-Driven Optimization for Different Optimization Modes
	Migrating from Leakage and Dynamic Power Optimization to Power-Driven Optimization
	Specifying the Correct Power Views for Optimization

	Using Useful Skew
	Using Useful Skew in PreCTS Mode
	Using Useful Skew in PostCTS Mode
	Using Useful Skew in PostRoute Mode
	Controlling Useful Skew Optimization
	Applying Useful Skew Limits to the Complete Flow

	Distributed Timing Analysis for Hold Fixing
	Using Active Logic View for Chip-Level Interface Circuit Timing Closure
	Optimizing Timing in On-Chip Variation Analysis Mode
	Specifying the MMMC Environment
	Optimizing Timing in OCV Mode Using the Default Delay Calculator

	Optimizing Timing Using a Rule File
	Optimizing Timing When the Constraint File Includes the set_case_analysis Constraint
	Using the Footprintless Flow
	Using Cell Footprints
	Viewing Added Buffers, Instances, and Nets
	Default Naming Conventions

	Using Signoff Timing Analysis to Optimize Timing and Power
	Running MMMC SignOff ECO within Innovus
	Performing Clock Skewing for Setup Timing Closure
	Signoff Timing Analysis in Innovus using Timing Debug
	Fixing SI Glitch, SI Slew, and SI Crosstalk Delta Delay Violations
	SI Glitch Violations
	SI Slew Violations
	SI Crosstalk Delta Delay Violations

	Optimization in Path-Based Analysis (PBA) Mode
	Total Power Optimization
	Setup Timing Recovery After a Large Leakage or Total Power Optimization
	Getting the Best Total Power Optimization Recipe
	Path Group Support
	Top Down Block ECO flow using Tempus Signoff Timing
	Metal ECO Flow
	One Pass Logical Equivalence Check (LEC)
	One Pass LEC Flow
	Attribute Exchange between Genus and Innovus
	Clock Gate Handling
	Record of deleted CG pins
	Name Mapping File

	Using the NanoRoute Router
	About NanoRoute Routing Technology
	Routing Phases
	Global Routing
	Detailed Routing

	NanoRoute Router in the Innovus Flow
	Before You Begin
	Checking Your LEF Files
	Checking for Problems with Cells, Pins, and Vias
	Adding Tracks
	Specifying Routing Layers

	Interrupting Routing
	Using the routeDesign Supercommand
	Results
	Use Models
	Running the NanoRoute Router with Innovus Menu Commands and Forms
	Running the NanoRoute Router with Innovus Text Commands

	Using NanoRoute Parameters
	Using Attributes and Options Together

	Accelerating Routing with Multi-Threading and Superthreading
	When to Accelerate Routing
	Superthreading Log File Excerpts

	Following a Basic Routing Strategy
	Using the Innovus Text Commands
	Using the Innovus GUI

	Checking Congestion
	Using the Congestion Analysis Table
	Using the Congestion Map

	Resolving Open Nets
	Log File Examples
	Diagnosing Problems Using the check_tracks Command
	Resolving Additional Open Net Problems

	Running Timing-Driven Routing
	Input Files
	Using the CTE and the NanoRoute Router

	Routing Clocks
	Setting Attributes for Clock Nets
	Routing Clock Nets Using the GUI Forms
	Running Postroute Optimization

	Preventing and Repairing Crosstalk Problems
	Crosstalk Prevention Options

	Running ECO Routing
	ECO Limitations
	ECO Flow

	Evaluating Violations
	DRC Marker Name Comparison Table
	Violations on Upper Metal Layers
	Violations in Timing-Driven Routing
	Deleting Violated Nets
	Using Additional Strategies to Repair Violations

	Concurrent Routing and Multi-Cut Via Insertion
	Postroute Via Optimization
	Optimizing Vias in Selected Nets
	Via Optimization Options
	Performing Shielded Routing
	Shielding Option
	Performing Shielded Routing Using the GUI
	Performing Shielded Routing Using Text Commands
	Interpreting the Shielding Report

	Routing Wide Wires
	Using Non-Default Rules

	Repairing Process Antenna Violations
	Repairing Violations on Multiple-Pin Nets
	Changing Layers
	Using Diodes
	Deleting and Rerouting Nets with Violations
	Repairing Violations on Cut Layers
	Process Antenna Options

	Creating RC Model Data in TQuantus Model File
	Use model for TQuantus Model File

	Support for High Frequency Routing
	Using the Third-party ECO Flow
	Sample TCL Script
	Setup Considerations

	Troubleshooting

	Optimizing Metal Density
	Overview
	Before You Begin
	Adding Metal Fill in the Multiple-CPU Processing Mode
	After You Complete Adding Via and Metal Fills
	Metal Fill Features
	Staggered Metal Fill Pattern
	Connected and Floating Metal Fill
	Timing-Aware Metal Fill

	Specifying Metal Fill Parameters
	Recommendations for Adding Timing-Aware Metal Fill
	Timing-Aware Examples
	Specifying the Active Spacing Value

	Adding Metal Fill Over Macros
	Estimating Density of Blockage
	Estimating Density of BLOCK Cell

	Recommendations for Power Strapping Mode
	Adding Via Fill
	Recommendations for Metal/Via Fill Flow
	Recommendations for In-design Sign-off Metal Fill Flow
	Signoff Fill - Pegasus Hierarchical Metal Fill
	HMF Commands and Parameters
	Achieving Gradient Density with Preferred Density Setting
	Specifying Metal Fill Spacing Table
	 Trimming Metal Fill
	Trimming Metal Fill for Timing Closure
	Verifying Metal Density
	Adding Metal Fill Using the GUI
	Adding Metal Fill with Iteration
	Viewing Metal Density Map in the GUI

	Flip Chip Methodologies
	Overview
	Related Packaging Tools
	Before You Begin
	Using This Chapter
	Related Flip Chip Information

	Flip Chip Flow in Innovus
	Introduction to Flip Chip Methodology
	SiP Bump Flow
	Area I/O Flow
	Peripheral I/O Flow
	Flow Methodologies

	Data Preparation
	LEF
	NETLIST

	Flip Chip Floorplanning
	Bump Creation and Assignment
	Bump Assignment Optimization

	Viewing Flip Chip Flightlines
	Automatic Redraw Feature
	Selection-Based Highlighting
	Colored Flightlines
	Object-Specific Flightlines
	DIFFPAIR-Based Highlighting
	viewBumpConnection Display Rules
	Long Pin Connection Display

	Power Planning in Flip Chip Design
	RDL Routing
	Introduction
	Useful Constraints for Flip Chip Routing
	Useful Extra Configurations for Flip Chip Routing
	Power Routing
	ECO Routing
	P2P Router
	Handling Flip Chip Designs with Complex Floorplans
	Flip Chip Router Report

	Advanced Flip Chip Features
	Two-Layer RDL Routing
	Routing Bumps in the eWLB Process
	Pillar Bump Support
	fcroute Bus Routing for DDR3

	RDL Extraction
	SI and Timing Analysis

	Hierarchical Flow Capabilities
	Partitioning the Design
	Overview
	Flow Methodologies
	Top-down Methodology
	Bottom-up Methodology

	Specifying Partitions and Blackboxes
	Defining Partitions
	Defining Blackboxes
	Handling of Blackboxes with Non-R0 Orientation
	Specifying Multiple Instantiated Partitions and Blackboxes
	Changing Partition Clone Orientation
	Specifying Rectilinear Partitions and Blackboxes
	Specifying Core-to-I/O Distance for Partition Cuts
	Displaying All Partitions

	Working with Nested Partitions
	Assigning Pins
	Checking the Feasibility of Pin Assignment
	Assigning Partition and Blackbox Pins
	Validating Pin Placement Results
	Assigning I/O Pins
	Performing Congestion-aware Pin Assignment for Channel-based Designs
	Assigning Pins on Rectilinear Edges
	Swapping Partition Pins
	Pin Alignment
	Assigning Pins for Bus Guides

	Inserting Feedthroughs
	Inserting Routing Feedthroughs
	Inserting Feedthrough Buffers
	Using a Topology File to Insert Feedthrough Buffers
	Replicating Feedthrough Insertions Across ECO Netlists
	Reducing the Number of Buffers and Ports Added for Route-based Feedthrough Insertions
	Mentioning Some Verilog Modules as dont-add-ports
	Abbreviating Lengthy Feedthrough Net Names
	Blocking Edges for Feedthrough Insertion
	Support for Blockage Lines
	Highlighting the Nets for which Feedthrough Buffers Have been Inserted
	Using the Feedthrough Ports GUI Menu
	Utilizing Pre-defined Feedthrough Pins in Custom Macros

	Generating the Wire Crossing Report
	Interpreting the Wire Crossing Report

	Estimating the Routing Channel Width
	Running the Partition Program
	Pushing Down Signal Routes
	How Top-level Stripes Are Pushed Down
	How Bumps, Routes, and Area I/O Cells Are Affected
	Limitations

	Saving Partitions
	Working with OpenAccess Database
	Pushing Down a Network into Block Partitions
	Flow to Push Down a Network into Block Partitions
	Partition Pushdown Replay Flow

	Focused Methodologies
	Correcting Pin Illegality On Selected Pins
	Selecting Pins Using a File
	Assigning Pins of a Net
	Assigning Pins in Pre-feedthrough Netlist
	Promoting Selected Macro Pins
	Doing Pin Prioritization
	Speeding Up Interactive Pin Assignment
	Deciding the Closest Legal Location to a Selected Position
	Pin QoR Metrics and Comparison
	Handling Instance Groups Associated with Partitions

	Timing Budgeting
	Overview
	Is My Design Ready for Budgeting?
	Deriving Timing Budgets
	Budgeting Using the GUI
	Budgeting Using Text Commands
	Deriving Preliminary Budgets in Early Design Phase

	Calculating Timing Budgets
	Master Clone Budgeting
	Constraints Adjustment
	Analyzing Timing Budgets
	Resolving Conflicts with Path-Based Exceptions
	Budgeting Clock Latency in Propagated Mode

	Budgeting Libraries
	Resolving Conflicts with Path-based Exceptions
	Defining Clocks Inside the Partition

	Customizing Budget Generation
	Fixing Budget
	Recommendations for Fixing Budget
	Fix Budget Example

	Modifying Budgets
	Reading the Justify Budget Report
	Design Example
	SDC Constraints for Design Example
	Generated Report for Design Example
	Dumping Justification Files for Setting Boundary Conditions Example
	Generate Summarized Report of Budget Data

	Reading the Justify Exception Report
	Design Example
	SDC Constraints for Design Example
	Generated Report for Design Example

	Support for Distributed Processing in Budgeting
	Constraints Support in Budgeting
	Warning Report
	Pin Constraint Values Greater than Available Time
	Warning Report Example

	Cycle-Based Timing Budgeting
	Examples

	Using setFixedBudget with setCycleBudgetRatio
	Examples

	Using Cycle-Based Timing Budgeting with Nested Partitions
	Example

	Stage-Based Timing Budgeting
	deriveTimingBudget -stageBased
	setBudgetingMode -stageBasedWeight
	setBudgetingMode -stageBasedPartitionMultiplier
	setBudgetingMode -stageBasedFanoutDrivingFactor

	Validating Budgets
	Overview
	Flow
	Collecting Verification Data
	Examples
	List of Errors Detected
	Related Commands

	Using ART in Hierarchical Designs
	Overview
	Types of Active Logic Views
	Flat Top
	Critical

	Creating an Active Logic View
	The flexILM PreCTS Closure Flow

	Top-level Timing Closure Methodologies
	Using Interface Logic Models (ILM)
	Overview
	General ILM Flow
	Creating ILMs
	Specifying ILM Directories at the Top Level
	ILMs Supported in MMMC Analysis
	ILMs Supported in SI
	ILM Model
	Interactive Use of ILMs
	Handling Interactive Constraints

	Top-level Timing Closure Methodologies for iHDB Flow
	Using Interface Logic Models (ILM)
	Overview
	General ILM Flow
	Creating ILMs
	Specifying ILM Directories at the Top Level
	Nested ILM Support
	ILMs Supported in MMMC Analysis
	ILMs Supported in SI
	ILM Model
	Handling Interactive Constraints

	Using Flexible Interface Logic Models (FlexILM)
	Overview
	General FlexILM Flow
	FlexILM Model Creation
	Top-Level Optimization
	FlexILM Model Data

	Using ILM ECO Methodology
	Overview
	ILM ECO Integrated in the Flow

	ILM Model Generation for ILM ECO Flow
	ILM ECO At Top-Level Design
	Saving the ILM ECO Information
	Sample Scripts
	ILM-based Timing Re-Budgeting

	Extracting Timing Models
	Overview
	ETM Generation
	ETM Generation for MMMC Designs
	Slew Propagation Modes in Model Extraction
	Basic Elements of Timing Model Extraction
	Nets
	Timing Paths
	Minimum Pulse Width and Period Checks
	Path Exceptions
	Constants
	Unconstrained Paths
	Clock Gating Checks
	Annotate Delays, Load, and Slews
	Design Rules
	Clocks

	Secondary Load Dependent Networks
	Characterization Point Selection
	Constraint Generation during Model Extraction
	Parallel Arcs in ETM
	Latency Arcs Modelling
	Latch-Based Model Extraction
	Model Extraction in AOCV Mode
	Stage Weight Modeling in ETM
	AOCV Derating Mode
	Merging Model with stage_weight Attribute
	Points to be Considered for Block Level AOCV Run

	PG Pin Modeling During Extraction
	PG Modeling in ETM
	ETM Merging Requirements for Power/Ground Aware ETMs

	Extracted Timing Models with Noise (SI) Effect
	Merging Timing Models
	Limitations of ETM
	Validation of Generated ETM
	Commands Used in Validation Flow
	Validation Flow - MMMC Designs

	Auto-Validation of ETM
	ETM Extremity Validation
	Limitation/Implications of EV-ETM

	Prototyping Flow Capabilities
	Using Early Global Route for Congestion and Timing Analysis
	Prerequisite for Running Early Global Route
	Routing a Flat Design
	Use Model
	Tuning the Early Global Routing Congestion Value
	Using Bus Guides
	Routing Secondary PG Pins
	Routing on Reverse Direction

	Routing a Partitioned Design
	Use model
	Nested Partition Support by Early Global Route
	Early Global Route Behavior in Partitioned Designs

	Using Early Global Router on MSV Designs
	Analyzing Route Data
	Congestion Markers in the Display

	Congestion Distribution Report
	Congestion Value Calculation
	Wire Length Report

	What-If Timing Analysis
	Performing What-If Timing Analysis
	Prerequisite
	Timing Models Supported for What-If Timing Analysis
	Using the What-If Timing Commands

	Fast Slack Timing Analysis
	Performing Fast Slack Timing Analysis
	Initializing Fast Slack Timing Analysis

	Prototyping Methodologies
	Possible Application of SAI/FlexModel Flows
	Using SAI Methodology for Prototyping Without Netlist
	Enabling SAI Mode
	Creating Automatic Netlist with SoC Architecture Information (SAI)
	Partial Netlist Support
	Sample SAI File

	Using SAI 2.0 Methodology for Early Prototyping and Planning
	Recommended SAI 2.0 Flow
	Creating a SAI file with Floorplanning Constraints
	Sample SAI 2.0 File
	Reading a SAI file into Innovus to Generate a SAI Design
	Generating an Initial Floorplan
	Checking and Reporting SAI Constraints

	Using FlexModel for Prototyping
	Advantages of Using FlexModel Methodology
	Stages of Prototyping with FlexModels
	Creating Hierarchical FlexModels

	Analysis Capabilities
	RC Extraction
	Overview
	Pre-Requisites for RC Extraction
	Results
	Specifying Temporary File Locations

	Performing Extraction in Innovus
	Types of RC Extraction
	PreRoute RC Extraction
	PostRoute RC Extraction
	Native Detailed
	TQuantus Extraction
	TQuantus versus IQuantus
	IQuantus Extraction
	Standalone Quantus for Signoff Extraction

	Setting the Scale Factors
	Generating a Capacitance Table
	Inputs for Generating a Capacitance Table
	Capacitance Table Generation Flow
	Capacitance Table Examples
	Generating Capacitance Table with Specified Scale Factors

	Reading a Capacitance Table
	Reading a Quantus Techfile
	PreRoute Extraction Flow without Capacitance Table Data
	Use Model
	For Designs at 32nm or Below Nodes
	For Designs above 32nm

	Correlating Native Extraction With Sign-Off Extraction
	Correlating SPEF Files Using the Ostrich Utility

	Specifying the Scale Factors
	Distributed Processing in Extraction
	Setting-up Distributed Processing
	Generating a Capacitance Table in Multi-CPU Mode

	Using Advanced Virtual Metal Fill in Extraction
	Setting-up the Advanced VMF Rules

	Base Delay Analysis
	Overview
	Base Delay Analysis Flow
	Base Delay Analysis Inputs
	Base Delay Reporting
	Limitations of Traditional Delay Calculators
	Base Delay Analysis with Equivalent Waveforms
	Equivalent Waveform Model (EWM)
	Waveform Propagation

	EWM-Only vs Waveform Propagation
	Timing Library Requirement for Accurate Analysis for 20nm and Below
	ECSM Libraries with 8-Piece Pin Capacitances

	Timing Analysis
	Overview
	Timing Analysis Features
	MMMC-On By Default Functionality
	Before You Begin
	Calculating Clock Latency
	Path Exception Priorities
	Timing Analysis Modes
	Definition of Early and Late Paths
	Single Timing Analysis Mode
	Performing Timing Analysis in Single Analysis Mode
	Best-Case Worst-Case (BC-WC) Timing Analysis Mode
	Performing Timing Analysis in Best-Case Worst-Case Analysis Mode
	On-Chip Variation (OCV) Timing Analysis Mode
	Performing Timing Analysis in OCV Mode

	Clock Path Pessimism Removal
	Clock Reconvergence and CPPR
	Supported CPPR Global Variables
	Timing Analysis Results Before and After CPPR

	Analyzing Timing Problems
	Resolving Buffer-Related Problems

	Debugging Timing Results
	Overview
	Timing Debug Flow
	Generating Timing Debug Report
	Displaying Violation Report
	Analyzing Timing Results
	Viewing Power Domain Information

	Creating Path Categories
	Creating Predefined Categories
	Creating New Categories
	Creating Sub-Categories
	Hiding path categories
	Reporting Path Categories

	Using Categories to Analyze Timing Results
	Analyzing MMMC Categories
	Manual Slack Correction of Categories

	Editing Table Columns
	Cell Coloring

	Viewing Schematics
	Running Timing Debug with Interface Logic Models

	Power and Rail Analysis
	Overview
	Early Rail Analysis
	Early Rail Analysis Key Features
	Setting up and Running Early Rail Analysis
	Viewing Early Rail Analysis Results

	Signoff-Rail Analysis
	TCL Command
	Innovus and Voltus Menu Differences

	Power Analysis and Reports
	Static Power Analysis Overview
	Vector-based Average Power Calculation
	Propagation-based average power calculation
	Static Power Analysis Flow
	Static Power Reports
	Static Power Analysis Plots
	 Viewing and Debugging Static Plots
	Interactive Queries of Power Data
	Static Power Histograms and Pie-charts

	Analyzing and Repairing Crosstalk
	Overview
	Inputs for SI Analysis
	Setting Up Innovus for SI Analysis
	RC Extraction Settings
	Noise Analysis Settings
	Static Timing Analysis (STA) Settings
	Advanced Settings for SI Analysis
	Example of Setting Up Innovus for SI Analysis

	Preventing Crosstalk Violations
	Fixing Crosstalk Violations
	Data Preparation
	Using optDesign to Fix Setup Violations with Effects
	Using RC Data Generated by an External Tool for SI Fixing
	Using SDF Data Generated by an External Tool for SI Fixing
	Using optDesign to Fix Hold Violations with Crosstalk Effects
	Using optDesign to Fix Transition Time Violations with Crosstalk Effects

	Performing XILM-Based SI Analysis and Fixing

	Verification Capabilities
	Identifying and Viewing Violations
	Overview
	Interrupting Verification
	Verifying Connectivity
	Before You Begin
	Types of Connectivity Violations Reported
	Results

	Verifying Metal Density
	Before You Begin
	Results
	Verifying Metal Density in Multi-Thread Mode

	Verifying DRC
	Before You Begin
	Verifying DRC in Multi-Thread Mode
	Spacing Violation Checks
	Support for Via Rules
	Results

	Verifying Process Antennas
	Before You Begin
	Verifying PAE
	Results
	Sample Process Antenna Report

	Verifying Well-Process-Antenna Violations
	Sample verifyWellAntenna Report

	Verifying End Cap Violations
	Results
	Sample Verify End Cap Report

	Verifying Maximum Floating Area Violations
	Verifying AC Limit
	Overview
	Calculating Irms Waveform
	Calculating Ipeak Waveform
	Calculating Iavg Waveform
	Calculating Effective Frequency
	Computing Irms/Ipeak/Iavg for each Routing Segment
	Checking the AC Current Limits
	RMS/Peak/Avg Current Limit Violations
	Before You Begin
	Results

	Verifying Isolated Cuts
	Verifying Tie Cells
	Viewing Violations With the Violation Browser
	Viewing DRC or Metal Density Violations
	Viewing Connectivity, Process Antenna, or AC Limit Violations
	Viewing Violation Markers From Assura, Calibre, Pegasus, or Other Software Applications
	Violation Browser Features

	Saving Violations
	Clearing Violations

	Verifying Well Pins and Bias Pins
	High-Level Flow for Verifying Well Pins and Bias Pins
	Adding Information to the Technology and Cell LEF Files
	Specifying Connections of Pins to Wells
	Validating Connections of Pins to Wells
	Validating Width, Spacing, and Shorts

	Exporting the Verilog Netlist
	Important Considerations for Defining Well-Layer Information

	Integration with LPA and CCP
	Overview
	Results
	Before You Begin Running LPA
	Running LPA from Innovus
	Routing Layers Only Mode
	Sign-Off Mode

	Before You Begin Running CCP
	Running CCP from Innovus
	CCP Flow in Innovus
	Running CCP in Cadence Model Flow
	Viewing Hotspots

	ECOs and Interactive Design Editing
	ECO Flows
	Overview
	Assumptions
	Flows

	Pre-Mask ECO Changes from a New Verilog File
	Preparation
	Flow
	Steps

	Pre-Mask ECO Changes from a New DEF File
	Preparation
	Flow
	Steps

	Pre-Mask ECO Changes from an ECO File
	Preparation
	Flow

	Post-Mask ECO Changes from a New Verilog Netlist (Using Spare Cells Flow)
	Steps

	Post-Mask ECO Changes from a New Netlist (Using Gate Array Cells Flow)
	Steps

	Post-Mask ECO Changes from a New Verilog Netlist (Using Gate Array Filler Cells Flow)

	ECO Directives
	HECO Directives

	Interactive ECO
	Overview
	Before You Begin
	Results
	Adding Buffers
	Changing the Cell
	Deleting Buffers
	Displaying Buffer Trees
	Running ECO Placement
	Naming Conventions for Interactive ECO

	Editing Wires
	Overview
	Before You Begin
	Using Keyboard Shortcuts
	Keyboard Shortcuts That Open Forms
	Keyboard Shortcuts That Are Equivalent to Tool Widgets
	Keyboard Shortcuts Used in Auto Query Mode
	Keyboard Shortcuts Used in Edit Wire Mode
	Keyboard Shortcuts Used in Stretch Wire Mode
	Keyboard Shortcuts Used to Change Vias

	Selecting Wires
	Deleting Wires
	Moving Wires
	Using the Mouse to Move Wires
	Using Arrow Keys to Move Wires

	Copying Wires
	Using the editCopy Command
	Using the Mouse to Copy Wires or Vias
	Copying and Moving Special Wires or Vias

	Adding Wires
	Adding a Wire for a Single Net
	Adding Parallel Wires for Multiple Nets
	Adding Wires that Automatically Extend to a Target
	Using Override to Add Wire Groups with Multiple Widths and Spacing

	Cutting Wires
	Trimming Antennas on Selected Stripes
	Changing Special Wire Width
	Repairing Maximum Wire Width Violations
	Duplicating Special Wires
	Stretching Wires
	Changing Wire Layers
	Splitting and Merging Special Wires
	Adding Vias
	Changing Vias
	Moving Vias
	Reshaping Routes
	Controlling Cell Blockage Visibility
	Parallel Editing Capability
	Parallel Edit Flow
	Parallel Editing Example for DRC Corrections
	Parallel Editing Example for ECO Changes
	Parallel Edit File Content
	Parallel Edit File Format
	Handling Conflicts in Parallel Edit Files

	Design Methodology for 3D IC with Through Silicon Via
	Overview
	TSV/Bump/Back Side Metal Modeling in Innovus
	Example

	Defining Keep Out Area in Hard Macros
	Check Bump Keep Out Area Violation

	Design Import
	Stacked IC Verilog Input
	Stack Configuration Input
	Power Connectivity Input
	Interface Synchronization and Information Exchange between Dies
	TSV and Bump Manipulation
	TSV/Bump Generation
	TSV/Bump Assignment

	Feedthru Handling
	TSV and Bump Routing
	TSV to IO Pads/ Bumps/ PG Stripes Routing
	Bump to Bump Routing
	Front Bump to Front Bump Routing
	Front Bump to Front Bump Bus Routing
	Front Bump to TSV-Bump Feedthru Net Routing

	TSV/Bump to Instance Pin Routing

	Cross Die Connectivity Verification
	Export Files

	Syntax and Scripts
	CCOpt Properties
	Creating the ICT File
	Format
	Data
	Comments
	Case Sensitivity
	Warnings and Errors
	Invalid Layer Names
	ICT File Commands
	Sample ICT File

	Supported CPF 1.0 Commands
	CPF 1.0 Script Example
	Supported CPF 1.0e Commands
	CPF 1.0e Script Example
	Supported CPF 1.1 Commands
	CPF 1.1 Script Example
	Supported SAI Commands
	add_clock
	add_macro
	connect
	constrain
	convertLefToSAI
	create_module
	delete_macro
	delete_module
	insert_boundary_flops
	report_sai_constraint
	set_floorplan
	set_ref_flop
	set_ref_gate
	set_ref_macro
	set_ref_memory
	set_sai_version

	Supported UFC Commands
	exclude_rule
	set_area_rule
	set_dont_use_base_cell_rule
	set_halo_rule
	set_merge_and_reshape_spacing_rule
	set_parallel_run_length_rule
	set_reshape_available_sites_rule
	set_reshape_object_rule
	set_same_length_site_rule
	set_spacing_rule
	set_track_rule
	set_white_area_extension_rule
	set_width_rule

