
IC Compiler™ II Implementation User

Guide

Version T-2022.03, March 2022

Copyright and Proprietary Information Notice
© 2022 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

IC Compiler™ II Implementation User Guide
T-2022.03

2

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

Feedback

Contents
New in This Release .26

Related Products, Publications, and Trademarks .26

Conventions .26

Customer Support . 27

Statement on Inclusivity and Diversity . 28

1. Working With the IC Compiler II Tool . 29

Place and Route Design Flow Overview . 30

IC Compiler II Concepts . 32
Power Intent Concepts . 32

UPF Concepts . 32
UPF Flows . 33

Multiple-Patterning Concepts . 35
Mask Constraints . 37

User Interfaces . 38
Starting the Command-Line Interface .39
Exiting the IC Compiler II Tool . 40

Entering icc2_shell Commands .40
Interrupting or Terminating Command Processing . 41
Getting Information About Commands . 41

Displaying Command Help .41

Using Application Options . 42

Using Variables . 42

Viewing Man Pages . 43

Using Tcl Scripts . 44

Adding Changes to a Script With Checkpoints .45
Defining Checkpoints . 47
Configuring Checkpoints .48

Defining Checkpoint Behaviors . 49
Associating Checkpoints and Checkpoint Behaviors 50

Querying Checkpoints and Checkpoint Behaviors . 55
Viewing Your Checkpoint History . 56

3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using Setup Files . 57

Using the Command Log File . 58

Enabling Multicore Processing . 58
Configuring Multithreading . 59
Configuring Distributed Processing . 60
Reporting Multicore Configurations . 61
Removing Multicore Configurations . 61
Running Tasks in Parallel . 62
Running Commands in Parallel on Your Local Host . 62

Running Commands in the Background . 62
Running Commands in Parallel . 64

2. Preparing the Design . 65

Defining the Search Path . 66

Setting Up Libraries .66
Working With Design Libraries . 66
Setting Up Reference Libraries . 68
Library Configuration .69
Restricting Library Cell Usage . 70
Restricting the Target Libraries Used . 71

Working With Designs .73

Importing the Floorplan Information . 74
Reading DEF Files . 74

Fixing Site Name Mismatches . 76
Validating DEF Files .76
Physical Constraints Extracted From the DEF File 76

Setting Up Multivoltage Designs .80
Applying the Multivoltage Power Intent . 80

Loading and Applying UPF Information . 81
Specifying UPF Constraints for Physical-Only Cells 82
Saving UPF Information . 82

Preparing the Power Network . 83
Creating Logical Power and Ground Connections .83
Creating Floating Logical Supply Nets .85

Defining Voltage Areas . 85
Merging Voltage Area Shapes . 87
Resolving Overlapping Voltage Areas . 88
Modifying the Stacking Order .90

4

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Defining Guard Bands . 90
Defining Gas Stations . 92
Querying Voltage Areas . 92
Modifying Voltage Areas . 93
Controlling Physical-Feedthrough Nets in Voltage Areas 93
Removing Voltage Areas . 96

Inserting Multivoltage Cells .97
Inserting Level Shifters .97
Inserting Isolation Cells . 97
Associating Power Strategies With Existing Multivoltage Cells 98

Controlling the Placement of Multivoltage Cells .98
Enabling Improved Buffering for Multivoltage Nets . 98
Analyzing Multivoltage Information . 98

Specifying Timing Constraints and Settings . 99

Specifying Logical Design Rule Constraints . 100

Controlling Clock-Gate Latencies . 101
Integrated Clock-Gate Latency Estimation . 102
User-Specified Clock-Gate Latency . 103

Specifying Physical Constraints for Placement and Legalization 107
Defining Keepout Margins . 107

Defining an Outer Keepout Margin . 108
Defining an Inner Keepout Margin . 108

Defining Area-Based Placement Blockages .108
Defining a Hard Placement Blockage . 109
Defining a Hard Macro Placement Blockage . 110
Defining a Soft Placement Blockage . 110
Defining a Partial Placement Blockage . 111
Define a Blockage of a Predefined Category .111
Defining Blockages That Exclude Registers . 112
Defining Blockages That Exclude Relative Placement Groups 113
Defining Blockages That Allow Relative Placement Cells Only 113
Defining Blockages That Allow Buffers Only . 114
Querying Placement Blockages . 114
Removing Placement Blockages . 114

Defining Placement Bounds . 114
Defining Move Bounds . 116
Defining Group Bounds . 117
Querying Placement Bounds . 118
Removing Placement Bounds . 118

Defining Placement Attractions .118
Defining Cell Spacing Constraints for Legalization . 119

5

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Reporting Cell Spacing Constraints . 121
Removing Cell Spacing Constraints . 122

Specifying Placement Settings . 122
Performing Placement With Inaccurate Constraints at Early Stages 123
Generating Automatic Group Bounds for Clock Gating Cells123
Controlling the Placement Density . 123
Controlling Congestion-Driven Restructuring During Placement 125
Reducing Congestion . 126
Considering Wide Cell Density During Placement . 126
Considering the Effects of Cell Pins During Placement 127
Considering the Congestion Effects Due to the Nondefault Routing Rules of
Clock Nets .127
Considering the Effects of Clock Gating Cells of Sequential Arrays During
Placement . 128
Considering Legalization Effects During Placement . 128
Considering DFT Connections During Placement . 128
Considering the Dynamic Power QoR During Placement 128
Performing IR-Drop-Aware Placement . 129

Controlling IR-Drop-Aware Placement . 130
Spreading Repeater Cells During Placement .132

Specifying Legalization Settings . 132
Minimizing Large Displacements During Legalization 133
Optimizing Pin Access During Legalization . 133
Enabling Advanced PG Net Checks .133
Enabling Advanced Legalization Algorithms . 133
Setting Up for Variant-Aware Legalization . 134

Defining Equivalent Cell Groups . 136
Enabling Variant-Aware Legalization . 137

Checking if Library Cells Are Legally Placeable .137

Controlling the Optimization of Cells, Nets, Pins, and Ports138
Preserving Cells and Nets During Optimization . 139
Restricting Optimization to Cell Sizing Only .140
Preserving Networks During Optimization . 141
Marking the Clock Networks .141
Disabling Design Rule Checking (DRC) .142
Preserving Pin Names During Sizing . 143
Preserving Ports of Existing Hierarchies . 144
Isolating Input and Output Ports .144
Fixing Multiple-Port Nets .145

6

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Controlling the Addition of New Cells to Modules, Hierarchical Cells, and Voltage
Areas . 146
Specifying a Cell Name Prefix for Optimization . 147

Specifying Settings for Preroute Optimization . 147
Controlling DFT Optimization for the place_opt Command 148
Specifying Parasitic Estimation Settings for the Preroute Optimization 149

Enabling Global-Route-Layer-Based (GRLB) Preroute Optimization149
Enabling Route-Driven Estimation (RDE) for Preroute Optimization 150

Specifying Automatic Via Ladder Insertion Settings for Preroute
Optimization . 150

Specifying Via Ladder Candidates for Library Pins 151
Enabling Area Recovery in Regions of High Utilization 152
Enabling Advanced Logic Restructuring .152

Setting Up for Power-Related Features . 153
Annotating the Switching Activity . 154

Using RTL Switching Activity With a Name-Mapping File 154
Scaling the Switching Activity . 156
Specifying Switching Probability for Supply Nets .157

Enabling Power Optimization for the place_opt and clock_opt Commands . . . 158
Performing Conventional Leakage-Power Optimization159
Performing Dynamic-Power Optimization . 159
Performing Total-Power Optimization .160

Improving Yield By Limiting the Percentage of Low-Threshold-Voltage (LVT)
Cells . 160
Updating Activity for Improved Power Optimization . 161
Enabling the Power Integrity Features . 163

Setting Up for Dynamic Power Shaping . 164
Setting Up for Voltage-Drop-Aware Placement . 165
Manually Enabling Dynamic Power Shaping and Voltage-Drop-Aware
Placement .165

Specifying the Routing Resources . 166
Specifying the Global Layer Constraints . 166

Reporting Global Layer Constraints .167
Removing Global Layer Constraints . 168

Specifying Net-Specific Layer Constraints . 168
Removing Net-Specific Routing Layer Constraints 169

Specifying Clock-Tree Layer Constraints . 169
Setting the Preferred Routing Direction for Layers . 172

Handling Design Data Using the Early Data Check Manager 172

Applying Mega-Switch Command Settings .174

7

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Applying Required Settings for Advanced Technology Nodes 174
Applying Required Settings for High Performance Cores 175
Applying Required Settings for Improving Specific QoR Metrics 175

3. Placement and Optimization . 177

Performing Placement and Optimization . 177
Performing Standalone Placement and Legalization . 178
Performing Placement and Optimization With the place_opt Command 179

Creating a Temporary Clock Tree for Placement and Optimization 180
Optimizing Clock-Gating Cells . 180
Using Accurate Latencies for Clock Gates . 181
Enabling Global Route Based High-Fanout Synthesis182
Enabling the Rebuilding of Buffer Trees . 182
Changing the Congestion Effort .182
Using of Nondefault Routing Rules for Critical Nets 183
Enabling Path Optimization . 183
Performing IR-Drop-Aware Placement During the place_opt Command . . 183
Performing Concurrent Clock and Data Optimization During the place_opt
Command . 184

Using Physical Guidance From the Design Compiler Tool185
Performing Multibit Register Optimization . 187

Performing Integrated Multibit Register Optimization188
Performing Multibit Register Optimization Using Discrete Commands . . . 189
Banking Multibit Retention Registers . 192

Performing Magnet Placement . 192
Refining Placement .194
Performing Placement and Optimization on Multivoltage Blocks 195
Rebuilding Buffer Trees . 195
Adding and Removing Tie Cells .196

Identifying Issues That Cannot Be Fixed During Optimization 196
Analyzing the Bufferability of Nets . 197
Analyzing Violations That Cannot Be Fixed . 197

Analyzing the Placement .198
Reporting Utilization . 199
Reporting the Placement QoR . 199
Querying and Changing the Placement Status . 201
Analyzing the Placement in the GUI . 202

Analyzing Timing . 203

Analyzing Power . 203

8

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Creating Power Groups for Reporting . 204
Reporting Pin-Based Clock Network Power .205

Comparing QoR Data . 206
Setting Your Baseline Run . 208
Changing the QoR Display Style . 210
Sorting and Filtering the Data . 211

Sorting the Data . 212
Filtering Metrics . 213
Filtering Runs . 213
Example Analysis . 214

Exploring the Detailed Comparison Data . 216
Filtering the Detailed Data . 219

4. Clock Tree Synthesis . 221

Prerequisites for Clock Tree Synthesis .221

Defining the Clock Trees .222
Deriving the Clock Trees . 223

Identifying the Clock Roots . 223
Identifying the Clock Endpoints . 225

Defining Clock Tree Exceptions . 227
Defining Sink Pins . 227
Defining Insertion Delay Requirements . 228
Defining Ignore Pins .229
Ensuring Clock Tree Exceptions are Valid .230

Restricting Optimization on the Clock Network . 231
Setting Don’t Touch Settings . 231
Setting Size-Only Settings . 232

Copying Clock Tree Exceptions Across Modes . 232
Deriving Clock Tree Exceptions From Ideal Clock Latencies233
Handling Endpoints With Balancing Conflicts . 234

Verifying the Clock Trees . 236

Setting Clock Tree Design Rule Constraints . 238

Specifying the Clock Tree Synthesis Settings . 239
Specifying the Clock Tree References . 239

Deriving Clock Tree References for Preexisting Gates 240
Restricting the Target Libraries Used .241

Setting Skew and Latency Targets .242
Enabling Local Skew Optimization . 242

9

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Specifying the Primary Corner for Clock Tree Synthesis 243
Preventing Specific Clocks From Being Synthesized .243
Preserving Preexisting Clock Trees . 243
Enabling Clock Tree Power Reduction Techniques . 243
Reducing Electromigration . 244
Handling Inaccurate Constraints During Clock Tree Synthesis 244
Defining Clock Cell Spacing Rules .245
Creating Skew Groups . 246
Defining a Name Prefix for Clock Cells . 247
Using the Global Router During Initial Clock Tree Synthesis 247
Specifying Constraints for Clock Nets . 247
Reducing Signal Integrity Effects on Clock Nets . 248
Specifying Settings for Clock Latency Adjustments . 248
Reporting the Clock Tree Settings . 249

Implementing Clock Trees and Performing Post-CTS Optimization 249
Performing Standalone Clock Trees Synthesis . 250
Synthesizing, Optimizing, and Routing Clock Trees With the clock_opt
Command . 251

Considering Voltage Drop Information During Clock Tree Synthesis 251
Using Nondefault Routing Rules for Critical Nets During Optimization . . . 252
Performing Concurrent Clock and Data Optimization During the clock_opt
Command . 252
Controlling Multibit Optimization Performed During the clock_opt
Command . 253
Performing Power or Area Recovery on the Clock Network 254
Performing IR-Drop-Aware Placement During the clock_opt Command . . 254

Controlling Concurrent Clock and Data Optimization .255
Limiting the Latency Adjustment Values . 256
Excluding Boundary Paths . 256
Excluding Specific Path Groups .257
Excluding Specific Scenarios . 257
Excluding Specific Sinks . 257
Controlling Timing Optimization Effort . 258
Controlling Hold Time Optimization Effort . 258
Controlling the Adjustment of I/O Clock Latencies258
Performing Dynamic-Voltage-Drop-Driven Concurrent Clock and Data
Optimization During the route_opt Command . 259
Specifying Optimization Targets at the Preroute Stage 259
Specifying Optimization Targets at the Postroute Stage 260
Enabling Buffer Removal at the Postroute Stage 262
Reporting Concurrent Clock and Data Timing . 262

Splitting Clock Cells . 264

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Balancing Skew Between Different Clock Trees . 264
Defining the Interclock Delay Balancing Constraints 265
Generating Interclock Delay Balancing Constraints Automatically266
Running Interclock Delay Balancing . 267

Performing Global-Route-Based Optimization Using Machine Learning Data . 270
Routing Clock Trees . 272
Inserting Via Ladders During Clock Tree Synthesis, Optimization, and Clock
Routing . 272
Marking Clocks as Propagated After Clock Tree Synthesis 273
Performing Postroute Clock Tree Optimization . 273
Performing Voltage Optimization . 274
Marking Clock Trees as Synthesized . 275
Removing Clock Trees . 276

Implementing Multisource Clock Trees . 277
Introduction to Multisource Clock Trees Structures . 278
Implementing a Regular Multisource Clock Tree . 280
Implementing a Regular Multisource Clock Tree Using Integrated Tap
Assignment . 281
Implementing a Regular Multisource Clock Tree With an H-Tree-Only Global
Clock Tree Structure .283
Implementing a Structural Multisource Clock Tree .284
Implementing a Structural Multisource Clock Tree Using Integrated Subtree
Synthesis .286
Inserting Clock Drivers . 288

Inserting Clock Drivers for Designs With Multiple Levels of Physical
Hierarchy .291

Synthesizing the Global Clock Trees . 292
Inserting Clock Drivers for Designs With Multiple Levels of Physical
Hierarchy .293

Creating Clock Straps .294
Routing to Clock Straps . 297
Analyzing the Clock Mesh . 301
Performing Automated Tap Insertion and H-Tree Synthesis 303
Specifying Tap Assignment Options and Settings . 305
Building the Local Clock Subtree Structures . 307

Analyzing the Clock Tree Results .311
Generating Clock Tree QoR Reports . 311
Reporting Clock Tree Power . 313
Creating Collections of Clock Network Pins .314
Analyzing Clock Timing . 315

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Analyzing Clock Trees in the GUI . 315

5. Routing and Postroute Optimization .316

Introduction to Zroute . 317

Basic Zroute Flow . 319

Prerequisites for Routing .320

Defining Vias . 321
Reading Via Definitions from a LEF File . 322
Creating a Via Definition .322

Defining Simple Vias . 322
Defining Custom Vias .323

Inserting Via Ladders . 324
Defining Via Ladder Rules . 325
Generating Via Ladder Rules for Electromigration Via Ladders327
Generating Via Ladder Rules for Performance Via Ladders 329

Via Ladder Rule Files .331
Via Ladder Association File . 331

Constraint-Based Via Ladder Insertion .332
Defining Via Ladder Constraints .333

Defining Global Via Ladder Constraints .333
Defining Instance-Specific Via Ladder Constraints 334

Inserting Via Ladders . 334
Protecting Via Ladders . 337
Verifying Via Ladders . 338
Updating Via Ladders . 339
Manual Via Ladder Insertion .340
Querying Via Ladders .341
Removing Via Ladders . 342

Checking Routability . 342

Routing Constraints .348
Defining Routing Blockages . 350

Reserving Space for Top-Level Routing . 351
Querying Routing Blockages . 352
Removing Routing Blockages . 352

Defining Routing Guides .352
Using Routing Guides to Control the Routing Direction354
Using Routing Guides to Limit Edges in the Nonpreferred Direction 355
Using Routing Guides to Control the Routing Density355

12

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using Routing Guides to Prioritize Routing Regions 356
Using Routing Guides to Encourage River Routing357
Querying Routing Guides .357
Removing Routing Guides . 357

Deriving Routing Guides .357
Deriving Pin Access Routing Guides . 358
Deriving Metal Cut Routing Guides . 359

Controlling Routing Around the Block Boundary . 359
Inserting Metal Shapes in the Preferred Direction 360
Inserting Routing Guides Along the Nonpreferred-Direction Edges364
Inserting Routing Blockages Along the Boundary Edges366
Removing Perimeter Constraint Objects . 368

Routing Nets Within a Specific Region . 368
Defining Routing Corridors .369
Assigning Nets to a Routing Corridor . 370
Verifying Routing Corridors . 371
Modifying Routing Corridors .371
Reporting Routing Corridors . 372
Removing Routing Corridors . 372

Using Nondefault Routing Rules . 372
Defining Nondefault Routing Rules . 373
Assigning Nondefault Routing Rules to Nets .384

Controlling Off-Grid Routing . 388
Preventing Off-Grid Routing .388
Discouraging Off-Grid Routing for Vias . 390

Routing Must-Join Pins .390
Controlling Pin Connections . 393
Controlling Pin Tapering . 396

Specifying the Tapering Method .396
Controlling the Tapering Width .397

Controlling Via Ladder Connections . 398
Setting the Rerouting Mode . 398

Routing Application Options . 399

Routing Clock Nets . 399

Routing Critical Nets . 400

Routing Secondary Power and Ground Pins . 401
Verifying the Secondary Power and Ground Pin Attributes 402
Setting the Routing Constraints . 402
Routing the Secondary Power and Ground Pins . 403

Routing Signal Nets . 404

13

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Global Routing . 405
Global Routing During Design Planning . 408
Timing-Driven Global Routing . 409
Crosstalk-Driven Global Routing . 410
Incremental Global Routing . 411

Track Assignment . 411
Detail Routing . 412
Routing Signal Nets by Using Automatic Routing . 417

Shielding Nets . 418
Defining the Shielding Rules . 420
Performing Preroute Shielding . 421
Soft Shielding Rules During Signal Routing .424
Performing Postroute Shielding . 425

Shielding Example . 425
Performing Incremental Shielding .426
Reporting Shielding Information . 426

Querying Shield Shapes . 426
Reporting Shielding Statistics . 427

Performing Shielding Checks . 428

Performing Postroute Optimization . 428
Performing Postroute Logic Optimization . 429
Performing Postroute Optimization Using the hyper_route_opt Command . . . 431
Fixing DRC Violations Caused by Pin Access Issues 432

Analyzing and Fixing Signal Electromigration Violations . 433
Loading the Signal Electromigration Constraints . 435
Analyzing Signal Electromigration . 435
Fixing Signal Electromigration Violations . 437

Performing ECO Routing . 438

Routing Nets in the GUI . 440
Modifying Routed Nets . 441

Cleaning Up Routed Nets . 443

Analyzing the Routing Results . 444
Generating a Congestion Report . 444
Generating a Congestion Map . 446
Performing Design Rule Checking Using Zroute . 449
Performing Signoff Design Rule Checking . 452
Performing Design Rule Checking in an External Tool 453
Performing Layout-Versus-Schematic Checking . 453

14

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Reporting the Routing Results . 456
Using the DRC Query Commands . 456

Saving Route Information . 457

Deriving Mask Colors . 457

Inserting and Removing Cut Metal Shapes . 458

6. Chip Finishing and Design for Manufacturing . 460

Inserting Tap Cells .460
Using the create_tap_cells Command . 461
Using the create_cell_array Command . 465
Inserting Exterior Tap Walls . 467
Inserting Interior Tap Walls . 468
Inserting Tap Meshes . 470
Inserting Dense Tap Arrays . 471

Performing Boundary Cell Insertion . 472
Specifying the Boundary Cell Insertion Requirements 472

Specifying the Library Cells for Boundary Cell Insertion 473
Specifying Boundary Cell Placement Rules .475
Specifying the Naming Convention for Boundary Cells 476
Creating Routing Guides During Boundary Cell Insertion 476
Creating Placement Blockages During Boundary Cell Insertion 477

Reporting the Boundary Cell Insertion Requirements 477
Removing Boundary Cell Insertion Requirements . 478
Inserting Boundary Cells .478
Verifying the Boundary Cell Placement . 478

Finding and Fixing Antenna Violations . 479
Defining Antenna Rules . 480

Calculating the Maximum Antenna Ratio .480
Calculating the Antenna Ratio for a Pin .491

Specifying Antenna Properties . 494
Analyzing and Fixing Antenna Violations . 496

Inserting Diodes During Detail Routing . 497
Inserting Diodes After Detail Routing .498

Inserting Redundant Vias . 499
Inserting Redundant Vias on Clock Nets . 500
Inserting Redundant Vias on Signal Nets . 501

Viewing the Default Via Mapping Table . 502
Defining a Customized Via Mapping Table . 503

15

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Postroute Redundant Via Insertion . 504
Concurrent Soft-Rule-Based Redundant Via Insertion505
Near 100 Percent Redundant Via Insertion . 507
Preserving Timing During Redundant Via Insertion 508
Reporting Redundant Via Rates . 508

Optimizing Wire Length and Via Count . 510

Reducing Critical Areas .510
Performing Wire Spreading . 511
Performing Wire Widening . 512

Inserting Metal-Insulator-Metal Capacitors . 514

Inserting Filler Cells .515
Standard Filler Cell Insertion . 515

Controlling Standard Filler Cell Insertion . 517
Checking for Filler Cell DRC Violations . 520
Fixing Remaining Mask Design Rule Violations . 521
Abutting Standard Cells With Specific Filler Cells 533

Threshold-Voltage-Based Filler Cell Insertion . 535
Controlling Threshold-Voltage-Based Filler Cell Insertion 536
Removing the Threshold-Voltage Filler Cell Information 537

Removing Filler Cells . 537

Inserting Metal Fill .537

7. IC Validator In-Design . 538

Preparing to Run IC Validator In-Design Commands . 539
Setting Up the IC Validator Environment . 539
Enabling IC Validator Multicore Processing . 539

Running IC Validator on Specific Hosts . 540
Running IC Validator Using a Job Scheduler .541
Running IC Validator Using Hybrid Multicore Processing 542

Defining the Layer Mapping for IC Validator In-Design Commands 542

Performing Signoff Design Rule Checking . 543
Running the signoff_check_drc Command .543

Setting Options for Signoff Design Rule Checking 545
Reading Blocks for Signoff Design Rule Checking 547
Signoff Design Rule Checking . 548
Signoff DRC Results Files . 550

Viewing the Violations in an ICV Heat Map . 551
Configuring an ICV Heat Map . 554
Highlighting Violations From the Error Browser Onto an ICV Heat Map . . 560

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Automatically Fixing Signoff DRC Violations . 562
Creating an Autofix Configuration File . 562
Setting Options for Signoff DRC Fixing . 563
Running the signoff_fix_drc Command . 565
Automatically Fixing Double-Patterning Odd-Cycle Violations569
Summary Report for Automatic Design Rule Fixing 569

Checking Signoff Design Rules Interactively in the GUI 571
Displaying Objects for Design Rule Checking . 572
DRC Toolbar .573
Setting Options for Interactive Design Rule Checking 575

Improving Instance Voltage Drop by Augmenting the Power Grid 577
Standard Power Grid Augmentation .578

Setting Options for Power Grid Augmentation .580
Timing-Driven Power Grid Augmentation . 581
Guided Power Grid Augmentation . 583
Removing PG Augmentation Shapes .584

Inserting Metal Fill With IC Validator In-Design . 584
Setting Options for Signoff Metal Fill Insertion . 586
Performing Metal Fill Insertion . 589

Pattern-Based Metal Fill Insertion . 589
Track-Based Metal Fill Insertion .594
Using an IC Validator Parameter File .597
Typical Critical Dimension Metal Fill Insertion . 602
Timing-Driven Metal Fill Insertion .602
Incremental Metal Fill Insertion . 607

Signoff Metal Fill Result Files .609
Querying Metal Fill . 610
Viewing Metal Fill in the GUI . 611
Reporting the Metal Density . 612

Viewing Density Heat Maps in the GUI . 615
Removing Metal Fill . 617

Removing Metal Fill With the IC Validator Tool . 618
Modifying Metal Fill .619
Performing Real Metal Fill Extraction .619

Automatically Fixing Isolated Vias . 620
Setting Options for Fixing Isolated Vias . 620
Running the signoff_fix_isolated_via Command .621

Checking for Isolated Vias . 621
Checking and Fixing Isolated Vias .622

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

8. Routing Using Custom Router .624

Using Custom Router in the IC Compiler II Tool . 625

Before Using Custom Router . 626

Defining Routing Constraints . 627
Defining the Bus Routing Style . 628
Creating Differential Groups . 630
Inserting Shields on the Nets . 631
Defining the Net Priority . 633
Defining Minimum Wire Lengths .633
Defining Matching Wire Lengths . 636

Managing Constraint Groups . 641

Using Custom Routing Application Options . 642
Bus Routing Options .644

Corner Type . 644
Intra-shield Placement . 645
Pin-Trunk Offset . 646
Trunk Splitting .646
Tapoffs . 647

Track Adherence Options . 647
Differential-Pair Options . 648
Shielding Options . 649
Single-Loop Matching . 649

Routing With the Custom Router . 650

Shielding the Nets .651

Checking the Routing Results .652

Using a Hybrid Routing Flow . 652

Using a DDR Routing Flow .653

9. Physical Datapath With Relative Placement .658

Introduction to Physical Datapath With Relative Placement 658
Benefits of Relative Placement . 659

Relative Placement Flow .660

Creating Relative Placement Groups . 660

Adding Objects to a Group . 662
Adding Leaf Cells . 662

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Specifying Orientations for Leaf Cells . 663
Adding Hard Macro Cells . 663
Adding Relative Placement Groups . 663

Creating Hierarchical Relative Placement Groups664
Using Hierarchical Relative Placement for Straddling 665
Using Hierarchical Relative Placement for Compression667

Adding Blockages . 668
Adding Cells Within a Predefined Relative Placement Area 669

Specifying Options for Relative Placement Groups . 669
Anchoring Relative Placement Groups .670
Aligning Leaf Cells Within a Column . 672

Aligning by the Left Edges .673
Aligning by the Right Edges . 673
Aligning by Pin Location .674
Overriding the Alignment When Adding Objects . 676

Controlling the Tiling Within Relative Placement Groups 677
Applying Compression to Groups With Straddling Leaf Cells 678

Specifying the Orientation of Relative Placement Groups 679
Specifying a Keepout Margin . 681
Performing Row Balancing . 681
Handling Fixed Cells During Relative Placement .681
Allowing Nonrelative Placement Cells . 682
Controlling the Optimization of Relative Placement Cells 683
Controlling Movement When Legalizing Relative Placement Groups 684

Changing the Structures of Relative Placement Groups . 684

Generating Relative Placement Groups for Clock Sinks . 685

Performing Placement and Legalization of Relative Placement Groups686
Relative Placement in a Design Containing Obstructions 687
Legalizing Relative Placement Groups in a Placed Design 687
Creating New Relative Placement Groups in a Placed Design 688

Analyzing Relative Placement Groups . 689
Checking Relative Placement Groups Before Placement 689
Analyzing the Placeability of a Relative Placement Group690
Reporting Relative Placement Constraint Violations . 690
Querying Relative Placement Groups . 691
Analyzing Relative Placement in the GUI . 691

Saving Relative Placement Information . 692

Summary of Relative Placement Commands . 692

19

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

10. Hierarchical Implementation . 694

Overview of Abstract Views . 695

Creating Abstract Views . 696
Creating Abstracts With Power Information . 697
Creating Abstracts for Signal Electromigration Analysis 698
Handling Multiple Levels of Physical Hierarchy . 698

Reporting Abstract Reasons . 699

Making Changes to a Block After Creating an Abstract . 700

Shrinking Abstract Views While Maintaining Timing . 701
Recreating the Power and Ground (PG) Structure . 702

Creating a Frame View . 703

Linking to Abstract Views at the Top-Level .703

Linking to Subblocks With Multiple Labels . 705

Specifying the Editability of Blocks From the Top-Level . 705

Preparing for Top-Level Closure With Abstracts .706

Checking Designs With Abstracts for Top-Level-Closure Issues 707
Handling Design Data Using the Early Data Check Manager 710
Prerequisites for Handling Early Design Data . 711
Early Data Checks, Policies, and Strategies . 712
Setting the Policy for Early Data Checks . 715
Reporting Early Data Check Records . 716
Generating a Report of Early Data Check Records . 718

Performing Top-Level Closure With Abstract Views . 719

Creating ETMs and ETM Cell Libraries . 720
Creating ETMs and ETM Cell Libraries in the IC Compiler II Tool 720
Creating ETMs in the PrimeTime Tool . 721
Creating ETM Cell Libraries in the Library Manager Tool 723

Linking to ETMs at the Top Level . 724

Performing Top-Level Closure With ETMs . 725

11. RedHawk and RedHawk-SC Fusion . 726

Running Rail Analysis Using RedHawk-SC Fusion . 727

An Overview for RedHawk Fusion and RedHawk-SC Fusion 729
RedHawk Fusion and RedHawk-SC Fusion Data Flow 731

20

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

RedHawk/RedHawk-SC Fusion Analysis Flow .732
Running RedHawk Fusion Commands in the Background 733

Setting Up the Executables .734

Specifying RedHawk and RedHawk-SC Working Directories734

Preparing Design and Input Data for Rail Analysis . 736
Generating Rail Analysis Script Files . 739
Supporting RedHawk-SC Customized Python Script Files 739

Specifying Ideal Voltage Sources as Taps . 744
Validating the Taps and Finding Invalid Taps . 747

Finding Invalid Taps . 748
Finding Substitute Locations for Invalid Taps . 748

Removing Taps . 749

Missing Via and Unconnected Pin Checking . 749
Setting Checking Options . 750
Checking Missing Vias and Unconnected Pins . 751
Viewing Error Data . 753
Fixing Missing Vias .754

Running Rail Analysis with Multiple Rail Scenarios . 755
Specifying a Design Scenario for Rail Analysis . 756
Creating and Specifying Rail Scenarios for Rail Analysis 756

Performing Voltage Drop Analysis . 759
Viewing Voltage Drop Analysis Results . 761

Performing PG Electromigration Analysis .762
Viewing PG Electromigration Analysis Results . 763

Displaying the PG Electromigration Map . 763
Checking PG Electromigration Violations . 764

Performing Minimum Path Resistance Analysis . 767
Viewing Minimum Path Resistance Analysis Results .768
Tracing Minimum Path Resistance Using the Mouse Tool 770

Performing Effective Resistance Analysis .773

Performing Distributed RedHawk Fusion Rail Analysis . 774

Working With Macro Models . 777
Generating Macro Models . 777
Creating Block Contexts . 779

Performing Signoff Analysis . 781

Writing Analysis and Checking Reports . 782

21

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Displaying Block-Level Rail Results . 786
Generating Instance-Based Analysis Reports . 787
Generating Geometry-Based Analysis Reports . 788

Displaying Maps in the GUI . 789

Displaying ECO Shapes in the GUI . 795

Voltage Hotspot Analysis . 796
Generating Hotspots . 797
Reporting Hotspots . 798
Removing Hotspots .800
Voltage Hotspot Analysis Examples .801

Querying Attributes . 803

12. ECO Flow . 805

Generic ECO Flow for Timing or Functional Changes . 806

Freeze Silicon ECO Flow . 807

Signoff ECO Flow . 807

Incremental Signoff ECO Flow . 809

ECO Fusion Flow . 811

ECO Fusion Power Integrity Flow .812

Manually Instantiating Spare Cells . 813

Automatically Adding Spare Cells .815

Adding Programmable Spare Cells .817

Making ECO Changes Using the eco_netlist Command . 818

Making ECO Changes Using Netlist Editing Commands . 819
Using ECO Scripts for Netlist Editing .819

Resizing Cells . 819
Reverting Changes Made During Resizing . 820

Adding Buffers on Routed Nets . 820
Specifying the Net Names, Buffers Types, and Their Locations 820

Adding Buffers in a Specified Configuration . 821
Adding Buffers at Specified Locations . 821
Adding Buffers at a Specified Interval . 822
Adding Buffers at an Interval That is a Ratio of the Net Length822
Adding Buffers on a Bus in a Specified Pattern .823

Controlling How Buffers are Added . 825

22

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Specifying Settings for Multivoltage Designs . 826
Specifying Settings for the Freeze Silicon ECO Flow 826

Optimizing the Fanout of a Net .827

Reporting Available Sites for Placing ECO Cells . 828

Identifying and Reverting Nonoptimal ECO Changes .828

Placing ECO Cells .828
Controlling Placement When Using the place_eco_cells Command 829
Controlling Legalization When Using the place_eco_cells Command 830
Placing ECO Cells With Minimal Physical Impact (MPI) 832

Placing and Mapping ECO Cells to Spare Cells . 833
Specifying Mapping Rules for Programmable Spare Cells833
Mapping ECO Cells to Specific Spare Cells . 834
Mapping ECO Cells to Logically Equivalent Spare Cells 834

Updating Supply Nets for ECO Cells . 835

Recording the Changes Made to a Layout .835

Performing Prerequisite Check for Group Repeater Insertion and Placement 836

Adding a Group of Repeaters .837
Defining a group of repeaters .838
Grouping a list of repeaters . 838
Setting Constraints for a Group of Repeaters . 838
Reporting the Constraints Assigned to a Group of a Repeaters 839
Removing Constraints for a Group of Repeaters . 839
Placing Group Repeaters Before Routing . 839
Performing On Route Placement of Repeaters . 840
Placing Group Repeaters For Multibit Registers . 840
Specifying Locations for Repeater Groups .841
Allowing Repeater Groups Over Macros . 841
Specifying Cut Space and Cut Distance for Repeater Groups842
Specifying Horizontal and Vertical Spacing for Repeater Groups 842
Specifying Library Cells as Repeaters . 842
Avoiding Overlapping Repeaters With Existing Tap Cells 842
Avoiding Crosstalk During Group Repeater Insertion .842
Previewing Repeater Groups . 843
Unplacing the Repeaters . 844
Removing Repeater Groups .844

Querying Group Repeater .844

23

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Performing Auto Grouping Flow . 845
Performing Manual Grouping Flow .845
Cell Input Mode . 846

Swapping Variant Cell . 846
Setting Constraints of Variant Cell . 847
Setting Application Option . 847
Grouping Variant Cell . 848
Running and Placing Group Repeaters . 854
Troubleshooting .854

Fixing Multivoltage Violations . 861
Fixing Buffers . 862
Fixing Diodes . 863

24

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

About This User Guide
The Synopsys IC Compiler II tool provides a complete netlist-to-GDSII or netlist-to-
OASIS® design solution, which combines proprietary design planning, physical synthesis,
clock tree synthesis, and routing for logical and physical design implementation throughout
the design flow.

This guide describes the IC Compiler II implementation and integration flow. For more
information about the IC Compiler II tool, see the following companion volumes:

• Library Manager User Guide

• IC Compiler II Design Planning User Guide

• IC Compiler II Data Model User Guide

• IC Compiler II Timing Analysis User Guide

• IC Compiler II Graphical User Interface User Guide

• IC Compiler II Multivoltage User Guide

• IC Compiler II Power Analysis User Guide

This user guide is for design engineers who use the IC Compiler II tool to implement
designs.

To use the IC Compiler II tool, you need to be skilled in physical design and synthesis and
be familiar with the following:

• Physical design principles

• The Linux operating system

• The tool command language (Tcl)

This preface includes the following sections:

• New in This Release

• Related Products, Publications, and Trademarks

• Conventions

• Customer Support

• Statement on Inclusivity and Diversity

IC Compiler™ II Implementation User Guide
T-2022.03

25

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

About This User Guide
New in This Release

Feedback

New in This Release
Information about new features, enhancements, and changes, known limitations, and
resolved Synopsys Technical Action Requests (STARs) is available in the IC Compiler II
Release Notes on the SolvNetPlus site.

Related Products, Publications, and Trademarks
For additional information about the IC Compiler II tool, see the documentation on the
Synopsys SolvNetPlus support site at the following address:

https://solvnetplus.synopsys.com

You might also want to see the documentation for the following related Synopsys products:

• Design Compiler®

• IC Validator

• PrimeTime® Suite

• StarRC™

Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list

Courier bold Indicates user input—text you type verbatim—in examples, such
as
prompt> write_file top

Purple • Within an example, indicates information of special interest.
• Within a command-syntax section, indicates a default, such as

include_enclosing = true | false
[] Denotes optional arguments in syntax, such as

write_file [-format fmt]

IC Compiler™ II Implementation User Guide
T-2022.03

26

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

About This User Guide
Customer Support

Feedback

Convention Description

... Indicates that arguments can be repeated as many times as
needed, such as
pin1 pin2 ... pinN.

| Indicates a choice among alternatives, such as
low | medium | high

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Bold Indicates a graphical user interface (GUI) element that has an
action associated with it.

Edit > Copy Indicates a path to a menu command, such as opening the Edit
menu and choosing Copy.

Ctrl+C Indicates a keyboard combination, such as holding down the Ctrl
key and pressing C.

Customer Support
Customer support is available through SolvNetPlus.

Accessing SolvNetPlus
The SolvNetPlus site includes a knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNetPlus site also gives you
access to a wide range of Synopsys online services including software downloads,
documentation, and technical support.

To access the SolvNetPlus site, go to the following address:

https://solvnetplus.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to sign up for an account.

If you need help using the SolvNetPlus site, click REGISTRATION HELP in the top-right
menu bar.

Contacting Customer Support
To contact Customer Support, go to https://solvnetplus.synopsys.com.

IC Compiler™ II Implementation User Guide
T-2022.03

27

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com
https://solvnetplus.synopsys.com

About This User Guide
Statement on Inclusivity and Diversity

Feedback

Statement on Inclusivity and Diversity
Synopsys is committed to creating an inclusive environment where every employee,
customer, and partner feels welcomed. We are reviewing and removing exclusionary
language from our products and supporting customer-facing collateral. Our effort also
includes internal initiatives to remove biased language from our engineering and working
environment, including terms that are embedded in our software and IPs. At the same
time, we are working to ensure that our web content and software applications are usable
to people of varying abilities. You may still find examples of non-inclusive language in our
software or documentation as our IPs implement industry-standard specifications that are
currently under review to remove exclusionary language.

IC Compiler™ II Implementation User Guide
T-2022.03

28

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

1
Working With the IC Compiler II Tool

The IC Compiler II tool supports the following functionality:

• Extraction and timing analysis

• Placement and optimization, including relative placement

• Clock tree synthesis

• Routing

• Chip finishing

• Top-level closure for hierarchical designs

• Engineering change orders (ECO)

• Reporting

• ASCII output interfaces

It takes as input a Verilog netlist, timing constraints, logic and physical libraries, and
foundry-process data. It generates as output an OASIS- or GDSII-format file of the layout
or a Design Exchange Format (DEF) file of placed netlist data ready for a third-party
router. The IC Compiler II tool can also output the design at any time as a binary design
database or as ASCII files (Verilog, DEF, and timing constraints).

The following topics describe how to use the IC Compiler II tool:

• Place and Route Design Flow Overview

• IC Compiler II Concepts

• User Interfaces

• Entering icc2_shell Commands

• Using Application Options

• Using Variables

• Viewing Man Pages

• Using Tcl Scripts

IC Compiler™ II Implementation User Guide
T-2022.03

29

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Place and Route Design Flow Overview

Feedback

• Adding Changes to a Script With Checkpoints

• Using Setup Files

• Using the Command Log File

• Enabling Multicore Processing

For information about working with design data in the IC Compiler II tool, see the IC
Compiler II Data Model User Guide.

Place and Route Design Flow Overview
Figure 1 shows the basic place and route design flow using the IC Compiler II tool.

Figure 1 IC Compiler II Place and Route Flow

IC Compiler™ II Implementation User Guide
T-2022.03

30

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Place and Route Design Flow Overview

Feedback

To run the IC Compiler II place and route flow,

1. Set up the library data, preparingtiming librarieslogic librarieslibraries and prepare the design data, as described in Preparing the Design.

2. Perform design planning and power planning.

When you perform design planning and power planning, you create a floorplan to
determine the size of the design, create the boundary and core area, create site rows
for the placement of standard cells, set up the I/O pads, and create a power plan.

For more information about design planning and power planning, see the IC Compiler II
Design Planning User Guide.

3. Perform placement and optimization.

To perform placement and optimization, use the place_opt command.

The place_opt command placement and optimizationaddresses and resolves timing closure for your design. This
iterative process uses enhanced placement and synthesis technologies to generate
legalized placement for leaf cells and an optimized design. You can supplement
this functionality by optimizing for power, recovering area for placement, minimizing
congestion, and minimizing timing and design rule violations.

For more information about placement and optimization, see Placement and
Optimization.

4. Perform clock tree synthesis and optimization.

To perform clock tree synthesis and optimization, use the clock_opt command.

IC Compiler II clock tree synthesis and embedded optimization solve complicated clock
tree synthesis problems, such as blockage avoidance and the correlation between
preroute and postroute data. Clock tree optimization improves both clock skew and
clock insertion delay by performing buffer sizing, buffer relocation, gate sizing, gate
relocation, level adjustment, reconfiguration, delay insertion, dummy load insertion, and
balancing of interclock delays.

For more information about clock tree synthesis and optimization, see Clock Tree
Synthesis.

5. Perform routing and postroute optimization, as described in Routing and Postroute
Optimization.

The IC Compiler II tool uses Zroute to perform global routing, track assignment, detail
routing, topological optimization, and engineering change order (ECO) routing. To
perform postroute optimization, use the route_opt command. For most designs, the
default postroute optimization setup produces optimal results. If necessary, you can
supplement this functionality by optimizing routing patterns and reducing crosstalk or
by customizing the routing and postroute optimization functions for special needs.

IC Compiler™ II Implementation User Guide
T-2022.03

31

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
IC Compiler II Concepts

Feedback

6. Perform chip finishing and design for manufacturing tasks, as described in Chip
Finishing and Design for Manufacturing.

The IC Compiler II tool provides chip finishing and design for manufacturing and design
for yield capabilities that you can apply throughout the various stages of the design flow
to address process design issues encountered during chip manufacturing.

7. Save the design.

IC Compiler II Concepts
This topic introduces the following concepts used in the IC Compiler II tool:

• Power Intent Concepts

• Multiple-Patterning Concepts

Power Intent Concepts
The IC Compiler II tool uses the Unified Power Format (UPF) to specify the power intent
for multivoltage designs. This topic provides an overview of the UPF concepts and the
supported UPF flows.

UPF Concepts
The UPF language establishes a set of commands used to specify the low-power design
intent for electronic systems. Using UPF commands, you can specify the supply network,
switches, isolation, retention, and other aspects relevant to power management of a
chip design. The same set of low-power design specification commands is to be used
throughout the design, analysis, verification, and implementation flow. Synopsys tools are
designed to follow the official UPF standard.

The UPF language provides a way to specify the power requirements of a design, but
without specifying explicitly how those requirements are implemented. The language
specifies how to create a power supply network for each design element, the behavior
of supply nets with respect to each other, and how the logic functionality is extended to
support dynamic power switching to design elements. It does not contain any placement or
routing information.

In the UPF language, a power domain is a defined group of elements in the logic hierarchy
that share a common set of power supply needs. By default, all logic elements in a power
domain use the same primary supply and primary ground. Other power supplies can
optionally be defined for a power domain as well. A power domain is typically implemented
as a contiguous voltage area in the physical chip layout, although this is not a requirement
of the language.

IC Compiler™ II Implementation User Guide
T-2022.03

32

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
IC Compiler II Concepts

Feedback

Each power domain has a scope and an extent. The scope is the level of logic hierarchy
where the power domain exists. The extent is the set of logic elements that belong to the
power domain and share the same power supply needs. In other words, the scope is the
hierarchical level where the power domain exists, whereas the extent is what is contained
within the power domain.

Each scope or hierarchical level in the design has supply nets and supply ports. A supply
net is a conductor that carries a supply voltage or ground throughout a given power
domain. A supply net that spans more than one power domain is said to be “reused” in
multiple domains. A supply port is a power supply connection point between two adjacent
levels of the design hierarchy, between parent and child blocks of the hierarchy. A supply
net that crosses from one level of the design hierarchy to the next must pass through a
supply port.

A power switch (or simply switch) is a device that turns on and turns off power for a supply
net. A switch has an input supply net, an output supply net that can be switched on or off,
and at least one input signal to control switching. The switch can optionally have multiple
input control signals and one or more output acknowledge signals. A power state table
lists the allowed combinations of voltage values and states of the power switches for all
power domains in the design.

Where a logic signal leaves one power domain and enters another at a substantially
different supply voltage, a level-shifter cell must be present to convert the signal from the
voltage swing of the first domain to that of the second domain.

Where a logic signal leaves a power domain and enters a different power domain, an
isolation cell must be present to generate a known logic value during shutdown. If the
voltage levels of the two domains are substantially different, the interface cell must perform
both level shifting when the domain is powered up and isolation when the domain is
powered down. A cell that can perform both functions is called an enable level shifter.

In a power domain that has power switching, any registers that are to retain data during
shutdown must be implemented as retention registers. A retention register has a separate,
always-on supply net, sometimes called the backup supply, which keeps the data stable
while the primary supply of the domain is shut down.

UPF Flows
The IC Compiler II tool supports both the traditional UPF flow and the golden UPF flow.
The golden UPF flow is an optional method of maintaining the UPF multivoltage power
intent of the design. It uses the original “golden” UPF file throughout the synthesis,
physical implementation, and verification steps, along with supplemental UPF files
generated by the Design Compiler and IC Compiler II tools.

IC Compiler™ II Implementation User Guide
T-2022.03

33

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
IC Compiler II Concepts

Feedback

Figure 2 compares the traditional UPF flow with the golden UPF flow.

Figure 2 UPF-Prime (Traditional) and Golden UPF Flows

The golden UPF flow maintains and uses the same, original “golden” UPF file throughout
the flow. The Design Compiler and IC Compiler II tools write power intent changes
into a separate “supplemental” UPF file. Downstream tools and verification tools use a
combination of the golden UPF file and the supplemental UPF file, instead of a single UPF’
or UPF’’ file.

The golden UPF flow offers the following advantages:

• The golden UPF file remains unchanged throughout the flow, which keeps the form,
structure, comment lines, and wildcard naming used in the UPF file as originally
written.

• You can use tool-specific conditional statements to perform different tasks in different
tools. Such statements are lost in the traditional UPF-prime flow.

• Changes to the power intent are easily tracked in the supplemental UPF file.

• You can optionally use the Verilog netlist to store all PG connectivity information,
making connect_supply_net commands unnecessary in the UPF files. This can
significantly simplify and reduce the overall size of the UPF files.

To enable the golden UPF flow, use the following application option setting before you load
the UPF:

icc2_shell> set_app_options -as_user_default \
 -list {mv.upf.enable_golden_upf true}

IC Compiler™ II Implementation User Guide
T-2022.03

34

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
IC Compiler II Concepts

Feedback

To load supplemental UPF files, use the -supplemental option with the load_upf
command.

For more information about using the golden UPF flow, see SolvNet article 1412864,
“Golden UPF Flow Application Note.”

Multiple-Patterning Concepts
At the 20-nm process node and below, printing the required geometries is extremely
difficult with the existing photolithography tools. To address this issue, a new technique,
multiple patterning, is used to partition the layout mask into two or more separate masks,
each of which has an increased manufacturing pitch to enable higher resolution and better
printability. Figure 3 shows an example of double-patterning, where the layout mask is
partitioned into two separate masks, MASK A and MASK B.

Figure 3 Double-Patterning Example

To use multiple patterning, you must be able to decompose the layout into two or more
masks, each of which meets the multiple-patterning spacing requirements. A multiple-
patterning violation occurs if your layout contains a region with an odd number of
neighboring shapes where the distance between each pair of shapes is smaller than the
multiple-patterning minimum spacing. This type of violation, which is called an odd cycle,
is shown in Figure 4.

IC Compiler™ II Implementation User Guide
T-2022.03

35

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/1412864.html
https://solvnet.synopsys.com/retrieve/1412864.html

Chapter 1: Working With the IC Compiler II Tool
IC Compiler II Concepts

Feedback

Figure 4 Odd-Cycle Violation

If the spacing between any pair in the loop is greater than the multiple-patterning minimum
spacing, no violation occurs and the layout can be decomposed. For example, in Figure 5,
if the spacing, x, between segments B and C is greater than the multiple-patterning
minimum spacing, there is no odd cycle and the layout can be decomposed.

Figure 5 No Odd-Cycle Violation

The IC Compiler II tool ensures that the generated layout is conducive to double patterning
by considering the multiple-patterning spacing requirements during placement and routing
and preventing odd cycles.

In general, double patterning is performed only on the bottom (lowest) metal layers, which
are referred to as multiple-patterning layers. The metal shapes on the multiple-patterning
layers must meet the multiple-patterning spacing requirements, whether they are routing
shapes or metal within the standard cells and macros. The metal shapes on other layers
do not need to meet the stricter multiple-patterning spacing requirements.

IC Compiler™ II Implementation User Guide
T-2022.03

36

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
IC Compiler II Concepts

Feedback

Multiple-patterning considerations affect all parts of the place and route flow. Depending
on your standard cell library, you follow either an uncolored or precolored multiple-
patterning flow.

• You use the uncolored flow if the cells in your standard cell library have sufficient
spacing to the cell boundaries to ensure that multiple-patterning violations do not occur
during placement. This type of library is referred to as a correct-by-construction library;
most multiple-patterning libraries are correct-by-construction libraries.

In the uncolored flow, the tool determines the appropriate mask settings for the pins
and net shapes.

• You use the precolored flow if the cells in your standard cell library have assigned
masks on the metal shapes inside the cells. These assigned masks are often referred
to as colors and this type of library is referred to as a precolored library.

In the precolored flow, the tool must consider these mask assignments to ensure that
multiple-patterning violations do not occur during placement. The tool also uses the
mask assignments to determine the appropriate mask settings for the pins and net
shapes.

The mask assignments are represented as mask constraints in the IC Compiler II tool.
You must ensure that the mask constraints are properly set before starting place and
route. For information about the mask constraints, see Mask Constraints.

Mask Constraints
Mask constraints indicate the mask requirements for the metal shapes of the physical pins
and nets in a block that uses multiple-patterning technology. These mask requirements
drive placement and routing to ensure that the resulting layout is multiple-patterning
compliant.

Note:
Mask constraints are used only for the precolored flow; they are not necessary
in the uncolored flow.

You can set mask constraints on timing-critical nets (net shapes, routing rules, and routing
blockages) and vias. For nets, the mask constraint is defined in the mask_constraint
attribute. For vias, the mask constraints are defined in the lower_mask, upper_mask, and
cut_mask attributes. Table 1 shows the supported values for these attributes.

Table 1 Mask Constraint Values

Attribute value Description

same_mask This constraint means that the mask color is not yet been determined. Shapes
with this attribute must be at least the multiple-patterning minimum spacing
distance from any other colored metal shape.

IC Compiler™ II Implementation User Guide
T-2022.03

37

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
User Interfaces

Feedback

Table 1 Mask Constraint Values (Continued)

Attribute value Description

mask_one This constraint means that the shape has the mask1 color. Shapes with this
attribute must be at least the multiple-patterning minimum spacing distance
from other mask1-colored metal shapes.

mask_two This constraint means that the shape has the mask2 color. Shapes with this
attribute must be at least the multiple-patterning minimum spacing distance
from other mask2-colored metal shapes.

mask_three This constraint means that the shape has the mask3 color. Shapes with this
attribute must be at least the multiple-patterning minimum spacing distance
from other mask3-colored metal shapes.

any_mask This constraint means that the shape is not colored. Shapes with this attribute
must be at least the standard minimum spacing distance from other metal
shapes; the multiple-patterning minimum spacing rules do not apply to these
shapes.

User Interfaces
The IC Compiler II tool operates in the X Windows environment on Linux. It provides a
flexible working environment with both a shell command-line interface and a graphical user
interface (GUI). The command-line interface is always available during a IC Compiler II
session. You can start or exit a session in either the shell or the GUI, and you can open or
close the GUI at any time during a session.

The tool uses the Tool Command Language (Tcl), which is used in many applications in
the EDA industry. Using Tcl, you can extend the icc2_shell command language by writing
reusable procedures and scripts (see the Using Tcl With Synopsys Tools manual).

The following topics describe how to start and exit the tool using the command-line
interface.

• Starting the Command-Line Interface

• Exiting the IC Compiler II Tool

For information about using the GUI, see the IC Compiler II Graphical User Interface User
Guide.

The following topics describe how to use the user interfaces of the IC Compiler II tool:

• Starting the GUI

• Closing the GUI

IC Compiler™ II Implementation User Guide
T-2022.03

38

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
User Interfaces

Feedback

Starting the Command-Line Interface
The command-line interface is a text-only environment in which you enter commands at
the command-line prompt. It is typically used for scripts, batch mode, and push-button
operations.

Before you start the command-line interface, ensure that the path to the bin directory is
included in your $PATH variable.

To start icc2_shell,

1. Make sure the path to the bin directory is included in your PATH variable.

2. Enter the icc2_shell command in a Linux shell.

% icc2_shell
You can include other options on the command line when you start the shell. For example,
you can use

• -file script_file_name to execute a script

• -x command to execute a command

• -output_log_file file_name to create a log file of your session

• -help to display a list of the available options (without starting the shell)

At startup, the tool performs the following tasks:

1. Creates a command log file.

2. Reads and executes the setup files.

3. Executes any script files or commands specified by the -file and -x options,
respectively, on the command line.

4. Displays the program header and icc2_shell> prompt in the shell.

See Also

• Using the Command Log File

• Using Setup Files

• Using Tcl Scripts

IC Compiler™ II Implementation User Guide
T-2022.03

39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Entering icc2_shell Commands

Feedback

Exiting the IC Compiler II Tool
You can end the session and exit the IC Compiler II tool at any time. To exit the tool, use
the exit or quit command.

Note:
When you exit the tool from the command line, the tool exits without saving the
open blocks.

Entering icc2_shell Commands
You interact with the IC Compiler II tool by using icc2_shell commands, which are based
on the Tool Command Language (Tcl) and include certain command extensions needed
to implement specific IC Compiler II functionality. The IC Compiler II command language
provides capabilities similar to Linux command shells, including variables, conditional
execution of commands, and control flow commands. You can

• Enter individual commands interactively at the icc2_shell> prompt in icc2_shell

• Enter individual commands interactively on the console command line in the GUI

• Run one or more Tcl scripts, which are text files that contain icc2_shell commands (see
Using Tcl Scripts)

When entering a command, an option, or a file name, you can minimize your typing by
pressing the Tab key when you have typed enough characters to specify a unique name;
the IC Compiler II tool completes the remaining characters. If the characters you typed
could be used for more than one name, the IC Compiler II tool lists the qualifying names,
from which you can select by using the arrow keys and the Enter key.

If you need to reuse a command from the output for a command-line interface, you can
copy and paste the portion by selecting it, moving the pointer to the icc2_shell command
line, and clicking with the middle mouse button.

When you run a command, the IC Compiler II tool echoes the command output (including
processing messages and any warnings or error messages) in icc2_shell and, if the GUI is
open, in the console log view. By default, the tool does not use page mode, so the output
might scroll. To enable page mode, set the sh_enable_page_mode variable to true.

IC Compiler™ II Implementation User Guide
T-2022.03

40

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Entering icc2_shell Commands

Feedback

Interrupting or Terminating Command Processing
If you enter the wrong options for a command or enter the wrong command, you can
interrupt command processing and remain in icc2_shell. interrupting commandscommandsinterruptingterminatingterminating commandsTo interrupt or terminate a
command, press Ctrl+C.

Some commands and processes cannot be interrupted. To stop these commands or
processes, you must terminate icc2_shell at the system level. When you terminate a
process or the shell, no data is saved.

When you use Ctrl+C, keep the following points in mind:

• If a script file is being processed and you interrupt one of its commands, the script
processing is interrupted and no further script commands are processed.

• If you press Ctrl+C three times before a command responds to your interrupt,
icc2_shell is interrupted and exits with this message:

Information: Process terminated by interrupt.

Getting Information About Commands
The following online information resources are available while you are using the IC
Compiler II tool:

• Command help, which is information about an IC Compiler II command

• Man pages

See Also

• Viewing Man Pages

Displaying Command Help
Command help consists of either a brief description of an IC Compiler II command or a list
of the options and arguments supported by an IC Compiler II command.

• To display a brief description of an IC Compiler II command, enter the help command
followed by the command name. For example, to display a brief description of the
report_timing command, use the following command:

icc2_shell> help report_timing
• To display the options supported by an IC Compiler II command, enter the command

name with the -help option on the command line. For example, to see the options
supported by the report_timing command, use the following command:

icc2_shell> report_timing -help

IC Compiler™ II Implementation User Guide
T-2022.03

41

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Using Application Options

Feedback

Using Application Options
The IC Compiler II tool uses application options to control the tool behavior. Application
options use the following naming convention:

category[.subcategory].option_name

where category is the name of the engine affected by the application option. Some
application option categories have subcategories to further refine the area affected by the
application option.

Application options have either a global scope or a block scope.

• Block-scoped application options apply only to the block on which they are set. They
are saved in the design library and are persistent across tool sessions.

• Global-scoped application options apply to all blocks, but only within the current
session. They are not saved in the design library; you must specify them in each
icc2_shell session. You might want to consider adding the global settings to
your .synopsys_icc2.setup file.

To get a list of available application options, use the get_app_options command. By
default, this command lists all application options. To restrict the reported application
options, provide a pattern string as an argument to the command.

For example, to list all available application options, use the following command:

icc2_shell> get_app_options
To list all available timer application options, use the following command:

icc2_shell> get_app_options timer.*
To generate a report of application options, use the report_app_options command.

For detailed information about application options, see Application Options in the IC
Compiler II Data Model User Guide.

See Also

• Using Setup Files

Using Variables
In general, the IC Compiler II tool modifies default behavior by using application options
rather than application variables; however it does support user-defined Tcl variables, as
well as a minimal number of application variables, such as the search_path variable.

IC Compiler™ II Implementation User Guide
T-2022.03

42

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Viewing Man Pages

Feedback

To list the variables and their values, use the printvar command. For example, to list all
variables defined in the current session, use the following command:

icc2_shell> printvar *
To print the value of the search_path variable, use the following command:

icc2_shell> printvar search_path

See Also

• Defining the Search Path

Viewing Man Pages
To display the man page for an IC Compiler II command or application option, enter the
man command followed by the command or application option name. For example, to see
the man page for the report_timing command, use the following command:

icc2_shell> man report_timing
To display the man page for an IC Compiler II application option, enter the man command
followed by the option name. You can also view the following types of summary pages for
application options:

• Category summaries

To view a man page that summarizes all of the application options for a specific
category, enter the man command followed by category_options. For example, to
see the man page that summarizes all timer application options, use the following
command:

icc2_shell> man timer_options
• Subcategory summaries

To view a man page the summarizes all of the application options for a specific
subcategory, enter the man command followed by category.subcategory_options. For
example, to see the man page that summarizes all common route application options,
use the following command:

icc2_shell> man route.common_options

IC Compiler™ II Implementation User Guide
T-2022.03

43

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Using Tcl Scripts

Feedback

• Command summaries

To view a man page the summarizes all of the application options for a specific
command, enter the man command followed by command_options. For example, to see
the man page that summarizes all application options that affect the report_timing
command, use the following command:

icc2_shell> man report_timing_options
If you enter the man command on the icc2_shell command line, the man page is displayed
in the IC Compiler II shell and in the console log view if the GUI is open. If you enter this
command on the console command line in the GUI, the man page is displayed in the GUI
man page viewer.

Using Tcl Scripts
You can use Tcl scripts to accomplish routine, repetitive, or complex tasks. You create a
command script file by placing a sequence of IC Compiler II commands in a text file. Any
IC Compiler II command can be executed within a script file.

In Tcl, a pound sign (#) at the beginning of a line denotes a comment. For example,

This is a comment

For more information about writing scripts and script files, see the Using Tcl With
Synopsys Tools manual.

Use one of the following methods to run a Tcl script:

• Use the -file option with the icc2_shell command when you start the IC Compiler II
tool.

• Use the source command from the icc2_shell command line.

• Choose File > Execute Script in the GUI.

If an error occurs when running a command, the IC Compiler II tool raises the
TCL_ERROR condition, which immediately stops the script execution. To tolerate errors
and allow the script to continue executing, either

• Check for TCL_ERROR error conditions with the Tcl catch command on the
commands that might generate errors.

• Set the sh_continue_on_error variable to true in the script file.

IC Compiler™ II Implementation User Guide
T-2022.03

44

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

See Also

• Starting the Command-Line Interface

• Adding Changes to a Script With Checkpoints

Adding Changes to a Script With Checkpoints
When running experiments on a block, you might might modify your golden flow scripts in
two ways:

• By making flow changes, such as setting application options, modifying constraints, or
making other changes to improve the quality of results

• By generating reports (either additional reports or reports at new places in the flow) to
help debug an issue

In most flows, you apply changes through a small number of static, modifiable
files. Here is a typical example to run the place_opt flow, where you source a
pre_place_opt_settings.tcl file to add flow changes and a generate_reports.tcl file to run all
your reporting at the end of the script:

open_block ./design:init_design
source ./scripts/pre_place_opt_settings.tcl
remove_buffer_trees -all
place_opt -from initial_place -to initial_drc
create_placement -incremental -timing_driven -congestion
place_opt -from initial_drc -to -initial_opto
place_opt -from final_place -to final_opto
source ./scripts/generate_reports.tcl

In some cases, complex changes require modifying your golden flow script directly, which
might be discouraged or difficult to do in many design environments. These changes can
be time consuming to implement, especially if you are implementing them at multiple
stages in the design flow, across multiple blocks, or for several different flow experiments.

The checkpoint system streamlines this process and allows you to run experiments
without modifying your golden flow scripts. When you use the checkpoint system, you
define checkpoints for important steps in your golden flow. These checkpoints enwrap the
commands associated with the given steps. By default, the checkpoints run only the code
they enwrap. That is, simply inserting checkpoints in your script does not change your
flow. However, you can associate these checkpoints with flow changes or reports that you
want to run before, after, or in place of the code the checkpoints enwrap. By defining these

IC Compiler™ II Implementation User Guide
T-2022.03

45

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

associations in a portable configuration file, you isolate your golden flow scripts from the
changes you want to apply for a particular run.

The following figure shows how you can use checkpoints to instantly apply a set of flow
changes or reports to multiple designs, without modifying each design's golden flow script.
In this case, the configuration file has been copied to each design's run directory.

In addition, when multiple users are working on a project, each user can have an individual
checkpoint.config.tcl file with his or her preferred settings:

The checkpoint system also allows you to

• Insert flow changes and reports with more precision than you could using a typical non-
checkpointed flow script

• Reference a single source of truth where you can find all changes that have been
applied to your default golden flow

IC Compiler™ II Implementation User Guide
T-2022.03

46

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

• Report a history of the checkpoints that were run, including the flow changes or reports
that were run at those checkpoints

• Report runtime and memory information for each checkpoint that was run

• Generate unique and descriptive report names

The general process for using the checkpoint system is as follows:

1. Insert checkpoints in your script.

2. Configure your checkpoints by

• Defining the flow changes or reports you want to associate with the checkpoints

• Associating the flow changes or reports you defined with your checkpoints

3. Run your script.

Defining Checkpoints
To define a checkpoint, insert the eval_checkpoint command in your script. Specify a
unique name for the checkpoint and wrap the checkpoint around a block of code.

Note the following:

• If you define a checkpoint with the same name as an existing checkpoint, the tool
automatically adds a unique suffix to the name of the newly-defined checkpoint when it
encounters the checkpoint in a run. For example, if you duplicate a checkpoint named
placement, the tool renames the duplicate to placement2 when it encounters the
checkpoint in a run.

• Do not nest checkpoints within other checkpoints. Although the tool does not prevent
you from defining nested checkpoints, the tool ignores nested checkpoints during a
run, executing only the outermost checkpoints (note that the Tcl code inside nested
checkpoints still runs, but runs as though the checkpoints do not exist).

Suppose you have a simple place_opt script:

open_block ./design:init_design
source ./scripts/pre_place_opt_settings.tcl
remove_buffer_trees -all
place_opt -from initial_place -to initial_drc
create_placement -incremental -timing_driven -congestion
place_opt -from initial_drc -to -initial_opto
place_opt -from final_place -to final_opto

IC Compiler™ II Implementation User Guide
T-2022.03

47

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

The following example wraps a checkpoint around each major step in your golden flow.
The checkpoints are named remove_buffers, place_opt_to_initial_drc, incr_placement,
place_opt_to_initial_opto, and place_opt_to_final_opto.

open_block ./design.nlib:init_design
source ./scripts/pre_place_opt_settings.tcl

eval_checkpoint remove_buffers {
 remove_buffer_trees -all
}

eval_checkpoint place_opt_to_initial_drc {
 place_opt -from initial_place -to initial_drc
}

eval_checkpoint incr_placement {
 create_placement -incremental -timing_driven -congestion
}

eval_checkpoint place_opt_to_initial_opto {
 place_opt -from initial_drc -to initial_opto
}

eval_checkpoint place_opt_to_final_opto {
 place_opt -from final_place -to final_opto
}

By default, the checkpoints run the Tcl code they enwrap. That is, simply inserting
checkpoints with the eval_checkpoint command does not change your flow. However,
you can associate these checkpoints with flow changes or reports that you want to run
before, after, or in place of the code the checkpoints enwrap, as described in Configuring
Checkpoints.

See Also

• Configuring Checkpoints

• Querying Checkpoints and Checkpoint Behaviors

Configuring Checkpoints
For a checkpoint to affect your flow, you must associate it with a flow change or report that
you want to run before, after, or in place of the code the checkpoint enwraps.

The process of defining flow changes and reports and associating them with individual
checkpoints is described in the following topics:

• Defining Checkpoint Behaviors

• Associating Checkpoints and Checkpoint Behaviors

IC Compiler™ II Implementation User Guide
T-2022.03

48

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

Defining Checkpoint Behaviors
You can define two types of checkpoint behaviors: reports and actions. Define a
checkpoint report to generate one or more reports supported by the tool or custom reports
you create yourself. Define a checkpoint action to execute any kind of flow change before,
after, or in place of the code block enwrapped by a checkpoint. For example, you might set
an application option to a specific value before a particular checkpoint.

Define these behaviors in your checkpoint.config.tcl file, which is automatically sourced by
the checkpoint system.

Defining Checkpoint Reports

To define a checkpoint report, use the create_checkpoint_report command in
your checkpoint.config.tcl file. Specify a unique name for the report and define the Tcl
commands to generate the report.

The following example defines a checkpoint report named timing, which writes the output
of the report_qor and report_timing commands to disk:

create_checkpoint_report timing {
 set name [get_current_checkpoint -name]
 set pos [get_current_checkpoint -position]

 report_qor -nosplit > ./checkpoint/$name.$pos.qor.rpt
 report_qor -summary -nosplit >> ./checkpoint/$name.$pos.qor.rpt

 report_timing -nosplit -max_paths 10 \
 > ./checkpoint/$name.$pos.path.rpt
}

Notice the use of the get_current_checkpoint command with the -name and
-position options to give the generated reports a meaningful name. When these
reports are generated, their names reflect the checkpoint that triggered them
(get_current_checkpoint -name), as well as whether they were generated before
or after the checkpoint (get_current_checkpoint -position). For example, if this
checkpoint report is executed after a checkpoint named checkpoint_A, the generated
reports are saved to the checkpoint directory, and the name of the QoR report is
checkpoint_A.after.qor.rpt.

The next example defines a checkpoint report named app_options, which writes all your
non-default application options to disk:

create_checkpoint_report app_options {
 set name [get_current_checkpoint -name]
 set pos [get_current_checkpoint -position]

 report_app_options -non_default \

IC Compiler™ II Implementation User Guide
T-2022.03

49

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

 > ./checkpoint/$name.$pos.app_options.rpt
}

Defining Checkpoint Actions

To define a checkpoint action, use the create_checkpoint_action command in
your checkpoint.config.tcl file. Specify a unique name for the action and define the Tcl
commands that constitute the action.

The following example defines a checkpoint action named gropto, which enables global-
route based buffering:

create_checkpoint_action gropto {
 set_app_options -name place_opt.initial_drc.global_route_based \
 -value true
}

The next example defines a checkpoint action named placer_high_effort_cong, which runs
high-effort congestion reduction:

create_checkpoint_action placer_high_effort_cong {
 set placer_command [get_current_checkpoint -script]
 set cong_option "-congestion_effort high"
 eval $placer_command $cong_option
}

Notice the use of the get_current_checkpoint -script command and option, which
retrieves the command originally enwrapped by the checkpoint and sets its congestion
effort to high (-congestion_effort high). The -script option is typically used to define
actions that replace the contents of a command. In this example, the action modifies
the -congestion_effort option of the command that is enwrapped by the checkpoint
associated with this action.

Associating Checkpoints and Checkpoint Behaviors
After defining checkpoints with the eval_checkpoint command and checkpoint behaviors
with the create_checkpoint_* command, you must associate the two so that the tool
executes the behaviors when it encounters the checkpoints in a run, as described in the
following topics:

• Associating Checkpoints With Checkpoint Reports

• Associating Checkpoints With Checkpoint Actions

See Also

• Defining Checkpoints

• Defining Checkpoint Behaviors

IC Compiler™ II Implementation User Guide
T-2022.03

50

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

Associating Checkpoints With Checkpoint Reports

To associate a checkpoint report with one or more checkpoints, use the
associate_checkpoint_report command in your checkpoint.config.tcl file.

• Specify the checkpoint report name with the -enable option.

• To enable the report to run before one or more checkpoints, specify the checkpoint
names with the -before option.

• To enable the report to run after one or more checkpoints, specify the checkpoint
names with the -after option.

When associating a report with multiple checkpoints, you can list the checkpoint names or
specify the asterisk wildcard character.

Assume you have defined three checkpoints in your script named remove_buffers,
place_opt_to_initial_opto, and place_opt_to_final_opto using the eval_checkpoint
command, and two checkpoint reports named timing and app_options using the
create_checkpoint_report command.

To enable your timing report to run after the place_opt_to_initial_opto and
place_opt_to_final_opto checkpoints, use the following command:

associate_checkpoint_report -enable timing \
 -after { place_opt_to_initial_opto place_opt_to_final_opto }

To enable your app_options report to run before all the checkpoints in your script, use the
following command:

associate_checkpoint_report -enable app_options -before *

You can also add the command like this, which enables the report to run before the
remove_buffers checkpoint and any checkpoints beginning with the phrase place_opt:

associate_checkpoint_report -enable app_options \
 -before remove_buffers place_opt*

The following is a portion of your checkpointed script showing what happens when the
script runs. Note that the highlighted code is not actually in your script, but shows the
checkpoint behaviors that are executed when the tool encounters the checkpoints in the
run.

• The code that is commented out identifies the original script body

• The blue code identifies the checkpointed Tcl commands in your golden flow

IC Compiler™ II Implementation User Guide
T-2022.03

51

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

• The green code identifies the app_options report, configured to run before each
checkpoint

• The purple code identifies the timing report, configured to run after the
place_opt_to_final_opto checkpoint

Associating Checkpoints With Checkpoint Actions

To associate a checkpoint action with one or more checkpoints, use the
associate_checkpoint_action command in your checkpoint.config.tcl file.

• Specify the checkpoint action name with the-enable option.

• To enable the action to run before one or more checkpoints, specify the checkpoint
names with the -before option.

• To enable the action to run after one or more checkpoints, specify the checkpoint
names with the -after option.

• To enable the action to run instead of the code block enwrapped by the checkpoint,
specify the checkpoint names with the -replace option.

When associating an action with multiple checkpoints, you can list the checkpoint names
or specify the asterisk wildcard character.

Assume you have defined two checkpoints in your script named place_opt_to_initial_drc
and incr_placement with the eval_checkpoint command, and two checkpoint actions

IC Compiler™ II Implementation User Guide
T-2022.03

52

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

named gropto and placer_high_effort_cong with the create_checkpoint_action
command.

To enable your gropto action to run before the place_opt_to_initial_drc checkpoint, use the
following command:

associate_checkpoint_action -enable gropto \
 -before place_opt_to_initial_drc

To enable your placer_high_effort_cong action to run instead of the code block enwrapped
by the incr_placement checkpoint, use the following command:

associate_checkpoint_action -enable placer_high_effort_cong \
 -replace incr_placement

The following is a portion of your checkpointed script showing what happens when the
script runs. Note that the highlighted code is not actually in your script, but shows the
checkpoint behaviors that are executed when the tool encounters the checkpoints in a run.

• The code that is commented out identifies the original script body

• The blue code identifies the checkpointed Tcl commands in your golden flow

• The green code identifies the gropto action, configured to run before the
place_opt_to_initial_drc checkpoint

• The purple code identifies the placer_high_effort_cong action, configured to run in
place of the code block enwrapped by the incr_placement checkpoint

IC Compiler™ II Implementation User Guide
T-2022.03

53

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

Associating a Checkpoint With Multiple Behaviors

When you associate a checkpoint with multiple behaviors, the tool executes those
behaviors in the following order:

• Any reports configured to run before the checkpoint

• Any actions configured to run before the checkpoint

• The checkpointed code block, or any actions configured to replace it

• Any actions configured to run after the checkpoint

• Any reports configured to run after the checkpoint

If multiple reports or multiple actions are configured to run at the same position (-before,
-after, or -replace) in the same checkpoint, the tool executes them in the order in which
they were associated with the checkpoint with the associate_checkpoint_* commands.
For example, suppose you define a timing report before an area report. If you associate
the area report to run after a checkpoint before you associate the timing report to run after
the same checkpoint, the tool runs the area report first when it encounters the checkpoint.

IC Compiler™ II Implementation User Guide
T-2022.03

54

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

See Also

• Defining Checkpoints

• Defining Checkpoint Behaviors

• Querying Checkpoints and Checkpoint Behaviors

Querying Checkpoints and Checkpoint Behaviors
To return a list of all the checkpoints or checkpoint behaviors in the current session,
or to return detailed information for any checkpoint or checkpoint behavior, use the
get_checkpoint_data command.

• To return a list of all the checkpoints that have been executed, specify the
-list_names option:

icc2_shell> get_checkpoint_data -list_names
remove_buffers place_opt_to_initial_drc
incr_placement place_opt_to_initial_opto
place_opt_to_final_opto

• To return detailed information for a checkpoint, specify the checkpoint with the -name
option. The tool returns the output as a Tcl dictionary:

icc2_shell> get_checkpoint_data -name place_opt_to_initial_drc
memory 173.85 start_time 2.34 end_time 2.34 before_runtime 2.34
 before_report_runtime 0.00 after_report_runtime 0.00 self_runtime
 0.00 before_reports {} after_reports {app_options timing}
 before_actions {gropto} after_actions {} replace_actions {}

• To return a list of all the checkpoint behaviors defined in your configuration, specify the
-list_reports or -list_actions option:

icc2_shell> get_checkpoint_data -list_reports
timing app_options

icc2_shell> get_checkpoint_data -list_actions
gropto placer_high_effort_congestion

• To return the contents and associations of a checkpoint report or action, specify the
report or action with the -report or -action option:

icc2_shell> get_checkpoint_data -report app_options
contents {
 set name [get_current_checkpoint -name]
 set pos [get_current_checkpoint -position]

 report_app_options -non_default \
 > ./checkpoint/$name.$pos.app_options.rpt
} before_patterns {*} after_patterns {}

IC Compiler™ II Implementation User Guide
T-2022.03

55

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Adding Changes to a Script With Checkpoints

Feedback

See Also

• Viewing Your Checkpoint History

Viewing Your Checkpoint History
To view your checkpoint history, navigate to the checkpoint directory. This directory
contains a checkpoint_history.rpt file that captures the history of the checkpoints the
tool encounters during each run, along with the runtime and memory usage for each
checkpoint. The checkpoint directory also contains any checkpoint reports you have
written to it.

In some cases, you might want to clear the full or partial contents of your checkpoint
history. A typical example is when a checkpointed run fails and you want to clear some or
all of the data associated with that run, depending on whether you plan to rerun a portion
of the flow or the entire flow.

• To clear your full checkpoint history, use the reset_checkpoints command.

icc2_shell> reset_checkpoints
The reset_checkpoints command clears the full contents of the checkpoint directory,
including any reports you have written to it. However, before clearing the checkpoint
directory, the reset_checkpoints command saves a timestamped copy of the
directory in your run directory.

• To clear a portion of the data in your checkpoint_history.rpt file, use the -from option to
specify the name of a checkpoint.

This option removes all checkpoints including and following the specified checkpoint
from your checkpoint_history.rpt file; it does not remove any checkpoint reports you
have written to the checkpoint directory.

For example, suppose your checkpoint_history.rpt file contains the following data after
your run a full checkpointed flow:

Checkpoints Memory StartTime ...
remove_buffers 32290.86 2020-03-23_14:34:17 ...
place_opt_to_initial_drc 36389.15 2020-03-23_17:21:56 ...
incr_placement 37002.09 2020-03-23_19:13:02 ...
place_opt_to_initial_opto 45655.59 2020-03-23_23:44:36 ...
place_opt_to_final_opto 46322.34 2020-03-23_30:12:55 ...

Suppose you want to rerun your flow beginning with incremental placement. To clear
the last three checkpoints from your checkpoint_history.rpt file before rerunning that
portion of your flow, use the following command:

icc2_shell> reset_checkpoints -from incr_placement

IC Compiler™ II Implementation User Guide
T-2022.03

56

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Using Setup Files

Feedback

After clearing the checkpoints, your checkpoint_history.rpt file lists only the first two
checkpoints in your flow:

Checkpoints Memory StartTime ...
remove_buffers 32290.86 2020-03-23_14:34:17 ...
place_opt_to_initial_drc 36389.15 2020-03-23_17:21:56 ...

Similarly, the get_checkpoint_data -list_names command returns only the
remove_buffers and place_opt_to_initial_drc checkpoints:

icc2_shell> get_checkpoint_data -list_names
remove_buffers place_opt_to_initial_drc

Using Setup Files
When you start the IC Compiler II tool, it automatically executes the commands in
the .synopsys_icc2.setup file.

The tool looks for this file both in your home directory and in the project directory (the
current working directory in which you start the IC Compiler II tool). The file is read in the
following order:

1. The .synopsys_icc2.setup file in your home directory

2. The .synopsys_icc2.setup file in the project directory

The setup files can contain commands that perform basic tasks, such as initializing
application options and setting GUI options. You can add commands and Tcl procedures to
the setup files in your home and project directories. For example,

• To set application options that define your IC Compiler II working environment, create
setup files in your home directory.

• To set project- or block-specific application options that affect the processing of a block,
create a setup file in the design directory.

See Also

• User Interfaces

• Using Application Options

• Using Variables

• Using Tcl Scripts

IC Compiler™ II Implementation User Guide
T-2022.03

57

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Using the Command Log File

Feedback

Using the Command Log File
The command log file records the commands processed by the IC Compiler II tool,
including setup file commands and application option settings. By default, the IC Compiler
II tool writes the command log to a file named icc2_command.log in the directory from
which you invoked icc2_shell.

You can change the name of the command log file by setting the sh_command_log_file
variable in your .synopsys_icc2.setup file. You should make any changes to this variable
before you start the IC Compiler II tool. If your user-defined or project-specific setup
file does not contain this variable, the IC Compiler II tool automatically creates the
icc2_command.log file.

Each IC Compiler II session overwrites the command log file. To save a command log file,
move it or rename it. You can use the command log file to

• Produce a script for a particular implementation strategy

• Record the physical implementation process

• Document any problems you are having

Enabling Multicore Processing
Several functions in the IC Compiler II tool support multicore processing, whether
through multithreading, distributed processing, or parallel command execution. Multicore
processing improves turnaround time by performing tasks in parallel much more quickly
than if they were run sequentially on a single core.

Note:
A single machine has one or more CPUs and each CPU has one or more
cores. The total number of cores available for processing on a machine is the
number of CPUs multiplied by the number of cores in each CPU.

When using multicore processing, you need one IC Compiler II license for every eight
parallel tasks. For example, to run 16 parallel tasks, you need 2 IC Compiler II licenses.

In most cases, you configure multicore processing by using the set_host_options
command. The following topics describe how to use the set_host_options command to
configure multicore processing:

• Configuring Multithreading

• Configuring Distributed Processing

IC Compiler™ II Implementation User Guide
T-2022.03

58

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Enabling Multicore Processing

Feedback

• Reporting Multicore Configurations

• Removing Multicore Configurations

The following topic describes how to use distributed processing to run the same task on
several blocks in a hierarchical design:

• Running Tasks in Parallel

The following topic describes how to use parallel command execution for checking and
reporting commands:

• Running Commands in Parallel on Your Local Host

Configuring Multithreading
Multithreading performs tasks in parallel by using multiple cores on the same machine,
using a single process memory image. When using multithreading, each parallel task
is called a thread. For the best performance during multithreading, you should limit the
number of threads to the number of available cores, which is the number of CPUs in the
machine times the number of cores per CPU.

The following commands support multithreading configured by the set_host_options
command:

• place_opt

• clock_opt

• check_legality, when advanced legalization is enabled by setting the
place.legalize.enable_advanced_legalizer application option to true.

• insert_via_ladders

• route_auto, route_global, route_track, route_detail, and route_eco
Note:

When you run routing with a single thread, the result is deterministic; if
you start with the same block, you always get the same result. However, if
you use multiple threads, the routing results are not deterministic; the final
routing is slightly different between runs due to the varying division of tasks
between threads. Global routing supports a deterministic mode for multicore
routing. To enable this mode, set the route.global.deterministic
application option to on.

• route_opt

• signoff_check_drc

IC Compiler™ II Implementation User Guide
T-2022.03

59

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Enabling Multicore Processing

Feedback

• signoff_fix_drc

• signoff_create_metal_fill

• signoff_fix_isolated_via

• write_def
By default, all commands use a single thread. To enable multithreading for those
commands that support it, set the -max_cores option of the set_host_options command
to a value greater than one and less than or equal to the number of cores available on
your machine, which is the number of CPUs in the machine times the number of cores per
CPU. The number of cores specified by the -max_cores option applies to all commands
that support multithreading.

When you enable multithreading, multithreaded commands create and use the specified
number of threads, even if the number is more than the number of available cores. You
must set an appropriate number of threads, so that the command does not try to use
more resources than it has. Overthreading can reduce performance because the extra
threads compete for resources. For best performance, do not run more than one thread
per available core.

For example, if your machine has two CPUs and each CPU has three cores, specify six as
the maximum number of threads:

icc2_shell> set_host_options -max_cores 6

Configuring Distributed Processing
Distributed processing performs tasks in parallel by using multiple machines; each process
uses its own process memory image. When using distributed processing, each parallel
task is called a process. For the best performance during distributed processing, you
should limit the number of processes to the number of available cores, which is the sum of
the number CPUs times the number of cores per CPU for each host machine.

The following commands support distributed processing configured by the
set_host_options command:

• analyze_rail

• create_placement -floorplan

• signoff_check_drc

• signoff_fix_drc

• signoff_create_metal_fill

• signoff_fix_isolated_via

IC Compiler™ II Implementation User Guide
T-2022.03

60

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Enabling Multicore Processing

Feedback

When you configure distributed processing, you can specify one or more of the following
settings:

• The job submission command (the -submit_command option)

If you do not specify this option, the tool uses the rsh command to submit the parallel
processes.

• The list of host machines (the host_names argument)

• The maximum number of processes (the -num_processes option)

By default, the tool assigns a name to each configuration you define with the
set_host_options command. To specify the configuration name, use the -name option.
You use the configuration name to select the configuration to use for specific commands
and to remove a configuration.

For example, to specify a distributed processing configuration that uses the qsub
command to submit the parallel processes, use the following command:

icc2_shell> set_host_options -name dp_config \
 -submit_command [list qsub -P bnormal -cwd]

Reporting Multicore Configurations
To report the values set by the set_host_options command, use the
report_host_options command.

Removing Multicore Configurations
To remove the multicore configurations defined by the set_host_options command, use
the remove_host_options command. To remove all multicore configurations, use the
-all option. To remove a specific multicore configuration, specify the configuration name
with the -name option.

IC Compiler™ II Implementation User Guide
T-2022.03

61

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Enabling Multicore Processing

Feedback

Running Tasks in Parallel
To efficiently run the same task on several blocks in your design, you can use the
run_block_script command to enable distributed processing and perform the tasks
in parallel. The run_block_script command accepts a Tcl script and applies the
commands in the script to the blocks you specify.

To control the order in which blocks are processed, use the -run_order option with the
top_down or bottom-up argument. When you specify the -run_order top-down option,
the tool delays processing for a child block until all parent blocks for the child block are
processed. When you specify the -run_order bottom-up option, the tool begins by
processing the child blocks, then processes the parent blocks. By default, blocks are
processed in a bottom-up order.

Running Commands in Parallel on Your Local Host
You can improve runtime by running checking and reporting commands in parallel on
your local host. You can run the commands either in the background (with the redirect
-bg command) or in the foreground (with the parallel_execute command). These
techniques do not require the use of additional licenses beyond the licenses required for
the parent run. They also do not require you to use or configure distributed processing.

When you use these techniques, consider the following guidelines:

• To reduce runtime and memory usage, run the update_timing command before
running the commands in parallel; otherwise, each command that requires updated
timing runs the update_timing command independently.

• To pass variables from a child process to the parent process, you must write the
contents of the variables to a file during the child process, and then read that file in the
parent process.

See Also

• Running Commands in the Background

• Running Commands in Parallel

Running Commands in the Background
To improve runtime, you can run checking and reporting commands in the background
while you run other commands in the foreground. This is useful in interactive sessions
when you want to continue your work while the tool generates a report.

To run commands in the background, use the redirect command with the -bg option.
When you use this command, icc2_shell returns immediately to execute the next

IC Compiler™ II Implementation User Guide
T-2022.03

62

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Enabling Multicore Processing

Feedback

command. If you issue an exit command in the parent process, the tool waits for all
redirect -bg commands to complete before exiting.

To list the commands supported by the redirect -bg command, use the list_commands
-bg command. You can run either a single command or source a Tcl script that contains
only supported commands. If the command or script includes a redirect -bg command,
the -bg option is ignored.

You can run at most two jobs in the background. If you specify more than two background
jobs, they are queued.

To specify the maximum number of cores to use for the background jobs, use the
-max_cores option with the redirect command. The number of cores available for
the parent process (as specified by the -max_cores option of the set_host_options
command) is reduced by the number of cores allocated for background jobs.

The following example redirects a Tcl script to run in the background:

icc2_shell> set_host_options -max_cores 8
icc2_shell> redirect -bg -max_cores 3 -file bg_log.out \
 {source bg_script.tcl}
Information: redirect -bg with max_cores 3 started. The maximum number of
 cores available in parent is reduced to 5. (BGE-004)

Reporting Background Jobs
To report the background jobs submitted with the redirect -bg command, use the
report_background_jobs command. This command reports both the completed jobs and
the jobs currently running in the background, as shown in the following example:

icc2_shell> report_background_jobs
JOB 'redirect -bg -file {background.log} source bg_script.tcl
-max_cores 4 ' completed
JOB(pid:13010) 'redirect -bg -file {background_1.log}
source bg_script_1.tcl -max_cores 3 ' is running

To omit the completed jobs, use the -reset option with the report_background_jobs
command.

IC Compiler™ II Implementation User Guide
T-2022.03

63

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Working With the IC Compiler II Tool
Enabling Multicore Processing

Feedback

Running Commands in Parallel
To improve runtime, you can run checking and reporting commands in parallel and return
to the parent process after the longest running command in the parallel execution list
completes. This is useful in batch scripts.

To run commands in parallel, use the parallel_execute command, as shown in the
following example:

icc2_shell> update_timing
icc2_shell> parallel_execute {
 report_cmd1 log_file1
 report_cmd2 log_file2
 report_cmd3 log_file3
 ...
}
To list the supported commands, use the -list_allowed_commands option with the
parallel_execute command.

To specify the maximum number of cores to use when running the parallel_execute
command, use the -max_cores option. If you do not use this option, the tool uses the
value of the -max_cores option from the set_host_options command. If you do not
specify the maximum number of cores with either command, the tool runs the commands
sequentially instead of in parallel.

To run commands in parallel as a background job, use the redirect -bg command to run
the parallel_execute command, as shown in the following example:

icc2_shell> redirect -bg -max_cores 3 -file bg_log.out {
 parallel_execute {
 report_cmd1 log_file1
 report_cmd2 log_file2
 }
}

IC Compiler™ II Implementation User Guide
T-2022.03

64

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

2
Preparing the Design

The IC Compiler II tool uses a design library to store your design and its associated library
information. This topic describes how to create a design library and how to prepare and
save your design.

These steps are explained in the following topics:

• Defining the Search Path

• Setting Up Libraries

• Working With Designs

• Importing the Floorplan Information

• Setting Up Multivoltage Designs

• Specifying Timing Constraints and Settings

• Specifying Logical Design Rule Constraints

• Controlling Clock-Gate Latencies

• Specifying Physical Constraints for Placement and Legalization

• Specifying Placement Settings

• Specifying Legalization Settings

• Controlling the Optimization of Cells, Nets, Pins, and Ports

• Specifying Settings for Preroute Optimization

• Setting Up for Power-Related Features

• Specifying the Routing Resources

• Handling Design Data Using the Early Data Check Manager

• Applying Mega-Switch Command Settings

IC Compiler™ II Implementation User Guide
T-2022.03

65

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Defining the Search Path

Feedback

Defining the Search Path
The IC Compiler II tool uses a search path to look for files that are specified with a relative
path or with no path.

To specify the search path, use the set_app_var command to set the search_path
application variable to the list of directories, in order, in which to look for files. When
the tool looks for a file, it starts searching in the leftmost directory specified in the
search_path variable and uses the first matching file it finds.

You can also use the Tcl lappend command to add your directories to the default search
path, which is the directory from which you invoked the tool. For example,

icc2_shell> lappend search_path ./mylibdir

Setting Up Libraries
A block is a container for physical and functional design data. A design library is a
collection of related blocks, together with technology data that applies to the block
collection. A chip design consists of one or more blocks, often stored in different design
libraries. A design library uses instances of blocks defined in lower-level libraries, called
reference libraries. A design library can serve as a reference library for another design
library.

To learn about setting up libraries, see the following topics:

• Working With Design Libraries

• Setting Up Reference Libraries

• Library Configuration

• Restricting Library Cell Usage

• Restricting the Target Libraries Used

Working With Design Libraries
You can create, open, query, save, or close a design library, using an absolute path, a
relative path, or no path, by using the following commands:

• create_lib
This command creates the library in memory and sets it as the current library. When
you run this command to create a new design library, you must specify the library

IC Compiler™ II Implementation User Guide
T-2022.03

66

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Libraries

Feedback

name. Slash (/) and colon (:) characters are not allowed in library names. The following
command creates the my_libA library using a relative path:

icc2_shell> create_lib ../my_lib_dir/my_libA
{my_libA}

• open_lib
This command opens the specified library, makes that library the current library, and
opens all its associated reference libraries. Opening a library means loading it into
memory and making its blocks accessible. The following example opens the my_libA
library saved on disk:

icc2_shell> open_lib my_libA
Information: Loading library file '/usr/lib/StdCells.ndm' (FILE-007)
Information: Loading library file '/usr/lib/RAMs.ndm' (FILE-007)
Information: Loading library file
 '/usr/lib/PhysicalOnly.ndm' (FILE-007)
{my_libA}

• current_lib
By default, the library most recently opened is the current library. You can explicitly
set any open library to be the current library by using the current_lib command. For
example,

icc2_shell> current_lib my_libA
{my_libA}

• save_lib
When you create or change a library, the changes are stored in memory only. To save
a library to disk, use this command. For example,

icc2_shell> save_lib lib_A
Saving library 'lib_A'
1

• close_lib
When you no longer need access to data in a library, you can close it by using the
close_lib command. Be sure to save the changes in the library before you close it.
For example,

icc2_shell> close_lib
Closing library 'lib_A'
1

In addition, you can use the current_lib, get_libs, and report_lib commands to
query design libraries.

IC Compiler™ II Implementation User Guide
T-2022.03

67

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Libraries

Feedback

For more information, see the Design Libraries topic in the IC Compiler II Data Model User
Guide.

Setting Up Reference Libraries
You can specify a reference library list for a design library when you create the design
library by using the -ref_libs option of the create_lib command. You can also change
the reference library list at any time by using the set_ref_libs command.

Use the following commands to specify, rebind, and report reference libraries:

• create_lib -ref_libs
You can specify a relationship between a new design library and its lower-level
reference libraries by using the create_lib command. For example,

icc2_shell> create_lib lib_B \
 -ref_libs {../LIBS/lib_c ../STND/stdhvt.ndm} ...
{lib_B}

• set_ref_libs -ref_libs
For an existing design library, open the library and then use the set_ref_libs
command to specify the reference libraries. For example,

icc2_shell> current_lib
{lib_B}
icc2_shell> set_ref_libs \
 -ref_libs {../LIBS/lib_C ../STND/stdhvt.ndm}
../LIBS/lib_C ../STND/stdhvt.ndm

• report_ref_libs
To report the reference libraries of a design library, use the report_ref_libs
command.

For example,

icc2_shell> create_lib lib_A -ref_libs \
 {../libs/SCLL.ndm ../libs/SCHH.ndm ../BLOCKS/MACROS}
{lib_A}
icc2_shell> report_ref_libs...
Name Path Location

*+ SCLL ../libs/SCLL.ndm /remote/project/libs/SCLL.ndm
*+ SCHH ../libs/SCHH.ndm /remote/project/libs/SCHH.ndm
* MACROS ../BLOCKS/MACROS /remote/project/BLOCKS/MACROS
"*" = Library currently open
"+" = Library has technology information

• set_ref_libs -rebind

IC Compiler™ II Implementation User Guide
T-2022.03

68

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Libraries

Feedback

When you make a change that invalidates the reference library list, such as moving a
reference library to a new location, you need to rebind the reference libraries. To do
so, use the -rebind option, which rebinds each reference library path specified by the
search_path variable to libraries that are currently loaded in memory. For example,

icc2_shell> current_lib
{lib_A}
icc2_shell> set_app_var search_path {. ../REFLIBS ../CLIBS}
. ../LIBS ../BLOCKs
icc2_shell> set_ref_libs -rebind
../REFLIBS/lib_C ../REFLIBS/lib_D ../CLIBS/stdhvt.ndm}

Rebinding a library does not affect the bindings of blocks already existing in the design
library. To rebind these blocks using an updated reference library list, use the -rebind
option with the link_block command.

Library Configuration
Library configuration allows you to specify which vendor libraries to use as reference
libraries for the current design. You specify the technology file, physical libraries, and logic
libraries by using the search_path and link_library variables, and then you use the
create_lib or set_ref_libs command to assemble the cell libraries.

During library configuration,

• The IC Compiler II tool automatically calls the Library Manager tool without user
intervention to generate cell libraries, as shown in the following figure:

.frame
files

ASCII
technology

file
.db
files

Cell
libraries Synthesis

• The tool saves the generated cell libraries to disk and adds them to the reference
library list of the design library.

• These cell libraries are the same as when the cell libraries are created during library
preparation in the Library Manager tool.

IC Compiler™ II Implementation User Guide
T-2022.03

69

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Libraries

Feedback

For more information, see the Configuring Cell Libraries topic in the IC Compiler II Data
Model User Guide.

Restricting Library Cell Usage
By default, the IC Compiler II tool can use all of the library cells available in the cell
libraries when performing optimization or clock tree synthesis on the block. To restrict the
cell usage, use the set_lib_cell_purpose command after the block is in memory. The
command has a block scope and is persistent across tool sessions. The specified settings
are restored when the block is reopened.

To specify how the tool can or cannot use library cells, use the -include and -exclude
options with the set_lib_cell_purpose command. Both of these options accept one or
more of the following values: all, cts, hold, optimization, none.

• The -include option sets the included_purposes attribute on the specified library
cells.

• The -exclude option sets the excluded_purposes attribute on the specified library
cells.

Note:
If a library cell has a dont_use attribute, it is excluded from all uses, which is
the same as if you specified set_lib_cell_purpose -include none for that
cell.

When the tool performs optimization, which includes setup, hold, and logical DRC fixing,
it can use library cells that have an included purpose of optimization, hold, or both.
When the tool performs clock tree synthesis, it can use library cells that have an included
purpose of cts.

For example, to disallow the use of a set of library cells for all uses, use the following
command:

icc2_shell> set_lib_cell_purpose -include none lib_cells
To allow a set of library cells to be used only for clock tree synthesis, use the following
commands:

icc2_shell> set_lib_cell_purpose -include none lib_cells
icc2_shell> set_lib_cell_purpose -include cts lib_cells
To allow a set of library cells to be used for all uses except clock tree synthesis, use the
following command:

icc2_shell> set_lib_cell_purpose -exclude cts lib_cells

IC Compiler™ II Implementation User Guide
T-2022.03

70

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Libraries

Feedback

Restricting the Target Libraries Used
By default, the tool can select any library cell from the target library during optimization. In
some cases, you might want to restrict the library cells used for clock tree synthesis and
optimization. For example, you might want to exclude specific double-height cells from the
target library for some design blocks during optimization.

To restrict the library cells used for clock tree synthesis and optimization,

1. Specify the library subset by using the set_target_library_subset command.

By default, the library subset restriction applies to

• The top block and all its subblocks

To set it for a specific subblock, use the -objects option.

• Both clock and data paths.

To set it for only the clock or data paths, use the -clock or -data option.

You can further restrict the target library subset setting as follows:

• Specify a list of cells from the libraries that should not be used by using the
-dont_use option.

• Specify that these libraries cannot be used for any other objects, other than the
specified objects, by using the -only_here option.

2. Enable the use of the target library subset by setting the
opt.common.enable_target_library_subset_opt application option to 1.

When you set target library subsets, remember the following points:

• The subset restriction applies to hierarchical cells but not to leaf cells.

• The command enforces the subset restriction on the specified blocks and their
subdesigns in the hierarchy, except those subdesigns where a different subset
restriction is set.

• A subset specified at a lower level supersedes any subset specified at a higher level.

IC Compiler™ II Implementation User Guide
T-2022.03

71

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Libraries

Feedback

Figure 6 Logic Hierarchy of Design

For example, assume your design has a logic hierarchy as shown in Figure 6 and you
want to implement the following library restrictions during optimization and clock tree
synthesis:

• Use only the cells from the library named LVT_lib for the Sub1 block and its subblocks,
SubA and SubB.

• Do not use the cells from this library anywhere else in the design.

To do so, use the following settings:

icc2_shell> set_target_library_subset -objects {top/Sub1} \
 -only_here [get_lib_cells LVT_lib/*] [get_libs LVT_lib]
icc2_shell> set_app_options \
 -name opt.common.enable_target_library_subset_opt -value 1
In addition to these settings, assume you specify the following setting:

icc2_shell> set_lib_cell_purpose -include cts \
 {HVT_lib/buf1 HVT_lib/buf2 LVT_lib/buf1 LVT_lib/buf2}
Then, when adding buffers on the clock network during clock tree synthesis, the tool uses

• The buf1 and buf2 cells from the LVT_lib library for the block named Sub1 and its
subblocks

• The buf1 and buf2 cells from the HVT_lib library for the rest of the design

Reporting Target Library Subsets

To find out which target library subsets have been defined for a top block or hierarchical
cell, use the report_target_library_subset command.

Reports that are generated by reporting commands, such as report_cells and
report_timing, show the td attribute attached to the cells that are specified by the
-dont_use or -only_here option.

IC Compiler™ II Implementation User Guide
T-2022.03

72

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Working With Designs

Feedback

Removing Target Library Subsets

To remove a target library subset restriction from a top block or hierarchical cell, use the
remove_target_library_subset command.

Working With Designs
In most cases, when you work with a design in the IC Compiler II tool, you use the design
view of one of its versions (blocks) from the design library. In this manual, the term block
is used to refer to a specific design version in the design library, whether it is a top-level
design or a subdesign, and the term design is used generically to refer to the design being
processed. In both cases, unless otherwise specified, the term refers to the design view.

The IC Compiler II tool reads designs in Verilog format. The Verilog netlist file is a
structural or gate-level design in one file. To read a design into the IC Compiler II tool,

1. Create or open the design library associated with the design.

• If the design library does not yet exist, use the create_lib command to create it.

• If the design library already exists, use the open_lib command to open it.

2. Read the Verilog netlist files for the design by using the read_verilog command.

By default, when the tool reads the Verilog netlist files, it creates a block in the current
design library and increments its open count. The tool determines the top-level module
of the block by identifying the module that is not instantiated by any other modules in
the specified Verilog files and uses the top-level module name as the block name.

The tool also creates a default power domain for the block. For multivoltage designs,
this default power domain is replaced when you specify the power intent, as described
in Loading and Applying UPF Information.

Use the following commands to work with blocks:

• create_block: Creates a block

• open_block: Opens an existing block

• current_block: Sets or reports the current block

• save_block: Saves a block

• close_blocks: Closes a block

See Also

• Blocks

• Working With Design Libraries

IC Compiler™ II Implementation User Guide
T-2022.03

73

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Importing the Floorplan Information

Feedback

Importing the Floorplan Information
A floorplan contains physical constraints such as the core area and shape, port locations,
macro locations and orientations, and so on, which are required for performing physical
synthesis and optimization.

If you have a floorplan for your block, read in the floorplan as a DEF file, as described in
Reading DEF Files.

If you do not have a floorplan for your block, you can perform design planning and
generate a floorplan as described in the IC Compiler II Design Planning User Guide.

Reading DEF Files
To read the floorplan information from a DEF file, use the read_def command.

icc2_shell> read_def block.def
Note:

When possible, use DEF v5.8 or later, as this version supports more types of
physical objects and obstructions than previous versions.

By default, the read_def command

• Annotates the floorplan information onto the current block

To annotate the information onto a different block, use the -design option to specify
the block name.

• Preserves the existing floorplan information

In incremental mode,

◦ The placement area is imported based on the current core area and site rows in the
DEF files

◦ Physical constraints that can have only one value are overwritten by the value from
the latest DEF file; for example, port location and macro location are overwritten.

◦ Physical constraints that can have accumulated values are recomputed; that
is, core area can be recomputed based on the existing value and the site row
definitions in the latest DEF file. Placement keepouts from different DEF files
are accumulated and the final keepout geometry is computed internally during
synthesis.

To remove the existing floorplan information before annotating the floorplan information
from the DEF file, use the -no_incremental option. In this mode, the placement area
is imported based on the site rows in the DEF files.

IC Compiler™ II Implementation User Guide
T-2022.03

74

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Importing the Floorplan Information

Feedback

• Uses rule-based name matching for macros and ports

Rule-based name matching automatically resolves name differences by using the tool’s
intelligent name matching capability. By default, when rule-based name matching is
enabled, the following characters are considered equivalent:

◦ Hierarchical separators { / _ . }

For example, a cell named a.b_c/d_e is automatically matched with the string a/
b_c.d/e in the DEF file.

◦ Bus notations { [] __ () }

For example, a cell named a [4] [5] is automatically matched with the string
a_4__5_ in the DEF file.

To disable rule-based name matching and require exact name matches between the
DEF file and the block, set the file.def.rule_based_name_matching application
option to false.

For more information, see “Rule-Based Name Matching” in the IC Compiler II Data
Model User Guide.

• Ignores any objects in the DEF file that do not exist in the block, except for PG objects

To allow new non-PG objects to be created from the DEF file, use the
-add_def_only_objects option to specify the types of objects to create. Specify one
or more of the following keywords:

◦ cells
The tool creates the cells that exist only in the DEF file and connects their power
and ground pins as defined in the DEF file; it does not connect the signal, clock, or
tie pins even if these connections are defined in the DEF file. The tool also does not
create new hierarchical cells; any hierarchy specified in the DEF file must already
exist in the block.

◦ nets
The tool creates the signal, clock, and tie nets that exist only in the DEF file
and connects them to the ports specified in the DEF PINS section; it does not
connect the nets to any other ports or pins in the netlist even if these connections

IC Compiler™ II Implementation User Guide
T-2022.03

75

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Importing the Floorplan Information

Feedback

are defined in the DEF file. The tool does not create new hierarchical nets; any
hierarchy specified in the DEF file must already exist in the block.

◦ ports
The tool creates the signal, clock, and tie ports that exist only in the DEF file and
connects them to the nets specified in the DEF PINS section.

◦ all
The tool creates the non-PG cells, nets, and ports that exist only in the DEF file, as
if you had specified cells, nets, and ports.

Fixing Site Name Mismatches
If the site names used in the DEF file do not match the site names defined in the
technology file, use the -convert_sites option to specify the site name mapping. For
example, if the DEF file uses a site named CORE, but the technology file defines only a
site named unit, use the following command to convert the site names when reading the
DEF file:

icc2_shell> read_def -convert_sites { {CORE unit} } block.def

Validating DEF Files
To analyze the input DEF files before annotating the floorplan information on the block,
enable check-only mode by using the -syntax_only option. The check-only mode
provides diagnostic information about the correctness and integrity of the DEF file. The
check-only mode does not annotate any floorplan information onto the block.

icc2_shell> read_def -syntax_only block.def

Physical Constraints Extracted From the DEF File
The read_def command extracts physical constraint information from DEF files and
annotates it on the block. However, only the following physical constraints are extracted
and annotated:

• Placement Area

• Port Locations

• Cell Locations

• Placement Blockages

• Site Rows

• Routing Tracks

• Placement Bounds

IC Compiler™ II Implementation User Guide
T-2022.03

76

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Importing the Floorplan Information

Feedback

• Routing Blockages

• Preroutes

To visually inspect the extracted physical constraints, use the layout view in the GUI. All
physical constraints extracted from the DEF file are automatically added to the layout view.

Placement Area
Placement area is computed based on the site array information.

Port Locations
For each port with the location specified in the DEF file, the tool sets the location on the
corresponding port in the block.

Note:
If the DEF file does not contain port-location information, the tool inherits the
port locations from the locations of the pad cells, as described in .

Example 1 DEF Port Location Information
PINS 2 ;
 -Out1 + NET Out1 + DIRECTION OUTPUT + USE SIGNAL +
 LAYER M3 (0 0) (4200 200) + PLACED (80875 0) N;
 -Sel0 + NET Sel0 + DIRECTION INPUT + USE SIGNAL +
 LAYER M4 (0 0)(200 200) + PLACED (135920 42475) N;
END PINS

Ports with changed names and multiple layers are supported.

Example 2 DEF Port Locations With Changed Names and Multiple Layers
PINS 2 ;
 - sys_addr\[23\].extra2 + NET sys_addr[23] + DIRECTION INPUT +USE
 SIGNAL
 + LAYER METAL4 (0 0) (820 5820) + FIXED (1587825 2744180) N ;
 - sys_addr[23] + NET sys_addr[23] + DIRECTION INPUT + USE SIGNAL +
 LAYER
 METAL3 (0 0) (820 5820) + FIXED (1587825 2744180) N ;
END PINS

Example 3 DEF Port Orientation Information
PINS 1;
 - OUT + NET OUT + DIRECTION INPUT + USE SIGNAL
 + LAYER m4 (-120 0) (120 240)
 + FIXED (4557120 1726080) S ;
END PINS

IC Compiler™ II Implementation User Guide
T-2022.03

77

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Importing the Floorplan Information

Feedback

Cell Locations
For each cell with a location and the FIXED attribute specified in the DEF file, the tool
sets the location on the corresponding cell in the block. Example 4 shows DEF macro
location and orientation information, where the letters E and W denote east rotation and
west rotation respectively.

Example 4 DEF Cell Location Information
COMPONENTS 2 ;
 - macro_cell_abx2 + FIXED (4350720 8160) E ;
 - macro_cell_cdy1 + FIXED (4800 8160) W ;
END COMPONENTS

Placement Blockages
The read_def command imports hard, soft, and partial placement blockages defined in
the DEF file.

Note:
DEF versions before version 5.7 did not support partial blockages. In addition,
if your floorplanning tool creates a DEF file with DEF version 5.6, you need to
manually add the #SNPS_SOFT_BLOCKAGE pragma to specify a soft blockage, as
shown in Example 7.

Example 5 DEF Hard Placement Blockage Information
BLOCKAGES 50 ;
...
 - PLACEMENT RECT (970460 7500) (3247660 129940)
...
END BLOCKAGES

Example 6 DEF Version 5.7 Soft Placement Blockage Information
BLOCKAGES 50 ;
...
- PLACEMENT + SOFT RECT (970460 7500) (3247660 129940) ;
...
END BLOCKAGES

Example 7 DEF Version 5.6 Soft Placement Blockage Information
BLOCKAGES 50 ;
...
- PLACEMENT RECT (970460 7500) (3247660 129940) ;
 #SNPS_SOFT_BLOCKAGE
...
END BLOCKAGES

IC Compiler™ II Implementation User Guide
T-2022.03

78

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Importing the Floorplan Information

Feedback

Example 8 DEF Partial Placement Blockage Information
BLOCKAGES 50 ;
...
- PLACEMENT + PARTIAL 80 RECT (970460 7500) (3247660 129940) ;
...
END BLOCKAGES

Site Rows
Site row information in the DEF file defines the placement area.

Example 9 DEF Site Row Information
ROW ROW_0 core 0 0 N DO 838 BY 1 STEP 560 0;

Routing Tracks
The track information in the DEF file defines the routing grid for designs based on
standard cells. This information can be used during routing, and track support can
enhance congestion evaluation and reporting to make it match more closely with the
routing results.

Example 10 DEF Routing Track Information
TRACKS X 330 DO 457 STEP 660 LAYER METAL1 ;
TRACKS Y 280 DO 540 STEP 560 LAYER METAL1 ;

Placement Bounds
If REGIONS defining bounds exist in the DEF file, the read_def command imports those
placement bounds. Also, if any cells in the related GROUP are attached to the region,
fuzzy cell matching occurs between these cells and the ones in the block.matched cells
are attached to the bounds in the following ways:

• If there are regions in the block with the same name as in the DEF, the cells in the
related group are attached to the region by the add_to_bound command in incremental
mode.

• If the region does not exist in the block, it is created with the same name as in the DEF
file by applying the create_bound command; matched cells in the related group are
also attached.

Example 11 DEF Placement Bound Information
REGIONS 1 ;
- c20_group (201970 40040) (237914 75984) + TYPE FENCE ;
END REGIONS
GROUPS 1 ;
- c20_group
 cell_abc1
 cell_sm1
 cell_sm2

IC Compiler™ II Implementation User Guide
T-2022.03

79

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

 + SOFT
 + REGION c20_group ;
END GROUPS

Routing Blockages
Routing blockages are extracted similar to the way that placement blockages are
extracted.

Preroutes
The tool extracts preroutes that are defined in the DEF file.

Example 12 DEF Preroute Information
SPECIALNETS 2 ;
- vdd
 + ROUTED METAL3 10000 + SHAPE STRIPE (10000 150000) (50000 *)
 + USE POWER ;
...
END SPECIALNETS

Setting Up Multivoltage Designs
The following topics describe the tasks you need to perform when setting up multivoltage
designs:

• Applying the Multivoltage Power Intent

• Preparing the Power Network

• Defining Voltage Areas

• Inserting Multivoltage Cells

• Controlling the Placement of Multivoltage Cells

• Enabling Improved Buffering for Multivoltage Nets

• Analyzing Multivoltage Information

Applying the Multivoltage Power Intent
To learn about applying the multivoltage power intent, see

• Loading and Applying UPF Information

• Specifying UPF Constraints for Physical-Only Cells

• Saving UPF Information

IC Compiler™ II Implementation User Guide
T-2022.03

80

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

Loading and Applying UPF Information
To load the power intent and apply it to a multivoltage design,

1. Read the UPF file by using the load_upf command.

icc2_shell> load_upf block.upf
2. If you are using the golden UPF flow and have a name-mapping file from the Design

Compiler tool, read the file by using the read_name_map command.

icc2_shell> read_name_map block.nmf
3. (Optional) Verify the UPF consistency and identify any PG conflicts among the netlist,

floorplan, and power intent.

To verify the UPF consistency and identify PG conflicts, use the resolve_pg_nets
-check_only command. This command identifies any issues and reports the changes
that are made to resolve these issues when you commit the power intent. If you prefer
to resolve the issues differently, you can use manual editing commands to resolve the
issues before running the commit_upf command.

4. Commit the power intent by using the commit_upf command.

icc2_shell> commit_upf
The commit_upf command performs global checks for UPF consistency; resolves PG
conflicts among the netlist, floorplan, and UPF specification; and associates power
strategies with existing multivoltage cells. For more information about associating
power strategies with existing multivoltage cells, see Associating Power Strategies
With Existing Multivoltage Cells.

5. Report the associations made for the multivoltage cells by using the report_mv_path
command.

If the tool failed to associate any multivoltage cells, the command reports the causes
for these failures. You must successfully commit the power intent before you continue
with the design flow.

Note:
After successfully running the commit_upf command, the tool issues an
error message if you try to use additional UPF commands, except for the
set_related_supply_net, connect_supply_net, set_design_attributes,
set_port_attributes, find_objects, and set_scope commands. To modify
the power intent after running the commit_upf command, you must remove the
existing UPF specification by using the reset_upf command and then reload
the power intent.

IC Compiler™ II Implementation User Guide
T-2022.03

81

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

Specifying UPF Constraints for Physical-Only Cells
The UPF constraints for physical-only cells can cause issues when the UPF file is
read into other tools that do not support physical-only cells, such as verification tools.
Therefore, surround the UPF constraints for physical-only cells with the syntax shown in
the following example:

if {[info exists snps_handle_physical_only] && \
 $snps_handle_physical_only} {

 /* Supply net connections for filler cells */
 connect_supply_net VDDS -ports [get_pins FILLER*/VDD]

}

By default, the snps_handle_physical_only variable is set to true in the IC Compiler II
tool. Therefore, when you load and commit the UPF file, the constraints are applied to the
physical-only cells.

When you save a UPF file with the save_upf command, the tool uses the same
syntax for the user-specified and tool-derived UPF constraints for physical-only cells.
Therefore, these UPF constraints are ignored by any tool that does not have the
snps_handle_physical_only variable set to true.

To create a UPF file that contains commands only for specific types of cells, use the
-include or -exclude option with the save_upf command. These options accept
arguments such as diode_cells, pad_cells, and physical_only_cells. See the
save_upf command man page for the complete list of arguments.

Command filtering for specified cell types applies to the connect_supply_net,
set_related_supply_net, create_power_domain, and set_isolation commands. You
can apply command filtering to both block-level and full-chip UPF files.

Saving UPF Information
During physical implementation, the tool updates the power intent of the design. To
generate an updated UPF file, use the save_upf command. You can use this UPF file in
the subsequent steps of the design flow.

The save_upf command separates the UPF commands based on the input UPF file, and
adds a comment indicating the input UPF file and the time it was loaded.

Assume you load, commit, and save UPF information as shown in the following example
script:

load_upf top_1.upf
load_upf top_2.upf
load_upf top_3.upf
commit_upf
save_upf top.upf

IC Compiler™ II Implementation User Guide
T-2022.03

82

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

The resulting top.upf file contains the following information:

Start - load_upf top_1.upf on Wed Oct 26 17:03:18 2016
…
…
End – load_upf
Start - load_upf top_2.upf on Wed Oct 26 17:03:49 2016
…
…
End - load_upf
Start - load_upf top_3.upf on Wed Oct 26 17:04:22 2016
…
…
End - load_upf

Preparing the Power Network
To learn about preparing the power network for physical implementation, see

• Creating Logical Power and Ground Connections

• Creating Floating Logical Supply Nets

Creating Logical Power and Ground Connections
After you read in the design, you must ensure that there are logical connections
between the power and ground nets and the power, ground, and tie-off pins on the
cells in your design. If your design does not already have these connections, use the
connect_pg_net command to create them. This command creates the logical power and
ground connections for leaf cells, hierarchical cells, and physical-only cells in both single-
voltage and multivoltage designs.

Before creating the logical power and ground connections, you must resolve any PG
conflicts among the netlist, floorplan, and UPF specification.

• For multivoltage designs, the conflicts are resolved when you commit the power intent,
as described in Loading and Applying UPF Information.

• For single-voltage designs, you must run the resolve_pg_netx command to resolve
the conflicts. Note that the UPF specification for a single-voltage design is the default
power domain generated by the read_verilog command.

If your design contains unmapped instances, the tool issues an information message to
indicate that only mapped instances are connected.

IC Compiler™ II Implementation User Guide
T-2022.03

83

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

The connect_pg_net command operates in two modes:

• Automatic

In automatic mode, the command derives all power and ground nets, power and
ground pins, tie-off pins, and connections from the UPF specification. If the supply nets
do not exist, the tool creates them.

To create the logical power and ground connections in automatic mode, use the
-automatic option with the connect_pg_net command.

• Manual

In manual mode, the command makes the connections that you specify. If a specified
pin or port has an existing connection, the tool removes the existing connection and
then creates the specified connection. The tool verifies that the connections match
the power intent. If it finds a mismatch, the tool issues a warning but still creates the
connection.

To create logical power and ground connections in manual mode, use the -net option
to specify the power or ground net and specify the pins and ports to be connected to
that net as an argument to the command. For example, to connect the VDD power net
to all pins named vdd and the VSS ground net to all pins named vss, use the following
commands:

icc2_shell> connect_pg_net -net VDD [get_pins */vdd]
icc2_shell> connect_pg_net -net VSS [get_pins */vss]
To connect PG nets to power and ground pins only, use the -pg option. To connect PG
nets to tie-off pins only, use the -tie option. By default, if neither option is specified,
the tool makes connections to all power, ground, and tie-off pins. These options cannot
be used with an object list or with the -create_nets_only and -net options.

Regardless of the command options used, the tool always creates connections
required to build a complete PG netlist structure, such as top-level PG ports and
intermediate hierarchical PG pins.

IC Compiler™ II Implementation User Guide
T-2022.03

84

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

Creating Floating Logical Supply Nets
A floating logical supply net is a power or ground net that is not connected to any logical
pin or port in the block. For example, a power feedthrough net created during power
planning is a floating supply net.

To create a floating supply net with the connect_pg_net command, use the following
steps:

1. Specify the supply net type in the UPF file by using the supply_net_pg_type attribute,
as shown in the following UPF file example:

…
create_supply_net VDD
…
…
set_design_attributes -elements VDD \
 -attribute supply_net_pg_type power
…

2. Enable floating supply nets by setting the mv.pg.create_floating_pg application
option to true before you create supply nets with the connect_pg_net command, as
shown in the following script example:

…
…
Apply the UPF
load_upf $upf_input_file_name
commit_upf
…
…
create logical supply nets
set_app_options -as_user_default \
 -name mv.pg.create_floating_pg -value true
connect_pg_net -automatic
…
check_mv_design

The tool creates the logical supply nets in the topmost hierarchy of the current UPF scope
for domain-independent supply nets. For domain-dependent supply nets, the tool creates
the logical supply nets in the topmost hierarchy of the domain.

The tool does not create a logical supply net in the following situations:

• There is a conflict between the connection and the supply net type specified with the
supply_net_pg_type attribute.

• The supply net is connected to a PG pin of an instance.

• The connect_pg_net command is not specified in the current or parent physical
hierarchy.

IC Compiler™ II Implementation User Guide
T-2022.03

85

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

Defining Voltage Areas
A voltage area is a physical placement area for the cells associated with a power domain.
For multivoltage designs, the power domains are defined in the UPF specification. For
single-voltage designs, the tool creates a default power domain when you read the Verilog
netlist and associates it with a default voltage area, which comprises the core area of the
block.

The placer treats a voltage area the same as an exclusive move bound; it must place the
cells in a voltage area within a specified region and it must place all other cells outside of
the voltage area. Voltage areas can be rectangular or rectilinear. In addition, they can be
disjoint, nested, or overlapping. For overlapping voltage areas, the effective shape of each
voltage area is determined by the stacking order of the voltage area shapes.

To define a voltage area, use the create_voltage_area command. When you define
a voltage area, at a minimum, you must specify the power domains associated with the
voltage area. To specify the power domains, use the -power_domains option. You can
specify one or more power domains; however, all specified power domains must have the
same primary supply net. If you specify a single power domain, the name of the voltage
area is derived from the name of the power domain. If you specify multiple power domains,
you must specify a name for the voltage area by using the -name option.

A voltage area consists of one or more rectangular or rectilinear shapes, which can
be abutted, disjoint, or overlapping. To define the boundaries of these shapes, use
the -region option with the create_voltage_area command (if you are creating a
new voltage area) or the create_voltage_area_shape command (if you are adding
shapes to an existing voltage area). Note that you can specify one or more shapes
when using the create_voltage_area command, but only a single shape in each
create_voltage_area_shape command.

• To specify the boundary of a rectangle shape, use the following format to specify its
lower-left and upper-right corners:

{{llx lly} {urx ury}}
• To specify the boundary of a rectilinear shape, use the following format to specify the

coordinates of its vertices:

{{x1 y1} {x2 y2} {x3 y3} {x4 y4} ...}
If a voltage area consists of multiple abutting or overlapping shapes, you can merge the
shapes into a minimum set of disjoint shapes based on the stacking order of the shapes.
For information about how to merge the voltage area shapes, see Merging Voltage Area
Shapes.

The tool also uses the stacking order to resolve overlapping shapes from different
voltage areas. For information about resolving overlapping voltage areas, see Resolving
Overlapping Voltage Areas.

IC Compiler™ II Implementation User Guide
T-2022.03

86

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

To ensure that no shorts occur at the boundaries of the voltage areas, you can define
guard bands for the voltage areas, which act as hard keepout margins surrounding the
voltage areas. If you define guard bands for a voltage area shape, the guard bands are
included in the effective boundary of the shape; however, they are not included in the
effective placement area of the voltage area. For information about defining guard bands,
see Defining Guard Bands.

To modify an existing voltage area, use the set_voltage_area command, as described in
Modifying Voltage Areas.

Multivoltage designs typically have power domains that are shut down and powered up
during the operation of the chip while other power domains remain powered up. When
dealing with shutdown domains, there can be some situations in which certain cells in the
shutdown portion need to continuously stay active, such as for implementing retention
registers, isolation cells, retention control paths, and isolation enable paths. These cells
are referred to as always-on cells. To define a special placement area for always-on cells
(an always-on well) within a voltage area, define an exclusive move bound within the
boundary of the voltage area. For information about defining exclusive move bounds, see
Defining Move Bounds.

After creating the voltage areas, run the check_mv_design command to verify that the
design does not have any multivoltage violations.

Merging Voltage Area Shapes
To merge the voltage area shapes into a minimum set of disjoint shapes, use the
-merge_regions option with the create_voltage_area, create_voltage_area_shape,
or set_voltage_area command.

• When you use the create_voltage_area -merge_regions command, the merges
the shapes specified with the -region option.

• When you use the create_voltage_area_shape -merge_regions command, the
merges the shape specified with the -region option and the existing shapes of the
specified voltage area.

• When you use the set_voltage_area -merge_regions command, the tool merges
all existing shapes of the specified voltage area.

The tool merges the voltage area shapes based on their stacking order. By default, the
stacking order is the order in which you define the shapes, with the last shape defined on
top. The merged shape replaces the top shape of a set of abutting or overlapping shapes;
the other shapes in the set are removed and are no longer associated with the voltage
area.

IC Compiler™ II Implementation User Guide
T-2022.03

87

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

For example, assume that you use the following command to create a voltage area
comprising three rectangle shapes, as shown on the left side of Figure 7.

icc2_shell> create_voltage_area -power_domains {PD1} \
 -region { {{0 0} {10 10}} {{10 0} {30 10}} {{15 5} {35 15}} }
{PD1}
icc2_shell> get_voltage_area_shapes -of_objects PD1

{VOLTAGE_AREA_SHAPE_1 VOLTAGE_AREA_SHAPE_2 VOLTAGE_AREA_SHAPE_3}

After you use the -merge_regions option to merge these shapes, the voltage area
consists of a single rectilinear shape, as shown on the right side of Figure 7. The merged
voltage area shape is named VOLTAGE_AREA_SHAPE_3, which was the last voltage
area shape defined when the voltage area was created.

icc2_shell> set_voltage_area PD1 -merge_regions
Information: Merging abutted and overlapping shapes in voltage_area
 'PD1'. (NDMUI-154)
1
icc2_shell> get_voltage_area_shapes -of_objects PD1
{VOLTAGE_AREA_SHAPE_3}

Figure 7 Merging Voltage Area Shapes

To report the stacking order of the voltage area shapes, use the report_voltage_areas
-verbose command.

To modify the stacking order of the voltage area shapes, use the
set_voltage_area_shape command, as described in Modifying the Stacking Order.

Resolving Overlapping Voltage Areas
If voltage area shapes from two or more voltage areas overlap, either completely or
partially, the tool uses the stacking order of the shapes to determine the effective shapes
of the voltage areas. By default, the stacking order is the order in which you define the
shapes, with the last shape defined on top. The tool assigns the overlapped region to the
voltage area associated with the top shape. Unlike merging shapes within a voltage area,
when the tool resolves overlapping shapes from different voltage areas, it does not remove
any shapes; only the interpretation of the shapes changes.

IC Compiler™ II Implementation User Guide
T-2022.03

88

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

For example, assume you want to create nested voltage areas, as shown in Figure 8.

Figure 8 Nested Voltage Areas

To generate these effective voltage areas, you must specify the outer voltage area first,
followed by the inner voltage area, so that the voltage area shape for the inner voltage
area is on top:

icc2_shell> create_voltage_area -power_domains PD1 \
 -region { {0 0} {30 30} }
{PD1}
icc2_shell> create_voltage_area -power_domains PD2 \
 -region { {10 10} {20 20} }
{PD2}
icc2_shell> get_attribute -objects [get_voltage_areas PD2] \
 -name effective_shapes
{{10.0000 10.0000} {20.0000 20.0000}}
icc2_shell> get_attribute -objects [get_voltage_areas PD1] \
 -name effective_shapes
{{0.0000 0.0000} {10.0000 0.0000} {10.0000 20.0000} {20.0000 20.0000}
 {20.0000 10.0000} {10.0000 10.0000} {10.0000 0.0000} {30.0000 0.0000}
 {30.0000 30.0000} {0.0000 30.0000}}

If you specify the inner voltage area first, the shape for the outer voltage area is on top
and it masks the inner voltage area, so it is ignored by the tool, as shown in the following
example:

icc2_shell> create_voltage_area -power_domains PD2 \
 -region { {10 10} {20 20} }
{PD2}
icc2_shell> create_voltage_area -power_domains PD1 \
 -region { {0 0} {30 30} }
{PD1}
icc2_shell> get_attribute -objects [get_voltage_areas PD2] \
 -name effective_shapes
icc2_shell> get_attribute -objects [get_voltage_areas PD1] \
 -name effective_shapes
{{0.0000 0.0000} {30.0000 30.0000}}

IC Compiler™ II Implementation User Guide
T-2022.03

89

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

To report the stacking order of the voltage area shapes, use the report_voltage_areas
-verbose command.

To modify the stacking order of the voltage area shapes, use the
set_voltage_area_shape command, as described in Modifying the Stacking Order.

Modifying the Stacking Order
You can modify the stacking order of the voltage area shapes by using the
set_voltage_area_shape command.

• To raise a voltage area shape one position, use the -raise option.

• To lower a voltage area shape one position, use the -lower option.

• To move a voltage area shape to the top, use the -top option.

• To move a voltage area shape to the bottom, use the -bottom option.

• To move a voltage area shape directly above another shape, use the -above option.

• To move a voltage area shape directly below another shape, use the -below option.

Defining Guard Bands
Guard bands define hard keepout margins surrounding the voltage areas in which no cells,
including level shifters and isolation cells, can be placed. The guard bands guarantee
that the cells in different voltage areas are separated so that power planning does not
introduce shorts.

By default, voltage areas do not have guard bands. To define guard bands, use the
-guard_band option with the create_voltage_area or create_voltage_area_shape
command to specify the horizontal and vertical guard band width for each shape specified
in the -region option. The horizontal guard band width applies to all vertical edges of
the voltage area, while the vertical guard band width applies to all horizontal edges of the
voltage area.

Note:
If you also use the -merge_regions option, you must specify the guard band
widths for each disjoint shape after merging. You would typically use this option
only when all the shapes to be merged are abutted or overlapping and therefore
merge into a single shape.

The effective boundary of a voltage area shape includes its guard band; however, the
effective placeable area of the shape does not.

IC Compiler™ II Implementation User Guide
T-2022.03

90

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

For example, Figure 9 shows the guard band around the PD1 voltage area that is defined
by the following command:

icc2_shell> create_voltage_area -power_domains PD1 \
 -region {{0 0} {30 0} {30 10} {40 10} {40 30} {20 30} {20 25} {0 25}} \
 -guard_band { {3 1} }

Figure 9 Voltage Area Guard Band

To determine the effective guard bands for abutting or overlapping shapes associated with
the same voltage area, the tool merges the shapes as described in Merging Voltage Area
Shapes and then applies the guard bands defined for the top shape to the merged shape.

For example, assume that you use the following command to define guard bands for the
voltage area shapes shown on the right side of Figure 7:

icc2_shell> create_voltage_area -power_domains {PD1} \
 -region { {{0 0} {10 10}} {{10 0} {30 10}} {{15 5} {35 15}} } \
 -guard_band { {1 1} {3 3} {3 1} }
{PD1}

In this case, the effective guard band is the same as the guard band shown in Figure 9,
which is the guard band defined for the merged shape.

To determine the effective placement areas and guard bands for overlapping shapes
associated with different voltage areas, the tool uses the effective boundaries to resolve
the shapes as described in Resolving Overlapping Voltage Areas. The top shape retains
it placement area and guard band; the effective placement area and guard bands of lower
shapes does not include the overlapping region. Note that if abutting shapes have guard
bands, they are no longer abutting, but overlapping, due to the effective boundary that
includes the guard bands.

For example, assume that you use the following commands to define guard bands for the
voltage areas shown in Figure 8:

icc2_shell> create_voltage_area -power_domains PD1 \
 -region {{0 0} {30 30}} -guard_band { {2 2} }
{PD1}
icc2_shell> create_voltage_area -power_domains PD2 \
 -region {{10 10} {20 20}} -guard_band { {2 2} }
{PD2}

IC Compiler™ II Implementation User Guide
T-2022.03

91

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

In this case, the effective placement area of PD1 is reduced by the effective boundary of
PD2, which includes its guard band, as shown in Figure 10.

Figure 10 Effective Boundaries of Overlapping Voltage Areas

Defining Gas Stations
Gas stations are small voltage areas that are created for the purpose of minimizing the
use of dual-rail buffers on physical feedthrough paths. Only single-rail repeaters are
allowed in gas stations, and only optimization steps can add cells to gas stations.

You create gas stations by using the create_voltage_area command during the design
planning stage. The tool recognizes gas stations automatically and uses them by trading
off the cost of a routing detour with the cost of using a dual-rail cell.

Use the -nwell and -pwell options of the create_voltage_area command to specify
n-well and p-well supply nets for a voltage area. Defining well supplies for gas station
voltage areas provides flexibility for using gas stations for different design styles. If you do
not use these options for a voltage area, the well bias values are assumed to be the same
as the domain supply values.

The report_voltage_areas command lists the n-well and p-well supply nets regardless
of whether they are explicitly set.

Querying Voltage Areas
You can query the following information about voltage areas:

• The voltage areas in the current block

To create a collection of voltage areas in the current block, including the default voltage
area, use the get_voltage_areas command.

• Detailed information about the voltage areas

IC Compiler™ II Implementation User Guide
T-2022.03

92

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

To display detailed information about voltage areas, including the default voltage area,
use the report_voltage_areas command.

To include information about the voltage area shapes that comprise each voltage area,
use the -verbose option with the report_voltage_areas command.

• Effective placement area of a voltage area

To display the effective placement area of a voltage area, query the
effective_shapes attribute of the voltage area.

• Effective guard bands of a voltage area

To display the effective guard bands of a voltage area, query the
effective_guard_band_boundaries attribute of the voltage area. Note that you can
also query this attribute for individual voltage area shapes.

Modifying Voltage Areas
After you have created voltage areas, you can make the following modifications to a
voltage area:

• Change the power domains associated with the voltage area

To change the power domains associated with a voltage area, use the
-add_power_domains and -remove_power_domains options with the
set_voltage_area command.

• Change the voltage area name

To change the name of the voltage area, use the -name option with the
set_voltage_area command.

• Change the voltage area region

To add shapes to a voltage area, use the create_voltage_area_shape command.
To remove shapes from a voltage area, use the remove_voltage_area_shapes
command.

Controlling Physical-Feedthrough Nets in Voltage Areas
A net is considered to be native to a voltage area if one or more segments of that net are
in a logical hierarchy of that voltage area. If a net must physically route over a nonnative
voltage area, then it is a physical feedthrough net of that voltage area, as shown in the
following figure.

IC Compiler™ II Implementation User Guide
T-2022.03

93

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

Figure 11 Physical-Feedthrough Nets of Voltage Areas

VA0 (PD0)

VA1 (PD1)

N1

Top (PD0)

Block1 (PD1)

N1

Physical view Logical view

By default, physical-feedthrough nets are allowed in voltage areas. To prevent
physical-feedthrough nets in a voltage area, define a voltage area rule using the
create_voltage_area_rule -allow_pass_through false command, as shown in the
following example:

icc2_shell> create_voltage_area_rule -allow_pass_through false \
 -name VA1_rule -voltage_areas VA1
With this rule, the N1 net detours around the VA1 voltage area, as shown in Figure 12.

Figure 12 Physical-Feedthrough Nets Disabled for a Voltage Area

VA0

N1

VA1

By default, optimization does not insert buffers on physical-feedthrough nets of voltage
areas. Inserting a buffer on a physical-feedthrough net can cause a mismatch between the

IC Compiler™ II Implementation User Guide
T-2022.03

94

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

logical and physical view of the buffer. The tool resolves such mismatches by supporting
the following types of optimization for such nets:

• Physical-feedthrough buffering

During physical-feedthrough buffering the tool performs the following:

1. Inserts buffers in the logical hierarchy of its drivers or loads and applies the power
domain of the nonnative voltage area on the buffer using power-domain-on-instance
(PDOI) constraints

2. Places the buffers within the nonnative voltage area

To allow physical-feedthrough buffering, use the create_voltage_area_rule
-allow_physical_feedthrough true command, as shown in the following example:

icc2_shell> create_voltage_area_rule \
 -allow_physical_feedthrough true \
 -name VA1_rule -voltage_areas VA1

• Logical-feedthrough buffering

During logical-feedthrough the tool performs the following:

1. Adds buffers in the logical hierarchy corresponding to the nonnative voltage area

2. Places the buffers within the nonnative voltage area

To allow logical-feedthrough buffering, use the create_voltage_area_rule
-allow_logical_feedthrough true command. To specify
logical hierarchies in which feedthrough buffers are allowed or not
allowed, use the -include_logical_feedthrough_hierarchy or
-exclude_logical_feedthrough_hierarchy option, respectively.

The following example enables logical-feedthrough buffering for the VA1 voltage area
and limits the feedthrough buffers to only the U1 and U2 hierarchical cells:

icc2_shell> create_voltage_area_rule \
 -allow_logical_feedthrough true \
 -include_logical_feedthrough_hierarchy {U1 U2}\
 -name VA1_rule -voltage_areas VA1
The following example enables logical-feedthrough buffering for the VA2 voltage area
and excludes the U3 hierarchical cell from feedthrough buffering:

icc2_shell> create_voltage_area_rule \
 -allow_logical_feedthrough true \
 -exclude_logical_feedthrough_hierarchy {U3}\
 -name VA2_rule -voltage_areas VA2

IC Compiler™ II Implementation User Guide
T-2022.03

95

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

Note:
To add a logical-feedthrough buffer to a lower-level block, the tool has to
add new boundary ports to that block. Therefore, freezing the boundary of
a block by using the set_freeze_ports command prevents the tool from
adding a logical-feedthrough buffer to that block.

Figure 13 Difference in the Logical View After Physical- and Logical-Feedthrough Buffering

To create a default rule that applies to all voltage areas that do not have a specific rule,
use the create_voltage_area_rule command with the -default_rule option, as
shown in the following example:

icc2_shell> create_voltage_area_rule -default_rule \
 -allow_physical_feedthrough true
If a voltage area does not have a specific rule, and there is no default
rule, feedthrough buffering for that voltage area is controlled by the
opt.common.allow_physical_feedthrough application option setting.

To report voltage area rules, use the report_voltage_area_rules command. To remove
voltage area rules, use the remove_voltage_area_rules command.

Removing Voltage Areas
To remove voltage areas from a block, use the remove_placement_blockage commandcommandsremove_placement_blockageremove_voltage_areas command. To
remove all voltage areas from a block, use the -all option. To remove specific voltage
areas from a block, specify the voltage area names.

IC Compiler™ II Implementation User Guide
T-2022.03

96

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

Inserting Multivoltage Cells
A multivoltage design requires special multivoltage cells, such as level shifters and
isolation cells, at the interface between power domains. Level shifters are required
between power domains that operate at different voltage levels, while isolation cells
are required between power domains that are in different states (powered-down versus
always-on or powered-up). Typically, multivoltage cells are inserted during logic synthesis;
however, you can also insert them with the IC Compiler II tool.

Inserting Level Shifters
Level-shifter cells function as the interface between power domains that operate at
different voltage levels. These cells ensure that the output transition of a driver can cause
the receiving cell to switch even though the receiver is operating at a different voltage
level.

Note:
If the block was synthesized using Design Compiler, automatic level-shifter
insertion is done as part of the commandscompile_ultracompile_ultra commandcompile_ultra command.

To insert level shifters in the current block, use the create_mv_cells command. The
tool inserts the level shifters using the cell mapping and strategy defined in the UPF
specification. When the tool inserts a level shifter, it sets a attributessize_onlysize_only attributesize_only attribute on the level
shifter and a attributesdont_touchdont_touch attributedont_touch attribute on the port-to-level-shifter net.

By default, the command inserts cells only from the generic library. If you use the -mapped
option with the create_mv_cells command, the command inserts cells only from the
user-provided logic library and issues an error if a suitable cell is not available.

If the tool does not insert a level-shifter cell, you can use the analyze_mv_design
-level_shifter command to obtain more information. If you specify a net or pin with the
-through option, the report lists the power domains and related supplies for the driver
and load sides of the net or pin, along with error messages that indicate why a level-shifter
cell was not inserted. The report includes errors about the specific insertion point as well
as errors that are applicable to the entire path through the net or pin specified with the
-through option.

Inserting Isolation Cells
Isolation cells are used to selectively shut off the input side of the voltage interface of a
power domain; they do not shift the voltage. Isolation cells should be instantiated at the
RTL level to prevent formal verification errors. However, you can also insert them using the
IC Compiler II tool.

To insert isolation cells in the current block, use the create_mv_cells command. The
tool inserts the isolation shifters using the cell mapping and strategy defined in the UPF

IC Compiler™ II Implementation User Guide
T-2022.03

97

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up Multivoltage Designs

Feedback

specification. When the tool inserts an isolation cell, it sets a attributessize_onlysize_only attributesize_only attribute on the
level shifter and a attributesdont_touchdont_touch attributedont_touch attribute on the port-to-level-shifter net.

By default, the command inserts cells only from the generic library. If you use the -mapped
option with the create_mv_cells command, the command inserts cells only from the
user-provided logic library and issues an error message if a suitable cell is not available.

Associating Power Strategies With Existing Multivoltage Cells
The IC Compiler II tool automatically associates power strategies with existing multivoltage
cells when you run the associate_mv_cells or commit_upf command. If this automatic
association is not correct, you can manually modify the associations by using the
set_power_strategy_attribute command. To determine the power strategies for a
power domain, use the get_power_strategies command.

Controlling the Placement of Multivoltage Cells
A net that connects a multivoltage cell, such as a level-shifter cell or an isolation cell, to
at least one cell in another voltage area is referred to as a multivoltage net. To reduce the
length of multivoltage nets, enable advanced multivoltage cell placement by setting the
place.coarse.enable_advanced_mv_cell_placement application option to true.

When you enable this feature, the tool reduces the length of the multivoltage nets
by placing the multivoltage cells closer to the voltage area boundaries. To optimize
multivoltage nets, the tool uses dual-rail buffers. By reducing the length of multivoltage
nets, the tool can reduce the number of dual-rail buffers used during optimization and
prevent unoptimized multivoltage nets due to the unavailability of dual-rail buffers.

Enabling Improved Buffering for Multivoltage Nets
Multivoltage nets are nets that logically or physically cross over more than one
voltage area. You can enable the use of improved buffering techniques for fixing
logical DRC violations on such nets during preroute optimization by setting the
opt.buffering.enable_hierarchy_mapping application option to true.

This application option affects the place_opt and clock_opt commands. Enabling this
feature reduces the number of buffers used to fix logical DRC violations. However, it can
slightly increase the total negative slack or number of hold violations.

Analyzing Multivoltage Information
To ensure that the design does not have any multivoltage design violations, use the
check_mv_design command.

IC Compiler™ II Implementation User Guide
T-2022.03

98

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Timing Constraints and Settings

Feedback

You can restrict the types of rules to check with the check_mv_design command. For
example, the -isolation option specifies to check isolation strategy and isolation cell
rules, while the -pg_pin option specifies to check rules associated with PG pins.

To report multivoltage information for your design, use the commands shown in the
following table.

Table 2 Commands for Reporting Multivoltage Information

To do this Use this command

Report a summary of multivoltage information report_mv_design

Report information about the multivoltage cells report_mv_cells

Report information about the multivoltage library cells report_mv_lib_cells

Report paths with multivoltage constraints and the
associated multivoltage cells

report_mv_path

Report the power domains report_power_domains

Check whether the specified power domains are
equivalent

check_equivalent_power_domains

Display a list of equivalent power domains get_equivalent_power_domains

Report the voltage areas report_voltage_areas

Specifying Timing Constraints and Settings
Timing constraints describe the timing requirements of a design. An essential part of
timing constraints are accurately specified clocks and clock effects, such as latency and
uncertainty. When you specify clocks, the tool automatically constrains the paths between
the registers driven by these clocks. However, you can change the default behavior of
these timing paths by specifying timing exceptions such as paths that should not be
analyzed (false paths), paths that require multiple clock cycles (multicycle paths), and so
on. In addition, you can constrain the boundary timing paths by specifying input and output
delays for input and output ports.

The IC Compiler II tool uses on-chip variation (OCV) mode to perform timing analysis,
which models the effects of variation in operating conditions across the chip. This mode
performs a conservative timing analysis that allows both minimum and maximum delays to
apply to different paths at the same time. For a setup check, it uses maximum delays for
the launch clock path and data path and minimum delays for the capture clock path. For a
hold check, it uses minimum delays for the launch clock path and data path and maximum
delays for the capture clock path.

IC Compiler™ II Implementation User Guide
T-2022.03

99

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Logical Design Rule Constraints

Feedback

A block might operate under several different conditions, such as different temperatures
and voltages, and might operate in several different functional modes. For timing analysis,
each set of conditions is represented by a corner and each functional mode is represented
by a mode. A scenario is a combination of a corner and mode used to perform timing
analysis and optimization. Before you start working with a block, you must define the
modes, corners, and scenarios that are used for the block, as well as the delay calculation
model and routing layers to use. The routing layer information you specify is used for RC
estimation during timing analysis.

For detailed information about specifying

• Clock and clock effects, see the “Defining Clocks” topic in the IC Compiler II Timing
Analysis User Guide.

• Exceptions for timing paths and constraints for boundary paths, see the “Constraining
Timing Paths” topic in the IC Compiler II Timing Analysis User Guide.

• Modes, corners, and scenarios, see the “Defining Modes, Corners, and Scenarios”
topic in the IC Compiler II Timing Analysis User Guide.

• Operating conditions and on-chip variation (OCV) related settings, see the “Specifying
Operating Conditions” topic in the IC Compiler II Timing Analysis User Guide.

• Parasitic information for RC estimation and extraction, see the “Performing Parasitic
Extraction” topic in the IC Compiler II Timing Analysis User Guide.

Specifying Logical Design Rule Constraints
Minimum capacitance, maximum capacitance, and maximum transition are logical design
rule constraints that your design must meet to function as intended. They are technology-
specific restrictions that are specified in the logic libraries. However, you can specify more
restrictive design rule constraints by using the constraint commands given in Table 3.

During optimization, the IC Compiler II tries to meet the design rule constraints, even if
it means violating optimization constraints such as timing, power, and area goals; these
design rule constraints have a higher priority. After optimization, you can use the reporting
commands given in Table 3 to identify design rule constraint violations in a block.

Table 3 Design Rule Commands

To do this Use this command

Specify the minimum allowed capacitance for input ports,
library cell pins, leaf cell pins, clocks, or blocks

set_min_capacitance

Specify the maximum allowed capacitance for input ports,
library cell pins, leaf cell pins, clocks, or blocks

set_max_capacitance

IC Compiler™ II Implementation User Guide
T-2022.03

100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling Clock-Gate Latencies

Feedback

Table 3 Design Rule Commands (Continued)

To do this Use this command

Specify the maximum allowed signal transition time for
input ports, library cell pins, leaf cell pins, clocks, or blocks

set_max_transition

Remove a user-specified minimum capacitance constraint remove_min_capacitance

Remove a user-specified maximum capacitance constraint remove_max_capacitance

Remove a user-specified maximum transition constraint remove_max_transition

Report minimum capacitance constraint violations report_constraints -min_capacitance

Report maximum capacitance constraint violations report_constraints -max_capacitance

Report maximum transition constraint violations report_constraints -max_transition

Note:
The maximum fanout design rule constraint is not honored by the IC Compiler
II tool. However, you can specify a maximum fanout for the data paths in a
block by using the opt.common.max_fanout application option. This is a soft
optimization constraint. During optimization the tool tries to ensure that data
path cells do not drive more than the specified maximum fanout.

Controlling Clock-Gate Latencies
During synthesis, the IC Compiler II tool assumes that clocks are ideal. An ideal clock
incurs no delay through the clock network. This assumption is made because real clock-
network delays are not known until after clock tree synthesis. In reality, clocks are not ideal
and there is a nonzero delay through the clock network. For designs with clock gating, the
clock-network delay at the registers is different from the clock-network delay at the clock-
gating cell. This difference in the clock-network delay at the registers and at the clock-
gating cell results in tighter constraints for the setup condition at the enable input of the
clock-gating cell.

The tool can obtain clock-gate latencies in the following ways:

• Integrated latency estimation

By default, the tool estimates and updates clock-gate latencies throughout the flow.
Estimated clock latencies are more accurate than user-specified clock latencies.

IC Compiler™ II Implementation User Guide
T-2022.03

101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling Clock-Gate Latencies

Feedback

• User-specified latency

You can disable integrated latency estimation for specific instances and specify latency
values manually.

Integrated Clock-Gate Latency Estimation
By default, the tool estimates and updates clock-gate latencies throughout the place_opt
command flow. This ensures that the tool uses accurate clock-gate latencies during
datapath optimization and useful-skew optimization performed before clock tree synthesis,
when clocks are ideal.

If you plan to perform structural multisource clock tree synthesis for
your design, ensure that the tool estimates clock-gate latencies that
are appropriate for structural multisource clock subtrees by setting the
opt.clock_latency_estimation.estimate_smscts_subtrees application option to
true.

To improve the accuracy of the estimated clock-gate latencies, specify clock tree synthesis
settings before you run the place_optcommand. Such settings include the clock tree
buffer library cell list, the clock tree inverter library cell list, and clock nondefault routing
rules.

Estimated clock latencies are more accurate than user-specified clock latencies. In
addition, the tool updates the estimated clock latencies after steps such as placement and
multibit banking, while user-specified latencies are static values.

To prevent the tool from estimating the latency for a specific clock gate, set the
dont_estimate_clock_latency attribute on its clock pin by using the set_attribute
command, as shown in the following example:

icc2_shell> set_attribute \
 [get_pins {ICG21/CK}] dont_estimate_clock_latency true
For best results, do not use the following features with integrated clock-gate latency
estimation:

• Trial clock tree synthesis

To disable this feature, set the place_opt.flow.trial_clock_tree application option
to false.

• Clock-gate optimization

To disable this feature, set the place_opt.flow.optimize_icgs application option to
false.

IC Compiler™ II Implementation User Guide
T-2022.03

102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling Clock-Gate Latencies

Feedback

• User-specified latencies

User-specified latencies are set by the set_clock_latency,
set_clock_gate_latency, set_clock_gating_check -setup, or set_path_margin
-setup commands.

The tool does not modify any set_clock_latency constraints that you specify on clock-
gating cells. Tool-estimated clock-gate latency values are stored as offsets from the user-
specified values. You can see the offset values by using the write_script -format
icc2 command and checking for the set_clock_latency -offset commands in the
generated output. If you do not set any latency values, the reported offsets are equal to the
estimated latency values.

The estimated latency offset values are not captured in an SDC file generated by the
write_sdc command.

Latency estimates are most accurate if the relative locations of the clock gates and their
gated registers do not change during clock tree synthesis. To preserve the placement of
integrated clock gates, enable the automatic relocation of clock network cells by setting
the cts.compile.enable_cell_relocation application option to auto before clock tree
synthesis.

User-Specified Clock-Gate Latency
You cannot disable general integrated clock-gate latency estimation. However, you can
disable the feature for specific clock gates by setting a dont_estimate_clock_latency
attribute on their clock pins. This topic describes how to manually specify latency values
on those clock gates.

Specify the clock network latency by using either the set_clock_latency or
set_clock_gate_latency command. The set_clock_gate_latency command can be
used for both gate-level and RTL designs.

The clock latency specified using the set_clock_gate_latency command is annotated
on the registers during the compile_fusion command when the clock-gating cells
are inserted. However, if you modify the latency values on the clock gates after the
compilation, you must manually apply the latency values on the existing clock-gating cells
using the apply_clock_gate_latency command.

Note:
After you modify the clock-gate latency using the set_clock_gate_latency
command, if you compile your design using the compile_fusion command, it
is not necessary to use the apply_clock_gate_latency command to apply
the latency values. The tool annotates the specified value during compilation.

To remove clock latency information previously set on clock-gating cells with the
set_clock_gate_latency or apply_clock_gate_latency commands, use the

IC Compiler™ II Implementation User Guide
T-2022.03

103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling Clock-Gate Latencies

Feedback

reset_clock_gate_latency command. This command removes the clock latency values
on the specified clocks. If you do not specify the clock, the clock latency values on all the
clock-gating cells are removed.

The set_clock_latency Command

Use the set_clock_latency command to specify clock network latency for specific clock-
gating cells.

In Figure 14, lat_cgtoreg is the estimated delay from the clock pin of the clock-gating
cell to the clock pin of the gated register and lat_reg is the estimated clock-network
latency to the clock pins of the registers without clock gating.

Figure 14 Clock Latency With Clock-Gating Design

Clock-

Gating Cell
Register

Clock tree

delay

Clock tree

delay

lat_reg

lat_cgtoreg

For all clock pins of registers (gated or ungated) in the design that are driven by a specific
clock, use the lat_reg value for the set_clock_latency command. For clock pins of
all the clock-gating cells, use the difference between the lat_reg and lat_cgtoreg
values for the set_clock_latency command. Because the purpose of setting the latency
values is to account for the different clock-network delays between the registers and
the clock-gating cell, it is important to get a reasonably accurate value of the difference
(lat_cgtoreg). The absolute values used are less important unless you are using these
values to account for clock-network delay issues not related to clock gating.

The set_clock_gate_latency Command

When you use the compile_fusion command, clock gates are inserted during the
compilation process. To specify the clock network latency before the clock-gating cells
are inserted by the tool, use the set_clock_gate_latency command. This command
lets you specify the clock network latency for the clock-gating cells as a function of the
clock domain, clock-gating stage, and the fanout of the clock-gating cell. The latency
that you specify is annotated on the clock-gating cells when they are inserted by the
compile_fusion command. You can manually annotate the latency values on the existing
clock-gating cells in your design using the apply_clock_gate_latency command.

IC Compiler™ II Implementation User Guide
T-2022.03

104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling Clock-Gate Latencies

Feedback

The set_clock_gate_latency command takes the following arguments:

• -clock clock_list

• -stage clock_gate_stage

• -fanout_latency fanout_list
The fanout_list is a list of tuples specifying a fanout range and a delay decrement. In
the following example, three fanout ranges are created: 1 to 5 with a latency value of 0.5,
6-15 with a latency value of 0.8, and 16 to infinity with a latency value of 0.6.

set_clock_gate_latency -stage 1 \
 -fanout_latency {{1-5 0.5} {6-15 0.8} {16-inf 0.6}}

To specify a clock latency value for clock-gated registers, use the -stage option with a
value of 0. Because you are specifying the latency value for the clock-gated registers, the
value for the -fanout_latency option should be 1-inf (1 to infinity) and the latency is the
absolute clock latency value for the registers, as shown in the following example:

set_clock_gate_latency -clock CLK -stage 0\
 -fanout_latency {1-inf 1.0}

If the -clock option is not specified, the setting applies to all clocks in the design.

Clock latencies using the set_clock_latency command have higher precedence and are
not overwritten.

Figure 15 shows an example of clock-gate stages and fanout.

Figure 15 Clock-Gating Stages and Latency Calculations

IC Compiler™ II Implementation User Guide
T-2022.03

105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling Clock-Gate Latencies

Feedback

The following commands set the latency values for Figure 15:

set_clock_gate_latency -stage 0 -fanout_latency {{1-inf 1.0}}
set_clock_gate_latency -stage 1 -fanout_latency {{1-inf 0.3}}
set_clock_gate_latency -stage 2 -fanout_latency {{1-inf 0.2}}
set_clock_gate_latency -stage 3 -fanout_latency {{1-inf 0.1}}

Figure 16 shows another example of fanout and latency calculations.

Figure 16 Latency Calculations With Varying Fanout

The following commands specify the latency and fanout for Figure 16.

set_clock_gate_latency -stage 0 \
 -fanout_latency {{1-inf 1.6}}
set_clock_gate_latency -stage 1 \
 -fanout_latency {{1-20 0.6} {21-inf 0.8}}
set_clock_gate_latency -stage 2 \
 -fanout_latency {{1-20 0.2} {21-inf 0.3}}
set_clock_gate_latency -stage 3 \
 -fanout_latency {{1-30 0.1} {31-65 0.8} {66-inf 0.18}}
set_clock_latency "0.4" {uicg_a/CK}

Note that for the clock gate uicg_a, the latency value of 0.4 is assigned using the
set_clock_latency command, which cannot be overwritten.

IC Compiler™ II Implementation User Guide
T-2022.03

106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Specifying Physical Constraints for Placement and Legalization
During placement and legalization, the floorplan information dictates where cells are
placed. The following topics describe how to specify additional physical constraints that
affect placement and legalization:

• Defining Keepout Margins

• Defining Area-Based Placement Blockages

• Defining Placement Bounds

• Defining Placement Attractions

• Defining Cell Spacing Constraints for Legalization

Defining Keepout Margins
A keepout margin is a region (the shaded portions in Figure 17) around the boundary of
fixed cells in a block in which no other cells are placed.

Figure 17 Placement Keepout Margins

left

bottom

right

top

Outer keepout margin

Fixed cell
left

bottom

right

top

Inner keepout margin

Fixed cell

An outer keepout margin is a region outside the cell boundary, while an inner keepout
margin is a region inside the cell boundary. The width of the keepout margin on each
side of the fixed cell can be the same or different, depending on how you define the
keepout margin. In addition, keepout margins can be defined as hard or soft. Keeping the
placement of cells out of such regions avoids congestion and net detouring and produces
better QoR.

keepout marginscell-specific, settingTo define a keepout margin, use the set_keepout_margin commandcommandsset_keepout_margincreate_keepout_margin command. By default, the
command creates a hard keepout margin. To create a soft keepout margin, use the -type
soft option.

IC Compiler™ II Implementation User Guide
T-2022.03

107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Defining an Outer Keepout Margin
You can define an outer keepout margin on a hard macro, a hierarchical cell, or a leaf cell.
When you define an outer keepout margin, you can either specify the keepout distance
explicitly or, for hard macros, you can have the tool derive the keepout distance based on
the macro pin count.

To explicitly specify an outer keepout margin, use the -outer option to specify the margin
distance for each side. You specify the left, bottom, right, and top margins using the
following format: {lx by rx ty}. A value of 0 results in no keepout margin for that side.

For example, to create a hard outer keepout margin with a margin of 10 on each side for a
macro named my_macro, use the following command:

icc2_shell> create_keepout_margin -outer {10 10 10 10} my_macro
To have the tool derive the outer keepout distance for a hard macro based on its pin count,
use the -tracks_per_macro_pin option to specify the track-to-pin ratio. When you use
this option, the tool calculates the keepout margin from the track width, the number of
macro pins, and the specified track-to-pin ratio, which is typically set to a value near 0.5. A
larger value results in larger keepout margins. The derived keepout margin is always hard;
the -type setting is ignored. The derived margins are subject the minimum and maximum
values specified by the -min_padding_per_macro and -max_padding_per_macro
options.

For example, to have the tool derive the outer keepout margin for a macro named
my_macro by using a track-to-pin ratio of 0.6 with a minimum keepout distance of 0.1 and
a maximum keepout distance of 0.2, use the following command:

icc2_shell> create_keepout_margin -tracks_per_macro_pin 0.6 \
 -min_padding_per_macro 0.1 -max_padding_per_macro 0.2 my_macro

Defining an Inner Keepout Margin
You can define an inner keepout margin on a hierarchical cell, but not on a hard macro
or a leaf cell. When you define an inner keepout margin, you must specify the keepout
distance explicitly.

To explicitly specify an inner keepout margin, use the -inner option to specify the margin
distance for each side. You specify the left, bottom, right, and top margins using the
following format: {lx by rx ty}. A value of 0 results in no keepout margin for that side.

For example, to create a hard inner keepout margin with a margin of 10 on each side for a
hierarchical cell named my_hcell, use the following command:

icc2_shell> create_keepout_margin -inner {10 10 10 10} my_hcell

IC Compiler™ II Implementation User Guide
T-2022.03

108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Defining Area-Based Placement Blockages
An area-based placement blockage is a rectangular region in which cells cannot be placed
or in which the types or number of cells is limited. The IC Compiler II tool supports the
following types of area-based placement blockages:

• Hard

A hard blockage prevents the placement of standard cells and hard macros within the
specified area during coarse placement, optimization, and legalization.

• Hard macro

A hard macro blockage prevents the placement of hard macros within the specified
area during coarse placement, optimization, and legalization.

• Soft

A soft blockage prevents the placement of standard cells and hard macros within the
specified area during coarse placement, but allows optimization and legalization to
place cells within the specified area.

• Partial

A partial blockage limits the cell density in the specified area during coarse placement,
but has no effect during optimization and legalization.

get_placement_blockages commandcommandsget_placement_blockagesTo define placement blockages, use the create_placement_blockage command. At
a minimum, you must specify the coordinates of the placement blockage. To create a
rectangular placement blockage, use the -boundary option to specify the lower-left and
upper-right coordinates of the rectangle. To create a rectilinear placement blockage, use
the -boundary option to specify the coordinates of the polygon.

By default, the create_placement_blockage command creates a hard placement
blockage. To create another type of placement blockage, use the -type option to specify
the blockage type. A single create_placement_blockage command can create just one
type of placement blockage.

You can optionally assign a name to a placement blockage by using the -name option. You
can then reference that blockage by name to query or remove the placement blockage.

Defining a Hard Placement Blockage
To define a hard placement blockage, specify the boundary and optionally a name for the
placement blockage.

For example, to create a hard placement blockage in the area enclosed by a rectangle
with corners at (10, 20) and (100, 200), use the following command:

create_placement_blockage -boundary {10 20 100 200}

IC Compiler™ II Implementation User Guide
T-2022.03

109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Note:
Hard placement blockages are honored during placement, legalization,
optimization, and clock tree synthesis.

Hard placement blockages can also be defined in the DEF as shown in Example 13.

Example 13 Placement Blockages in DEF
BLOCKAGES 2 ;
 - PLACEMENT
 RECT (0 327600) (652740 327660) ;
 - PLACEMENT
 RECT (0 327600) (652740 327660) ;
END BLOCKAGES
1

Defining a Hard Macro Placement Blockage
To define a hard macro blockage, specify the boundary, type (-type hard_macro option),
and optionally the name for the placement blockage.

For example, to define a hard macro blockage enclosed by a rectangle with corners at
(120, 75) and (230, 200), use the following command:

create_placement_blockage -boundary {120 75 230 200} \
 -type hard_macro

Note:
Hard macro placement blockages are honored during placement, legalization,
and optimization. This is the only type of placement blockage that is honored by
hard macro placement.

Defining a Soft Placement Blockage
To define a soft blockage, specify the boundary, type (-type soft option), and optionally
the name for the placement blockage.

For example, to define a soft blockage enclosed by a rectangle with corners at (120, 75)
and (230, 200), use the following command:

create_placement_blockage -boundary {120 75 230 200} \
 -type soft

A soft blockage prevents the initial placement from placing cells within the specified area,
but allows legalization, optimization, and clock tree synthesis to do so. However, after
placement and optimization, during subsequent incremental placement, the tool can move

IC Compiler™ II Implementation User Guide
T-2022.03

110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

the cells added during legalization, optimization, and clock tree synthesis out of the soft
blockage area. To prevent this, use the following application option setting:

set_app_options -name place.coarse.enable_enhanced_soft_blockages \
 -value true

Note:
Soft placement blockages are honored during placement, but not during
legalization, optimization, or clock tree synthesis.

Defining a Partial Placement Blockage
To define a partial blockage, specify the boundary, type (-type partial option), blockage
percentage (-blocked_percentage option), and optionally the name for the placement
blockage.

For example, to define a partial blockage with a maximum allowed cell density of 60
percent (a blocked percentage of 40), enclosed by the rectangle with corners at (10, 20)
and (100, 200), use the following command:

create_placement_blockage -boundary {10 20 100 200} \
 -type partial -blocked_percentage 40

To allow unlimited usage of a partial blockage area, specify a blockage percentage of zero
(-blocked_percentage 0 option).

Note:
Partial placement blockages are honored during placement, but not during
legalization, optimization, or clock tree synthesis.

Define a Blockage of a Predefined Category
A category blockage is a special type of partial blockage that controls the placement of a
predefined category of cells within the partial blockage.

To create a category blockage,

1. Create the cell category by defining a user attribute for the category by using the
define_user_attribute command and applying it to the affected cell references or
instances by using the set_attribute command.

To prevent the cell from being placed in the category blockage, set the attribute to
true. To allow the cell in the category blockage, set the attribute to false.

When defining and applying attributes, observe the following rules:

• A blockage can only be controlled by a single attribute.

• Multiple blockages can be controlled by the same attribute.

IC Compiler™ II Implementation User Guide
T-2022.03

111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

• A cell can have multiple attributes, which could impact its placement in multiple
category blockages.

• The same attribute can be applied to a reference and an instance.

• If a cell instance and its reference have different attributes, the attribute on the cell
instance takes precedence.

2. Create the category blockage by using the create_placement_blockage command
with the -type category, -blocked_percentage, and -category options. The
argument to the -category option is the name of the user attribute.

The following example defines a blockage that prevents a certain category of cells from
being placed within it:

define_user_attribute -type boolean \
 -classes lib_cell dr_cells
set_attribute [get_lib_cells mylib/dr*] dr_cells true
create_placement_blockage -boundary {{4300 2400} {4500 2700}} \
 -type category -blocked_percentage 45 -category dr_cell

The following example defines a blockage that allows only a certain category of cells to be
placed within it:

define_user_attribute -type boolean \
 -classes lib_cell non_iso
set_attribute [get_lib_cells mylib/*] non_iso true
set_attribute [get_lib_cells mylib/iso*] non_iso false
create_placement_blockage -boundary {{4300 2400}{4500 2700}} \
 -type category -blocked_percentage 30 -category non_iso

Note:
Category blockages are honored during placement, but not during legalization,
optimization, or clock tree synthesis.

Defining Blockages That Exclude Registers
To define partial blockages that exclude registers, specify the boundary, type (-type
register option), blockage percentage (-blocked_percentage option), and optionally
the name for the placement blockage.

For example, to define a partial blockage that excludes registers, but allows a cell density
of 50 percent for other cells, use the following commands:

create_placement_blockage -boundary {{10 20} {100 200}} \
 -type register -blocked_percentage 50

IC Compiler™ II Implementation User Guide
T-2022.03

112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Note:
Register blockages are honored during placement, but not during legalization,
optimization, or clock tree synthesis.

Defining Blockages That Exclude Relative Placement Groups
To define partial blockages that exclude relative placement groups, specify the boundary,
type (-type rp_group option), blockage percentage (-blocked_percentage option), and
optionally the name for the placement blockage.

For example, to define a partial blockage that excludes relative placement groups, but
allows a cell density of 100 percent for all other cells, use the following commands:

create_placement_blockage -boundary {{10 20} {100 200}} \
 -type rp_group -blocked_percentage 0

Note:
Relative placement group blockages are honored during placement, but not
during legalization, optimization, or clock tree synthesis.

Defining Blockages That Allow Relative Placement Cells Only
To define partial blockages that allow relative placement cells only, specify the boundary,
type (-type allow_rp_only option), blockage percentage (-blocked_percentage
option), and optionally the name for the placement blockage.

For example, to defines a partial blockage that allows relative placement cells only, with a
maximum allowed cell density of 80 percent (a blocked percentage of 20), and enclosed
by the rectangle with corners at (10, 20) and (100,200), use the following command:

create_placement_blockage -name rp_only -type allow_rp_only \
 -boundary {10 20 100 200} -blocked_percentage 20

These blockages allows the tool to place relative placement groups, which are usually
large structures, without disturbing the placement of other cells. After the tool places and
legalizes the relative placement groups, you can remove these blockages and allow the
tool to place other cells in them.

Note:
Relative-placement-cells-only blockages are honored during placement, but not
during legalization, optimization, or clock tree synthesis.

IC Compiler™ II Implementation User Guide
T-2022.03

113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Defining Blockages That Allow Buffers Only
To define a partial blockage that allows buffers only, specify the boundary, type (-type
allow_buffer_only option), blockage percentage (-blocked_percentage option), and
optionally the name for the placement blockage.

For example, to define a partial blockage that allows only the placement of buffers and
inverters, with a cell density of 30 percent, use the following commands:

create_placement_blockage -boundary {{10 20} {100 200}} \
 -type allow_buffer_only -blocked_percentage 70

Note:
Buffer-only blockages are honored during placement, but not during
legalization, optimization, or clock tree synthesis.

Querying Placement Blockages
To return a collection of placement blockages in the current block that match certain
criteria, use the get_placement_blockages commandcommandsget_placement_blockagesget_placement_blockages command.

Removing Placement Blockages
To remove placement blockages from a block, use the remove_placement_blockage commandcommandsremove_placement_blockageremove_placement_blockages
command. To remove all placement blockages from a block, use the -all option. To
remove specific placement blockages from a block, specify the placement blockage
names.

Defining Placement Bounds
A placement bound is a constraint that controls the placement of groups of cells. It allows
you to group cells to minimize wire length and place the cells at the most appropriate
locations. For example, you might want to define a bound for clock-gating cells or
extremely timing-critical groups of cells that you want to guarantee will not be disrupted for
placement by other logic.

Table 4 lists the types of placement bounds supported by the IC Compiler II tool.

Table 4 Types of Placement Bounds

Bound type Description

Soft move bound The tool tries to place the cells in the move bound within a specified
region, during coarse placement. However, there is no guarantee that
the cells are placed inside the bounds.
Soft move bounds are honored during coarse placement, but not
legalization.

IC Compiler™ II Implementation User Guide
T-2022.03

114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Table 4 Types of Placement Bounds (Continued)

Bound type Description

Hard move bound The tool must place the cells in the move bound within a specified
region.
Hard move bounds are honored during both coarse placement,and
legalization. However, they are not honored during clock tree synthesis.

Exclusive move bound The tool must place the specified cells within the specified region and
place all other cells outside of the exclusive move bounds, during both
coarse placement and legalization.
The placement of newly added buffers in
exclusive move bounds is controlled by the
opt.buffering.exclusive_hard_bound_buffering_mode application
option. By default, during buffering, the tool can add new cells to an
exclusive hard move bound if it improves the QoR. If you set this
application option to 0, the tool honors the exclusive hard move bound.

Soft group bound The tool tries to place the cells in the group bound within a floating
region; however, there is no guarantee that the cells are placed inside
the bounds.

Hard group bound The tool must place the cells in the group bound within a floating region,
whose actual coordinates are determined by the tool.

Dimensionless group
bound

The tool determines the shape and location of the group bound based
on the effort used to bring cells closer inside the group bound.

To define a placement bound, use the create_bounds commandcommandscreate_boundscreate_bound command. When you define a
bound, you must use the -name option to specify its name.

In general, you also specify the cells and ports to be included in the bound. If a
hierarchical cell is included, all cells in the subdesign belong to the bound. However,
you can create an empty bound and specify the contents of the bound later by using
the add_to_bound command. You can remove objects from a bound by using the
remove_from_bound command.

You must also specify the options required for the specific type of bound you want to
create. The following topics describe how to create the various types of move bounds:

• Defining Move Bounds

• Defining Group Bounds

• Querying Placement Bounds

• Removing Placement Bounds

IC Compiler™ II Implementation User Guide
T-2022.03

115

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Defining Move Bounds
A move bound is a fixed region within which to place a set of cells. It comprises one or
more rectangular or rectilinear shapes, which can be abutted, disjoint, or overlapping. To
define the boundaries of these shapes, use the -boundary option with the create_bound
command (if you are creating a new move bound) or the create_bound_shape command
(if you are adding shapes to an existing move bound). Note that you can specify one or
more shapes when using the create_bound command, but only a single shape in each
create_bound_shape command.

• To specify the boundary of a rectangle shape, use the following format to specify its
lower-left and upper-right corners:

{{llx lly} {urx ury}}
• To specify the boundary of a rectilinear shape, use the following format to specify the

coordinates of its vertices:

{{x1 y1} {x2 y2} {x3 y3} {x4 y4} ...}
Move bounds can be hard, soft, or exclusive.

• To define a soft move bound, use the following syntax:

create_bound -name name [-type soft] [-effort effort_level] \
 -boundary {coordinates} [bound_objects]

The default effort is ultra; you can also specify low, medium, or high.

For example, to define a rectangular soft move bound for the INST_1 cell instance
with its lower-left corner at (100, 100) and its upper-right corner at (200, 200), use the
following command:

icc2_shell> create_bound -name b1 -boundary {100 100 200 200} INST_1
• To define a hard move bound, use the following syntax:

create_bound -name name -type hard -boundary {coordinates}\
 [bound_objects]

For example, to define a rectangular hard move bound for the INST_1 cell instance
with its lower-left corner at (100, 100) and its upper-right corner at (200, 200), use the
following command:

icc2_shell> create_bound -name b2 -type hard \
 -boundary {100 100 200 200} INST_1

• To define an exclusive move bound, use the following syntax:

create_bound -name name -exclusive -boundary {coordinates} \
 [bound_objects]

IC Compiler™ II Implementation User Guide
T-2022.03

116

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

For example, to define a rectangular exclusive move bound for the INST_1 cell
instance with its lower-left corner at (100, 100) and its upper-right corner at (200, 200),
use the following command:

icc2_shell> create_bound -name b3 -exclusive \
 -boundary {100 100 200 200} INST_1

To add shapes to an existing move bound, use the create_bound_shape command. To
remove shapes from an existing move bound, use the remove_bound_shapes command.

Defining Group Bounds
move boundcreatingA group bound is a floating region within which to place a set of cells. Group bounds can
be hard, soft, or dimensionless.

• To define a soft group bound, use the following syntax:

create_bound -name name [-type soft] [-effort effort_level] \
 [-dimensions {width height} bound_objects]

The default effort is ultra; you can also specify low, medium, or high.

For example, to define a soft group bound for the INST_1 and INST_2 cell instances
with a width of 100 and a height of 100, use the following command:

icc2_shell> create_bound -name b4 -dimensions {100 100} \
 {INST_1 INST_2}

• To define a hard group bound, use the following syntax:

create_bound -name name -type hard -dimensions {width height} \
 [bound_objects]

For example, to define a hard group bound for the INST_1 and INST_2 cell instances
with a width of 100 and a height of 100, use the following command:

icc2_shell> create_bound -name b5 -type hard -dimensions {100 100} \
 {INST_1 INST_2}

• To define a dimensionless group bound, use the following syntax:

create_bound -name name [-effort effort_level] \
 [bound_objects]

The default effort is medium; you can also specify low, high, or ultra.

For example, to define a dimensionless group bound for the INST_1 and INST_2 cell
instances in which the tool uses a high level of effort to place the cells closer within the
group bound, use the following command:

icc2_shell> create_bound -name b6 -effort high {INST_1 INST_2}

IC Compiler™ II Implementation User Guide
T-2022.03

117

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

Querying Placement Bounds
To report the placement bounds in a block, use the report_bounds commandcommandsreport_boundsmove boundreportingreport_bounds command.

To return a collection of placement bounds in the current block that match certain criteria,
use the get_bounds commandcommandsget_boundsget_bounds command.

To return a collection of bound shapes associated with one or more move bounds, use the
get_bound_shapes command.

Removing Placement Bounds
To remove placement bounds from a block, use the remove_placement_blockage commandcommandsremove_placement_blockageremove_bounds command. To remove
all placement bounds from a block, use the -all option. To remove specific placement
bounds from a block, specify the placement bound names.

Defining Placement Attractions
A placement attraction is a constraint that you can use to specify that a large group of cells
be placed together in the same vicinity of the placement area. It is a soft constraint that
the tool considers during initial placement. However, it has less effect during subsequent
incremental placement stages. To specify a more restrictive placement constraint for a
smaller group of cells, create a move bound or group bound by using the create_bound
command.

To define a placement attraction, use the create_placement_attraction command. For
example, to specify that the cells from the subblocks named add1 and mult1 be placed in
the same vicinity, use the following command:

icc2_shell> set add1_cells [get_flat_cells add1/*]
icc2_shell> set mult1_cells [get_flat_cells mult1/*]
icc2_shell> create_placement_attraction -name add1_mult1 \
 "$add1_cells $mult1_cells"
You can use the -region option to specify

• A region in which to place the cells

To do so, specify the lower-left and upper-right coordinates of the region, as shown in
the following example:

icc2_shell> set U1_cells [get_flat_cells U1/*]
icc2_shell> create_placement_attraction -name U1 \
 -region {{0 0} {2000 1500}} $U1_cells

• A straight line along which to place the cells, such as an edge of a macro cell

IC Compiler™ II Implementation User Guide
T-2022.03

118

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

To do so, specify the coordinates of the two ends of the line, as shown in the following
example:

icc2_shell> set U2_cells [get_flat_cells U2/*]
icc2_shell> create_placement_attraction -name U2 \
 -region {{1000 200} {1000 800}} $U2_cells

• A location around which to place the cells, such as a port location

To do so, specify the coordinates of the location, as shown in the following example:

icc2_shell> set U3_cells [get_flat_cells U3/*]
icc2_shell> create_placement_attraction -name U3 \
 -region {{0 700}} $U3_cells

The following table shows additional commands available for changing, reporting, and
removing placement attractions. For more information, see the command man pages.

Table 5 Commands Related to Placement Attractions

To do this Use this command

Define a placement attraction create_placement_attraction

Add cells to an existing placement attraction add_to_placement_attraction

Remove cells from an existing placement attraction remove_from_placement_attraction

Report placement attractions report_placement_attractions

Find existing placement attractions get_placement_attractions

Remove existing placement attractions remove_placement_attractions

See Also

• Defining Move Bounds

Defining Cell Spacing Constraints for Legalization
Cell spacing constraints control the spacing between a standard cell and another standard
cell or a boundary (the chip boundary, a hard macro, a hard macro keepout margin, a hard
placement blockage, or a voltage area guard band). You assign library cells to groups (the
boundaries are in a predefined group named SNPS_BOUNDARY), and then define the
required spacing between cells in these groups.

IC Compiler™ II Implementation User Guide
T-2022.03

119

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

By default, there are no spacing constraints between standard cells during legalization.
To enhance yield, you can define the valid spacing between standard cells or between a
standard cell and a boundary.

Note:
The support for spacing constraints between standard cells and power
or ground nets depends on how the net is represented in the block. If the
power or ground net is defined as a complete blockage, the legalizer and the
check_legality command ignore spacing rule violations between standard
cells and the power or ground net. If the power or ground net is defined as a
partial blockage, the legalizer and the check_legality command check for
spacing rule violations between standard cells and the power or ground net.

Cell spacing constraints are implemented by attaching labels, which are similar to
attributes, to the left and right sides of library cells, assuming that the cell is in its north
orientation, and specifying the invalid spacings between these labels.

To define cell spacing constraints,intercell spacing rules, defining

1. Add labels to the library cells that have spacing constraints by using the set_lib_cell_spacing_label

commandcommandsset_lib_cell_spacing_labelset_placement_spacing_label command.

You must specify the following information for each label:

• The label name (the -name option)

• The library cells to which to apply the label (the -lib_cells option)

• The sides of the library cells to which to apply the label (the -side option, which
can take a value of right, left, or both)

The label definitions are additive; you can specify the same label to be used on the
right side of some cells and the left side of other cells. For example, to assign a label
named X to the right side of the cellA library cell and the left side of the cellB and cellC
library cells, use the following commands:

icc2_shell> set_placement_spacing_label -name X \
 -lib_cells {cellA} -side right
icc2_shell> set_placement_spacing_label -name X \
 -lib_cells {cellB cellC} -side left
You can assign multiple labels to a side of a library cell. For example, to assign labels
named Y and Z to the right side of the cellB library cell, use the following commands:

icc2_shell> set_placement_spacing_label -name Y \
 -lib_cells {cellB} -side right
icc2_shell> set_placement_spacing_label -name Z \
 -lib_cells {cellB} -side right

IC Compiler™ II Implementation User Guide
T-2022.03

120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Physical Constraints for Placement and Legalization

Feedback

2. Define the spacing requirements between the labels by using the set_spacing_label_rule

commandcommandsset_spacing_label_ruleset_placement_spacing_rule command.

You must specify the following information for each rule:

• The labels being constrained (the -labels option)

You must specify exactly two labels in each set_spacing_label_rule commandcommandsset_spacing_label_ruleset_placement_spacing_rule
command. You can specify any of the labels defined by the set_lib_cell_spacing_label

commandcommandsset_lib_cell_spacing_labelset_placement_spacing_label command or the predefined SNPS_BOUNDARY
label, which includes the chip boundary, hard macro boundaries, a hard macro
keepout margins, hard placement blockages, and voltage area guard bands. The
two labels can be the same or different.

• The range of invalid spacings, in number of unit tiles

For example, to specify that there must be at least one unit tile between labels X and Y
(they cannot abut), use the following command:

icc2_shell> set_placement_spacing_rule -labels {X Y} {0 0}
To specify that there must be at least one unit tile between X labels and any boundary,
use the following command:

icc2_shell> set_placement_spacing_rule \
 -labels {X SNPS_BOUNDARY} {0 0}
To specify that two X labels cannot have a spacing of two unit tiles, use the following
command:

icc2_shell> set_placement_spacing_rule -labels {X X} {2 2}
To specify that labels X and Z must have a spacing of less than two unit tiles or more
than four unit tiles, use the following command:

icc2_shell> set_placement_spacing_rule -labels {X Z} {2 4}
Caution:

The cell spacing constraints are not saved with the block; they apply only to the
current session and must be redefined in each session.

Reporting Cell Spacing Constraints
To report the cell spacing rules, use the report_spacing_rules commandcommandsreport_spacing_rulesreport_placement_spacing_rules command.
This command reports the cell spacing labels defined in the current session, the library
cells (and their sides) to which they apply, and the rules defined for them.

IC Compiler™ II Implementation User Guide
T-2022.03

121

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

Removing Cell Spacing Constraints
To remove spacing rules, use the remove_all_spacing_rules commandcommandsremove_all_spacing_rulesremove_placement_spacing_rules command. You
must specify which rules to remove.

• To remove all spacing rules, use the -all option.

• To remove a specific label and all rules associated with that label, use the -label
option to specify the label.

• To remove a rule between labels, use the -rule option to specify two labels associated
with the rule.

Specifying Placement Settings
The tool performs coarse placement at various points during the preroute stage of the
design flow. The following topics describe settings for controlling coarse placement:

• Performing Placement With Inaccurate Constraints at Early Stages

• Generating Automatic Group Bounds for Clock Gating Cells

• Controlling the Placement Density

• Controlling Congestion-Driven Restructuring During Placement

• Reducing Congestion

• Considering Wide Cell Density During Placement

• Considering the Effects of Cell Pins During Placement

• Considering the Congestion Effects Due to the Nondefault Routing Rules of Clock Nets

• Considering the Effects of Clock Gating Cells of Sequential Arrays During Placement

• Considering Legalization Effects During Placement

• Considering DFT Connections During Placement

• Considering the Dynamic Power QoR During Placement

• Performing IR-Drop-Aware Placement

• Spreading Repeater Cells During Placement

IC Compiler™ II Implementation User Guide
T-2022.03

122

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

Performing Placement With Inaccurate Constraints at Early
Stages
During the early stages of a design cycle, placement constraints can be inaccurate
causing the tool to exit during coarse placement. To continue with placement when a
region is overutilized due to it being too small or being covered by blockages, set the
place.coarse.handle_early_data application option to true. When you do so, the tool
issues warning messages as shown in the following example output:

Warning: Utilization of move_bound_0 is 109%. (PLACE-089)
Warning: Placement continues with over utilized regions in the design.
 (PLACE-083)
Warning: Overutilized regions for move_bound_0 are modified by removal of
 partial and full blockages. (PLACE-084)

When you enable this feature, the tool prints a warning message if the
utilization of a region is more that 90 percent. To change this threshold, use the
place.coarse.utilization_warning_threshold application option.

Generating Automatic Group Bounds for Clock Gating Cells
The tool can automatically generate group bounds for integrated clock gating cells and the
sequential cells they drive. To do so, use the following application option setting:

icc2_shell> set_app_options -name place.coarse.icg_auto_bound \
 -value true
When you enable this feature, the tool creates the automatic group bounds at the
beginning of placement and removes them at the end of placement. The tool does not
include cells that already belong to another group bound in the automatic group bounds.

To limit the maximum number of fanouts that can be included in an automatic bound, use
the icg_auto_bound_fanout_limit application option setting, as shown in the following
example:

icc2_shell> set_app_options \
 -name place.coarse.icg_auto_bound_fanout_limit -value 30
The default fanout limit is 40.

Controlling the Placement Density
You can control the placement density of a block as described in the following table.

IC Compiler™ II Implementation User Guide
T-2022.03

123

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

Table 6 Application Options for Controlling Placement Density

To do this Use this application option

Specify a maximum density that controls how
densely the tool can place cells in uncongested
areas during wire-length-driven placement

place.coarse.max_density
(Default is 0, and the tool spreads cells uniformly by
default)

Specify a maximum utilization that controls how
densely the tool can place cells in less congested
areas that surround highly congested areas, so that
the cells in the congested areas can be spread out
to reduce the congestion

place.coarse.congestion_driven_max_util
(Default is 0.93)

When specifying the maximum density or maximum utilization, choose a value between
1 and the overall utilization of the block. For example, if the utilization of a block is 40
percent, you can choose values between 1 and 0.4, as shown in the following example:

icc2_shell> set_app_options -name place.coarse.max_density -value 0.6
icc2_shell> set_app_options \
 -name place.coarse.congestion_driven_max_util -value 0.8
If you do not specify a value for the maximum density or maximum utilization, or the values
you specify are less than the average utilization, by default, the tool automatically derives
a value for the maximum density and maximum utilization based on the stage of the
design flow.

You can improve the tool derived values for maximum density and maximum utilization
by settings the place.coarse.enhanced_auto_density_control application option to
true. When you do so, the tool derives

• Maximum density based on the design utilization, in addition to the stage of the design
flow

• Maximum utilization based on the design technology, in addition to the stage of the
design flow

For advanced-node designs, you can specify that the tool derives an advanced-node-
specific maximum utilization value that is based on the stage of the design flow by setting
the place.coarse.advanced_node_congestion_driven_max_util application option to
true.

Throughout placement, the tool prints PLACE-027 information messages indicating the
values it uses for these settings.

Information: Automatic density control has selected the following
 settings: max_density 0.60, congestion_driven_max_util 0.77. (PLACE-027)

IC Compiler™ II Implementation User Guide
T-2022.03

124

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

The tool applies the maximum density and congestion-driven maximum utilization settings
independently to each placeable area such as a voltage area or exclusive move bound,
rather than taking an average over the entire block.

Controlling Congestion-Driven Restructuring During Placement
By default, the tool restructures nets to reduce congestion during

• The create_placement command, except when you use the -timing_driven option

• The initial_place stage of the place_opt command

You can control the congestion-driven restructuring as follows:

• Specify a restructuring strategy by using the
place.coarse.cong_restruct_strategy application option.

To perform

◦ Multiple iterations of net restructuring interleaved with incremental placement, set
this application option to original

◦ Multiple iterations of net restructuring embedded within wire-length-driven coarse
placement, set this application option to embed, which is the default

• Specify the number of iterations by using the
place.coarse.cong_restruct_iterations application option.

If you do not specify the number of iterations, the tool performs

◦ Three iterations, if the place.coarse.cong_restruct_strategy application option
is set to original

◦ One iteration, if the place.coarse.cong_restruct_strategy application option is
set to embed

• Specify an effort level by setting the place.coarse.cong_restruct_effort
application option to low, medium (default), high, or ultra.

• Prevent the tool from increasing the path depth by more than three levels of logic by
setting the place.coarse.cong_restruct_depth_aware application option to true.

IC Compiler™ II Implementation User Guide
T-2022.03

125

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

Reducing Congestion
To reduce the congestion of your block, use the following settings:

• Consider the congestion of each layer separately and improve the
accuracy of congestion reduction in coarse placement by setting the
place.coarse.congestion_layer_aware application option to true.

By default, the tool combines the congestion information of all layers during placement.
By considering the congestion of each layer separately, the tool can identify and fix
areas with high pin densities that have insufficient resources on the lower layers for
making pin connections.

• Expand the virtual area of cells during placement based on the local routing resource
needs by setting the place.coarse.increased_cell_expansion application option to
true.

By increasing the virtual area of cells in areas where there is a shortage of routing
resources, the tool can minimize the cell density and congestion.

By default, the tool expands the cells in the horizontal direction, which helps reduce
congestion in the vertical routing layers. For designs with congestion mainly in the
horizontal routing layers, set the place.coarse.congestion_expansion_direction
application option to both. The default is horizontal.

By default, the tool uses the uses global route congestion map to identify highly
congested areas that need cell expansion. However, the tool does not consider the
congestion due to soft routing rules. To consider the congestion effects of soft routing
rules, set the route.global.export_soft_congestion_maps application option to
true.

• Consider the legalization requirements of the cells during coarse placement by setting
the place.coarse.legalizer_driven_placement application option to true.

Considering Wide Cell Density During Placement
If a cell cannot straddle the vertical power straps and the width of the cell is more than
half the pitch of the power straps, only one such cell can be placed between the power
straps. Therefore, during placement, the tool must minimize the density of such wide cells
to ensure that they can be placed and legalized without large displacements.

For advanced technology nodes with wide cells, enable wide-cell modeling during
placement by setting the place.coarse.wide_cell_use_model application option to
true.

IC Compiler™ II Implementation User Guide
T-2022.03

126

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

Considering the Effects of Cell Pins During Placement
When you specify a technology node setting of 7, 7+, 5, s5, or s4 by using the
set_technology -node command, you can specify that the tool uses a technology-
specific pin-cost model during placement by setting the place.coarse.pin_cost_aware
application option to true. The default is false. When you enable this feature, during
placement, the tool tries to improve pin accessibility by using a technology-specific model
to predict the routing resources required to access each pin.

For all other technology nodes, you can control the maximum local pin density during
placement by setting the place.coarse.pin_density_aware application option to true.
The default is false.

Table 7 Settings for Controlling the Effects of Pins During Placement

set_technology
-node

place.coarse.
pin_cost_aware

place.coarse.
pin_density_aware

The tool does this

7, 7+, 5, s5, or s4 true true or false Performs technology-specific
pin-cost-aware placement

7, 7+, 5, s5, or s4 false true Performs pin-density-aware
placement

7, 7+, 5, s5, or s4 false false Does not consider the effects of
cell pins during placement

Any other setting true or false true Performs pin-density-aware
placement

Any other setting true or false false Does not consider the effects of
cell pins during placement

Considering the Congestion Effects Due to the Nondefault
Routing Rules of Clock Nets
To improve timing and reduce crosstalk, nondefault routing rules are used extensively for
routing clock nets. However, these nondefault routing rules require additional space, which
can increase the congestion after clock routing.

To consider the effects of the nondefault routing rules of the clock nets during placement,
set the place.coarse.ndr_area_aware application option to true.

IC Compiler™ II Implementation User Guide
T-2022.03

127

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

Considering the Effects of Clock Gating Cells of Sequential
Arrays During Placement
A sequential array, which is commonly used in storage devices, is a group of registers that
are arranged as a two-dimensional array. The clock pins of the registers along a row of a
sequential array are usually driven by a single clock-gating cell.

To consider the clock-gating cells of a sequential array during placement, set the
place.coarse.seq_array_icg_aware application option to true. Doing so can reduce
the congestion caused by the clock nets.

Considering Legalization Effects During Placement
To minimize many cells from being displaced during legalization, the tool should be aware
of legalization limits and restrictions during coarse placement. For example, the tool
should be aware that it cannot place a wide cell in a specific location due to the position of
the power straps at that location.

To consider legalization effects during placement, set the
place.coarse.enhanced_legalizer_driven_placement application option to true.
Use this feature for blocks that have many cells with small to medium displacements
during legalization and use the RMS displacement values reported during legalization to
see if it reduces the displacement.

Considering DFT Connections During Placement
To improve the DFT logic placement by enhancing the tool's awareness
of DFT connectivity, while still optimizing for functional placement, set the
place.coarse.enable_dft_modeling application option to auto. The default is false.

Considering the Dynamic Power QoR During Placement
To consider the dynamic power QoR during placement, perform the following steps:

1. Annotate switching activity on the design, as described in Annotating the Switching
Activity.

2. Ensure that at least one scenario is enabled for dynamic-power optimization by using
the set_scenario_status -dynamic_power true command.

IC Compiler™ II Implementation User Guide
T-2022.03

128

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

3. Enable power-driven placement for the create_placement, refine_placement,
place_opt, or clock_opt command by using one of the following methods:

• Enable low-power-placement by setting the place.coarse.low_power_placement
application option to true.

During low-power placement, the tool tries to minimize the length of high-switching
nets to improve the power QoR. However, the tool does not consider the effect on
the timing QoR.

• Enable dynamic-power-driven placement by setting the
place.coarse.enhanced_low_power_effort application option to low, medium, or
high. The default is none.

During dynamic-power-driven placement, the tool tries to improve both the timing
and power of timing-critical nets and the power of the other nets. This improves the
power QoR without affecting the timing QoR.

Performing IR-Drop-Aware Placement
During placement, the tool can use the voltage (IR) drop values of cells to identify areas of
high power density and spread the cells with high voltage drop values, which reduces the
power density of such areas.

To perform IR-drop-aware placement, use the following steps:

1. Place and legalize the block.

2. Set up for RedHawk Fusion and perform static or dynamic voltage drop analysis
by using the analyze_rail -voltage_drop command as shown in the following
example:

icc2_shell> source redhawk_setup.tcl
icc2_shell> analyze_rail -voltage_drop static -nets {VDD VSS}
For more information, see Performing Voltage Drop Analysis.

3. Enable IR-drop-aware placement by setting the place.coarse.ir_drop_aware
application option to true.

4. (Optional) Specify additional settings for IR-drop-aware placement, as described in
Controlling IR-Drop-Aware Placement.

5. Rerun placement.

Note:
To perform IR-drop-aware placement, you must have Digital-AF and
SNPS_INDESIGN_RH_RAIL license keys.

IC Compiler™ II Implementation User Guide
T-2022.03

129

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

Controlling IR-Drop-Aware Placement
When you enable IR-drop-aware placement by setting the place.coarse.ir_drop_aware
application option to true, the tool creates three categories of cells based on the total
number of cells.

Figure 18 Default Cell Categories for IR-Drop-Aware Placement

By default, the tool selects cells for the three categories by using the criteria shown in
Figure 18.

• The upper category consists of the top one percent of the total number of cells with the
highest voltage drop values. During placement, the tool spreads these cells the most.

• The middle category consists of the next five percent of the cells. During placement,
the tool spreads these cells less than those in the upper category.

• The lower category consists of the rest of the cells. The tool does not spread these
cells.

You can change the percentage of cells in the upper and middle categories by
using the place.coarse.ir_drop_default_target_high_percentage and
place.coarse.ir_drop_default_target_low_percentage application options.

The following example puts the top 2 percent of cells in the upper category and the next 6
percent of cells in the middle category:

icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_high_percentage \
 -value 2.0
icc2_shell> set_app_options \

IC Compiler™ II Implementation User Guide
T-2022.03

130

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Placement Settings

Feedback

 -name place.coarse.ir_drop_default_target_low_percentage \
 -value 6.0
Instead of using a percentage of the total number of cells to define the cell
categories, you can use the cell voltage drop as a percentage of supply voltage
by setting the place.coarse.ir_drop_default_target_high_population and
place.coarse.ir_drop_default_target_low_population application options to
false. They are true by default.

The following example puts cells with a voltage drop larger than 8 percent of the supply
voltage into the upper category and cells with a voltage drop between 4 to 8 percent of the
supply voltage into the middle category:

icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_high_population \
 -value false
icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_high_percentage \
 -value 8.0
icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_low_population \
 -value false
icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_low_percentage \
 -value 4.0
You can specify a percentage of the total number of cells to define the upper category and
cell voltage drop as a percentage of supply voltage to define the middle category, or vice
versa.

The following example puts the top 2 percent of the total cells in the upper category, and
the next cells that have a voltage drop larger than 4 percent of supply voltage in the middle
category:

icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_high_population \
 -value true
icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_high_percentage \
 -value 2.0
icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_low_population \
 -value false
icc2_shell> set_app_options \
 -name place.coarse.ir_drop_default_target_low_percentage \
 -value 4.0
You can set constraints for specific voltage areas by using the
set_placement_ir_drop_target command. The following example puts the top 1.5

IC Compiler™ II Implementation User Guide
T-2022.03

131

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Legalization Settings

Feedback

percent of the cells in the VA1 voltage area into the upper category and the next 4.5
percent of the cells into the middle category:

icc2_shell> set_placement_ir_drop_target VA1 high 1.5
icc2_shell> set_placement_ir_drop_target VA1 low 4.5
The following example puts the cells with a voltage drop larger than 10 percent of the
supply voltage in the VA2 voltage area into the upper category and the cells with a voltage
drop between 5 and 10 percent of the supply voltage into the middle category:

icc2_shell> set_placement_ir_drop_target VA2 high 10 -irdrop
icc2_shell> set_placement_ir_drop_target VA2 low 5 -irdrop
To get, report, and reset the voltage-area-based constraints, use the
get_placement_ir_drop_target, report_placement_ir_drop_target, and
reset_placement_ir_drop_target commands.

Spreading Repeater Cells During Placement
If a block has many chains of repeater cells (buffers, inverters, or pipelined registers) along
the edges or corners of macro cells or blockages, the tool might clump the cells along
the edges or corners, increasing congestion. You can reduce this congestion by setting
the place.coarse.spread_repeater_paths application option to true before you run
the create_placement, place_opt, or clock_opt command. Then, the tool reduces
congestion along the edges and corners by spreading the repeater cells in an orthogonal
direction.

Specifying Legalization Settings
The tool performs legalization at various points during the design flow. The following topics
describe settings for controlling legalization:

• Minimizing Large Displacements During Legalization

• Optimizing Pin Access During Legalization

• Enabling Advanced PG Net Checks

• Enabling Advanced Legalization Algorithms

• Setting Up for Variant-Aware Legalization

• Checking if Library Cells Are Legally Placeable

IC Compiler™ II Implementation User Guide
T-2022.03

132

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Legalization Settings

Feedback

Minimizing Large Displacements During Legalization
To minimize large displacements of cells during legalization, enable

• Orientation optimization by setting the place.legalize.optimize_orientations
application option to true.

When you do so, the tool considers flipping the orientations of cells to reduce the
displacements during legalization.

• Stream placement by setting the place.legalize.stream_place application option to
true.

When you do so, the tool moves many cells a small distance, to avoid moving
a single cell a large distance during legalization. You can further control
stream placement by using the place.legalize.stream_effort and
place.legalize.stream_effort_limit application options.

Optimizing Pin Access During Legalization
For advanced technology nodes, to improve the routability of areas with high pin densities
by redistributing the cells, enable pin optimization during legalization by setting the
place.legalize.optimize_pin_access_using_cell_spacing application option to
true.

Enabling Advanced PG Net Checks
For advanced technology nodes, such as 12 nanometer, 7 nanometer,
or smaller technology nodes, you can enable advanced physical
DRC checks between cells and prerouted PG nets by setting the
place.legalize.enable_advanced_prerouted_net_check application option to true.

When you enable this feature, you can further control the accessibility checks performed
for standard cell pins by using the place.legalize.advanced_layer_access_check and
place.legalize.advanced_libpin_access_check application options. However, the
default behavior of this feature is suitable for most designs.

Enabling Advanced Legalization Algorithms
To enable advanced legalization algorithms for 2D rule checking and cell interaction, which
can reduce legalization runtime, set the place.legalize.enable_advanced_legalizer
application option to true.

To specify additional advanced legalization rules that are not automatically detected, set
the place.legalize.enable_advanced_legalizer_rules application option.

IC Compiler™ II Implementation User Guide
T-2022.03

133

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Legalization Settings

Feedback

When you enable the advanced legalization algorithms, by default, the tool aligns
vertical pin shapes during pin access optimization to improve routability. However,
you can specify additional strategies for pin access optimization by setting the
place.legalize.optimize_pin_access_strategies application option as shown in the
following table.

Table 8 Settings for the place.legalize.optimize_pin_access_strategies Application Option

To do this Use this setting

Align horizontal pin shapes horizontal_align

Move cells away from areas of high pin
density

avoid_high_pin_density

Align horizontal pin shapes and move
cells away from areas of high pin density

horizontal_align avoid_high_pin_density

During advanced legalization and legality checking, the tool can simultaneously check for
DRC violations between multiple cells and PG net shapes. To enable this feature, set the
place.legalize.enable_cross_row_pnet_check application option to true.

To enable multithreaded advanced legalization, perform the following steps:

1. Enable multithreaded advanced legalization algorithms by setting the
place.legalize.enable_threaded_advanced_legalizer application option to
true.

2. Configure for multithreading as described in Configuring Multithreading.

To perform multithreaded advanced legality checking,

1. Enable advanced legalization algorithms by setting the
place.legalize.enable_advanced_legalizer application option to true.

2. Configure for multithreading as described in Configuring Multithreading.

3. Perform legality checking using the check_legality command.

Setting Up for Variant-Aware Legalization
Some libraries provide sets of functionally equivalent cells that can be legalized in different
locations. This allows the tool to legalize a cell by replacing it with a variant, instead of
moving the cell.

IC Compiler™ II Implementation User Guide
T-2022.03

134

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Legalization Settings

Feedback

The following figure shows functionally equivalent cells with varying pin locations. With
variant-aware legalization, if a cell pin does not align with a track, the tool can try using its
variant to align the cell pin to the track.

Figure 19 Equivalent Cells With Different Pin Locations

The following figure shows functionally equivalent cells with different pin colors, which
need to be aligned to a track of the same color. With variant-aware legalization, if a cell pin
does not align with the corresponding colored track, the tool can try using its variant with a
different colored pin and try aligning it to the appropriately colored track.

IC Compiler™ II Implementation User Guide
T-2022.03

135

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Legalization Settings

Feedback

Figure 20 Equivalent Cells With Pins of Different Colors

The following topics describe the tasks you need to perform to set up the reference
libraries and design for variant-aware legalization:

• Defining Equivalent Cell Groups

• Enabling Variant-Aware Legalization

Defining Equivalent Cell Groups
The Library Compiler tool supports creating variant-ready libraries from the Liberty source
files. The physical_variant_cells attribute in the Liberty source defines the variants
of a cell. When the physical_variant_cells attribute exists in the logic libraries, the
compiled library is variant ready.

If you logic library is not variant ready, you can define the equivalent cell variants during
the library preparation stage in the Library Manager tool. To do so, create equivalent
cell groups by using the create_cell_groups command. The following example adds
equivalent cell groups to an existing reference library in the Library Manager tool:

lm_shell> create_workspace -flow edit LIB.ndm
lm_shell> create_cell_group -name A [get_lib_cells MY_LIB/A_*]
lm_shell> create_cell_group -name B [get_lib_cells MY_LIB/B_*]
lm_shell> check_workspace
lm_shell> commit_workspace
You can report the equivalent cell groups in a library by using the report_cell_groups
command in either the Library Manager tool or the IC Compiler II tool. This command
reports equivalent cell groups that are defined in Liberty source files of variant-ready logic

IC Compiler™ II Implementation User Guide
T-2022.03

136

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Legalization Settings

Feedback

libraries as well as those defined by using the create_cell_groups command in the
Library Manager tool.

Enabling Variant-Aware Legalization
To enable variant-aware legalization, set the place.legalize.enable_variant_aware
application option to true.

When variant-aware legalization is enabled, the tool tries to fix legalization DRC violations
by swapping the violating cell with a variant, rather than moving it. If the cell has no
variants, it is moved to a legal location.

For pin-track and pin-color alignment during variant-aware legalization, set the following
application options to true:

• place.legalize.enable_prerouted_net_check

• place.legalize.enable_pin_color_alignment_check
In addition, you must specify the layers to be aligned by using the
place.legalize.pin_color_alignment_layers application option.

Checking if Library Cells Are Legally Placeable
After you specify all your placement and legalization constraints and settings, you
can check if specific library cells can be legally placed in the block by using the
analyze_lib_cell_placement -lib_cells command.

• To limit the analysis to a specific region of the core area, use the -region option. By
default, the command searches the entire core area.

• To limit the analysis to a specific number of sites, use the -trials option. By default,
the command analyzes 1000 random sites to see if the specified library cells can be
placed. If you specify a value of 0, the command analyzes all free sites, which can
increase runtime

• To ignore physical design constraints or advanced design rules during placement
analysis, use the -no_pdc or -no_adv option.

• To report only the relative placement groups that do not meet a specific threshold, use
the -threshold option. The tool reports a cell only if the percentage of sites the cell
can be placed, relative to the total number of sites analyzed, is less than the specified
threshold.

• To limit the report to a maximum number of cells, use the -max_cells option. The
default is 100, starting with the library cell with the worst pass rate.

IC Compiler™ II Implementation User Guide
T-2022.03

137

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

If your block contains library cells that have a very low pass rate, they will cause large
displacements and increased runtime during legalization. In such cases, review the power
plan, cell layout, and the legalization settings to improve the pass rate.

The following example analyzes all the library cells that have instances in the current
block:

icc2_shell> analyze_lib_cell_placement -lib_cells [add_to_collection \
 -unique "" [get_attribute [get_cells -physical_context] ref_phys_block]]

Analyzing 215 lib cell(s).
Warning: Routing direction of metal layer PO is neither "horizontal" nor
 "vertical". PDC checks will not be performed on this layer. (PDC-003)

PDC app_options settings =========
 place.legalize.enable_prerouted_net_check: 1
 place.legalize.num_tracks_for_access_check: 1
 place.legalize.use_eol_spacing_for_access_check: 0
 place.legalize.allow_touch_track_for_access_check: 1
 place.legalize.reduce_conservatism_in_eol_check: 0
 place.legalize.preroute_shape_merge_distance: 0.0

Layer M1: cached 0 shapes out of 869 total shapes.
Layer M2: cached 773 shapes out of 773 total shapes.
Cached 41757 vias out of 99466 total vias.
0.0%...2.0%...4.0%...6.0%...8.0%...10.0%........

 Lib Cell Pass Rate
 ---------------------------------- ---------
 saed32_lvt_lsup:LSUPX1_LVT.frame 0.4450
 saed32_lvt_lsup:LSUPX8_LVT.frame 0.4780
 saed32_lvt_lsup:LSUPX2_LVT.frame 0.4810
 saed32_lvt_lsup:LSUPX4_LVT.frame 0.5040

 saed32_rvt_std:HADDX1_RVT.frame 0.8600
 saed32_lvt_std:OA21X1_LVT.frame 0.8610

Controlling the Optimization of Cells, Nets, Pins, and Ports
The following topics describe how you can control the optimization of cells, nets, pins, and
ports:

• Preserving Cells and Nets During Optimization

• Restricting Optimization to Cell Sizing Only

• Preserving Networks During Optimization

• Marking the Clock Networks

IC Compiler™ II Implementation User Guide
T-2022.03

138

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

• Disabling Design Rule Checking (DRC)

• Preserving Pin Names During Sizing

• Preserving Ports of Existing Hierarchies

• Isolating Input and Output Ports

• Fixing Multiple-Port Nets

• Controlling the Addition of New Cells to Modules, Hierarchical Cells, and Voltage Areas

• Specifying a Cell Name Prefix for Optimization

Preserving Cells and Nets During Optimization
To preserve design objects during optimization, use the set_dont_touch command. The
command places the dont_touch attribute on cells, nets, references, and subdesigns
in the current design to prevent these objects from being modified or replaced during
optimization.

This table shows how the tool preserves the design objects during optimization.

Design objects Tool behavior

Cells Excludes the cells from optimization.

Nets Preserves the connectivity of all pins to the nets.

Modules, designs, library cells Prevents optimization of all instances that reference them.

Hierarchical cells or modules Excludes the cells and all child cells from optimization.

When you use the set_dont_touch command, keep the following in mind:

• The command prevents the ungrouping of hierarchy.

• A child cell must inherit the same dont_touch attribute from its parent module. For
example, you cannot remove the dont_touch attribute from a child cell when its parent
module is marked with the dont_touch attribute.

• Use the command on fully mapped logic only, including cells, modules, and designs, as
well as nets with fully mapped surrounding logic.

• The dont_touch attribute has higher precedence over the boundary_optimization
and the size_only attributes.

To report design objects marked with the dont_touch attribute, use the
report_dont_touch command.

IC Compiler™ II Implementation User Guide
T-2022.03

139

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

This command sets the dont_touch attribute on cell A.

icc2_shell> set_dont_touch [get_cells A] true
To remove the dont_touch attribute, use the remove_attributes command or the
set_dont_touch command set to false, as shown in the following two commands:

icc2_shell> remove_attributes [get_cells A] dont_touch
icc2_shell> set_dont_touch [get_cells A] false
The following table summaries the commands that you can use to set, remove, or report
the dont_touch attribute on design objects, including modules, cells, nets, and library
cells. Yes denotes the command operation of the dont_touch attribute is supported, while
No denotes the command operation is not supported.

Table 9 Command Support for the dont_touch Attribute on Design Objects

Command Module Cell
(Instance)

Net Library cell

set_dont_touch Yes Yes Yes Yes

set_attribute Yes Yes Yes Yes

define_user_attribute No No No No

get_attribute Yes Yes Yes Yes

remove_attributes Yes Yes Yes Yes

report_dont_touch Yes Yes Yes No

set_dont_touch
unmapped_object

No No Yes NA

Restricting Optimization to Cell Sizing Only
To allow only sizing on cells or instances during optimization, use the set_size_only
command. The command places the size_only attribute on specified cells or instances to
prevent them from being modified or replaced except cell sizing.

To query the size_only attribute, use the report_attributes, get_attribute, or
report_cells command. To remove the attribute, use the remove_attributes command
or the set_size_only command set to false.

This example sets the size_only attribute on a specific cell.

icc2_shell> set_size_only [get_cells cell_name] true

IC Compiler™ II Implementation User Guide
T-2022.03

140

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

This example queries the size_only attribute on the cell_name cell.

icc2_shell> get_attribute [get_cells cell_name] size_only
This example reports all the size_only information on design objects in the current
design.

icc2_shell> report_size_only -all

Preserving Networks During Optimization
You can preserve networks, such as clock trees, during optimization by using the
set_dont_touch_network command. The command places the dont_touch attribute
on the clocks, pins, or ports to prevent the cells and nets in the transitive fanout of the
network from being modified or replaced.

By default, the command preserves both clock paths and clock as data paths and
propagates the dont_touch attribute throughout the hierarchy of the network. To preserve
clock paths only, specify the -clock_only option. To remove the dont_touch attribute
from the network, specify the -clear option.

This example sets the dont_touch attribute on the CLK clock network.

icc2_shell> set_dont_touch_network [get_clocks CLK]
This example sets the dont_touch attribute on the CLK clock paths only.

icc2_shell> set_dont_touch_network [get_clocks CLK] -clock_only
This example removes the dont_touch attribute from the CLK clock network.

icc2_shell> set_dont_touch_network [get_clocks CLK] -clear

Marking the Clock Networks
If a block does not contain clock trees, you should perform optimization using ideal clocks.

To mark all clock networks as ideal, use the following command:

foreach_in_collection mode [all_modes] {
 current_mode $mode
 set_ideal_network [all_fanout -flat -clock_tree]
}

To model the clock tree effects for placement, you should also define the uncertainty,
latency, and transition constraints for each clock by using the set_clock_uncertainty,
set_clock_latency, and set_clock_transition commands.

Before performing clock tree synthesis, you must use the remove_ideal_network
command to remove the ideal setting on the fanout of the clock trees.

IC Compiler™ II Implementation User Guide
T-2022.03

141

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

Disabling Design Rule Checking (DRC)
You can disable design rule checking (DRC) on clock, constant, scan enable, and scan
clock nets by using the set_auto_disable_drc_nets command.

To control design rule checking on specific nets in the current design, use the options with
the set_auto_disable_drc_nets command as shown in Table 10.

Table 10 Options for the set_auto_disable_drc_nets Command

Use this option To do this

-none Enable DRC for all nets.

-all Disable DRC on all clock, constant, scan enable, and
scan clock nets.

-constant true | false Disable (set to true) or enable (set to false) DRC on
constant nets.

-on_clock_network true | false Disable (set to true) or enable (set to false) DRC on
clock networks.

-scan true | false Disable (set to true) or enable (set to false) DRC on
scan enable and scan clock nets.

For example, to enable design rule checking for all clock, constant, scan enable, and scan
clock nets, specify the -none option:

icc2_shell> set_auto_disable_drc_nets -none
To disable design rule checking on nets connecting to clocks and constants, set the
-on_clock_network and -constant options to true, as shown in the following example
and figure:

icc2_shell> set_auto_disable_drc_nets \
 -on_clock_network true -constant true

IC Compiler™ II Implementation User Guide
T-2022.03

142

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

Figure 21 DRC Disabled Clock and Constant Nets Highlighted

clkA

clkB

clkC

clksel

clkD

in

logic 1

const_sel

clkE

DRC disabled clock net

DRC disabled constant net

Preserving Pin Names During Sizing
By default, optimization can change the pin names of leaf cells during sizing if the
functionality of the resulting circuit is equivalent. The IC Compiler II tool automatically
updates its version of the internal constraints to reflect the new pin name if the pin is
part of an exception constraint. If this occurs, it means that the original constraints used
to constrain the block in the IC Compiler II tool cannot be used for signoff purposes;
instead, you must write out the constraints from the IC Compiler II tool and include these
constraints with the resulting block.

This behavior provides the optimization engine with the most flexibility to select cells and
improve the cost functions. You can restrict this sizing capability so that the constraints
remain unchanged through optimization by setting the opt.common.preserve_pin_names

IC Compiler™ II Implementation User Guide
T-2022.03

143

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

application option. This application option defaults to the setting of never, and accepts
values of either never or always.

To restrict sizing to pin-name equivalent cells, use the following command:

icc2_shell> set_app_options \
 -name opt.common.preserve_pin_names -value always
To restore the default behavior, use the following command:

icc2_shell> set_app_options \
 -name opt.common.preserve_pin_names -value never

Preserving Ports of Existing Hierarchies
During optimization and clock tree synthesis, the tool can create new ports on existing
hierarchical blocks. To prevent the tool from doing so, use the set_freeze_ports
command and set the freeze_clock_port attribute to true on the corresponding cell
instance.

You can prevent the tool from adding clock ports, data ports, or both by using the -clock,
-data, or -all option. For example, to prevent the tool from creating additional clock ports
on the MBX22 cell instance, use the following command:

icc2_shell> set_freeze_ports -clock [get_cells MBX22] true
To report the freeze-port settings, use the report_freeze_ports command.

Isolating Input and Output Ports
You can isolate input and output ports to improve the accuracy of timing models. To insert
isolation logic at specified input or output ports, use the set_isolate_ports command.

Isolation logic can be either a buffer or a pair of inverters; by default, the command places
buffers to isolate

• An input port from its fanout networks

• An output port from its driver

When you specify the -force option with the set_isolate_ports command, the tool
ensures that the library cells specified by the -driver option are not sized.

Note that the tool does not place isolation logic on the following ports:

• Bidirectional ports

• Ports defined as clock sources or power pins

• Ports connected to nets that are marked with the dont_touch attribute

IC Compiler™ II Implementation User Guide
T-2022.03

144

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

Example

The following commands insert isolation logic to

• Input port in3 with a buffer

• Output port out1 with a buffer

• Output port out3 with the LIBCELL_BUFF library cell

• Output port out4 with a pair of inverters

icc2_shell> set_isolate_ports {in3 out1}
icc2_shell> set_isolate_ports –driver LIBCELL_BUFF out3 -force
icc2_shell> set_isolate_ports –type inverter out4
The following figures show the design without and with the isolation logic inserted by the
set_isolate_ports commands, including buffers and an inverter pair:

QD

QD

QD

Without port isolation

QD

QD

QD

After running the port isolation commands

in1
clk

out3

rst

in3

in2

out4

out2

out1 out1

out2

out3

out4

in1

clk

rst

in2

in3

LIBCELL_BUFF

Fixing Multiple-Port Nets
Multiple-port nets include

• Feedthrough nets, where an input port feeds into an output port

• Nets connected to multiple output ports, logically equivalent outputs

IC Compiler™ II Implementation User Guide
T-2022.03

145

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Controlling the Optimization of Cells, Nets, Pins, and Ports

Feedback

Feedthrough net Logically equivalent outputs

Multiple-port nets, which are represented with the assign statement in the gate-level
netlist, might cause design rule violations further in the design flow. By default, the tool
does not fix multiple-port nets during optimization.

To fix multiple-port nets, set the opt.port.eliminate_verilog_assign application
option to true. This application option is false by default.

During multiple-port-net fixing, the tool performs the following tasks in sequence:

1. Rewires the connections to ensure that each net is connected to one hierarchical port,
if possible.

The tool first performs rewiring to avoid unnecessary buffering. The tool also rewires
across the hierarchy because boundary optimization is enabled by default.

2. Inserts buffers or inverters to the nets that are not fixed by rewiring.

Controlling the Addition of New Cells to Modules, Hierarchical
Cells, and Voltage Areas
To control the addition of new cells to

• Modules or hierarchical cells, use the set_allow_new_cells command

• Voltage areas, use the -allow_new_cells option with the
create_voltage_area_rule command

You can use these settings to prevent new cells from being added to the top-level
hierarchies and voltage areas of abutted designs. These settings are saved in the design
library and honored by the tool throughout the implementation flow.

The following example prevents new cells from being added to the top-level module:

icc2_shell> set_allow_new_cells \
 [get_attribute [current_block] top_module] false
The following example prevents new cells from being added to the M1 module:

icc2_shell> set_allow_new_cells [get_modules M1] false

IC Compiler™ II Implementation User Guide
T-2022.03

146

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Settings for Preroute Optimization

Feedback

The following example prevents new cells from being added to the U22 hierarchical cell:

icc2_shell> set_allow_new_cells [get_cells U22] false
The following example prevents new cells from being added to the VA1 voltage area:

icc2_shell> create_voltage_area_rule -name VA1_rule \
 -allow_new_cells false -voltage_areas VA1

Specifying a Cell Name Prefix for Optimization
You can specify a name prefix for the cells added on the data nets during optimization by
using the opt.common.user_instance_name_prefix application option.

The following example specifies a name prefix of

• PO_ for the cells added on the data nets during the place_opt command

• CO_ for the cells added on the data nets during the clock_opt command

• RO_ for the cells added on the data nets during the route_opt command

icc2_shell> set_app_options \
 -name opt.common.user_instance_name_prefix -value "PO_"
icc2_shell> place_opt
icc2_shell> set_app_options \
 -name opt.common.user_instance_name_prefix -value "CO_"
icc2_shell> clock_opt
icc2_shell> set_app_options \
 -name opt.common.user_instance_name_prefix -value "PO_"
icc2_shell> route_opt
To specify a name prefix for the cells added on the clock network during clock tree
synthesis, use the cts.common.user_instance_name_prefix application option, as
described in Defining a Name Prefix for Clock Cells.

Specifying Settings for Preroute Optimization
Optimizing the design for performance, power, and area (PPA) is one of the primary goals
of the tool. The following topics describe how to specify settings for performance, power,
and area optimization at the preroute stage:

• Controlling DFT Optimization for the place_opt Command

• Specifying Parasitic Estimation Settings for the Preroute Optimization

• Specifying Automatic Via Ladder Insertion Settings for Preroute Optimization

IC Compiler™ II Implementation User Guide
T-2022.03

147

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Settings for Preroute Optimization

Feedback

• Enabling Area Recovery in Regions of High Utilization

• Enabling Advanced Logic Restructuring

Controlling DFT Optimization for the place_opt Command
If your block contains scan chains, by default, the create_placement, place_opt, and
clock_opt commands perform physical DFT optimization. During initial placement, the
tool focuses on the QoR for the functional nets by ignoring the scan chains. After initial
placement, the tool further improves the QoR by repartitioning and reordering the scan
chains based on the initial placement.

Using the physical information to repartition and reorder the scan chains

• Reduces scan chain wire length

• Minimizes congestion and improves routability

To run the create_placement, place_opt or clock_opt command on blocks with scan
chains, the block must contain SCANDEF information. To annotate SCANDEF information,
use the read_def command.

icc2_shell> read_def ./myscan.def
Note:

If you have previously annotated the scan chain information on the block and
the SCANDEF data contains a chain with the same name as an existing scan
chain, the existing chain definition is preserved.

The SCANDEF file specifies the scan chain components and their pins used for the scan
path, along with reordering constraints. For best results, you should use TestMAX DFT for
DFT insertion and Design Compiler topographical mode to generate the SCANDEF file.
For more information about DFT insertion, see the TestMAX DFT User Guide. For more
information about generating the SCANDEF file, see the Design Compiler User Guide.

The tool uses the SCANDEF information during DFT optimization. You can control DFT
optimization as described in the following table.

Table 11 Settings for Controlling DFT Optimization

To do this Use this setting

Run the create_placement, place_opt
or clock_opt command for blocks with
no SCANDEF information

Set the place.coarse.continue_on_missing_scandef
application option to true

Disable DFT optimization Set the opt.dft.optimize_scan_chain application option to
false

IC Compiler™ II Implementation User Guide
T-2022.03

148

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Settings for Preroute Optimization

Feedback

Table 11 Settings for Controlling DFT Optimization (Continued)

To do this Use this setting

Disable scan chain repartitioning Set the opt.dft.do_repartition application option to
false

Disable scan chain reordering based on
timing

Set the opt.dft.timing_friendly_reorder application
option to false

Consider hold violations along scan paths
during reordering
Use this feature after clock tree synthesis
to reduce hold violations on scan paths

Set the opt.dft.clock_aware_scan_reorder application
option to true

Consider hold violations along scan paths
during repartitioning and reordering
Use this feature after clock tree synthesis
to reduce hold violations on scan paths

Set the opt.dft.clock_aware_scan_repartition_reorder
application option to false

Preserve hierarchical ports during DFT
optimization
When you enable this feature, the tool
does not perform timing-friendly or
clock-aware DFT optimization

Set the opt.dft.hier_preservation application option to
true

To report the application option settings specified for DFT optimization, use the
report_app_options command.

To perform standalone DFT optimization on a placed block, use the optimize_dft
command.

Specifying Parasitic Estimation Settings for the Preroute
Optimization
The following topics describe how you can control parasitic estimation during the preroute
stage of the design flow:

• Enabling Global-Route-Layer-Based (GRLB) Preroute Optimization

• Enabling Route-Driven Estimation (RDE) for Preroute Optimization

Enabling Global-Route-Layer-Based (GRLB) Preroute
Optimization
To improve correlation with the postroute stage of the design flow, you can enable global-
route-layer-based RC estimation during the place_opt and clock_opt commands. With
this feature, the tool uses global routes for all nets and identifies the layers with the most

IC Compiler™ II Implementation User Guide
T-2022.03

149

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Settings for Preroute Optimization

Feedback

appropriate per-unit resistance values. The nets are then constrained to minimum and
maximum layers for preroute RC estimation.

To enable this feature, use the opt.common.use_route_aware_estimation application
option. If you set it to

• auto, the feature is enabled only when there is a variation in the per-unit resistance
value of the different routing layers

• true, the feature is enabled irrespective of the variation in the per-unit resistance value
of the different routing layers

If you enable this feature, use the remove_route_aware_estimation command to
remove all global route based estimation before you perform routing.

Enabling Route-Driven Estimation (RDE) for Preroute
Optimization
To improve correlation with the postroute stage of the design flow, the tool can perform
global routing, perform extraction based on the global routes, and use this parasitic
information when performing optimization.

If the tool detects that the technology used by the design is an advanced technology
node that is less than 16 nm, the tool enables this feature by default. To enable it for any
technology, set the opt.common.enable_rde application option to true.

When enabled, the tool performs route-driven parasitic estimation during the final_opt
stage of the place_opt and clock_opt commands. The parasitic information is stored
in the design library and used during subsequent optimization steps. If you enable this
feature, you should enable it for all subsequent preroute optimization steps in the design
flow.

During route-driven estimation, the tool honors the capacitance and resistance scaling
factors specified with the -early_cap_scale, -late_cap_scale, -early_res_scale,
and -late_res_scale options of the set_extraction_options command.

When route-driven estimation is enabled, the tool ignores the setting of the
opt.common.use_route_aware_estimation application option, which enables global-
route-layer-based (GRLB) RC estimation.

Specifying Automatic Via Ladder Insertion Settings for Preroute
Optimization
A via ladder is a stacked via that starts from the pin layer and extends into the upper
routing layers. Using via ladders during optimization improves the performance and
electromigration robustness of a design. The tool can automatically insert via ladders for
cell pins on timing-critical paths during the place_opt and clock_opt commands.

IC Compiler™ II Implementation User Guide
T-2022.03

150

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Settings for Preroute Optimization

Feedback

To perform via ladder insertion during preroute optimization,

1. Ensure that the via ladder rules are defined as described in Defining Via Ladder Rules.

2. Specify the via ladders that can be used for specific library pins by using the
set_via_ladder_candidate command, as described in Specifying Via Ladder
Candidates for Library Pins.

3. (Optional) Enable high-performance and electromigration via ladder insertion for critical
paths by setting the opt.common.enable_via_ladder_insertion application option
to true.

4. (Optional) Enable the insertion of global-route-based via ladders on pins with via ladder
constraints by setting the route.global.insert_gr_via_ladders application option
to true.

5. Perform optimization using the place_opt or clock_opt command.

Specifying Via Ladder Candidates for Library Pins
To specify the valid via ladders that can be used for a given library pin during preroute
optimization, use the set_via_ladder_candidate command. You can specify only one
via ladder each time you use the set_via_ladder_candidate command. To specify
multiple via ladder candidates for a library pin, use the command multiple times, as shown
in the following example:

icc2_shell> set_via_ladder_candidate [get_lib_pins lib1/AND2/A1] \
 -ladder_name "VP4"
icc2_shell> set_via_ladder_candidate [get_lib_pins lib1/AND2/A1] \
 -ladder_name "VP2"
The order in which you specify multiple via ladders for the same library pin indicates the
priority to use when selecting a via ladder to insert for that pin. Specify the via ladder
candidates starting with the highest priority. In the previous example, the tool gives the
VP4 via ladder priority over the VP2 via ladder.

Note:
If both the pattern_must_join attribute and a via ladder candidate apply
to a pin, the via ladder has a higher priority than the pattern-based must-join
connection when both methods have the same estimated delay.

To specify that a library pin requires an electromigration via ladder, set the
is_em_via_ladder_required pin attribute to true, as shown in the following example:

icc2_shell> set_attribute [get_lib_pins lib1/INV4/A] \
 is_em_via_ladder_required true

IC Compiler™ II Implementation User Guide
T-2022.03

151

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying Settings for Preroute Optimization

Feedback

If you set the is_em_via_ladder_required pin attribute to true for a specific
library pin, you must specify an electromigration via ladder as a candidate with the
set_via_ladder_candidate command.

A via ladder can be identified as an electromigration via ladder by using one of the
following methods:

• By using the forElectromigration=1 construct when defining the via rule in the
technology file, as shown in the following example:

ViaRule "EMVP1" {
 ...
 ...
 ...
 forElectromigration=1
}

• By setting the for_electro_migration attribute to true, as shown in the following
example:

icc2_shell> set_attribute [get_via_rules EMVP1] \
 for_electro_migration true

See Also

• Defining Via Ladder Rules

Enabling Area Recovery in Regions of High Utilization
For designs that cannot be legalized due to areas of high utilization, you can specify
that the tool perform area recovery in regions where the utilization is high by setting the
opt.common.small_region_area_recovery application option to true.

When you enable this feature, the tool performs the area recovery during the place_opt
and clock_opt commands. However, doing so can slightly degrade the timing QoR.

Enabling Advanced Logic Restructuring
To improve the area, timing, and power QoR, you can enable advanced logic restructuring.
To enable this feature for the final_opto stage of the place_opt and clock_opt
commands, use the opt.common.advanced_logic_restructuring_mode application
option, as shown in the following table.

IC Compiler™ II Implementation User Guide
T-2022.03

152

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

Table 12 Settings for the opt.common.advanced_logic_restructuring_mode Application
Option

To do this Use this setting

Perform no restructuring none (default)

Perform restructuring to improve the area QoR area

Perform restructuring to improve the timing QoR timing

Perform restructuring to improve the power QoR power

Perform restructuring to improve the area and timing QoR area_timing

Perform restructuring to improve the timing and power QoR timing_power

Perform restructuring to improve the area and power QoR area_power

Perform restructuring to improve the area, timing, and power QoR area_timing_power

When restructuring, the tool does not

• Restructure across logical hierarchy

• Consider cells with dont_touch, size_only, or fixed attributes

• Accept the results if it increases the wire length

However, if your design does not have congestion or routing issues, you can specify
that the tool accepts the restructuring results even if it increases the wire length by
setting the opt.common.advanced_logic_restructuring_wirelength_costing
application option to medium or none. The default is high.

Note:
This feature requires a Digital-AF license key

Setting Up for Power-Related Features
The following topics describe the tasks you need to perform for setting up a design for
power-related features:

• Annotating the Switching Activity

• Enabling Power Optimization for the place_opt and clock_opt Commands

• Improving Yield By Limiting the Percentage of Low-Threshold-Voltage (LVT) Cells

IC Compiler™ II Implementation User Guide
T-2022.03

153

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

• Updating Activity for Improved Power Optimization

• Enabling the Power Integrity Features

Annotating the Switching Activity
When performing low-power placement and dynamic-power optimization, you obtain better
power savings if you annotate switching activity on the design. You can annotate the
switching activity in the following ways:

• Read a switching activity file (SAIF) by using the read_saif command.

The switching activity is scenario specific. So, when you use this command, ensure
that the current scenario is enabled for dynamic power optimization.

• Set the switching activity by using the set_switching_activity command.

When you use this command, you can set the switching activity for a specific mode,
corner, or scenario by using the -mode, -corner, or -scenario options. When doing
so, ensure that the scenarios you specify or the scenarios corresponding to the modes
and corners you specify are enabled for dynamic power optimization.

If you do not specify the switching activity, the tool applies the default toggle rate to the
primary inputs and black box outputs and then propagates it throughout the design.

To report the switching activity of a block, use the report_activity command. To
remove switching activity of specific nets, pins, ports, or the entire block, use the
reset_switching_activity command.

Using RTL Switching Activity With a Name-Mapping File
To use an RTL SAIF file in the IC Compiler II tool, you must first perform the following
steps in the Design Compiler tool:

1. Read in the RTL SAIF file by using the read_saif command.

2. Create a name-mapping database that tracks the changes to object names during
optimization by using the saif_map -start command before optimization.

3. Perform optimization and other design changes.

4. Generate a name-mapping file that maps RTL object names to gate-level objects by
using the saif_map -write_map command.

IC Compiler™ II Implementation User Guide
T-2022.03

154

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

Then, in the IC Compiler II tool, use the following steps:

1. Create a name-mapping database in the IC Compiler II tool and start tracking changes
to object names by reading in the Design Compiler name-mapping file using the
saif_map -read_map command.

If you do not want to read in a name-mapping file, but you want to track the netlist
changes that occur within the IC Compiler II tool, use the saif_map -start command
to create a name-mapping database and begin tracking the name changes.

2. (Optional) Manually change the name mapping as described in Controlling the Name
Mapping.

3. Read in the same RTL SAIF file by using the read_saif command. Reading an RTL
SAIF file does not affect the name-mapping database.

4. Perform optimization and other design changes.

Controlling the Name Mapping
In the SAIF-map flow, the name-mapping database tracks the changes to pin, port, cell,
and net names that occur during optimization. It contains the original name for each
object, so that the original SAIF can be applied even after optimization.

You can manually control the name mapping in the database by using the saif_map
command as shown in the following table.

Table 13 Options for Manually Controlling the Name Mapping

To do this Use this option of the
saif_map command

Specify a name mapping for an object and overwrite the
name mapping that might exist in the database

-set_name

Add a name mapping to the existing mapping in the
database

-add_name

Apply the name mapping specified with the -set_name or
-add_name option to the logically inverted object

-inverted, with -set_name or
-add_name

Change an object name using a name rule, when reading in
the SAIF file

-change_name

Report all manual name-mapping settings specified -report

Remove the name mapping settings for specific objects -remove_name

Reset the name-mapping settings by clearing all manually
created name mappings and name rules

-reset

IC Compiler™ II Implementation User Guide
T-2022.03

155

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

Table 13 Options for Manually Controlling the Name Mapping (Continued)

To do this Use this option of the
saif_map command

Retrieve name-mapping settings from the database -get_saif_names,
-get_object_names

Scaling the Switching Activity
If the clock frequency used in the SAIF file is different from the clock frequency used in the
IC Compiler II tool, you can scale the switching activity by performing the following steps:

1. Read in the SAIF file by using the read_saif command.

2. Enable scaling by setting the power.use_generated_clock_scaling_factor
application option to on.

3. Scale the switching activity by using the set_power_clock_scaling command.

When you use this command, you must specify the following:

• The clock objects associated with the switching activity you want to scale

• The clock period used in the SAIF file by using the -period option or the ratio
between the clock period used in the SAIF file and the clock period used in the IC
Compiler II tool by using the -ratio option

In addition, you can specify the scenario for which to apply the scaling by using the
-scenario option.

The following example reads in a SAIF file, enables scaling, scales the switching activity
associated with clocks named CLK1 and CLK2 by a ratio of five, and scales the switching
activity associated with clock named CLK3 by a ratio of two:

icc2_shell> read_saif top.saif
icc2_shell> set_app_options -list \
 {power.use_generated_clock_scaling_factor true}
icc2_shell> set_power_clock_scaling -ratio 5 {CLK1 CLK2}
icc2_shell> set_power_clock_scaling -ratio 2 {CLK3}
If you run the set_power_clock_scaling command again for the same clock, the tool
scales the already scaled switching activity.

IC Compiler™ II Implementation User Guide
T-2022.03

156

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

When you use the set_power_clock_scaling command, the tool scales only the
switching activity applied with the read_saif command. The tool does not scale the
following:

• Switching activity applied with the set_switching_activity command

• Switching activity within block abstracts

The scaled switching activity is persistent in the design. You can write it out by using the
write_saif command and use it in the subsequent steps of the design flow.

Specifying Switching Probability for Supply Nets
The leakage power of a block is scaled based on the switching probability of its
supply nets, which represents the fraction of time a supply net is in the on state.
You can specify the switching probability for one or more supply nets by using the
set_supply_net_probability -static_probability command. By default, the
switching probability is applied to the current scenario and the corresponding mode and
corner. To specify modes, corners, or scenarios in which to apply the setting, use the
-modes, -corners, or -scenarios option. To get the switching probability of a supply
net, use the get_supply_net_probability command, and to reset the value, use the
reset_supply_net_probability command.

By default, the tool propagates supply net activity through power switches and determines
the static probability of the switched supply net based on the UPF power switch constraint.
For example, consider the following UPF power switch constraint:

create_power_switch my_switch \
 -output_supply_port {vout VDDS} \
 -input_supply_port {vin VDD} \
 -control_port {ms_sel ctrl1} \
 -control_port {ms_ctrl ctrl2} \
 -on_state {on vin {ms_ctrl && !ms_sel}}

The tool derives the static probability of the supply net named VDDS, which is connected
to the output of the power switch, based on the probability of the power switch being on.
This is derived based on the following:

• The Boolean function specified with the -on_state option, which is ms_ctrl && !
ms_sel, and the switching activity (static probability) of the nets connected to the
corresponding control ports, which are nets named ctrl1 and ctrl2.

• The switching probability of the supply net connected to the input supply port specified
with the -on_state option, which is the supply net named VDD.

IC Compiler™ II Implementation User Guide
T-2022.03

157

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

The following application options control whether dynamic and leakage power are scaled
based on the supply switching activity:

• The power.scale_dynamic_power_at_power_off option controls whether dynamic
power is scaled. The default is false (no scaling).

• The power.scale_leakage_power_at_power_off option controls whether leakage
power is scaled. The default is true (scaling is performed).

Enabling Power Optimization for the place_opt and clock_opt
Commands
The IC Compiler II tool can optimize both dynamic and static (leakage) power.

• Dynamic power

This is the energy dissipated due to the voltage or logic transitions in the design
objects, such as cells, pins, and nets. The dynamic power consumption is directly
proportional to the number and frequency of transitions in the design.

• Static (leakage) power

This is the energy dissipated even when there are no transitions in the circuit. This is
also known as leakage power and depends on the device characteristics. The main
contributor to leakage power is the sub-threshold-voltage leakage in the device. At
lower technology nodes, leakage power consumption contributes significantly to the
total power consumption of the circuit.

The following topics describe how to enable the different types of power optimization the
tool performs:

• Performing Conventional Leakage-Power Optimization

• Performing Dynamic-Power Optimization

• Performing Total-Power Optimization

IC Compiler™ II Implementation User Guide
T-2022.03

158

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

Performing Conventional Leakage-Power Optimization
To set up for conventional leakage-power optimization during the preroute optimization
stage, perform the following:

1. Ensure that at least one scenario is enabled for leakage-power optimization by using
the set_scenario_status -leakage_power true command.

2. Enable conventional leakage-power optimization by setting the opt.power.mode
application option to leakage.

3. (Optional) Change the effort level for power optimization by setting the
opt.power.effort application option to medium or high. The default is low.

When you use these settings, the tool performs conventional leakage-power optimization
during the place_opt and clock_opt commands. However, it does not perform any
dynamic-power optimization.

Performing Dynamic-Power Optimization
To set up for dynamic-power optimization during the preroute optimization stage, perform
the following:

1. Annotate switching activity on the design, as described in Annotating the Switching
Activity.

2. Ensure that at least one scenario is enabled for dynamic-power optimization by using
the set_scenario_status -dynamic_power true command.

3. Enable dynamic-power optimization by setting the opt.power.mode application option
to dynamic.

4. (Optional) Change the effort level for power optimization by setting the
opt.power.effort application option to medium or high. The default is low.

When you use these settings, the tool performs dynamic-power optimization during the
place_opt and clock_opt commands. However, it does not perform any leakage-power
optimization.

IC Compiler™ II Implementation User Guide
T-2022.03

159

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

Performing Total-Power Optimization
Total power optimization considers the combined leakage- and dynamic-power cost during
optimization. To setup for total-power optimization,

1. Setup for leakage-power optimization by performing the following steps:

a. Ensure that at least one scenario is enabled for leakage-power optimization by
using the set_scenario_status -leakage_power true command.

2. Setup for dynamic-power optimization by performing the following steps:

a. Annotate switching activity on the design, as described in Annotating the Switching
Activity.

b. Ensure that at least one scenario is enabled for dynamic-power optimization by
using the set_scenario_status -dynamic_power true command.

3. Enable total-power optimization at the preroute stage by setting the opt.power.mode
application option to total.

4. (Optional) Change the effort level for power optimization by setting the
opt.power.effort application option to medium or high. The default is low.

When you use this setting, the tool performs total-power optimization during the
place_opt and clock_opt commands.

Improving Yield By Limiting the Percentage of
Low-Threshold-Voltage (LVT) Cells
The IC Compiler II tool can perform percentage-LVT-based optimization. By limiting the
percentage of LVT cells in a block, you can improve yield of your design. You can also use
this feature during the early design phases to get an idea of the quality of the RTL.

To set up for percentage-LVT-based optimization,

1. Specify the LVT library cell group as shown in the following example:

icc2_shell> remove_attributes -quiet \
 [get_lib_cells -quiet */*] threshold_voltage_group
icc2_shell> set_attribute [get_lib_cells -quiet *lvt*/*] \
 threshold_voltage_group LVT
icc2_shell> set_threshold_voltage_group_type \
 -type low_vt LVT
Ensure that the LVT library cells you specify

IC Compiler™ II Implementation User Guide
T-2022.03

160

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

• Have a valid purpose defined by using the set_lib_cell_purpose command
and are included in the appropriate target-library subsets defined by using the
set_target_library_subset command

• Do not have a dont_touch or dont_use attribute setting

2. Specify the percentage limit for LVT cells by using the set_multi_vth_constraint
-low_vt_percentage command.

To specify the limit as a percentage of the

• Cell count, use the -cost cell_count option

• Cell area, use the -cost area option

To reset this constraint, use the reset_multi_vth_constraint command, and to
report it, use the report_multi_vth_constraint command.

After you set up percentage-LVT-based optimization, when you run the place_opt,
clock_opt, or route_opt command, the tool uses the specified LVT cell percentage
constraint for the data path cells in the block. However, to minimize QoR disturbance,
the tool limits the percentage-LVT-based optimization performed during the route_opt
command. Therefore, it is important to enable this feature earlier in the design flow.

Note:
LVT cells have a smaller cell delay, but higher leakage power dissipation.
Therefore, limiting the number of LVT cells reduces leakage-power dissipation.
However, to further reduce leakage power, enable leakage power optimization
for the different stages of the design flow.

Updating Activity for Improved Power Optimization
The PrimePower In-Design flow in the IC Compiler II tool uses input waveform information
from the RTL FSDB file and performs time-based analysis to update the activity for
enhanced power estimation accuracy.

Use the set_indesign_primepower_options command to set PrimePower analysis
options for the In-Design flow. You must specify the RTL activity file with the -fsdb option
and the path to the PrimePower executable with the -pwr_shell option. Other options
allow you to specify details about the FSDB file, settings for distributed or concurrent
processing, settings for scenarios and libraries, and output files.

IC Compiler™ II Implementation User Guide
T-2022.03

161

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

Use the update_indesign_activity command to perform the analysis, which includes
the following tasks:

• Invokes the PrimePower tool and reads the design data which includes the netlist,
libraries, PVT settings, constraints, parasitics, essential name mapping data, UPF, and
so on. Library details come from the design database stored in the IC Compiler II tool
memory.

• Reads the RTL FSDB file into the PrimePower tool and performs time-based analysis
to generate a gate-level SAIF.

• Reads the gate-level SAIF back into the IC Compiler II tool.

Set the power scenario as the current scenario before starting analysis with the
update_indesign_activity command. Activity is refreshed for the current scenario.

If you specify multiple scenarios using the -scenarios option of the
set_indesign_primepower_options command, the refreshed gate-level SAIF from the
PrimePower tool is read back into the IC Compiler II tool for all of the specified scenarios.

Specifying Distributed Analysis

For faster runtime, use distributed analysis, which is disabled by default in the PrimePower
tool.

To enable distributed analysis in the PrimePower tool, specify the following options with
the set_indesign_primepower_options command:

• -num_processes: Use this option to specify the number of hosts to launch. The value
must be greater than 1.

• -submit_command or -host_names: Use either of these options to specify the
configuration of host machines.

• -max_cores: Use this option to specify the maximum number of cores. The default is 4.

The tool prints the following message if valid options are specified:

Information: PrimePower is being called in distributed mode

IC Compiler™ II Implementation User Guide
T-2022.03

162

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

Enabling the Power Integrity Features
The IC Compiler II tool provides the following techniques for ensuring power integrity of
the design:

• Dynamic power shaping (DPS), which reduces transient power by utilizing concurrent
clock and data optimization (useful skew) techniques.

• Voltage-drop-aware placement, which use the voltage (IR) drop values of cells to
identify areas of high power density and spread the cells with high voltage drop values
to reduce the power density of such areas.

To set up for the recommended power integrity flow, perform the following steps:

1. Enable the power integrity flow by setting the opt.common.power_integrity
application option to true.

When you do so, the IC Compiler II uses the following techniques during the different
stages of the design flow:

a. Dynamic power shaping (DPS) during the final_opto stage of the place_opt
command

b. Voltage-drop-aware placement during the clock_opt command

2. (Optional) Specify that the tool should not reduce the voltage drop at the expense
of the timing QoR by reducing the power integrity effort level by setting the
opt.common.power_integrity_effort application option to low.

The default is high, and by default the tool tries to reduce the voltage drop to less than
eight percent of the supply voltage at the expense of the timing QoR.

3. (Optional) Specify a maximum voltage drop threshold by using the
opt.common.ir_drop_threshold application option.

The default is eight percent of the supply voltage. If you change the default effort level
by setting the opt.common.power.integrity_effort application option to low,
the tool ignores the threshold specified with the opt.common.ir_drop_threshold
application option.

4. Specify settings for dynamic power shaping as described in Setting Up for Dynamic
Power Shaping.

5. Specify settings for voltage-drop-aware placement as described in Setting Up for
Voltage-Drop-Aware Placement.

6. (Optional) Enable IR-driven sizing, which uses the RedHawk dynamic voltage drop
analysis results to identify cells involved in voltage drop violations, and then tries to

IC Compiler™ II Implementation User Guide
T-2022.03

163

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

replace those cells with cells having smaller leakage current. To enable this feature, set
the clock_opt.flow.enable_irdrivenopt application option to true, in addition to
setting the opt.common.power_integrity application option to true.

Instead of using the recommended power integrity flow setting, you can manually
enable dynamic power shaping or voltage-drop-aware placement for the place_opt or
clock_opt commands as described in Manually Enabling Dynamic Power Shaping and
Voltage-Drop-Aware Placement

Setting Up for Dynamic Power Shaping
To set up for dynamic power shaping, perform the following steps:

1. Ensure UPF settings are specified for multiple-power nets.

2. Ensure both setup and hold scenarios are created and are active.

3. (Optional) Control the power analysis and optimization performed during dynamic
power shaping as follows:

• Specify the scenarios to focus on by setting the ccd.dps.focus_power_scenario
application option.

By default, the tool focuses on all active scenarios. When the design has many
active scenarios, specifying one or two scenarios, as shown in this example, can
reduce the runtime.

icc2_shell> set_app_options -name \
 -name ccd.dps.focus_power_scenario -value {{S1 S2}}

• Control the type of internal power analysis performed by setting the
ccd.dps.use_case_type application option.

By default, this application option is set to autovector. With this setting, the tool
runs internal power analysis with a 20 percent probability of toggling a flip-flop and
all flip-flops are effectively clocked every cycle. However, the clock gating is not
modeled.

If you set this application option to activity, the tool chooses probability of
toggling a flip-flop and the clock-gating model based on the activity.

• Define the overall dynamic power optimization goal by setting the
ccd.dps.optimize_power_target_modes application option.

◦ To reduce the global peak current, where the optimization goal is to reduce the
total peak current, set this application option to global_peak.

◦ To reduce the local peak current in windows stepped across the design, where
the optimization goal is to reduce voltage drop violations, set this application
option to stepped_psgs, which is the default.

IC Compiler™ II Implementation User Guide
T-2022.03

164

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Setting Up for Power-Related Features

Feedback

• Specify the tradeoff between power and setup timing during dynamic power shaping
by setting the ccd.dps.optimize_setup_tradeoff_level application option to
low, medium (default), or high.

• Specify the tradeoff between power and hold timing during dynamic power shaping
by setting the ccd.dps.optimize_hold_tradeoff_level application option to
low, medium (default), or high.

You can further control the power analysis and optimization performed during
dynamic power shaping by using application options such as ccd.dps.use_cases,
ccd.dps.auto_targets, and ccd.dps.auto_target_constraint_parameters,
which are more complex to use. For more information on these application options, see
the corresponding man pages.

Setting Up for Voltage-Drop-Aware Placement
To set up for voltage-drop-aware placement, perform the following steps:

1. Specify the voltage-drop-analysis type by using the rail.analysis_type application
option.

The valid values are static, dynamic (default), dynamic_vcd, and
dynamic_vectorless.

2. Specify settings required to perform RedHawk voltage drop analysis, as described in
Performing Voltage Drop Analysis.

Manually Enabling Dynamic Power Shaping and
Voltage-Drop-Aware Placement
To manually enable

• Dynamic power shaping for the place_opt command, use the following settings:

icc2_shell> set_app_option -name opt.common.power_integrity \
 -value false
icc2_shell> set_app_option -name place_opt.flow.enable_dps \
 -value true

• Voltage-drop-aware placement for the place_opt command, use the following settings:

icc2_shell> set_app_option -name opt.common.power_integrity \
 -value false
icc2_shell> set_app_option -name place_opt.flow.enable_irap \
 -value true

• Voltage-drop-aware placement for the clock_opt command, use the following settings:

icc2_shell> set_app_option -name opt.common.power_integrity \
 -value false

IC Compiler™ II Implementation User Guide
T-2022.03

165

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying the Routing Resources

Feedback

icc2_shell> set_app_option -name clock_opt.flow.enable_irap \
 -value true

Specifying the Routing Resources
You can specify the minimum and maximum routing layers both for the block (global layer
constraints), for specific nets (net-specific layer constraints), and for unsynthesized clock
nets (clock-tree layer constraints). If you specify both global layer constraints and net-
specific layer constraints, the net-specific constraints override the global constraints.
In addition to constraining the routing layers, you can also specify a preferred routing
direction for each layer. The routing layer constraints are used by RC estimation,
congestion analysis, and routing. Because these constraints affect RC estimation and
congestion analysis as well as routing, you should set these constraints before performing
placement on the block.

The following topics describe how to specify routing layer constraints, preferred routing
direction, and via ladders :

• Specifying the Global Layer Constraints

• Specifying Net-Specific Layer Constraints

• Specifying Clock-Tree Layer Constraints

• Setting the Preferred Routing Direction for Layers

Specifying the Global Layer Constraints
To specify the global layer constraints, use the set_ignored_layers command. By
default, the global layer constraints are used for RC estimation, congestion analysis, and
as soft constraints for routing. Use the following options to set the constraints and change
the default behavior.

• To specify the minimum and maximum routing layers, use the -min_routing_layer
and -max_routing_layer options. Specify the routing layers by using the layer names
from the technology file.

For example, to use layers M2 through M7 for routing, RC estimation, and congestion
analysis, use the following command:

icc2_shell> set_ignored_layers \
 -min_routing_layer M2 -max_routing_layer M7

• To allow the use of layers beyond the minimum or maximum routing layer
only for pin connections, set the route.common.global_min_layer_mode
and route.common.global_max_layer_mode application options to
allow_pin_connection.

IC Compiler™ II Implementation User Guide
T-2022.03

166

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying the Routing Resources

Feedback

• To change the constraints to hard constraints, set
the route.common.global_min_layer_mode and
route.common.global_max_layer_mode application options to hard.

• To specify additional layers to be ignored for RC estimation and congestion analysis,
use the -rc_congestion_ignored_layers option.

The specified layers must be between the minimum and maximum routing layers. For
example, to use layers M2 through M7 for routing and layers M3 through M7 for RC
estimation and congestion analysis, use the following command:

icc2_shell> set_ignored_layers \
 -min_routing_layer M2 -max_routing_layer M7 \
 -rc_congestion_ignored_layers {M2}

• To change an existing layer constraint setting, simply reset that option.

When you reset an option, it overrides the existing value of only that option; the other
option settings remain unchanged.

For example, assume that you used the previous command to set the minimum routing
layer to M2 and the maximum routing layer to M7. To change the maximum routing
layer from M7 to M8, but keep the other settings, use the following command:

icc2_shell> set_ignored_layers -max_routing_layer M8

Reporting Global Layer Constraints
To report the ignored layers, use the report_ignored_layers command. For example,

icc2_shell> report_ignored_layers
**
Report : Ignored Layers
Design : my_design
Version: J-2014.12
Date : Wed Oct 22 15:58:23 2014
**
Layer Attribute Value

Min Routing Layer M2
Max Routing Layer M7
RC Estimation Ignored Layers PO M1 M2 M8 M9 MRDL
1

IC Compiler™ II Implementation User Guide
T-2022.03

167

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying the Routing Resources

Feedback

Removing Global Layer Constraints
To remove the global layer constraints, use the remove_ignored_layers command. You
must specify one or more of the following options:

• -min_routing_layer
This option removes the minimum routing layer setting. When you remove the
minimum routing layer setting, it also removes the ignored layers for RC estimation and
congestion analysis that are below the minimum routing layer.

• -max_routing_layer
This option removes the maximum routing layer setting. When you remove the
maximum routing layer setting, it also removes the ignored layers for RC estimation
and congestion analysis that are above the maximum routing layer.

• -all
This option removes the ignored layers for RC estimation and congestion analysis that
are between the minimum and maximum routing layers.

• -rc_congestion_ignored_layers layer_list
This option removes the specified ignored layers for RC estimation and congestion
analysis. The specified layers must be between the minimum and maximum routing
layers.

Specifying Net-Specific Layer Constraints
To specify net-specific layer constraints, use the set_routing_rule command. To
specify the minimum and maximum routing layers, use the -min_routing_layer and
-max_routing_layer options. Specify the routing layers by using the layer names from
the technology file.

For example, to use layers M2 through M7 when routing the n1 net, use the following
command:

icc2_shell> set_routing_rule [get_nets n1] \
 -min_routing_layer M2 -max_routing_layer M7

IC Compiler™ II Implementation User Guide
T-2022.03

168

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying the Routing Resources

Feedback

By default, net-specific minimum layer constraints are soft constraints, while net-specific
maximum layer constraints are hard constraints. You can change the default behavior as
follows:

• To change the default constraint strength for all net-specific layer constraints, set the
route.common.net_min_layer_mode and route.common.net_max_layer_mode
application options.

Set these application options to soft to specify a soft constraint,
allow_pin_connection to allow the use of lower layers only for pin connections, or
hard to specify a hard constraint.

• To change the constraint strength for a single net-specific layer constraint, use the
-min_layer_mode and -max_layer_mode options when you define the constraint with
the set_routing_rule command.

Set these options to soft to specify a soft constraint, allow_pin_connection to allow
the use of lower layers only for pin connections, or hard to specify a hard constraint.

• To set the cost of violating soft constraints for all net-specific layer
constraints, set the route.common.net_min_layer_mode_soft_cost and
route.common.net_max_layer_mode_soft_cost application options.

Set these application options to low, medium (the default), or high. The cost setting
controls the effort expended by the router to avoid violations. The high setting can
reduce violations at a cost of increased runtime. The low setting can reduce runtime at
a cost of increased violations.

• To set the cost of violating soft constraints for a single net-specific layer constraint, use
the -min_layer_mode_soft_cost and -max_layer_mode_soft_cost options when
you define the constraint with the set_routing_rule command.

Set these options to low, medium (the default), or high. The cost setting controls
the effort expended by the router to avoid violations. The high setting can reduce
violations at a cost of increased runtime. The low setting can reduce runtime at a cost
of increased violations.

Removing Net-Specific Routing Layer Constraints
To remove net-specific routing layer constraints, use the set_routing_rule -clear
command. Note that when you use this command, it also removes any nondefault routing
rules assigned to the specified nets.

Specifying Clock-Tree Layer Constraints
To specify clock-tree layer constraints, use the set_clock_routing_rules command.
To specify the minimum and maximum routing layers, use the -min_routing_layer and

IC Compiler™ II Implementation User Guide
T-2022.03

169

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying the Routing Resources

Feedback

-max_routing_layer options. Specify the routing layers by using the layer names from
the technology file.

By default, the set_clock_routing_rules command assigns the specified layer
constraints to all clock trees. Table 14 shows the options used to restrict the layer
constraints.

Table 14 Restricting Clock-Tree Layer Constraints

To assign a layer constraint to Use this option

Specific clock trees -clocks clocks

Nets connected to the clock root1 -net_type root

Nets connected to one or more clock sinks1 -net_type sink

Internal nets in the clock tree (all nets except the root
and sink nets)1

-net_type internal

Specific clock nets -nets nets

Figure 22 shows the root, internal, and sink nets of a clock tree after clock tree synthesis.
By default, the root-net layer constraints are applied to all the single-fanout clock nets
starting from the clock root up to the point where the clock tree branches out to a fanout
of more than one. Internal-net layer constraints are applied to the nets from this point until
the sink nets.

Figure 22 Root, Internal, and Sink Clock Net Types

1. You can use this option with the -clocks option to further restrict the assignment. This option is not valid with
the -nets option.

IC Compiler™ II Implementation User Guide
T-2022.03

170

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Specifying the Routing Resources

Feedback

For example, to use layers M4 through M7 when routing the root nets of the CLK1 clock,
use the following command:

icc2_shell> set_clock_routing_rules -clocks CLK1 -net_type root \
 -min_routing_layer M4 -max_routing_layer M7
To specify a transitive fanout limit to use when identifying root nets, use the
set_clock_tree_options –root_ndr_fanout_limit command. For example, to
specify that any clock net with a transitive fanout of more than 300 sinks be considered as
a root net, use the following command:

icc2_shell> set_clock_tree_options -root_ndr_fanout_limit 300
Figure 23 shows the root, internal, and sink nets of the same clock tree when a transitive
fanout limit of 300 is specified for identifying the clock root nets.

Figure 23 Using a Fanout Limit for Selecting Root Nets

When calculating the transitive fanout of clock nets for the purpose of identifying root nets,
the tool includes only the valid clock sinks; It does not include the ignore pins. If a net
identified as a root net is less than 10 microns, the tool uses internal-net layer constraints
for that net.

Note:
Specifying a smaller value with the set_clock_tree_options –
root_ndr_fanout_limit command increases the number of clock nets
that are assigned the root-net layer constraints, which can increase routing
congestion.

To remove the transitive fanout limit specified with the set_clock_tree_options
–root_ndr_fanout_limit command, use the remove_clock_tree_options –
root_ndr_fanout_limit command.

IC Compiler™ II Implementation User Guide
T-2022.03

171

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Handling Design Data Using the Early Data Check Manager

Feedback

Setting the Preferred Routing Direction for Layers
The IC Compiler II tool requires that the preferred routing direction is specified for the
routing layers defined in the technology file. Typically this information is defined in the cell
library. To set or change the preferred routing direction for a layer, use the following syntax
to set its routing_direction attribute:

set_attribute -objects layers
 -name routing_direction
 -value vertical | horizontal

Specify the routing layers by using the layer names from the technology file.

The layer direction set with this attribute applies only to the current block.

For example, to set the preferred routing direction to vertical for the M5 and M7 layers, use
the following command:

icc2_shell> set_attribute -objects [get_layers {M5 M7}] \
 -name routing_direction -value vertical
Note:

Settings made with the create_routing_guide
-switch_preferred_direction command, which changes the preferred
direction within the area that is covered by the routing guide, override the
routing_direction attribute settings.

To report the user-defined preferred routing direction for one or more routing layers, use
the get_attribute command. To remove the user-defined preferred routing direction for
one or more routing layers, use the remove_attributes command.

See Also

• Preparing Routing Layers

Handling Design Data Using the Early Data Check Manager
During the early iterations of a design cycles, the design data might be incomplete or
incorrect. This can prevent you from implementing the design for exploration purposes and
so on. The IC Compiler II Early Data Check Manager allows you to specify how the tool
should handle the data checks it performs during the following implementation tasks:

• Design planning

• Multivoltage design implementation

• Optimization

IC Compiler™ II Implementation User Guide
T-2022.03

172

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Handling Design Data Using the Early Data Check Manager

Feedback

• Placement

• Legalization

• Hierarchical implementation of designs with physical hierarchy

The following table shows the Early Data Check Manager commands available for
controlling how the tool handles the data checks and for generating related information.

Table 15 Early Data Check Manager Commands

To do this Use this command

Specify the policy for handling one or more data checks set_early_data_check_policy

Obtain a report about data check violations report_early_data_checks

Get a Tcl collection of violations that can be used in other
commands

get_early_data_check_records

Save the settings in a file for future use write_early_data_check_config

Clear the data check settings in preparation for another
iteration

remove_early_data_check_records

You should specify the policies for handling the data checks before you begin
implementation.

The following example specifies that the tool should be strict when checking for the
SCANDEF information. Therefore, the tool does not proceed with the create_placement
command because the SCANDEF information is missing.

icc2_shell> set_early_data_check_policy –policy strict \
 -check place.coarse.missing_scan_def
icc2_shell> create_placement
Information: Policy for early data check 'place.coarse.missing_scan_def'
 is 'error'. (EDC-001)
Error: No valid scan def found. (PLACE-042)
Information: Ending 'create_placement' (FLW-8001)
icc2_shell> report_early_data_checks –check place.coarse.missing_scan_def
Check Policy Strategy Fail Count

place.coarse.missing_scan_def error 1

The following example specifies that the tool should be lenient with regards to all
data checks related to coarse placement. Therefore, the tool proceeds with the
create_placement command without the SCANDEF information.

IC Compiler™ II Implementation User Guide
T-2022.03

173

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Applying Mega-Switch Command Settings

Feedback

icc2_shell> set_early_data_check_policy –policy lenient \
 -check place.coarse.*
icc2_shell> create_placement
Information: Policy for early data check 'place.coarse.missing_scan_def'
 is 'tolerate'. (EDC-001)
Continuing without valid scan def.
Start transferring placement data.
Creating placement from scratch.
...
...

For more information about the Early Data Check Manager, see the IC Compiler II Data
Model User Guide.

Applying Mega-Switch Command Settings
You can use mega-switch commands to apply setting for different stages of the tool flow
that are applicable for specific situations with the use of a single command.

• Applying Required Settings for Advanced Technology Nodes

• Applying Required Settings for High Performance Cores

• Applying Required Settings for Improving Specific QoR Metrics

Applying Required Settings for Advanced Technology Nodes
To apply placement, legalization, routing, and extraction setting specific to 12 or 7
nanometer technology nodes, use the set_technology command with the -node 12 or
-node 7 option.

When using this command, perform the following steps before placement, optimization,
and routing:

1. Load and link the design.

2. Apply the settings required for the technology nodes by using the set_technology
-node command, as shown in the following example:

icc2_shell> set_technology -node 7
3. (Optional) Report the technology-node settings by using the set_technology

-report_only command.

4. Apply your design-specific application option or command settings to override the
generic setting of the set_technology command.

When you save the design library with the save_lib command, the technology-node
setting is saved.

IC Compiler™ II Implementation User Guide
T-2022.03

174

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Applying Mega-Switch Command Settings

Feedback

Note:
After you specify a technology node with the set_technology command, you
cannot change it.

For more information about which ASIC technologies are supported by this command,
contact Synopsys Support.

Applying Required Settings for High Performance Cores
You can apply tool settings required for achieving the best QoR for high performance
cores by using the set_hpc_options command. The applied settings affect placement,
legalization, optimization, clock tree synthesis, routing, extraction, and timing analysis.

To

• List the supported high performance core types and implementation stages, use the
-list option

• Specify the type of high performance core, use the -core option

• Specify the stage of the implementation flow, use the -stage option

If your design uses a 12 or 7 nanometer technology node, apply the node-specific tool
settings by using the set_technology command before you run the set_hpc_options
command, as shown in the following example script:

set_technology –node 7
set_hpc_options –core A72 -stage clock_opt_cts
...
clock_opt –from build_clock –to route_clock
...
set_hpc_options –core A72 -stage clock_opt_opto
...
clock_opt –from final_opto
...
set_hpc_options –core A72 -stage route_auto
...
route_auto
...
set_hpc_options –core A72 -stage route_opt
...
route_opt
...

Applying Required Settings for Improving Specific QoR Metrics
To apply tool settings required for improving specific QoR metrics, use the
set_qor_strategy -stage pnr command.

IC Compiler™ II Implementation User Guide
T-2022.03

175

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Preparing the Design
Applying Mega-Switch Command Settings

Feedback

To specify the QoR metrics to improve, use the -metric option. To optimize the block for
the best

• Timing, use the timing setting

• Leakage power and timing, use the leakage_power setting

• Total power and timing, use the total_power setting.

To further improve total power, at the expense of runtime, you can use the -mode
extreme_power option, with the -metric total_power option.

To specify a target mode for the design flow, use the -mode option. The supported values
for this option are:

• balanced, which is the default mode that optimizes the design for the target metrics
specified with the -metric option.

• early_design, which is suitable for the early stages of the design flow, when the
emphasis is on short turnaround time for prototyping purposes.

With this mode, you can reduce runtime at the expense of QoR.

• extreme_power, which is recommended for further improvement of total power at the
expense of runtime.

This mode should only be specified along with the -metric leakage_power or
-metric total_power option. If you specify this mode with the -metric timing
option, the tool ignores the specified mode setting and uses the balanced mode.

When you use this command, the tool applies application option settings that affect
optimization, placement, legalization, clock tree synthesis, routing, extraction, and timing
analysis.

To review the required setting, use one of the following methods:

• Generate a Tcl script that contains the settings by using the -output option

• Report the settings by using the -report_only option

• Report only the settings that are not set to their required values by using the
-diff_only option

IC Compiler™ II Implementation User Guide
T-2022.03

176

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

3
Placement and Optimization

To learn how to perform placement and optimization in the IC Compiler II tool, see

• Performing Placement and Optimization

• Identifying Issues That Cannot Be Fixed During Optimization

• Analyzing the Placement

• Analyzing Timing

• Analyzing Power

• Comparing QoR Data

Performing Placement and Optimization
After you have placement and optimizationcustomizingfinished design planning and power planning, you can perform placement,
optimization, and legalization on your design. The following topics describe how to perform
placement, optimization, and legalization:

• Performing Standalone Placement and Legalization

• Performing Placement and Optimization With the place_opt Command

• Using Physical Guidance From the Design Compiler Tool

• Performing Multibit Register Optimization

• Performing Magnet Placement

• Refining Placement

• Performing Placement and Optimization on Multivoltage Blocks

• Rebuilding Buffer Trees

• Adding and Removing Tie Cells

IC Compiler™ II Implementation User Guide
T-2022.03

177

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

Performing Standalone Placement and Legalization
To perform coarse placement, use the create_placement command. If a block contains
scan chains that were annotated on the block by reading a SCANDEF file, the coarse
placer also performs scan chain optimization.

You can control the tradeoff between runtime and QoR by setting the -effort option.

To enable

• Timing-driven placement, use the -timing_driven option

• Timing-driven placement that considers high-fanout nets and long nets and accounts
for the buffers that are subsequently added on these nets during optimization, use the
-buffering_aware_timing_driven option

• Congestion-driven placement, use the -congestion option

To control the CPU effort used for congestion removal, use the -congestion_effort
option

• Congestion driven restructuring, use the -congestion_driven_restructuring option

When you use this option, the tool performs several iterations of placement and
restructuring of the logic to help reduce congestion.

Note:
Before you run placement using the create_placement command, you should
merge the clock-gating logic by running the merge_clock_gates command.

To perform legalization, use the legalize_placement command. For more information
about legalization constraints and settings that you can specify, see Specifying
Legalization Settings.

Note:
The -cells option of the legalize_placement command is not supported
when you enable the advanced legalizer as described in Enabling Advanced
Legalization Algorithms.

IC Compiler™ II Implementation User Guide
T-2022.03

178

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

Performing Placement and Optimization With the place_opt
Command
To perform coarse placement, physical optimization, and legalization with a single
command, use the place_opt command.

This command supports multithreading and uses the number of threads specified by the
set_host_options -max_cores command.

The place_opt command consists of the following stages:

1. Initial placement (initial_place)

During this stage, the tool merges the clock-gating logic and performs coarse
placement. If a block contains scan chains that are annotated by reading a SCANDEF
file, the tool also performs scan chain optimization.

2. Initial DRC violation fixing (initial_drc)

During this stage, the tool removes existing buffer trees and performs high-fanout-net
synthesis and electrical DRC violation fixing.

3. Initial optimization (initial_opto)

During this stage, the tool performs timing, area, congestion, and leakage-power
optimization.

4. Final placement (final_place)

During this stage, the tool performs incremental placement to improve timing and
congestion, and legalizes the design.

5. Final optimization (final_opto)

During this stage, the tool performs further optimization and legalization to improve
timing and congestion.

When you run the place_opt command, by default, the tool runs all stages of placement
and optimization.

To limit the place_opt command to run only one or more of these stages, use the -from
option to specify the stage from which you want to begin and the -to option to specify the
stage after which you want to end.

If you do not specify the -from option, the tool begins from the initial_place stage.
Similarly, if you do not specify the -to option, the tool continues until the final_opto
stage is completed.

IC Compiler™ II Implementation User Guide
T-2022.03

179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

For example, to skip initial placement, but run all the other stages of optimization and
placement on a design that has already completed initial placement, use the following
command:

icc2_shell> place_opt -from initial_drc

Creating a Temporary Clock Tree for Placement and Optimization
By default, the place_opt command uses ideal clock information during placement
and optimization. However, you can specify that the tool builds a temporary clock
tree and use propagated clocks during the place_opt command by setting the
place_opt.flow.trial_clock_tree application option to true.

After placement and optimization, when you perform clock tree synthesis by using the
clock_opt or synthesize_clock_trees command, the tool removes the temporary clock
tree and builds the actual clock tree. To ensure that the temporary clock tree correlates
to the actual clock tree, specify your clock tree synthesis settings before you run the
place_opt command.

Optimizing Clock-Gating Cells
By default, the tool merges clock-gating cells at the beginning of the

• initial_place stage of the place_opt command when the Synopsys physical
guidance flow is not enabled.

• initial_opt stage of the place_opt command when the Synopsys physical guidance
(SPG) flow is enabled by setting the place_opt.flow.do_spg application option to
true.

However, if you run the merge_clock_gates command before you run the place_opt
command, the tool does not merge clock gates during the place_opt command.

You can control the merging of clock-gating cells as follows:

• To merge only the clock-gating cells that are at the same level of the clock tree, set the
cts.icg.merge_cross_level application option to false.

By default, the tool can merge clock-gating cells that are at different levels of the clock
tree.

• To disable the merging of clock-gating cells, set the
place_opt.flow.merge_clock_gates application option to false.

The place_opt command can further optimize clock-gating cells if the enable
pin of the clock gate is in a critical timing path. To enable this feature, set the
place_opt.flow.optimize_icgs application option to true.

IC Compiler™ II Implementation User Guide
T-2022.03

180

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

During the clock-gating cell optimization, the tool

• Performs clock-aware placement, irrespective of the setting of the
place_opt.flow.clock_aware_placement application option, and places critical
clock-gating cells and their fanouts at more optimal locations

• Builds a temporary clock tree, irrespective of the setting of the
place_opt.flow.trial_clock_tree application option, and uses the clock tree to
identify timing-critical clock-gating cells

• Splits clock-gating cells if the enable pin of the clock gate is in a critical timing path

You can control the extent of splitting by specifying a critical range using the
place_opt.flow.optimize_icgs_critical_range application option.

Using Accurate Latencies for Clock Gates
By default, the tool estimates and updates the clock-gate latencies throughout the
place_opt command flow. This ensures that the tool uses more accurate clock-gate
latencies during datapath optimization and useful-skew optimization performed before
clock tree synthesis, when clocks are ideal.

To improve the accuracy of the estimated clock-gate latencies, specify clock tree synthesis
settings such as the clock tree buffers and inverters, clock nondefault routing rules, and so
on before you run the place_opt command.

Note:
If you enabled trial clock tree synthesis as described in Creating a Temporary
Clock Tree for Placement and Optimization or clock-gate optimization as
described in Optimizing Clock-Gating Cells, which use more accurate methods
of modeling the clock tree effects prior to clock tree synthesis, the tool does not
perform clock-gate latency estimation and clock-gate-latency-aware placement.

The tool does not modify any set_clock_latency constraints specified by you on
clock-gating cells. The tool-estimated clock-gate latency values are stored by using the
set_clock_latency -offset command. You can see these estimated values by using
the write_script -format icc2 command and checking for the set_clock_latency
-offset commands in the generated output. The estimated latency offset values are not
captured in an SDC file generated by the write_sdc command.

To prevent the tool from estimating the latency for a specific clock-gate, set a
dont_estimate_clock_latency attribute on its clock pin by using the set_attribute
command, as shown in the following example:

icc2_shell> set_attribute \
 [get_pins {ICG21/CK}] dont_estimate_clock_latency true

IC Compiler™ II Implementation User Guide
T-2022.03

181

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

Enabling Global Route Based High-Fanout Synthesis
When the tool performs high-fanout synthesis and electrical DRC violation fixing, by
default, it uses virtual routes.

To use global routes during high-fanout synthesis and electrical DRC violation fixing, set
the place_opt.initial_drc.global_route_based application option before you run the
place_opt command:

icc2_shell> set_app_options \
 -name place_opt.initial_drc.global_route_based -value 1
To enable an integrated two-pass initial placement flow, which includes a trial high-fanout
synthesis, set the following application options before you run the place_opt command:

icc2_shell> set_app_options \
 -name place_opt.initial_drc.global_route_based -value 1
icc2_shell> set_app_options \
 -name place_opt.initial_place.two_pass -value true
The integrated two-pass initial placement flow consist of wire-length-driven placement, trial
high-fanout synthesis, and timing-driven placement. The tool discards the trial high-fanout
synthesis results, but retains the timing-driven placement and proceeds to global route
based high-fanout synthesis.

For designs with fragmented floorplans, enabling the integrated two-pass initial placement
flow and global route based high-fanout synthesis can help improve timing and reduce
congestion.

Enabling the Rebuilding of Buffer Trees
During the initial_drc stage of the place_opt command, by default, the tool performs
high-fanout net synthesis, which builds buffers trees for high-fanout nets. After the
initial_drc stage, the tool can remove and rebuild entire buffers trees or portions of buffer
trees if doing so improves the setup timing, logical DRC violations, wire length, or area.

To enable rebuilding of buffer trees during

• The initial_opto stage for multivoltage nets, set the
opt.buffering.enable_mv_rebuffering application option to true

• The final_opto stage for any net, set the opt.buffering.enable_rebuffering
application option to true

Changing the Congestion Effort
By default, the place_opt command performs congestion optimization to improve the
routability of the design. You can disable or control the effort used for this optimization
by using the place_opt.place.congestion_effort application option setting, which
defaults to medium.

IC Compiler™ II Implementation User Guide
T-2022.03

182

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

Using of Nondefault Routing Rules for Critical Nets
To improve timing QoR, the tool can use nondefault routing rules on timing critical nets
during preroute optimization. In addition, the tool can guide the router to honor these
nondefault rule assignments as soft constraints.

To enable this capability for the place_opt command, set the
place_opt.flow.optimize_ndr application option to true.

icc2_shell> set_app_options -name place_opt.flow.optimize_ndr \
 -value true

Enabling Path Optimization
Path optimization is an incremental optimization capability that focus on improving the
QoR of timing paths. You can also enable it during the place_opt command by setting the
place_opt.flow.do_path_opt application option to true.

icc2_shell> set_app_options -name place_opt.flow.do_path_opt -value true

Performing IR-Drop-Aware Placement During the place_opt
Command
During placement, the tool can use the voltage (IR) drop values of cells to identify areas of
high power density and spread the cells with high voltage drop values, which reduces the
power density of such areas.

To perform IR-drop-aware placement during the place_opt command, use the following
steps:

1. Run the place_opt command through the final-placement stage by using the
place_opt -to final_place command.

2. Set up for RedHawk Fusion and perform static or dynamic voltage drop analysis
by using the analyze_rail -voltage_drop command as shown in the following
example:

icc2_shell> source redhawk_setup.tcl
icc2_shell> analyze_rail -voltage_drop static -nets {VDD VSS}
For more information, see Performing Voltage Drop Analysis.

3. Enable IR-drop-aware placement by setting the place.coarse.ir_drop_aware
application option to true.

4. (Optional) Specify additional settings for IR-drop-aware placement, as described in
Controlling IR-Drop-Aware Placement.

5. Rerun the final-placement stage by using the place_opt -from final_place
command.

IC Compiler™ II Implementation User Guide
T-2022.03

183

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

Performing Concurrent Clock and Data Optimization During the
place_opt Command
Applying useful skew techniques during datapath optimization to improve the timing QoR
by taking advantage of the positive slack and adjusting the clock arrival times of registers
is referred to as concurrent clock and data (CCD) optimization.

By default, the tool performs concurrent clock and data optimization during the final
optimization stage of the place_opt command. You can disable concurrent clock and data
optimization for the place_opt command by setting the place_opt.flow.enable_ccd
application option to false.

The clock latency adjustments derived during the place_opt command are stored as
clock-latency offsets by using the set_clock_latency -offset command and clock-
balance-point-delay offsets by using the set_clock_balance_point -offset command.
You can see these clock-latency offset values by using the write_script -format
icc2 command and checking for the set_clock_latency -offset commands in
the generated output. The clock-latency offset values are not captured in an SDC file
generated by the write_sdc command. You can report the clock-balance-point-delay
offsets by using the report_clock_balance_point command.

To set up the block for concurrent clock and data optimization during the place_opt
command, perform the following steps:

1. Ensure that the same scenarios that you set as active for the clock_opt command are
also active for the place_opt command.

2. Specify that the tool builds temporary clock trees and uses propagated clocks during
the place_opt command by using one of the following two settings:

• icc2_shell> set_app_options -name place_opt.flow.trial_clock_tree \
 -value true

• icc2_shell> set_app_options -name place_opt.flow.optimize_icgs \
 -value true

Alternatively, the tool can use ideal clocks for useful skew computation. However, you
must specify accurate ideal clock latencies for the clock pins of all clock gating cells
and sequential cells, including macro cells.

You can change the default behavior of concurrent clock and data optimization during the
place_opt command by performing any of the following optional steps:

1. (Optional) Limit the latency adjustment values for concurrent clock and data
optimization as described in Limiting the Latency Adjustment Values.

2. (Optional) Control the latency adjustment of boundary registers for concurrent clock
and data optimization as described in Excluding Boundary Paths.

IC Compiler™ II Implementation User Guide
T-2022.03

184

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

3. (Optional) Ignore specific path groups during concurrent clock and data optimization as
described in Excluding Specific Path Groups.

4. (Optional) Ignore specific scenarios during concurrent clock and data optimization as
described in Excluding Specific Scenarios.

5. (Optional) Ignore specific sinks during concurrent clock and data optimization as
described in Excluding Specific Sinks.

6. (Optional) Analyze the effects of concurrent clock and data optimization as described in
Reporting Concurrent Clock and Data Timing.

Using Physical Guidance From the Design Compiler Tool
When you use the place_opt command to perform placement and optimization, you can
use the Synopsys physical guidance information from the Design Compiler Graphical tool
as a starting point.

Using Design Compiler Graphical placement provides the following benefits:

• Reduces the runtime of the placement step

• Achieves better correlation between the Design Compiler Graphical and IC Compiler II
tools

To transfer the design from the Design Compiler Graphical tool, use a gate-level netlist in
the Verilog format, along with the constraint information.

To preserve consistency and improve correlation, you must

• Use the same logical constraints, including timing and UPF information, in both tools.

However, you must convert the Design Compiler scenario constraints into the mode,
corner, and scenario format supported by the IC Compiler II tool.

• Use the Design Compiler Graphical placement in the IC Compiler II tool and the same
floorplan and physical constraints in both tools.

However, you can provide additional floorplan information that is not currently
supported by the Design Compiler Graphical tool, but is needed in the IC Compiler II
tool for physical implementation.

IC Compiler™ II Implementation User Guide
T-2022.03

185

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

To transfer the physical information (placement, floorplan, and physical constraints) from
the Design Compiler Graphical tool, perform the following tasks:

• Use the write_def command in the Design Compiler Graphical tool to generate
a DEF file and read it into the IC Compiler II tool by using the read_def
-add_def_only_objects {cells} -convert_sites command.

The DEF file generated from the Design Compiler Graphical tool contains the following
physical information:

◦ Die area, site rows, and tracks

◦ Locations and shapes of ports

◦ Locations of macros, standard cells and physical only cells

◦ Route guides and prerouted nets

◦ Placement blockages

• Create a Tcl file containing physical constraints not captured in the DEF file and apply
those constraints to the design in the IC Compiler II tool.

Physical constraints not captured in DEF include

◦ Voltage area definitions

◦ Layer constraints

◦ Special route guides with utilization

◦ Special blockages with blocked layers

To use of Synopsys physical guidance information in the IC Compiler II tool, set the
place_opt.flow.do_spg application option before you run the place_opt command:

icc2_shell> set_app_options -name place_opt.flow.do_spg -value true
The following example script shows how to use the Synopsys physical guidance with the
place_opt command:

Read in the netlist
read_verilog design_spg.v

Apply the timing constraints
source timing_const.tcl

Apply the UPF constraints
load_upf design.upf

Apply the DEF file generated from the Design Compiler Graphical tool
read_def -add_def_only_objects {cells} -convert_sites design_dcg.def

IC Compiler™ II Implementation User Guide
T-2022.03

186

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

Apply the placement constraints not supported by DEF
source placement_const.tcl

Enable the Synopsys placement guidance flow
set_app_options -name place_opt.flow.do_spg -value true

Perform placement and optimization
place_opt

For more information, see the Synopsys physical guidance information in the Design
Compiler User Guide.

Performing Multibit Register Optimization
The IC Compiler II tool can combine (bank) single-bit registers or smaller multibit registers
and replace them with equivalent larger multibit registers. For example, the tool can
combine eight 1-bit registers or four 2-bit register banks and replace them with one 8-
bit register bank or two 4-bit register banks. The tool merges single-bit registers only if
they have the same timing constraints, and it copies the timing constraints to the resulting
multibit register.

Figure 24 Replacing Multiple Single-Bit Register Cells With a Multibit Register Cell

Two 1-bit register cells

One 2-bit register cell
Replace with

D Q

D Q

2 2
D Q

SI
SE

SI
SE

SI
SE

Replacing single-bit registers with multibit registers reduces

• Area due to shared transistors and optimized transistor-level layout

• The total clock tree net length

• The number of clock tree buffers and clock tree power

IC Compiler™ II Implementation User Guide
T-2022.03

187

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

The tool can also split (debank) large multibit registers into smaller multibit registers or
single-bit registers, if it improves the total negative slack.

Some logic libraries have mixed-drive-strength multibit registers where some bits have a
higher drive strength than others. For designs that use such cells, if a violating path goes
through a lower-drive-strength bit, the tool can rewire the mixed-drive-strength multibit cell
such that the violating path goes through a higher-drive-strength bit.

The following topics provide information about how to perform multibit register
optimization:

• Performing Integrated Multibit Register Optimization

• Performing Multibit Register Optimization Using Discrete Commands

• Banking Multibit Retention Registers

Performing Integrated Multibit Register Optimization
To perform multibit register optimization during the place_opt command,

1. Enable multibit register banking by setting the
place_opt.flow.enable_multibit_banking application option to true.

2. (Optional) Enable multibit register debanking by setting the
place_opt.flow.enable_multibit_debanking application option to true.

3. (Optional) Enable banking of registers driven by equivalent integrated-clock-gating
(ICG) cells by setting the multibit.banking.across_equivalent_icg application
option to true.

By default, the tool only banks registers that are driven by the same clock net. When
you enable this feature, the tool banks registers driven by equivalent clock-gating cells
and merges the clock-gating cells. However, when doing so, it might lose nondefault
routing rules applied to the nets connected to the clock-gating cells. Therefore, check
and reapply these nondefault routing rules after optimization.

4. (Optional) Enable multibit register rewiring by setting the
place_opt.flow.enable_multibit_rewiring application option to true.

5. (Optional) Specify settings for multibit register banking by using the
set_multibit_options command.

For example, the following command excludes the reg[1] cell from multibit optimization:

icc2_shell> set_multibit_options -exclude [get_cells "reg[1]"]
6. (Optional) Control multibit register banking and debanking as shown in the following

table.

IC Compiler™ II Implementation User Guide
T-2022.03

188

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

Table 16 Application Options for Controlling Multibit Register Banking and Debanking

To do this Set this application option to true

Ignore scan flip-flops that are not included in
the SCANDEF information during banking

multibit.banking.enable_strict_scan_check-

Consider multibit register library cells with
multiple scan-in pins and internal scan-in pins
during banking

multibit.banking.lcs_consider_multi_si_cells

Ignore user-specified size-only cells during
banking and debanking

multibit.common.ignore_sizeonly_cells

7. Perform placement and optimization by using the place_opt command.

8. Report multibit components by using the report_multibit command.

Performing Multibit Register Optimization Using Discrete
Commands
You can perform multibit banking using the following discrete steps:

1. Perform initial placement by using the create_placement command.

2. (Optional) Specify settings for multibit register banking by using the
set_multibit_options command.

3. Identify the groups of cells that can be replaced by multibit cells by using the
identify_multibit command, as described in Identifying Multibit Banks.

4. Optimize the design by using the place_opt -from initial_drc command.

5. (Optional) Report multibit banking information by using the report_multibit
command.

6. (Optional) If multibit banking does not improve QoR, split specific multibit banks into
individual registers or smaller multibit banks by using the split_multibit command,
as described in Splitting Multibit Banks.

IC Compiler™ II Implementation User Guide
T-2022.03

189

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

Identifying Multibit Banks
To identify groups of registers, isolation cells, or level-shifter cells that can be replaced by
multibit cells, use the identify_multibit command.

When you use the identify_multibit command, you must specify:

• How to apply the multibit banking information by using one of the following methods:

◦ To have the tool apply the banking information to the design, use the -apply option.

◦ To manually apply the banking information, generate an output file containing
create_multibit commands by using the -output_file option.

You can view the output, edit it if necessary, and apply it to the design by using the
source command.

• The type of cells you want to bank by using one of the following methods:

◦ To identify groups of registers that can be banked, use the -register option.

◦ To identify groups of isolation or level-shifter cells that can be banked, use the
-mv_cell option.

When banking registers with the -register option, optionally, you can

• Control the mapping of single bits to multibit banks by specifying an input map file
using the -input_map_file option. This file contains mapping information about which
multibit register bank replaces which single-bit registers, as shown in the following
example:

reg_group_1 {REGX1 REGX2 REGX4}
2 {1 MREG2}
4 {1 MREG4}
6 {1 MREG2}{1 MREG4}

This map file contains a functional group named reg_group_1, which specifies how
single-bit registers of reference cell types REGX1, REGX2, and REGX4 can be
grouped to form multibit registers as follows:

◦ The first line specifies that two single-bit registers can be combined to form a
register bank consisting of one MREG2 reference cell.

◦ The second line specifies that four single-bit registers can be combined to form a
register bank consisting of one MREG4 reference cell.

◦ The third line specifies that six single-bit registers can be combined to form a
register bank consisting of one MREG2 and one MREG4 reference cells.

IC Compiler™ II Implementation User Guide
T-2022.03

190

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

• Exclude registers based on their slack by specifying a slack threshold with the
-slack_threshold option

Registers with a slack less than the specified threshold are ignored. By default, the tool
considers all registers for banking.

In addition, you can optionally control the cells that are banked by specifying:

• A list of instance to consider for banking by using the -cells option.

When you use this option, the tool does not consider any other cells for banking.

• A list of instances to exclude by using the -exclude_instance option.

• A list of library cells to exclude all instances by using the -exclude_library_cells
option.

By default, the identify_multibit command performs DFT optimization, which
repartitions scan chains such that registers driven by the same clock driver or gating cell
are put in the same scan chain. This increases the number of single-bit registers that can
be combined to form multibit register banks. If you do not want the tool to repartition the
scan chains, use the -no_dft_opt option with the identify_multibit command.

Splitting Multibit Banks
To improve local congestion or path slack, you can split a multibit bank into smaller
multibit banks or single-bit cells by using the split_multibit command. By default, the
command splits all multibit cells on timing paths with negative slack.

To split

• A specific cell, specify the cell instance name.

You can specify the reference names of the smaller cells to use after splitting by using
the -lib_cells option.

The following example splits the multibit cell instance named reg_gr0, which is a four-
bit register bank, into two two-bit multibit banks:

icc2_shell> split_multibit reg_gr0 -lib_cells {lib1/MREG2 lib1/MREG2}
• Multibit cells on paths with slack less than a specific value, use the -slack_threshold

option.

The following example splits the multibit cells on paths with a slack worse than -1:

icc2_shell> split_multibit -slack_threshold -1
• Multibit cells in a specific timing path group, use the -path_groups option.

IC Compiler™ II Implementation User Guide
T-2022.03

191

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

When you use this option, the tool splits the multibit cells on the pats with negative
slack in the specified path group. You can specify a slack threshold limit for the path
group by using the -slack_threshold option with the -path_groups option.

The following example splits the multibit cells on paths with a slack worse than -0.5 in
the timing path group CLKA:

icc2_shell> split_multibit -path_groups CLKA \
 -slack_threshold -0.5

You can further control splitting as follows:

• Exclude specific cells by using the -exclude_instance option

• Consider only specific cells by using the -cells option

The split_multibit command only splits multibit cells that were created by the
create_multibit or identify_multibit command.

Banking Multibit Retention Registers
The tool can combine single-bit retention registers and create a multibit retention register if

• The single-bit retention registers are associated with the same retention strategy

• The retention pins of the single-bit retention registers have the same driver

• The cell library has a matching multibit retention register

• The library cell for the multibit retention register is specified as a library cell for the
retention strategy by using the map_retention_cell -lib_cells command

The tool can split a multibit retention register if

• The cell library has matching single-bit retention registers

• The library cells for the single-bit retention registers are specified as library cells to use
for the retention strategy by using the map_retention_cell -lib_cells command

Note:
If you are using the identify_multibit command, to identify multibit retention
registers, use the -register option, and not the -mv_cell option.

Performing Magnet Placement
To improve congestion for a complex floorplan or to improve timing for the design, you can
use magnet placement to specify a fixed object as a magnet and have the tool place all
the standard cells connected to the magnet object close to it. You can specify fixed macro
cells, pins of a fixed macro cells, or I/O ports as the magnet object.

IC Compiler™ II Implementation User Guide
T-2022.03

192

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

For best results, perform magnet placement before standard cell placement.

To perform magnet placement, use the magnet_placement command with a specification
of the magnets and options for any special functions you need to perform.

Table 17 shows the magnet_placement options.

Table 17 The magnet_placement Command Options

To do this Use this option

Specify the cells to pull toward the magnet object. -cells cell_list

Enable hierarchical cells to be specified with the
-cells option and specify how these hierarchical
cells should be handled

-hierarchy_mode default | block |
all

Enable the movement of fixed cellsmovementcells marked as fixed or
legalize-only.

-move_fixed
-move_legalize_only

Mark the moved cells as fixed or legalize-only after
magnet placement.

-mark_fixed
-mark_legalize_only

Specify the number of logic levels from the magnet
that are considered for magnet placement.

-logical_levels number

Exclude buffers and inverters when determining the
level of logic.

-exclude_buffers

Prevent the tracing of paths at inputs of sequential
cells when finding the cells to pull.

-stop_by_sequential_cells

Prevent the tracing of paths at the outputs of
sequential cells when finding the cells to pull.

-stop_on_sequential_cells

Prevent the tracing of paths beyond the specified
pins, ports, or cells when finding the cells to pull.

-stop_points

Prevent placing cells on soft blockages. By default,
the command only avoids hard blockages.

-avoid_soft_blockage

Specify how to place cells when the magnet objects
are multiple ports or long ports

-multiple_long_port_mode auto|nearby

Report the cells that will be moved toward the magnet
object, but not pull them

-only_report_magnet_cells

Create a collection of cells that are being pulled
toward the magnet object.

-get_collection

IC Compiler™ II Implementation User Guide
T-2022.03

193

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

The following examples use the data paths shown in Figure 25.

Figure 25 Example of Pulling Cells in a Contiguous Data Path

C0 C1 C2 C6 C7

C3 C4 C5

C8

The following command pulls all cells, C1 through C8, toward the C0 magnet object:

icc2_shell> magnet_placement C0
The following command pulls the C6, C7, and C8 cells toward the C2 magnet object:

icc2_shell> magnet_placement C2 -cells {C6 C7 C8}
Although the C3, C4, and C5 cells form a contiguous datapath, they are isolated from the
C0 cell, so the following command pulls no cells toward the C0 cell.

icc2_shell> magnet_placement C0 -cells {C3 C4 C5}
The following command pulls no cells toward the C0 magnet object because the C3, C6,
and C8 cells do not form a contiguous data path.

icc2_shell> magnet_placement C0 -cells {C3 C6 C8}

Refining Placement
To refine the placement and minimize congestion, use the refine_placement command.
By default, this command performs incremental placement and legalization on the entire
design.

• To refine the placement of a specific region, use the -coordinates option and specify
the coordinates of the region.

• To change the effort used for placement, use the -effort option and specify either
low, medium, or high. The default is medium.

IC Compiler™ II Implementation User Guide
T-2022.03

194

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Performing Placement and Optimization

Feedback

• To change the effort used for minimizing congestion, use the -congestion_effort
option and specify either low, medium, or high. The default is medium.

• To control the perturbation of the existing placement, use the -perturbation_level
option and specify either min, medium, high, or max. The default is medium.

Performing Placement and Optimization on Multivoltage Blocks
Placement and optimization automatically consider multivoltage constraints, such as
voltage areas.

During placement, the tool

• Places cells within their associated voltage area or voltage area shape

• Places level shifters and isolation cells close to the voltage area boundaries

During optimization, when the tool inserts buffers, it

1. Considers the related supplies of the driver and loads of the net and does a dynamic
analysis of the power states using one of the following:

• The UPF power state table you created using the create_pst command

• The UPF power state groups you created using add_power_state command

2. Chooses a buffering supply that does not introduce new multivoltage violations, based
on the power states and the available supplies in the voltage area being buffered.

Single-rail buffers are preferred to dual-rail buffers to save power and area, and
improve routability.

To understand how or whether specific nets will be buffered, use the
check_bufferability command, as described in Analyzing the Bufferability of Nets.

Rebuilding Buffer Trees
During the initial_drc stage of the place_opt command, the tool removes
existing buffer trees and performs high-fanout synthesis. After you run the place_opt
command, to rebuild specific buffers trees to meet specific requirements, use the
create_buffer_trees command.

By default, the create_buffer_trees command

• Rebuilds the buffer trees for all high-fanout nets

To rebuild a specific high-fanout net, use the -from option.

• Removes the existing buffer trees before rebuilding

IC Compiler™ II Implementation User Guide
T-2022.03

195

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Identifying Issues That Cannot Be Fixed During Optimization

Feedback

To keep the existing buffers and incrementally build the buffer trees, use the
-incremental option.

• Builds the buffer trees using virtual route topologies and extraction

To build the buffer trees based on global routes, use the -global_route_based option.

• Does not legalize the newly added cells

To legalize the added cells, run the legalize_placement command after you run the
create_buffer_trees command.

The following example rebuilds the buffer tree for the n33 net using only buf4x and buf8x
type buffers:

icc2_shell> set_lib_cell_purpose -include none {tech_lib/*}
icc2_shell> set_lib_cell_purpose \
 -include optimization {tech_lib/buf4x tech_lib/buf8x}
icc2_shell> create_buffer_trees -from n33 -global_route_based
Note:

The create_buffer_trees command should only be used at the preroute
stage of the design flow.

Adding and Removing Tie Cells
When you run the place_opt or clock_opt command, the tool can add tie cells during
optimization. In addition, you can add tie cells for specific pins or ports by using the
add_tie_cells command. The first time tie cells are added to a block by the place_opt,
clock_opt, or add_tie_cells command, the tool optimizes the tie cell connections by
removing all existing tie cells and adding tie cells which are optimally clustered.

To remove specific tie cells, use the remove_tie_cells command. By default, the tool
removes all tie cells in the current block. To remove specific instances or all instances of a
specific library cell, use the -objects option.

Identifying Issues That Cannot Be Fixed During Optimization
The IC Compiler II tool provides the following capabilities for identifying issues that cannot
be fixed during optimization:

• Analyzing the Bufferability of Nets

• Analyzing Violations That Cannot Be Fixed

IC Compiler™ II Implementation User Guide
T-2022.03

196

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Identifying Issues That Cannot Be Fixed During Optimization

Feedback

Analyzing the Bufferability of Nets
To analyze whether a net in the current block can be buffered or to report why the net
cannot be buffered, use the check_bufferability command. This command checks if
there are

• Supply nets available for buffering the net in the specified voltage area

• Suitable library cells available for buffering the net

• Settings on the net that prevent buffering, such as ideal-network or don’t-touch
constraint settings

With this command, you must specify the following:

• The net to analyze by using one of the following methods:

◦ Specify the net name using the -nets option.

◦ Specify the driver and loads by using the -driver and -loads options, and the
logical hierarchy in which to perform the analysis by using the -hierarchy option.

• The voltage area in which to analyze the bufferability by using the -voltage_area
option.

For example, to analyze if buffers can be added on the net named n34 in the PD1 power
domain, use the following command:

icc2_shell> check_bufferability -nets n34 -voltage_area PD1
Information: Can insert dual rail buffers (8 lib_cells) and inverters (6
 lib_cells) with supply nets (power: VDDSW, ground: VSS). (MV-454)

To analyze whether buffers can be added between the top_reg_1_/Q driver pin and its
top_U1_9/B load pin in the top hierarchy in the PD_TOP voltage area, use the following
command:

icc2_shell> check_bufferability -driver top_reg_1_/Q \
 -loads top_U1_9/B -hierarchy / -voltage_area PD_TOP
Information: Cannot insert buffers or inverters, because required supply
 nets are not available. (MV-459)

For a more information about the bufferability of a net, use the -verbose option.

Analyzing Violations That Cannot Be Fixed
To analyze a block and generate a report that contains information about the violations
that cannot be fixed, use the analyze_design_violations command. The report
contains a summary of the analysis, followed by a detailed list of the violations, in

IC Compiler™ II Implementation User Guide
T-2022.03

197

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Analyzing the Placement

Feedback

descending order. The violations are categorized based on the reason why they cannot be
fixed.

When you use this command, you must specify the type of violation you want to analyze
by specifying one of the following setting with the -type option:

• max_trans to analyze maximum-transition violations

• setup to analyze setup violations

• hold to analyze hold violations

• static_noise to analyze static noise violations

• only_lib to analyze library settings that affect optimization

In addition, you can specify the following:

• A threshold for identifying high-fanout nets by using the -fanout option.

By default, the tool considers nets with a fanout larger than 30 to be high-fanout nets.

• A slack threshold for identifying small timing violations by using the -slack option.

By default, the tool considers any slack violation less than 5 picoseconds as a small
violation.

• Nets for maximum-transition analysis by using the -drc_nets.

By default, analyzes all nets for maximum-transition violations.

• Endpoints for setup and hold analysis by using the -endpoints option.

By default, analyzes all endpoints for setup and hold violations.

• An output file name by using the -output option.

The tool adds a .txt extension to the output file name you specify. By default, the tool
generates a file named analyze_design_violations.txt.

Analyzing the Placement
The IC Compiler II tool provides the following GUI- and report-based capabilities for
analyzing the placement:

• Reporting Utilization

• Reporting the Placement QoR

• Querying and Changing the Placement Status

• Analyzing the Placement in the GUI

IC Compiler™ II Implementation User Guide
T-2022.03

198

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Analyzing the Placement

Feedback

Reporting Utilization
The utilization of a block is calculated by using the following formula, where demand is the
total area occupied by objects and capacity is the total available area:

Utilization = Demand / Capacity

To report the utilization, use the following steps:

1. (Optional) Create a configuration for reporting the utilization by using the
create_utilization_configuration command.

The following example creates a utilization configuration for the current block named
config1 that uses the core area for calculating the capacity and excludes hard and soft
placement blockages:

icc2_shell> create_utilization_configuration -scope block config1 \
 -capacity core_area -exclude {hard_blockages soft_blockages}
To remove a utilization configuration, use the remove_utilization_configurations
command.

2. Report the utilization by using the report_utilization command.

To specify a utilization configuration and where it is stored, use the -config and
-scope options. The valid values for the -scope option are tech, lib, and block. If
you do not specify the -scope option with the -config option, the tool first searches
the current block, then the design library, and finally the logic library for the specified
configuration.

To report the utilization for specific objects, use the -of_objects option and specify
one or more blocks, voltage areas, site arrays, or bounds. All objects must be of the
same type.

Reporting the Placement QoR
commandsreport_qorQoRreportingThe report_placement command displays information about the placement QoR for
the current block. By default, the command reports the total half-perimeter boundary box
wire length for all nets in the block, as well as any placement violations, as shown in the
following example:

icc2_shell> report_placement
...
...

 Wire length report (all)
 ==================
 wire length in design leon3mp: 12386597.894 microns.

IC Compiler™ II Implementation User Guide
T-2022.03

199

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Analyzing the Placement

Feedback

 Physical hierarchy violations report
 ====================================
 Violations in design leon3mp:
 0 cells have placement violation.

1

To report on the subblocks, as well as the current block, use the -hierarchical option.

To restrict the wire length calculation to specific types of nets, use the -wirelength option
with the appropriate keyword.

• To include only nets that cross a physical boundary, use -wirelength interface.

• To include only nets connected to hard macros, use -wirelength hard_macro.

• To include only nets connected to I/O pins or pads, use -wirelength IO.

• To suppress the wire length report, use -wirelength none.

To restrict the types of placement violations reported, use the
-physical_hierarchy_violations option with the appropriate keyword.

• To report only the cells placed outside of the placement area of the current block, use
-physical_hierarchy_violations internal.

• To report only the cells that overlap a subblock, use
-physical_hierarchy_violations external.

• To suppress the placement violation report, use -physical_hierarchy_violations
none.

You can also report the following placement metrics:

• Swimming pool area

A swimming pool is a region that is enclosed by subblocks, hard macros, and
placement blockages. Swimming pools can make it difficult to successfully place or
route the block and should either be covered with a placement blockage or removed.

◦ To report the total swimming pool area in the current block, use the
-swimming_pool_area option.

◦ To report swimming pool regions with an area smaller than a specific threshold, use
the -maximum_swimming_pool_area option.

• Thin channel area

A thin channel is a narrow region between subblocks of the current block, whether
they are hard macros or physical hierarchies. Thin channels can make it difficult to
successfully place or route the block and should either be covered with a placement
blockage or widened.

IC Compiler™ II Implementation User Guide
T-2022.03

200

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Analyzing the Placement

Feedback

◦ To report the total thin channel area in the current block, use the
-thin_channel_area option.

◦ To report thin channels with a width or height smaller than a specific threshold, use
the -maximum_thin_channel_width or -maximum_thin_channel_height option.

• Wire length of nets routed over hard macros

To report the wire length of nets routed over hard macros in the current block, use the
-hard_macro_route_over option. This option reports the horizontal and vertical wire
length for each hard macro that has over-macro routing, as well as the total wire length
for over-macro routing.

• The number of hard macro overlaps

To report the total number of overlapping hard macros in the current block, use the
-hard_macro_overlap option.

Querying and Changing the Placement Status
The status attribute of a cell instance indicates the current status of its placement.
Table 18 shows the possible values of the status attribute.

Table 18 Placement Status Keywords

Placement status Description DEF syntax

unplaced The cell instance has not yet been placed.
Note:

To revert all placed cells to the unplaced state,
use the reset_placement command. This
command modifies the placement status only for
cells with a placement status of placed; it does
not modify the placement status for cells with a
placement status of fixed or locked.

+UNPLACED

placed The cell instance has been placed, but can be moved
by subsequent operations.

+PLACED

fixed The cell instance has been placed and can be sized
but not moved by subsequent operations.
Note:

To prevent these cells from being sized, you must
set a dont_touch attribute on these cells, as
described in .

+FIXED

legalize_only The cell instance has been placed and can be moved
only by the legalizer.

N/A

IC Compiler™ II Implementation User Guide
T-2022.03

201

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Analyzing the Placement

Feedback

Table 18 Placement Status Keywords (Continued)

Placement status Description DEF syntax

locked The cell instance has been placed and cannot be
moved either manually or by the tool.

+COVER

To get the placement status of a cell instance, query its status attribute by using the
get_attribute command. For example, to get the placement status of the cell instance
named INST1, use the following command:

icc2_shell> get_attribute -objects [get_cells INST1] -name status
To change the placement status of a cell instance, use the set_placement_status
command. For example, to set the placement status of the cell instance named INST1
to fixed, so that it is not moved during subsequent optimization and placement, use the
following command:

icc2_shell> set_placement_status fixed [get_cells INST1]

Analyzing the Placement in the GUI
The IC Compiler II graphical user interface (GUI) provides the following tools for analyzing
and visualizing the quality of results after placement:

• Global Route Congestion Map

You can use the global route congestion map to visualize the quality of placement with
respect to the avoidance of routing congestion.

• Cell Density Map

You can use the cell density map to identify areas of high cell density in the block or in
a rectangular area of the block.

• Pin Density Map

You can use the pin density map to identify areas of high pin density in the block or in a
rectangular area of the block.

IC Compiler™ II Implementation User Guide
T-2022.03

202

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Analyzing Timing

Feedback

For more information about using these analysis tools in the GUI, see the Using Map and
Visual Modes topic in the IC Compiler II Graphical User Interface User Guide.

Analyzing Timing
The IC Compiler II tool automatically updates timing and delay estimation results when
needed. However, you can explicitly update the timing by using the update_timing
command.

You can use the following commands to generate timing reports for a block:

• report_timing
The report_timing command reports the worst-case timing paths for the current
block.

• report_qor
The report_qor command displays QoR information and statistics for the current
block.

• report_constraints
report_constraint commandcommandsreport_constraintconstraint reportreportsconstraintThe report_constraints command reports the logical DRC violations for the current
block.

For more information about generating these reports, see the Generating Reports topic in
the IC Compiler II Timing Analysis User Guide.

Analyzing Power
To calculate and report the power for a block, use the report_power command.

The report_power command supports the following methods for calculating the leakage
power:

• Average

When using this method, the calculation is based on equal weighted probabilities for all
states.

• Unconditional

When using this method, the calculation is based on the
default_cell_leakage_power library attribute or cell_leakage_power library cell
attribute.

IC Compiler™ II Implementation User Guide
T-2022.03

203

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Analyzing Power

Feedback

• State-dependent

When using this method, the calculation is based on the weighted sum of each state
condition of the cell. The calculation depends on the state-dependent leakage library
model characterization and static probability. If the state-depended leakage information
is not available, the power calculation uses the unconditional method.

To select the leakage-power calculation method for the report_power command, set the
power.leakage_mode application option to average, unconditional, or state. To not
report leakage power, set this application option to off. The default is state.

icc2_shell> set_app_options -name power.leakage_mode -value average
To use composite current source (CCS) receiver model capacitance during power analysis
and reporting, set the power.use_ccs_rcv_cap application option to true.

Example 14 shows a default power report.

Example 14 Default Power Report
...
...

Mode: my_mode
Corner: bc_corner
Scenario: bc_scenario
Voltage: 1.160000
Temperature: 125.000000

Voltage unit: 1.00V
Temperature unit: 1.00C
Power unit: 1.00pW

Cell Leakage Power = 5125495.58 uW

Power Group Leakage Power Total Power (%)
--
--
io_pad 0.00e+00 0.00e+00 (0.00%)
memory 0.00e+00 0.00e+00 (0.00%)
black_box 0.00e+00 0.00e+00 (0.00%)
clock_network 3.32e+10 3.32e+01 (0.65%)
register 1.62e+12 1.62e+03 (31.67%)
sequential 1.16e+09 1.16e+00 (0.02%)
combinational 3.47e+12 3.47e+03 (67.66%)
--
--
Total 5.13e+12 pW 5.13e+03 mW
1

Creating Power Groups for Reporting
When you run the report_power command without specifying a list of cells, the tool
reports the power information for the default power groups. You can create power groups
consisting of cell instances or library cells by using the set_power_group command. The

IC Compiler™ II Implementation User Guide
T-2022.03

204

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Analyzing Power

Feedback

report_power command reports the power information for both the default and user-
specified power groups.

If a cell belongs to multiple power groups, the power group it belongs to for reporting
purposes is determined by the following precedence:

1. The power group specified for the cell instance with the set_power_group command.

2. The power group specified for its library cell with the set_power_group command.

3. The default power group of the cell.

To get the power group of a specific cell, use the get_power_group command.

• Use the -default option to get the default power group it belongs to.

• Use the -user option to get the user-defined power groups it might belong to.

• Use no option to get the power group it belongs to for reporting purposes.

To report all the power groups in the block, use the report_power_groups command. To
get a collection of cells in a specific power group, use the get_power_group_objects
command.

To remove a power group or remove a cell from a specific power group, use the
reset_power_group command.

Reporting Pin-Based Clock Network Power
The report_power command reports the power information for the clock network as part
of the default power group named clock_network.

By default, the clock network power that was reported is cell-based. If an output of a
cell is on the clock network, the power of that cell, including the power of all its inputs
and outputs, is considered as part of the clock network. However, you can limit the clock
network power reported by the report_power command to include only the pins that are
on the clock network by using the following application option setting:

icc2_shell> set_app_options -list {power.clock_network pin_based}
The default is cell_based.

The power information that is reported by the report_clock_qor -type power
command is pin-based.

IC Compiler™ II Implementation User Guide
T-2022.03

205

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

Comparing QoR Data
You can generate a web-based report to view and compare your QoR data with a
QORsum report by performing the following steps:

1. (Optional) Configure the QoR data, which is captured and displayed in the subsequent
steps, by using the set_qor_data_options command.

• To specify the most critical power scenarios in your design, use the
-leakage_scenario and -dynamic_scenario options.

The tool uses the power scenarios you specify to generate the high-level summary
of the power QoR in the QORsum report. If you do not specify these options, it uses
the active power scenario with the highest total power for both the leakage and
dynamic scenario for the power QoR summary.

These settings are only used for the power QoR summary. The tool uses the power
information of all active power scenarios to capture and report the detailed power
information in the QORsum report.

• To specify the most critical clock name and clock scenario, use the -clock_name
and -clock_scenario options.

The tool uses the clock name and scenario you specify to generate the high-level
summary of the clock QoR in the QORsum report. If you do not specify these
options, the tool identifies the most critical clock and uses it for the clock QoR
summary.

These settings are only used for the clock QoR summary. The tool uses all clocks to
generate the detailed clock QoR information in the QORsum report.

• To specify a name to identify the run in the QORsum report, use the -run_name
option.

By default, the tool names each run with a number, such as Run1, Run2, and so
on. You can use this option to give a more meaningful name to each run. You can
also specify the run name by using the -run_names option when you generate the
QORsum report by using the compare_qor_data command in step 3. If you do so,
the tool ignores the run name specify by the set_qor_data_options -run_name
command.

The following example specifies the leakage-power scenario, dynamic-power scenario,
clock scenario, and the clock to use for the corresponding summary in the QORsum
report:

icc2_shell> set_qor_data_options \
 -leakage_scenario S1 -dynamic_scenario S2 \
 -clock_scenario S3 -clock_name sys_clk

IC Compiler™ II Implementation User Guide
T-2022.03

206

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

2. Collect the QoR data for your report by using the write_qor_data command.

You can run the write_qor_data command multiple times, at each stage of the design
flow at which you want to capture QoR data. Use the -label and specify a value to
indicate at which stage of the flow you are capturing the data.

By default, the write_qor_data command captures data relevant to a placed and
optimized design. You can specify the -report_group option with any of the five
supported value (unmapped, mapped, placed, cts, routed) to tune the set of reports
being captured, based on the state of the flow where you are capturing the data. For
finer-grain control, use the -report_list option to explicitly specify each report you
want to generate.

Collect the QoR data
write_qor_data -label flow_start -report_group mapped

place_opt
write_qor_data -label place_opt -report_group placed

clock_opt -to route_clock
write_qor_data -label clock_opt_cts -report_group cts

clock_opt -from final_opto
write_qor_data -label clock_opt_opto -report_group cts

route_auto
write_qor_data -label route -report_group routed

route_opt
write_qor_data -label route_opt -report_group routed

3. Generate the QORsum report by using the compare_qor_data command.

This command takes the data captured by one or more runs of the write_qor_data
command and creates a web-based report for viewing and comparing those results.

You must specify the location of the output of each of the write_qor_data runs from
the previous step by using -run_locations option. Each path location corresponds to
the run result that you want to compare.

You can assign a specific name to identify the run in the QORsum report by using the
-run_names option. If you do so, the tool ignores the run name specify by using the
set_qor_data_options -run_name command. By default, the tool names each run
by a number, such as run1, run2, and so on.

You can specify the output directory by using the -output option. By default, the tool
writes the report to a directory named compare_qor_data. To overwrite exiting output
data, use the -force option. By default, the tool does not overwrite existing output
data.

IC Compiler™ II Implementation User Guide
T-2022.03

207

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

4. View the generated QORsum report by using the view_qor_data command.

Figure 26 QORsum Report

For more information about exploring the comparison data, see the following topics:

• Setting Your Baseline Run

• Changing the QoR Display Style

• Sorting and Filtering the Data

• Exploring the Detailed Comparison Data

Setting Your Baseline Run
By default, the first row of data is your baseline run against which all other runs are
compared. The name of the baseline run is highlighted in gold to mark it as the “golden,”
or baseline, result.

IC Compiler™ II Implementation User Guide
T-2022.03

208

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

The shading of non-baseline cells indicates the direction and degree by which the data
differs from the baseline:

• Red indicates a degradation compared to the baseline; green indicates an
improvement compared to the baseline

• Lighter shading represents a smaller difference compared to the baseline; darker
shading represents a larger difference compared to the baseline

To view the delta thresholds corresponding to each shade, hover the cursor over the
column headers:

To change your baseline run, click the Runs button and select a new run as the baseline
from the Baseline Run column, as shown in the following figure:

IC Compiler™ II Implementation User Guide
T-2022.03

209

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

See Also

• Changing the QoR Display Style

• Sorting and Filtering the Data

• Exploring the Detailed Comparison Data

Changing the QoR Display Style
By default, the comparison tables show the QoR values for all runs. For example, the NVE
number for the following run is 2374:

To cycle through different display styles of the data, right-click anywhere in the table. You
can view the data

• as a percentage delta against the baseline

• as an absolute delta against the baseline (shown in italic)

For example, as a percentage delta, the NVE number shows 2.7% fewer failing endpoints
than the baseline:

As an absolute delta, the NVE number shows 65 fewer failing endpoints than the baseline:

See Also

• Sorting and Filtering the Data

• Exploring the Detailed Comparison Data

IC Compiler™ II Implementation User Guide
T-2022.03

210

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

Sorting and Filtering the Data
You can sort and filter the run data to reveal patterns in the results and determine the
parameters you want to explore further.

To sort and filter the data, see the following topics:

• Sorting the Data

• Filtering Metrics

• Filtering Runs

• Example Analysis

See Also

• Exploring the Detailed Comparison Data

IC Compiler™ II Implementation User Guide
T-2022.03

211

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

Sorting the Data
Click any column header to sort the data using that metric. The first click performs an
ascending sort, while the second click performs a descending sort.

For example, to show the worst TNS numbers at the top of the table and the best TNS
numbers at the bottom, click the TNS column header:

Click the TNS column header again to show the best TNS numbers at the top and the
worst at the bottom:

IC Compiler™ II Implementation User Guide
T-2022.03

212

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

Filtering Metrics
To control which metrics are displayed in the table, click the Metrics button and select or
deselect the metrics from the Metrics dialog box accordingly.

For example, to show only the setup timing, netlist area, and cell counts, select the metrics
as shown in Figure 27.

Figure 27 Metrics Dialog Box

Filtering Runs
To control which runs are displayed in the table, click the Runs button and select or
deselect the exploration runs accordingly from the Visible Runs (Summary) column.

For example, to display only the first four runs in a table, select the runs as shown in
Figure 28.

Figure 28 Choose Baseline and Visible Runs Dialog Box

IC Compiler™ II Implementation User Guide
T-2022.03

213

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

Example Analysis
The following example demonstrates how you might sort and filter your data to narrow
down the runs you would like to explore further.

Suppose you open the comparison report shown in Figure 29 and set the
util60_aspect1%1_layerM9 run as the base run.

Figure 29 Comparison Report

You could look at your TNS numbers first and sort the data from best TNS to worst TNS,
as shown in the following figure:

Notice that the best TNS runs have the M9 top layer, and the worst have the M7 top layer.
This suggests that restricting the metal layers significantly impacts timing.

IC Compiler™ II Implementation User Guide
T-2022.03

214

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

You could then restrict your analysis to your M9 runs by turning off the visibility of your M7
runs, as shown in the following figure:

Now that you have your best TNS runs, you could compare their congestion by sorting
the GRCOverflow column to show the worst overflow at the top, as shown in the following
figure:

Notice that your higher-utilization runs have more congestion than your lower-utilization
runs. You could restrict your analysis to your lower-utilization runs by turning off the

IC Compiler™ II Implementation User Guide
T-2022.03

215

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

visibility of your higher-utilization runs as shown in Figure 30, leaving you with a
manageable subset of exploration runs that better meet your timing and congestion goals.

Figure 30 Displaying Lower-Utilization Runs

Exploring the Detailed Comparison Data
When you launch the QORsum report, the application opens the QOR Summary table,
which summarizes high-level timing, power, and congestion metrics for each of your runs.
This and other summary views help you sort and filter the data to pinpoint the runs you
want to explore further.

After you have identified your best candidate runs using the summary tables, you can use
the detailed tables to provide deeper insights into your data. While summary tables give
a high-level overview of design QoR across all of your runs, such as the overall design
timing (WNS, TNS, and NVE) for every run, the detailed table can show the path-group-
based timing for all path groups in the design. Detailed tables allows you to view the timing
of a specific path group for all your runs or view the timing of all path groups for up to
six of your runs at once. All detailed tables follow the naming convention of ending with
“Details.” For example, Path Type Details table shows information about your path-type-
based timing.

IC Compiler™ II Implementation User Guide
T-2022.03

216

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

By default, the detailed tables start in the Focused View, as shown in Figure 31.

Figure 31 Focused View

The Focused View shows you one path group at a time. To change your focus, use the
drop-down menus at the top. For example, you can specify a scenario and path group as
shown in Figure 32.

Figure 32 Focused View Drop-down Menu

The Focused View focuses on a specific property for all runs. However, you can also look
at all of the properties for a smaller number of runs.

For example, you can identify the worst path group by viewing all path groups
simultaneously. To view the data from the traditional detailed view, click the Focused View
toggle button at the top menu, as shown in Figure 33.

Figure 33 Focused View Toggle Button

IC Compiler™ II Implementation User Guide
T-2022.03

217

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

To view detailed comparison data for a particular metric, click one of the detailed views in
the panel on the left.

For example, to view the details of your path-group-based timing, select Path Group
Details, as shown in Figure 34.

Figure 34 Path Group Details

Whereas each row in a summary table shows the results for a flow, each row in a detailed
table shows detailed information such as path group names. The flows are shown side
by side as columns under each metric. For example, the WNS column group (and the
column group of each metric) shows the same six columns labeled 1, 2, 5, 6, 9, 10. These
columns represent the results of each flow, and are given a flow ID number, rather than
showing the full flow name, to prevent the columns from being too wide. The first column
under each metric is the baseline, and the other five are the test flows being compared
to that baseline. A legend is shown above the table with the flow ID number in a gold box
(for the baseline) or a blue box (for the test flows), followed by the flow name. You can
expand or collapse the legend by clicking the Legend button. You can also see the flow
ID numbers in the “Choose Baseline and Visible Runs” dialog box, which is opened by
clicking the Runs button.

The detailed table views can display up to six runs at one time (your baseline run, plus
the first five other runs selected in the Choose Baseline and Visible Runs dialog box). To
change the runs that are displayed,

1. Click the Runs button to open the Choose Baseline and Visible Runs dialog box.

2. From the Visible Runs (Summary) column, select or deselect the runs accordingly. This
selects and deselects those runs from the Visible flows (Detailed) column.

IC Compiler™ II Implementation User Guide
T-2022.03

218

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

Filtering the Detailed Data
Detailed views offer filters to focus on specific data. Some views have default filters that
are shown automatically. For example, the following detailed views have default scenario
and path group filters: Path Type Details, Path Group Details, and Logic Level Details.

You can modify the default filters by

• Removing the filter by clicking the X symbol before the filter name

• Changing the filter value

• Enable and disable the filter by clicking anywhere on the filter but the X symbol or value
field

You can also apply custom filters to the detailed data. To create a custom filter,

1. Click the Filter button to display the Add Filter fields, which are shown in the following
figure:

2. Define the filter by defining the filter criteria and selecting the datasets to include in the
results.

To define the filter, select the column and comparison type, and then specify the
comparison value.

• To perform a numeric comparison, select one of the following comparison types: =,
!=, <, <=, >, or >= and specify a numeric value in the Value field.

• To perform a string comparison, select the contains comparison type and specify a
string value in the Value field.

• To perform a regular expression comparison, select the regexp comparison type
and specify a regular expression in the Value field.

• To filter based on the available values of the selected column, select the enum
comparison type, which populates the Value field with a drop-down menu that
contains the available values, and then enable one or more of the displayed values.
When a value is enabled, a check mark is displayed before the value.

IC Compiler™ II Implementation User Guide
T-2022.03

219

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Placement and Optimization
Comparing QoR Data

Feedback

To enable or disable a value, highlight the value by clicking it or navigating to it
by using the Up and Down arrows, and then press Enter, which toggles the value
status. You can also type a string in the Value field to filter the available values in
the drop-down menu. To dismiss selected values, click the X symbol.

3. Apply the filter by clicking the green check mark.

For example, to filter the Path Group Details view by displaying the path groups in the
func@cworst scenario, define the filter as shown in the following figure:

IC Compiler™ II Implementation User Guide
T-2022.03

220

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

4
Clock Tree Synthesis

To learn how to perform clock tree synthesis in the IC Compiler II tool, see the following
topics:

• Prerequisites for Clock Tree Synthesis

• Defining the Clock Trees

• Verifying the Clock Trees

• Setting Clock Tree Design Rule Constraints

• Specifying the Clock Tree Synthesis Settings

• Implementing Clock Trees and Performing Post-CTS Optimization

• Implementing Multisource Clock Trees

• Analyzing the Clock Tree Results

Prerequisites for Clock Tree Synthesis
Before you run clock tree synthesis on a block, it should meet the following requirements:

• The clock sources are identified with the create_clock or create_generated_clock
commands.

• The block is placed and optimized.

Use the check_legality -verbose command to verify that the placement is legal.
Running clock tree synthesis on a block that does not have a legal placement might
result in long runtimes and reduced QoR.

The estimated QoR for the block should meet your requirements before you start clock
tree synthesis. This includes acceptable results for

◦ Congestion

If congestion issues are not resolved before clock tree synthesis, the addition of
clock trees can increase congestion. If the block is congested, you can rerun the

IC Compiler™ II Implementation User Guide
T-2022.03

221

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

create_placement command with the -congestion and -congestion_effort
high options, but the runtime can be long.

◦ Timing

◦ Maximum capacitance

◦ Maximum transition time

• The power and ground nets are prerouted.

• High-fanout nets, such as scan enables, are synthesized with buffers.

• The active scenarios are defined.

By default, the IC Compiler II tool synthesizes and optimizes all clocks in all active
scenarios that are enabled for setup or hold analysis.

Defining the Clock Trees
Before you run clock tree synthesis, analyze each clock tree in the block and determine

• What the clock root is

• What the required clock sinks and clock tree exceptions are

• Whether the clock tree contains preexisting cells, such as clock-gating cells

• Whether the clock tree converges, either with itself (a convergent clock path, definedclockconvergentconvergent clock path) or with
another clock tree (an overlapping clock path, definedclockoverlappingoverlapping clock path)

• Whether the clock tree has timing relationships with other clock trees in the block, such
as interclock skew requirements

Use this information to define the clock trees and validate that the tool has the correct
clock tree definitions.

The IC Compiler II tool derives the clock trees based on the clocks defined in the block.
If the derived clock trees do not meet your requirements, you can define clock trees as
described in the following topics:

• Deriving the Clock Trees

• Defining Clock Tree Exceptions

• Restricting Optimization on the Clock Network

• Copying Clock Tree Exceptions Across Modes

IC Compiler™ II Implementation User Guide
T-2022.03

222

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

• Deriving Clock Tree Exceptions From Ideal Clock Latencies

• Handling Endpoints With Balancing Conflicts

Deriving the Clock Trees
The IC Compiler II tool derives the clock trees by tracing through the transitive fanout from
the clock roots to the clock endpoints. In general, the tracing terminates when it finds a
clock pin of a sequential cell or macro; however, the tool traces through sequential cells if
they are integrated clock-gating (ICG) cells or their fanout drives a generated clock.

If the clock-gating logic uses a non-unate cell, such as an XOR or XNOR gate, the tool
uses both the positive-unate timing arc and the negative-unate timing arc when tracing
the clock path. If this does not correspond to the functional mode of the block, use the
set_case_analysis command to hold all nonclock inputs of the cell at a constant value,
which forces the cell into the required functional mode for clock tree synthesis.

For example, suppose a block has the gating logic shown in Figure 35.

Figure 35 Non-Unate Gated Clock

To force the XOR gate (U0) into functional mode for timing analysis, use the following
command:

icc2_shell> set_case_analysis 0 U0/B

Identifying the Clock Roots
The IC Compiler II tool uses the clock sources defined by the create_clock command,
which can be either input ports or internal hierarchical pins, as the clock roots.

For nested clock trees with generated clocks, which are defined by the
create_generated_clock command, the tool considers the master-clock source to be
the clock root, and the clock endpoints of the nested clock tree are considered endpoints
of the master-clock source.

For example, for the netlist shown in Figure 36, the tool considers the CLK port to be the
clock root for the genclk1 generated clock.

IC Compiler™ II Implementation User Guide
T-2022.03

223

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

Figure 36 Nested Clock Tree With a Generated Clock

D Q

CLK QN

clk1

genclk1

If the block contains generated clocks, ensure that the master-clock sources are correctly
defined, as incorrect definitions can result in poor skew and timing QoR. In particular,

• If the tool cannot trace back to the master-clock source, it cannot balance the sink pins
of the generated clock with the sink pins of its source.

• If the master-clock source is not a clock source defined by the create_clock or
create_generated_clock command, the tool cannot synthesize a clock tree for the
generated clock or its source.

Use the check_clock_trees command to verify that your master-clock sources are
correctly defined, as described in Verifying the Clock Trees.

Specifying the Clock Root Timing Characteristics
To get realistic clock tree synthesis results, you must ensure that the timing characteristics
of the clock roots are correctly modeled.

• If the clock root is an input port without an I/O pad cell, you must accurately specify the
driving cell of the input port.

If you specify a weak driving cell, the tool might insert extra buffers to try to meet the
clock tree design rule constraints, such as maximum transition time and maximum
capacitance.

If you do not specify a driving cell (or drive strength), the tool assumes that the port has
infinite drive strength.

For example, if the CLK1 port is the root of the CLK1 clock tree, use the following
command to set its driving cell as the CLKBUF cell in the mylib cell library:

icc2_shell> set_driving_cell -lib_cell mylib/CLKBUF [get_ports CLK1]
• If the clock root is an input port with an I/O pad cell, you must accurately specify the

input transition time of the input port.

IC Compiler™ II Implementation User Guide
T-2022.03

224

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

For example, if the CLK1 port is the root of the CLK1 clock tree and the I/O pad cell
has already been inserted, use the following commands to set its input transition time
to 0.3 for rising delays and 0.2 for falling delays:

icc2_shell> set_input_transition -rise 0.3 [get_ports CLK1]
icc2_shell> set_input_transition -fall 0.2 [get_ports CLK1]

Identifying the Clock Endpoints
When deriving the clock trees, the tool identifies two types of clock endpoints:

• Sink pins

clock tree synthesisstop pindefinedexceptions for clock tree synthesisstop pinsclock tree exceptionsstop pinclock tree sinksdefiningSink pins are the clock endpoints that are used for delay balancing. The tool assigns an
insertion delay of zero to all sink pins and uses this delay during delay balancing.

During clock tree synthesis, the tool uses sink pins in calculations and optimizations for
both design rule constraints and clock tree timing (skew and insertion delay).

Sink pins are also referred to as balancing pins.

• Ignore pins

clock tree synthesisexclude pindefinedexceptions for clock tree synthesisexclude pinsclock tree exceptionsexclude pinIgnore pins are clock endpoints that are excluded from clock tree timing calculations
and optimizations. The tool uses ignore pins only in calculations and optimizations for
design rule constraints.

During clock tree synthesis, the tool isolates ignore pins from the clock tree by inserting
a guide buffer before the pin. Beyond the ignore pin, the tool never performs skew or
insertion delay optimization, but does perform design rule fixing.

The tool identifies the following clock endpoints as sink pins:

• A clock pin on a sequential cell (a latch or flip-flip), unless that cell drives a generated
clock

• A clock pin on a macro cell

IC Compiler™ II Implementation User Guide
T-2022.03

225

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

The tool identifies the following clock endpoints as clock tree synthesisimplicitexclude pinignore pins:

• Source pins of clock trees in the fanout of another clock

For example, in Figure 37, the source pin of the driven clock (clk2) is an ignore pin of
the driving clock (clk1). Sinks of the driven clock are not considered sinks of the driving
clock.

Figure 37 Cascaded Clock With Two Source Clocks

CLK

clk1 clk2

• Nonclock input pins of sequential cells

• Three-state enable pins

• Output ports

• Incorrectly defined clock pins (for example, the clock pin does not have trigger edge
information or does not have a timing arc to the output pin)

• Buffer or inverter input pins that are held constant by using the set_case_analysis
command

Note:
The tool does not synthesize a clock tree if its source is held constant by
using the set_case_analysis command.

• Input pins of combinational cells or integrated clock-gating cells that do not have any
fanout or that do not have any enabled timing arcs

To verify that the tool has correctly identified the sink pins and ignore pins, examine the
clock trees in the GUI, as described in Analyzing Clock Trees in the GUI.

If the default sink and ignore pins are correct, you are done with the clock tree definition.
Otherwise, first identify any timing settings, such as disabled timing arcs and case analysis
settings, that affect the clock tree traversal. To identify disabled timing arcs in the block,
use the report_disable_timing command. To identify case analysis settings in the
block, use the report_case_analysis command. Remove any timing settings that cause
an incorrect clock tree definition.

IC Compiler™ II Implementation User Guide
T-2022.03

226

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

If necessary, you can override the default balancing and ignore pin settings by using the
set_clock_balance_points command, as described in Defining Clock Tree Exceptions.

Defining Clock Tree Exceptions
Clock tree exceptions are user-defined changes to the default endpoints (balancing and
ignore pins) derived by the tool for a specific clock.

The IC Compiler II tool supports the following types of clock tree exceptions:

• User-defined sink pins

These exceptions define sink pins in addition to those derived by the tool for a clock
tree. For example, you might define a tool-derived ignore pin as a clock sink.

For information about defining sink pins, see Defining Sink Pins.

• User-defined insertion delay requirements

These exceptions specify special insertion delay requirements for a sink pin (either
derived or user-specified).

For information about defining insertion delay requirements, see Defining Insertion
Delay Requirements.

• User-defined ignore pins

These exceptions exclude clock endpoints that were derived as sink pins by the tool.
For example, you might define an ignore pin to exclude all branches of the clock tree
that fan out from some combinational logic or to exclude a tool-derived sink pin.

For information about defining ignore pins, see Defining Ignore Pins.

Defining Sink Pins
To define one or more pins as sink pins, use the following syntax:

set_clock_balance_points
 -clock clock
 -consider_for_balancing true
 -balance_points pins
 [-corners corners]

The -clock option is not required. If you do not use it, the sink pin applies to all clocks.

By default, the insertion delay for the user-specified sink pins is 0. For information about
overriding the default insertion delay, see Defining Insertion Delay Requirements.

When you define sink pins, by default, they apply to all corners. To apply the definition to
specific corners, use the -corners option.

IC Compiler™ II Implementation User Guide
T-2022.03

227

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

For example, to specify pin U2/A as a sink pin for the CLK clock in the current corner, use
the following command:

icc2_shell> set_clock_balance_points -clock [get_clocks CLK] \
 -consider_for_balancing true -balance_points [get_pins U2/A]
To report the user-defined sink pins, use the remove_clock_tree_exceptions command-stop_pinscommandsremove_clock_tree_exceptions-stop_pinsreport_clock_balance_points command.
This command reports both the user-defined sink pins and the user-defined ignore pins.

To remove the sink pin definition from a pin, use the remove_clock_tree_exceptions command-stop_pinscommandsremove_clock_tree_exceptions-stop_pinsremove_clock_balance_points
command.

For example, to remove the sink pin definition from the U2/A pin for the CLK clock, use the
following command:

icc2_shell> remove_clock_balance_points -clock [get_clocks CLK] \
 -balance_points [get_pins U2/A]

Defining Insertion Delay Requirements
To override the default phase delay of zero for sink pins (derived or user-specified),
use the -delay option with the set_clock_balance_points command to specify the
insertion delay requirements. The tool adds the specified delay (positive or negative) to the
calculated insertion delay up to the specified sink pin.

The syntax to define the insertion delay requirement for one or more sink pins is

set_clock_balance_points
 [-clock clock]
 -delay delay
 [-rise] [-fall] [-early] [-late]
 -balance_points pins
 [-corners corners]

The -clock option is not required. If you do not use it, the insertion delay requirement
applies to all clocks.

Clock tree synthesis uses the specified delay value for the path delay calculations used to
build the clock tree. By default, the specified delay value is used for both longest-path and
shortest-path calculations for both rising-edge and falling-edge paths. To control when the
specified delay value is used, use the -rise, -fall, -early, and -late options.

When you define insertion delay requirements, by default, they apply to all corners. To
apply the definition to specific corners, use the -corners option.

For example, to specify that clock tree synthesis should use an insertion delay of 2.0 ns for
rising-edge shortest-path calculations for the U2/CLK pin for the CLK clock in the current
corner, use the following command:

icc2_shell> set_clock_balance_points -clock [get_clocks CLK] \
 -rise -early -delay 2.0 -balance_points [get_pins U2/CLK]

IC Compiler™ II Implementation User Guide
T-2022.03

228

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

To report the user-defined insertion delay for sink pins, use the remove_clock_tree_exceptions

command-stop_pinscommandsremove_clock_tree_exceptions-stop_pinsreport_clock_balance_points command. This command reports the user-defined sink
pins, the derived sink pins with user-specified insertion delay, and the user-defined ignore
pins.

Defining Ignore Pins
To define one or more pins as ignore pins, use the following syntax:

set_clock_balance_points
 [-clock clock]
 -consider_for_balancing false
 -balance_points pins

The -clock option is not required. If you do not use it, all user-defined ignore pins apply to
all clocks.

For the CLK clock tree shown in Figure 38, assume that you want to ignore all branches of
the clock tree beyond the U2 cell. To do so, you would use the following command:

icc2_shell> set_clock_balance_points -clock [get_clocks CLK] \
 -consider_for_balancing false -balance_points [get_pins U2/A]

Figure 38 User-Defined Ignore Pin

CLK

A

B

U2

To report the user-defined ignore pins, use the remove_clock_tree_exceptions command-stop_pinscommandsremove_clock_tree_exceptions-stop_pinsreport_clock_balance_points
command. This command reports both the user-defined sink pins and the user-defined
ignore pins.

During clock tree synthesis, the tool adds guide buffers and isolates ignore pins from the
rest of the clock network. During subsequent data path optimization, the tool fixes any
existing DRC violations beyond the guide buffers.

To remove the ignore pin definition from a pin, use the remove_clock_tree_exceptions command-stop_pinscommandsremove_clock_tree_exceptions-stop_pinsremove_clock_balance_points
command.

IC Compiler™ II Implementation User Guide
T-2022.03

229

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

For example, to remove the ignore pin definition from pin U2/CLK for the CLK clock, use
the following command:

icc2_shell> remove_clock_balance_points -clock [get_clocks CLK] \
 -balance_points [get_pins U2/CLK]

Ensuring Clock Tree Exceptions are Valid
To identify pins on the clock network, the tool checks if the is_clock_is_used_as_clock
pin attribute is true during clock tree synthesis. If you use the
set_clock_balance_points command to specify a clock tree exception on a pin for
which the is_clock_is_used_as_clock attribute is false, the tool accepts the exception,
but ignores it during clock tree synthesis.

Consider the clock network in the following figure.

Figure 39 Specifying Exceptions on Pins Beyond the Clock Network

CLK

A

B

U2

D

FF3

Y
n5

By default, the tool sets

• The is_clock_is_used_as_clock attribute of the U2/A, U2/Y, and FF3/D pins to
false and considers the network beyond the U2/A pin as part of the data network

• The U2/A pin as an ignore pin and excludes the network beyond this from clock tree
synthesis

During clock tree synthesis, the tool adds a guide buffer and isolates the U2/A pin from the
rest of the clock network. During subsequent data path optimization, the tool can fix any
existing DRC violations beyond the guide buffer.

Assume you want clock tree synthesis to fix DRC violations up to the FF3/D pin using
clock tree constraints. To do so, you must

1. Specify the FF3/D pin as an explicit ignore pin as follows:

icc2_shell> set_clock_balance_points -clock [get_clocks CLK] \
 -consider_for_balancing false -balance_points [get_pins FF3/D]

IC Compiler™ II Implementation User Guide
T-2022.03

230

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

2. Force clock tree synthesis to consider the FF3/D pin as a pin on the clock network by
using the set_sense -clock_leaf command as follows:

icc2_shell> set_sense -clock_leaf [get_pins FF3/D]
The set_sense -clock_leaf command sets

• The is_clock_used_as_clock attribute to true for all the pins of the clock
branches that fanin to the pin specified as the clock leaf

• The is_clock_used_as_clock attribute to false for all the pins in the fanout from
the pin specified as the clock leaf, and the tool does not propagate the clock beyond
this pin

To check the value of the is_clock_used_as_clock pin attribute, use the
get_attribute command, as shown in the following example:

icc2_shell> get_attribute [get_pins FF3/D] is_clock_used_as_clock

Restricting Optimization on the Clock Network
You can restrict the optimization on portions of the clock network by specifying

• Don’t touch settings

These settings identify parts of the clock tree on which clock tree synthesis and
optimization is not performed. You can use don’t touch settings to prevent the
modification of a clock network beyond a specific pin, the buffering of specific nets, or
the sizing of specific cells.

For information about defining don’t touch settings, see Setting Don’t Touch Settings.

• Size-only settings

These settings identify clock tree cells for which the tool can perform only cell sizing.
Note that these cells can be moved, unless they have a placement status of fixed.

For information about defining size-only settings, see Setting Size-Only Settings.

Setting Don’t Touch Settings
To set a don't touch setting on a clock tree, use the set_dont_touch_network command.

icc2_shell> set_dont_touch_network -clock_only [get_pins pin_name]
The -clock_only option sets the don't touch setting only on the clock network. If you do
not specify the -clock_only option, the don't touch setting is set on both the data path
and the clock path.

IC Compiler™ II Implementation User Guide
T-2022.03

231

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

To remove the don't touch setting from a clock tree, use the -clear option with the
set_dont_touch_network command.

icc2_shell> set_dont_touch_network -clock_only [get_pins pin_name] -clear
You can also set don't touch settings on specific objects in the clock network by using the
set_dont_touch command.

The following commands set a don't touch setting on a cell and a net:

icc2_shell> set_dont_touch [get_cells cell_name] true
icc2_shell> set_dont_touch [get_nets -segments net_name] true
To report all the don't touch settings set on the current block, use the report_dont_touch
command.

icc2_shell> report_dont_touch -all
Note:

If a cell has a placement status of fixed, it is treated like a don’t touch cell during
clock tree synthesis.

Setting Size-Only Settings
To set a size-only setting on a cell, use the set_size_only command.

The following command sets a size-only setting on a cell:

icc2_shell> set_size_only [get_cells cell_name] true
To report all the size-only settings set on the current block, use the report_size_only
command.

icc2_shell> report_size_only -all

Copying Clock Tree Exceptions Across Modes
You can specify that the tool copies clock tree exceptions from one mode to one or
more equivalent modes by using the set_clock_tree_options command with the
-copy_exceptions_across_modes, -from_mode, and -to_mode options.

The following example specifies that during clock tree synthesis the clock tree exceptions
in the mode name M1 should be copied to the modes name M2 and M3:

icc2_shell> set_clock_tree_options -copy_exceptions_across_modes \
 -from_mode M1 -to_mode {M2 M3}

IC Compiler™ II Implementation User Guide
T-2022.03

232

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

Deriving Clock Tree Exceptions From Ideal Clock Latencies
If you have set ideal clock latencies for specific sinks in your design, you can use the
derive_clock_balance_points command to convert these ideal latency settings to clock
tree exceptions.

The derive_clock_balance_points command converts ideal latencies specified with
the set_clock_latency command on clock sink pins to set_clock_balance_points
commands. Use the derive_clock_balance_points command before clock tree
synthesis, when the design has ideal clocks.

By default, the derive_clock_balance_points command

• Generates balance point constraints for all ideal primary clocks of all active scenarios
that are enabled for setup analysis, hold analysis, or both. It does not generate balance
points for generated clocks.

To generate the balance points for

◦ Specific primary clocks, use the -clocks option.

◦ All active scenarios of specific corners, use the -corners option.

• Calculates a reference latency for each primary ideal clock, which is the sum of the
ideal source and network latency specified on the clock with the set_clock_latency
command.

To specify a different reference latency value, use the -reference_latency option.

• Applies the derived clock balance point constraints to the design.

To generate an output file containing set_clock_balance_points commands, instead
applying it to the design, use the -output option.

Balance points that the tool derives are clock and corner specific. Ensure that appropriate
set_clock_latency constraints are set for all clocks for all modes used for clock tree
synthesis in at least the worst corner.

The tool uses the following formula to derive the delay values for the corresponding
set_clock_balance_points commands:

(Clock balance point delay value at the sink) =

(Reference latency of the clock) - (Total ideal clock latency at the sink)

The total ideal clock latency at the sink is the sum of the source latency of the clock and
the ideal network latency for the sink.

IC Compiler™ II Implementation User Guide
T-2022.03

233

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

For example, assume you have the following timing constraint settings:

icc2_shell> set_clock_latency -source 0.5 [get_clocks clk]
icc2_shell> set_clock_latency 1.0 [get_clocks clk]
icc2_shell> set_clock_latency 1.5 [get_pins reg1/CK]
icc2_shell> set_clock_latency 0.5 [get_pins reg2/CK]
If you run the derive_clock_balance_points command, the tool derives the following
clock balance point constraints:

icc2_shell> set_clock_balance_points -delay -0.5 \
 -balance_points [get_pins reg1/CK] -clock clk -corners worst
icc2_shell> set_clock_balance_points -delay 0.5 \
 -balance_points [get_pins reg2/CK] -clock clk -corners worst
To avoid conflicts, do not manually apply any clock balance points for a clock that you
derive balance points with the derive_clock_balance_points command.

Handling Endpoints With Balancing Conflicts
In some blocks, the clocks have endpoints that are structurally impossible to balance.
The IC Compiler II tool can automatically detect endpoints with balancing conflicts and
derive an ignore pin to resolve the conflict. This capability is enabled by default for the
synthesize_clock_trees and clock_opt commands. To disable this capability, set the
cts.common.enable_auto_exceptions application option to false.

IC Compiler™ II Implementation User Guide
T-2022.03

234

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Defining the Clock Trees

Feedback

With this capability, the tool detects and fixes the following types of balancing conflicts:

• Internal sink pins of modules that have a combinational clock path

If a module contains both internal sink pins and combinational clock paths, it is
impossible to balance the internal sink pins. To resolve the balancing conflict, the tool
defines the internal sink pins as ignore pins.

For example, assume that you have a module that contains a combinational path in
the clock network, as shown in figure (a) in Figure 40, which is represented by the
extracted timing model (ETM) shown in figure (b).

Figure 40 Module With Combinational Clock Path

Q

Clk_out

D

Clk

(a) Netlist (b) ETM with check pin

Clk

D Q

Clk_out

Clk_check_pin_1

Combinational delay

In this case, the internal check pin inside the ETM has delays coming from the ETM
timing library; these delays are considered by clock tree synthesis as sinks and are
balanced with other sinks at the top level. If the path to the check pin is the shortest
path, top-level clock tree synthesis cannot insert buffers on the shortest path and
therefore leaves a large skew at the top level. Setting the internal check pin as an
ignore pin resolves the skew issue coming from the ETM.

• Sink pins that cannot be balanced simultaneously

If a block contains two clocks that drive common sinks, one of which is a clock
pin that is the parent of another sink, due to a generated clock, it is impossible to
simultaneously balance the parent and child clock pins with another common sink. To
resolve the balancing conflict, the tool defines the parent clock pin as an ignore pin.

For example, in Figure 41, FF_gen/CLK and FF0_1-10/CLK are sinks of clkb,
FF1_1-10/CLK and FF0_1-10/CLK are sinks of clka, and FF_gen/CLK is the parent of

IC Compiler™ II Implementation User Guide
T-2022.03

235

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Verifying the Clock Trees

Feedback

FF1_1-10/CLK. In this case, the tool defines FF_gen/CLK as an ignore pin for clkb to
resolve the balancing conflict.

Figure 41 Clock Pins That Cannot Be Balanced Simultaneously

Verifying the Clock Trees
Before you synthesize the clock trees, use the check_clock_tree commandcommandscheck_clock_treecheck_clock_trees command to verify
that the clock trees are properly defined. For example, to verify that the CLK clock tree is
properly defined, use the following command:

icc2_shell> check_clock_trees -clocks [get_clocks CLK]
If you do not specify the -clock option, the tool checks all clocks in the current block.

The check_clock_trees command checks for the following issues:

• Clock (master or generated) with no sinks

• Loops in the clock network

• Multiple clocks reach the same register because of overlapping clocks, but multiple-
clocks-per-register propagation is not enabled

• Ignored clock tree exceptions

• Stop pin or float pin defined on an output pin

• Buffers with multiple timing arcs used in clock tree references

• Situations that cause an empty buffer list

IC Compiler™ II Implementation User Guide
T-2022.03

236

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Verifying the Clock Trees

Feedback

• Generated clock without a valid master clock source

A generated clock does not have a valid master-clock source in the following situations:

◦ The master clock specified in create_generated_clock does not exist

◦ The master clock specified in create_generated_clock does not drive the source
pin of the generated clock

◦ The source pin of the generated clock is driven by multiple clocks, and some of the
master clocks are not specified with create_generated_clock.

For example, in Figure 42, the GEN_REG/Q pin is driven by both CLKA and
CLKB. If only CLKA is specified as a master clock in a create_generated_clock
command, GEN_CLK does not have a valid master clock source.

Figure 42 Generated Clock With Invalid Master Clock Source

D Q

0

1

REG1

REG2

D Q

D Q

GEN_REG

CLKA

CLKB

GEN_CLK

For multicorner-multimode designs, the check_clock_trees command checks all active
scenarios for the following issues:

• Conflicting per-clock exception settings

• Conflicting balancing settings

Before you implement the clock trees, you should manually fix the reported issues. Each
message generated by the check_clock_trees command has a detailed man page that
describes how to fix the identified issue. You can improve the clock tree and timing QoR by
fixing all the issues identified by the check_clock_trees command.

IC Compiler™ II Implementation User Guide
T-2022.03

237

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Setting Clock Tree Design Rule Constraints

Feedback

Setting Clock Tree Design Rule Constraints
The IC Compiler II tool supports the following design rule constraints for clock tree
synthesis:

• clock tree synthesismaximum capacitanceclock tree design rule constraintmaximum capacitanceMaximum capacitance

To specify maximum capacitance constraints for clock tree synthesis, use the
-clock_path option with the set_max_capacitance command.

If you do not specify this constraint, the clock tree synthesis default is 0.6 pF.

• clock tree synthesismaximum transition timeclock tree design rule constraintmaximum transition timeMaximum transition time

To specify maximum transition time constraints for clock tree synthesis, use the
-clock_path option with the set_max_transition command.

If you do not specify this constraint, the clock tree synthesis default is 0.5 ns.

By default, these constraints apply to all corners associated with the current mode. To set
the constraint for a specific mode, use the -mode option with the get_clocks command to
identify the clocks. To set the constraint for specific corners associated with the specified
mode, use the -corners option with the constraint command. Be careful to apply the
correct constraints across all the modes and their associated corners.

For example, to set a maximum transition time of 0.20 ns on all pins in the CLK clock path
for all corners of the current mode, use the following command:

icc2_shell> set_max_transition 0.20 -clock_path [get_clocks CLK]
To set different maximum transition time constraints for different corners associated with a
specific mode, use the -mode option with the get_clocks command to specify the mode
and use the -corners option to specify the corner.

For example, to set the maximum transition time to 0.15 ns for corner1 in mode1 and 0.10
ns for corner2 in mode1, use the following commands:

icc2_shell> set_max_transition 0.15 -corners corner1 \
 -clock_path [get_clocks -mode mode1]
icc2_shell> set_max_transition 0.10 -corners corner2 \
 -clock_path [get_clocks -mode mode1]
To set the same maximum capacitance constraint for different corners associated with a
specific mode, use the following command:

icc2_shell> set_max_capacitance 0.6 \
 -clock_path [get_clocks -mode mode2] \
 -corners [get_corner \
 [get_attribute [get_modes mode2] associated_corners]]

IC Compiler™ II Implementation User Guide
T-2022.03

238

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

Specifying the Clock Tree Synthesis Settings
The clock tree synthesis options guide the implementation of the clock trees. The following
topics describe how to set these options:

• Specifying the Clock Tree References

• Setting Skew and Latency Targets

• Enabling Local Skew Optimization

• Specifying the Primary Corner for Clock Tree Synthesis

• Preventing Specific Clocks From Being Synthesized

• Preserving Preexisting Clock Trees

• Enabling Clock Tree Power Reduction Techniques

• Reducing Electromigration

• Handling Inaccurate Constraints During Clock Tree Synthesis

• Defining Clock Cell Spacing Rules

• Creating Skew Groups

• Defining a Name Prefix for Clock Cells

• Using the Global Router During Initial Clock Tree Synthesis

• Specifying Constraints for Clock Nets

• Reducing Signal Integrity Effects on Clock Nets

• Specifying Settings for Clock Latency Adjustments

• Reporting the Clock Tree Settings

Specifying the Clock Tree References
The buffer and inverter cells that can be used to build a clock tree and the reference
cells of the preexisting gates of the clock tree are referred to as clock tree references.

IC Compiler™ II Implementation User Guide
T-2022.03

239

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

To specify the clock tree references, use the set_lib_cell_purpose -include cts
command.

Ensure that the list of cells you specify as clock tree references meets the following
criteria:

• The list contains at least one buffer or one inverter

• The list contains the library cells of the preexisting gates

If they are not included in the list, the tool is unable to resize these preexisting gates
during clock tree synthesis and optimization. You can automatically derive equivalent
cells for all the preexisting clock tree cells that are not buffers or inverters and specify
them as clock references by using the derive_clock_cell_references command, as
described in Deriving Clock Tree References for Preexisting Gates.

• For multivoltage designs with always-on buffering requirements, the list contains
always-on cells

• The library cells in the reference list do not have a dont_touch attribute

If library cells have the dont_touch attribute set on them, they are not used by clock
tree synthesis even if you specify them as clock tree references.

To ensure that clock tree synthesis uses only the specified set of cells and that these cells
are not used by any optimization step other than clock tree synthesis, run the following
commands:

icc2_shell> set cts_cells list_of_cells
icc2_shell> set_lib_cell_purpose -exclude cts [get_lib_cells]
icc2_shell> set_lib_cell_purpose -include none [get_lib_cells $cts_cells]
icc2_shell> set_lib_cell_purpose -include cts [get_lib_cells $cts_cells]

Deriving Clock Tree References for Preexisting Gates
To ensure that the tool resize preexisting gates in the clock network during clock tree
synthesis and optimization, you must specify equivalent cells as clock references. Not
specifying a complete list of equivalent cells for preexisting gates can affect clock tree
QoR.

You can automatically derive equivalent cells for all the preexisting clock tree cells
and specify them as clock references by using the derive_clock_cell_references
command.

When you run this command, the tool sets the valid_purpose attribute to true on
equivalent library cells of the preexisting clock tree cells that are not buffers or inverters.
This command does not derive equivalent library cells for preexisting buffers and inverters,

IC Compiler™ II Implementation User Guide
T-2022.03

240

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

Therefore, you must manually specify the buffers and inverters to use for clock tree
synthesis, as shown in the following example:

icc2_shell> set_lib_cell_purpose -include cts \
 {tech_lib/clk_buf* tech_lib/clk_inv*}
icc2_shell> derive_clock_cell_references
icc2_shell> synthesize_clock_trees
Instead of automatically specifying the equivalent library cells of the preexisting clock tree
cells as clock tree references, you can generate a Tcl script that specifies the equivalent
library cells of the preexisting clock tree cells as clock tree references. To do so, use the
-output option.

icc2_shell> derive_clock_cell_references -output cts_leq_cells.tcl
You can edit the output file, source it, and then run clock tree synthesis, as shown in the
following example:

icc2_shell> set_lib_cell_purpose -include cts \
 {tech_lib/clk_buf* tech_lib/clk_inv*}
icc2_shell> source cts_leq_cells.tcl
icc2_shell> synthesize_clock_trees

Restricting the Target Libraries Used
You can restrict the libraries used during clock tree synthesis for the top level or a lower
level of the logical hierarchy of a design by using the set_target_library_subset
-clock command. To enable the use of the target library subset, you must set the
opt.common.enable_target_library_subset_opt application option to 1.

The following example specifies the buf1 and buf2 cells from the HVT_lib and LVT_lib
libraries as clock tree references. However, it restricts the lower-level block named
TSK_BLK to use only the cells from the LVT_lib library for its clock nets. Therefore, only
buf1 and buf2 cells from the LVT_lib library are used as clock references for that block.

icc2_shell> set_lib_cell_purpose -include cts \
 {HVT_lib/buf1 HVT_lib/buf2 LVT_lib/buf1 LVT_lib/buf2}
icc2_shell> set_target_library_subset -clock {LVT_lib} \
 -objects [TOP/TSK_BLK]
icc2_shell> set_app_options \
 -name opt.common.enable_target_library_subset_opt -value 1

IC Compiler™ II Implementation User Guide
T-2022.03

241

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

Setting Skew and Latency Targets
By default, clock tree synthesis tries to achieve the best skew and latency for all clocks.
However, this can lead to area, power, and runtime overhead for low frequency clocks,
which have relaxed skew and latency targets.

• To specify a skew target, use the -target_skew option with the
set_clock_tree_options command.

• To specify a latency target, use the -target_latency option with the
set_clock_tree_options command.

By default, when you define skew and latency targets, they apply to all clocks in all
corners. To define targets for specific clocks, use the -clocks option. To define targets for
specific corners, use the -corners option.

To report the user-defined skew and latency targets, use the
report_clock_tree_options command.

To remove user-defined skew or latency targets, use the remove_clock_tree_options
command. To remove all skew and latency targets, use the -all option; otherwise, use
the appropriate -target_skew, -target_latency, -clocks, and -corners options to
remove the specific targets.

Enabling Local Skew Optimization
During clock tree synthesis, by default, the tool tries to minimize the global skew, which
is the difference between the longest and shortest clock paths. If there is no timing path
between the registers with the longest and shortest clock paths, optimizing global skew
does not improve the timing QoR of the design. However, by optimizing the local skew,
which is the worst skew between launch and capture registers of timing paths, you can
improve the timing QoR of the design. During local skew optimization, the tool works on
improving local skew of all violating setup and hold timing paths.

To enable local skew optimization during the clock tree synthesis and clock tree
optimization stages of the synthesize_clock_trees and clock_opt commands, set the
cts.compile.enable_local_skew and cts.optimize.enable_local_skew application
options to true.

icc2_shell> set_app_options -list {cts.compile.enable_local_skew true}
icc2_shell> set_app_options -list {cts.optimize.enable_local_skew true}
When you enable local skew optimization using the previous settings, by default, the tool
derives skew targets that help improve the timing QoR, and ignores the target skew you

IC Compiler™ II Implementation User Guide
T-2022.03

242

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

specify with the set_clock_tree_options -target_skew command. To prevent the tool
from deriving skew targets, use the following application option setting:

icc2_shell> set_app_options \
 -name cts.common.enable_auto_skew_target_for_local_skew -value false

Specifying the Primary Corner for Clock Tree Synthesis
During initial clock tree synthesis, by default, the tool identifies the corner with the worst
clock delays and inserts buffers to balance the clock delays in all modes of this corner.
To identify a specific corner as the primary corner for initial clock tree synthesis, use the
cts.compile.primary_corner application option.

Preventing Specific Clocks From Being Synthesized
By default, the tool synthesizes all clocks defined with the create_clock and
create_generated_clock commands. To prevent the tool from synthesizing a specific
clock, specify it by using the cts.common.skip_cts_clocks application option.

icc2_shell> set_app_options \
 -name cts.common.skip_cts_clocks -value CK_B

Preserving Preexisting Clock Trees
When you perform clock tree synthesis, by default, the tool removes all
preexisting clock buffers and inverters. You can prevent this by setting the
cts.compile.remove_existing_clock_trees application option to false.

To preserve specific preexisting clock buffers or inverters, apply a don’t touch or size-only
exception on them.

Enabling Clock Tree Power Reduction Techniques
You can enable clock tree power reduction techniques by using the
cts.compile.power_opt_mode application option as shown in the following table.

Table 19 Settings for the cts.compile.power_opt_mode Application Option

To do this Use this setting

Relocate clock-gating cells closer to their drivers to reduce the length of
input nets of the clock-gating cells, which have high switching activity

gate_relocation

Use clustering techniques to improve power low_power_targets

IC Compiler™ II Implementation User Guide
T-2022.03

243

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

Table 19 Settings for the cts.compile.power_opt_mode Application Option (Continued)

To do this Use this setting

Use both clock-gate relocation and clustering techniques to improve
power

all

Reducing Electromigration
Clock cells consume more power than cells that are not in the clock network. Clock cells
that are clustered together in a small area increase the current densities for the power
and ground rails, which increases the potential for electromigration problems. One way
to avoid the problem is to set spacing requirements between clock cells to prevent local
clumping of the clock cells along a standard cell power rail between the perpendicular
straps.

To use this method to reduce electromigration in the block,

1. Define clock cell spacing rules for the inverters, buffers, and integrated clock-gating
cells in the clock network by using the set_clock_cell_spacing command, as
described in Defining Clock Cell Spacing Rules.

2. Perform clock tree synthesis by using the synthesize_clock_trees command,
as described in Performing Standalone Clock Trees Synthesis, or the clock_opt
command, as described in Synthesizing, Optimizing, and Routing Clock Trees With the
clock_opt Command.

Note:
The clock cell spacing rules are also honored by the
balance_clock_groups command. For information about using this
command, see Balancing Skew Between Different Clock Trees.

3. Check clock cell spacing rule violations by using the check_legality -verbose
command.

You should not see any violations if you set the appropriate clock cell spacing
constraints.

Handling Inaccurate Constraints During Clock Tree Synthesis
In the early stages of the implementation of a design, the constraints can be inaccurate or
too restrictive. Running clock tree synthesis on such a design can lead to long runtime or
poor clock tree QoR.

IC Compiler™ II Implementation User Guide
T-2022.03

244

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

You can run clock tree synthesis on such a design, but still get usable results in a
reasonable runtime. To do so, set the following application variable before you begin clock
tree synthesis:

icc2_shell> set_app_options \
 -name cts.common.enable_dirty_design_mode -value true
When you use this application option setting, the tool

• Ignores dont_touch and dont_touch_network attribute settings on clock nets.

• Removes maximum transition and maximum capacitance constraints if they are too
tight.

• Removes the maximum net length constraint if it is less than 50 microns.

• Ignores clock cell spacing rules if the horizontal spacing requirement is more than three
times the site height and the vertical spacing requirement is more than twenty times the
site height.

• Ignores nondefault routing rules if the width plus the spacing requirement of the routing
rule is more than ten times the default width plus the default spacing.

• Reports balance point delay values that are large enough to cause an increase in clock
insertion delay.

Defining Clock Cell Spacing Rules
To define clock cell spacing rules, use the set_clock_cell_spacing command. At a
minimum, you must specify the minimum spacing in the x-direction or the y-direction;
typically you would specify the minimum spacing in both directions.

To specify the minimum spacing in microns in the

• X-direction, set the -x_spacing option to a nonzero value

This value is usually dependent on the library cell’s drive strength and clock frequency.

• Y-direction, set the -y_spacing option to a nonzero value

This value is usually less than half a row height.

Note:
Using a large spacing value increases the skew because the cells are spaced
further away from the intended clusters of sinks.

IC Compiler™ II Implementation User Guide
T-2022.03

245

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

By default, the specified cell spacing requirements apply to all clock cells. To restrict the
clock cell spacing rules to specific

• Library cells, use the -lib_cells option

• Clocks, use the -clocks option

If adjoining clock cells both have cell spacing rules for a given direction, the sum
of the spacing values applies. For example, if two adjoining clock cells both have a
minimum cell spacing of 5 microns in the x-direction, they are placed at least 10 microns
apart in the x-direction. You can relax the adjoining cell spacing rule by setting the
cts.placement.cell_spacing_rule_style application option to maximum, in which
case the tool uses the larger of the spacing settings between two adjoining cells instead of
the sum of the spacing settings. For example, the clock cells in the previous example are
placed at least 5 microns apart in the x-direction, instead of 10 microns.

The clock cell spacing rules defined by the set_clock_cell_spacing command are
honored by the synthesize_clock_trees, balance_clock_groups, and clock_opt
commands.

To report clock cell spacing rules, use the report_clock_cell_spacings command.

To remove clock cell spacing rules, use the remove_clock_cell_spacings command. By
default, this command removes all clock cell spacing rules. To remove specific clock cell
spacing rules, use the -lib_cells option.

Creating Skew Groups
During clock tree synthesis, you might want to balance a group of sinks only among
each other, and not the rest of the sinks. To do so, define a skew group by using the
create_clock_skew_group command.

When you use this command, specify the sinks you want to group, by using the -objects
option.

Optionally, you can specify the following:

• A clock or generated clock for which to create the skew group by using the -clock
option.

• A mode for which to create the skew group by using the -mode option.

By default, the tool creates the skew group for the current mode.

• A name for the skew group by using the -name option.

IC Compiler™ II Implementation User Guide
T-2022.03

246

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

The following example creates a skew group named sg1 consisting of sinks reg1/CP, reg2/
CP, and reg3/CP:

icc2_shell> create_clock_skew_group -name sg1 \
 -objects {reg1/CP reg2/CP reg3/CP}
To report skew groups, use the report_clock_skew_groups command. To remove skew
groups, use the remove_clock_skew_groups command.

Defining a Name Prefix for Clock Cells
You can specify a name prefix for the cells added on the clock network during clock tree
synthesis by using the cts.common.user_instance_name_prefix application option.

The following example specifies CTS_ as the name prefix for the cells added on the clock
network during clock tree synthesis:

icc2_shell> set_app_options \
 -name cts.common.user_instance_name_prefix -value "CTS_"
To specify a name prefix for the cells added on the data nets during optimization, including
during the clock_opt command, use the opt.common.user_instance_name_prefix
application option, as described in .

Using the Global Router During Initial Clock Tree Synthesis
By default, initial clock tree synthesis uses the virtual router to build the clock trees. For
designs with complex floorplans, this can introduce congestion hotspots and degrade
clock QoR after clock routing.

The tool can use the global router during the initial clock tree synthesis stage of the
synthesize_clock_trees and clock_opt commands. To enable this feature, set the
cts.compile.enable_global_route application option to true.

Specifying Constraints for Clock Nets
By default, the IC Compiler II tool uses the default routing rule and any available routing
layers to route the clock trees.

You can specify the minimum and maximum routing layers for clock nets as described in
Specifying the Routing Resources. These routing layer constraints are used during RC
estimation, congestion analysis, and routing.

To reduce the wire delays in the clock trees, you can use wide wires and higher metal
layers instead. routing rulenondefault, definedWide wires are represented by nondefault routing rules. To use nondefault

IC Compiler™ II Implementation User Guide
T-2022.03

247

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Specifying the Clock Tree Synthesis Settings

Feedback

routing rules on the clock nets, you must first define the routing rules and assign them to
the clock nets as described in Using Nondefault Routing Rules.

Reducing Signal Integrity Effects on Clock Nets
The timing of a design can be improved by reducing signal integrity issues on clock nets.
To do so, the tool can derive nondefault routing rules with larger spacing requirements and
assign them to the clock nets in regions without routing congestion.

To enable this feature, use the following application option setting:

icc2_shell> set_app_options \
 -name cts.optimize.enable_congestion_aware_ndr_promotion -value true
When the tool derives a new nondefault routing rule for a clock net, the new spacing
requirement is dependent on the spacing requirement of the existing routing rule of that
net. If the existing routing rule is

• A nondefault routing rule with a spacing requirement of less than or equal to two times
the default spacing, the spacing requirement is doubled

The name of this new nondefault rule is the original name with an _ext_spacing postfix.

• A nondefault routing rule with a spacing requirement of more than two times the default
spacing, the spacing requirement is increased by one default spacing

The name of this new nondefault rule is the original name with an _ext_spacing postfix.

• The default routing rule, the spacing requirement is doubled

The name of this new nondefault rule is default_rule_equivalent_ndr_double_spacing.

Specifying Settings for Clock Latency Adjustments
I/O ports are usually constrained using real or virtual clocks. After clock tree synthesis,
the latencies of the clocks constraining the I/O ports need to be updated to ensure
that the boundary constraints are accurate. When you run clock tree synthesis with
the clock_opt command, the tool automatically updates the latencies of the clocks
constraining the I/O ports. You can control these latency adjustments by using the
set_latency_adjustment_options command.

The following example specifies that the clock latencies of the VCLK1 and VCLK2 clocks
should be updated based on the latency of the PC_CLK clock, and that the latency of the
VCLK3 clock should not be updated:

icc2_shell> set_latency_adjustment_options \
 -reference_clock PC_CLK -clocks_to_update {VCLK1 VCLK2} \
 -exclude_clocks VCLK3

IC Compiler™ II Implementation User Guide
T-2022.03

248

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

If you perform clock tree synthesis with the synthesize_clock_trees command,
the tool does not automatically update the clock latencies. To do so, use the
compute_clock_latency command after clock tree synthesis. This command honors the
settings you specify with the set_latency_adjustment_options command.

Reporting the Clock Tree Settings
To report the settings that are used by clock tree synthesis, use the
report_clock_settings command. By default, the commands reports the clock tree
configuration, including the design rule constraints, target skew, and target latency; the
clock tree references; the clock cell spacing rules; and the nondefault routing rules for all
clocks in the current block.

To report the settings for specific clocks, use the -clock option to specify the clocks of
interest. To report specific information, use the -type option with the appropriate keyword.

• To report the clock tree design rule constraints, target skew, and target latency, use
-type configurations.

• To report the clock tree references, use -type references.

• To report the clock cell spacing rules, use -type spacing_rules.

• To report the nondefault routing rule used for the clock nets, use -type
routing_rules.

Implementing Clock Trees and Performing Post-CTS Optimization
Before you perform clock tree synthesis, you should save the block. This allows you to
refine the clock tree synthesis goals and rerun clock tree synthesis with the same starting
point, if necessary.

The following topics describe the different methods available for implementing clock trees:

• Performing Standalone Clock Trees Synthesis

• Synthesizing, Optimizing, and Routing Clock Trees With the clock_opt Command

• Controlling Concurrent Clock and Data Optimization

• Splitting Clock Cells

• Balancing Skew Between Different Clock Trees

• Performing Global-Route-Based Optimization Using Machine Learning Data

• Routing Clock Trees

IC Compiler™ II Implementation User Guide
T-2022.03

249

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

• Inserting Via Ladders During Clock Tree Synthesis, Optimization, and Clock Routing

• Marking Clocks as Propagated After Clock Tree Synthesis

• Performing Postroute Clock Tree Optimization

• Performing Voltage Optimization

• Marking Clock Trees as Synthesized

• Removing Clock Trees

Performing Standalone Clock Trees Synthesis
To perform standalone clock tree synthesis, use the synthesize_clock_trees command,
as shown in the following example:

icc2_shell> synthesize_clock_trees
When you use this command, the tool performs the following tasks:

1. Clock tree synthesis

Before clock tree synthesis, the tool performs virtual routing of the clock nets and uses
RC estimation to determine the clock net timing.

2. Clock tree optimization

Before clock tree optimization, the tool performs global routing on the clock nets and
uses RC extraction to determine the clock net timing. During clock tree optimization,
the tool performs incremental global routing on clock nets modified during optimization.

Note:
This command does not detail route the clock trees.

By default, this command works on all clocks in all active scenarios that are enabled for
setup or hold analysis. You can specify the clocks to be built by using the -clock option.
For example, to build only the CLK clock tree, use the following command:

icc2_shell> synthesize_clock_trees -clocks [get_clocks CLK]
After clock tree synthesis, the tool sets the clocks in all modes of all active scenarios as
propagated.

IC Compiler™ II Implementation User Guide
T-2022.03

250

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

Synthesizing, Optimizing, and Routing Clock Trees With the
clock_opt Command
To synthesize the clock trees, route the clock nets, and further optimize the design by
using a single command, use the clock_opt command.

The clock_opt command consist of the following stages:

1. The build_clock stage, during which the tool synthesizes and optimizes the clock
trees for all clocks in all modes of all active scenarios. After clock tree synthesis, the
tool sets the synthesized clocks as propagated.

2. The route_clock stage, during which the tool detail routes the synthesized clock nets.

3. The final_opto stage, during which the tool performs further optimization, timing-
driven placement, and legalization. It then global routes the block and performs
extensive global-route-based optimization, which includes incremental legalization and
route patching.

You can limit the clock_opt command to one or more contiguous stages by using the
-from option to specify the stage from which you want to begin and the -to option to
specify the stage after which you want to end. If you do not specify the -from option, the
tool begins from the build_clock stage. Similarly, if you do not specify the -to option, the
tool continues until the final_opto stage is completed.

For example, to synthesize and optimize the clock trees and detail route the clock nets
only, limit the execution to the build_clock and route_clock stages by use the following
command:

icc2_shell> clock_opt -to route_clock
Because the tool performs global routing during the final_opto stage, you should specify
all router related settings, such as routing rules, route guides, application option settings
required for the technology node, and so on, before you run the clock_opt command.

You should run the final_opto only one time for each block. After this stage is
completed, all the signal routes in the block are global routed. Therefore, when
subsequently run any routing command, such as the route_auto,route_global, or
route_group command, the tool skips global routing. To avoid errors during subsequent
track assignment and detail routing, do not change any global route shapes after you run
the clock_opt command.

Considering Voltage Drop Information During Clock Tree
Synthesis
By default, the clock_opt command does not consider voltage drop information when
inserting clock buffers. Therefore, the tool might place clock buffers in locations with

IC Compiler™ II Implementation User Guide
T-2022.03

251

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

high PG resistance, which increases the voltage drop. To prevent this, you can use the
RedHawk Fusion feature to analyze the PG network and use this information with the
clock_opt command, as shown in the following flow:

1. Use the RedHawk Fusion feature to analyze the PG network by using the
analyze_rail -min_path_resistance command.

2. Load the RedHawk Fusion results by using the open_rail_result command.

3. Enable voltage-drop-aware clock tree synthesis by setting the
clock_opt.flow.enable_voltage_drop_aware application option to true.

4. Run the clock_opt command.

Using Nondefault Routing Rules for Critical Nets During
Optimization
To improve timing QoR, the tool can use nondefault routing rules on timing critical nets
during preroute optimization. In addition, the tool can guide the router to honor these
nondefault rule assignments as soft constraints.

To enable this capability for the clock_opt command, set the
clock_opt.flow.optimize_ndr application option to true.

icc2_shell> set_app_options -name clock_opt.flow.optimize_ndr \
 -value true

Performing Concurrent Clock and Data Optimization During the
clock_opt Command
Applying useful skew techniques during datapath optimization to improve the timing QoR
by taking advantage of the positive slack and adjusting the clock arrival times of registers
is referred to as concurrent clock and data (CCD) optimization.

By default, the tool performs concurrent clock and data optimization during the clock_opt
command.

To disable concurrent clock and data optimization for the clock_opt command, set the
clock_opt.flow.enable_ccd application option to false.

You can change the default behavior of concurrent clock and data optimization during the
clock_opt command by performing any of the following optional steps:

1. (Optional) Limit the latency adjustment values for concurrent clock and data
optimization as described in Limiting the Latency Adjustment Values.

2. (Optional) Control the latency adjustment of boundary registers for concurrent clock
and data optimization as described in Excluding Boundary Paths.

IC Compiler™ II Implementation User Guide
T-2022.03

252

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

3. (Optional) Ignore specific path groups during concurrent clock and data optimization as
described in Excluding Specific Path Groups.

4. (Optional) Ignore specific scenarios during concurrent clock and data optimization as
described in Excluding Specific Scenarios.

5. (Optional) Ignore specific sinks during concurrent clock and data optimization as
described in Excluding Specific Sinks.

6. (Optional) Control the effort of timing optimization performed during concurrent clock
and data optimization as described in Controlling Timing Optimization Effort.

7. (Optional) Control the effort of hold timing optimization performed during concurrent
clock and data optimization as described in Controlling Hold Time Optimization Effort.

8. (Optional) Control the adjustment of I/O clock latencies performed during concurrent
clock and data optimization as described in Controlling the Adjustment of I/O Clock
Latencies.

9. (Optional) Analyze the effects of concurrent clock and data optimization as described in
Reporting Concurrent Clock and Data Timing.

Controlling Multibit Optimization Performed During the clock_opt
Command
The following topics describe how you can control the multibit optimization performed
during the clock_opt command:

• Enabling the Rewiring of Mixed-Drive-Strength Multibit Cells

• Enabling Post-Clock-Tree-Synthesis Multibit Debanking

Enabling the Rewiring of Mixed-Drive-Strength Multibit Cells
Some logic libraries have mixed-drive-strength multibit cells where some bits have a
higher drive strength than others. For designs that use such cells, if a violating path goes
through a lower-drive-strength bit, the tool can rewire the mixed-drive-strength multibit cell
such that the violating path goes through a higher-drive-strength bit. To enable this feature
for the clock_opt command, set the clock_opt.flow.enable_multibit_rewiring
application option to true.

Enabling Post-Clock-Tree-Synthesis Multibit Debanking
To improve the timing QoR, the clock_opt command can debank multibit registers during
the final_opt stage, if doing so does not introduce hold timing violations. To enable this
feature, set the clock_opt.flow.enable_multibit_debanking application option to
true before you run the final_opt stage of the clock_opt command.

IC Compiler™ II Implementation User Guide
T-2022.03

253

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

Performing Power or Area Recovery on the Clock Network
If you enable concurrent clock and data optimization for the clock_opt command, the tool
performs clock power recovery on clock cells and registers during the final_opt stage.
If you do not enable concurrent clock and data optimization, you can enable clock power
recovery by using the following application option setting:

icc2_shell> set_app_options \
 -name clock_opt.flow.enable_clock_power_recovery \
 -value power
Before you perform power recovery using this technique, you must

1. Enable scenarios for dynamic, leakage, or total power optimization by using the
-dynamic_power and -leakage_power options of the set_scenario_status
command

2. (Optional) Provide a switching activity by using the read_saif command

If you do not provide switching activity, the tool uses default switching activity for
dynamic power recovery.

Instead of power recovery, you can enable area recovery on the clock cells and registers
during the final_opt stage clock_opt command by using the following application
option setting:

icc2_shell> set_app_options \
 –name clock_opt.flow.enable_clock_power_recovery \
 -value area

Performing IR-Drop-Aware Placement During the clock_opt
Command
During placement, the tool can use the voltage (IR) drop values of cells to identify areas of
high power density and spread the cells with high voltage drop values, which reduces the
power density of such areas.

To perform IR-drop-aware placement during the clock_opt command, use the following
steps:

1. Run the clock_opt command through the route-clock stage by using the clock_opt
-to route_clock command.

2. Set up for RedHawk Fusion and perform static or dynamic voltage drop analysis
by using the analyze_rail -voltage_drop command as shown in the following
example:

icc2_shell> source redhawk_setup.tcl
icc2_shell> analyze_rail -voltage_drop static -nets {VDD VSS}

IC Compiler™ II Implementation User Guide
T-2022.03

254

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

For more information, see Performing Voltage Drop Analysis.

3. Enable IR-drop-aware placement by setting the place.coarse.ir_drop_aware
application option to true.

4. (Optional) Specify additional settings for IR-drop-aware placement, as described in
Controlling IR-Drop-Aware Placement.

5. Run the final optimization stage of the clock_opt command by using the clock_opt
-from final_opto command.

Controlling Concurrent Clock and Data Optimization
Applying useful skew techniques during datapath optimization to improve the timing QoR
by taking advantage of the positive slack and adjusting the clock arrival times of registers
is referred to as concurrent clock and data (CCD) optimization.

Concurrent clock and data optimization is enabled by default for the place_opt
and clock_opt commands. To enabled it for the route_opt command, set the
route_opt.flow.enable_ccd application option to true.

You can change the default behavior of concurrent clock and data optimization by

• Limiting the Latency Adjustment Values

• Excluding Boundary Paths

• Excluding Specific Path Groups

• Excluding Specific Scenarios

• Excluding Specific Sinks

• Controlling Timing Optimization Effort

• Controlling Hold Time Optimization Effort

• Controlling the Adjustment of I/O Clock Latencies

• Performing Dynamic-Voltage-Drop-Driven Concurrent Clock and Data Optimization
During the route_opt Command

• Specifying Optimization Targets at the Preroute Stage

• Specifying Optimization Targets at the Postroute Stage

• Enabling Buffer Removal at the Postroute Stage

• Reporting Concurrent Clock and Data Timing

IC Compiler™ II Implementation User Guide
T-2022.03

255

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

Limiting the Latency Adjustment Values
You can limit the latency adjustment values for concurrent clock and data optimization
performed during the place_opt, clock_opt, and route_opt commands as follows:

• Limit the amount that the clock latencies are advanced by using the ccd.max_prepone
application option.

• Limit the amount that the clock latencies are delayed by using the ccd.max_postpone
application option.

There is no default for these application options. Specify these values in the library timing
units. The following example sets a limit of 0.2 for advancing and 0.1 for delaying clock
latencies:

icc2_shell> set_app_options -list {ccd.max_prepone 0.2}
icc2_shell> set_app_options -list {ccd.max_postpone 0.1}

Excluding Boundary Paths
By default, the tool performs concurrent clock and data optimization on all paths in a block.
However, you might want to exclude paths that are connected to boundary registers,
which are registers in the transitive fanout of input ports and transitive fanin of output
ports. To exclude boundary paths from concurrent clock and data optimization, set the
ccd.optimize_boundary_timing application option to false.

When you do so, you can selectively ignore the boundary paths
of some ports during boundary path exclusion by using the
ccd.ignore_ports_for_boundary_identification application option. The following
example disables concurrent clock and data optimization for all boundary paths except for
those connected to the ports named IN_A and OUT_A:

icc2_shell> set_app_options -name ccd.optimize_boundary_timing \
 -value false
icc2_shell> set_app_options \
 -name ccd.ignore_ports_for_boundary_identification \
 -value {IN_A OUT_A}
Even when you disable concurrent clock and data optimization on boundary registers,
the tool can still optimize the clock tree fanin cone of these boundary registers, when
doing so improves the timing QoR of other internal registers that share the same clock
paths. To prevent the clock tree fanin of boundary registers from changing, set the
ccd.optimize_boundary_timing_upstream application option to false. However, doing
so heavily restricts the scope of concurrent clock and data optimization.

These application option settings affect concurrent clock and data optimization performed
during the place_opt, clock_opt, and route_opt commands.

IC Compiler™ II Implementation User Guide
T-2022.03

256

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

Excluding Specific Path Groups
To exclude a specific path group from concurrent clock and data optimization, use the
ccd.skip_path_groups application option and specify the name of the path group you
want ignored.

You can ignore a path group for all scenarios or a specific scenario. For example, to ignore
the path group named CLK1 for all scenarios and CLK2 for the scenario named scnA, use
the following command:

icc2_shell> set_app_options -name ccd.skip_path_groups \
 -value {CLK1 {CLK2 scnA}}
This setting affects concurrent clock and data optimization performed during the
place_opt, clock_opt, and route_opt commands.

Excluding Specific Scenarios
To exclude a specific scenarios from concurrent clock and data optimization, use the
ccd.ignore_scenarios application option and specify the name of the scenarios you
want to ignore.

For example, to ignore the scenario named scnB, use the following command:

icc2_shell> set_app_options -name ccd.ignore_scenarios \
 -value {scnB}}
This setting affects concurrent clock and data optimization performed during the
place_opt, clock_opt, and route_opt commands.

Excluding Specific Sinks
To exclude a specific sink from concurrent clock and data optimization,

1. Apply a cts_fixed_balance_pin attribute on the sink pin by using the
set_attribute command as shown in the following example:

icc2_shell> set_attribute -objects reg21/CK \
 -name cts_fixed_balance_pin -value true

2. Set the ccd.respect_cts_fixed_balance_pins application option to true.

These setting prevents the tool from adjusting the latencies of the sinks that have a
cts_fixed_balance_pin attribute set to true. However, changes in the clock tree
due to concurrent clock and data optimization performed on other sinks can change
the latencies of the sinks that have a cts_fixed_balance_pin attribute set to true.
To prevent the tool from making any changes to the clock paths between the sinks
that have a cts_fixed_balance_pin attribute set to true and the clock root, set the

IC Compiler™ II Implementation User Guide
T-2022.03

257

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

ccd.respect_cts_fixed_balance_pins application option to upstream instead of
true.

This application option setting affects concurrent clock and data optimization performed
during the place_opt, clock_opt, and route_opt commands.

Controlling Timing Optimization Effort
By default, the tool focuses on improving the timing and power QoR during concurrent
clock and data optimization. You can change the effort level for timing optimization by
setting the ccd.timing_effort application option to low or high. The default is medium.

This setting affects concurrent clock and data optimization performed during the
final_opt stage of the clock_opt command and the route_opt command.

Controlling Hold Time Optimization Effort
By default, the tool focuses on fixing setup violations during concurrent clock and data
optimization. However, if your design has hold violations that are difficult to fix, you can
increase the effort for hold fixing by setting the ccd.hold_control_effort application
option to medium, high, or ultra. The default is low.

Increasing the priority of hold violations reduces the number of setup violations that are
fixed. Therefore, the hold priority should be increased only if the hold timing is critical. This
setting affects concurrent clock and data optimization performed during the final_opt
stage of the clock_opt command and the route_opt command.

Controlling the Adjustment of I/O Clock Latencies
By default, the tool adjusts the latencies of the I/O clocks, which are the clocks that
constrain the boundary ports, when it performs concurrent clock and data optimization
during the clock_opt command. The tool also uses concurrent clock and data
optimization techniques to adjust the I/O clock latencies when you subsequently run the
compute_clock_latency command.

The tool does not update the I/O clock latencies

• For the entire block when you disable this feature by setting the
ccd.adjust_io_clock_latency to false or when you disable concurrent clock and
data optimization for boundary paths by setting the ccd.optimize_boundary_timing
application option to false

• For specific I/O paths when you exclude the corresponding path groups from
concurrent clock and data optimization by using the ccd.skip_path_groups
application option

• For specific I/O clocks when you disable latency adjustment those I/O clocks by using
the set_latency_adjustment_options -exclude_clocks command

IC Compiler™ II Implementation User Guide
T-2022.03

258

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

Performing Dynamic-Voltage-Drop-Driven Concurrent Clock and
Data Optimization During the route_opt Command
The concurrent clock and data optimization performed during the route_opt command
can reduce the peak dynamic voltage drop without affecting the timing QoR. To enable this
feature, set the route_opt.flow.enable_voltage_drop_opt_ccd application option to
true.

When you enable this feature, during the route_opt command, the tool uses the
RedHawk Fusion feature to identify dynamic-voltage-drop hotspots and cells rows where
the cells from the hotspots can be relocated. Then, during optimization, the tool relocates
or downsizes the cells in the hotspots to reduce the peak dynamic voltage drop without
hurting the timing QoR.

You can specify one of the following thresholds for selecting cells for optimization:

• A threshold for the cell voltage drop, as a percentage of the supply voltage, by using
the ccd.voltage_drop_voltage_threshold application option.

Any cell with a voltage drop that exceeds this threshold is selected for optimization.

• A threshold for the number of cells, as a percentage of the total number of cells, by
using the ccd.voltage_drop_population_threshold application option.

Cells are selected starting with the worst violator.

During postroute optimization, the tool can perform RedHawk dynamic voltage drop
analysis to identify cells involved in voltage drop violations, and then use optimization
techniques on those cells to improve the dynamic voltage drop.

You can further improve the dynamic voltage drop by enabling IR-driven
sizing, which uses the RedHawk dynamic voltage drop analysis results to
identify cells involved in voltage drop violations, and then tries to replace those
cells with cells having smaller leakage current. To enable this feature, set the
route_opt.flow.enable_irdrivenopt application option to true, in addition to setting
the route_opt.flow.enable_voltage_drop_opt_ccd application option to true.

Specifying Optimization Targets at the Preroute Stage
When performing concurrent clock and data optimization using the place_opt or
clock_opt command, you can give a higher priority to the WNS optimization of

• Certain path groups by specifying them by using the ccd.targeted_ccd_path_groups
application option, as shown in the following example:

icc2_shell> set_app_options -name ccd.targeted_ccd_path_groups \
 -value {PG1 PG2}

IC Compiler™ II Implementation User Guide
T-2022.03

259

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

If a path group you specify with this application option is also specified as a path group
to skip with the ccd.skip_path_groups application option, the path group is skipped
during concurrent clock and data optimization.

• Certain endpoints by specifying a file containing the endpoints by using the
ccd.targeted_ccd_end_points_file application option, as shown in the following
example:

icc2_shell> set_app_options -name ccd.targeted_ccd_end_points_file \
 -value endpoint_targets.tcl
If you specify both path groups and endpoints, the tool optimizes only the specified
endpoints that are in the specified paths groups.

• The worst 300 timing paths by setting the ccd.enable_top_wns_optimization
application option to true

Specifying Optimization Targets at the Postroute Stage
At the final stages of your design flow, you can use the route_opt command to perform
concurrent clock and data optimization on specific critical path groups or endpoints by
using the following steps:

1. Enable targeted concurrent clock and data optimization for the route_opt command
by setting the route_opt.flow.enable_targeted_ccd_wns_optimization
application option to true.

2. Specify the optimization target by using one or both of the following settings:

• Specify the path groups to optimize by using the ccd.targeted_ccd_path_groups
application option

Note:
If a path group you specify with this application option is also specified
as a path group to skip by using the ccd.skip_path_groups application
option, the path group is skipped during targeted concurrent clock and
data optimization.

• Specify the endpoints to optimize by using the
ccd.targeted_ccd_end_points_file application option

You must specify at least one of these settings. If you specify both, the tool optimizes
the specified endpoints of the specified paths groups.

3. (Optional) Specify the type of optimization to perform by using the
ccd.targeted_ccd_select_optimization_moves application option.

The valid values are

IC Compiler™ II Implementation User Guide
T-2022.03

260

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

• auto, the default, which enables all optimization types, including buffering

• size_only, which enables sizing only

• equal_or_smaller_sizing, which enables sizing only to cells that are the same
size or smaller

• footprint_sizing, which enables sizing only to cells with the same footprint

4. (Optional) Specify an optimization effort by using the
ccd.targeted_ccd_wns_optimization_effort application option.

The valid values are high (default), medium, and low. The higher the effort, the more
timing QoR improvement you will see in the targeted paths, but at the expense of the
timing QoR of other paths.

5. (Optional) Specify a threshold beyond which the slack for the
path groups that are not targeted can be degraded by using the
ccd.targeted_ccd_threshold_for_nontargeted_path_groups application option.

By default, if the path groups that are not targeted have positive slack, the tool can
degrade this slack until it reaches zero.

For the route_opt command, you can enable both regular concurrent clock
and data optimization by using the route_opt.flow.enable_ccd application
option and targeted concurrent clock and data optimization by using the
route_opt.flow.enable_targeted_ccd_wns_optimization application option. If
you enable both, the tool performs regular concurrent clock and data optimization first,
followed by targeted concurrent clock and data optimization.

The following script performs targeted concurrent clock and data optimization on a block
that has already undergone routing and postroute optimization:

open_lib design1
open_block blk.post_route

#Disable regular CCD optimization, which was previously performed
set_app_options \
 -name route_opt.flow.enable_ccd -value false

#Enable targeted CCD optimization
set_app_options \
 -name route_opt.flow.enable_targeted_ccd_wns_optimization \
 -value true

#Specify the path group and endpoints to target
set_app_options -name ccd.targeted_ccd_path_groups -value clkA
set_app_options -name ccd.targeted_ccd_end_points_file \
 -value clkA_ep.txt

IC Compiler™ II Implementation User Guide
T-2022.03

261

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

#Specify the optimization type and effort
set_app_options \
 -name ccd.targeted_ccd_select_optimization_moves -value size_only
set_app_options -name ccd.targeted_ccd_wns_optimization_effort \
 -value medium

Perform the targeted CCD optimization
route_opt

Enabling Buffer Removal at the Postroute Stage
To improve QoR by removing buffers or pairs of inverters when concurrent
clock and data optimization is performed during route_opt command, set the
ccd.post_route_buffer_removal application option to true, as shown in the following
example:

icc2_shell> set_app_options -name route_opt.flow.enable_ccd \
 -value true
icc2_shell> set_app_options -name ccd.post_route_buffer_removal \
 -value true
icc2_shell> route_opt

Reporting Concurrent Clock and Data Timing
You analyze the timing effects of concurrent clock and data optimization by using the
report_ccd_timing command. By default, it reports the setup and hold slack of the worst
capture (D-slack) and launch (Q-slack) paths of the five most critical endpoint registers in
the block, as shown in the following example report:

icc2_shell> report_ccd_timing
...
...
--
 Setup Hold
--
 D-slack Q-slack D-slack Q-slack Pin
--
-0.567710 -0.173974 0.524202 0.167434 sink2/CP
-0.175268 0.125309 0.168582 0.077625 sink3e/CP
-0.173974 0.126836 0.167434 0.076277 sink3a/CP
-0.033271 -0.175268 0.068856 0.168582 sink3d/CP
 0.017364 -0.033271 -0.022138 0.068856 sink3c/CP

IC Compiler™ II Implementation User Guide
T-2022.03

262

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

To control the type of report generated, use the -type option as follows:

• To report information for the paths in the fanin or fanout of the most critical endpoints,
use the -type fanin or -type fanout option.

• To report information for the previous, current, and next path stages of the most critical
endpoints, use the -type stage option.

• To report information for all the previous, current, and next path stages of the most
critical endpoints, use the -type chain option. Figure 43 shows the previous, current,
and next stages for an endpoint register.

Figure 43 Previous, Current, and Next Path Stages

By default, the command reports setup slacks at D and Q pins of registers. To report the
hold slacks at these pins, use the -hold option.

By default, the command analyzes timing paths across all active scenarios and reports
the worst D and Q slacks across scenarios. To analyze and report the slack for specific
scenarios use the -scenarios option.

To report the information for specific path endpoints, specify the corresponding clock pins
by using the -pins option.

You can analyze the effects latency adjustments performed during concurrent clock and
data optimization by increasing or decreasing the clock arrival of a specific endpoint
using the -prepone or -postpone option with the -pins option as shown in the following
example:

icc2_shell> report_ccd_timing -pins Reg11/clk -postpone 0.02
You can also see the effects of changing specific cell and net delay values by using the
-annotate_cell_delay and -annotate_net_delay options, as shown in the following
example:

icc2_shell> report_ccd_timing -annotate_cell_delay {{U1/a U1/y 0.2}} \
 -pin I2/d -type stage

IC Compiler™ II Implementation User Guide
T-2022.03

263

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

The delay values you specify with these options are used only for analyzing and reporting
the concurrent clock and data timing. They are not saved and used during subsequent
concurrent clock and data optimization.

Splitting Clock Cells
You can manually split clock cells that have DRC violations by using the
split_clock_cells -cells command, as shown in the following example:

icc2_shell> split_clock_cells -cells [get_cells U1/ICG*]
The tool does not split the specified cells if

• They do not have DRC violations

• They have don’t-touch, size-only, or fixed-placement attribute settings

• It is necessary to punch ports on the boundaries of power domains or blocks that have
been identified with the set_freeze_ports command

After splitting a cell, the tool

• Names the new cells using the <original_cell_name>_split_<integer> naming
convention

• Copies all the settings and constraints from the original cell to the newly created cells

Instead of specifying the cells to split, you can specify one or more collection of loads
that are driven by the same driver by using the -loads option, as shown in the following
example:

icc2_shell> set loads1 [get_pins I1/reg*/CK]
icc2_shell> set loads2 [get_pins I2/reg*/CK]
icc2_shell> split_clock_cells -loads [list $load1 $load2]
After splitting, each set of loads is driven by a newly created driver.

Balancing Skew Between Different Clock Trees
The IC Compiler II tool can automatically balance the skew between a group of clocks.
The set of clocks considered during delay balancing is referred to as a clock balance
group. You can define multiple clock balance groups. For each clock balance group, you
can define a delay offset between the clocks. Together, the clock balance groups and their
delay offset settings are referred to as interclock delay balancing constraints.

Note:
The tool cannot balance skew between a generated clock and other clocks.

IC Compiler™ II Implementation User Guide
T-2022.03

264

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

To balance multiple clocks, perform the following steps:

1. Generate the interclock delay balancing constraints either by

Manually defining the clock balance groups and their delay offsets, as described in
Defining the Interclock Delay Balancing Constraints

Having the tool generate them as described in Generating Interclock Delay Balancing
Constraints Automatically

2. Balance the interclock delays as described in Running Interclock Delay Balancing.

Defining the Interclock Delay Balancing Constraints
To define interclock delay balancing constraints, use the create_clock_balance_group
command. At a minimum, you must specify a name for the clock balance group and the
clocks in the group.

• To specify a name for the clock balance group, use the -name option.

• To specify the clock trees in the group, use the -objects option with the get_clocks
command. By default, the clock balance group is defined for the clocks in the current
mode. To define a clock balance group for the clocks of a specific mode, use the
-objects option with the get_clocks -mode command.

For example, to define a clock balance group named group1 that contains the clocks
named clk1 and clk2 in the current mode, use the following command:

icc2_shell> create_clock_balance_group -name group1 \
 -objects [get_clocks {clk1 clk2}]
To define a clock balance group named group2 that contains all the clocks in the mode
named m2, use the following command:

icc2_shell> create_clock_balance_group -name group2 \
 -objects [get_clocks -mode m2]
By default, the tool has a goal of zero delay offset between clocks. All clocks are balanced
with the same insertion delay which usually is the longest insertion delay among the
clocks. To specify a delay offset between clocks in the group, use the -offset_latencies
option. By default, the delay offset applies to the current corner. To apply the delay offset
to a specific corner, use the -corner option.

For example, assume the design has three clocks named clk1, clk2, and clk3. If you want
the insertion delay of clk1 and clk2 to be the same and the insertion delay of clk3 to be
100 less than that of clk1 and clk2, use the following command:

icc2_shell> create_clock_balance_group -name group3 \
 -objects [get_clocks {clk1 clk2 clk3}] \
 -offset_latencies {0 0 -100}

IC Compiler™ II Implementation User Guide
T-2022.03

265

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

Reporting Clock Balance Groups
To report clock balance groups, use the report_clock_balance_groups command. The
report lists the clock balance groups for all modes in all active scenarios.

Removing Clock Balance Groups
To remove clock balance groups, use the remove_clock_balance_groups command. You
can either remove specific clock balance groups by specifying the clock balance groups
or all clock balance groups by using the -all option. If you specify the clock balance
groups to remove, they are removed from the current mode. However, if a specified group
does not exist in the current mode, but does exist in another mode, it is removed from that
mode. If you use the -all option, the clock balance groups are removed from all modes.

For example, to remove a previously defined clock balance group named group1 from the
current mode, use the following command:

icc2_shell> remove_clock_balance_groups group1
To remove all clock balance groups from all modes, use the following command:

icc2_shell> remove_clock_balance_groups -all

Generating Interclock Delay Balancing Constraints Automatically
The IC Compiler II tool can automatically generate the interclock delay balancing
constraints based on the timing relationships between the clocks. To automatically
generate the interclock delay balancing constraints, use the following command:

icc2_shell> derive_clock_balance_constraints
This command identifies clocks that have interclock timing paths and places
them in the same balance group. After running this command, use the
report_clock_balance_groups command to report the generated interclock delay
balancing constraints, as described in Reporting Clock Balance Groups. If necessary,
you can modify the clock balance groups as described in Defining the Interclock Delay
Balancing Constraints.

By default, the tool considers all timing paths when identifying the timing relationships
between the clocks. To consider only those timing paths with slack less than a specified
value, use the -slack_less_than option with the derive_clock_balance_constraints
command.

For example, to generate interclock balancing constraints only for paths with slack less
than -0.2 ns, use the following command:

icc2_shell> derive_clock_balance_constraints -slack_less_than -0.2
Assume you run this command on a block for which clock A has a timing relationship only
with clock B and the worst negative slack (WNS) of this group of timing paths is -0.1 ns

IC Compiler™ II Implementation User Guide
T-2022.03

266

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

and clock C has a timing relationship only to clock D and the WNS of this group of timing
paths is -0.3 ns. The command considers only those timing paths with slack less than -0.2
ns, so it defines a single balance group that contains clocks C and D. Clocks A and B are
not constrained because the timing paths between them have slack greater than -0.2 ns.

Running Interclock Delay Balancing
Before you perform interclock delay balancing, you must generate the interclock delay
balancing constraints as described in Defining the Interclock Delay Balancing Constraints.

interclock delay balancingrunningTo perform interclock delay balancing, use the balance_inter_clock_delay commandcommandsbalance_inter_clock_delaybalance_clock_groups command. For
multicorner-multimode designs, the tool performs interclock delay balancing on all active
scenarios.

icc2_shell> balance_clock_groups

Improving Timing Correlation By Performing Post-CTS
Optimization Using Machine Learning Data From the Postroute
Stage
For designs with poor timing correlation between the preroute and postroute stages, you
can improve the correlation by performing optimization after clock tree synthesis using
machine learning (ML) data derived after detail routing.

The machine learning concept uses the following terminology:

• Labels, which are the outputs you are trying to predict

• Features, which are the inputs that affect the outputs

• Model, which is the relationship between the features (inputs) and the labels (outputs)

• Training, which is the process of learning the relationship between the features (inputs)
and the labels (outputs), based on the data collected

The following figure shows two consecutive iterations of an implementation flow where
the machine learning features and labels are collected and the machine learning model is
trained in one iteration and the model is then used during optimization in the next iteration.

IC Compiler™ II Implementation User Guide
T-2022.03

267

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

Figure 44 Flow for Performing Post-CTS Optimization Using Machine Learning Data From
the Postroute Stage

To perform post-CTS optimization using machine learning (ML) data derived from the
postroute stage,

1. Collect machine learning features and labels, and train the model by performing the
following steps in one iteration, iteration N:

a. Perform clock tree synthesis and post-CTS optimization.

b. Collect features by running the estimate_delay -training_features command
as shown in the following example:

icc2_shell> estimate_delay -training_features "features_1 label_1" \
 -output_dir ./ML
When you use the -training_features option, you must specify two strings,
which in this example are features_1 and label_1.

IC Compiler™ II Implementation User Guide
T-2022.03

268

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

• The first string identifies the collection of features (inputs), which are collected in
this step.

• The second string identifies the collection of labels (outputs) associated with
these features, which are collected in step d.

c. Perform detail routing.

d. Collect labels associated with the features that were previously collected in step
b by using the estimate_delay -training_labels command, as shown in the
following example:

icc2_shell> estimate_delay -training_labels "label_1" \
 -output_dir ./ML
The labels must be collected after detail routing, but before postroute optimization.

e. Train the machine learning model for the collected features and label by using the
estimate_delay -train_model command as shown in the following example:

icc2_shell> estimate_delay -train_model "features_1 label_1" \
 -output_dir ./ML

f. Continue with postroute optimization and the rest of the steps in the implementation
flow.

2. Use the machine learning data to improve correlation by performing the following steps
in the subsequent iteration, iteration N+1:

a. Perform clock tree synthesis and post-CTS optimization.

b. Enable the machine learning model, which was derived in the previous iteration, by
using the estimate_delay -enable_model command, as shown in the following
example:

icc2_shell> estimate_delay -enable_model "features_1 label_1" \
 -output_dir ./ML

c. Perform incremental optimization with the machine learning data by using the
clock_opt -from final_opto -to final_opto command.

d. Perform detail routing.

IC Compiler™ II Implementation User Guide
T-2022.03

269

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

e. Disable the machine learning model after you complete all the detail routing steps
by using the estimate_delay -disable_model command, as shown in the
following example:

icc2_shell> estimate_delay -disable_model -output_dir ./ML

f. Continue with postroute optimization and the rest of the steps in the implementation
flow.

When using this feature, ensure that

• The same scenarios are active at each step and each iteration of the flow

• The machine learning model is re-created if there are changes to the design, its
environment, or the flow

Performing Global-Route-Based Optimization Using Machine
Learning Data
For designs with poor timing correlation between the preroute and postroute stages, you
can improve the correlation by performing optimization after clock tree synthesis using
machine learning (ML) data derived after detail routing.

The machine learning concept uses the following terminology:

• Labels, which are the outputs you are trying to predict

• Features, which are the inputs that affect the outputs

• Model, which is the relationship between the features (inputs) and the labels (outputs)

• Training, which is the process of learning the relationship between the features (inputs)
and the labels (outputs), based on the data collected

To perform global-route-based optimization using machine learning (ML) data derived from
the postroute stage,

1. Collect machine learning features and labels, and train the model by performing the
following steps in a specific iteration, iteration N:

a. Perform clock tree synthesis and clock routing by completing the build_clock and
route_clock stages of the clock_opt command.

b. Specify the output directory for the machine learning data by using the new
est_delay.ml_delay_opto_dir application option.

icc2_shell> set_application_option \
 -name est_delay.ml_delay_opto_dir -value ./ML

IC Compiler™ II Implementation User Guide
T-2022.03

270

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

c. Enable integrated feature extraction by setting the new
est_delay.ml_delay_gre_mode application option to feature.

icc2_shell> set_application_option \
 -name est_delay.ml_delay_gre_mode -value feature

d. Perform global-route-based optimization by using the clock_opt -from
final_opt command.

e. Perform detail routing.

f. Collect labels associated with the features that were previously collected during
the clock_opt -from final_opt command by using the estimate_delay
-training_labels command, as shown in the following example:

icc2_shell> estimate_delay -training_labels "label_1" \
 -output_dir ./ML
The labels must be collected after detail routing, but before postroute optimization.

g. Train the machine learning model for the collected features and label by using the
estimate_delay -train_model command as shown in the following example:

icc2_shell> estimate_delay -train_model "features_1 label_1" \
 -output_dir ./ML

h. Continue with postroute optimization and the rest of the steps in the implementation
flow.

2. Use the machine learning data to improve correlation by performing the following steps
in the subsequent iteration, iteration N+1:

a. Perform clock tree synthesis and clock routing by completing the build_clock and
route_clock stages of the clock_opt command.

b. Specify the output directory for the machine learning data by using the new
est_delay.ml_delay_opto_dir application option.

icc2_shell> set_application_option \
 -name est_delay.ml_delay_opto_dir -value ./ML

c. Enable the machine learning model, which was derived in the previous iteration, by
setting the new est_delay.ml_delay_gre_mode application option to enable.

icc2_shell> set_application_option \
 -name est_delay.ml_delay_gre_mode -value enable

d. Perform global-route-based optimization with the machine learning data by using
the clock_opt -from final_opto command.

e. Perform detail routing.

IC Compiler™ II Implementation User Guide
T-2022.03

271

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

f. Disable the machine learning model after you complete all the detail routing steps
by using the estimate_delay -disable_model command, as shown in the
following example:

icc2_shell> estimate_delay -disable_model -output_dir ./ML

g. Continue with postroute optimization and the rest of the steps in the implementation
flow.

When using this feature, ensure that

• The same scenarios are active at each step and each iteration of the flow

• The machine learning model is re-created if there are changes to the design, its
environment, or the flow

Routing Clock Trees
After synthesizing and optimizing the clocks, you can detail route the clock nets by using
the route_group command, as shown in the following example:

icc2_shell> route_group -all_clock_nets -reuse_existing_global_route true
When you set the -reuse_existing_global_route option of the route_group command
to true, the detail router uses the existing clock global routes, which ensures better
correlation.

Alternatively, you can detail route the clock nets by using the clock_opt command, as
shown in the following example:

icc2_shell> clock_opt -from route_clock -to route_clock

Inserting Via Ladders During Clock Tree Synthesis, Optimization,
and Clock Routing
A via ladder is a stacked via that starts from the pin layer and extends into an upper layer
where the router connects to it. Via ladders reduce the via resistance, which can improve
performance and electromigration robustness.

The via ladder insertion flow during clock tree synthesis, optimization, and clock routing
consists of the following steps:

1. Ensure that the via ladder rules are defined as described in Defining Via Ladder Rules.

2. Specify the via ladders that can be used for specific library pins by using the
set_via_ladder_candidate command, as described in Specifying Via Ladder
Candidates for Library Pins.

IC Compiler™ II Implementation User Guide
T-2022.03

272

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

3. Define the via ladder constraints by using the set_via_ladder_rules command, as
described in Defining Via Ladder Constraints.

4. Enable high-performance and electromigration via ladder insertion
for critical paths during the clock_opt command by setting the
opt.common.enable_via_ladder_insertion application option to true.

5. Perform clock tree synthesis and optimization by using the clock_opt -to
build_clock command.

6. Insert the via ladders by using the insert_via_ladders command, as described in
Inserting Via Ladders.

7. Route the clock nets by using the clock_opt -from route_clock command.

Marking Clocks as Propagated After Clock Tree Synthesis
If you run the synthesize_clock_trees or clock_opt command, after clock tree
synthesis, the tool removes the ideal setting from all the synthesized clocks of all active
scenarios and sets all the corresponding register clock pins as propagated.

If your block has scenarios that were not set as active before clock tree synthesis,
set these scenarios as active by using the set_scenario_status -active true
command and mark all clocks as propagated by using the synthesize_clock_trees
-propagate_only command, as shown in the following example:

icc2_shell> set_scenario_status -active true [all_scenarios]
icc2_shell> synthesize_clock_trees -propagate_only
The synthesize_clock_trees -propagate_only command removes the ideal setting
from the clocks; it does not perform clock tree synthesis.

Performing Postroute Clock Tree Optimization
When you detail route the clock nets of a block, its clock tree QoR can degrade due to the
differences between the clock global routes used during clock tree synthesis and the clock
detail routes. Clock tree QoR can further degrade when you detail route the signal nets
due to coupling capacitance and crosstalk effects.

You can perform clock tree optimization on a postroute design by using the
synthesize_clock_trees -postroute command. When you do so, you should specify
the type of routing performed on the design by using the -routed_clock_stage option.

For example, to perform clock tree optimization on a design that has completed clock
routing, use the following command:

icc2_shell> synthesize_clock_trees -postroute \
 -routed_clock_stage detail

IC Compiler™ II Implementation User Guide
T-2022.03

273

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

To perform clock tree optimization on a design that has completed both clock and signal
routing, use the following command:

icc2_shell> synthesize_clock_trees -postroute \
 -routed_clock_stage detail_with_signal_routes
Note:

When you enable concurrent clock and data optimization, including power or
area recovery that uses this technique, the tool does not optimize the clock
latency or skew during postroute clock tree optimization; it only fixes the logical
DRC violations on the clock network.

Performing Voltage Optimization
The voltage level of a design is determined by the technology node (at device level) and
the performance requirement. The IC Compiler II tool can perform voltage optimization,
which tries to achieve better performance, power, and area (PPA) at a lower voltage level.

To perform voltage optimization, you need

• Scaled library panes

Voltage optimization works on the fundamental principle of scaling the voltage,
Therefore, scaled library panes with different voltages are required.

• A signoff methodology with a scaled library setup

The voltage optimization flow consists of the following high-level steps:

1. Perform placement and optimization at the original design voltage using the place_opt
command.

2. Perform clock tree synthesis and optimization at the original design voltage by using
the clock_opt command.

3. Associate a set of related library panes to form a scaling group by using the
define_scaling_lib_group command.

4. Specify voltage ranges for specific corners by using the set_vopt_range command,
as shown in the following example:

icc2_shell> set_vopt_range -corner C1 \
 -low_voltage 0.81 -high_voltage 1.0
icc2_shell> set_vopt_range -corner C2 \
 -low_voltage 0.81 -high_voltage 1.0

5. Specify a total negative slack (TNS) and power target and tolerance for voltage
optimization by using the set_vopt_target command.

IC Compiler™ II Implementation User Guide
T-2022.03

274

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

The following example specifies a total negative slack target for voltage optimization
and specifies that I/O paths should be excluded from the total negative slack costing:

icc2_shell> set_vopt_target -tns -1.0 -excludeIO
6. Perform voltage optimization by using the voltage_opt command.

7. Perform routing at the optimized voltage by using the route_auto command.

8. Perform postroute optimization at the optimized voltage by using the route_opt
command.

Marking Clock Trees as Synthesized
To prevent the IC Compiler II tool from modifying them, you can mark existing clock trees
in your design as synthesized clock tree by using the mark_clock_trees command as
shown in Table 20.

Table 20 Using the mark_clock_trees Command

To do this Use this option

Mark only the clock trees of specific clocks
By default, the command marks all clocks defined by
the create_clock and create_generated_clock
commands in all modes of all active scenarios

-clocks clock_list

Mark the clock tree as synthesized
This is the default behavior

-synthesized

Remove the synthesized attribute settings from the
clock trees

-clear

Apply the dont_touch attribute setting on the clock
trees

-dont_touch

Remove the dont_touch attribute settings from the
clock trees

-clear -dont_touch

Propagate the nondefault clock routing rules specified
by the set_clock_routing_rules command

-routing_rules

Propagate the clock cell spacing rules specified by
the set_clock_cell_spacing command

-clock_cell_spacing

Mark the clock sinks as fixed -fix_sinks

Freeze the routing of the clock nets -freeze_routing

IC Compiler™ II Implementation User Guide
T-2022.03

275

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Clock Trees and Performing Post-CTS Optimization

Feedback

The tool traverses the clock trees and marks the clock trees as specified. Clock tree
traversal continues until it finds an exception pin or a default sink pin.

Removing Clock Trees
To remove the buffers and inverters on a clock tree, use the remove_clock_tree commandcommandsremove_clock_treeremove_clock_trees
command. The remove_clock_trees commands traverses the clock tree from its root
to its sinks and removes all buffers and inverters, except those with dont_touch or
size_only attributes. Cells beyond clock tree exceptions are considered part of the clock
tree, but cells beyond a clock-to-data pin are considered part of the data path and are
not removed. In addition to removing the buffers and inverters, the remove_clock_trees
command resets the attributes related to clock tree synthesis.

Note:
The remove_clock_trees command does not support clock mesh nets.

By default, this command removes the buffers and inverters from all clock trees in all
modes. To remove the buffers and inverters from specific clock trees, use the -clocks
option to specify the clock trees. By default, when you use the -clocks option, the clocks
are selected from the current mode. To select clocks from a specific mode, use the
get_clocks -mode command to select the clocks.

For example, to remove only the clock tree in the current mode named my_clk, use the
following command:

icc2_shell> remove_clock_trees -clocks [get_clocks my_clk]
Table 21 shows how clock tree removal is affected by the structure of the clock tree.

Table 21 Clock Tree Removal Behavior

Object Impact on clock tree removal

Boundary cell Removed.

Cells on don’t touch net Preserved.

Don’t touch cell Preserved.

Fixed cell Preserved.

Generated clock Preserved, if generated clock is defined on
buffer/inverter pin. Traversal and clock tree removal
continue past the generated clock.

Guide buffer Removed.

IC Compiler™ II Implementation User Guide
T-2022.03

276

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

Table 21 Clock Tree Removal Behavior (Continued)

Object Impact on clock tree removal

Integrated clock-gating (ICG) cell Preserved. Traversal (and clock tree removal)
continues past the integrated clock-gating cell.

Block abstraction model Preserved. Traversal (and clock tree removal)
continues past the block abstraction model.

Inverter Removed in pairs only. If a clock tree contains a single
inverter, it is not removed.

Isolation cell Preserved.

Level shifter Preserved.

Three-state buffer Preserved. Traversal (and clock tree removal) stops at
the three-state buffer.

Buffer or inverter added beyond
exception

Removed.

By default, the remove_clock_trees command removes the detail route shapes of the
clock nets it removes. However, you can preserve the route shapes of the clock nets by
setting the shape_use attribute of the clock nets to user_route.

Implementing Multisource Clock Trees
The following topics introduce the different types of multisource clock trees and provides
detailed information about the different multisource clock tree implementation flows and
steps:

• Introduction to Multisource Clock Trees Structures

• Implementing a Regular Multisource Clock Tree

• Implementing a Regular Multisource Clock Tree Using Integrated Tap Assignment

• Implementing a Regular Multisource Clock Tree With an H-Tree-Only Global Clock
Tree Structure

• Implementing a Structural Multisource Clock Tree

• Implementing a Structural Multisource Clock Tree Using Integrated Subtree Synthesis

• Inserting Clock Drivers

• Synthesizing the Global Clock Trees

IC Compiler™ II Implementation User Guide
T-2022.03

277

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

• Creating Clock Straps

• Routing to Clock Straps

• Analyzing the Clock Mesh

• Performing Automated Tap Insertion and H-Tree Synthesis

• Specifying Tap Assignment Options and Settings

• Building the Local Clock Subtree Structures

Introduction to Multisource Clock Trees Structures
A multisource clock tree is a custom clock structure that has more tolerance to on-chip
variation and has better performance across corners than traditional clock tree structures.

These custom clock trees consist of

• A global clock structure, which includes

◦ The clock root

◦ A global clock tree, which is usually an H-tree structure

◦ Clock mesh drivers

◦ A clock mesh

• Local subtrees that can be driven

◦ By a predefined set of drivers, called tap drivers, that are connected to the clock
mesh, as shown in Figure 45.

Because the subtrees are built using regular clock tree synthesis commands such
as the synthesize_clock_trees or clock_opt command, such a structure is
called a regular multisource clock tree.

◦ Directly from multiple points of the clock mesh, as shown in Figure 46.

Because the subtrees are built preserving the user-defined structure and optimized
by merging and splitting the clock cells, such a structure is called a structural
multisource clock tree.

IC Compiler™ II Implementation User Guide
T-2022.03

278

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

Figure 45 Regular Multisource Clock Tree

Clock root

Global clock tree

Clock mesh

Mesh drivers

Clock gates

Tap drivers

and sinks

G
lo

b
a
l
c
lo

c
k
 s

tr
u

c
tu

re
L

o
c
a
l
s
u

b
tr

e
e
s

Figure 46 Structural Multisource Clock Tree

Clock root

Global clock tree

Clock mesh

Mesh drivers

Clock gates
and sinks

G
lo

b
a
l
c
lo

c
k
 s

tr
u

c
tu

re
L

o
c
a
l
s
u

b
tr

e
e
s

IC Compiler™ II Implementation User Guide
T-2022.03

279

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

Implementing a Regular Multisource Clock Tree
To implement a regular multisource clock tree, use the following steps:

1. Specify your clock tree constraints and settings.

2. Perform the following steps for multivoltage designs:

a. Enable multivoltage support by setting the
cts.multisource.enable_full_mv_support application option to true.

b. Enable the addition of physical feedthrough cells, which belong
to a voltage area physically but not logically, by setting the
opt.common.allow_physical_feedthrough application option to true.

c. Run the check_mv_design command and fix all multivoltage issues.

3. Enable cell electromigration fixing by setting the cts.multisource.cell_em_aware
application option to true.

4. Insert the tap drivers by using the create_clock_drivers command, as described in
Inserting Clock Drivers.

5. Create the clock mesh by using the create_clock_straps command, as described in
Creating Clock Straps.

6. Insert the mesh drivers by using the create_clock_drivers command, as described
in Inserting Clock Drivers.

7. Build the global clock tree structure by using the
synthesize_multisource_global_clock_trees command, as described in
Synthesizing the Global Clock Trees.

8. Route the connections between the clock mesh and the tap drivers by using the
route_clock_straps command, as described in Routing to Clock Straps.

9. Analyze the clock mesh by using the analyze_subcircuit command, as described in
Analyzing the Clock Mesh.

10. Specify options and settings for tap assignment as described in Specifying Tap
Assignment Options and Settings.

IC Compiler™ II Implementation User Guide
T-2022.03

280

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

11. Perform tap assignment by using the synthesize_multisource_clock_taps
command, which

• Merges equivalent clock cells to remove any artificial boundaries between clusters
of sinks

• Assigns endpoints to the closest tap driver and split cells along the path honoring
any sink groups defined

• Copies the UPF and SDC constraints and the user-specified attributes onto the
newly created cells across the active scenarios

12. Synthesize the entire clock tree, from the clock root, by using the following command:

icc2_shell> clock_opt -from build_clock -to route_clock
During this step, the tool builds the local subtrees that are driven by the tap drivers.
It also fixes DRC violations beyond ignore exceptions of the multisource clock tree, if
applicable. You can also synthesize other clocks in the design that are not synthesized.

For more information about the clock_opt command, see Synthesizing, Optimizing,
and Routing Clock Trees With the clock_opt Command.

13. Analyze the clock tree results as described in Analyzing the Clock Tree Results.

Implementing a Regular Multisource Clock Tree Using Integrated
Tap Assignment
A regular multisource clock tree has tap drivers that are driven by a clock mesh and drive
clock-gating cells and sinks. If you insert these tap drivers before you run the place_opt
command, the tool can assign sinks to these drivers such that it improves the overall
timing QoR of the block. It also allows the tool to improve the timing of clock-gating paths.

To perform regular multisource clock tree synthesis integrated with placement and
optimization, use the following steps:

1. Specify the placement and optimization constraints and settings.

2. Specify the clock tree constraints and settings.

IC Compiler™ II Implementation User Guide
T-2022.03

281

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

3. Perform the following steps for multivoltage designs:

a. Enable multivoltage support by setting the
cts.multisource.enable_full_mv_support application option to true.

b. Enable the addition of physical feedthrough cells, which belong
to a voltage area physically but not logically, by setting the
opt.common.allow_physical_feedthrough application option to true.

c. Run the check_mv_design command and fix all multivoltage issues.

4. Enable cell electromigration fixing by setting the cts.multisource.cell_em_aware
application option to true.

5. Insert the tap drivers by using the create_clock_drivers command, as described in
Inserting Clock Drivers.

6. Create the clock mesh by using the create_clock_straps command, as described in
Creating Clock Straps.

7. Insert the mesh drivers by using the create_clock_drivers command, as described
in Inserting Clock Drivers.

8. Build the global clock tree structure by using the
synthesize_multisource_global_clock_trees command, as described in
Synthesizing the Global Clock Trees.

9. Route the connections between the clock mesh and the tap drivers by using the
route_clock_straps command, as described in Routing to Clock Straps.

10. Analyze the clock mesh by using the analyze_subcircuit command, as described in
Analyzing the Clock Mesh.

11. Specify options and settings for tap assignment as described in Specifying Tap
Assignment Options and Settings.

12. Enable integrated tap assignment by setting the
place_opt.flow.enable_multisource_clock_trees application option to true and
run the place_opt command.

icc2_shell> set_app_options \
 -name place_opt.flow.enable_multisource_clock_trees -value true
icc2_shell> place_opt

13. Synthesize the entire clock tree, from the clock root, by using the following command:

icc2_shell> clock_opt -from build_clock -to route_clock
During this step, the tool builds the local subtrees that are driven by the tap drivers.
It also fixes DRC violations beyond ignore exceptions of the multisource clock tree, if
applicable. You can also synthesize other clocks in the design that are not synthesized.

IC Compiler™ II Implementation User Guide
T-2022.03

282

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

For more information about the clock_opt command, see Synthesizing, Optimizing,
and Routing Clock Trees With the clock_opt Command.

14. Analyze the clock tree results as described in Analyzing the Clock Tree Results.

Implementing a Regular Multisource Clock Tree With an
H-Tree-Only Global Clock Tree Structure
The following figure shows a regular multisource clock where the global clock structure
does not have a clock mesh. The global clock structure consists only of an H-tree, which
directly drives the tap drivers.

Figure 47 Regular Multisource Clock Tree With an H-Tree-Only Global Clock Structure

To implement a regular multisource clock tree structure with an H-tree-only global clock
tree structure,

1. Specify your clock tree constraints and settings.

2. Perform the following steps for multivoltage designs:

a. Enable multivoltage support by setting the
cts.multisource.enable_full_mv_support application option to true.

b. Enable the addition of physical feedthrough cells, which belong
to a voltage area physically but not logically, by setting the
opt.common.allow_physical_feedthrough application option to true.

c. Run the check_mv_design command and fix all multivoltage issues.

IC Compiler™ II Implementation User Guide
T-2022.03

283

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

3. Enable cell electromigration fixing by setting the cts.multisource.cell_em_aware
application option to true.

4. Specify the required settings by using the
set_regular_multisource_clock_tree_options command and
perform tap insertion and global clock tree (H-tree) synthesis by using the
synthesize_regular_multisource_clock_trees command, as described in
Performing Automated Tap Insertion and H-Tree Synthesis.

5. Specify options and settings for tap assignment, as described in Specifying Tap
Assignment Options and Settings.

6. Perform tap assignment by using the synthesize_multisource_clock_taps
command, which

• Merges equivalent clock cells to remove any artificial boundaries between clusters
of sinks

• Assigns endpoints to the closest tap driver and splits cells along the path honoring
any sink groups defined

• Copies the UPF and SDC constraints and the user-specified attributes onto the
newly created cells across the active scenarios

7. Synthesize the entire clock tree, from the clock root, by using the following command:

icc2_shell> clock_opt -from build_clock -to route_clock
During this step, the tool builds the local subtrees that are driven by the tap drivers.
It also fixes DRC violations beyond ignore exceptions of the multisource clock tree, if
applicable. You can also synthesize other clocks in the design that are not synthesized.

For more information about the clock_opt command, see Synthesizing, Optimizing,
and Routing Clock Trees With the clock_opt Command.

8. Analyze the clock tree results, as described in Analyzing the Clock Tree Results.

Implementing a Structural Multisource Clock Tree
In a structural multisource clock tree, the subtrees are driven directly by the clock mesh
or through predefined drivers. These drivers are in turn driven by global clock distribution
structure such as a clock mesh and H-tree. The local subtrees of a structural multisource
clock tree are optimized by clock cell merging, splitting, sizing, and relocation, while
preserving the levels of the user-defined clock tree structure.

IC Compiler™ II Implementation User Guide
T-2022.03

284

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

To implement a structural multisource clock tree, perform the following steps:

1. Specify your clock tree constraints and settings.

2. For multivoltage designs,

• Enable multivoltage support by using the following application option setting:

icc2_shell> set_app_options \
 -name cts.multisource.enable_full_mv_support -value true

• Enable the addition of physical feedthrough cells, which belong to a voltage area
physically but not logically, by using the following application option setting:

icc2_shell> set_app_options \
 -name opt.common.allow_physical_feedthrough -value true

• Run the check_mv_design command and fix all multivoltage issues

3. Enable cell electromigration fixing by setting the cts.multisource.cell_em_aware
application option to true.

4. Create the clock mesh by using the create_clock_straps command, as described in
Creating Clock Straps.

5. Insert the mesh drivers by using the create_clock_drivers command, as described
in Inserting Clock Drivers.

6. Build the global clock tree structure by using the
synthesize_multisource_global_clock_trees command, as described in
Synthesizing the Global Clock Trees.

7. Model the delays of the mesh nets using set_annotated_delay and
set_annotated_transition commands.

The loads of the clock mesh are not finalized until the local subtrees are synthesized
in step 6 and routed to the mesh in step 7. Therefore the clock mesh can only be
analyzed after you complete those steps. However, to prevent the tool from seeing
a very large delay through the clock mesh when synthesizing the local subtrees,
annotate a realistic delay and transition value on the clock mesh net.

8. Build the local subtrees by using the synthesize_multisource_clock_subtrees
command, as described in Building the Local Clock Subtree Structures.

9. Route the connections between the clock mesh and the local subtrees by using the
route_clock_straps command, as described in Routing to Clock Straps.

10. Analyze the clock mesh by using the analyze_subcircuit command, as described in
Analyzing the Clock Mesh.

IC Compiler™ II Implementation User Guide
T-2022.03

285

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

11. Synthesize the entire clock tree, from the clock root, by using the clock_opt -from
build_clock -to route_clock command.

During this step, the tool fixes DRC violations beyond ignore exceptions of the
multisource clock tree, if applicable. You can also synthesize other clocks in the design
that are not synthesized.

12. Analyze the clock tree results as described in Analyzing the Clock Tree Results.

Implementing a Structural Multisource Clock Tree Using
Integrated Subtree Synthesis
In a structural multisource clock tree, the subtrees are driven directly by the clock mesh or
through predefined drivers. These drivers are, in turn, driven by a global clock distribution
structure such as a clock mesh or an H-tree. By using the place_opt command to
synthesize and optimize the local subtrees of a structural multisource clock tree, you can
improve the timing QoR of the design.

To implement a structural multisource clock tree using the integrated subtree synthesis
capabilities, perform the following steps:

1. Specify your clock tree constraints and settings.

2. For multivoltage designs,

• Enable multivoltage support by using the following application option setting:

icc2_shell> set_app_options \
 -name cts.multisource.enable_full_mv_support -value true

• Enable the addition of physical feedthrough cells, which belong to a voltage area
physically but not logically, by using the following application option setting:

icc2_shell> set_app_options \
 -name opt.common.allow_physical_feedthrough -value true

• Run the check_mv_design command and fix all multivoltage issues

3. Enable multicorner optimization by setting the
cts.multisource.enable_multi_corner_support application option to true. The
default is false.

By default, the tool uses the worst corner associated with the mode in which the
subtree options are defined. When you enable this feature, the tool considers all
corners associated with the mode in which the subtree options are defined.

4. Enable cell electromigration fixing by setting the cts.multisource.cell_em_aware
application option to true.

IC Compiler™ II Implementation User Guide
T-2022.03

286

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

5. Create the clock mesh by using the create_clock_straps command, as described in
Creating Clock Straps.

6. Insert the mesh drivers by using the create_clock_drivers command, as described
in Inserting Clock Drivers.

7. Build the global clock tree structure by using the
synthesize_multisource_global_clock_trees command, as described in
Synthesizing the Global Clock Trees.

8. Model the delays of the mesh nets by using the set_annotated_delay and
set_annotated_transition commands.

9. Specify settings for local subtree synthesis by using the
set_multisource_clock_subtree_options command.

You must specify

• The clock for synthesizing the subtrees by using the -clock option

• The drivers of the subtrees to be synthesized by using the -driver_objects option

Optionally you can

• Prevent the tool from merging specific clock tree cells by using the
-dont_merge_cells option

• Balance the levels of the local subtree by using the -balance_levels true option
and specify a target number of levels, which applies to all sinks of the local subtree,
by using the -target_level option

Optionally, you can apply a different target number of levels
to specific sink pins and clock balance points by using the
set_multisource_clock_subtree_constraints command with the -pins and
-target_level options.

• Specify a maximum total wire delay from any subtree driver to any of its sinks by
using the -max_total_wire_delay option and the corner it applies to by using the
-corner option

• Enable the reordering of clock-gating cells by using the -enable_icg_reordering
true option

When you enable this feature, the tool swaps the position of a clock-gating cell with
the buffer that is driving the clock-gating cell. Then, the buffer is gated by the clock-
gating cell, thereby reducing the dynamic power consumption.

To perform reordering, you must

IC Compiler™ II Implementation User Guide
T-2022.03

287

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

◦ Enable the scenarios used for structural multisource clock tree synthesis

◦ Annotate the switching activity for the enable pins of the clock-gating cells

You can prevent specific clock-gating cells from being reordered by using the
set_multisource_clock_subtree_constraints command with the -cells and
-ignore_for_icg_reordering options.

To report the settings you specified, use the
report_multisource_clock_subtree_options command. To remove the settings
you specified, use the remove_multisource_clock_subtree_options command.

10. Enable integrated structural multisource clock tree synthesis by setting the
place_opt.flow.enable_multisource_clock_trees application option to true, and
build the local subtree by running the place_opt command.

icc2_shell> set_app_options \
 -name place_opt.flow.enable_multisource_clock_trees -value true
icc2_shell> place_opt

11. Route the connections between the clock mesh and the local subtrees by using the
route_clock_straps command, as described in Routing to Clock Straps.

12. Analyze the clock mesh by using the analyze_subcircuit command, as described in
Analyzing the Clock Mesh.

13. Enable integrated structural multisource clock tree synthesis by setting the
clock_opt.flow.enable_multisource_clock_trees application option to true,
and synthesize the entire clock tree from the clock root by using the clock_opt -from
build_clock -to route_clock command.

icc2_shell> set_app_options \
 -name clock_opt.flow.enable_multisource_clock_trees -value true
icc2_shell> clock_opt -from build_clock -to route_clock
During this step, the tool incrementally optimizes the existing subtrees.

14. Analyze the clock tree results as described in Analyzing the Clock Tree Results.

Inserting Clock Drivers
Before you insert clock drivers,

• Specify all clock tree synthesis settings, including clock routing rules

• Specify that the inserted clock drivers should be aligned with the clock straps of the
mesh structure by setting the cts.multisource.enable_clock_driver_snapping
application option to true

IC Compiler™ II Implementation User Guide
T-2022.03

288

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

During multisource clock tree synthesis, you can use the create_clock_drivers
command for the following:

• Insert mesh drivers for both regular or structural multisource clock trees.

• Tap drivers for regular multisource clock trees.

When you insert mesh or tap drivers,

• Specify the loads to drive by using the -loads option. The load can be a net or a set of
pins or ports connected to the same net.

• Specify where to add the clock drivers as exact locations by using the -location
option.

Alternatively, you can add the clock drivers in an X by Y grid pattern over the entire
core area by using the -boxes option. You can limit the X by Y grid pattern to a specific
area by using the -boundary option with the -boxes option.

• Specify a list of cells that can be used as clock drivers by using the -lib_cells option.
You can specify both single-rail and dual-rail library cells.

Alternatively, you can select the existing driver of the load net as a template for the
clock drivers by using the -template option. If the template cell you specify is a buffer
or inverter, you can also specify different versions of this buffer or inverter as clock
drivers by using the -lib_cells option with the -template option.

When you insert mesh drivers, to specify that the outputs of all the clock drivers must be
connected together to drive the mesh net, use the -short_outputs option.

The following example creates a grid of eight by eight mesh drivers, places them in a
regular pattern that covers the full core area, shorts the outputs of the clock drivers and
connects to the net named clk_mesh, and transfers preexisting routing shapes and vias
from the net named clk to this net:

icc2_shell> create_clock_drivers -loads [get_nets clk1_mesh] \
 -boxes {8 8} -lib_cells [get_lib_cells my_lib/CKBUF8X] \
 -short_outputs -output_net_name clk_mesh \
 -transfer_wires_from [get_nets clk]
The following example creates a grid of five by five tap drivers that are placed within the
rectangle bounded at the lower-left by (200, 200) and upper right by (1000, 1000).

icc2_shell> create_clock_drivers -loads [get_nets clkA] \
 -lib_cells [get_lib_cells my_lib/CKBUF8X] \
 -boxes {5 5} -boundary [list {{200 200} {1000 1000}}]
In this example, one of the tap drivers drives all the loads of the original clock
net named clkA. To distribute the loads among all the clock drivers, you must
subsequently perform automated multisource tap assignment by using the

IC Compiler™ II Implementation User Guide
T-2022.03

289

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

synthesize_multisource_clock_taps command, as described in Specifying Tap
Assignment Options and Settings.

You can use the create_clock_drivers to add multiple levels of clock drivers by using
the -configuration option and specifying the configuration of drivers at each level.

The following example inserts three levels of clock drivers. The first level consists of one
buffer, the second level consists of four inverters in a 2x2 grid, and the third level consists
of 16 inverters in a 4x4 grid.

icc2_shell> create_clock_drivers -loads [get_nets clk] \
 -configuration [list \
 [list -level 1 -boxes {1 1} -lib_cells buf32x] \
 [list -level 2 -boxes {2 2} -lib_cells inv16x] \
 [list -level 3 -boxes {4 4} -lib_cells inv8x]]
For this example, because there is no bounding box specified at any level, the drivers at
each level are evenly distributed in the core area. The buffer in the first level is placed at
the center of the core area, the four buffers in the next level are placed at the center of the
four quadrants of the core area, and so on, resulting in an evenly placed clock drivers that
can be routed to form an H-tree structure as shown in Figure 48

Figure 48 Clock Drivers Placed in an H-Tree Structure

After it inserts the clock drivers, the tool marks the clock drivers that it inserts as fixed
and don’t touched. The tool avoids overlapping the clock drivers with other fixed cells,
blockages, and macros. However, the clock drivers can overlap with cells that are not
fixed. The create_clock_drivers command does not legalize the design. To do so, run
the legalize_placement command. If you run the create_clock_drivers command
multiple times, to reduce runtime, run the legalize_placement command one time, after
you complete all the create_clock_drivers command runs.

When routing the H-trees, the tool uses the highest routing layers available, based on the
routing rules specified for the clock nets. These same layers can contain prerouted nets
such as power and ground nets. To prevent placing clock drivers under these preroutes,
which can cause pin accessibility issues, the create_clock_drivers command creates
temporary placement blockages for the preroutes on the same layers it uses for routing.

IC Compiler™ II Implementation User Guide
T-2022.03

290

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

After it completes routing, it removes these temporary placement blockages, as shown in
the following example output.

...
Net: clk; Rule: htree_ndr; Min Layer: M8; Max Layer: M9
...
Information: Using routing H/V layer pair 'M9'/'M8' for net 'clk'.
 (CTS-659)
...
Converting metal shapes in horizontal layer M9 and vertical layer M8 into
 placement blockages.
In total 703 placement blockages created.
...
Successfully deleted all temporary placement blockages and the cell map.

If you specify multirow-height cells with the -lib_cell option of the
create_clock_drivers command, the tool might not be able to place them due
to the temporary placement blockages it creates for the preroutes. If so, you can
prevent the tool from creating the temporary placement blockages by setting the
cts.multisource.enable_pin_accessibility_for_global_clock_trees application
option to false.

To remove clock drivers inserted by the create_clock_drivers command, use the
remove_clock_drivers command.

Inserting Clock Drivers for Designs With Multiple Levels of
Physical Hierarchy
To insert clock drivers from the top level of a design with multiple levels of physical
hierarchy,

1. Enable the lower-level physical blocks for editing by using the set_editability
command.

2. Enable clock driver insertion for multiple levels of physical hierarchy by setting the
cts.multisource.enable_mlph_flow application option to true.

3. Insert clock drivers by using the create_clock_drivers command.

4. Route the inserted clock drivers by using the
synthesize_multisource_global_clock_trees -roots -leaves
-use_zroute_for_pin_connections command.

When inserting clock drivers to lower-level blocks, the tool reuses existing clock ports. If
there are no existing clock ports, the tool creates new ports, if it is allowed. You can allow
new ports to be added to a block by using use the set_freeze_ports command.

IC Compiler™ II Implementation User Guide
T-2022.03

291

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

Synthesizing the Global Clock Trees
Before you insert clock drivers, ensure that all clock tree synthesis settings, including clock
routing rules, are specified.

To perform clock tree synthesis and detail routing to build an H-tree style global clock tree,
use the synthesize_multisource_global_clock_trees command. When building the
H-tree, the tool tries to minimize the skew between the endpoints, which is essential for
multisource clock tree synthesis.

When you use this command to synthesize and detail route a global clock tree, you must
specify

• The clock net to synthesize by using the -nets option.

• The library cells to use by using the -lib_cells option. You can specify both single-
rail and dual-rail library cells.

By default, the tool uses the Custom Router to route the H-tree structure and connect to
the pins of the clock tree cells. If the Custom Router is unable to resolve all routing DRC
violation when making pin connections, use the Zroute to make the pin connections by
using the -use_zroute_for_pin_connections options. To stop the routes at the highest
available metal layer close to the pin shape, use the -skip_pin_connections option.

The following example synthesizes and detail routes a global clock tree for the clock net
named clkA.

icc2_shell> synthesize_multisource_global_clock_trees \
 -nets [get_nets clkA] -lib_cells [get_lib_cells my_lib/CKBUF8X] \
 -use_zroute_for_pin_connections
You can also use the synthesize_multisource_global_clock_trees command to
only perform clock detail routing for an H-tree style clock structure that has already been
synthesized.

When doing so, you must specify

• The startpoint of the global clock structure, by using the -roots option.

• The endpoints of the global clock structure by using the -leaves option.

The following example detail routes an existing H-tree style clock structure. The startpoint
is the port named clk1 and the endpoints are the inputs of a group of mesh drivers.

icc2_shell> synthesize_multisource_global_clock_trees \
 -roots [get_ports clk1] -leaves [get_pins mesh_buf*/A] \
 -use_zroute_for_pin_connections
When routing the H-trees, the tool uses the highest routing layers available,
based on the routing rules specified for the clock nets. These same layers can

IC Compiler™ II Implementation User Guide
T-2022.03

292

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

contain prerouted nets such as power and ground nets. To prevent placing clock
drivers under these preroutes, which can cause pin accessibility issues, the
synthesize_multisource_global_clock_trees command creates temporary
placement blockages for the preroutes on the same layers it uses for routing. After it
completes routing, it removes these temporary placement blockages, as shown in the
following example output.

...
Net: clk; Rule: htree_ndr; Min Layer: M8; Max Layer: M9
...
Information: Using routing H/V layer pair 'M9'/'M8' for net 'clk'.
 (CTS-659)
...
Converting metal shapes in horizontal layer M9 and vertical layer M8 into
 placement blockages.
In total 703 placement blockages created.
...
Successfully deleted all temporary placement blockages and the cell map.

If you specify multirow-height cells with the -lib_cell option of the
synthesize_multisource_global_clock_trees command, the tool might not be able
to place them due to the temporary placement blockages it creates for the preroutes. If so,
you can prevent the tool from creating the temporary placement blockages by setting the
cts.multisource.enable_pin_accessibility_for_global_clock_trees application
option to false.

To remove a clock structure created by the
synthesize_multisource_global_clock_trees command, use the
remove_multisource_global_clock_trees command.

Inserting Clock Drivers for Designs With Multiple Levels of
Physical Hierarchy
To insert clock drivers from the top level of a design with multiple levels of physical
hierarchy,

1. Enable the lower-level physical blocks for editing by using the set_editability
command.

2. Enable clock driver insertion for multiple levels of physical hierarchy by setting the
cts.multisource.enable_mlph_flow application option to true.

3. Insert clock drivers by using the create_clock_drivers command.

When inserting clock drivers to lower-level blocks, the tool reuses existing clock ports. If
there are no existing clock ports, the tool creates new ports, if it is allowed. You can allow
new ports to be added to a block by using use the set_freeze_ports command.

IC Compiler™ II Implementation User Guide
T-2022.03

293

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

Creating Clock Straps
You can create clock straps, which are straight metal shapes in a single routing layer, by
using the create_clock_straps command.

You can use this command to implement

• A clock mesh, which is a two-dimensional grid in a horizontal and a vertical layer,
where the straps are connected by vias at the intersection points, as shown in
Figure 49.

• A clock spine, which can be either a one- or two-dimensional structures.

One-dimensional spines are straps in a single direction. Two-dimensional spines
consists of one-dimensional spines connected to multiple stripes in the orthogonal
direction. Stripes connected to one spine do not connect to stripes of a different spine
and the minimum distance between the stripes of different spines is called the backoff,
as shown in Figure 50

Figure 49 Clock Mesh Structure

Boundary of clock mesh

Start distance for

Incremental step for
subsequent straps

(0,0)

S
ta

rt
 d

is
ta

n
c
e
 f
o
r

In
c
re

m
e
n
ta

l
s
te

p
 f
o
r

s
u
b
s
e
q
u
e
n
t
s
tr

a
p
s

fi
rs

t
v
e
rt

ic
a
l
s
tr

a
p

first horizontal strap

E
n
d
 d

is
ta

n
c
e
 f
o
r

la
s
t
v
e
rt

ic
a
l
s
tr

a
p

End distance for

last horizontal strap

IC Compiler™ II Implementation User Guide
T-2022.03

294

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

Figure 50 Clock Spine Structure

Boundary of clock spine

(0,0)

Backoff

Stripes

Spine

The horizontal and vertical

start, end, and step
distances are applicable for

clock spine structures too.

When you use the create_clock_straps command,

• To specify the clock net for which to create the structure, use the -net option.

• To specify the bounding box to confine the structure, use the -boundary option.

• To specify keepouts, use the -keepouts option.

If part of a strap is over a keepout, by default, the tool splits the strap and creates the
portions that are outsides the keepouts. However, you can disable splitting and specify
that the tool not create a strap if it is over a keepout by using the -allow_splitting
false option.

• To specify the layers on which create the straps, use the -layers option.

The tool determines the direction of the straps based on the metal layer you specify. To
create straps in both directions, specify a layer for each direction.

• To specify the width of the straps, use the -width option.

IC Compiler™ II Implementation User Guide
T-2022.03

295

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

• To specify where to create the straps, use the -grid option as follows:

◦ To create a single horizontal or vertical strap, specify the distance from the x- or y-
axis.

◦ To create a multiple straps in a single direction, specify an iterator list consisting
of the start distance to the first strap, the end distance to the last strap, and the
incremental distance between straps.

◦ To create a multiple straps in a both the horizontal and vertical directions, specify an
iterator list for each direction, starting with the horizontal direction.

Use the -grid option to create multiple straps for both the clock mesh and clock spine
structures.

• To specify a margin within which the tool can move a strap from the position it derives
based on the -grid option settings, use the -margins option.

If the tool cannot create a strap within the specified margin, due to obstructions or
keepouts, it does not create the strap. By default, the tool uses a margin of zero and
only creates the strap if it can do so at the exact position it derives.

• To create straps on the boundary specified with the -boundary option, use the
-create_ends option.

• To allow straps that are unconnected to orthogonal straps, use the -allow_floating
true option.

By default, the tool does not allow orthogonal straps that are unconnected.

• To specify the type of straps to create, use the -type option and specify user_route,
stripe, or detect.

When you create straps in both direction, specify a list of two values starting with the
type for the horizontal direction.

You can specify detect as the type only when you are creating a clock spine structure
and want the tool to detect and use existing spines. When you do so, you must specify
a list consisting of the type for the orthogonal stripes and detect, with the type for the
horizontal direction specified first in the list. In addition, when the tool detects existing
spine, you can specify a minimum length for the spine, by using the -detect_length
option.

• To specify the maximum length of the orthogonal stripes, when creating a clock spine
structure, use the -length option.

• To specify the backoff distance between stripes of different spines, when creating a
clock spine structure, use the -backoff option.

IC Compiler™ II Implementation User Guide
T-2022.03

296

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

• To specify the direction of the spines, when creating a clock spine structure and the tool
is not detecting and using existing spines, use the -spine_direction option.

• To shield the straps with power and ground nets, use the -bias option.

• To shield the straps with specific nets, use the -bias_to_nets with the list of nets.

• To specify the distance from the shielding nets, use the -bias_margins option.

• To remove the straps of a specific clock net, use the -clear option.

For example, the following command creates a clock mesh for the net named clk1_mesh
that is bounded by coordinates (0,0) and (1200, 980). The straps are on layers M7 and
M8 with a width of 2.4 units and of type stripe. The horizontal straps on layer M7 start at a
distance of 20 units from the x-axis and repeat every 100 units, until they reach 1200 units
from the x-axis. The vertical straps on layer M8 start at a distance of 60 units from the y-
axis and repeat every 150 units, until they reach 980 units from the x-axis.

icc2_shell> create_clock_straps -nets [get_nets clk1_mesh] \
 -layers {M7 M8} -widths {2.4 2.4} -types {stripe stripe} \
 -grids {{20 1200 100} {60 980 150}}-boundary {{0 0} {1200 980}}
The following example creates a two-dimensional spine structure that has spines on the
vertical layer M8 with a width of 3.6 units and of type user_route and stripes on the
horizontal layer M7 with a width of 2.4 units and of type stripe. The vertical spines on
layer M8 start at a distance of 60 units from the y-axis and repeat every 150 units, until
they reach 980 units from the x-axis. The horizontal stripes on layer M7 have a length of
120 units and they start at a distance of 20 units from the x-axis and repeat every 100
units, until they reach 1200 units from the x-axis. The minimum distance (backoff) between
stripes of different spines is 5 units.

icc2_shell> create_clock_straps -nets [get_nets clk1_mesh] \
 -layers {M7 M8} -widths {2.4 3.6} -types {stripe user_route} \
 -grids {{20 1200 100} {60 980 150}} -length 120 -backoff 5

Routing to Clock Straps
After you create clock straps for a clock net by using the create_clock_straps
command, you can route the drivers and loads of the clock net to the clock straps by using
the route_clock_straps command and specify the clock net name by using the -nets
option. The tool connects the drivers and the loads only to clock straps with the shape_use
attribute setting of stripe. It does not connect to clock straps with the shape_use attribute
setting of user_route.

IC Compiler™ II Implementation User Guide
T-2022.03

297

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

To specify a topology for connecting the clock drivers and sinks to the clock straps, use the
-topology option as follows:

• To create a fishbone routing topology, the default topology, use the -topology
fishbone option.

In a fishbone topology, each driver pin is individually connected to the nearest stripe. To
minimize wire length, multiple load pins are connected using comb routing to a single
finger, which is connected to the stripe, as shown in Figure 51.

Figure 51 Fishbone Topology

Fanout

Clock mesh strap (shape_use = user_route)

Clock mesh strap (shape_use = stripe)

Comb route

Driver pins

Load pins

Finger route

If you are using a fishbone topology, you can specify

◦ A maximum fanout for the loads of a finger, as shown in Figure 52, by using
-fishbone_fanout option.

Figure 52 Fanout of a Finger of the Fishbone Topology

Finger

Fanout

◦ A maximum span between any two loads connected to a finger, as shown in
Figure 53, by using -fishbone_span option.

IC Compiler™ II Implementation User Guide
T-2022.03

298

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

The span is measured orthogonal to the direction of the finger.

Figure 53 Span and Subspan of the Fishbone Topology

Subspan

Span

Subfinger

Finger

◦ A maximum subspan between any two loads connected to a subfinger, as shown in
Figure 53, by using -fishbone_sub_span option.

The subspan is measured orthogonal to the direction of the subfinger.

◦ The layers to use for routing the fingers and subfingers by using the
-fishbone_layers option.

• To create a comb routing topology, use the -topology comb option.

In a comb topology, each driver and load pin is directly routed to the nearest stripe.
However, if the Manhattan distance from a pin to the nearest stripe is more than
the comb distance, the tool routes the pin to the nearest net shape using a Steiner
topology, as shown in Figure 54. The default comb distance is two global routing cells.
To change the comb distance, use the route.common.comb_distance application
option.

IC Compiler™ II Implementation User Guide
T-2022.03

299

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

Figure 54 Comb Topology

Load pins

Driver pins

Clock mesh strap (shape_use = stripe)

Clock mesh strap (shape_use = user_route)

Comb route

Pin that is further than
the comb distance

Comb routing is suitable when there are a large number of driver and load pins directly
under the clock-mesh stripes. The tool uses stacked vias to connect the pins to the
stripes, which are usually in the higher routing layers. However, this can contribute to
physical DRC violations due to many adjacent stacked vias, as shown in Figure 55.

Figure 55 Vias in the Comb Topology

Driver and load pins

Clock mesh strap on

Stacked vias

higher routing layer

IC Compiler™ II Implementation User Guide
T-2022.03

300

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

• To create a substrap routing topology, use the -topology sub_strap option.

In a substrap topology, additional straps that are parallel to the stripes are created on
intermediate routing layers. This reduces the number of stacked vias, as compared to
the comb topology.

Figure 56 Vias in the Substrap Topology

Driver and load pins

Clock mesh stripe on

Substrap on intermediate

higher routing layer

routing layers

For the substrap topology, you

◦ Must specify the layers in which to create the substrap by using the
-sub_strap_layers option

◦ Can specify the maximum RC delay allowed for the substrap by using the
-sub_strap_max_delay option

The default is 2 ps. This delay constrains the length and the number of loads
connected to the substrap.

Analyzing the Clock Mesh
To reduce skew variation, clock mesh structures require higher timing accuracy than
traditional clock structures. Therefore, to analyze a clock mesh structures, use the
analyze_subcircuit command, which performs transistor level circuit simulation for the
clock mesh and back-annotates accurate timing information.

IC Compiler™ II Implementation User Guide
T-2022.03

301

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

Before you run the analyze_subcircuit command, you must

• Detail route the clock mesh net.

• Have a circuit-level model for each of the gates in your clock tree and a transistor
model for each of the transistors in the circuit-level models.

• Have access to a SPICE simulator such, as NanoSim, FineSim, or HSPICE.

For the analyze_subcircuit command, you must specify

• The clock mesh net you want to simulate by using the -net option.

Alternatively, you can specify the sinks of the mesh net by using the -to option.

If multiple clocks reach the net or the sinks you specify, use the -clock option to
distinguish the clock you want to analyze.

• A name by using the -name option.

This name is used to construct the circuit elements. It is also used in the name of the
output files and the directory where the output is stored.

Optionally you can specify an annotated transition on the clock port or the start point of
your clock mesh. If you do so, the clock must be specified as propagated by using the
set_propagated_clock command.

When you run the analyze_subcircuit command, the tool performs the following steps:

1. Performs RC extraction and generates parasitic files.

You can run extraction as a standalone step by using the -extraction option.

2. Generates SPICE files for simulating the clock mesh, using the parasitic files from the
previous step as input.

You can generate the SPICE files as a standalone step by using the
-create_spice_deck option. When you do so, you can use parasitic files generated
by a different extraction tool. If these parasitic files have a different naming convention,
you can specify the appropriate file suffix by using the -spef_input_file_suffix and
-rc_include_file_suffix options.

3. Runs SPICE simulation, using the SPICE files generated in the previous step as input.

By default, the tool uses the NanoSim simulator. You can use the FineSim or HSPICE
simulators by using the finesim or hspice setting with the -simulator option.

You must specify the location of the circuit-level and transistor-level models by using
the -driver_subckt_files and -spice_header_files options. You customize these
settings by specifying different files for the maximum and minimum conditions within
each scenario by using the -configuration option.

IC Compiler™ II Implementation User Guide
T-2022.03

302

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

You can run simulation as a standalone step by using the -run_simulation option.

4. Generates timing annotation files containing set_disable_timing,
set_annotated_delay, and set_annotated_transition commands, using the
simulation results as input.

For clock mesh nets, which have multiple drivers, the set_disable_timing command
is used to disable all except one of the drivers, which is called the anchor driver. The
annotated net delay arcs are defined from the anchor driver.

You can generate the timing annotation files as a standalone step by using the
-write_annotation option.

5. Applies the annotation files generated in the previous step.

You can apply the annotation files as a standalone step by using the
-apply_annotation option.

If you want to run some of the steps of the mesh analysis flow, such as extraction or
SPICE simulation, using other tools, you can do so and run the rest of the steps of the flow
using the standalone options of the analyze_subcircuit command, following the same
sequence.

The following example analyzes the clock mesh net named clk_mesh using the HSPICE
simulator. It customizes the simulation by using different files for the minimum and
maximum conditions of each scenario.

icc2_shell> analyze_subcircuit -net clk_mesh \
 -driver_subckt_files max_spice_model \
 -spice_header_files header_file \
 -configuration { \
 {-scenario_name scenario1 \
 -max_driver_subckt_files max_file1 \
 -max_spice_header_files header_max1 \
 -min_driver_subckt_files min_file1 \
 -min_spice_header_files header_min1} \
 {-scenario_name scenario2 \
 -max_driver_subckt_files max_file2 \
 -max_spice_header_files header_max2 \
 -min_driver_subckt_files min_file2 \
 -min_spice_header_files header_min2}}
 -simulator hspice \
 -name clk_mesh_analysis

Performing Automated Tap Insertion and H-Tree Synthesis
To perform this task, you must

IC Compiler™ II Implementation User Guide
T-2022.03

303

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

1. Specify the required settings by using the
set_regular_multisource_clock_tree_options command as follows:

• The clock name by using the -clock option

• The topology for the global clock tree by using the -topology htree_only option

• The number of rows and columns of tap cells to insert by using the -tap_boxes
option

• A list of library cells to use as tap drivers by using the -tap_lib_cells option

The library cells you specify must be enabled for clock tree synthesis by using the
set_lib_cell_purpose -include cts command.

• A list of library cells to use for synthesizing the global clock tree (H-tree) by using
the -htree_lib_cells option

The library cells you specify must be enabled for clock tree synthesis by using the
set_lib_cell_purpose -include cts command.

By default, the tool uses

• The net connected to the clock root to insert the tap drivers and build the clock
structure

You can specify a different net of the clock network by using the -net option.

• The locations of the sinks to determine the boundary within which to insert the tap
cells

You can control this boundary by using the -tap_boundary option. You can also
specify keepout areas within which tap cells should not be inserted by using the
-keepouts option.

• The layers and routing rules specified by the clock tree synthesis settings to route
the H-tree

You can specify the layers and routing rules for the H-tree by using the
-htree_layers and -htree_routing_rule options.

You can report the options you specified by using the
report_regular_multisource_clock_tree_options command, and remove them
by using the remove_regular_multisource_clock_tree_options command.

2. (Optional) Enable flexible H-tree synthesis by setting the
cts.multisource.flexible_htree_synthesis application option to true.

When you enable this feature, the tool identifies the best count, configuration, and
placement of tap drivers for minimum clock tree insertion delay.

IC Compiler™ II Implementation User Guide
T-2022.03

304

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

To specify that the tool derives a symmetric configuration of tap drivers, set the
cts.multisource.tap_selection application option to symmetric. The default
is user, and by default the tool uses the configuration specified by the -tap_boxes
option of the set_regular_multisource_clock_tree_options command for the tap
drivers.

3. Insert the tap drivers and build the H-tree by using the
synthesize_regular_multisource_clock_trees command, which consists of the
following two stages:

• tap_synthesis, during which the tool inserts the tap drivers

• htree_synthesis, during which the tool builds the H-tree that drives the tap drivers

By default, the tool performs both stages. You can perform only one of these stages by
using the -to or -from option.

The following example script inserts tap drivers in four columns and two rows and builds
the H-tree:

Include only tap driver and H-tree library cell for CTS
set cts_references [get_lib_cells -filter valid_purposes=~*cts*]
set_lib_cell_purpose -exclude cts [get_lib_cells $cts_references]
set_lib_cell_purpose -include cts { LIB1/BUF1 LIB1/BUF2}

Set up and insert tap drivers and build H-tree
set_regular_multisource_clock_tree_options \
 -clock clk -topology htree_only -tap_boxes {4 2} \
 -tap_lib_cells [get_lib_cells */CKBUF*] \
 -htree_lib_cells [get_lib_cells */CKINV*] \
 -htree_layers "m9 m10" -htree_routing_rule "htree_ndr"
synthesize_regular_multisource_clock_trees

Reapply CTS library cell list as required for the subsequent steps
set_lib_cell_purpose -include cts [get_lib_cells $cts_references]

Specifying Tap Assignment Options and Settings
Before you can perform automated tap assignment by using the
synthesize_multisource_clock_taps command, you must perform the following steps:

1. Remove dont_touch, size_only, fixed, and locked attributes setting on the clock
cells that are not required. These settings prevent the tool from merging or splitting
clock cells during tap assignment, if necessary.

2. Specify settings for automated tap assignment by using the
set_multisource_clock_tap_options command.

IC Compiler™ II Implementation User Guide
T-2022.03

305

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

You must specify

• The clock for tap assignment by using the -clock option.

All the sinks reachable from the given clock are considered for redistribution.

• The tap drivers among which the sinks are redistributed by using the
-driver_objects option.

• The number of taps that the sinks are redistributed among by using the -num_taps
option.

Currently, the number of taps specified with this option must be equal to the number
of drivers specified with the -driver_objects option.

To prevent the tool from merging specific clock tree cells, specify the instance names
using the -dont_merge_cells option.

To report the settings you specify for automated tap assignment,
use the report_multisource_clock_tap_options command. To
remove the settings you specify for automated tap assignment, use the
remove_multisource_clock_tap_options command.

3. (Optional) Create multisource sink groups for tap assignment by using the
create_multisource_clock_sink_group command.

Skew groups defined for the clock can be distributed among different taps. To retain the
objects of a skew group under the same tap, create a corresponding multisource sink
group.

Use the following commands to remove, report, or manipulate multisource sink groups:

• remove_multisource_clock_sink_groups

• report_multisource_clock_sink_groups

• get_multisource_clock_sink_groups

• add_to_multisource_clock_sink_group

• remove_from_multisource_clock_sink_group

4. (Optional) Specify name prefixes and suffixes to use when merging and splitting clock
cells during tap assignment by using the following application options:

• cts.multisource.subtree_merge_cell_name_prefix

• cts.multisource.subtree_merge_cell_name_suffix

• cts.multisource.subtree_split_cell_name_prefix

IC Compiler™ II Implementation User Guide
T-2022.03

306

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

• cts.multisource.subtree_split_cell_name_suffix

• cts.multisource.subtree_split_net_name_prefix

• cts.multisource.subtree_split_net_name_suffix

Building the Local Clock Subtree Structures
In a structural multisource clock tree, the local subtrees are directly driven
by the clock mesh. You can synthesize these local subtrees by using the
synthesize_multisource_clock_subtrees command.

Before you synthesize the local subtrees, you must

1. Build the global clock distribution structure.

2. Model the clock mesh net with a realistic annotated delay and transition values using
the set_annotated_delay and set_annotated_transition commands.

3. Remove dont_touch, size_only, fixed, and locked attributes setting
on the clock cells that are not required. These settings prevent the
synthesize_multisource_clock_subtrees command from merging or splitting clock
cells, if necessary.

4. Specify settings for local subtree synthesis by using the
set_multisource_clock_subtree_options command.

You must specify

• The clock for synthesizing the subtrees by using the -clock option.

• The drivers of the subtrees to be synthesized by using the -driver_objects
option.

The clock specified with the -clock option should pass through each drivers
specified with the -driver_objects option.

Optionally you can

• Prevent the tool from merging specific clock tree cells by using the
-dont_merge_cells option.

• Balance the levels of the local subtree by using the -balance_levels true option
and specify a target number of levels, which applies to all sinks of the local subtree,
by using the -target_level option.

Optionally, you can apply a different target number of levels
to specific sink pins and clock balance points by using the

IC Compiler™ II Implementation User Guide
T-2022.03

307

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

set_multisource_clock_subtree_constraints command with the -pins and
-target_level options.

• Specify a maximum total wire delay from any subtree driver to any of its sinks by
using the -max_total_wire_delay option and the corner it applies to by using the
-corner option.

• Enable the reordering of clock-gating cells by using the -enable_icg_reordering
true option.

When you enable this feature, the tool swaps the position of a clock-gating cell with
the buffer that is driving the clock-gating cell. Then, the buffer is gated by the clock-
gating cell, thereby reducing the dynamic power consumption.

To perform reordering, you must

◦ Enable scenarios used for structural multisource clock tree synthesis for
dynamic power optimization

◦ Annotate switching activity for the enable pins of the clock-gating cells

You can prevent specific clock-gating cells from being reordered by using the
set_multisource_clock_subtree_constraints command with the -cells and
-ignore_for_icg_reordering options.

To report the settings you specified, use the
report_multisource_clock_subtree_options command. To remove the settings
you specified, use the remove_multisource_clock_subtree_options command.

5. (Optional) Enable multicorner optimization by setting the
cts.multisource.enable_multi_corner_support application option to true. The
default is false.

By default, the tool uses the worst corner associated with the mode in which the
subtree options are defined. When you enable this feature, the tool considers all
corners associated with the mode in which the subtree options are defined.

6. (Optional) Ignore the maximum capacitance, maximum fanout, or both constraints of
the clock drivers by using the cts.multisource.ignore_drc_on_subtree_driver
application option.

When you synthesize multisource clock subtrees, by default, the tool considers the
maximum transition, capacitance, and fanout constraints of the clock drivers you
specify. However, the clock drivers typically have relaxed or no maximum capacitance
or maximum fanout constraint, which can affect the multisource clock tree QoR.

IC Compiler™ II Implementation User Guide
T-2022.03

308

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

The following example ignores both the maximum capacitance and maximum fanout
constraints of the clock drivers:

icc2_shell> set_app_options \
 -name cts.multisource.ignore_drc_on_subtree_driver \
 -value "max_fanout max_capacitance"

7. (Optional) Enable fishbone routing for the subtree clock nets by using the
cts.multisource.subtree_routing_mode application option.

icc2_shell> set_app_options \
 -name cts.multisource.subtree_routing_mode -value fishbone

8. (Optional) Specify name prefixes and suffixes to use when merging and splitting clock
cells during local subtree synthesis by using the following application options:

• cts.multisource.subtree_merge_cell_name_prefix

• cts.multisource.subtree_merge_cell_name_suffix

• cts.multisource.subtree_split_cell_name_prefix

• cts.multisource.subtree_split_cell_name_suffix

• cts.multisource.subtree_split_net_name_prefix

• cts.multisource.subtree_split_net_name_suffix

9. (Optional) Enable power optimization by using the
cts.multisource.subtree_synthesis_enable_power_optimization application
option.

icc2_shell> set_app_options \
-name cts.multisource.subtree_synthesis_enable_power_optimization \
-value true

When you run the synthesize_multisource_clock_subtrees command the tool
performs the following steps:

1. Merges equivalent clock cells to remove any artificial boundaries between clusters of
sinks.

2. Optimizes the subtree by splitting, sizing, and relocating the clock cells, and snaps the
first level of clock cells to the clock straps.

3. Routes the clock nets.

By default, it global routes the nets. However, if you enable fishbone routing by using
the cts.multisource.subtree_routing_mode application option, the tool creates a
mix of detail routed fishbone trunks and fingers, and global comb routes to connect the
net loads to the fishbone fingers, as shown in Figure 57.

IC Compiler™ II Implementation User Guide
T-2022.03

309

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Implementing Multisource Clock Trees

Feedback

You can control the fishbone routing by using the following application options:

• cts.routing.fishbone_max_tie_distance

• cts.routing.fishbone_max_sub_tie_distance

• cts.routing.fishbone_bias_threshold

• cts.routing.fishbone_bias_window

• cts.routing.fishbone_horizontal_bias_spacing

• cts.routing.fishbone_vertical_bias_spacing

4. Refines the clock trees by sizing and relocating cells based on the routing.

Figure 57 Detail Fishbone Routes and Global Comb Routes

Global comb route

Fishbone trunk

Fishbone finger

You can run specific steps of the synthesize_multisource_clock_subtrees command
by using the -from and -to options and specifying merge, optimize, route_clock, or
refine.

Structural subtrees that you build by using the
synthesize_multisource_clock_subtrees command are not changed or removed
when you subsequently run any clock tree synthesis command.

IC Compiler™ II Implementation User Guide
T-2022.03

310

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Analyzing the Clock Tree Results

Feedback

Analyzing the Clock Tree Results
After synthesizing the clock trees, analyze the results to verify that they meet your
requirements. Typically the analysis process consists of the following tasks:

• Analyzing the clock tree QoR (as described in Generating Clock Tree QoR Reports)

• Analyzing the clock tree timing (as described in Analyzing Clock Timing)

• Verifying the placement of the clock instances, using the GUI (as described in
Analyzing Clock Trees in the GUI)

Generating Clock Tree QoR Reports
To generate clock tree QoR reports, use the report_clock_qor command.

The report_clock_qor command can generate the following types of reports:

• Summary

By default, this command reports a summary of the clock tree QoR, which includes the
latency, skew, DRC violations, area, and buffer count.

• Latency

To report the longest and shortest path for each clock, use the -type latency option.

• DRC violators

To report the maximum transition and capacitance constraint violators, use the -type
drc_violators option.

• Robustness

To report the robustness of each sink, use the -type robustness option. The
robustness of a sink is the ratio between its latency for the corner for which the report
is being generated and its latency for the corner specified by the -robustness_corner
option. The mode use for both latency values is the mode for which the report is
being generated. When you use the-type robustness option, you must specify a
corresponding robustness corner by using the -robustness_corner option.

• Clock-balance groups QoR

To report a clock QoR summary for each clock-balance group, use the -type
balance_groups option. It also reports the clock latency offset values specified with
the -offset_latencies option of the create_clock_balance_group command and
the actual latency offset values.

IC Compiler™ II Implementation User Guide
T-2022.03

311

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Analyzing the Clock Tree Results

Feedback

• Local skew

To report the QoR summary and the worst local skew for each clock or skew group,
use the -type local_skew option. It also reports the five largest and five smallest
local skew values and the corresponding endpoints.

• Clock tree power

To report a summary of the leakage, internal, sink, net switching, dynamic,
and total power per clock per scenario, use the -type power option. If the
power.clock_network_include_clock_sink_pin_power application option is set to
off, the sink power is not reported.

When you use the -type option, you can generate the output as a comma separated
values (CSV) file by using the -csv option and specifying the output file name using the
-output option.

The report_clock_qor command can also generate the following types of histograms:

• Latency histogram

To report the latency of each sink in a histogram format, use the -histogram_type
latency option.

• Transition histogram

To report the transition time of each sink in a histogram format, use the
-histogram_type transition option.

• Capacitance histogram

To report the capacitance of each sink in a histogram format, use the
-histogram_type capacitance option.

• Local skew histogram

To report the local skew in a histogram, use the -histogram_type local_skew
option.

• Robustness histogram

To report the robustness of each sink, with respect to a robustness corner
specified by using the -robustness_corner option, in a histogram format, use the
-histogram_type robustness option.

• Wire delay fraction histogram

To report the ratio between the wire delay and the total delay for each logic stage of the
clock tree in a histogram format, use the -histogram_type wire_delay_fraction
option.

IC Compiler™ II Implementation User Guide
T-2022.03

312

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Analyzing the Clock Tree Results

Feedback

By default, the tool generates a report for all clock trees in all active modes and corners in
all active scenarios. You can limit the report to specific

• Portions of a clock network by using the -from, -to, and -through options

• Clock trees by using the -clock option

• Skew groups by using the -skew_group option

• Modes by using the -mode option

• Corners by using the -corner option

• Scenarios by using the -scenario option

If you use the -scenario option, you cannot use the -mode and -corner options.

Reporting Clock Tree Power
To report the power of a clock tree, use the report_clock_power command. By default,
it reports the power for all clock trees in all modes and corners of all active scenarios. To
report the power

• Only for specific clocks, use the -clocks option

• Only for specific modes, use the -modes option

• Only for specific corners, use the -corners option

• Only for specific scenarios, use the -scenario option

• On a per-segment or per-subtree basis, use the -type per_segment or -type
per_subtree option

◦ A segment is the clock buffer tree from one integrated-clock-gating (ICG) cell to the
next ICG cells or sinks in its fanout

For example, in the following figure, the buffer tree from the output of the ICG1 cell
to the inputs of the ICG2, ICG3, and ff2 cells is considered a segment.

◦ A subtree is a clock tree from an ICG cell all the way to the sinks in its fanout.

For example, in the following figure, the clock tree from the output of the ICG1 cell
to the inputs of the ff1, ff2, and ff3 cells is considered a subtree.

IC Compiler™ II Implementation User Guide
T-2022.03

313

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Analyzing the Clock Tree Results

Feedback

Figure 58 Segments and Subtrees of a Clock Tree

Creating Collections of Clock Network Pins
You can create a collection of the pins on a clock network by using the
get_clock_tree_pins command. By default, this command returns all the pins on all the
clock networks of all scenarios.

You can limit the selection by using one of the following methods

• Limit it to specific clock by using the -clocks option.

• Limit it to specific scenario, scenarios of modes, or scenarios of corners by using the
-scenarios, -modes, or -corners option.

You can further limit the selection by

• Considering only the clock paths that go from, through, and to specific pins by using
the -from, -through, and -to options.

• Filtering the pins based on their attributes by using the -filter option.

For more information about all the available options and all the supported pin attributes,
see the man page for the get_clock_tree_pins command.

The following example creates a collection named clk1_icg_pins, which consists of the
pins of integrated-clock-gating cells that are on the clock network of the clock named clk1:

icc2_shell> set clk1_icg_pin \
 [get_clock_tree_pins -filter is_on_ICG -clocks clk1]

IC Compiler™ II Implementation User Guide
T-2022.03

314

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Clock Tree Synthesis
Analyzing the Clock Tree Results

Feedback

Analyzing Clock Timing
The timing characteristics of the clock network are important in any high-performance
design. To obtain detailed information about the clock networks in the current block, use
the report_clock_timing commandcommandsreport_clock_timingreport_clock_timing command.

You must use the -type option to specify the type of report to generate. The
report_clock_timing command can generate the following types of reports:

• Single-clock local skew

To generate a single-clock local skew report, use the -type skew option.

• Interclock skew

To generate an interclock skew report, use the -type interclock_skew option.

• Latency

To generate a latency report, use the -type latency option.

• Transition

To generate a transition time report, use the -type transition option.

Analyzing Clock Trees in the GUI
The IC Compiler II GUI provides the Clock Tree Visual Mode to help you visualize and
analyze the clock trees in your design. In this mode, you can overlay the clock tree
information to the layout view, or view the clock tree structure in the schematic view.

For more information about analyzing clock tree information in the GUI, see the Using Map
and Visual Modes topic in the IC Compiler II Graphical User Interface User Guide.

IC Compiler™ II Implementation User Guide
T-2022.03

315

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

5
Routing and Postroute Optimization

This topic describes the routing capabilities of Zroute, which is the router for the IC
Compiler II tool. Zroute is architected for multicore hardware and efficiently handles
advanced design rules for 45 nm and below technologies and design-for-manufacturing
(DFM) tasks. It also describes the postroute optimization features supported by the IC
Compiler II tool.

To learn about routing and postroute optimization, see the following topics:

• Introduction to Zroute

• Basic Zroute Flow

• Prerequisites for Routing

• Defining Vias

• Inserting Via Ladders

• Checking Routability

• Routing Constraints

• Routing Application Options

• Routing Clock Nets

• Routing Critical Nets

• Routing Secondary Power and Ground Pins

• Routing Signal Nets

• Shielding Nets

• Performing Postroute Optimization

• Analyzing and Fixing Signal Electromigration Violations

• Performing ECO Routing

• Routing Nets in the GUI

• Cleaning Up Routed Nets

IC Compiler™ II Implementation User Guide
T-2022.03

316

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Introduction to Zroute

Feedback

• Analyzing the Routing Results

• Saving Route Information

• Deriving Mask Colors

• Inserting and Removing Cut Metal Shapes

Introduction to Zroute
Zroute has five routing engines: global routing, track assignment, detail routing, ECO
routing, and routing verification. You can invoke global routing, track assignment,
and detail routing by using task-specific commands or by using an automatic routing
command. You invoke ECO routing and route verification by using task-specific
commands.

Zroute includes the following main features:

• Multithreading on multicore hardware for all routing steps, including global routing,
track assignment, and detail routing

• A realistic connectivity model where Zroute recognizes electrical connectivity if the
rectangles touch; it does not require the center lines of wires to connect

• A dynamic maze grid that permits Zroute to go off-grid to connect pins, while retaining
the speed advantages of gridded routers

• A polygon manager, which allows Zroute to recognize polygons and to understand that
design rule checks (DRCs) are aimed at polygons

• Concurrent optimization of design rules, antenna rules, wire optimization, and via
optimization during detail routing

• Concurrent redundant via insertion during detail routing

• Support for soft rules built into global routing, track assignment, and detail routing

• Timing- and crosstalk-driven global routing, track assignment, detail routing, and ECO 
 routing

• Intelligent design rule handling, including merging of redundant design rule violations
and intelligent convergence

• Net group routing with layer constraints and nondefault routing rules

• Clock routing

• Route verification

IC Compiler™ II Implementation User Guide
T-2022.03

317

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Introduction to Zroute

Feedback

• Optimization for DFM and design-for-yield (DFY) using a soft rule approach

• Support for advanced design rules, such as multiple patterning

IC Compiler™ II Implementation User Guide
T-2022.03

318

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Basic Zroute Flow

Feedback

Basic Zroute Flow
Figure 59 shows the basic Zroute flow, which includes clock routing, signal routing, DFM
optimizations, and route verification.

Figure 59 Basic Zroute Flow

IC Compiler™ II Implementation User Guide
T-2022.03

319

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Prerequisites for Routing

Feedback

Prerequisites for Routing
Before you can run Zroute, you must ensure that the block and physical library meet the
following requirements:

• Library requirements

Zroute gets all of the design rule information from the technology file; therefore, you
must ensure that all design rules are defined in the technology file before you start
routing.

For more information about the technology file and defining routing design rules, see
the Synopsys Technology File and Routing Rules Reference Manual.

• Block requirements

Before you perform routing, your block must meet the following conditions:

◦ Power and ground nets have been routed after design planning and before
placement.

For more information, see the IC Compiler II Design Planning User Guide.

◦ Clock tree synthesis and optimization have been performed.

For more information, see Clock Tree Synthesis.

◦ Estimated congestion is acceptable.

◦ Estimated timing is acceptable (about 0 ns of slack).

◦ Estimated maximum capacitance and transition have no violations.

To verify that your block meets the last three prerequisites, you can check the
routability of its placement as explained in Checking Routability.

IC Compiler™ II Implementation User Guide
T-2022.03

320

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Defining Vias

Feedback

Defining Vias
The router supports the following types of via definitions:

• Simple vias and simple via arrays

A simple via is a single-cut via. It is specified by a cut layer and the height and width of
the rectangular shapes on its cut and metal layers. A simple via array is a multiple-cut
simple via. Simple vias and simple via arrays can be used for the following purposes:

◦ Clock or signal routing using nondefault routing rules

◦ Redundant via insertion

◦ Power and ground routing with advanced via rules

• Custom vias

A custom via is a multiple-cut, odd-shaped via that is created from an arbitrary
collection of Manhattan polygons. Custom vias can be used only for redundant via
insertion.

Via definitions can come from the following sources:

• The ContactCode sections of the technology file associated with the design library

The technology file can contain definitions for simple vias, simple via arrays, and
custom vias. For information about defining vias in the technology file, see the
Synopsys Technology File and Routing Rules Reference Manual.

• Via rule GENERATE statements in a LEF file

The via rule GENERATE statements define simple via arrays. For information about
defining vias in a LEF file, see Reading Via Definitions from a LEF File.

• User-defined via definitions

You can define simple vias, simple via arrays, and custom vias. For information about
creating user-defined via definitions, see Creating a Via Definition.

If you want Zroute to use a via definition for signal routing, ensure that is has the following
attribute settings:

• is_default attribute is true

• is_excluded_for_signal_routing attribute is false
In addition, Zroute uses nondefault vias that are explicitly specified in a fat via table in
the technology file or in a nondefault routing rule defined by the create_routing_rule
command.

IC Compiler™ II Implementation User Guide
T-2022.03

321

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Defining Vias

Feedback

Reading Via Definitions from a LEF File
To read via definitions specified by via rule GENERATE statements in a LEF file, use the
read_tech_lef command. This command supports the following LEF syntax:

via_rule_name GENERATE [DEFAULT]
 LAYER lower_layer_name
 ENCLOSURE lower_overhang1 lower_overhang2
 LAYER upper_layer_name
 ENCLOSURE upper_overhang1 upper_overhang2
 LAYER cut_layer_name
 RECT llx lly urx ury
 SPACING x_spacing BY y_spacing

The WIDTH and RESISTANCE statements are not supported.

Creating a Via Definition
To create a via definition, use the create_via_def command. After it is created, the via
definition can be used anywhere in the design, similar to a ContactCode definition in the
technology file. The user-specified via definition is stored in the design library, so it can be
used only in that design.

The create_via_def command can define simple vias, simple via arrays, and custom
vias. The following topics describe how to define these types of vias.

• Defining Simple Vias

• Defining Custom Vias

Defining Simple Vias
To define a simple via or via array, use the following create_via_def syntax:

create_via_def
 -cut_layer layer
 -cut_size {width height}
 -upper_enclosure {width height}
 -lower_enclosure {width height}
 [-min_rows number_of_rows]
 [-min_columns number_of_columns]
 [-min_cut_spacing distance]
 [-cut_pattern cut_pattern]
 [-is_default]
 [-force]
 via_def_name

You do not need to specify the enclosure layers; the tool determines them from the
technology file by getting the metal layers adjacent to the specified via layer.

IC Compiler™ II Implementation User Guide
T-2022.03

322

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Defining Vias

Feedback

By default, when you define a simple via, it is a single-cut via. To define a via array, specify
the minimum number of rows and columns for the array (-min_rows and -min_columns
options), as well as the minimum cut spacing (-min_cut_spacing option). By default, the
cut pattern is a full array of cuts. To modify the cut pattern, use the -cut_pattern option.

To overwrite an existing via definition, use the -force option; otherwise, the command
fails if the specified via definition already exists.

For example, to create a single-cut via definition named design_via1_HV for the VIA12 via
layer, use the following command:

icc2_shell> create_via_def design_via1_HV \
 -cut_layer VIA12 -cut_size {0.05 0.05} \
 -lower_enclosure {0.02 0.0} -upper_enclosure {0.0 0.2} \
To create a via definition with an alternating 2x2 cut pattern in which the lower-left cut is
omitted, use the following command:

icc2_shell> create_via_def design_via12 -cut_pattern "01 10"
To report information about the user-defined via definitions, use the report_via_defs
command.

Defining Custom Vias
To define a custom via, use the following create_via_def syntax:

create_via_def
 -shapes { {layer {coordinates} [mask_constraint]} ... }
 [-lower_mask_pattern alternating | uniform]
 [-upper_mask_pattern alternating | uniform]
 [-force]
 via_def_name

In the -shapes option, you must specify shapes for one via layer and two metal layers,
which are the enclosure layers for the via. You can specify multiple shapes per layer.

For example, to create a custom via definition, use a command similar to the following:

icc2_shell> create_via_def design_H_shape_via \
 -shapes { {VIA12 {0.035 -0.035} {0.100 0.035}}
 {VIA12 {-0.100 -0.035} {-0.035 0.035}}
 {METAL1 {-0.130 -0.035} {0.130 0.035}}
 {METAL2 {-0.100 -0.065} {-0.035 0.065}}
 {METAL2 {0.035 -0.065} {0.100 0.065}}
 {METAL2 {-0.100 -0.035} {0.100 0.035}} }
To overwrite an existing via definition, use the -force option; otherwise, the command
fails if the specified via definition already exists.

IC Compiler™ II Implementation User Guide
T-2022.03

323

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

If you are using double-patterning technology, you can assign mask constraints to the
shapes or the enclosure layers, but not both.

• To assign mask constraints to the shapes, use the mask_one, mask_two, or
mask_three keywords for the mask_constraint arguments when specifying the
-shapes option. You would use this method if the mask constraints follow an arbitrary
pattern. When you create a via with the create_via command, the via shapes inherit
the mask constraints specified in the via definition. If the mask constraint you specify
for an enclosure layer when you create a via differs from the mask constraint specified
for the first shape in the via definition, the specified mask constraint determines the
mask-shift used for all shapes on that layer.

For example,

icc2_shell> create_via_def VIA12 \
 -shapes { {M1 {-0.037 -0.010} {-0.017 0.01} mask_two}
 {M1 {0.017 -0.010} {0.037 0.01} mask_one}
 {VIA1 {-0.037 -0.01} {0.037 0.01} mask_two}
 {M2 {-0.044 -0.010} {0.044 0.010} mask_one} }
icc2_shell> create_via -net n1 -via_def VIA12 \
 -origin {100.100 200.320}

• To assign mask constraints to the enclosure layers, use the -lower_mask_pattern
and -upper_mask_pattern options. You can specify either uniform or alternating
as the mask pattern. In either case, you specify the mask constraint for the first shape
when you create a via with the create_via command. If you specify uniform, all
shapes on the layer use the specified mask constraint. If you specify alternating, the
colors alternate from shape to shape after the first shape.

For example,

icc2_shell> create_via_def VIA12 \
 -shapes { {M1 {-0.010 -0.030} {0.027 0.050}}
 {M1 {0.047 -0.030} {0.084 0.050}}
 {VIA1 {0.000 0.000} {0.074 0.020}}
 {M2 {-0.030 0.000} {0.104 0.020}} } \
 -lower_mask_pattern uniform
icc2_shell> create_via -via_def VIA12 -origin {000.100 200.320}
 -lower_mask_constraint mask_two

To report information about the via definitions, use the report_via_defs command. This
command reports the shapes that comprise the via definition but does not report the upper
and lower mask patterns.

Inserting Via Ladders
A via ladder, which is also referred to as a via pillar, is a stacked via that starts from
the pin layer and extends into an upper layer where the router connects to it. Via

IC Compiler™ II Implementation User Guide
T-2022.03

324

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

ladders reduce the via resistance, which can improve performance and electromigration
robustness.

To use via ladders,

• Via ladder rules must be defined in the technology data for the design

For information about defining via ladder rules, see Defining Via Ladder Rules.

• You must insert the via ladders before you perform global routing

The IC Compiler II tool provides the following methods for inserting via ladders:

◦ Automatic insertion during preroute optimization, as described in

◦ Constraint-based insertion by using the insert_via_ladders command, as
described in Constraint-Based Via Ladder Insertion

◦ Manual insertion by using the create_via_ladder command, as described in
Manual Via Ladder Insertion

See Also

• Querying Via Ladders

• Removing Via Ladders

• Controlling Via Ladder Connections

Defining Via Ladder Rules
A via ladder rule defines the number of rows and the number of cuts in each row for each
layer in a via ladder. Via ladder rules can be defined in the technology file or by using the
create_via_rule command.

For example, each of the following methods creates an identical via ladder rule:

• Define the rule in the technology file.

ViaRule "VL1" {
 cutLayerNameTblSize = 2
 cutLayerNameTbl = (VIA1, VIA2) # via layer names
 cutNameTbl = (CUT1A, CUT2A) # cut names
 numCutRowsTbl = (2, 2) # rows in ladder
 numCutsPerRowTbl = (2, 2) # columns in ladder
 upperMetalMinLengthTbl = (L1, L2) # minimum length rule
 cutXMinSpacingTbl = (X1, X2) # X-direction spacing
 cutYMinSpacingTbl = (Y1, Y2) # Y-direction spacing
 maxNumStaggerTracksTbl = (S1, S2) # maximum staggering
 forHighPerformance = 0

IC Compiler™ II Implementation User Guide
T-2022.03

325

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

 forElectromigration = 1
}

For details about defining via ladder rules in the technology file, see the "Via Ladder
Rule" topic in the Synopsys Technology File and Routing Rules Reference Manual.

• Define the rule on the command line by using the create_via_rule command with a
detailed specification and then specifying additional details by setting its attributes.

icc2_shell> create_via_rule -name VL1 -cut_layer_names {VIA1 VIA2} \
 -cut_names {CUT1A CUT2A} -cut_rows {2 2} -cuts_per_row {2 2}
icc2_shell> set_attribute [get_via_rules VL1] \
 upper_metal_min_length_table {L1 L2}
icc2_shell> set_attribute [get_via_rules VL1] \
 cut_x_min_spacing_table {X1 X2}
icc2_shell> set_attribute [get_via_rules VL1] \
 cut_y_min_spacing_table {Y1 Y2}
icc2_shell> set_attribute [get_via_rules VL1] \
 max_num_stagger_tracks_table {S1 S2}
icc2_shell> set_attribute [get_via_rules VL1] \
 for_high_performance false
icc2_shell> set_attribute [get_via_rules VL1] \
 for_electro_migration true

• Define the rule on the command line by creating an empty via rule with the
create_via_rule command and then specifying the details by setting its attributes.

icc2_shell> create_via_rule -name VL1
icc2_shell> set_attribute [get_via_rules VL1] \
 cut_layer_name_table_size 2
icc2_shell> set_attribute [get_via_rules VL1] \
 cut_layer_name_table {via1 via2}
icc2_shell> set_attribute [get_via_rules VL1] \
 cut_name_table {CUT1A CUT2A}
icc2_shell> set_attribute [get_via_rules VL1] \
 num_cuts_per_row_table {2 2}
icc2_shell> set_attribute [get_via_rules VL1] num_cut_rows_table {2 2}
icc2_shell> set_attribute [get_via_rules VL1] \
 upper_metal_min_length_table {L1 L2}
icc2_shell> set_attribute [get_via_rules VL1] \
 cut_x_min_spacing_table {X1 X2}
icc2_shell> set_attribute [get_via_rules VL1] \
 cut_y_min_spacing_table {Y1 Y2}
icc2_shell> set_attribute [get_via_rules VL1] \
 max_num_stagger_tracks_table {S1 S2}
icc2_shell> set_attribute [get_via_rules VL1] \
 for_high_performance false
icc2_shell> set_attribute [get_via_rules VL1] \
 for_electro_migration true

IC Compiler™ II Implementation User Guide
T-2022.03

326

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

The tool treats the via rules the same, regardless of the method used to create them. You
can perform the following tasks for via rules:

• Create a collection of via rules by using the get_via_rules command

• Remove via rules by using the remove_via_rules command

• Display detailed information about the via rules by using the report_via_rules
command

• Set or query via rule attributes

To see the attributes supported on via rule objects, use the list_attributes
-application -class via_rule command.

• Save the via rules in a technology file by using the write_tech_file command

See Also

• Generating Via Ladder Rules for Electromigration Via Ladders

Generating Via Ladder Rules for Electromigration Via Ladders
Instead of explicitly defining via ladder rules for electromigration via ladders, you can
use the generate_via_ladder_template command to generate via ladder rules and
constraints based on a configuration file. The configuration file is an XML file that provides
information about the via ladder rules, as well as the association between the via ladder
rules and specific pins. You must specify the name of the configuration file by using the
-config_file option. The command generates two script files:

• A script file that defines the via ladder rules, which is called the template script file

This script file contains a create_via_rule command for each template defined in the
configuration file, as well as set_attribute commands to set the appropriate via rule
attributes.

By default, the file is named auto_gen_via_ladder_template.tcl. To specify a different
file name, use the -template_file option.

• A script file that defines the via ladder constraints, which is called the association script
file

This script file contains set_via_ladder_candidate commands for the pins
specified in the configuration file, as well as set_attribute commands to set the
is_em_via_ladder_required attribute for the pins to true.

By default, the file is named auto_gen_via_ladder_association.tcl. To specify a different
file name, use the -association_file option.

IC Compiler™ II Implementation User Guide
T-2022.03

327

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

The configuration file has the following syntax:

<EmRule>
 <!-- template definition -->
 <Template name="rule_name">
 <Layer name="layer_name" row_number="cuts_per_row"
 [max_stagger_tracks="count"]
 [upper_cut_x_min_spacing="x_spacing"]
 [upper_cut_y_min_spacing="y_spacing"] />
 ... more layers
 </Template>
 … more templates

 <!-- Pin to template association -->
 <Pin name="pin_name">
 <Template name="rule_name"/>
 </Pin>
 ... more associations
</EmRule>

Each Template section specifies the template for a via ladder rule. You can specify one or
more Template sections. Within a template section, you specify the via ladder structure by
specifying the number of cuts per row for each metal layer involved in the via ladder. The
command uses the information in the configuration file and associated information from
the technology file to generate the via ladder rules. The command derives the following
information from the technology file

• The cut layers that connect the specified metal layers

• The cut names

• The minimum required length for each metal layer

Note:
You must open the block before running the generate_via_ladder_template
command to ensure that the command has access to the technology data for
the block.

Each Pin section specifies the template associated with a pin, where the pin name can
include the asterisk wildcard character (*). You can specify one or more Pin sections. The
template specified in the Pin section’s Template attribute must be one of the templates
specified in the Template sections.

For example, assume you have a configuration file named vl_config that has the following
contents:

<EmRule>
 <Template name="template_1_3231">
 <Layer name="M1" row_number="3"/>
 <Layer name="M2" row_number="2"/>
 <Layer name="M3" row_number="3"/>

IC Compiler™ II Implementation User Guide
T-2022.03

328

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

 <Layer name="M4" row_number="1"/>
 </Template>
 <Pin name="*/BCELLD5A11*/Z">
 <Template name="template_1_3231"/>
 </Pin>
</EmRule>

To generate the script files to define the via ladder rules and constraints, use the following
command:

icc2_shell> generate_via_ladder_template -config_file vl_config
Example 15 shows the template script file generated by this command. Example 16 shows
the association script file generated by this command.

Example 15 Template Script File
create_via_rule -name template_1_3231 \
 -cut_layer_names {VIA1 VIA2 VIA3} -cut_names {V1S V2S V3S} \
 -cut_rows {2 3 1} -cuts_per_row {3 2 3}
set viaRule [get_via_rules template_1_3231]
set_attribute $viaRule upper_metal_min_length_table {0.3 0.2 0.4}
set_attribute $viaRule for_electro_migration true

Example 16 Association Script File
foreach_in_collection pin [get_lib_pins -quiet */BCELLD5A11*/Z] {
 set_attribute -quiet $pin is_em_via_ladder_required true
 set_via_ladder_candidate $pin -ladder_name "template_1_3231"
}

See Also

• Defining Via Ladder Rules

• Specifying Automatic Via Ladder Insertion Settings for Preroute Optimization

Generating Via Ladder Rules for Performance Via Ladders
Instead of explicitly defining via ladder rules for performance via ladders, you can use
the setup_performance_via_ladder command to generate the via ladder rules and
associations.

By default, this command

• Generates via ladder rules for all layers up to the M5 layer

To specify a different maximum layer, use the -max_layer attribute.

IC Compiler™ II Implementation User Guide
T-2022.03

329

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

The command uses information from the technology file to generate the via ladder
rules. The command derives the following information from the technology file:

◦ The cut layers that connect the specified metal layers

◦ The cut names

◦ The minimum required length for each metal layer

Note:
You must open the block before running the
setup_performance_via_ladder command to ensure that the command
has access to the technology data for the block.

The command outputs an XML file that provides information about the via ladder rules
and a script file that defines the via ladder rules. For details about these files, see Via
Ladder Rule Files.

You can also generate these files by using the
generate_via_rules_for_performance command.

• Associates via ladder rules with the pins of all library cells that do not have a dont_use
attribute

To include the pins of library cells that have a dont_use attribute, use the -dont_use
option.

To associate via ladder rules only with specific pins, use the -lib_pins option.

The command analyzes the information about each library cell pin and its shapes to
determine the via ladder rules to associate with that pin and then outputs a script file
that defines the associations. For details about this file, see Via Ladder Association
File.

You can also generate this file by using the associate_performance_via_ladder
command.

• Runs the generated script files

See Also

• Defining Via Ladder Rules

• Specifying Automatic Via Ladder Insertion Settings for Preroute Optimization

IC Compiler™ II Implementation User Guide
T-2022.03

330

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

Via Ladder Rule Files
The command generates two via ladder rule files:

• An XML file that provides information about the via ladder rules

The XML file has the following syntax:

<EmRule>
 <!-- template definition -->
 <Template name="rule_name" for_electro_migration="true"
 for_high_performance="true">
 <Layer name="layer_name" row_number="cuts_per_row"
 ... more layers
 </Template>
 … more templates

</EmRule>

Each Template section specifies the template for a via ladder rule. Within a template
section, the via ladder structure is specified by specifying the number of cuts per row
for each metal layer involved in the via ladder.

By default, the generated XML file is named auto_perf_via_ladder_rule.xml. To specify
a different name, use the -xml_file option.

• A script file that defines the via ladder rules

The script file contains a create_via_rule command for each template defined in
the XML file, as well as set_attribute commands to set the appropriate via rule
attributes.

By default, the generated script file is named auto_perf_via_ladder_rule.tcl. To specify
a different file name, use the -rule_file option.

Via Ladder Association File
The command generates a script file that defines the association between the library cell
pins and the via ladder rules.

This script file contains set_via_ladder_candidate commands for the library cell pins.

By default, the generated script file is named auto_perf_via_ladder_association.tcl. To
specify a different file name, use the -association_file option.

IC Compiler™ II Implementation User Guide
T-2022.03

331

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

Constraint-Based Via Ladder Insertion
To use the constraint-based method to insert via ladders,

1. Ensure that the via ladder rules are defined, as described in Defining Via Ladder Rules.

2. Define the via ladder constraints by using the set_via_ladder_rules command, as
described in Defining Via Ladder Constraints.

3. Insert the via ladders by using the insert_via_ladders command, as described in
Inserting Via Ladders.

4. Verify the via ladders by using the verify_via_ladders command, as described in
Verifying Via Ladders.

IC Compiler™ II Implementation User Guide
T-2022.03

332

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

Defining Via Ladder Constraints
The via ladder constraints define the pins on which to insert via ladders and the via ladder
templates that can be used for those pins. You can define both global and instance-
specific via ladder constraints; if the constraints conflict, the instance-specific constraints
override the global constraints.

• To define global via ladder constraints, which are referred to as via ladder rules, use
the set_via_ladder_rules command, as described in Defining Global Via Ladder
Constraints.

• To define instance-specific via ladder constraints, use the
set_via_ladder_constraints command, as described in Defining Instance-Specific
Via Ladder Constraints.

In addition, you can specify via ladder candidates for specific pins by using the
set_via_ladder_candidate command. This command is used by preroute optimization
to insert via ladders on timing-critical paths, as described in .

To report the via ladder constraints, use the report_via_ladder_constraints
command.

See Also

• Inserting Via Ladders

Defining Global Via Ladder Constraints
To define global via ladder constraints, which are referred to as via ladder rules, use the
set_via_ladder_rules command to set via ladder constraints on library cell pins. You
must specify the mapping between library cell pins and via ladder templates, as well as the
pins to which to apply the mapping.

Use the following options to specify the mapping:

• -master_pin_map or -master_pin_map_file
These options specify the mappings for specific library pins using the following format:

{ {lib_cell/pin {via_ladder_list}} ...}

To specify the mapping on the command line, use the -master_pin_map option. To
specify the mapping in an external file, use the -master_pin_map_file option to
specify the mapping file name.

• -default_ladders
This option specifies the via ladder templates to use for all library pins not explicitly
specified in the mapping.

IC Compiler™ II Implementation User Guide
T-2022.03

333

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

Use the following options to specify the pins to which to apply the mapping:

• -all_instances_of
This option explicitly specifies library cell pins to which to apply the mapping.

• -all_clock_outputs
Set this option to true to apply the mapping to all clock output pins.

• -all_clock_inputs
Set this option to true to apply the mapping to all clock input pins.

• -all_pins_driving
This option applies the mapping to all pins that drive one of the specified ports.

To report the via ladder rules, use the report_via_ladder_rules command. To remove
via ladder rules, use the remove_via_ladder_rules command.

Defining Instance-Specific Via Ladder Constraints
To define instance-specific via ladder constraints, use the set_via_ladder_constraints
command. You must specify the instance pins and the via ladder templates that can be
used for those pins.

For example, to enable the use of the VL1, VL2, and VL3 via ladder templates for the u1/i1
and u2/i2 pins, use the following command:

icc2_shell> set_via_ladder_constraints -pins {u1/i1 u2/i2} \
 {VL1 VL2 VL3}
To report the via ladder constraints, use the report_via_ladder_constraints
command. To remove via ladder constraints, use the remove_via_ladder_constraints
command.

Inserting Via Ladders
To insert via ladders, use the insert_via_ladders command. By default, this command

• Does not remove existing via ladders in the block

To remove the existing via ladders before via ladder insertion, use the -clean true
option.

• Targets all pins specified in the via ladder constraints, whether on signal nets or clock
nets

To restrict via ladder insertion to specific nets, use the -nets option.

IC Compiler™ II Implementation User Guide
T-2022.03

334

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

• Inserts a single via ladder on each target pin

If the constraints specify more than one via ladder template for a pin, the command
inserts the via ladder using the first template that does not cause a DRC violation.

◦ By default, if all of the via ladder templates cause a DRC violation, the command
inserts the via ladder with the lowest DRC cost.

◦ To ignore detail routing shapes when checking for DRC violations, use the
-ignore_routing_shape_drcs true option.

◦ To ignore the line-end cut enclosure rule, use the
-relax_line_end_via_enclosure_rule true option.

◦ To ignore metal spacing rules on the pin layer when the via ladder shape is fully
enclosed within the pin, use the -relax_pin_layer_metal_spacing_rules true
option.

◦ To prevent the insertion of via ladders that cause DRC violations, use the
-allow_drcs false option.

Note:
If a pin is too small to accommodate any of the via ladders specified for it,
the insert_via_ladders command does not insert a via ladder for that pin.

• Uses via cuts other than those specified in the template if they improve compliance
with fat via rules

To require the command to use only those via cuts specified in the template, use the
-strictly_honor_cut_table true option.

• Centers the via ladder cuts at the intersection of routing tracks between adjacent layers

To shift the via ladder cuts on transition layers off the routing tracks for improved DRC
compliance, use the -shift_vias_on_transition_layers true option.

• Honors nondefault width rules for the wires on all layers of the via ladder

To use the default width for wires on lower layers of the via ladder and honor the
nondefault width only for the top layer, use the -ndr_on_top_layer_only true
option.

• Does not require the via inserted above the pin layer to be contained within the pin
shape

To prevent changes to the pin shape boundary, you can require that the via inserted
above the pin layer be fully contained within the pin shape boundary, which includes

IC Compiler™ II Implementation User Guide
T-2022.03

335

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

the pin shape and its extensions. To specify this requirement, use one or both of the
following options:

◦ -connect_within_metal true
This option controls via enclosures for all types of via ladders: performance,
electromigration, and pattern-must-join.

◦ -connect_within_metal_for_via_ladder true
This option controls the via enclosures only for performance and electromigration
via ladders. By default, the tool uses the global setting specified by the
-connect_within_metal option. To explicitly specify the behavior for performance
and electromigration via ladders, set this option to true or false.

• Does not extend the via enclosures to meet the minimum length rule for the layer

To enable patching of the via enclosures to meet the minimum length rule and allow
additional stacking of the via ladder, use the -allow_patching true option.

• Uses staggering only when it is defined for the via ladder rule

Via ladder staggering extends the row metal of a via ladder level in the preferred
direction of the upper layer for the level to avoid obstructions above or near the pin,
which can increase the success rate of via ladder insertion. In many cases, the via
ladder rule specifies the maximum number of stagger tracks. To allow staggering if
the maximum number of stagger tracks is not defined for the via ladder rule, use the
-auto_stagger true option.

• Does not report on the insertion status

To report the via ladder insertion status for each target pin, use the -verbose true
option.

To output detailed information about insertion failures, use the -user_debug true
option. The detailed information reports the following types of violations:

◦ Internal DRC violations

These are DRC violations internal to a via ladder. These violations are never
allowed.

◦ Hard DRC violations

These are DRC violations between a via ladder and a fixed shape, such as a pin,
preroute, or obstruction. These violations are never allowed.

◦ Soft DRC violations

IC Compiler™ II Implementation User Guide
T-2022.03

336

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

These are DRC violations between a via ladder and a detail routing shape,
which can be rerouted. These violations are allowed if one or more of the
following options are true: -allow_drcs, -ignore_rippable_shapes, or
-ignore_routing_shape_drcs.

After inserting the via ladders, the command reports statistics on the inserted ladders and
any DRC violations caused by the insertion.

See Also

• Defining Via Ladder Constraints

• Verifying Via Ladders

• Updating Via Ladders

• Querying Via Ladders

• Removing Via Ladders

Protecting Via Ladders
To prevent via ladders from being edited, set the
design.enable_via_ladder_protection application option to true.

icc2_shell> set_app_options -name design.enable_via_ladder_protection \
 -value true
When the design.enable_via_ladder_protection application option is true, the
following commands process only objects that do not belong to via ladders:

• remove_shapes
• remove_vias
• remove_objects
• set_attribute
• set_via_def
• add_to_edit_group

IC Compiler™ II Implementation User Guide
T-2022.03

337

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

If an object belongs to a via ladder, these commands issue a warning message and do not
process the object.

The following example sets the design.enable_via_ladder_protection application
option to true and attempts to remove a collection of shapes:

icc2_shell> set_app_options -name design.enable_via_ladder_protection \
 -value true
...
icc2_shell> sizeof_collection [get_shapes -of net1]
77

icc2_shell> remove_shapes [get_shapes -of net1] -verbose
Warning: Cannot edit PATH_32_7403 because it is part of via_ladder.
 (NDM-160)
76

Verifying Via Ladders
To verify that the via ladders in the block match the via ladder constraints and are properly
connected to pins, use the verify_via_ladders command. By default, this command
checks all via ladders. To restrict the checking to specific nets, use the -nets option.

Note:
If you use the -shift_vias_on_transition_layers true option when you
insert the via ladders, you must also use this option when you verify the via
ladders; otherwise, the command reports false violations.

A via ladder matches the via ladder constraints if the pattern of connected vias and
wires for the via ladder structure satisfies any of the via ladder templates assigned to the
connected pin. The command flags a violation in the following situations:

• A via ladder is connected to a pin that does not have a via ladder constraint

• A via ladder is connected to a pin with a via ladder constraint, but none of the
templates correctly describe the current via ladder structure

• A pin has a via ladder constraint, but does not have a via ladder connected to it

IC Compiler™ II Implementation User Guide
T-2022.03

338

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

A via ladder is properly connected to a pin if all the via enclosures at the base of the via
ladder touch the same pin and that pin is logically connected to the same net as the via
ladder. The command flags a violation in the following situations:

• An enclosure of the via ladder base touches a different pin, unless the pins are must-
join pins that belong to the same must-join set

• An enclosure of the via ladder base does not touch any pin

• An enclosure of the via ladder touches a pin that is not of the same net as the via
ladder

By default, the verify_via_ladders command reports the via ladder insertion status for
each target pin, which can result in a very large report. To limit the number of via ladders
reported for each category to 40, use the -report_all_via_ladders false option with
the verify_via_ladders command.

Updating Via Ladders
You can use the following methods to update existing via ladders in a design:

• Use the refresh_via_ladders command

• Enable automatic updates during the route_group, route_auto, and route_eco
commands by setting the route.auto_via_ladder.update_during_route
application option to true

Both of these methods perform the following tasks:

• Verifies the existing via ladders based on the current via ladder constraints

• Removes invalid via ladders

• Inserts via ladders where needed based on the settings of the
route.auto_via_ladder application options

By default, the tool

◦ Updates all pins with via ladder constraints, whether on signal nets or clock nets

During the route_group command, you can restrict the via ladder updates
to only those nets specified in the route_group command by setting the
route.auto_via_ladder.update_on_route_group_nets_only application option
to true.

◦ Does not require the via inserted above the pin layer to be contained within the pin
shape

To prevent changes to the pin shape boundary, you can require that the via inserted
about the pin layer be fully contained within the pin shape boundary, which includes

IC Compiler™ II Implementation User Guide
T-2022.03

339

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

the pin shape and its extensions. To specify this requirement, set the following
application options:

▪ route.auto_via_ladder.connect_within_metal
This application option controls via enclosures for all types of via ladders:
performance, electromigration, and pattern-must-join. To prevent changes to the
pin shape boundary, set this application option to true.

▪ route.auto_via_ladder.connect_within_metal_for_via_ladder
This application option controls the via enclosures only for performance and
electromigration via ladders. By default, the tool uses the global setting specified
by the route.auto_via_ladder.connect_within_metal application option. To
explicitly specify the behavior for performance and electromigration via ladders,
set this application option to true or false.

◦ Uses staggering only when it is defined for the via ladder rule

Via ladder staggering extends the row metal of a via ladder level in the preferred
direction of the upper layer for the level to avoid obstructions above or near the pin,
which can increase the success rate of via ladder insertion. In many cases, the via
ladder rule specifies the maximum number of stagger tracks. To allow staggering if
the maximum number of stagger tracks is not defined for the via ladder rule, set the
route.auto_via_ladder.auto_stagger application option to true.

◦ Reports the via ladder insertion status for each target pin

To limit the number of via ladders reported for each category to 40, set the
route.auto_via_ladder.report_all_via_ladders application option to false.

See Also

• Inserting Via Ladders

• Verifying Via Ladders

• Querying Via Ladders

• Removing Via Ladders

Manual Via Ladder Insertion
To manually insert a via ladder,

1. Create the shapes that compose the via ladder by using the create_shape and
create_via commands.

2. Create the via ladder by using the create_via_ladder command.

IC Compiler™ II Implementation User Guide
T-2022.03

340

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting Via Ladders

Feedback

At a minimum, you must specify the shapes that compose the via ladder by using the
-shapes option.

The command creates a via ladder named VIA_LADDER_n, where n is a unique
integer.

Use the following options with the create_via_ladder command to specify attributes of
the created via ladder:

• -via_rule
This option specifies the via ladder rule associated with the created via ladder. It sets
the via_rule_name attribute of the created via ladder.

• -electromigration
This option specifies that the via ladder is an electromigration via ladder. It sets the
is_electromigration attribute of the created via ladder to true.

• -high_performance
This option specifies that the via ladder is a performance via ladder. It sets the
is_high_performance attribute of the created via ladder to true.

• -pattern_must_join
This option specifies that the via ladder is a pattern-must-join via ladder. It sets the
is_pattern_must_join attribute of the created via ladder to true.

• -pin
This option specifies the physical pin connected to the created via ladder. It sets the
pin attribute of the created via ladder.

See Also

• Querying Via Ladders

• Removing Via Ladders

Querying Via Ladders
To query the via ladders in a block, use the get_via_ladders command. To report on the
via ladders in a block, use the report_via_ladders command.

IC Compiler™ II Implementation User Guide
T-2022.03

341

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Checking Routability

Feedback

Removing Via Ladders
To remove via ladders and their associated shapes, use the remove_via_ladders
command. You must specify the via ladders to remove. To remove all via ladders from the
block, use the asterisk (*) wildcard character, as shown in the following example:

icc2_shell> remove_via_ladders *
To remove via ladders only from specific nets, use the -nets option.

Checking Routability
After placement is completed, you can use the check_routability command to check
whether your block is ready for detail routing.

By default, this command checks for

• Blocked standard cell ports

A standard cell port is considered blocked if none of its physical pins is accessible.

A standard cell pin is considered accessible if the pin contains a via that extends
to a neighboring layer, there is a path on the pin layer that is at least as long as the
search range distance, or there is a shorter path on the pin layer that ends at a via to
a neighboring layer. By default, the search range distance is two times the layer pitch.
To change this distance, use the -standard_cell_search_range option to specify a
different pitch multiplier, up to a maximum of 10. If you specify a value larger than 10,
the command sets the value to 10.

By default, the tool does not check whether via connections are
fully inside the standard cell pins. To enable this check, use the
-connect_standard_cells_within_pins true option.

To disable the checking of blocked standard cell ports, use the
-check_standard_cell_blocked_ports false option.

• Blocked top-level or macro cell ports

A top-level or macro cell port is considered blocked if none of its physical pins is
accessible.

A top-level or macro pin is considered accessible if a legal path can be extended from
the pin to a certain distance around it. This path can be just on the pin layer or can
extend to a neighboring layer by a single via. By default, the distance is 10 times the
layer pitch. To change this distance for same-layer paths, use the -blocked_range
option to specify a different pitch multiplier, up to a maximum of 40. To change this
distance for neighboring-layer paths through a via, use the -blocked_range_via_side

IC Compiler™ II Implementation User Guide
T-2022.03

342

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Checking Routability

Feedback

option to specify a different pitch multiplier, up to a maximum of 40. If you specify a
value larger than 40 for either of these options, the command sets its value to 40.

By default, the command checks whether a pin is accessible in either the horizontal or
vertical direction. To require that the pin is accessible in the preferred direction for its
layer, use the -obey_direction_preference true option.

To disable the checking of blocked top-level or macro cell ports, use the
-check_non_standard_cell_blocked_ports false option.

• Out-of-boundary pins

This check verifies that all pins are within the block boundary.

To disable the checking of out-of-boundary pins, use the -check_out_of_boundary
false option.

• Minimum grid violations

This check verifies that all pins, including those within library cells, are on the minimum
grid, as defined by the gridResolution attribute in the technology file.

To disable the checking of minimum grid violations, use the -check_min_grid false
option.

• Incorrect via definitions

This check verifies that

◦ Uncolored via arrays do not have more than 20 rows or columns

◦ Custom or asymmetric simple via definitions do not have more than 1000 cuts

◦ The design does not contain more than 65535 via definitions

You cannot disable these checks.

• Invalid real metal via cut blockages

This check verifies that all real metal via cut blockages match a legal cut size,
as defined by the cutWidthTbl, cutHeightTbl, and minWidth attributes in the
technology file.

To disable this check, use the -check_via_cut_blockage false option.

• Minimum width settings

This check verifies that the nondefault minimum width and shield width settings are no
larger than the maximum width defined in the technology file.

You cannot disable these checks.

IC Compiler™ II Implementation User Guide
T-2022.03

343

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Checking Routability

Feedback

The check_routability command also supports the following optional checks:

• Blocked power or ground ports

To enable this check, use the -check_pg_blocked_ports true option.

• Redundant power or ground shapes

To enable this check, use the -check_redundant_pg_shapes true option.

• Staggered power and ground vias that block the routing tracks

To enable this check, use the -check_routing_track_space true option.

• Blocked ports on frozen nets

To enable this check, use the -check_frozen_net_blocked_ports true option.

• Blocked unconnected pins

To enable this check, use the -check_no_net_pins true option.

• Real metal blockages that overlap library cell pins

To enable this check, use the -check_real_metal_blockage_overlap_pin true
option.

• Invalid real metal via cut blockages in the library cells

To enable this check, use the -check_lib_via_cut_blockage true option.

• Shielding checks

These checks detect possible issues with shielding by checking for the following
conditions:

◦ Signal net shapes with a shape_use attribute of shield_route.

◦ PG net shapes, which might be a PG strap or rail, but have a shape_use attribute of
detail_route.

◦ Signal, clock, or PG nets that have a shielding nondefault rule but no associated
shield shapes, which might be caused by inappropriate shape_use attributes.

To enable these checks, use the -check_shield true option.

IC Compiler™ II Implementation User Guide
T-2022.03

344

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Checking Routability

Feedback

• Via ladder checks

These checks detect possible issues with via ladder insertion by checking for the
following conditions:

◦ Library cell pins whose top-layer terminals have multiple pin shapes but do not have
a pattern_must_join attribute

This check applies only to signal and secondary PG pins.

◦ Missing performance or electromigration via ladder on a pin that has the
is_em_via_ladder_required attribute

◦ Via ladder application options that do not have the required settings

The following application options must be set to true (their default is false):

▪ route.auto_via_ladder.allow_patching

▪ route.auto_via_ladder.enable_em_to_performance_via_ladder_update

▪ route.auto_via_ladder.ignore_routing_shape_drcs

▪ route.auto_via_ladder.relax_line_end_via_enclosure_rule

▪ route.auto_via_ladder.relax_pin_layer_metal_spacing_rules

▪ route.auto_via_ladder.shift_vias_on_transition_layers

▪ route.auto_via_ladder.update_during_route

▪ route.common.via_ladder_top_layer_overrides_net_min_layer
To enable these checks, use the -via_ladder true option.

The check_routability command supports the following additional pin connection
controls that apply to all pin access checks:

• Pin access edges

During frame view extraction, the tool annotates the frame views with information
about the pin access edges. By default, the check_routability command ignores
the pin access edges and allows pin connections at any point. You can restrict
pin connections to the defined access edges by setting the -obey_access_edges
option to true. You can further restrict pin connections to the access edge mark,
which can be a narrow rectangle, a short line, or even a single point, by setting the
-access_edge_whole_side option to true. In addition, the command can report

IC Compiler™ II Implementation User Guide
T-2022.03

345

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Checking Routability

Feedback

unconnected pins that do not have an access edge defined. To enable this check, use
the -report_no_access_edge true option.

• Via rotation

By default, pin connections can use rotated vias. To disallow pin connections that use
rotated vias, set the -allow_via_rotation option to false.

By default, this command considers the following routing layer constraints when checking
for blocked ports:

• The global minimum and maximum routing layer constraints set by the
-min_routing_layer and -max_routing_layer options of the set_ignored_layers
command

These constraints can cause blocked ports only if they are defined as hard
constraints. By default, these constraints are soft constraints. They are
hard constraints only if the route.common.global_min_layer_mode and
route.common.global_max_layer_mode application options are set to hard.

• The net-specific minimum and maximum routing layer constraints set by the
-min_routing_layer and -max_routing_layer options of the set_routing_rule
command

These constraints can cause blocked ports only if they are defined as hard constraints.
By default, the net-specific minimum layer constraint is a soft constraint and the net-
specific maximum layer constraint is a hard constraint. They are hard constraints only
if the route.common.net_min_layer_mode and route.common.net_max_layer_mode
application options are set to hard.

• The clock minimum and maximum routing layer constraints set by
the -min_routing_layer and -max_routing_layer options of the
set_clock_routing_rules command

These constraints can cause blocked ports only if they are defined as hard constraints.
By default, the clock minimum layer constraint is a soft constraint and the clock
maximum layer constraint is a hard constraint. They are hard constraints only if the
route.common.net_min_layer_mode and route.common.net_max_layer_mode
application options are set to hard.

• The freeze layer constraints set by the route.common.freeze_layer_by_layer_name
and route.common.freeze_via_to_frozen_layer_by_layer_name application
options

To ignore the routing layer constraints during the blocked port checks, use the
-honor_layer_constraints false option.

You can use the error browser to examine the errors detected by the check_routability
command. By default, the error data generated by the check_routability command

IC Compiler™ II Implementation User Guide
T-2022.03

346

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Checking Routability

Feedback

is named check_routability.err; to specify a different name for the error data, use the
-error_data option. The error data is saved in the design library when you save the
block. For information about using the error browser, see the IC Compiler II Graphical User
Interface User Guide.

IC Compiler™ II Implementation User Guide
T-2022.03

347

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Routing Constraints
Routing constraints provide guidance during routing. Table 22 describes the types of
guidance provided by the routing constraints.

Table 22 Routing Constraints

Guidance Description

Controlling the layers used for
routing

For information about specifying the routing layers, see Specifying the
Routing Resources.

Setting stricter minimum width and
spacing rules

To set stricter minimum width and spacing rules, define a nondefault
routing rule and apply it to the affected nets. For information about
defining and applying nondefault routing rules, see Using Nondefault
Routing Rules.

Controlling routing through voltage
areas

By default, routing can pass through any voltage areas. To restrict
the voltage-area pass-throughs, define a voltage area routing rule, as
described in Controlling Physical-Feedthrough Nets in Voltage Areas.

Controlling the routing direction You can specify the preferred routing direction for specific layers or
for specific regions.
• For information about specifying the preferred routing direction

for specific layers, see Setting the Preferred Routing Direction for
Layers.

• To control the routing direction in a specific region,
use either a preferred-direction-only routing guide or a
switch-preferred-direction routing guide. For information about
routing guides, see Defining Routing Guides.

Limiting the number of edges in the
nonpreferred routing direction

To limit the number of edges in the nonpreferred routing direction,
use a maximum-number-of-pattern routing guide. For information
about routing guides, see Defining Routing Guides.

Controlling off-grid routing By default, off-grid routing is allowed for wires or vias unless the
onWireTrack or onGrid attribute is set to 1 for the layer in the
technology file.
You can prevent or discourage off-grid routing, as described in
Controlling Off-Grid Routing.

Preventing routing of specific nets To prevent routing of specific nets, set the physical_status attribute
of each net to locked, as described in Setting the Rerouting Mode.

Preventing routing in specific region To prevent routing in a specific region, define a routing blockage, as
described in Defining Routing Blockages.

Reserving space for top-level
routing

To reserve space for top-level routing, create a corridor routing
blockage, as described in Reserving Space for Top-Level Routing.

Restricting routing to specific
regions

To restrict routing to a specific region, use a routing corridor, as
described in Routing Nets Within a Specific Region.

IC Compiler™ II Implementation User Guide
T-2022.03

348

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Table 22 Routing Constraints (Continued)

Guidance Description

Prioritizing routing regions To prioritize routing regions, use an access preference routing guide.
For information about routing guides, see Defining Routing Guides.

Controlling the routing density To control the routing density for specific layers, use a utilization
routing guide. For information about routing guides, see Defining
Routing Guides.

Encouraging river routing To encourage river routing on specific layers, use a single-layer
routing guide. For information about routing guides, see Defining
Routing Guides.

Improving routability of hard macro
pins

To improve the routability of hard macro pins, use pin access routing
guides, as described in Deriving Pin Access Routing Guides.

Controlling routing along the
perimeter of a block

To control detail routing around the perimeter of a block, insert
constraint objects, as described in Controlling Routing Around the
Block Boundary.

Creating routing guides for the
metal cut allowed and forbidden
preferred grid extension rules

You can use the following methods to create these routing guides:
• Automatic creation during boundary cell insertion, as described in

Creating Routing Guides During Boundary Cell Insertion
• Manual creations by using the derive_metal_cut_route_guides

command, as described in

Controlling the pin connections You can control both the allowed types of pin connections and the pin
tapering.
• For information about must-join pins, see Routing Must-Join Pins.
• For information about controlling the allowed types of pin

connections, see Controlling Pin Connections.
• For information about controlling pin tapering, see Controlling Pin

Tapering.

Controlling via ladder connections For information about controlling the via ladder connections, see
Controlling Via Ladder Connections.

Restricting the extent of rerouting For information about restricting the extent of rerouting for specific
nets, see Setting the Rerouting Mode.

IC Compiler™ II Implementation User Guide
T-2022.03

349

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Defining Routing Blockages
A routing blockage defines a region where routing is not allowed on specific layers. Zroute
considers routing blockages to be hard constraints.

To define a routing blockage, use the create_routing_blockage command. At a
minimum, you must define the boundary of the routing blockage and the affected layers.

• To create a rectangular routing blockage, use the -boundary option to specify the
lower-left and upper-right corners of the rectangle using the following syntax: { {llx
lly} {urx ury} }.

• To create a rectilinear routing blockage, use the -boundary option to specify the
coordinates of the polygon using the following syntax: { {x1 y1} {x2 y2} ... }.

You can also create a rectilinear routing blockage by specifying the polygon as the
combined area of a heterogeneous collection of objects with physical geometry, such
as poly_rects, geo_masks, shapes, layers, and other physical objects. If you specify
a layer, the resulting area includes the area of every shape on the layer. For all other
objects, the resulting area includes the area of each object. If you use this method, the
resulting area must resolve to a single, connected polygon; otherwise, the command
fails.

• To specify the affected layers, use the -layers option.

Specify the routing layers by using the layer names from the technology file. The layers
can be metal, via, or poly layers.

By default, the tool creates a routing blockage named RB_objId in the current block that
prevents routing of all nets within the routing blockage boundary. The routing blockage is
considered as real metal for RC extraction and DRC checking and the router must meet
the minimum spacing requirements between the routing blockage boundary and the net
shapes. Use the following options to change the default behavior:

• -name blockage_name
Specifies a name for the routing blockage.

• -cell cell
Creates the routing blockage in a different physical cell.

When you use this option, the tool creates the routing blockage in the cell's reference
block using the coordinate system of the cell's top-level block.

• -zero_spacing
Disables the minimum spacing rule between the routing blockage boundary and the net
shapes (zero minimum spacing). This option also prevents the routing blockage from
being treated as real metal during extraction and DRC checking.

IC Compiler™ II Implementation User Guide
T-2022.03

350

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

When you use this option, the net shapes can touch, but not overlap, the routing
blockage boundary.

Note:
When you create a routing blockage to prevent via insertion, you must use
the -zero_spacing option; otherwise, frame view extraction does not use
the route guide to trim the via region.

• -net_types list_of_types
Applies the routing blockage only to the specified net types.

Specify one or more of the following net types: analog_ground, analog_power,
analog_signal, clock, deep_nwell, deep_pwell, ground, nwell, power, pwell,
reset, scan, signal, tie_high, and tie_low. To remove the net type settings and
prevent routing of all nets in the routing blockage, use the -net_types unset setting.

To prevent signal routing on the M1 layer within the rectangle with its lower-left corner at
(0, 0) and its upper-right corner at (100, 100), use the following command:

icc2_shell> create_routing_blockage \
 -boundary { {0.0 0.0} {100.0 100.0} } \
 -net_types signal -layers M1
To prevent vias on the V1 layer within the rectangle with its lower-left corner at (0, 0) and
its upper-right corner at (100, 100), use the following command:

icc2_shell> create_routing_blockage \
 -boundary { {0.0 0.0} {100.0 100.0} } \
 -net_types signal -layers V1 -zero_spacing
To prevent PG routing on the M2 layer within the rectangle with its lower-left corner at (0,
0) and its upper-right corner at (100, 100), use the following command:

icc2_shell> create_routing_blockage \
 -boundary { {0.0 0.0} {100.0 100.0} } \
 -net_types {power ground} -layers M2

Reserving Space for Top-Level Routing
To reserve space for top-level routing, create a corridor routing blockage by using the
-reserve_for_top_level_routing option when you create the routing blockage.

During block-level implementation, a corridor routing blockage acts as a regular blockage
to prevent routing in the blockage area. During frame view extraction, the tool removes the
corridor routing blockage to allow top-level routing in this area.

IC Compiler™ II Implementation User Guide
T-2022.03

351

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Querying Routing Blockages
To find routing blockages, use the get_routing_blockages command. For example, to
get all the routing blockages in a block, use the following command:

icc2_shell> get_routing_blockages *
To find the routing blockages for specific nets, use the -of_objects option to specify the
nets of interest. For example, to find the routing blockages for the n1 net, use the following
command:

icc2_shell> get_routing_blockages -of_objects [get_nets n1]
To find the routing blockages in a specific location, use the get_objects_by_location
-classes routing_blockage command.

Removing Routing Blockages
To remove routing blockages from the current block, use the remove_routing_blockages
command.

• To remove specific routing blockages, specify the routing blockages, either as a list or
collection, such as that returned by the get_routing_blockages command.

• To remove all routing corridors, specify the -all option.

Defining Routing Guides
Routing guides provide routing directives for specific areas of a block. Some types
of routing guides are user-defined; others are derived from the block data. This topic
describes how to create user-defined routing guides.

Note:
User-defined routing guides are honored by Zroute; however, they are not
honored by the Advanced Route tool.

To define a routing guide, use the create_routing_guide command. When you define a
routing guide, you must specify

• Its rectangular boundary

To specify the boundary, use the -boundary option to specify the lower-left and upper-
right corners of the rectangle using the following syntax:

{{llx lly} {urx ury}}
• Information specific to the purpose of the routing guide

The following table describes the user-defined routing guides.

IC Compiler™ II Implementation User Guide
T-2022.03

352

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Table 23 User-Defined Routing Guides

Purpose Option

Route all nets in the preferred direction within the routing guide
boundary.
For details, see Using Routing Guides to Control the Routing
Direction.

-preferred_direction_only

Switch the preferred routing direction within the routing guide
boundary.
For details, see Using Routing Guides to Control the Routing
Direction.

-switch_preferred_direction

Limit the number of occurrences of a specific routing pattern within
the routing guide boundary.
For details, see Using Routing Guides to Limit Edges in the
Nonpreferred Direction.

-max_patterns

Control the routing density within the routing guide boundary.
For details, see Using Routing Guides to Control the Routing Density.

-horizontal_track_utilization
-vertical_track_utilization

Prioritize regions within the routing guide boundary for routing.
For details, see Using Routing Guides to Prioritize Routing Regions.

-access_preference

Encourage river routing within the routing guide boundary.
For details, see Using Routing Guides to Encourage River Routing.

-river_routing

By default, the tool creates a routing guide named RD#n in the current block, where n is a
unique integer. Use the following options to change the default behavior:

• To specify a name for the routing guide, use the -name option.

• To specify the routing layers affected by the routing guide, use the -layers option.

Specify the routing layers by using the layer names from the technology file.

• To create the routing guide in a different physical cell, use the -cell option.

When you use this option, the tool creates the routing guide in the cell's reference
block using the coordinate system of the cell's top-level block.

See Also

• Deriving Routing Guides

• Querying Routing Guides

• Removing Routing Guides

IC Compiler™ II Implementation User Guide
T-2022.03

353

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Using Routing Guides to Control the Routing Direction
You can use a routing guide to control the routing direction within the routing guide
boundary, either by requiring routes to be in the preferred direction within the routing guide
boundary or by switching the preferred direction within the routing guide boundary.

• To force the router to route all nets in the preferred direction within the routing
guide boundary, use the -preferred_direction_only option with the
create_routing_guide command.

You can use this type of routing guide to prevent wrong-way jog wires on specific
layers.

By default, this routing guide applies to all layers within the routing guide boundary. To
require preferred direction routing only for specific layers, use the -layers option to
specify the affected layers.

For example, to force the router to use only the preferred direction on the M4 layer
within the rectangle with its lower-left corner at (0, 0) and its upper-right corner at (100,
100), use the following command:

icc2_shell> create_routing_guide -boundary {{0.0 0.0} {100.0 100.0}} \
 -layers {M4} -preferred_direction_only

• To switch the preferred routing direction within the routing guide boundary, use the
-switch_preferred_direction option with the create_routing_guide command.

You can use this type of routing guide to allow routing over macros, which might reduce
congestion for a block that contains much detour routing.

By default, this routing guide applies to all layers within the routing guide boundary. To
switch the preferred routing direction only for specific layers, use the -layers option to
specify the affected layers.

For example, to switch the preferred routing direction for the M1 and M2 layers within
the rectangle with its lower-left corner at (0, 0) and its upper-right corner at (100, 100),
use the following command:

icc2_shell> create_routing_guide -boundary {{0.0 0.0} {100.0 100.0}} \
 -layers {M1 M2} -switch_preferred_direction

Note:
If a switch-preferred-direction routing guide overlaps with a preferred-
direction-only routing guide, the switch-preferred-direction routing guide takes
precedence.

IC Compiler™ II Implementation User Guide
T-2022.03

354

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Using Routing Guides to Limit Edges in the Nonpreferred
Direction
You can use a routing guide to limit the number of occurrences of a specific routing
pattern within the routing guide boundary on specific layers. Zroute tries to route the nets
within the routing guide to meet this constraint; however, if the number of edges in the
nonpreferred direction exceeds the specified threshold, Zroute reports a violation.

To create this type of routing guide, use the -max_patterns option with the
create_routing_guide command. Use the following syntax to specify the routing pattern
and its threshold for each affected layer:

{ {layer pattern limit} ... }

In addition to using the -max_patterns option, you must also use the -layers option
when you create this type of routing guide. Specify the same layers in the -layers option
as those specified in the -max_patterns option.

If you do not specify a pattern threshold for a layer, the routing pattern has no limit for that
layer.

Currently, the only supported pattern is non_pref_dir_edge, which represents the
edges in the nonpreferred direction. For example, to limit the number of edges in the
nonpreferred direction to two on M2 and to three on M4, with no limits on other layers, use
the following command:

icc2_shell> create_routing_guide -boundary {{50 50} {200 200}} \
 -max_patterns {{M2 non_pref_dir_edge 2} {M4 non_pref_dir_edge 3}} \
 -layers {M2 M4}

Using Routing Guides to Control the Routing Density
By default, the maximum track utilization is 100 percent. You can use a routing guide to
control the routing density within the routing guide boundary.

• To set the maximum track utilization for layers with a horizontal preferred direction,
use the -horizontal_track_utilization option with the create_routing_guide
command.

• To set the maximum track utilization for layers with a vertical preferred direction,
use the -vertical_track_utilization option with the create_routing_guide
command.

By default, when you create these routing guides, they apply to all layers within the routing
guide boundary. To set the routing density only for specific layers, use the -layers option
to specify the affected layers.

For example, to set a maximum track utilization of 50 percent for all layers with a
horizontal preferred direction and a maximum track utilization of 30 percent for all layers

IC Compiler™ II Implementation User Guide
T-2022.03

355

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

with a vertical preferred direction within the rectangle with its lower-left corner at (0, 0) and
its upper-right corner at (100, 100), use the following command:

icc2_shell> create_routing_guide -boundary {{0.0 0.0} {100.0 100.0}} \
 -horizontal_track_utilization 50 -vertical_track_utilization 30

Using Routing Guides to Prioritize Routing Regions
You can use a routing guide to prioritize regions within the routing guide boundary
for routing. The regions are called access preference areas. You prioritize the access
preference areas by assigning strengths to them. Access preference areas with higher
strengths are preferred for routing. You can define access preference areas for both wires
and vias. When you define a via access-preference area, you are defining a preference
area for the via surrounds on the specified metal layer for vias coming from both above
and below that metal layer.

To create this type of routing guide, use the -access_preference option with the
create_routing_guide command. Use the following syntax to specify the access
preference areas and their strengths:

{layer [{wire_access_preference wire_rect wire_strength}]
 [{via_access_preference via_rect via_strength}] ...}

You can define multiple access preference areas. To define the relative preference of
the access preference areas, use strength values between 0 and 1. If access preference
areas overlap, the stronger access preference area takes precedence over the weaker
access preference area. To require routing in a specific access preference area, use a
strength value of 1. When you define access preference areas with a strength of 1, all
access preference areas with a strength less than 1 are ignored and Zroute treats the
access preference routing guide as a hard constraint.

The following example creates an access preference routing guide whose boundary is
a rectangle with its lower-left corner at (0, 0) and its upper-right corner at (300, 300).
It contains one wire access-preference area with coordinates of (0, 0) and (2, 1) and
two via access-preference areas, one with coordinates of (0, 0) and (5, 5) and one with
coordinates of (40, 40) and (45, 45). The wire access-preference area is slightly preferred
over areas outside of the access preference area because it has a strength of 0.2. The
via access-preference area with coordinates at (40, 40) and (45, 45) is ignored, because
routing is required in the via access-preference area with coordinates at (0, 0) and (5, 5),
which has a strength of 1.

icc2_shell> create_routing_guide -boundary {{0 0} {300 300}} \
 -access_preference {M1 {wire_access_preference {{0 0} {2 1}} 0.2}
 {via_access_preference {{0 0} {5 5}} 1.0}
 {via_access_preference {{40 40} {45 45}} 0.5}}
To report information about the access preference routing guides defined for your block,
use the report_routing_guides command.

IC Compiler™ II Implementation User Guide
T-2022.03

356

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Using Routing Guides to Encourage River Routing
River routing is a special routing topology that tries to minimize the space taken by the
router by compressing the routes to follow a particular contour. River routing is useful if
there are tight routing channels or you need to minimize the space taken by routing. You
can use a routing guide to encourage river routing within the routing guide boundary.

To create this type of routing guide, use the -river_routing option with the
create_routing_guide command. You must also use the -layers option to specify the
affected layers.

For example, to encourage river routing on the M2 layer within the rectangle with its lower-
left corner at (0, 0) and its upper-right corner at (100, 100), use the following command:

icc2_shell> create_routing_guide -boundary {{0.0 0.0} {100.0 100.0}} \
 -river_routing -layers {M2}

Querying Routing Guides
To find routing guides, use the get_routing_guides command. For example, to get all
the routing guides in your block, use the following command:

icc2_shell> get_routing_guides *
To find the routing guides in a specific location, use the get_objects_by_location
-classes routing_guide command.

Removing Routing Guides
To remove routing guides from the current block, use the remove_routing_guides
command.

• To remove specific routing guides, specify the routing rules, either as a list or collection,
such as that returned by the get_routing_guides command.

• To remove all routing guides, specify the -all option.

For example, to remove the new_width_rule routing rule, use the following command:

icc2_shell> remove_routing_rules new_width_rule

Deriving Routing Guides
Routing guides provides routing directives for specific areas of a block. Some types
of routing guides are user-defined; others are derived from the block data. This topic
described how to derive the following types of routing guides:

• Deriving Pin Access Routing Guides

• Deriving Metal Cut Routing Guides

IC Compiler™ II Implementation User Guide
T-2022.03

357

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

See Also

• Defining Routing Guides

Deriving Pin Access Routing Guides
When you reuse hard macros, such as IP blocks, at a smaller technology node, it can
cause routability issues to the macro pins. You can use routing guides and blockages to
enable access to the hard macro pins.

To create these routing guides, which are referred to as pin access routing guides, and
the associated blockages, use the derive_pin_access_routing_guides command. You
must specify the following information:

• The hard macros around which to create the routing guides and routing blockages (the
-cells option)

• The metal layers for which to create the routing guides and routing blockages (the
-layers option)

• The width of the routing guides and blockages in the x- and y-directions (the -x_width
and -y_width options)

For each specified hard macro, the command creates routing guides to enable routing
to the pins on the specified layers. In addition, the command creates metal blockages
that surround the macro on the specified layers, with cutouts to allow pin access, and via
blockages that cover the macro on the via layers adjacent to the specified metal layers.
Vertical routing guides and blockages have the specified x-width. Horizontal routing guides
and blockages have the specified y-width. By default, the command creates pin cutouts
only in the preferred routing direction. To also create pin cutouts in the nonpreferred
direction, use the -nonpreferred_direction option. To extend the pin cutouts beyond
the metal blockages, use the -pin_extension option to specify the extension distance in
microns.

To enable proper routing to pins of different sizes, the command sets the
is_rectangle_only_rule_waived attribute on the macro pins to true to waive the
rectangle-only rule.

For example, the following command creates the routing guides and blockages shown in
Figure 60.

icc2_shell> derive_pin_access_routing_guides -cells myMacro \
 -layers {M2 M3} -x_width 0.6 -y_width 0.7
In the figure, the two red pins are on M2 and the green pin is on M3. The figure shows
the routing guides created on both the M2 and M3 layers, the metal blockages created on
the M3 layer, and the via blockage created on the V2 and V3 layers. The tool also creates
metal blockages on the M2 layer, which have cutouts for the M2 pins, and via blockages
on the V1 and V2 layers.

IC Compiler™ II Implementation User Guide
T-2022.03

358

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Figure 60 Pin Access Routing Guides and Blockages

If a hard macro already has pin access routing guides and their associated blockages, the
command removes these existing objects and creates new routing guides and blockages.

If you move a hard macro after deriving the pin access routing guides, you must
regenerate the pin access routing guides. You cannot manually modify pin access routing
guides.

Deriving Metal Cut Routing Guides
If your technology file defines metal cut allowed and forbidden preferred grid
extension rules and your block already contains boundary cells, you can create
routing guides for these rules by using the -add_metal_cut_allowed option with
the derive_metal_cut_routing_guides command. When you use this option, the
derive_metal_cut_routing_guides command creates the following routing guides:

• Metal cut allowed routing guides, which cover the area taken up by all the placeable
site rows reduced by the vertical shrink factor, which is 50 percent of the smallest site
row height

• Forbidden preferred grid extension routing guides, which cover the remaining area up
to the block boundary

To check the inserted routing guides, use the -check_only option with the
derive_metal_cut_routing_guides command. By default, the checking results are
stored in an error data file named block_name.err. To specify a different name for the error
data file, use the -error_view option.

Controlling Routing Around the Block Boundary
To control routing around the block boundary, use the
derive_perimeter_constraint_objects command to place rectangular metal shapes,

IC Compiler™ II Implementation User Guide
T-2022.03

359

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

routing guides, and routing blockages along the boundary edges, as described in the
following topics:

• Inserting Metal Shapes in the Preferred Direction

• Inserting Routing Guides Along the Nonpreferred-Direction Edges

• Inserting Routing Blockages Along the Boundary Edges

• Removing Perimeter Constraint Objects

If you change the block boundary after creating the constraint objects, you must
regenerate the objects. You cannot manually modify the constraint objects.

To check the perimeter constraint objects, use the -check_only option with the
derive_perimeter_constraint_objects command. By default, the checking results are
stored in an error data file named block_name.err. To specify a different name for the error
data file, use the -error_view option

See Also

• Removing Perimeter Constraint Objects

Inserting Metal Shapes in the Preferred Direction
To insert rectangular metal shapes along the preferred-direction edges of the current
block, use the derive_perimeter_constraint_objects command with the
-perimeter_objects metal_preferred option.

When you specify this object type, the command creates one or more rectangular metal
shapes parallel to each preferred-direction boundary edge. The metal shapes are floating;
they are not connected to any logical nets.

• If your technology does not specify a maximum area for these floating shapes, you
can insert continuous metal shapes along the preferred-direction boundary edges, as
described in Inserting Continuous Metal Shapes Parallel to Preferred-Direction Edges.

• If your technology specifies a maximum area for these floating shapes or you need
more flexibility in placing the metal shapes, insert multiple metal shapes, called metal
stubs, along the preferred-direction boundary edges, as described in Inserting Metal
Stubs Parallel to Preferred-Direction Edges.

In addition to inserting metal shapes along the preferred-direction edges, you can insert
short metal shapes perpendicular to the nonpreferred-direction edges, as described in
Inserting Short Metal Shapes Perpendicular to Nonpreferred-Direction Edges.

IC Compiler™ II Implementation User Guide
T-2022.03

360

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Inserting Continuous Metal Shapes Parallel to Preferred-Direction Edges
To insert continuous rectangular metal shapes along the preferred-direction edges of
the current block, use the derive_perimeter_constraint_objects command with the
-perimeter_objects metal_preferred option.

When you specify this option, the command creates a single rectangular metal shape
parallel to each preferred-direction boundary edge. By default,

• The metal shapes are inserted only in the top-level block

To insert metal shapes in all soft macros in a hierarchical block, use the
-hierarchical option.

• The metal shapes are inserted on all routing layers

To insert the metal shapes only on specific routing layers, use the -layers option.

• The metal shapes have the default metal width specified for the routing layer in the
technology file

For information about specifying the default metal width for a layer, see the “Default
Width Rule” topic in the Synopsys Technology File and Routing Rules Reference
Manual.

• The metal shapes abut the nonpreferred-direction edges

To specify an offset from the nonpreferred-direction edges, use the
-spacing_from_boundary option. Use the following format to specify the offset for
each layer:

{{layer_name offset_value} ...}

The offset value must be a positive value.

• The metal shapes are placed on the closest wire track to the preferred-direction edge

Figure 61 shows the metal shapes inserted for an L-shaped block on a layer whose
preferred direction is horizontal. Each metal shape is placed on the closest track to the
edge. W is the default width for the layer and S is the spacing specified for the layer by the
-spacing_from_boundary option.

IC Compiler™ II Implementation User Guide
T-2022.03

361

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Figure 61 Continuous Metal Shape Perimeter Constraint Objects

W

W

W
S

S S

SS

S

Inserting Metal Stubs Parallel to Preferred-Direction Edges
To insert metal stubs along the preferred-direction edges of the current block, use the
derive_perimeter_constraint_objects command with the -perimeter_objects
metal_preferred and -stub options.

When you specify both of these options, the command creates rectangular metal shapes
parallel to each preferred-direction boundary edge based on the parameters you specify
with the -stub option. Use the following format to specify the shape parameters in
microns:

{offset_value start_value length_value spacing_value}

By default,

• The metal shapes are offset from the preferred-direction edge by the value specified in
the offset_value argument

The offset value is measured from the block edge to the center of the metal shape. It
can be a positive value, zero, or a negative value. The absolute value of a negative
value must be greater than the stub width. A positive value must be less than half of
the smaller of the width or height of the block boundary.

• The first metal shape is offset from the nonpreferred-direction edge by the value
specified in the start_value argument

The start value must be greater than or equal to 0 and less than the smaller of the
width or height of the block boundary. For horizontal shapes, the metal shapes start at
the left edge. For vertical shapes, the metal shapes start at the bottom edge.

Note:
When you use the -stub option, the command uses the specified
start_value and ignores the -spacing_from_boundary option.

IC Compiler™ II Implementation User Guide
T-2022.03

362

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

• The metal shapes have the length specified by the length_value argument

The length value must be greater than 0 and less than or equal to the smaller of the
width or height of the block boundary.

• The metal shapes have the default metal width specified for the routing layer in the
technology file

For information about specifying the default metal width for a layer, see the “Default
Width Rule” topic in the Synopsys Technology File and Routing Rules Reference
Manual.

• The metal shapes are separated the space specified by the spacing_value argument

The spacing value must be greater than or equal to 0.

• The metal shapes are inserted only in the top-level block

To insert metal shapes in all soft macros in a hierarchical block, use the
-hierarchical option.

• The metal shapes are inserted on all routing layers

To insert the metal shapes only on specific routing layers, use the -layers option.

Figure 62 shows the metal stubs inserted for an L-shaped block on a layer whose
preferred direction is horizontal. Each metal shape is placed at the specified offset, O,
from the horizontal (preferred-direction) edge, where O is measured from the boundary
to the center of the shape. The first metal stub is placed at the specified offset, S, from
the vertical (nonpreferred-direction) edge. Each metal shape has a width of W, the default
width for the layer and the specified length, L. The spacing between metal stubs is the
specified spacing, SP.

Figure 62 Metal Stub Perimeter Constraint Objects

S

S

S
W

W

SP

SP SP

W
SP SP SP SP SP

O

O

O

L

IC Compiler™ II Implementation User Guide
T-2022.03

363

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Inserting Short Metal Shapes Perpendicular to Nonpreferred-Direction Edges
To insert additional short metal shapes in the preferred direction perpendicular to the
nonpreferred-direction boundary edges,

• Specify the length of the metal shapes by using the -short_metal_length option

• Specify the distance between the metal shapes by using the -metal_spacing option

For both of these options, you use the following format to specify the value for each layer:

{{layer_name value} ...}

Figure 63 shows the short metal shapes inserted for an L-shaped block on a layer whose
preferred direction is horizontal. Each metal shape has a width of W, which is the default
width for the layer, and a length of L, which is the length specified for the layer by the
-short_metal_length option. The offset from the nonpreferred-direction edge is S,
which is the spacing specified for the layer by the -spacing_from_boundary option.
The distance between short metal shapes is SS, which is specified for the layer by the
-metal_spacing option.

Figure 63 Metal Shape Perimeter Constraint Objects With Additional Short Shapes

L

W

W

W
S

S

S

SS

Inserting Routing Guides Along the Nonpreferred-Direction Edges
To insert maximum pattern routing guides along the nonpreferred-direction edges of the
current block, use the derive_perimeter_constraint_objects command with the
-perimeter_objects mprg_nonpreferred option.

When you specify this object type, the command creates maximum pattern routing guides
parallel to each nonpreferred-direction boundary edge. The maximum edge threshold for
these routing guides is zero.

IC Compiler™ II Implementation User Guide
T-2022.03

364

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

By default,

• The routing guides are inserted only in the top-level block

To insert routing guides in all soft macros in a hierarchical block, use the
-hierarchical option.

• The routing guides are inserted on all routing layers

To insert the routing guides only on specific routing layers, use the -layers option.

• The routing guides have the default metal width specified for the routing layer in the
technology file

To specify a different width in microns, use the -width_nonpreferred option.

For information about specifying the default metal width for a layer, see the “Default
Width Rule” topic in the Synopsys Technology File and Routing Rules Reference
Manual.

• The routing guides abut the preferred-direction edges

• The routing guides are offset from the nonpreferred-direction edges by the minimum
spacing specified for the routing layer in the technology file

To specify a different offset in microns, use the -spacing_nonpreferred option.

For information about specifying the minimum spacing for a layer, see the “Minimum
Spacing Rule” topic in the Synopsys Technology File and Routing Rules Reference
Manual.

Figure 64 shows the routing guides inserted for an L-shaped block on a layer
whose preferred direction is horizontal. S is the spacing specified by the
-spacing_nonpreferred option. W is the width specified by the -width_nonpreferred
option.

IC Compiler™ II Implementation User Guide
T-2022.03

365

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Figure 64 Routing Guide Perimeter Constraint Objects

S

SS W W

W

See Also

• Using Routing Guides to Limit Edges in the Nonpreferred Direction

Inserting Routing Blockages Along the Boundary Edges
You can insert routing blockages along the preferred-direction edges, the nonpreferred-
direction edges, or all edges.

• To insert routing blockages along the preferred-direction edges of the current
block, use the derive_perimeter_constraint_objects command with the
-perimeter_objects route_blockage_preferred option.

• To insert routing blockages along the preferred-direction edges of the current
block, use the derive_perimeter_constraint_objects command with the
-perimeter_objects route_blockage_nonpreferred option.

• To insert routing blockages along all edges of the current block, use the
derive_perimeter_constraint_objects command with the -perimeter_objects
{route_blockage_preferred route_blockage_nonpreferred} option.

When you specify this object type, the command creates routing blockages parallel to the
boundary edges in the specified directions.

IC Compiler™ II Implementation User Guide
T-2022.03

366

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

By default,

• The routing blockages are inserted only in the top-level block

To insert routing blockages in all soft macros in a hierarchical block, use the
-hierarchical option.

• The routing blockages are inserted on all routing layers

To insert the routing blockages only on specific routing layers, use the -layers option.

• The routing blockages have the default metal width specified for the routing layer in the
technology file

To specify a different width in microns for preferred-direction routing blockages, use
the -width_preferred option. To specify a different width in microns for nonpreferred-
direction routing blockages, use the -width_nonpreferred option.

For information about specifying the default metal width for a layer, see the “Default
Width Rule” topic in the Synopsys Technology File and Routing Rules Reference
Manual.

• The routing blockages are offset from the boundary edges by the minimum spacing
specified for the routing layer in the technology file

To specify a different offset in microns tor preferred-direction routing blockages, use the
-spacing_preferred option. To specify a different offset in microns tor nonpreferred-
direction routing blockages, use the -spacing_nonpreferred option.

For information about specifying the minimum spacing for a layer, see the “Minimum
Spacing Rule” topic in the Synopsys Technology File and Routing Rules Reference
Manual.

• The routing blockages do not have pin cutouts

To generate pin cutouts, use the -pin_cutout option.

• Cut layer routing blockages are not created

To create via blockages, specify the via layers in the -layers option.

By default, the width of the cut layer routing blockages is the maximum width for the
preferred-direction and nonpreferred-direction routing blockages.

◦ To specify the width for cut layer routing blockages along the horizontal edges, use
the -width_cut_layer_horizontal option.

◦ To specify the width for cut layer routing blockages along the vertical edges, use the
-width_cut_layer_vertical option.

IC Compiler™ II Implementation User Guide
T-2022.03

367

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

By default, the cut layer routing blockages are offset from the boundary edges by the
is the maximum spacing for the preferred-direction and nonpreferred-direction routing
blockages

◦ To specify the spacing for cut layer routing blockages along the horizontal edges,
use the -spacing_cut_layer_horizontal option.

◦ To specify the spacing for cut layer routing blockages along the vertical edges, use
the -spacing_cut_layer_vertical option.

Removing Perimeter Constraint Objects
The derive_perimeter_constraint_objects command places the inserted constraint
objects in an edit group named PC_Edit_Group_blockname_n. Each time you run the
derive_perimeter_constraint_objects command, it creates a unique edit group.

To remove a group of constraint objects, use the following command:

icc2_shell> remove_objects [get_attribute \
 [get_edit_groups PC__Edit_Group_blockname_n] objects]

Routing Nets Within a Specific Region
To route one or more nets within a specific region,

1. Define a routing corridor by using the create_routing_corridor command, as
described in Defining Routing Corridors.

2. Assign the nets and supernets to the routing corridor by using the
add_to_routing_corridor command, as described in Assigning Nets to a Routing
Corridor.

3. Verify that the routing corridors are valid by using the check_routing_corridors
command, as described in Verifying Routing Corridors.

If necessary, modify the routing corridors, as described in Modifying Routing Corridors.

4. Route the nets by using the route_group command, as described in Routing Critical
Nets.

5. Remove the routing corridors, as described in Removing Routing Corridors.

See Also

• Reporting Routing Corridors

IC Compiler™ II Implementation User Guide
T-2022.03

368

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Defining Routing Corridors
A routing corridor restricts Zroute global routing for specific nets to the region defined by
a set of connected rectangles. In addition to specifying the region in which the routing
occurs, you can also specify the minimum and maximum routing layers for each of the
rectangles that comprise the routing corridor.

Routing corridors are intended to be used to route critical nets before signal routing.
Zroute global routing considers routing corridors as a hard constraint, while track
assignment and detail routing consider routing corridors as a soft constraint and might
route nets slightly outside of the routing corridor to fix DRC violations.

Note:
If a routing guide overlaps with a routing corridor and its attributes conflict with
the routing corridor, the routing corridor takes precedence.

For example, Figure 65 shows a routing corridor named corridor_1, which is made up
of six rectangles. This routing corridor is associated with the nets shown in yellow. The
figure on the left shows the nets before routing, while the figure on the right shows the nets
routed within the routing corridor.

Figure 65 Using a Routing Corridor

Before routing After routing

To define a routing corridor, use the create_routing_corridor command. At a
minimum, you must define the boundary of the routing corridor.

• To create a rectangular routing corridor, use the -boundary option to specify the lower-
left and upper-right corners of the rectangle using the following syntax: { {llx lly}
{urx ury} }.

• To create a rectilinear routing corridor, use the -boundary option to specify the
coordinates of the polygon using the following syntax: { {x1 y1} {x2 y2} ... }.

IC Compiler™ II Implementation User Guide
T-2022.03

369

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

• To create a path-based routing corridor, use the -path option to specify the path and
the -width option to specify the width in microns. Specify the path using the following
syntax: { {x1 y1} {x2 y2} ... }.

By default, path-based routing corridors have flush end caps at the start and end of the
path. To change the end cap style, use the -start_endcap and -end_endcap options.
Valid styles are flush, full_width, and half_width.

By default, the tool creates a routing corridor named CORRIDOR_objId in the current
block that honors the existing minimum and maximum routing layer constraints (for
information about specifying routing layer constraints, see Specifying the Routing
Resources). Use the following options to change the default behavior.

• To specify a name for the routing corridor, use the -name option.

• To create the routing guide in a different physical cell, use the -cell option.

When you use this option, the tool creates the routing guide in the cell's reference
block using the coordinate system of the cell's top-level block.

• To specify the minimum and maximum routing layers for the routing corridor, use the
-min_layer_name and -max_layer_name options.

Specify the routing layers by using the layer names from the technology file.

Assigning Nets to a Routing Corridor
To assign nets and supernets to a routing corridor, use the add_to_routing_corridor
command. You must specify the routing corridor and the nets or supernets to add to it. You
can assign a net or supernet to only one routing corridor and that routing corridor must
cover all pins connected to the associated nets. In addition, the supernets must belong to
the same block as the routing corridor.

For example, to define a routing corridor named corridor_a and assign the nets named n1
and n2 to this routing corridor, use the following commands:

icc2_shell> create_routing_corridor -name corridor_a \
 -boundary { {10 10} {20 35} } \
 -min_layer_name M2 -max_layer_name M4
icc2_shell> create_routing_corridor_shape -routing_corridor corridor_a \
 -boundary { {20 25} {40 35} } \
 -min_layer_name M2 -max_layer_name M4
icc2_shell> create_routing_corridor_shape -routing_corridor corridor_a \
 -boundary { {40 10} {50 35} } \
 -min_layer_name M2 -max_layer_name M4
icc2_shell> add_to_routing_corridor corridor_a [get_nets {n1 n2}]

IC Compiler™ II Implementation User Guide
T-2022.03

370

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Note:
You can also assign nets or supernets to the routing corridor by using the
-object option when you use the create_routing_corridor command to
create the routing corridor.

Verifying Routing Corridors
To successfully route a net within a routing corridor, the routing corridor must meet the
following requirements:

• It must be a contiguous region; all regions that comprise the routing corridor must be
connected.

• It must contain the pins that connect to the nets and supernets associated with the
routing corridor.

To verify that a routing corridor meets these requirements, use the
check_routing_corridors command.

icc2_shell> check_routing_corridors RC_0
You can view the errors detected by the check_routing_corridors command in the
message browser.

Modifying Routing Corridors
You can make the following modifications to an existing routing corridor:

• Add new shapes to the routing corridor.

To add new shapes, use the create_routing_corridor_shape command. Use the
-routing_corridor option to specify the routing corridor that you want to update.
You must specify the boundary of the routing corridor by using the -boundary or
-path option (for details about these options, see Defining Routing Corridors). You
can also specify the minimum and maximum routing layers for the shape by using the
-min_layer_name and -max_layer_name options.

• Remove rectangles from the routing corridor.

To remove shapes, use the remove_routing_corridor_shapes command.

• Change the nets and supernets associated with the routing corridor.

To add nets or supernets to a routing corridor, use the add_to_routing_corridor
command. To remove nets or supernets from a routing corridor, use the
remove_from_routing_corridor command.

You can also modify routing corridors in the GUI by using the Create Route Corridor tool,
the Move/Resize tool, or the Delete tool, or by editing the attributes in the Properties dialog
box.

IC Compiler™ II Implementation User Guide
T-2022.03

371

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Reporting Routing Corridors
To report the routing corridors in your block, use the report_routing_corridors
command. By default, the command reports all routing corridors; to report specific routing
corridors, specify the routing corridors to report.

By default, the command reports the following information for each routing corridor: its
name; the shapes associated with the routing corridor, including their names, minimum
routing layer, maximum routing layer, and boundary; the connectivity of the routing corridor
shapes; and the nets and supernets associated with the routing corridor. To output a Tcl
script that re-creates the routing corridors, use the -output option.

To report the routing corridor for a specific net or supernet, use the
get_routing_corridors command. When you run this command, you must use the
-of_objects option to specify the nets of interest.

Removing Routing Corridors
To remove routing corridors from the current block, use the remove_routing_corridors
command.

• To remove specific routing corridors, specify the routing corridors, either as a list or
collection, such as that returned by the get_routing_corridors command.

• To remove all routing corridors, specify the -all option.

You can also remove routing corridors in the GUI by using the Delete tool.

Using Nondefault Routing Rules
Zroute supports the use of nondefault routing rules, both for routing and for shielding.

• For routing, you can use nondefault routing rules to define stricter wire width and
spacing rules, to define the pin tapering distance, to specify the vias used when routing
nets with nondefault routing rules, and to specify multiple-patterning mask constraints.

• For shielding, you can use nondefault routing rules to define the minimum width and
spacing rules.

For information about working with nondefault routing rules, see the following topics:

• Defining Nondefault Routing Rules

• Reporting Nondefault Routing Rule Definitions

• Removing Nondefault Routing Rules

• Modifying Nondefault Routing Rules

IC Compiler™ II Implementation User Guide
T-2022.03

372

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

• Assigning Nondefault Routing Rules to Nets

• Reporting Nondefault Routing Rule Assignments

Defining Nondefault Routing Rules
To define a nondefault routing rule, use the create_routing_rule command. When you
define a nondefault routing rule, you must specify a name for the nondefault routing rule.
You use the name to assign the nondefault routing rule to nets or clocks.

The following topics describe how to create nondefault routing rules for various purposes:

• Defining Minimum Wire Width Rules

• Defining Minimum Wire Spacing Rules

• Defining Minimum Via Spacing Rules

• Specifying Nondefault Vias

• Specifying Mask Constraints

• Defining Shielding Rules

• Reporting Nondefault Routing Rule Definitions

• Removing Nondefault Routing Rules

• Modifying Nondefault Routing Rules

You can create a single routing rule that serves multiple purposes. In addition, you can
assign multiple nondefault routing rules to a net.

Defining Minimum Wire Width Rules
You can define nondefault minimum wire width rules that are stricter than the minimum
width rules defined in the technology file. Nondefault minimum width rules are hard
constraints, which must be met during routing.

Note:
If you specify a nondefault width that violates the signalRouteMaxWidth
setting in the technology file, the tool ignores the nondefault width.

IC Compiler™ II Implementation User Guide
T-2022.03

373

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

The minimum width defined in a nondefault routing rule applies to all metal segments,
including via enclosures. To avoid DRC violations, ensure that the enclosures for
nondefault vias meet the minimum width rule.

To define a minimum wire width rule, use the create_routing_rule command. You can
specify the minimum width by specifying a multiplier that is applied to the default width for
each layer, by specifying the minimum width in microns for each layer, or both.

• To use a multiplier to specify the minimum width, use the following syntax:

create_routing_rule rule_name
 [-default_reference_rule | -reference_rule_name ref_rule]
 -multiplier_width multiplier

The multiplier value must be between 0.001 and 2000. The default width for each layer
is determined from the reference rule, which is either the default routing rule or the
reference rule specified in the -reference_rule_name option.

For example, to define a nondefault routing rule named new_width_rule that uses the
default routing rule as the reference rule and defines the nondefault width as two times
the default width, use the following command:

icc2_shell> create_routing_rule new_width_rule -multiplier_width 2.0
• To specify the minimum width values for each layer, use the following syntax:

create_routing_rule rule_name
 [-default_reference_rule | -reference_rule_name ref_rule]
 -widths {layer1 width1 layer2 width2 … layern widthn}

Specify the routing layers by using the layer names from the technology file. You can
specify a single width value per layer. Zroute uses the wire width from the reference
rule, which is either the default routing rule or the reference rule specified in the
-reference_rule_name option, for any layers not specified in the -widths option.

For example, to define a nondefault routing rule named new_width_rule2 that uses the
default routing rule as the reference rule and defines nondefault width rules for the M1
and M4 layers, use the following command:

icc2_shell> create_routing_rule new_width_rule2 \
 -widths {M1 0.8 M4 0.9}

• If you specify both with -multiplier_width option and the -widths option, the tool
uses the -widths option to determine the base width, and then applies the multiplier to
that value to determine the minimum width requirement.

For example, to define a nondefault routing rule named new_width_rule3 that uses the
default routing rule as the reference rule and defines the nondefault width as 0.8 for the

IC Compiler™ II Implementation User Guide
T-2022.03

374

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

M1 layer, 0.9 for the M4 layer, and two times the default width for all other layers, use
the following command:

icc2_shell> create_routing_rule new_width_rule3 \
 -multiplier_width 2.0 -widths {M1 0.4 M4 0.45}

Defining Minimum Wire Spacing Rules
You can define nondefault minimum wire spacing rules that are stricter than the rules
defined in the technology file. Nondefault wire spacing rules can be defined as hard
constraints, which must be met, or as soft constraints, which Zroute tries to meet.

Note:
The spacing rules defined in the technology file are always considered hard
constraints.

By default, Zroute checks the nondefault spacing rules between signal nets and other
signal nets, PG nets, and blockages, but not between shapes of the same signal net or
between signal nets and shield wires for PG nets. For information about modifying these
checks, see Configuring Nondefault Spacing Checks.

To define a minimum wire spacing rule, use the create_routing_rule command. You
can specify the minimum spacing by specifying a multiplier that is applied to the default
spacing for each layer, by specifying the minimum spacings in microns for each layer, or
both.

• To use a multiplier to specify the minimum spacing, use the following syntax:

create_routing_rule rule_name
 [-default_reference_rule | -reference_rule_name ref_rule]
 -multiplier_spacing multiplier

The multiplier value must be between 0.001 and 2000. The default wire spacing for
each layer is determined from the reference rule, which is either the default routing rule
or the reference rule specified in the -reference_rule_name option.

For example, to define a nondefault routing rule named new_spacing_rule that uses
the default routing rule as the reference rule and defines the nondefault spacing as two
times the default spacing, use the following command:

icc2_shell> create_routing_rule new_spacing_rule \
 -multiplier_spacing 2.0

• To specify the minimum spacing values for each layer, use the following syntax:

create_routing_rule rule_name
 -spacings { layer1 {spacing11 spacing12 ... spacing1n}
 layer2 {spacing21 spacing22 ... spacing2n}
 ...
 layern {spacingn1 spacingn2 ...spacingnn} }
 -spacing_weight_levels { layer1 {weight11 weight12 ... weight1n}

IC Compiler™ II Implementation User Guide
T-2022.03

375

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

 layer2 {weight21 weight22 ... weight2n}
 ...
 layern {weightn1 weightn2 ... weightnn} }

Specify the routing layers by using the layer names from the technology file. You can
define multiple spacing values per layer. Zroute uses the spacing values from the
reference rule, which is either the default routing rule or the reference rule specified
in the -reference_rule_name option, for any layers not specified in the -spacings
option.

If you specify more than one spacing value per layer, you must assign a weight to each
spacing value by using the -spacing_weight_levels option. The valid weight values
are low, medium, high, and hard. When you assign a weight level other than hard,
the spacing rule is a soft spacing rule. By default, Zroute does not fix soft routing rule
violations. To fix soft routing rules, you must map the weight levels to routing effort
levels, as described in Specifying the Routing Effort for Soft Spacing Violations.

For example, to define a nondefault routing rule named new_spacing_rule2 that uses
the default routing rule as the reference rule and defines nondefault spacing rules for
the M1 and M4 layers, use the following command:

icc2_shell> create_routing_rule new_spacing_rule2 \
 -spacings { M1 {0.12 0.24} M4 {0.14 0.28} } \
 -spacing_weight_levels { M1 {hard medium} M4 {hard medium} }

• If you specify both with -multiplier_spacing option and the -spacings option, the
tool uses the -spacings option to determine the base spacing, and then applies the
multiplier to that value to determine the minimum wire spacing requirement.

To limit spacing to one side of the net, use the -single_side_spacing option with the
create_routing_rule command.

For example, the following command creates single-side spacing rules on the M2, M3, and
M4 metal layers METAL2, METAL3, and METAL4:

icc2_shell> create_routing_rule new_spacing_rule3 \
 -spacings {M2 1.300 M3 1.400 M4 1.500 } \
 -single_side_spacing \
 -widths {M1 0.230 M2 0.280 M3 0.280 M4 0.280 M5 0.280 M6 0.440}

IC Compiler™ II Implementation User Guide
T-2022.03

376

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Configuring Nondefault Spacing Checks
You can configure the checking of nondefault spacing rules by enabling or disabling
checks between signal nets and other objects. In addition, you can ignore violations of
nondefault spacing rules for short parallel distances.

• To honor nondefault spacing rules between shapes of the same signal net, set the
route.detail.var_spacing_to_same_net application option to true.

• To honor nondefault spacing rules between signal nets and shield wires for PG nets

◦ For all signal nets, set the route.common.ignore_var_spacing_to_shield
application option to false

◦ For specific signal nets, use the -ignore_spacing_to_shield false option when
you define the nondefault spacing rule with the create_routing_rule command

• To ignore nondefault spacing rules between signal nets and PG nets

◦ For all signal nets, set the route.common.ignore_var_spacing_to_pg application
option to true

◦ For specific signal nets, use the -ignore_spacing_to_pg true option when you
define the nondefault spacing rule with the create_routing_rule command

Note:
When you ignore nondefault spacing rules between signal
nets and PG nets, the rules are also ignored between the
signal nets and the shield wires regardless of the setting of
the route.common.ignore_var_spacing_to_shield and
create_routing_rule -ignore_spacing_to_shield options.

• To ignore nondefault spacing rules between signal nets and blockages

◦ For all signal nets, set the route.common.ignore_var_spacing_to_blockage
application option to true

◦ For specific signal nets, use the -ignore_spacing_to_blockage true option
when you define the nondefault spacing rule with the create_routing_rule
command

IC Compiler™ II Implementation User Guide
T-2022.03

377

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

You can relax the nondefault spacing checks for specific nondefault routing rules by
ignoring violations for short parallel distances, as shown in Figure 66. This technique
increases the flexibility of DRC convergence without adversely affecting crosstalk.

Figure 66 Ignoring Nondefault Spacing Rule Violations

To define the length thresholds within which to ignore the nondefault spacing violations,
use the -spacing_length_thresholds option when you create the nondefault routing
rule with the create_routing_rule command. The length threshold values are in microns
and must have a one-to-one correspondence with the spacing entries specified in the
-spacings option.

For example,

icc2_shell> create_routing_rule new_rule \
 -spacings { M1 {0.09 0.15 0.2}
 M2 {0.09 0.15 0.2}
 M3 {0.09 0.15 0.2} } \
 -spacing_weight_levels { M1 {hard medium low}
 M2 {hard medium low}
 M3 {hard medium low} } \
 -spacing_length_thresholds { M1 {0.01 0 0}
 M2 {0.01 0 0}
 M3 {0.01 0 0} }
Specifying the Routing Effort for Soft Spacing Violations
By default, Zroute does not fix soft spacing violations. To fix soft spacing violations, you
must assign a routing effort to each of the soft weight levels. These assignments apply to
all soft spacing rules.

IC Compiler™ II Implementation User Guide
T-2022.03

378

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

To assign a routing effort for each weight level, use the following syntax to set the
route.common.soft_rule_weight_to_effort_level_map application option:

set_app_options
 -name route.common.soft_rule_weight_to_effort_level_map
 -value { {weight effort} ... }

Each weight argument can be one of low, medium, or high. You should specify each
weight level only one time; if you specify a weight level multiple times, the router uses the
last specification. Each effort argument can be one of the following values:

• off (the default)

Zroute does not fix the soft spacing rule violations.

• low
Zroute uses a small number of rip-up and reroute passes to resolve soft spacing rule
violations.

• medium
Zroute uses a medium number of rip-up and reroute passes to resolve soft spacing rule
violations. Note that you cannot specify this effort level for the low weight level.

• high
Zroute treats soft spacing rule violations the same as regular design rule violations
during rip up and reroute. Note that you cannot specify this effort level for the low
weight level.

For example, to assign low routing effort to low-weight soft spacing rules, medium routing
effort to medium-weight soft spacing rules, and high routing effort to high-weight soft
spacing, use the following command:

icc2_shell> set_app_options \
 -name route.common.soft_rule_weight_to_effort_level_map \
 -value { {low low} {medium medium} {high high} }
Defining Minimum Via Spacing Rules
You can define nondefault minimum via spacing rules that are stricter than the rules
defined in the technology file. Nondefault via spacing rules are hard constraints that must
be met.

To define a minimum via spacing rule, use the -via_spacings option with the
create_routing_rule command using the following syntax:

create_routing_rule rule_name
 -via_spacings { {layer1 layer2 spacing} ... }

IC Compiler™ II Implementation User Guide
T-2022.03

379

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Specify the routing layers by using the layer names from the technology file. You can
define a single width value per layer pair.

The minimum via spacing for vias between any unspecified layer combinations is
determined from the technology file. For vias on the same layer, the router uses the
minimum spacing defined in the Layer section for the via layer. For vias on different
layers, the router uses the minimum spacing defined in the DesignRule section for the via
layer combination.

For example, to define a nondefault routing rule named via_spacing_rule that defines
nondefault spacing rules between vias on the V1 layer and between vias on the V1 and V2
layers, and uses the minimum spacing rules defined in the technology file between vias on
all other layer combinations, use the following command:

icc2_shell> create_routing_rule via_spacing_rule \
 -via_spacings {{V1 V1 2.3} {V1 V2 3.2}}
Specifying Nondefault Vias
By default, when routing nets with nondefault routing rules, Zroute selects vias based on
the design rules.

To specify the vias to use when routing nets with nondefault routing rules, use the
create_routing_rule command. You can define the nondefault vias by using either the
-cuts option or the -vias option.

• When you use the -cuts option, the tool determines the suitable via definitions from
the technology file based on the specification in the -cuts option and the rules defined
in the technology file.

• When you use the -vias option, you explicitly specify the nondefault via definitions,
including the allowed cut numbers and rotation for each via definition.

Specifying Nondefault Vias Using the -cuts Option

The syntax for specifying nondefault vias using the -cuts option is

create_routing_rule rule_name
 -cuts { {cut_layer1 {cut_name1, ncuts} {cut_name2, ncuts} …}
 {cut_layer2 {cut_name1, ncuts} {cut_name2, ncuts} …}
 ...
 {cut_layern {cut_name1, ncuts} {cut_name2, ncuts} …}
 }

The cut_layer arguments refer to the via layer names in the technology file and the
cut_name arguments refer to the cut names defined in the cutNameTbl attribute in the
associated Layer section in the technology file. You can specify multiple cut names per
layer. For each cut name, you must specify the minimum number of cuts, which must be
an integer between 1 and 255.

IC Compiler™ II Implementation User Guide
T-2022.03

380

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

The tool searches for the vias defined in the ContactCode section of the technology file
that meet the rules defined in the technology file for the specified cut name, such as the
cutWidthTbl, cutHeightTbl, and fatTblFatContactNumber rules. In addition, the
width of the via enclosure must meet the nondefault width and the xLegalWidthTbl and
yLegalWidthTbl rules defined in the technology file for the adjacent metal layers. If the fat
metal contact rule is not defined for a via layer, the tool searches for the default vias that
meet the cut width, cut height, and via enclosure width requirements.

The minimum number of cuts required is the larger of the ncuts value in the -cuts option
and the value defined in the fatTblFatContactMinCuts attribute. For the selected vias,
the tool always allows both the rotated and unrotated orientations for the via.

For example, assume the following information is defined in the technology file:

Layer "VIA1" {
 fatTblThreshold = (0, 0.181, 0.411)
 fatTblFatContactNumber = ("2,3,4,5,6 ","5,6,20", "5,6,20")
 fatTblFatContactMinCuts = ("1,1,1,1,1", "1,1,1", "2,2,2")

 cutNameTbl = (Vsq, Vrect)
 cutWidthTbl = (0.05, 0.05)
 cutHeightTbl = (0.05, 0.13)
 …
}

ContactCode "VIA12_LH" {
 contactCodeNumber = 5
 cutWidth = 0.13
 cutHeight = 0.05
 …
}
ContactCode "VIA12_LV" {
 contactCodeNumber = 6
 cutWidth = 0.05
 cutHeight = 0.13
 …
}
ContactCode "VIA12_P" {
 contactCodeNumber = 20
 cutWidth = 0.05
 cutHeight = 0.05
 …
}

If you use the following command,

icc2_shell> create_routing_rule cut_rule -cuts {VIA1 {Vrect 1}}
The tool selects the following vias: {VIA12_LH 1x1 R}, {VIA12_LH 1x1 NR}, {VIA12_LV
1x1 R}, {VIA12_LV 1x1 NR}, {VIA12_LH 1x2 R}, {VIA12_LH 1x2 NR}, {VIA12_LH 2x1

IC Compiler™ II Implementation User Guide
T-2022.03

381

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

R}, {VIA12_LH 2x1 NR}, {VIA12_LV 1x2 R}, {VIA12_LV 1x2 NR}, {VIA12_LV 2x1 R}, and
{VIA12_LV 2x1 NR}.

Specifying Nondefault Vias Using the -vias Option

The syntax for specifying nondefault vias using the -vias option is

create_routing_rule rule_name
 -vias { {via_type1 cut_number1 orientation1}
 {via_type2 cut_number2 orientation2}
 ...
 {via_typen cut_numbern orientationn}
 }

You can specify multiple via types per layer; each via type must be a via definition defined
in the technology file or a via definition created by the create_via_def command. For
each via type, you must explicitly specify the allowed cut numbers and orientation. To
specify the orientation, use NR to indicate that the via is not rotated or R to indicate that the
via is rotated. The order of via specification is not important; during routing, Zroute selects
the lowest cost nondefault via.

For example, to specify the vias selected by the -cuts option in the previous example, use
the following command:

icc2_shell> create_routing_rule via_rule \
 -vias { {VIA12_LH 1x1 R} {VIA12_LH 1x1 NR} {VIA12_LV 1x1 R}
 {VIA12_LV 1x1 NR} {VIA12_LH 1x2 R} {VIA12_LH 1x2 NR}
 {VIA12_LH 2x1 R} {VIA12_LH 2x1 NR} {VIA12_LV 1x2 R}
 {VIA12_LV 1x2 NR} {VIA12_LV 2x1 R} {VIA12_LV 2x1 NR} }
Specifying Mask Constraints
If you are using the precolored design flow for a design that uses multiple-patterning
technology, you can set mask constraints on timing-critical nets, such as clock nets,
by defining a precoloring rule and applying it to the nets. For details about the mask
constraints, see Mask Constraints.

To define a precoloring rule, use the create_routing_rule command using the following
syntax:

create_routing_rule rule_name
 -mask_constraints
 {layer1 constraint1 layer2 constraint2 ... layern constraintn}

where constraint is one of same_mask, mask1_soft, or mask2_soft.

For example, to define a precoloring routing rule that sets mask_one constraints on the M4
and M5 layers, use the following command:

icc2_shell> create_routing_rule clock_mask1 \
 -mask_constraints {M4 mask_one M5 mask_one}

IC Compiler™ II Implementation User Guide
T-2022.03

382

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Note:
To ensure DRC convergence, you should set double-patterning mask
constraints only on a very few timing-critical nets.

Defining Shielding Rules
To define shielding rules, use the create_routing_rule command using the following
syntax:

create_routing_rule rule_name
 -shield_widths {layer1 width1 layer2 width2 … layern widthn}
 -shield_spacings {layer1 spacing1 layer2 spacing2 … layern spacingn}
 [-snap_to_track]

Specify the routing layers by using the layer names from the technology file. You can
define a single width and spacing value per layer. Zroute uses the default wire width for
any layers not specified in the -shield_widths option and the default spacing for any
layers not specified in the -shield_spacings option.

By default, shielding wires are not snapped to the routing tracks. To snap shielding wires
to the routing tracks, use the -snap_to_track option when you define the nondefault
routing rule.

For example, to specify a shielding rule that uses spacing of 0.1 microns and a width of
0.1 microns for M1 through M5 and spacing of 0.3 microns and a width of 0.3 microns for
M6, use the following command:

icc2_shell> create_routing_rule shield_rule \
 -shield_widths {M1 0.1 M2 0.1 M3 0.1 M4 0.1 M5 0.1 M6 0.3} \
 -shield_spacings {M1 0.1 M2 0.1 M3 0.1 M4 0.1 M5 0.1 M6 0.3}
Reporting Nondefault Routing Rule Definitions
To report the nondefault routing rules defined by the create_routing_rule command,
use the report_routing_rules -verbose command. By default, this command reports
all of the nondefault routing rules for the current block. To limit the report to specific
nondefault routing rules, specify the rule names as an argument to the command.

icc2_shell> report_routing_rules {rule_names}
To output a Tcl script that contains the create_routing_rule commands used to
define the specified nondefault routing rules, use the -output option when you run the
report_routing_rules command.

Removing Nondefault Routing Rules
To remove nondefault routing rules from the current block, use the
remove_routing_rules command. When you remove a nondefault routing rule, the rule

IC Compiler™ II Implementation User Guide
T-2022.03

383

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

is removed from all nets to which it is applied and the rule definition is removed from the
design library.

• To remove specific routing rules, specify the routing rules.

• To remove all routing rules, specify the -all option.

For example, to remove the new_width_rule routing rule, use the following command:

icc2_shell> remove_routing_rules new_width_rule
Modifying Nondefault Routing Rules
To change the definition for an existing rule, you must use the remove_routing_rules
command to remove the rule and then use the create_routing_rule command to
redefine the rule. The tool issues an error message if you try to redefine an existing routing
rule.

Assigning Nondefault Routing Rules to Nets
The IC Compiler II tool provides two commands for assigning nondefault routing rules to
nets:

• set_clock_routing_rules
This command assigns nondefault routing rules to clock nets before clock tree
synthesis. During clock tree synthesis and optimization, the tool propagates the
nondefault routing rules to the newly created clock nets.

• set_routing_rule
This command assigns nondefault routing rules to signal nets and to clock nets after
clock tree synthesis.

The following topics describe how to assign nondefault routing rules to nets:

• Assigning Nondefault Routing Rules to Clock Nets

• Assigning Nondefault Routing Rules to Signal Nets

• Reporting Nondefault Routing Rule Assignments

Assigning Nondefault Routing Rules to Clock Nets
To assign a clock routing rule to a clock net, use the -rule option with the
set_clock_routing_rules command. The specified rule must be a rule that you
previously defined with the create_routing_rule command.

To reset a clock routing rule to the default routing rule, use the -default_rule option. To
change a clock routing rule, first reset it to the default routing rule and then use the -rule
option after resetting the assignment to the default routing rule.

IC Compiler™ II Implementation User Guide
T-2022.03

384

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

By default, the set_clock_routing_rules command assigns the specified clock routing
rule to all clock trees in the block. Table 24 shows the options used to restrict the routing
rule assignment.

Table 24 Restricting Clock Routing Rule Assignments

To assign a nondefault routing rule to Use this option

Specific clock trees -clocks clocks

Nets connected to the clock root2 -net_type root

Nets connected to one or more clock sinks2 -net_type sink

Internal nets in the clock tree (all nets except the root
and sink nets)2

-net_type internal

Specific clock nets -nets nets

Figure 67 shows the root, internal, and sink nets of a clock tree after clock tree synthesis.
By default, the root-net routing rule is applied to all the single-fanout clock nets starting
from the clock root up to the point where the clock tree branches out to a fanout of more
than one. Internal-net routing rules are applied to the nets from this point until the sink
nets.

Figure 67 Root, Internal, and Sink Clock Net Types

Sink nets

Internal nets

Root nets 200 sinks

200 sinks

200 sinks

2. You can use this option with the -clocks option to further restrict the assignment. This option is not valid with
the -nets option.

IC Compiler™ II Implementation User Guide
T-2022.03

385

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

The following example specifies routing rules for the root, internal, and sink nets:

icc2_shell> set_clock_routing_rules -rules NDR1 -net_type root
icc2_shell> set_clock_routing_rules -rules NDR2 -net_type internal
icc2_shell> set_clock_routing_rules -rules NDR3 -net_type sink
To specify a transitive fanout limit to use when identifying root nets, use the
set_clock_tree_options –root_ndr_fanout_limit command. For example, to
specify that any clock net with a transitive fanout of more than 300 be considered as a root
net, use the following command:

icc2_shell> set_clock_tree_options -root_ndr_fanout_limit 300
Figure 68 shows the root, internal, and sink nets of the same clock tree when a transitive
fanout limit of 300 is used for identifying the clock root nets.

Figure 68 Using a Fanout Limit for Selecting Root Nets

Sink nets

Internal nets

Root nets 200 sinks

200 sinks

200 sinks

When calculating the transitive fanout of clock nets for the purpose of identifying root nets,
the tool includes only the valid clock sinks; It does not include the ignore pins. If a net
identified as a root net is less than 10 microns, the tool uses internal-net routing rules for
that net.

Note:
Specifying a smaller value with the set_clock_tree_options –
root_ndr_fanout_limit command increases the number of clock nets that
are assigned the root-net routing rule, which can increase routing congestion.

During clock tree synthesis and optimization, the tool also honors nondefault routing rules
set by using the set_routing_rule command. However, the tool does not propagate
these routing rules to any new clock nets it creates.

IC Compiler™ II Implementation User Guide
T-2022.03

386

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

If a net is assigned more than one nondefault routing rule, the tool uses the following
priority to determine the effective routing rule:

1. Nondefault routing rule set by the set_routing_rule command

2. Net-specific clock routing rule set by the set_clock_routing_rules -nets command

3. Clock-specific clock routing rule set by the set_clock_routing_rules -clocks
command

4. Global clock routing rule set by the set_clock_routing_rules command

Assigning Nondefault Routing Rules to Signal Nets
To assign a nondefault routing rule to a net, use the -rule option with the
set_routing_rule command. The specified rule must be a rule that you previously
defined with the create_routing_rule command. You must specify the nets to which to
assign the nondefault routing rule. You can assign multiple nondefault routing rules to a
net.

To change the routing rule assignment for one or more nets,

• Use the -default_rule option to reset the nets to the default routing rule.

To assign different nondefault routing rules to the nets, use the -rule option after
resetting the nets to the default routing rule.

• Use the -no_rule option to remove all routing rules from the nets and allow the tool to
automatically assign a routing rule to them.

• Use the -clear option to remove all routing rules and net-specific layer constraints
from the nets.

For example, to assign a nondefault routing rule called WideMetal to the CLK net, use the
following command:

icc2_shell> set_routing_rule -rule WideMetal [get_nets CLK]
To reset the routing rule for the CLK net to the default routing rule, use the following
command:

icc2_shell> set_routing_rule -default_rule [get_nets CLK]

IC Compiler™ II Implementation User Guide
T-2022.03

387

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Reporting Nondefault Routing Rule Assignments
The IC Compiler II tool provides commands to report the nondefault routing rules assigned
by the set_routing_rule command and the clock routing rules assigned by the
set_clock_routing_rules command.

• To report the nondefault routing rules assigned by the set_routing_rule command,
use the -of_objects option with the report_routing_rules command.

icc2_shell> report_routing_rules -of_objects [get_nets *]
• To report the clock routing rule assignments, use the report_clock_routing_rules

command. This command reports only the routing rules assigned by the
set_clock_routing_rules command.

Controlling Off-Grid Routing
You can prevent off-grid routing of wires or vias by requiring them to be aligned to the wire
track or discourage off-grid routing of vias by increasing the cost associated with off-grid
routing.

Preventing Off-Grid Routing
By default, wires and vias need to be aligned to the wire track grid for a metal layer only if
the onWireTrack or onGrid attribute is set to 1 in its Layer section in the technology file.

To override the technology file settings, set the following application options:

• route.common.wire_on_grid_by_layer_name
This option controls off-grid routing for metal layers.

• route.common.via_on_grid_by_layer_name
This option controls off-grid routing for via layers.

Use the following syntax to set these options:

{ {layer true|false} ... }

Specify the layers by using the layer names from the technology file. Specify true to forbid
off-grid routing and false to allow off-grid routing.

If you use either of these options, the tool ignores all settings for the onWireTrack and
onGrid attributes in the technology file and uses only the settings specified by these
options. If you do not specify a layer in these options, off-grid routing is allowed on that
layer, regardless of the setting in the technology file.

IC Compiler™ II Implementation User Guide
T-2022.03

388

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

For example, to prevent off-grid routing for wires on the M2 and M3 metal layers and for
vias on the V2 via layer, regardless of the settings in the technology file, use the following
commands:

icc2_shell> set_app_options \
 -name route.common.wire_on_grid_by_layer_name \
 -value {{M2 true} {M3 true}}
icc2_shell> set_app_options \
 -name route.common.via_on_grid_by_layer_name \
 -value {{V2 true}}

IC Compiler™ II Implementation User Guide
T-2022.03

389

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Discouraging Off-Grid Routing for Vias
To discourage off-grid routing for vias, you can increase the cost of routing the
via enclosure metal shapes off the wire track grid. To specify the extra cost
multiplier for the metal layers on which the via enclosures are routed, set the
route.common.extra_via_off_grid_cost_multiplier_by_layer_name application
option.

Use the following syntax to set this option:

{ {layer multiplier} ... }

Specify the layers by using the layer names from the technology file. The cost multiplier
must be a value between 0.0 and 20.0.

When you specify this option, the effective cost is the base cost times (1+multiplier). For
example, assume that the technology file defines the VIA12 layer between the M1 and M2
metal layers and the VIA23 via layer between the M2 and M3 metal layers. To set the extra
cost multiplier for the via enclosures on the M2 metal layer (and therefore the vias on the
VIA12 and VIA23 via layers) to 0.5 (for an effective via cost of 1.5 times the base cost),
use the following command:

icc2_shell> set_app_options \
 -name route.common.extra_via_off_grid_cost_multiplier_by_layer_name \
 -value {{M2 0.5}}

Routing Must-Join Pins
When a pin is defined as a must-join pin, the router connects all terminals of the pin as a
single net. The terminals of a must-join pin are specified with the must_join_port library
pin attribute.

By default, Zroute connects must-join pins using a random structure, as shown in the
following figure:

Figure 69 Default Must-Join Pin Connection

To achieve better electromagnetic results, Zroute can use the via ladder insertion
capabilities to connect the must-join pins with a simplified structure, which is referred to as
a pattern-based must-join connection.

IC Compiler™ II Implementation User Guide
T-2022.03

390

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

The following figure shows the simplified structure:

Figure 70 Single-Level Pattern-Based Must-Join Pin Connection

The single-level structure shown in Figure 70 is the default structure used for a pattern-
based must-join connection. To use a multi-level structure, which is shown in Figure 71,
set the route.auto_via_ladder.pattern_must_join_over_pin_layer application
option to 2.

Figure 71 Multi-Level Pattern-Based Must-Join Pin Connection

Zroute automatically uses a pattern-based must-join pin connection when a library cell
pin has a pattern_must_join attribute and you use one of the following commands to
perform the routing: route_auto, route_group, or route_eco.

To query cells with the pattern_must_join attribute, use the following command:

icc2_shell> get_attribute \
 [get_lib_pins -all -of_objects */*/frame] pattern_must_join
To get a list of pins that are marked with the pattern_must_join attribute, use the
following command:

icc2_shell> get_lib_pins -all \
 -of_objects */*/frame -filter "pattern_must_join==true"
By default, a via ladder is not inserted if there are fixed shapes on higher layers
that block the insertion. To increase the insertion rate, you can allow staggering
of the vias on each level of the via ladder to avoid the fixed shapes. To specify
the maximum number of tracks allowed for staggering on each level, set the
route.auto_via_ladder.pattern_must_join_max_number_stagger_tracks
application option. You can specify a value between 0 and 9 for each level; the default is 0,
which disables staggering.

IC Compiler™ II Implementation User Guide
T-2022.03

391

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

For example, to allow staggering of up to three tracks on the first level, use the following
command:

icc2_shell> set_app_options -name \
 route.auto_via_ladder.pattern_must_join_max_number_stagger_tracks \
 -value {3 0}
Figure 72 shows the possible solutions to avoid a blockage on the M3 layer when you
allow staggering of up to three tracks.

Figure 72 Pattern-Based Must-Join Pin Connection With Staggering

Note:
To ensure that it can successfully create pattern-must-join pin connections,
Zroute considers the following application options to have a value of true when
creating these connections, regardless of their actual setting:

route.auto_via_ladder.allow_patching
route.auto_via_ladder.ignore_routing_shape_drcs
route.auto_via_ladder.relax_line_end_via_enclosure_rule
route.auto_via_ladder.relax_pin_layer_metal_spacing_rules

By default, the pattern-based must-join connections are updated each time you run the
route_auto, route_group, or route_eco command.

• During the route_group command, you can restrict the updates to
only those nets specified in the route_group command by setting the
route.auto_via_ladder.update_on_route_group_nets_only application option to
true.

• To disable all updates during each of these routing commands, set the
route.auto_via_ladder.update_pattern_must_join_during_route application
option to false.

If Zroute cannot create a pattern-based must-join connection, it reports a “Needs pattern
must join pin connection” DRC violation.

IC Compiler™ II Implementation User Guide
T-2022.03

392

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

See Also

• Inserting Via Ladders

Controlling Pin Connections
By default, Zroute connects a signal route to a pin by using wires or vias anywhere on the
pin. To restrict the allowed types of pin connections on a per-layer basis, use the following
syntax to set the route.common.connect_within_pins_by_layer_name application
option:

set_app_options
 -name route.common.connect_within_pins_by_layer_name
 -value { {layer mode} ... }

Valid values for the mode argument are

• off (the default)

There are no restrictions on pin connections.

• via_standard_cell_pins
Only the connections to standard cell pins by using a via are restricted. When using a
via connection, the via’s metal enclosure must be contained within the pin shape.

There are no restrictions on signal routes connected to macro cell and pad cell pins by
using a via or to any pins by using wires.

• via_wire_standard_cell_pins
The connections to standard cell pins by using a via or a wire are restricted. When
using a via connection, the via’s metal enclosure must be contained within the pin
shape. When using a wire, the wire must be contained within the pin shape.

• via_all_pins
The connections to any pins (standard cell, macro cell, or pad cell) by using a via are
restricted. When using a via connection, the via’s metal enclosure must be contained
within the pin shape.

There are no restrictions on signal routes connected to any pins by using wires.

• via_wire_all_pins
The connections to any pins by using a via or a wire are restricted. When using a via
connection, the via’s metal enclosure must be contained within the pin shape. When
using a wire, the wire must be contained within the pin shape.

IC Compiler™ II Implementation User Guide
T-2022.03

393

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

For example, if you use the following command (or use the default settings), all of the
connections shown in Figure 73 are valid and no DRC violations are reported:

icc2_shell> set_app_options \
 -name route.common.connect_within_pins_by_layer_name \
 -value {{M1 off}}

Figure 73 Unrestricted Pin Connections

If you set the mode for M1 to via_all_pins, as shown in the following example, the
via enclosures must be inside the pin shape. The connections shown on the left side of
Figure 74 are valid; however, the connections on the right side of the figure cause DRC
violations.

icc2_shell> set_app_options \
 -name route.common.connect_within_pins_by_layer_name \
 -value {{M1 via_all_pins}}

IC Compiler™ II Implementation User Guide
T-2022.03

394

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Figure 74 Restricted Via-to-Pin Connections

No DRC Violations DRC Violations

If you set the mode for M1 to via_wire_standard_cell_pins, as shown in the following
example, both the via enclosures and wires must be inside the pin shape. The connections
shown on the left side of Figure 75 are valid; however the connections on the right side of
the figure cause DRC violations.

icc2_shell> set_app_options \
 -name route.common.connect_within_pins_by_layer_name \
 -value {{M1 via_wire_standard_cell_pins}}

Figure 75 Restricted Via-to-Pin and Wire-to-Pin Connections

DRC ViolationsNo DRC Violations

IC Compiler™ II Implementation User Guide
T-2022.03

395

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

Controlling Pin Tapering
Pin tapering is the method used to connect wires with nondefault routing rules to pins.
Zroute supports pin tapering for both hard and soft nondefault routing rules; the tapering
implementation is the same for both types of nondefault routing rules.

Note:
By default, if a net has both a nondefault routing rule defined by the
create_routing_rule command and voltage-based spacing rules defined
in the technology file, Zroute performs pin tapering on that net based on
the nondefault routing rule. To disable pin tapering on these nets, set the
route.detail.enable_ndr_tapering_on_voltage_rule application option
to false.

You can specify the method used for pin tapering and control the tapering width, as
described in the following topics:

• Specifying the Tapering Method

• Controlling the Tapering Width

Specifying the Tapering Method
You specify the tapering method for a nondefault routing rule when you define the rule
with the create_routing_rule command. By default, Zroute uses distance-based pin
tapering; it uses the default routing rule within the tapering distance from the pin and uses
the nondefault routing rule beyond the tapering distance. However, advanced process
nodes are very sensitive to jogs and fat metal, and sometimes the tapering distance is
not sufficient to fix the routing DRC violations on nets with nondefault routing rules. In
these cases, you can use layer-based tapering, which targets DRC violations on nets with
nondefault routing rules.

Note:
Distance-based tapering and layer-based tapering are mutually exclusive. If
you define a routing rule that uses both a distance-based tapering option and a
layer-based tapering option, the tool uses the layer-based tapering settings and
ignores the distance-based tapering settings.

IC Compiler™ II Implementation User Guide
T-2022.03

396

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

When Zroute performs distance-based pin tapering, it

• Determines the tapering distance, which is about 10 times the mean number of tracks
for all routing layers.

To explicitly specify the tapering distance, use the -taper_distance option when you
create a nondefault routing rule with the create_routing_rule command.

• Uses the same tapering distance for all pins.

To specify a different tapering distance for driver pins, use the
-driver_taper_distance option when you create a nondefault routing rule with the
create_routing_rule command.

To perform layer-based pin tapering, use the -taper_over_pin_layers or
-taper_under_pin_layers option when you create a nondefault routing rule
with the create_routing_rule command. To specify a different layer-based
tapering distance for driver pins, use the -driver_taper_over_pin_layers or
-driver_taper_under_pin_layers option.

• For pins on the M1 or M2 layers, use the -taper_over_pin_layers option (or the
-driver_taper_over_pin_layers option for driver pins) to specify the number of
layers on or above the pin layer available for tapering. A value of 1 enables pin tapering
only on the pin layer; a larger value enables pin tapering on additional layers above the
pin layer.

• For pins on upper layers, use the -taper_under_pin_layers option (or the
-driver_taper_under_pin_layers option for driver pins)to specify the number of
layers on or below the pin layer available for tapering. A value of 1 enables pin tapering
only on the pin layer; a larger value enables pin tapering on additional layers below the
pin layer.

Controlling the Tapering Width
By default, the wire is tapered to the default routing width, which is the routing width that is
defined for the metal layer in the technology file.

• To taper the wire to the pin width rather than the default routing width, change the
route.detail.pin_taper_mode application option to pin_width from its default of
default_width before you perform detail routing.

• To enable pin tapering only when required to avoid DRC violations, set the
route.detail.use_wide_wire_effort_level application option to either low or
high.

This setting improves the nondefault via rate at a cost of longer runtime. You should
use this option only when the majority of pins on the nets being routed are accessible
with nondefault vias.

IC Compiler™ II Implementation User Guide
T-2022.03

397

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Constraints

Feedback

• To disable tapering for certain types of pins, set one or more of the following
application options to true: route.detail.use_wide_wire_to_input_pin,
route.detail.use_wide_wire_to_output_pin,
route.detail.use_wide_wire_to_macro_pin,
route.detail.use_wide_wire_to_pad_pin, and
route.detail.use_wide_wire_to_port.

• To disable tapering for all pins, set the -taper_distance option to 0 when you create
the nondefault routing rule with the create_routing_rule command.

Controlling Via Ladder Connections
If a pin has a via ladder, by default, Zroute connects to the topmost layer of a via ladder
and not directly to the existing pin geometry. To modify the connection constraints, set the
following application options:

• route.detail.via_ladder_upper_layer_via_connection_mode
To allow vias to connect to the top level of a via ladder from below, set this application
option to any.

• route.detail.allow_default_rule_nets_via_ladder_lower_layer_connection
To allow nets with default routing rules to connect directly to the pin or to any layer of
the via ladder, set this application option to true.

Setting the Rerouting Mode
By default, Zroute can reroute nets as needed. You can prevent rerouting or limit rerouting
to minor changes by setting the physical_status attribute on the nets.

• To freeze the net and prevent rerouting, set the attribute to locked.

• To limit rerouting to minor changes, set the attribute to minor_change.

• To allow Zroute to reroute the nets as needed, set the attribute to unrestricted.

For example, to prevent rerouting of the net1 net, which uses the default routing rule, use
the following command:

icc2_shell> set_attribute -objects [get_nets net1] \
 -name physical_status -value locked

IC Compiler™ II Implementation User Guide
T-2022.03

398

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Application Options

Feedback

Routing Application Options
The IC Compiler II tool provides application options that affect the individual routing
engines (global routing, track assignment, and detail routing), as well as application
options that affect all three routing engines.

• For information about the application options that affect all three routing engines, see
the route.common_options man page.

• For information about the application options that affect global routing, see the
route.global_options man page.

• For information about the application options that affect track assignment, see the
route.track_options man page.

• For information about the application options that affect detail routing, see the
route.detail_options man page.

Zroute uses these option settings whenever you perform routing functions. When you run
a routing command, Zroute writes the settings for any routing options that you have set
(or that the tool has set for you) in the routing log. To display the settings for all routing
options, not only those that have been set, set the route.common.verbose_level
application option to 1.

icc2_shell> set_app_options \
 -name route.common.verbose_level -value 1

Routing Clock Nets
To route clock nets before routing the rest of the nets in the block, use the route_group
command with the appropriate option to select the nets.

• To route all clock nets, use the -all_clock_nets option.

• To route specific clock nets, use the -nets option.

For example, to route all clock nets, use the following command:

icc2_shell> route_group -all_clock_nets
The route_group command runs global routing, track assignment, and detail routing on
the clock nets.

• When routing clock nets, the route_group command uses A-tree routing to minimize
the distance between each pin and driver.

• When routing clock mesh nets, by default, the route_group command uses
Steiner routing, which minimizes the total wire length. To use comb routing, set the

IC Compiler™ II Implementation User Guide
T-2022.03

399

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Critical Nets

Feedback

route.common.clock_topology application option to comb before routing the clock
mesh nets.

• By default, if the block contains existing global routes, the route_group command
ignores them during global routing. To perform incremental global routing by reusing
existing global routes, use the -reuse_existing_global_route true option.

• If the block contains existing detail routes for the clock nets, the route_group
command performs incremental detail routing.

• By default, the detail router performs a maximum of 40 search and repair
iterations. To modify the maximum number of detail routing iterations, use the
-max_detail_route_iterations option.

Note:
Zroute stops before completing the maximum number of iterations if it
determines that all violations have been fixed or that it cannot fix the
remaining violations.

Routing Critical Nets
To route a group of critical nets before routing the rest of the nets in the block, use the
route_group command. To specify the nets to route, use one of the following options:

• -nets
Use this option to specify the nets on the command line:

icc2_shell> route_group -nets collection_of_critical_nets
• -from_file

Use this option to specify the nets in a file:

icc2_shell> route_group -from_file file_name
If the specified nets are associated with a routing corridor, the nets are routed within the
defined region. Note that global routing considers routing corridors as a hard constraint,
while track assignment and detail routing consider routing corridors as a soft constraint
and might route nets slightly outside of the routing corridor to fix DRC violations.

IC Compiler™ II Implementation User Guide
T-2022.03

400

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Secondary Power and Ground Pins

Feedback

By default, the route_group command ignores existing global routes, reuses dangling
wires and existing detail routes on the specified nets, and runs global routing, track
assignment, and detail routing on the specified nets.

• To perform incremental global routing, set the -reuse_existing_global_route option
to true.

Note:
You cannot use the -reuse_existing_global_route true option when
routing the nets in a routing corridor. If you use this option, the global router
ignores the routing corridors.

• To disable the reuse of dangling wires, set the -utilize_dangling_wires option to
false.

• To stop after global routing, set the -stop_after_global_route option to true.

By default, the detail router performs a maximum of 40 iterations search and repair
iterations. If Zroute determines before then that all violations have been fixed or that it
cannot fix the remaining violations, it stops. To change the maximum number of detail
routing iterations, use the -max_detail_route_iterations option.

By default, the route_group command does not fix soft DRC violations, such as bridge
rule violations. To enable the fixing of soft DRC violations after the final detail routing
iteration, set the route.common.post_group_route_fix_soft_violations application
option to true.

icc2_shell> set_app_options \
 -name route.common.post_group_route_fix_soft_violations \
 -value true

Routing Secondary Power and Ground Pins
To use Zroute to perform secondary power and ground pin routing,

1. Verify that the secondary power and ground pins have the appropriate attributes in the
standard cell frame views.

2. Set the routing constraints for secondary power and ground pin routing.

3. Perform secondary power and ground pin routing by using the route_group command.

The following topics describe these steps.

IC Compiler™ II Implementation User Guide
T-2022.03

401

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Secondary Power and Ground Pins

Feedback

Verifying the Secondary Power and Ground Pin Attributes
Before you use Zroute to perform secondary power and ground pin routing, you must
verify that the cell libraries have the correct attributes on the secondary power and ground
pins of the standard cell frame views.

The following attributes are required for secondary power and ground pins:

• is_secondary_pg
This attribute must have a setting of true.

• port_type
This attribute must have a setting of power or ground.

To verify that these attributes are correctly set on the library pins in the standard cell frame
view, use the following command:

icc2_shell> report_attributes -application \
 [get_lib_pins -of_objects reflib/cell/frame -all \
 -filter "name == attr_name"]
where reflib is the cell library name, cell is the name of the library cell you want to check
(or * if you want to check all library cells), and attr_name is either is_secondary_pg or
port_type.

See Also

• Identifying Secondary PG Pins

Setting the Routing Constraints
You can set routing constraints for secondary power and ground pin routing in the same
way as for regular signal routing. For example, you can set constraints by

• Defining the minimum and maximum routing layers by using the set_routing_rule
command

For more information about using the set_routing_rule command, see Specifying
Net-Specific Layer Constraints.

• Specifying the preferred pin connections by setting the
route.common.single_connection_to_pins and
route.common.connect_within_pins_by_layer_name application options

IC Compiler™ II Implementation User Guide
T-2022.03

402

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Secondary Power and Ground Pins

Feedback

For example, to require a single connection to the secondary power and ground pins
and require that the M1 connections use vias contained within the pin shapes, use the
following command:

icc2_shell> set_app_options \
 -name route.common.single_connection_to_pins \
 -value standard_cell_pins
icc2_shell> set_app_options \
 -name route.common.connect_within_pins_by_layer_name \
 -value {{M1 via_standard_cell_pins}}

• Defining the maximum number of power or ground pins in a cluster by setting the
route.common.number_of_secondary_pg_pin_connections application option

A cluster is a set of connected secondary power or ground pins that has one
connection to a PG strap or ring. By default, the value of this option is 0, which means
that there is no limit on the number of secondary power or ground pins in a cluster.

For example, to connect all secondary power and ground pins directly to a PG strap or
ring, use the following command:

icc2_shell> set_app_options \
 -name route.common.number_of_secondary_pg_pin_connections \
 -value 1

• Defining a nondefault routing rule for secondary power and ground pin routing

For example, to define a nondefault routing rule named wideSVDD for wide M1 and M2
and set the nondefault routing rule on the VDD2 net, to which the secondary power and
ground pins are connected, use the following commands:

icc2_shell> create_routing_rule wideSVDD -widths { M1 0.3 M2 0.3 }
icc2_shell> set_routing_rule -rule wideSVDD {VDD2}
For more information about using nondefault routing rules, see Using Nondefault
Routing Rules.

By default, the constraints apply to both the secondary power and ground connections
and the tie-off connections. To separate these connections so that you can
set constraints only for the secondary power and ground connections, set the
route.common.separate_tie_off_from_secondary_pg application option to true.

Routing the Secondary Power and Ground Pins
If the secondary power and ground pins have the appropriate attributes in the frame view,
you can use Zroute to route the secondary power and ground pins.

By default, Zroute performs four topology ECO iterations to fix secondary PG
cluster fanout violations.The topology ECO iterations can be time consuming,

IC Compiler™ II Implementation User Guide
T-2022.03

403

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

so you can control the effort level, and therefore the runtime, by setting the
route.detail.topology_eco_effort_level application option to one of the following
values:

• off, which disables topology ECO

• low, which peforms one topology ECO iteration

• medium, which peforms four topology ECO iterations; this is the default

• high, which peforms eight topology ECO iterations

For example, to connect the secondary power pins to the VDD1 net, run the following
command:

icc2_shell> route_group -nets VDD1
The following example add new cells, which have secondary power and ground pins, to
a block; logically connects the power and ground pins; and then connects the secondary
power pins to the VDD2 net.

icc2_shell> add_buffer {TOP/U1001/Z} {libA/BUFHVT} \
 -new_cell_names mynewHVT
icc2_shell> add_buffer {TOP/U1002/Z} {libA/BUFHVT} \
 -new_cell_names mynewHVT
icc2_shell> legalize_placement
icc2_shell> connect_pg_net -automatic
icc2_shell> route_group -nets {VDD2}

Routing Signal Nets
Before you route the signal nets, all clock nets must be routed without violations.

You can route the signal nets by using one of the following methods:

• Use the task-specific commands to perform the standalone routing tasks.

◦ To perform global routing, use the route_global command.

For details see, Global Routing.

◦ To perform track assignment, use the route_track command.

For details see, Track Assignment.

◦ To perform detail routing, use the route_detail command.

For details see, Detail Routing.

When you run a standalone routing command, such as route_global or
route_detail, Zroute reads in the block at the beginning of each routing command

IC Compiler™ II Implementation User Guide
T-2022.03

404

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

and updates the block at the end of each command. The router does not check the
input data. For example, if the track assignment step is skipped and you run detail
routing directly, Zroute might generate bad routing results.

If you need to customize your routing flow or you need to run a large block step-by-
step, you might want to use the standalone routing commands instead of automatic
routing.

• Use automatic routing (the route_auto command).

The route_auto basic command performs global routing, track assignment, and detail
routing. For details, see Routing Signal Nets by Using Automatic Routing.

When you run route_auto, Zroute reads the block before starting routing and updates
the block when all routing steps are done. If you stop automatic routing before it
performs detail routing, Zroute checks the input data when you restart routing with this
command.

Use the route_auto command when you run routing to verify convergence,
congestion, and design rule quality-of-results (QoR). You also might want to use
route_auto if congestion QoR is your main goal, rather than timing QoR.

Zroute can insert redundant vias during signal routing. For information about this
capability, see Inserting Redundant Vias on Signal Nets.

Global Routing
Before you run global routing,

• Define the common routing application options

For information about the common routing application options, see the
route.common_options man page.

• Define the global routing application options

For information about the global routing application options, see the
route.global_options man page.

To perform standalone global routing, use the route_global command. By default, global
routing is not timing-driven. For information about enabling timing-driven global routing,
see Timing-Driven Global Routing.

The global router divides a block into global routing cells. By default, the width of a global
routing cell is the same as the height of a standard cell and is aligned with the standard
cell rows.

For each global routing cell, the routing capacity is calculated according to the blockages,
pins, and routing tracks inside the cell. Although the nets are not assigned to the actual

IC Compiler™ II Implementation User Guide
T-2022.03

405

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

wire tracks during global routing, the number of nets assigned to each global routing cell
is noted. The tool calculates the demand for wire tracks in each global routing cell and
reports the overflows, which are the number of wire tracks that are still needed after the
tool assigns nets to the available wire tracks in a global routing cell.

For advanced node designs, via density can be a concern. To enable via density modeling,
set the route.global.via_cut_modeling application option to true. The tool then
calculates the number of vias in each global routing cell and reports via overflows.

Global routing is done in two phases:

• The initial routing phase (phase 0), in which the tool routes the unconnected nets and
calculates the overflow for each global routing cell

• The rerouting phases, in which the tool tries to reduce congestion by ripping up and
rerouting nets around global routing cells with overflows

The tool might perform several rerouting phases. At the end of each rerouting phase,
the tool recalculates the overflows. You should see a reduction in the total number
of global routing cells with overflow and in the total overflow numbers. The global
router stops and exits from the rerouting phase when the congestion is solved or
cannot be solved further or after the maximum number of phases has occurred, as
defined by the -effort_level option. You can force the global router to perform
the maximum number of phases based on the specified effort level by setting the
route.global.force_full_effort application option to true. By default, the tool
uses medium effort and performs a maximum of three rerouting phases. You can
perform up to six rerouting phases by specifying ultra effort.

There are five global routing effort levels: minimum, low, medium, high, and ultra.

◦ Minimum (-effort_level minimum)

The minimum effort level uses two times larger global routing cells relative to
the other effort levels. It also has a much lower congestion cost and runs only
one rerouting phase. It should only be used for prototype routing or for an initial
congestion evaluation, not for detail routing.

◦ Low (-effort_level low)

Low effort runs a maximum of two rerouting phases with very similar congestion
cost. It is faster in comparison to medium effort and has reasonable QoR. If your
block is not very congested, you can use the low effort level.

IC Compiler™ II Implementation User Guide
T-2022.03

406

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

◦ Medium (-effort_level medium)

Medium effort is the default effort level and runs a maximum of three rerouting
phases. Global routing stops after the third phase or when the overflow is resolved,
whichever occurs first.

◦ High (-effort_level high)

High effort runs up to four rerouting phases. If your block is congested, use the high
effort level.

◦ Ultra (-effort_level ultra)

Ultra effort runs up to six rerouting phases. If your block is very congested, use the
ultra effort level.

At the end of global routing, the following information is stored in the design library:

• The g-links and g-vias on each routed net

This information is used for the next routing steps. After Zroute performs track
assignment and detail routing, it removes these g-links and g-vias from the design
library.

• The congestion data

This information is used to generate a congestion map. By default, only the hard
congestion data is saved in the design library. To also save the soft congestion data,
set the route.global.export_soft_congestion_maps application option to true
before performing global routing. The soft congestion data includes demand from soft
nondefault spacing rules, as well as tool-generated soft rules.

The global router reports block statistics and congestion data after the initial routing phase
and after each rerouting phase. When global routing is complete, the global router reports
a summary of the wire length and via count.

Example 17 shows a global routing report. In the congestion report, the Overflow value
is the total number of wires in the block that do not have a corresponding track available.
The Max value corresponds to the highest number of overutilized wires in a single global
routing cell. The GRCs value is the total number of overcongested global routing cells in
the block.

Example 17 Global Routing Report
Start Global Route ...
...
Design statistics:
Design Bounding Box (0.00,0.00,3180.00,1154.00)
Number of routing layers = 10
layer M1, dir Hor, min width = 0.05, min space = 0.05 pitch = 0.15
layer M2, dir Ver, min width = 0.06, min space = 0.06 pitch = 0.15

IC Compiler™ II Implementation User Guide
T-2022.03

407

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

...
Net statistics:
Total number of nets = 255165
Number of nets to route = 248716
Number of single or zero port nets = 1721
4728 nets are fully connected,
 of which 4728 are detail routed and 0 are global routed.
1648 nets have non-default rule clock_spacing
...
phase3. Routing result:
phase3. Both Dirs: Overflow = 3320 Max = 3 GRCs = 4405 (0.08%)
phase3. H routing: Overflow = 1759 Max = 2 (GRCs = 1) GRCs = 2756 (0.10%)
phase3. V routing: Overflow = 1560 Max = 3 (GRCs = 20) GRCs = 1649 (0.06%)
phase3. M1 Overflow = 1475 Max = 2 (GRCs = 1) GRCs = 2426 (0.09%)
phase3. M2 Overflow = 1265 Max = 3 (GRCs = 20) GRCs = 1343 (0.05%)
...
Overflow over macro areas

phase3. Both Dirs: Overflow = 293 Max = 2 GRCs = 300 (0.04%)
phase3. H routing: Overflow = 133 Max = 1 (GRCs = 129) GRCs = 139 (0.03%)
phase3. V routing: Overflow = 160 Max = 2 (GRCs = 2) GRCs = 161 (0.04%)
phase3. M1 Overflow = 0 Max = 0 (GRCs = 0) GRCs = 0 (0.00%)
phase3. M2 Overflow = 0 Max = 0 (GRCs = 0) GRCs = 0 (0.00%)
...
Density distribution:
Layer 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 > 1.
2
M1 86.6 10.5 0.37 1.46 0.02 0.44 0.18 0.14 0.07 0.03 0.10 0.00 0.00 0.02
M2 68.2 14.4 7.71 4.54 2.07 1.55 0.66 0.28 0.13 0.03 0.33 0.00 0.00 0.02
...
phase3. Total Wire Length = 21154552.81
phase3. Layer M1 wire length = 947324.93
phase3. Layer M2 wire length = 3959478.25
...
phase3. Total Number of Contacts = 2530044
phase3. Via VIA12SQ_C count = 1050582
phase3. Via VIA23SQ_C count = 856311
...
phase3. completed.

Before proceeding to detail routing, display the congestion map in the GUI and check the
overflow distribution. The congestion report and map help you to identify congested areas.
For more information about the congestion report, see Generating a Congestion Report.
For more information about the congestion map, see Generating a Congestion Map.

Global Routing During Design Planning
During design planning you can perform exploration-mode global routing by using the
-floorplan true option with the route_global command.

icc2_shell> route_global -floorplan true
If you are using the hierarchical flow, enable virtual-flat global routing by using
the -virtual_flat option with the route_global command. When you set the
-virtual_flat option to all_routing, Zroute routes all the nets in the block and
preserves the hierarchy and pin constraints. You can increase the virtual-flat global routing
speed by routing only the top-level nets. To do this, set the -virtual_flat option to

IC Compiler™ II Implementation User Guide
T-2022.03

408

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

top_and_interface_routing_only. When the -virtual_flat option is set to off,
which is the default, Zroute ignores the physical hierarchy and routes the block as flat.

icc2_shell> route_global -floorplan true -virtual_flat all_routing

Timing-Driven Global Routing
By default, the route_global command is not timing-driven. To enable timing-driven
global routing, set the route.global.timing_driven application option before you
run the route_global command. During timing-driven global routing, the global router
considers the impact of layer resistance by minimizing the usage of pin access layers,
even if this increases wire length.

By default, when you enable timing-driven global routing, the tool

1. Calculates the net delays of the block

If the design library contains global route information, the tool uses the global route
information to calculate the net delays; otherwise, it uses virtual routing to calculate the
net delays.

The global routing results can vary depending on whether the initial net delays were
calculated by using global route information or virtual routing. To remove existing
global route information from the signal nets in the block, use the -global_route and
-net_types signal options with the remove_routes command, as shown in the
following example:

icc2_shell> remove_routes -global_route -net_types signal
2. Performs an initial routing phase (phase 0), in which the tool routes the unconnected

nets and calculates the overflow for each global routing cell

3. Performs two rerouting phases, in which the tool tries to reduce congestion by ripping
up and rerouting nets around global routing cells with overflows

4. Updates the design timing based on the first three global routing phases

5. Identifies newly critical nets based on the timing update

6. Performs three rerouting phases, in which the tool rips up and reroutes the newly
critical nets

To increase the number of rerouting phases after the timing update, set the global routing
effort level to high or ultra by using the -effort_level option with the route_global
command.

IC Compiler™ II Implementation User Guide
T-2022.03

409

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

To reduce runtime, at a possible cost to the timing QoR, set the
route.global.advance_node_timing_driven_effort application option.

• When you set this application option to medium, the tool rips up and reroutes the newly
critical nets only if doing so does not increase congestion. In addition, the number of
rerouting phases is reduced for medium-, high-, and ultra-effort global routing.

• When you set this application option to low, the tool does not perform the timing
update and the number of rerouting phases is reduced for medium, high-, and ultra-
effort global routing.

The following table summarizes the timing-driven global routing behavior based on the
effort level settings. The shaded cell shows the default behavior.

Table 25 Number of Rerouting Phases Based on the Effort Level Settings

route.global.advance_node_timing_driven_effort settingroute_global -effort_level setting

low medium high (default)

low 2 2 2

medium (default) 3 33,4 53,5

high 4 43,4 63,4

ultra 6 63,4 83,4

To control the tradeoff between timing QoR and DRC convergence, set the
route.global.timing_driven_effort_level application option. By default, this option
has a setting of high, which favors timing QoR over DRC convergence.

Crosstalk-Driven Global Routing
By default, the route_global command is not crosstalk-driven. To enable
crosstalk-driven global routing, set the route.global.crosstalk_driven and
time.si_enable_analysis application options to true before you run the route_global
command.

When you enable crosstalk-driven global routing, the tool calculates the net delays before
invoking the global router. If the design library contains global route information, the tool
uses the global route information to calculate the net delays; otherwise, it uses virtual
routing to calculate the net delays. The global routing results can vary depending on
whether the initial net delays were calculated by using global route information or virtual
routing. To remove existing global route information from the signal nets in the block, use

3. Timing update performed after the second rerouting phase.
4. Newly critical nets are ripped up and rerouted only if it does not increase congestion.
5. Newly critical nets are always ripped up and rerouted.

IC Compiler™ II Implementation User Guide
T-2022.03

410

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

the -global_route and -net_types signal options with the remove_routes command,
as shown in the following example:

icc2_shell> remove_routes -global_route -net_types signal

Incremental Global Routing
By default, the global router ignores existing global routes. To perform incremental global
routing by reusing the existing global routes, use the -reuse_existing_global_route
true option when you run global routing. Note that this option affects only the global router
and not the net delay calculation that occurs before timing-driven or crosstalk-driven global
routing.

Track Assignment
Before you run track assignment,

• Define the common routing application options

For information about the common routing application options, see the
route.common_options man page.

• Define the global routing application options

For information about the track assignment application options, see the
route.track_options man page.

• Complete global routing

To perform standalone track assignment, run the route_track command.

The main task of track assignment is to assign routing tracks for each global route. During
track assignment, Zroute performs the following tasks:

• Assigns tracks in horizontal partitions.

• Assigns tracks in vertical partitions.

• Reroutes overlapping wires.

After track assignment finishes, all nets are routed but not very carefully. There are many
violations, particularly where the routing connects to pins. Detail routing works to correct
those violations.

Note:
Because track assignment replaces the global routes with actual metal shapes,
the block no longer contains global routes after track assignment completes.

IC Compiler™ II Implementation User Guide
T-2022.03

411

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

By default, the route_track command is not timing-driven or crosstalk-driven.

• To enable timing-driven mode, set the route.track.timing_driven application
option.

• To enable crosstalk-driven mode, set the route.track.crosstalk_driven and
time.si_enable_analysis application options to true.

At the end of track assignment, Zroute reports a summary of the wire length and via count.
Example 18 shows a track assignment report.

Example 18 Track Assignment Report
Wire length and via report:

Number of M1 wires: 215327 : 0
Number of M2 wires: 1124740 VIA12SQ_C: 1067462
...
Total number of wires: 2508734 vias: 2769482

Total M1 wire length: 924480.9
Total M2 wire length: 4147032.0
...
Total wire length: 21281278.0

Longest M1 wire length: 1541.7
Longest M2 wire length: 926.0
...

Detail Routing
Before you run detail routing,

• Define the common routing application options

For information about the common routing application options, see the
route.common_options man page.

• Define the detail routing application options

For information about the detail routing application options, see the
route.detail_options man page.

• Complete global routing and track assignment

The detail router uses the general pathways suggested by global routing and track
assignment to route the nets, and then it divides the block into partitions and looks for
DRC violations in each partition. When the detail router finds a violation, it rips up the wire
and reroutes it to fix the violation. During detail routing, Zroute concurrently addresses
routing design rules and antenna rules and optimizes via count and wire length. For more
information about antenna rules, see Finding and Fixing Antenna Violations.

IC Compiler™ II Implementation User Guide
T-2022.03

412

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

To perform standalone detail routing, run the route_detail command.

By default, the route_detail command

• Performs detail routing on the whole block

You can restrict the routing to a specific area of the block by using the -coordinates
option (or by specifying or selecting the bounding box in the GUI).

• Uses one uniform partition for the first iteration and adjusts the partitioning for
subsequent iterations

Zroute uses the single uniform partition for the first iteration to generate all DRC
violations for the chip at the same time. At the beginning of each subsequent iteration,
the router checks the distribution of the DRC violations. If the DRC violations are
evenly distributed, the detail router uses a uniform partition. If the DRC violations are
located in some local areas, the detail router uses nonuniform partitions.

In some cases, such as when a design contains standard cells with long pins, you can
improve the detail routing QoR and reduce the runtime by increasing the partition size.
To enable this feature, set the route.detail.optimize_partition_size_for_drc
application option to true.

• Performs iterations until one of the following conditions exists:

◦ All of the violations have been fixed

◦ The maximum number of iterations has been reached

By default, the maximum number of iterations is 40. You can change this limit by
setting the -max_number_iterations option.

icc2_shell> route_detail -max_number_iterations 20
◦ It cannot fix any of the remaining violations

You can change the effort that the detail router uses for fixing
the remaining violations before it gives up by setting the
route.detail.drc_convergence_effort_level application option.

icc2_shell> set_app_options \
 -name route.detail.drc_convergence_effort_level -value high
You can force the detail router to complete the maximum number of
iterations, regardless of the DRC convergence status, by setting the
route.detail.force_max_number_iterations application option to true.

icc2_shell> set_app_options \
 -name route.detail.force_max_number_iterations -value true

IC Compiler™ II Implementation User Guide
T-2022.03

413

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

• Is not timing-driven

To enable timing-driven detail routing, set the route.detail.timing_driven
application option to true.

icc2_shell> set_app_options \
 -name route.detail.timing_driven -value true
By default, when you enable timing-driving detail routing, Zroute uses medium effort to
assign timing-critical nets to low-resistance metal layers. To change the extent to which
timing-driven detail routing prefers lower-resistance metal layers when routing timing-
critical nets, set the route.common.rc_driven_setup_effort_level application
option. To increase the effort level to use more low-resistance metal layers for routing,
set the option to high. To reduce the effort level, set the option to low. To disable
resistance-based routing layer preferences, set the option to off.

• Does not fix shorted nets over macro cells

If default detail routing leaves shorted nets over macro cells, analyze the block to
determine if the shorts are caused by the availability of only a single layer for routing
over the macro cells. If so, use routing guides to encourage river routing over the
macros with shorted nets and rerun detail routing. For details, see Using Routing
Guides to Encourage River Routing.

If shorted nets remain after using river routing, enable the fixing of shorted nets over
macro cells by automatically ripping up and rerouting the shorted nets by setting the
route.detail.repair_shorts_over_macros_effort_level application option to
low, medium, or high and running incremental detail routing. The higher the effort level,
the more ECO routing iterations are performed, which can reduce the number of DRC
violations at the expense of runtime.

icc2_shell> set_app_options \
 -name route.detail.repair_shorts_over_macros_effort_level \
 -value high

• Does not fix soft DRC violations, such as bridge rule violations

To enable the fixing of soft DRC violations after the final detail routing iteration, set the
route.common.post_detail_route_fix_soft_violations application option to
true.

icc2_shell> set_app_options \
 -name route.common.post_detail_route_fix_soft_violations \
 -value true

You can run additional detail routing iterations on a routed block by running incremental
detail routing (the -incremental option). Be sure to use the -incremental option;
otherwise, Zroute restarts at iteration 0 with a fixed-size partition.

icc2_shell> route_detail -incremental true

IC Compiler™ II Implementation User Guide
T-2022.03

414

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

By default, incremental detail routing does not fix soft DRC violations,
such as bridge rule violations. To enable the fixing of soft DRC
violations after the final incremental detail routing iteration, set the
route.common.post_incremental_detail_route_fix_soft_violations application
option to true.

icc2_shell> set_app_options \
 -name route.common.post_incremental_detail_route_fix_soft_violations \
 -value true
Note:

Incremental detail routing does not fix open nets. To fix open nets, you must run
ECO routing. For information about ECO routing, see Performing ECO Routing.

If you want to view the DRC violations before postroute optimization, you
can save the block after a specified number of iterations by setting the
route.detail.save_after_iterations application option. The saved block is called
DR_itrn, where n is the specified iteration. You can use a string other than DR as the prefix
by setting the route.detail.save_cell_prefix application option.

Zroute generates a DRC violations summary at the end of each iteration. After completing
detail routing, Zroute outputs a final summary report. This report includes all violations
detected by Zroute, as well as information about the redundant via conversion rates. If you
want an additional report that excludes violations that are not of interest to you, specify
the rules to exclude by setting the route.detail.report_ignore_drc application option.
The syntax to set this option is

set_app_options -name route.detail.report_ignore_drc -value list_of_drcs

The values used in the list_of_drcs argument are the DRC names used in the summary
report. If the DRC name includes a space, you must enclose the name in double quotation
marks. For a complete list of the supported DRC names, see the man page.

Example 19 shows a detail routing report.

Example 19 Detail Routing Report
Start DR iteration 0: uniform partition
Routed 1/27405 Partitions, Violations = 0
Routed 137/27405 Partitions, Violations = 264
…

DR finished with 7398 violations

DRC-SUMMARY:
 @@@@@@@ TOTAL VIOLATIONS = 7398
 Diff net spacing : 194
 Same net spacing : 4
 Diff net via-cut spacing : 2328
 Same net via-cut spacing : 1
 Less than minimum width : 5
 Less than minimum area : 36

IC Compiler™ II Implementation User Guide
T-2022.03

415

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

 Short : 87
 End of line enclosure : 4742
 Less than NDR width : 1

Total Wire Length = 23928849 micron
Total Number of Contacts = 2932706
Total Number of Wires = 2878293
Total Number of PtConns = 88536
Total Number of Routed Wires = 2878293
Total Routed Wire Length = 23920011 micron
Total Number of Routed Contacts = 2932706
 Layer M1 : 962827 micron
 Layer M2 : 4233755 micron
…
 Via VIA78SQ_C : 1742
 Via VIA78SQ_C(rot) : 9
…

Redundant via conversion report:

 Total optimized via conversion rate = 98.96% (2902130 / 2932706 vias)

 Layer VIA1 = 97.81% (1091973/ 1116367 vias)
 Weight 1 = 97.81% (1091973 vias)
 Un-optimized = 2.19% (24394 vias)
…

 Total double via conversion rate = 98.96% (2902130 / 2932706 vias)

 Layer VIA1 = 97.81% (1091973/ 1116367 vias)
 Layer VIA2 = 99.97% (1071650/ 1071978 vias)
…

 The optimized via conversion rate based on total routed via count =
98.96% (2902130 / 2932706 vias)

 Layer VIA1 = 97.81% (1091973/ 1116367 vias)
 Weight 1 = 97.81% (1091973 vias)
 Un-optimized = 2.19% (24394 vias)
…

Total number of nets = 255165
0 open nets, of which 0 are frozen
Total number of excluded ports = 0 ports of 0 unplaced cells connected to 0 ne
ts
 0 ports without pins of 0 cells connected to
 0 nets
 0 ports of 0 cover cells connected to 0 non-p
g nets
Total number of DRCs = 7398
Total number of antenna violations = antenna checking not active
Information: Routes in non-preferred voltage areas = 8170 (ZRT-559)

Topology ECO iteration 1 ended with 0 qualifying violations.

IC Compiler™ II Implementation User Guide
T-2022.03

416

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Signal Nets

Feedback

Routing Signal Nets by Using Automatic Routing
Before you run automatic routing,

• Set the common routing application options

For information about the common routing application options, see the
route.common_options man page.

• Set the global routing application options

For information about the detail routing application options, see the
route.global_options man page.

• Set the track assignment application options

For information about the detail routing application options, see the
route.track_options man page.

• Set the detail routing application options

For information about the detail routing application options, see the
route.detail_options man page.

To run automatic routing, use the route_auto command. By default, the route_auto
command ignores existing global routes and sequentially invokes global routing, track
assignment, and detail routing. The tool does not save the block between routing steps.
Use the following options to change the default behavior:

• To perform incremental global routing, use the -reuse_existing_global_route true
option.

• To stop after track assignment, use the -stop_after_track_assignment true
option.

• To change the number of search and repair iterations during detail routing from the
default of 40, use the -max_detail_route_iterations option.

• To save the block after each routing step, set the -save_after_global_route,
-save_after_track_assignment, and -save_after_detail_route options to true.

The tool uses auto as the default prefix for the saved block names. To specify the
prefix, use the -save_cell_prefix option.

IC Compiler™ II Implementation User Guide
T-2022.03

417

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

By default, the route_auto command is not timing-driven or crosstalk-driven and does not
fix soft DRC violations, such as bridge rule violations.

• To enable timing-driven mode, set the route.global.timing_driven,
route.track.timing_driven, and route.detail.timing_driven application
options to true.

By default, when you enable timing-driving routing, Zroute uses medium effort to
assign timing-critical nets to low-resistance metal layers. To change the extent to which
timing-driven routing prefers lower-resistance metal layers when routing timing-critical
nets, set the route.common.rc_driven_setup_effort_level application option. To
increase the effort level to use more low-resistance metal layers for routing, set the
option to high. To reduce the effort level, set the option to low. To disable resistance-
based routing layer preferences, set the option to off.

• To enable crosstalk-driven mode, set the route.global.crosstalk_driven,
route.track.crosstalk_driven, and time.si_enable_analysis application
options to true.

• To enable the fixing of soft DRC violations after the final detail routing iteration, set the
route.common.post_detail_route_fix_soft_violations application option to
true.

icc2_shell> set_app_options \
 -name route.common.post_detail_route_fix_soft_violations \
 -value true

Shielding Nets
Zroute shields routed nets net shieldingshielding nets by generating shielding wires that are based on the shielding
widths and spacing defined in the shielding rules. In addition to shielding nets on the same
layer, you also have the option to shield one layer above and one layer below. Shielding
above or below the layer is called coaxial shielding. Figure 76 shows an example of
coaxial shielding. Coaxial shielding provides even better signal isolation than same-layer
shielding, but it uses more routing resources.

IC Compiler™ II Implementation User Guide
T-2022.03

418

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

Figure 76 Coaxial Shielding

You can perform shielding either before or after signal routing. Shielding before signal
routing, which is referred to as preroute shielding, provides better shielding coverage but
can result in congestion issues during signal routing. Preroute shielding is typically used
to shield critical clock nets. Shielding after signal routing, which is referred to as postroute
shielding, has a very minimal impact on routability, but provides less protection to the
shielded nets.

IC Compiler™ II Implementation User Guide
T-2022.03

419

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

Figure 77 shows the Zroute shielding flow, which is described in the topics that follow.

Figure 77 Zroute Shielding Flow

Defining the Shielding Rules
Before you perform shielding, you must

1. Define the shielding rules.

To define shielding rules, use the -shield_spacings and -shield_widths options
of the create_routing_rule command. For example, to specify a shielding rule
that uses spacing of 0.1 microns and width of 0.1 microns for metal1 through metal5
and spacing of 0.3 microns and width of 0.3 microns for metal6, use the following
command:

icc2_shell> create_routing_rule shield_rule \
 -shield_widths {M1 0.1 M2 0.1 M3 0.1 M4 0.1 M5 0.1 M6 0.3} \
 -shield_spacings {M1 0.1 M2 0.1 M3 0.1 M4 0.1 M5 0.1 M6 0.3}
For more information about the create_routing_rule command, see Using
Nondefault Routing Rules.

IC Compiler™ II Implementation User Guide
T-2022.03

420

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

2. Assign shielding rules to the nets to be shielded.

To avoid congestion issues and achieve the best balance of DRC convergence and
timing closure, you should apply shielding rules only to high-frequency or critical clock
nets and apply double-spacing rules to the lower-frequency clock nets.

• To assign shielding rules to clock nets, use the set_clock_routing_rules
command.

Note:
You can use the set_clock_routing_rules command only before clock
tree synthesis.

• To assign shielding rules to signal nets, use the set_routing_rule command.

For more information about these commands, see Assigning Nondefault Routing Rules
to Nets.

Performing Preroute Shielding
To provide the most protection for critical clock nets, perform shielding on those nets after
clock tree routing but before signal net routing.

To add shielding to the routed clock nets based on the assigned shielding rules, use the create_zrt_shield

commandcommandscreate_zrt_shieldcreate_shields command.

By default, the create_shields command

• Performs shielding on all nets that have predefined shielding rules, except those
marked as frozen

To explicitly specify the nets on which to perform shielding, use the -nets option.

• Does not perform shielding on wires that are less than four pitches long

To specify the minimum wire length in microns on which to perform shielding for each
layer, set the route.common.min_shield_length_by_layer_name application option.
Use the following syntax to set this option:

{ {layer wire_length} ... }

Specify the routing layers by using the layer names from the technology file. If you do
not specify a value for a layer, Zroute uses the default minimum length of four pitch
lengths for that layer.

Note:
Wires that are less than the minimum length are not considered when
computing the shielding ratio.

IC Compiler™ II Implementation User Guide
T-2022.03

421

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

• Ties the shielding wires to the ground net

If the block contains multiple ground nets or you want to tie the shielding wires to the
power net, use the -with_ground option to specify the power or ground net to which to
tie the shielding wires.

If the shielding wires can be tied to multiple power or ground nets, specify the nets
by setting the route.common.shielding_nets application option before running the
create_shields command.

Note:
If you specify both the create_shields -with_ground option and the
route.common.shielding_nets option, the tool issues a warning message
and uses the route.common.shielding_nets setting.

• Performs same-layer shielding

To perform coaxial shielding, use the -coaxial_above and -coaxial_below options.
By default, the create_shields command leaves one routing track open between
each used track. To change the default behavior, use one of the following methods:

◦ Specify the number of open tracks between coaxial shielding segments by using the
following options:

▪ -coaxial_above_skip_tracks
This option specifies the number of open tracks between used tracks for coaxial
shielding above the shielded net segment layer (-coaxial_above true).

▪ -coaxial_below_skip_tracks
This option specifies the number of open tracks between used tracks for coaxial
shielding below the shielded net segment layer (-coaxial_below true).

For either of these options, you can specify an integer between zero and seven.

◦ Specify the number of open tracks between coaxial shielding segments on a per-
layer basis by using the -coaxial_skip_tracks_on_layers option

To disable shielding on a specific layer, set the value to -1; otherwise, specify an
integer between 0 and 7 to specify the number of tracks to skip.

◦ Specify the spacing between coaxial shielding segments by using the following
options:

▪ -coaxial_above_user_spacing
This option specifies the spacing in microns between shielding segments for
coaxial shielding above the shielded net segment layer (-coaxial_above
true).

IC Compiler™ II Implementation User Guide
T-2022.03

422

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

▪ -coaxial_below_user_spacing
This option specifies the spacing in microns between shielding segments for
coaxial shielding below the shielded net segment layer (-coaxial_below
true).

You cannot use this method when performing incremental shielding.

Note:
You cannot mix these methods of specifying coaxial shielding.

If the generated coaxial shielding wires violate minimum area or minimum length rules,
Zroute automatically patches the wires to satisfy these design rules.

• Connects the shielding wires to the standard-cell power or ground pins and the
standard-cell rails

To prevent connections to the standard-cell power and ground pins, set the
-ignore_shielding_net_pins option to true. To prevent connections to the
standard-cell rails, set the -ignore_shielding_net_rails option to true.

• Creates the shielding wires such that they surround the shielded routing shape

To trim the shielding wires so that they align with the shielded routing shape ends, set
the -align_to_shape_end option to true. To force Zroute to create shielding wires
only in the preferred direction, set the -preferred_direction_only option to true.
Note that the -preferred_direction_only option does not honor route guides to
change the preferred routing direction. When you set either of these options to true,
extra effort is required to connect the shielding wires to the power and ground network
and any shielding wires that are not connected to the power and ground network are
deleted.

For example, to perform coaxial shielding below the shielded net segment layer on the
clock nets, prevent signal routing below the shielded net segment layer, and tie the
shielding wires to VSS, use the following command:

icc2_shell> create_shields -nets $clock_nets \
 -coaxial_below true -coaxial_below_skip_tracks 0 \
 -with_ground VSS
When you run the create_shields command, it reports both the net-based and length-
based average shielding ratios, as shown in the following example:

Shielded 82% side-wall of (reset)
Shielded 96% side-wall of (clk)
Shielded 2 nets with average ratio as follows.
 1) 89.00% (total shield ratio/number of shielded nets)
 2) 87.92% (total shield length/total shielded net length)

IC Compiler™ II Implementation User Guide
T-2022.03

423

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

Note:
In some cases there is a slight difference in the shielding ratios reported by
the create_shields and report_shields commands. This is due to graph
connectivity differences between the two commands. When the reported
values differ, use the values reported by the report_shields command. The
difference in reported values is typically less than three percent, but can be up
to five percent.

If you use the -preferred_direction_only true option when running the
create_shields command, but Zroute must use some nonpreferred direction wires for
shielding, the shielding ratio report specifies the percentage of nonpreferred direction
wires.

By default, the power and ground structure is not included in the shielding ratio calculation.
To include the power and ground structure within a threshold distance in the shielding ratio
calculation, set the route.common.pg_shield_distance_threshold application option,
which specifies the distance threshold in microns.

icc2_shell> set_app_options \
 -name route.common.pg_shield_distance_threshold -value distance
Note that this option affects only the shielding ratio calculation and does not change the
routing behavior.

Soft Shielding Rules During Signal Routing
Zroute considers shielding rules as soft rules during signal routing. If a net has a shielding
rule and is not shielded before signal routing, by default, Zroute reserves shielding space
during the whole routing process: global routing, track assignment, and detail routing. At
the end of detail routing, it reports the shielding space violations and the locations where
shielding wires cannot be established. The following log file example shows shielding soft
spacing violations, which are highlighted in bold text:

DRC-SUMMARY:
          @@@@@@@ TOTAL VIOLATIONS = 13
          Diff net var rule spacing : 2
          Same net spacing : 2
          Less than minimum area : 4
          Short : 1
          Soft spacing (shielding) : 2
Signal routing only reserves space for the shielding; it does not actually insert it. You
must run create_shields after signal routing to physically place the shielding wires. The
reported soft rule violations help you to understand the shielding rate. Note that the router
reserves space only for same-layer shielding and not for coaxial shielding; therefore,
postroute coaxial shielding can produce a very low shielding rate.

IC Compiler™ II Implementation User Guide
T-2022.03

424

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

If you want to use power and ground nets for shielding, and do not want Zroute to
reserve space for the shielding when power and grounds nets are available, set the
route.common.allow_pg_as_shield application option to true before running signal
routing.

Performing Postroute Shielding
To perform postroute shielding, you use the same command, create_shields, that is
used for preroute shielding.

If you want to use the default spacings and widths from the technology file for postroute
shielding, you do not need to define and assign nondefault routing rules. If you specify
the nets to be shielded by using the -nets option, the create_shields command shields
these nets with the default spacing and widths.

Postroute shielding should introduce few to no DRC violations. If DRC violations
are created during shielding, the create_shields command triggers five detail
routing iterations to fix them. If this does not fix the DRC violations, you can fix the
remaining violations by running incremental detail routing with the route_detail
-incremental true command. It is possible that postroute shielding might break some
tie-off connections during the shield trimming process. In this case, use the route_eco
command instead of the route_detail command to rebuild the tie-off connections and to
fix the DRC violations.

Shielding Example
Example 20 provides an example of shielding clock nets using preroute shielding and
shielding critical nets using postroute shielding.

Example 20 Shielding Flow Example
Define shielding rule
create_routing_rule shield_rule \
 -shield_widths {M1 0.1 M2 0.1 M3 0.1 M4 0.1 M5 0.1 M6 0.3} \
 -shield_spacings {M1 0.1 M2 0.1 M3 0.1 M4 0.1 M5 0.1 M6 0.3}

Assign shielding rule to clock nets
set_clock_routing_rules -clocks CLK \
 -rules shield_rule

Perform clock tree synthesis
synthesize_clock_trees

Route the clock nets, reusing the global routing result
route_group -all_clock_nets -reuse_existing_global_route true

Perform preroute shielding for the clock nets
create_shields -nets $clock_nets -with_ground VSS

IC Compiler™ II Implementation User Guide
T-2022.03

425

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

Assign shielding rule to critical nets
set_routing_rule -rule shield_rule $critical_nets

Route signal nets using shielding soft rules
route_auto

Perform postroute shielding for critical nets
create_shields -nets $critical_nets -with_ground VSS

Performing Incremental Shielding
By default, Zroute does not perform incremental shielding on nets that are modified
after they were shielded. However, you can enable this capability for nets that
were initially shielded with the create_shields command by changing the
route.common.reshield_modified_nets application option from its default of off.

When you enable incremental shielding, Zroute performs incremental shielding during
detail routing by removing the existing shielding from the modified nets and optionally
reshielding these nets based on the new topology.

• To remove the existing shielding only, set the
route.common.reshield_modified_nets option to unshield.

• To remove the existing shielding and reshield the modified nets, set the
route.common.reshield_modified_nets option to reshield.

Note:
Zroute automatically detects the nets modified within the IC Compiler II tool;
however, nets modified externally and input by reading a DEF file are not
supported by incremental shielding.

Reporting Shielding Information
After you run the create_shields command, you can

• Query the shield shapes associated with a shielded net by using the get_shapes
-shield_only command, as described in Querying Shield Shapes

• Report the shielding statistics by using the report_shields command, as described in
Reporting Shielding Statistics

Querying Shield Shapes
To query the shield shapes associated with a shielded net, use the get_shapes command
with the -shield_only option, as shown in the following example:

icc2_shell> get_shapes -shield_only -of_objects [get_nets myclk]
{PATH_19_4317 PATH_19_4318 PATH_19_4319 PATH_19_4320 PATH_19_4322

IC Compiler™ II Implementation User Guide
T-2022.03

426

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Shielding Nets

Feedback

PATH_17_11590 PATH_17_11591 PATH_17_11592 PATH_17_11593 PATH_17_11594
PATH_17_11595 PATH_17_11596 PATH_17_11597 PATH_17_11599 PATH_17_11600
PATH_17_11601 PATH_17_11602 PATH_17_11604 PATH_17_11605 PATH_17_11606
PATH_17_11607 PATH_17_11608 PATH_17_11609 PATH_17_11610 PATH_17_11611
PATH_17_11612 PATH_17_11613 PATH_17_11614 PATH_17_11615 PATH_17_11616
PATH_17_11617 PATH_17_11618 PATH_17_11619 PATH_17_11620 PATH_17_11621
PATH_17_11622 PATH_17_11623 PATH_17_11624 PATH_17_11625 PATH_17_11626}

Reporting Shielding Statistics
To report the shielding statistics, use the report_shields command.

Note:
In some cases there is a slight difference in the shielding ratios reported by
the create_shields and report_shields commands. This is due to graph
connectivity differences between the two commands. When the reported
values differ, use the values reported by the report_shields command. The
difference in reported values is typically less than three percent, but can be up
to five percent.

By default, the power and ground structure is not included in the shielding ratio calculation.
To include the power and ground structure within a threshold distance in the shielding ratio
calculation, set the route.common.pg_shield_distance_threshold application option,
which specifies the distance threshold in microns.

icc2_shell> set_app_options \
 -name route.common.pg_shield_distance_threshold -value distance
The default report generated by the report_shields command provides overall statistics,
as shown in Reporting Shielding Statistics.

Example 21 Default Shielding Report
icc2_shell> report_shields
...
Shielded 82% side-wall of (reset)
Shielded 96% side-wall of (clk)
Shielded 2 nets with average ratio as follows.
 1) 89.00% (total shield ratio/number of shielded nets)
 2) 87.92% (total shield length/total shielded net length)

You can output the statistics for each layer by using the -per_layer true option with the
report_shields command, as shown in Example 22.

Example 22 Layer-Based Shielding Report
icc2_shell> report_shields -per_layer true
...
Shielded 82% side-wall of (reset)
 Layer: M1 ratio: 0%
 Layer: M2 ratio: 40%

IC Compiler™ II Implementation User Guide
T-2022.03

427

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Performing Postroute Optimization

Feedback

 Layer: M3 ratio: 85%
 Layer: M4 ratio: 80%
Shielded 96% side-wall of (clk)
 Layer: M3 ratio: 0%
 Layer: M4 ratio: 96%
 Layer: M5 ratio: 100%
Shielded 2 nets with average ratio as follows.
 1) 89.00% (total shield ratio/number of shielded nets)
 2) 87.92% (total shield length/total shielded net length)

Performing Shielding Checks
During routing, Zroute can detect possible issues with shielding by checking for the
following conditions:

• Signal net shapes with a shape_use attribute of shield_route.

• PG net shapes, which might be a PG strap or rail, but have a shape_use attribute of
detail_route.

• Signal, clock, or PG nets that have a shielding nondefault rule but no associated shield
shapes, which might be caused by inappropriate shape_use attributes.

To enable these checks, set the route.common.check_shield application option to true.

Performing Postroute Optimization
The IC Compiler II tool can perform two types of postroute optimization:

• Logic optimization

This optimization improves the timing, area, and power QoR and fixes logical
DRC violations and performs legalization and ECO routing. To perform these
optimizations, use the route_opt command, as described in Performing Postroute
Logic Optimization.

• Routability optimization

This optimization increases the spacing between cells to fix routing DRC
violations caused by pin access issues. To perform this optimization, use the
optimize_routability command, as described in Fixing DRC Violations Caused by
Pin Access Issues.

If you run both logic optimization and routability optimization, you should first perform the
logic optimization and then the routability optimization.

IC Compiler™ II Implementation User Guide
T-2022.03

428

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Performing Postroute Optimization

Feedback

Performing Postroute Logic Optimization
Before performing postroute optimization, ensure that the block is fully routed and
legalized and does not have excessive logical or routing DRC violations.

• To verify the legality of the design, use the check_legality command.

• To verify the routing, use the check_routes command.

To perform postroute logic optimization,

1. Update the clock latency by using the compute_clock_latency command.

2. Run the route_opt command two times.

The legalization and ECO routing performed by the first route_opt run might impact
the block timing, which is then optimized by the second route_opt run. As the number
of changes during postroute logic optimization decreases, the timing improvement from
subsequent route_opt runs decreases.

The route_opt command performs the following tasks:

1. Performs extraction and updates the timing

By default, the route_opt command uses the PrimeTime delay calculation engine,
which requires that you use cell libraries generated by O-2018.06 or later versions
of the Library Manager tool. Before using PrimeTime delay calculation, use the
check_consistency_settings command to verify that the IC Compiler II and
PrimeTime settings are consistent, as described in Checking for Consistency in Timing
Analysis and Extraction Settings in the IC Compiler II Timing Analysis User Guide.

The route_opt command supports both graph-based analysis (GBA), the default,
and path-based analysis (PBA). To enable path-based optimization, use the
time.pba_optimization_mode application option.

• To use path-based timing for the worst path of each endpoint, which is identified by
using graph-based analysis, set this application option to path.

This is the recommended setting because it provides the best tradeoff between
runtime and QoR.

• To use exhaustive path-based search algorithms for each endpoint, set this
application option to exhaustive.

Using this setting increases the runtime.

IC Compiler™ II Implementation User Guide
T-2022.03

429

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Performing Postroute Optimization

Feedback

2. Performs the enabled optimizations

By default, the route_opt command optimizes for setup, hold, area, and logical DRC
violations for the data paths in the block. To enable additional optimizations, set the
application options shown in Table 26 before running the route_opt command:

Table 26 Application Options to Enable route_opt Optimizations

Optimization Application option settings

Concurrent clock and data optimization6 and
timing-driven clock logical DRC fixing

route_opt.flow.enable_ccd = true

Clock logical DRC fixing7 route_opt.flow.enable_cto = true

Clock tree area recovery route_opt.flow.enable_clock_power_recovery = area

Clock tree power recovery route_opt.flow.enable_clock_power_recovery = power

Power optimization8 route_opt.flow.enable_power = true

Path-based optimization with machine
learning

route_opt.flow.enable_ml_opto = true
time.pba_optimization_mode = path

Note:
The route_opt command honors only the route_opt application options;
it does not honor the settings of the opt application options, except the
opt.common.allow_physical_feedthrough application option.

3. Legalizes the block

4. Performs ECO routing

By default, the route_opt command performs five detail routing iterations
during the ECO routing phase. To change the number of iterations, use the
route.detail.eco_max_number_of_iterations application option. To perform track
assignment instead, set the route_opt.eco_route.mode application option to track.

6. For information about setting application options to control concurrent clock and data optimization, see Controlling
Concurrent Clock and Data Optimization.

7. This optimization is supported only when concurrent clock and data optimization is not enabled.
8. The type of power optimization performed depends on scenario configuration. Total power optimization is

performed if there is an active scenario with both leakage power and dynamic power enabled. Leakage power
optimization is performed if there is an active scenario with only leakage power enabled.

IC Compiler™ II Implementation User Guide
T-2022.03

430

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Performing Postroute Optimization

Feedback

If the PrimeTime tool reports setup or hold violations during signoff timing analysis, you
can use the following process to fix these violations:

1. Specify the target endpoints and their PrimeTime timing information by using the
set_route_opt_target_endpoints command with the -setup_timing and
-hold_timing options.

2. Optimize the endpoints by using the route_opt command.

3. Remove the adjusted timing information by using the
set_route_opt_target_endpoints -reset command.

You can also use this process to perform incremental optimization on specific endpoints. In
this case, use the -setup_endpoints, -hold_endpoints, and -ldrc_objects options to
specify the endpoints.

To close the final setup, hold, or logical DRC violations with minimal disturbance to the
block, use size-only mode when you run the route_opt command. To enable size-
only mode, set the route_opt.flow.size_only_mode application option to one of the
following values:

• true_footprint, which allows resizing a cell only to a library cell that is an exact
physical match, as determined by the tool after analysis

This ensures that legalization or ECO routing is not required after resizing

• footprint, which allows resizing a cell only to a library cell that has the same
footprint attribute in the library

• equal, which allows resizing a cell only to a library cell that is equal in size

• equal_or_smaller, which allows resizing a cell only to a library cell that is equal or
smaller in size

To disable size-only mode, set the route_opt.flow.size_only_mode application option
to none or "", which is the default.

Performing Postroute Optimization Using the hyper_route_opt
Command
The recommended flow for performing postroute logic optimization consists of multiple
iterations of the route_opt command with different settings. However, you can reduce
the number of postroute optimization iterations by using a single iteration of the
hyper_route_opt command.

IC Compiler™ II Implementation User Guide
T-2022.03

431

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Performing Postroute Optimization

Feedback

The postroute optimization flow using the hyper_route_opt command consists of the
following steps:

1. Enable different settings for postroute optimization using the same settings as for the
route_opt command.

For example, you can

• Specify the path-based analysis (PBA) mode by using the
time.pba_optimization_mode application option

• Enable concurrent clock and data optimization by using the
route_opt.flow.enable_ccd application option

• Enable power optimization by using the route_opt.flow.enable_power
application option

2. (Optional) Specify settings for metal fill insertion, PG augmentation, and so
on that should to be performed during the different stages of optimization
and ECO routing within the hyper_route_opt command by using the
snps_hyper_route_opt_post_eco Tcl-callback procedure.

3. Run postroute optimization using the hyper_route_opt command.

4. (Optional) Specify endpoints to target by using the
set_route_opt_target_endpoints command and optimize these endpoints by
using the route_opt command if there are any violating endpoints remaining after the
hyper_route_opt command.

5. (Optional) Fix any remaining route DRC violations by using the route_detail
-incremental command.

Fixing DRC Violations Caused by Pin Access Issues
In advanced process nodes, the distance between pins decreases, which can result in
DRC violations caused by pin access issues. These types of DRC violations can be fixed
by using keepout margins to increase the spacing between cells.

If your postroute design has DRC violations, analyze the violations to determine if they are
caused by pin access issues. If so, run the optimize_routability command to increase
the spacing between cells where the DRC violations occur.

IC Compiler™ II Implementation User Guide
T-2022.03

432

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing and Fixing Signal Electromigration Violations

Feedback

The optimize_routability command performs the following tasks:

• Analyzes the cells with DRC violations to find violations where cells abut

By default, the command considers all DRC violations. To consider only specific DRC
violations, use the -drc_rules option. To consider only violations on specific layers,
use the -layer_rules option.

To preview the number of DRC violations and affected cells, use the
-check_drc_rules option. When you use this option, the command generates a report
but does not move any cells.

• Sets keepout margins on these cells on the side of the cell where the error occurs

By default, the command uses the site width as the keepout width. To specify a
keepout width in microns, use the -keepout_width option.

Note:
These keepout margins are in addition to any existing keepout margins on
the cells; the command does not modify the existing keepout margins.

To try to fix the DRC violations by flipping the cells instead of adding keepout margins,
use the -flip option.

• Legalizes the affected cells

You must use one of the following methods to complete the routes for the cells moved by
the optimization:

• Run ECO routing by using the route_eco command.

• Run ECO routing by using the -route option with the optimize_routability
command.

When you use this option, the command runs the route_eco and check_routes
commands after completing the optimization.

After moving the cells and performing ECO routing, remove the keepout margins from the
cells by using the optimize_routability -remove_keepouts command.

Analyzing and Fixing Signal Electromigration Violations
Signal electromigration problems result from an increase in current density caused by the
use of smaller line widths and higher operational speeds in IC designs. Electromigration

IC Compiler™ II Implementation User Guide
T-2022.03

433

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing and Fixing Signal Electromigration Violations

Feedback

can lead to shorts or opens due to metal ion displacement caused by the flow of electrons.
The more frequently a net switches, the more susceptible it is to electromigration.

To analyze and fix signal electromigration violations in a detail routed block,

1. Apply the signal electromigration constraints by using the
read_signal_em_constraints command.

For more information, see Loading the Signal Electromigration Constraints.

2. Apply switching activity by either reading in a SAIF file with the read_saif
command or annotating the switching activity information on the nets with the
set_switching_activity command.

For more information, see Annotating the Switching Activity.

3. Report the signal electromigration information by using the report_signal_em
command.

For more information, see Analyzing Signal Electromigration.

4. Fix any signal electromigration violations by using the fix_signal_em command.

For more information, see Fixing Signal Electromigration Violations.

The following example script shows the signal electromigration flow.

Open the block and apply the signal electromigration constraints
open_block block1_routed
read_signal_em_constraints em.itf

Load switching information
read_saif block1.saif

Perform signal electromigration analysis
report_signal_em -violated -verbose > block1.signal_em.rpt

Fix signal electromigration violations
fix_signal_em

IC Compiler™ II Implementation User Guide
T-2022.03

434

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing and Fixing Signal Electromigration Violations

Feedback

Loading the Signal Electromigration Constraints
The IC Compiler II tool supports the following formats for specifying electromigration
constraints:

• Interconnect Technology File (ITF)

An ITF file can contain the following types of electromigration constraints: delta
temperature, duration and duty ratio, via size, via direction, metal length, and via-to-via
spacing relaxation.

The IC Compiler II tool supports both unencrypted and encrypted ITF files.

• Advanced Library Format (ALF)

An ALF file can contain the following types of electromigration constraints: temperature,
metal width, and contact area.

The electromigration constaints are stored in the design library as a lookup table. The tool
determines the limit values by looking up the values in the lookup table and then using
linear interpolation or extrapolation.

To load the signal electromigration constaints into the design library, use the
read_signal_em_constraints command. By default, the command reads an
unencrypted ITF file. To read an encrypted ITF file, use the -encrypted option.
To read an ALF file, use the -format ALF option. The constraints loaded by the
read_signal_em_constraints command overwrite any existing signal electromigration
constraints in the design library.

For example, to read an unencrypted ITF file, use the following command:

icc2_shell> read_signal_em_constraints em.itf
For example, to read an encrypted ITF file, use the following command:

icc2_shell> read_signal_em_constraints -encrypted em.itf.enc
To read an ALF file, use the following command:

icc2_shell> read_signal_em_constraints -format ALF em.alf

Analyzing Signal Electromigration
The commandsreport_signal_emreport_signal_em commandreport_signal_em command performs signal electromigration analysis for each net
by calculating the current on every edge and comparing this data with the constraints set
by the read_signal_em_constraints command. For example,

icc2_shell> report_signal_em -violated -verbose

IC Compiler™ II Implementation User Guide
T-2022.03

435

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing and Fixing Signal Electromigration Violations

Feedback

The report_signal_em command performs a timing update, if needed, and analyzes
all nets for electromigration. The -verbose option causes the report to show detailed
electromigration analysis information, which usually produces a very large report when
used by itself. To get a report with a reasonable size, use the -violated option as well,
which limits the report to only the nets with electromigration violations. To limit the analysis
to specific nets, use the -nets option.

set_em_options commandcommandsset_em_optionsYou can specify settings for electromigration analysis by setting the application options
shown in the following table.

Table 27 Application Options for Signal Electromigration Analysis

Application option Default Description

em.net_delta_temperature 5.0 Specifies the delta temperature used for
RMS limit lookup.

em.net_duration_condition_for_peak 0.0 Specifies the duration value for peak current
checking.

em.net_global_rms_relaxation_factor 1.0 Specifies the global relaxation factor for the
RMS limit specified in the constraints file.

em.net_metal_line_number 0 Specifies the metal line number used to
look up the relaxation factor in the RMS
constraint factor table provided in the
constraints file.

em.net_min_duty_ratio 0 Specifies the minimum duty ratio for
computing the peak current.

em.net_use_waveform_duration false When false, the command uses current
integral based duration. When true, the
command uses current waveform based
duration.

em.net_violation_rule_types "" Specifies the type of constraint rules to use.

When you perform signal electromigration analysis, the tool computes three current
values:

• Average

• Root mean square

• Peak

The default report generated by the report_signal_em command lists the number of
nets with electromigration violations and the types of constraints violated (mean, absolute

IC Compiler™ II Implementation User Guide
T-2022.03

436

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing and Fixing Signal Electromigration Violations

Feedback

average, RMS, or peak). If you use the -verbose option, the report displays detailed
information about the violations, as shown in Example 23.

Example 23 Verbose Electromigration Report
icc2_shell> report_signal_em -violated -verbose
...
Net Name: clks/trimch_macroout_cb_group_gpaf0lts1_gpu_c_0_s_0[3]
Violations: RMS PEAK

Flag Segment Layer BBox Coordinates Width/Cut Required
 AVERAGE RMS PEAK
--
v PATH_36_392230 M6D (1450.000, 995.612 -> 1452.715, 995.652) 0.040 0.085
 1.514e-02 (-) 9.650e-01 (5.231e-01) 1.365e+00 (1.349e+00)
 VIA_S_11051278 V5D (1449.969, 995.582 -> 1450.071, 995.682) 1 -
 1.465e-02 (-) 7.380e-01 (-) 1.044e+00 (-)
v PATH_35_765189 M5A (1450.001, 994.973 -> 1450.039, 995.651) 0.038 0.047

 1.417e-02 (-) 6.088e-01 (4.981e-01) 8.609e-01 (1.274e+00)
 VIA_S_11051279 V5D (1449.969, 994.942 -> 1450.071, 995.042) 1 -

 1.369e-02 (-) 5.249e-01 (-) 7.423e-01 (-)
 PATH_36_392231 M6D (1407.370, 994.972 -> 1450.040, 995.012) 0.040 -
 1.311e-02 (-) 2.047e-01 (5.231e-01) 2.894e-01 (9.443e-01)
 VIA_S_11051280 V5D (1407.339, 994.942 -> 1407.441, 995.042) 1 -
 1.252e-02 (-) 1.926e-01 (-) 2.723e-01 (-)
...

The report shows the segment name (Segment column), layer name (Layer column),
location coordinates (Bbox Coordinates column), metal width or via cut number (Width/Cut
column), the constraint value (Required column), the average, RMS, and peak current in
mA for the wire segment or via at that location. The letter “v” in the Flag column indicates
a violation at that location. A hyphen in the Required column means that there is no
electromigration constraint for that metal or via layer. In the AVERAGE, RMS, and PEAK
columns, the first value is the calculated value and the value in parenthesis is the limit
imposed by the electromigration constraints, where a hyphen indicates that there is no
electromigration constraint.

Fixing Signal Electromigration Violations
Before fixing signal electromigration violations, make sure that the block is detail routed,
the signal electromigration constraints are defined in the design library, the switching
activity is defined for all boundary nets, crosstalk analysis is enabled, and there are no
timing or DRC violations. You can optionally use the report_signal_em command first to
report electromigration violations before attempting to fix them.

IC Compiler™ II Implementation User Guide
T-2022.03

437

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Performing ECO Routing

Feedback

To fix signal electromigration violations, use the fix_signal_em command, which
performs the following tasks:

• Runs signal electromigration analysis for nets by calculating the current
on every edge of a net and comparing it with the constraints set by the
read_signal_em_constraints command.

• Fixes violations by applying nondefault routing rules to widen the metal shapes and
then performing ECO routing.

The fix_signal_em command runs a single fixing iteration; if violations remain after
running this command, you must rerun it to address the remaining violations.

By default, the command fixes signal electromigration violations on all nets. To fix the
violations only on specific nets, use the -nets option.

See Also

• Analyzing Signal Electromigration

• Performing ECO Routing

Performing ECO Routing
Whenever you modify the nets in your block, you need to run engineering change order
(ECO) routing to reconnect the routing.

To run ECO routing, use the route_eco command. The route_eco command sequentially
performs global routing, track assignment, and detail routing to reconnect the routing.

By default, the route_eco command

• Considers timing and crosstalk during routing, which means that the tool performs
extraction and updates the timing before performing the routing.

The extraction and timing update can be time consuming and might not be necessary
for your block. To prevent the extraction and timing update, use the following
commands to disable the timing-driven and crosstalk-driven modes:

icc2_shell> set_app_options \
 -name route.global.crosstalk_driven -value false
icc2_shell> set_app_options \
 -name route.global.timing_driven -value false
icc2_shell> set_app_options \
 -name route.track.crosstalk_driven -value false
icc2_shell> set_app_options \
 -name route.track.timing_driven -value false
icc2_shell> set_app_options \
 -name route.detail.timing_driven -value false

IC Compiler™ II Implementation User Guide
T-2022.03

438

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Performing ECO Routing

Feedback

• Works on all open nets in the block

To perform ECO routing only on specific nets, use the -nets option to specify the nets.

• Ignores existing global routes

To honor the existing global routes and perform incremental global routing, set the
-reuse_existing_global_route option to true.

• Relieves congestion by reusing dangling wires instead of rerouting detail routed wires

To disable the reuse of dangling wires, set the -utilize_dangling_wires option to
false.

• Performs a maximum of 40 detail routing iterations

To change the maximum number of detail routing iterations, use the
-max_detail_route_iterations option.

• Fixes hard DRC violations on the entire block by rerouting any wires, whether modified
or not

◦ To fix DRC violations only in the neighborhood of the open nets, set the
-open_net_driven option to true.

Note:
When you use the -nets option to perform ECO routing on specific nets,
Zroute fixes DRC violations only within the bounding box of the specified
nets. In this case, Zroute ignores the setting of the -open_net_driven
option.

◦ To change the scope of rerouting performed by the ECO router, use the -reroute
option.

▪ To limit rerouting to modified wires, set this option to modified_nets_only.

▪ To first attempt to fix DRC violations by rerouting modified nets and then reroute
other nets if necessary, set this option to modified_nets_first_then_others.

A common use for this option is to route the clock nets affected by an ECO in a
fully routed block.

◦ To enable the fixing of soft DRC violations, such as bridge
rule violations, after the final detail routing iteration, set the
route.common.post_eco_route_fix_soft_violations application option to
true.

Zroute generates a DRC violations summary at the end of each detail routing iteration.
Before reporting the final DRC violations, Zroute merges redundant violations. For more

IC Compiler™ II Implementation User Guide
T-2022.03

439

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Nets in the GUI

Feedback

information about the DRC violations reported by Zroute, see Performing Design Rule
Checking Using Zroute.

Zroute also reports the nets changed during ECO routing. By default, it reports the first
100 changed nets. You can use the -max_reported_nets option to set a different limit on
the reported nets. To report all changed nets, set the -max_reported_nets option to -1.

See Also

• Routing Nets in the GUI

Routing Nets in the GUI
To route nets interactively in the active layout view, draw the routes with the layout editing toolsCreate Route toolCreate Route

tool. To activate the Create Route tool, click the button on the Edit toolbar or choose
Create > Route.

To draw route segments, you click points in the layout view. The tool displays flylines and
target port and pin locations to guide you in drawing the route segments. It can also check
for routing design rule violations as you draw the route segments. You can set options to
adjust the routing, control the tool operation, and enable or disable routing aids.

By default, the Create Route tool

• Ignores routing blockages

To force the tool to honor these blockages, change the setting in the Mouse Tool
Options panel.

Note:
The Create Route tool does not honor routing guides defined by the
create_routing_guide command.

• Uses the metal width and metal spacing requirements defined in the technology file
and ignores nondefault routing rules

To force the tool to honor nondefault routing rules, change the setting in the Mouse Tool
Options panel. When you enable this feature, the Create Route tool honors the metal
width and metal spacing requirements from the nondefault routing rule and uses these
settings to determine the width and pitch of the routes.

Note:
The shielding width and shield spacing defined in the nondefault routing rule
are not used by the Create Route tool.

IC Compiler™ II Implementation User Guide
T-2022.03

440

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Nets in the GUI

Feedback

If you route on grid and know that there no obstacles, you can reduce runtime by
skipping the spacing checks during automatic welding and automatic alignment. To
force the tool to ignore the spacing requirements during these tasks, change the
settings in the Mouse Tool Options panel.

You can reverse and reapply Create Route tool operations by using the GUI undo and
redo capabilities.

For detailed information about using the Create Route tool, click on the Mouse Tool
Options panel after you activate the Create Route tool. This opens a Help page in the man
page viewer.

Modifying Routed Nets
You can modify routed nets in the GUI by using the following tools:

• Area Push tool

To activate the Area Push tool, click the button on the Edit toolbar or choose Edit
> Area Push. You can use the Area Push tool to move unfixed objects away from a
rectangular area on a layer while maintaining their physical connections. You select
the layer and control whether the tool complies with nondefault routing rules. The tool
supports both interactive and batch push operations.

• Spread Wire tool

To activate the Spread Wires tool, click the button on the Edit toolbar or
choose Edit > Spread Wires. You can use the Spread Wires tool to move selected,
unfixed wires evenly between two points on a layer while maintaining their physical
connections. You control whether the tool spreads the wires by layer and whether the
tool complies with nondefault routing rules.

• Stretch Connected tool

To activate the Stretch Connected tool, click the button or choose Edit > Stretch
Connected. You can use the Stretch Connected tool to move and stretch unfixed wire
shapes while optionally maintaining their physical connections.

• Quick Connect tool

To activate the Quick Connect tool, click the button or choose Edit > Route Utilities
> Quick Connect. You can use the Quick Connect tool to quickly connect wires to pin
shapes, port shapes, terminals, or other wires.

IC Compiler™ II Implementation User Guide
T-2022.03

441

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Routing Nets in the GUI

Feedback

If you need assistance while using these tools, click to open a Help page in the man
page viewer.

IC Compiler™ II Implementation User Guide
T-2022.03

442

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Cleaning Up Routed Nets

Feedback

Cleaning Up Routed Nets
After routing is complete, you can clean up the routed nets by running the
remove_redundant_shapes command.

icc2_shell> remove_redundant_shapes
By default, this command reads the DRC information stored in the design view of the block
and then removes dangling and floating net shapes from all nets in the block based on
this information. To run the check_routes command to get the DRC information instead
of using the information stored in the design view, use the -initial_drc_from_input
false option.

You can restrict the removal to

• Specific nets by using the -nets option

• Specific layers by using the -layers option

• Fixed or unfixed route types by using the -route_types option

When removing dangling net shapes, the tool does not change topologies or connections
and does not touch terminals. In addition, no changes are made to open nets or nets with
DRC violations.

You can disable the removal of dangling net shapes by using the
-remove_dangling_shapes false option. You can disable the removal of floating net
shapes by using the -remove_floating_shapes false option.

In addition to removing dangling and floating net shapes, this command can also remove
loops in the specified nets. To remove loops, use the -remove_loop_shapes true option.

By default, the remove_redundant_shapes does not report the changes it makes. To
report the changes, use the -report_changed_nets true option.

For example, to remove dangling net shapes, floating net shapes, and loops from the net
named my_net, use the following command:

icc2_shell> remove_redundant_shapes -nets my_net \
 -remove_loop_shapes true
After cleaning up the routed nets, reverify the routing, as described in Performing Design
Rule Checking Using Zroute.

IC Compiler™ II Implementation User Guide
T-2022.03

443

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

Analyzing the Routing Results
You can analyze the routing results by reporting on the cell placement and routing
statistics. The following topics describe how to perform these tasks:

• Generating a Congestion Report

• Generating a Congestion Map

• Performing Design Rule Checking Using Zroute

• Performing Signoff Design Rule Checking

• Performing Design Rule Checking in an External Tool

• Performing Layout-Versus-Schematic Checking

• Reporting the Routing Results

• Using the DRC Query Commands

Generating a Congestion Report
To generate a congestion report, run the report_congestion command.

icc2_shell> report_congestion
By default, the report_congestion command uses the congestion map stored with the
block to report an overflow summary for the entire block. If a congestion map is not stored
with the design, the command generates a congestion map by running global routing in
congestion-map-only mode.

Note:
By default, only the hard congestion data is saved in the
design library. To also save the soft congestion data, set the
route.global.export_soft_congestion_maps application option to true
before performing global routing.

The command calculates the overflow as the sum of the overflow for each layer, ignoring
any underflow. Example 24 shows the default report, which includes only the hard
congestion data.

Example 24 Default Global Route Congestion Report
**
Report : congestion
Design :
Version:
Date :

IC Compiler™ II Implementation User Guide
T-2022.03

444

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

**

Layer | overflow | # GRCs has
Name | total | max | overflow (%) | max overflow

Both Dirs | 39 | 8 | 14 (0.26%) | 1
H routing | 6 | 2 | 4 (0.07%) | 2
V routing | 33 | 8 | 10 (0.18%) | 1

In the default congestion report,

• “H routing” refers to results for horizontal routes only and “V routing” refers to results for
vertical routes only.

• The total overflow value is the total number of wires in the block that do not have
a corresponding track available. The max overflow value is the highest number of
overutilized wires in a single global routing cell.

• The GRCs overflow value is the total number of overcongested global routing cells in
the design. The GRCs max overflow value is the number of global routing cells that
have the maximum overflow.

Note:
The overflow and global routing cell numbers reported by the
report_congestion command might look slightly more optimistic than those
reported by the route_global command because the tool rounds down the
congestion information before saving it with the design.

Use the following options to modify the default behavior:

• -rerun_global_router
Use this option to rerun the global routing even if the block already has a congestion
map.

• -boundary coordinates
Use this option to restrict the reporting to a specific region of the block.

• -layers layers
Use this option to restrict the reporting to specific layers.

• -mode global_route_cell_edge_based
Use this option to report overflow information for each global routing cell.

• -include_soft_congestion_maps
Use this option to output soft congestion reports, if they exist. A soft congestion report
includes the demand from the soft nondefault spacing rules, as well as tool-generated

IC Compiler™ II Implementation User Guide
T-2022.03

445

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

soft rules. The command outputs a soft congestion report for each spacing weight
level of the soft nondefault spacing rules used in the block. Each soft congestion report
contains the sum of the hard and soft congestion with a weight level of at least the
current soft level.

See Also

• Global Routing

• Defining Minimum Wire Spacing Rules

• Generating a Congestion Map

Generating a Congestion Map
To display the global route congestion map, choose View > Map > Global Route
Congestion in the GUI. If the design library contains global route congestion information
for the block, the tool generates the congestion map based on this information; otherwise,
you must click Reload to generate the congestion map. When you click Reload, the tool
opens a dialog box that contains the following command:

route_global -congestion_map_only true

Note:
By default, only the hard congestion data is saved in the
design library. To also save the soft congestion data, set the
route.global.export_soft_congestion_maps application option to true
before performing global routing.

When you click OK in this dialog box, the tool generates a new congestion map. If you
want to use different options for the route_global command, you can modify this
command before clicking OK.

IC Compiler™ II Implementation User Guide
T-2022.03

446

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

Figure 78 shows an example of a congestion map.

Figure 78 Global Route Congestion Map

By default, the congestion map displays only the hard congestion data. To display soft
congestion data, select the desired rule level in the Rule level drop-down list. The rule
level refers to the spacing weight level of the soft nondefault spacing rules. The congestion
map displays the sum of the hard and soft congestion with a weight level of at least the
selected rule level.

The congestion map shows the borders between global routing cells highlighted with
different colors that represent the congestion values. The congestion map supports two
methods for calculating the congestion value:

• Sum of overflow for each layer (the default)

In this mode, the tool calculates the congestion value as the sum of the overflow for
all selected layers. Underflow is not considered; if a layer has underflow, it contributes
zero overflow to the total overflow calculation.

• Total demand minus total supply

In this mode, the tool calculates the congestion value by subtracting the supply for
all selected layers from the demand for all selected layers. Note that because this
calculation considers the underflow, it produces a more optimistic congestion result in
regions that contain both overflow and underflow.

For example, assume that the METAL2 layer is heavily congested with a demand of
13 routing tracks and a supply of only 7 tracks for an overflow of 6. The METAL4 is

IC Compiler™ II Implementation User Guide
T-2022.03

447

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

moderately congested with an overflow of 4, and the METAL6 layer is not congested and
contains an underflow of 3. Other layers are not used in the congestion calculation in this
example.

• The sum of overflow calculation results in a congestion value of 6+4=10. The underflow
of 3 for the METAL4 layer is not used in the calculation.

• The total demand calculation results in a congestion value of 6+4-3=7. In this case, the
underflow of 3 for the METAL4 layer is used in the calculation.

To select the mode, select either “Sum of overflow for each layer” or “Total demand minus
total supply” in the “Congestion calculation” section of the Map Mode panel.

By default, all metal layers are selected in the congestion map, except those specified as
ignored layers with the set_ignored_layers command. To display the congestion map
for a subset of layers, select (or deselect) the layers on the Map Mode panel. For example,
if the global routing report shows that the maximum overflow occurs on the METAL2 layer,
you can deselect all layers, except for METAL2, to display only the METAL2 congestion.

The Map Mode panel also displays a histogram showing the number of global routing
cells in different ranges (bins) of congestion values for the selected layers. If your block
contains global routing cells that have no available routing resources, an additional bin
named Blocked is displayed that shows the number of global routing cells with no routing
resources. You can select which bins to display in the congestion map by selecting or
deselecting them on the Map Mode panel.

If the block shows congested areas, zoom into the congested area to see the congestion
value on the global routing cell. For example, in Figure 79, the red highlight on the edge
of the global routing cell shows 18/9. This means there are 9 wire tracks available, but 18
tracks are needed.

IC Compiler™ II Implementation User Guide
T-2022.03

448

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

Figure 79 Global Route Overflow on Global Routing Cell

Performing Design Rule Checking Using Zroute
To use Zroute to check the routing design rules defined in the technology file, run the
check_routes command.

By default, the check_routes command checks for routing DRC violations, unconnected
nets, antenna rule violations, and voltage area violations on all routed signal nets in the
block, except those marked as user nets, frozen nets, and PG nets.

• To verify the routing only for specific nets, specify the nets by using the -nets option.

• To check user routes, set the -check_from_user_shapes option to true.

IC Compiler™ II Implementation User Guide
T-2022.03

449

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

• To check frozen routes, set the -check_from_frozen_shapes option to true.

A net is considered frozen when its physical_status attribute is set to locked.

To disable checks for routing DRC violations, set the -drc option to false. To disable
checks for unconnected nets, set the -open_net option to false. To disable checks for
antenna rule violations, set the -antenna option to false. To disable checks for voltage
area violations, set the -voltage_area option to false.

To save time, you can restrict the routing verification to specific regions of the block by
using the -coordinates option to specify the lower-left and upper-right coordinates
for each rectangular region. When you perform area-based DRC, the check_routes
command checks only for DRC violations and voltage area violations. It does not check
for unconnected nets, antenna violations, or tie-to-rail violations, as these are net-based
violations.

Note:
The -coordinates option and the -nets option are mutually exclusive; you can
use only one of these options.

The check_routes command reports the following DRC violations:

• Spacing violations

◦ Different-net wire spacing

◦ Different-net nondefault wire spacing (note that the DRC report refers to nondefault
routing rules as variable rules)

◦ Different-net via-cut spacing

◦ Different-net nondefault via-cut spacing (note that the DRC report refers to
nondefault routing rules as variable rules)

◦ Different-net fat extension spacing

◦ Dog bone spacing

◦ End-of-line spacing

◦ Enclosed via spacing

◦ Same-net spacing

◦ Same-net via-cut spacing

◦ Same-net fat extension spacing

◦ Special notch spacing

◦ U-shape spacing

IC Compiler™ II Implementation User Guide
T-2022.03

450

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

◦ Via-cut to metal spacing

◦ Soft spacing

• Area violations

◦ Less than minimum area

◦ Less than minimum enclosed area

◦ Fat wire via keepout area

◦ Jog wire via keepout area

• Length and width violations

◦ Less than minimum width

◦ Less than minimum length

◦ Less than minimum edge length

◦ Protrusion length

• Contact violations

◦ Needs fat contact

◦ Needs poly contact

◦ Needs fat contact on extension

◦ Over maximum stack level

• Enclosure violations

◦ End-of-line wire via enclosure

◦ Jog wire via enclosure

◦ T-shape wire via enclosure

• Others

◦ Open nets, except when doing area-based DRC

By default, the check_routes command reports a maximum of 200 open nets.
To report all open nets, use the -report_all_open_nets true option (or select
“Report all open nets” in the GUI).

◦ Antenna violations, except when doing area-based DRC

◦ Nets crossing the top-cell boundary

IC Compiler™ II Implementation User Guide
T-2022.03

451

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

◦ Frozen layers

◦ Minimum layer

◦ Maximum layer

◦ Voltage area violations

Note:
These violations are also reported after each detail route iteration.

The check_routes command saves the error data to a file named zroute.err. You cannot
control the naming of the error data file generated by the check_routes command, but
you can rename the error data file after running the command. To rename the error data
file, use the following commands:

icc2_shell> write_drc_error_data -error_data zroute.err \
 -file_name export.err
icc2_shell> open_drc_error_data -file_name export.err
icc2_shell> attach_drc_error_data [get_drc_error_data export.err] \
 -name newname.err
After you run the check_routes command, you can use the DRC query commands to get
more information about the violations or use the error browser to examine the violations
in the GUI. For information about analyzing the DRC violations, see Using the DRC
Query Commands. For information about using the error browser, see the IC Compiler II
Graphical User Interface User Guide.

After running check_routes, you can use the following command to run incremental detail
routing that uses the check_routes results as input:

icc2_shell> route_detail -incremental true \
 -initial_drc_from_input true
Note:

Incremental detail routing does not fix open nets. To fix open nets, you must run
ECO routing. For information about ECO routing, see Performing ECO Routing.

Performing Signoff Design Rule Checking
Signoff design rule checking runs the IC Validator tool within the IC Compiler II tool to
check the routing design rules defined in the foundry runset. To perform signoff design
rule checking, run the signoff_check_drc command, as described in Performing Signoff
Design Rule Checking. In addition, you can use the signoff_fix_drc command to
automatically fix the DRC violations detected by the signoff_check_drc command. For
more information, see Automatically Fixing Signoff DRC Violations.

IC Compiler™ II Implementation User Guide
T-2022.03

452

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

Note:
An IC Validator license is required to run the signoff_check_drc and
signoff_fix_drc commands.

Performing Design Rule Checking in an External Tool
Calibre interfaceYou can perform design rule checking with the Calibre tool, convert the Calibre DRC error
file to an IC Compiler II error data file, and then report or view the errors in the IC Compiler
II tool. To convert the Calibre DRC error file to an IC Compiler II error data file, use the read_drc_error_file

commandcommandsread_drc_error_fileread_drc_error_file command.

For example,

icc2_shell> read_drc_error_file -file Calibre_error_file
By default, the command generates an error data file named cell_name.err, where
cell_name is derived from the Calibre error report. You can specify a name for the error
data file by using the -error_data option.

Note:
The read_drc_error_file command supports only flat Calibre DRC error
files; it does not support Calibre hierarchy DRC error files.

You can load the error data file created by the read_drc_error_file command into the
error browser to report or display the DRC violations. For information about using the error
browser, see the IC Compiler II Graphical User Interface User Guide.

Performing Layout-Versus-Schematic Checking
To perform layout-versus-schematic (LVS) checking, which checks for inconsistencies in
the physical layout, use the check_lvs command.

By default, the check_lvs command performs the following checks for all signal, clock,
and PG nets:

• Shorted nets

A shorted net occurs when a net shapes from different nets touch or intersect.

By default, the command

◦ Checks for shorts between net shapes in the top-level design, including shapes in
top-level blockages

To disable checking for shapes in top-level blockages, use the
-check_top_level_blockages false option.

IC Compiler™ II Implementation User Guide
T-2022.03

453

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

◦ Does not check for shorts between net shapes in the top-level design and net-
shapes in child cells

To enable this checking, use the -check_child_cells true option. To exclude
certain types of child cells from checking, use the -exclude_child_cell_types
option to specify one or more of the following cell types: abstract, analog,
black_box, corner, cover, diode, end_cap, fill, filler, flip_chip_driver,
flip_chip_pad, lib_cell, macro, module, pad, pad_spacer, physical_only,
and well_tap.

◦ Does not check for shorts with zero-spacing blockages

To enable this checking, use the -check_zero_spacing_blockages true option.

Note:
The check_lvs command supports only default routing blockages
that apply to all net types and have a blockage group ID of 0. If
the blockage applies only to specific net types or has a nonzero
blockage group ID, the command ignores the blockage. In addition,
the command ignores corridor routing blockages (which are created
when you use the -reserve_for_top_level_routing option with
the create_routing_blockage command) and boundary routing
blockages (which are created when you use the -boundary_internal
or -boundary_external options with the create_routing_blockage
command).

• Open nets

An open net occurs when the pins of a net are not connected by its net shapes.

By default, the command

◦ Treats power and ground terminals as unconnected voltage sources

To treat power and ground terminals as connected, use the
-treat_terminal_as_voltage_source true option.

For example, assume your block contains the layout shown in Figure 80. By
default, the check_lvs command reports two opens for this layout. If you use the
-treat_terminal_as_voltage_source true option, no opens are reported.

IC Compiler™ II Implementation User Guide
T-2022.03

454

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

Figure 80 Layout With Power and Ground Terminals

◦ Reports open nets as the bounding box of the open net and does not report floating
pins

To report detailed open locations, use the -open_reporting detailed option.
Note that using this option might increase the runtime. To report the floating pins,
use the -report_floating_pins true option.

• Floating net shapes

A floating net shape occurs when a net shape is not physically connecting to a pin of its
net.

To perform a subset of these checks, use the -checks option to specify one or more of
the following checks: short (shorted nets), open (open nets), and floating_routes
(floating net shapes). To check only specific nets, use the -nets option to specify the nets
of interest.

By default, the check_lvs command reports a maximum of 20 violations for each
type of error. To change this limit, use the -max_errors option. To report all violations,
specify the maximum number of violations as zero (-max_errors 0). You can view the
violations reported by the check_lvs command in the GUI by using the error browser. For
information about using the error browser, see the IC Compiler II Graphical User Interface
User Guide.

To reduce the runtime required by the check_lvs command, enable multithreading by
using the set_host_options command, as described in Enabling Multicore Processing.

IC Compiler™ II Implementation User Guide
T-2022.03

455

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Analyzing the Routing Results

Feedback

Reporting the Routing Results
To report statistics about the routing results, use the report_design -routing
command. This command reports the following information:

• Final wiring statistics, including the

◦ Number of signal net shapes for each metal layer

◦ Signal wire length for each metal layer

◦ Number of PG net shapes for each metal layer

◦ PG wire length for each metal layer

◦ Horizontal and vertical wire distribution for each metal layer

◦ Total number of signal net shapes for the block

◦ Total signal wire length for the block

• Final via statistics, including the

◦ Simple vias used in each via layer, including the number of instances of each via

◦ Double via conversion rate for each via layer

◦ Double via conversion rate for the block

◦ Custom vias used in the block, including the number of instances of each user-
defined via

By default, this command reports the information only for the top-level block. To report the
information for the entire physical hierarchy, use the -hierarchical option.

See Also

• Defining Vias

Using the DRC Query Commands
You can get information about DRC violations by using the get_drc_errors command
to create a collection of DRC violations and then using the get_attribute command to
query the attributes of the errors. Some attributes that provide information about DRC
errors are type_name, bbox, objects, and shape. Note that the availability of attribute
values depends on the error type and the verification method used. For a list of all
attributes associated with DRC errors, use the list_attributes -application -class
drc_error command.

IC Compiler™ II Implementation User Guide
T-2022.03

456

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Saving Route Information

Feedback

Before you run the get_drc_errors command, you must load the error data files that
you want to query. To determine the error data files attached to the current block, use
the get_drc_error_data command. You must use the -all option to include both the
opened and unopened error data files in the result.

icc2_shell> get_drc_error_data -all
To load an error data file, use the open_drc_error_data command.

icc2_shell> open_drc_error_data zroute.err
To determine the error data types included in the error data file, use the
get_drc_error_types command.

icc2_shell> get_drc_error_types -error_data zroute.err
By default, the get_drc_errors command creates a collection that contains all DRC
violations contained in the specified error data file. Use the -filter option to restrict the
returned errors.

For example, to return only “Diff net spacing” errors, use the following command:

icc2_shell> get_drc_errors -error_data zroute.err \
 -filter {type_name == "Diff net spacing"}
To get the nets associated with an error, use the get_attribute command. For example,

icc2_shell> get_attribute [get_drc_errors -error_data zroute.err 859] \
 objects
{u0_1/n237}

Saving Route Information
To save the route information, use the write_routes command. This command generates
a Tcl script that reproduces the metal shapes and vias for a block, including their attribute
settings.

Note that the write_routes command reproduces routes, but not routing blockages.
To generate a Tcl script that reproduces routing blockages, use the write_floorplan
command.

Deriving Mask Colors
At advanced technology nodes, mask colors must be assigned to wires and vias to
ensure correct processing of the net shapes during mask synthesis. The route_detail
command and other routing commands in the tool usually add the necessary mask
colors during routing. For net shapes that do not have a color assignment, use the

IC Compiler™ II Implementation User Guide
T-2022.03

457

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting and Removing Cut Metal Shapes

Feedback

derive_mask_constraint command to derive the color mask for the specified wires and
vias from the nearest underlying tracks. In case of wide wires that occupy multiple tracks,
the command takes the mask color opposite to the next unoccupied track.

The following example derives the mask color for the net shapes of the net1 net.

icc2_shell> derive_mask_constraint \
 [get_shapes -of_objects [get_nets net1]]
Use options to the derive_mask_constraint command to control how the mask colors
are derived.

• Derive cut mask constraints for the specified nets or vias.

icc2_shell> derive_mask_constraint -derive_cut_mask \
 [get_vias -within {{600 600} {700 700}}]

• Derive mask constraints from overlapping or touching pins or ports.

icc2_shell> derive_mask_constraint -follow_pin_mask \
 [get_shapes -of_objects [get_nets net1]]

• Derive the mask constraint from the wider overlapping or touching object rather than
the wire track.

icc2_shell> derive_mask_constraint -follow_wider_object_mask \
 [get_shapes -of_objects [get_nets net1]]

See Also

• Multiple-Patterning Concepts

Inserting and Removing Cut Metal Shapes
Cut metal shapes are used in double-patterning designs to reduce the line-end minimum
spacing. A cut metal layer and the dimensions of the cut metal shapes inserted on that
layer are defined in a Layer section in the technology file. The width of the cut metal
shapes is defined by the cutMetalWidth attribute. The height of the cut metal shapes
is defined by either the cutMetalHeight or cutMetalExtension attribute. A cut metal
layer corresponds to the metal layer with the same mask number. For example, cutMetal1
corresponds to metal1. For information about the technology file, see the Synopsys
Technology File and Routing Rules Reference Manual.

IC Compiler™ II Implementation User Guide
T-2022.03

458

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Routing and Postroute Optimization
Inserting and Removing Cut Metal Shapes

Feedback

After the routing is finalized, you add cut metal shapes by using the create_cut_metals
command. This command inserts a cut metal shape between metal shapes when all of the
following conditions are met:

• The spacing between the metal shapes in the preferred direction is cutMetalWidth.

• There is no existing cut metal shape in the location.

• The metal shapes are on a metal layer that corresponds to a cut metal layer defined in
the technology file.

The command inserts cut metal shapes between net shapes, a net shape and a PG
shape, a PG shape and an obstruction, and metal shapes within a child cell. After inserting
the cut metal shapes, the command propagates the color of the metal shapes to the cut
metal shapes.

When you write a DEF file for a block with cut metal shapes, you must use the -version
5.8 option with the write_def command. When you write a GDSII or OASIS file for a
block with cut metal shapes, you must use the -connect_below_cut_metal option with
the write_gds or write_oasis command.

If the routing changes after inserting cut metal shapes, you must remove the existing cut
metal shapes and reinsert them. To remove all cut metal shapes from a block, use the
remove_cut_metals command.

IC Compiler™ II Implementation User Guide
T-2022.03

459

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

6
Chip Finishing and Design for Manufacturing

The IC Compiler II tool provides chip finishing and design for manufacturing and yield
capabilities that you can apply throughout the various stages of the design flow to address
process design issues encountered during chip manufacturing.

For information about the chip finishing and design for manufacturing features, see the
following topics:

• Inserting Tap Cells

• Performing Boundary Cell Insertion

• Finding and Fixing Antenna Violations

• Inserting Redundant Vias

• Optimizing Wire Length and Via Count

• Reducing Critical Areas

• Inserting Metal-Insulator-Metal Capacitors

• Inserting Filler Cells

• Inserting Metal Fill

Inserting Tap Cells
A tap cell is a special nonlogic cell with a well tie, substrate tie, or both. These cells are
typically used when most or all of the standard cells in the library contain no substrate
or well taps. Generally, the design rules specify the maximum distance allowed between
every transistor in a standard cell and a well or substrate tap.

Before global placement (during the floorplanning stage), you can insert tap cells in the
block to form a two-dimensional array structure to ensure that all standard cells placed
subsequently comply with the maximum diffusion-to-tap distance limit. After you insert
the tap cells, visually check to ensure that all standard-cell placeable areas are properly
protected by tap cells.

IC Compiler™ II Implementation User Guide
T-2022.03

460

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

The IC Compiler II tool provides two methods to insert a tap cell array:

• Insert the tap cell array based on the site rows and the maximum distance between tap
cells

To use this method, use the create_tap_cells command, as described in Using the
create_tap_cells Command.

• Insert the tap cell array using a specified offset and pitch, and optionally insert
additional tap cells near the boundary

To use this method, use the create_cell_array command, as described in Using the
create_cell_array Command.

Advanced nodes often require the insertion of additional tap cells to manage the substrate
and well noise. You can use the following capabilities to insert additional tap cells after
standard tap cell insertion:

• Insertion of tap walls

A tap wall is a row or column of tap cells placed linearly without any gaps between
cells. You can insert a tap wall outside or inside of the boundary of a block, macro, or
hard placement blockage. A tap wall that is outside a boundary is called an exterior tap
wall. A tap wall that is inside a boundary is called an interior tap wall.

◦ To insert an exterior tap wall, use the create_exterior_tap_walls command, as
described in Inserting Exterior Tap Walls.

◦ To insert an interior tap wall, use the create_interior_tap_walls command, as
described in Inserting Interior Tap Walls.

• Insertion of tap meshes

A tap mesh is a two-dimensional array of tap cells with a tap cell in each mesh window.
To insert a tap mesh, use the create_tap_meshes command, as described in Inserting
Tap Meshes.

• Insertion of dense tap arrays

A dense tap array is a tap cell array whose tap distance is smaller than the tap distance
used by the create_tap_cells command. To insert a dense tap array, use the
create_dense_tap_cells command, as described in Inserting Dense Tap Arrays.

Using the create_tap_cells Command
add_tap_cell_array commandcommandsadd_tap_cell_arrayTo add a tap cell array based on the site rows, use the create_tap_cells command. You
must specify the name of the library cell to use for tap cell insertion (-lib_cell option)
and the maximum distance, in microns, between tap cells (-distance option).

IC Compiler™ II Implementation User Guide
T-2022.03

461

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

For example,

icc2_shell> create_tap_cells -lib_cell myreflib/mytapcell -distance 30
Note:

If the place.legalize.enable_pin_color_alignment_check application
option is true (its default is false), the command ensures that internal cell
pins and metal of the tap cells align with a routing track of the appropriate color
when inserting the tap cells and shifts the tap cells to avoid violating color
alignment. To avoid signoff DRC errors due to this shifting, reduce the tap
distance slightly when this application option is true.

By default, the create_tap_cells command inserts tap cells in every row for the entire
block. The tool starts inserting the tap cells at the left edge of the row and uses the
specified tap distance to determine the location of the subsequent tap cells. In addition, if
a tap cell does not exist within the minimum tap distance (half the specified tap distance)
from each row edge adjacent to the block’s boundary, a hard macro, or a hard placement
blockage, the tool inserts an additional tap cell. Figure 81 shows the default tap cell
placement for a block that uses the every-row insertion pattern. Note that extra tap cells
are added to the right of the hard macro to ensure that a tap cell exists within the minimum
tap distance from the edge of the hard macro.

Figure 81 Default Tap Cell Placement

IC Compiler™ II Implementation User Guide
T-2022.03

462

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

You can modify the following aspects of the default behavior:

• The library cell used for tap cell insertion on rows with a mirrored (MX) orientation

Use the -mirrored_row_lib_cell option to specify the library cell to use for mirrored
rows.

• The pattern used to insert the tap cells

Use the -pattern option to specify one of the following tap cell insertion patterns:

◦ every_row (the default)

This pattern inserts tap cells in every row. For this pattern, the tap distance
specified with the -distance option should be approximately twice the maximum
diffusion-to-tap value specified in the technology design rules.

◦ every_other_row
This pattern inserts tap cells only in the odd-numbered rows. For this pattern, the
tap distance specified with the -distance option should be approximately twice the
maximum diffusion-to-tap value specified in the technology design rules.

◦ stagger
This pattern inserts tap cells in every row with the tap cells in even rows offset by
half the offset value (-offset option) relative to the odd rows, which produces
a checkerboard-like pattern. For this pattern, the tap distance specified with the
-distance option should be approximately four times the maximum diffusion-to-tap
value specified in the technology design rules.

• The offset from the left edge of the row

Use the -offset option to shift the pattern startpoint to the right by the specified
distance in microns.

• The handling of fixed cells

By default, tap cells are inserted at the computed tap locations, regardless of whether
a fixed cell occupies that location. Use the -skip_fixed_cells option to prevent the
insertion of tap cells in locations occupied by fixed cells. By default, when you use
this option, the command considers the fixed cell as a blockage and breaks the row
at the fixed cell, which can result in a tap cell being inserted on each side of the fixed
cell. To prevent tap cells from overlapping fixed cells without breaking the row, use the
-preserve_distance_continuity option with the -skip_fixed_cells option. When
you use both options, the command shifts the tap cell to avoid overlap with the fixed
cell. The -preserve_distance_continuity option shifts only those tap cells whose
computed tap location is occupied by an instance of one of the specified library cells.

IC Compiler™ II Implementation User Guide
T-2022.03

463

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

For example, the following command shifts tap cells whose computed tap location is
occupied by a fixed instance of the mylib/cell1 library cell:

icc2_shell> create_tap_cells -lib_cell mylib/tap -distance 30 \
 -skip_fixed_cells -preserve_distance_continuity mylib/cell1
When you use the -skip_fixed_cells option, you can also specify the minimum
horizontal spacing between the boundary and a corner tap cell that is above or below a
blocked area by using the -min_horizontal_periphery_spacing option. This option
specifies the minimum number of unit tiles between the boundary and an affected
corner tap cell.

Figure 82 shows how using this option affects the tap cell placement both with and
without boundary cells.

Figure 82 Tap Cell Boundary Row Spacing

-min_horizontal_periphery_spac -min_horizontal_periphery_spac

• The addition of extra tap cells

You can use one or both of the following methods to prevent the insertion of extra tap
cells:

◦ Use the -row_end_tap_bypass option to specify that the boundary cells contain
taps, so additional tap cells are not inserted at the boundary. Note that the
command does not verify that the block has boundary cells or that the boundary
cells actually contain taps.

◦ Use the -at_distance_only option to allow the insertion of tap cells only at the
specified tap distance, half of the tap distance, or one fourth of the tap distance (for
the stagger pattern only). Note that using this option can cause DRC violations.

• The regions in which to insert tap cells

Use the -voltage area option to restrict the tap cell insertion to the specified voltage
areas.

IC Compiler™ II Implementation User Guide
T-2022.03

464

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

• The naming convention used to identify the inserted tap cell instances

By default, the tool uses the following naming convention for inserted tap cells:

tapfiller!library_cell_name!number

Use the -separator option to change the separator character from its default of “!.”

To identify the tap cells inserted in a specific run, use the -prefix option to specify a
prefix string. When you use this option, the tool uses the following naming convention:

tapfiller!prefix!library_cell_name!number

Using the create_cell_array Command
add_tap_cell_array commandcommandsadd_tap_cell_arrayTo add a tap cell array with specific placement, use the create_cell_array command.
You must specify the name of the library cell to use for tap cell insertion (-lib_cell
option), and the x- and y-pitches.

For example,

icc2_shell> create_cell_array -lib_cell myreflib/mytapcell \
 -x_pitch 10 -y_pitch 10
By default, the create_cell_array command inserts a tap cell in each location in the
specified grid for the entire block. The tool starts inserting the tap cells at the bottom-left
of the core area and uses the specified x- and y-pitches to determine the location of the
subsequent tap cells. The inserted tap cells are snapped to the site rows and placed in the
default orientation for the site row. If a location is occupied by a fixed cell, hard macro, soft
macro, or power-switch cell, the command does not insert a tap cell at that location.

You can modify the following aspects of the default behavior:

• The region in which to insert tap cells

Use the -voltage area option to restrict the tap cell insertion to the specified voltage
areas.

Use the -boundary option to restrict the tap cell insertion to the specified region.

If you use both options, the command inserts tap cells only in the overlapping region.

• The offset from the insertion region boundary

Use the -x_offset option to shift the pattern startpoint to the right by the specified
distance in microns.

Use the -y_offset option to shift the pattern startpoint up by the specified distance in
microns.

IC Compiler™ II Implementation User Guide
T-2022.03

465

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

• The insertion pattern

Use the -checkerboard option to insert a tap cell in every other location in the
specified grid.

◦ To place a tap cell in the lower-left corner, use the -checkerboard even option.

◦ To keep the lower-left corner empty, use the -checkerboard odd option.

In some design methodologies, you must insert a tap cell in empty spaces in the
checkerboard pattern that are above or below specific cells, such as critical area
breaker cells or boundary cells. To enable the insertion of these extra tap cells, use the
-preserve_boundary_row_lib_cells option to specify the affected library cells.

• The snapping behavior

To disable snapping of the inserted tap cells to the site rows, set the
-snap_to_site_row false option. When you set this option to false, the tool uses
R0 as the default orientation for the inserted cells.

• The orientation of the inserted tap cell instances

To specify the orientation of the inserted tap cells, use the -orient option to specify
one of the following orientation values: R0, R90, R180, R270, MX, MY, MXR90, or MYR90.

• The naming convention used to identify the inserted tap cell instances

By default, the tool uses the following naming convention for inserted tap cells:

headerfooter__library_cell_name_R#_C#_number

To identify the tap cells inserted in a specific run, use the -prefix option to specify a
prefix string. When you use this option, the tool uses the following naming convention:

prefix__library_cell_name_R#_C#_number

IC Compiler™ II Implementation User Guide
T-2022.03

466

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

Inserting Exterior Tap Walls
An exterior tap wall is a row or column of tap cells that is placed outside the boundary of a
block, macro, or hard placement blockage. The tap cells in the tap wall are placed linearly
without any gaps between cells.

To insert an exterior tap wall, use the create_exterior_tap_walls command. You must
specify the following information:

• The tap cell used in the tap wall (the -lib_cell option)

By default, the command inserts the tap cells with R0 orientation. To place the cells
with a different orientation, use the -orientation option.

If the design has a FinFET grid, follow these guidelines when selecting the tap cell to
ensure proper insertion of the tap wall:

◦ For horizontal tap walls, ensure that the cell’s width in the specified orientation is an
integer multiple of the x-pitch of the FinFET grid

◦ For vertical tap walls, ensure that the cell’s height in the specified orientation is an
integer multiple of the y-pitch of the FinFET grid

By default, the tool uses the following naming convention for inserted tap cells:

extTapWall__library_cell_name_R#_C#_number

To identify the tap cells inserted in a specific run, use the -prefix option to specify a
prefix string. When you use this option, the tool uses the following naming convention:

prefix__library_cell_name_R#_C#_number

• The side along which to insert the tap wall (the -side option)

You can specify only a single side, top, bottom, right, or left. To insert a tap wall on
more than one side, run the command multiple times.

• The tap insertion region (the -bbox option)

You specify the tap insertion region by specifying the lower-left and upper-right corners
of its bounding box:

-bbox {{llx lly} {urx ury}}

The bounding box must span a portion of the object’s edge on the specified side
along which to insert the tap wall. If the bounding box spans multiple edges along
the specified side, the command inserts the tap wall along the longest edge. If the
bounding box does not span any edges of the specified side, the command issues an
error message.

IC Compiler™ II Implementation User Guide
T-2022.03

467

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

By default, a horizontal tap wall starts at the left edge of the specified bounding box
and abuts the top or bottom boundary edge; a vertical tap wall starts at the bottom
edge of the specified bounding box and abuts the left or right boundary edge. To
specify margins for the tap wall insertion, use the -x_margin and -y_margin options.
If the specified region, including the margins, is too small to fit a tap wall, the command
does not insert tap cells.

You should ensure that the insertion region does not contain any placement blockages,
fixed cells, or macros. These obstructions can prevent the insertion of the tap cells and
result in an incomplete or missing tap wall.

When inserting the tap wall, the command does not honor the standard cell rows or sites
and does not cross the object boundary. After insertion, the command fixes the placement
of the inserted tap cells.

Inserting Interior Tap Walls
An interior tap wall is a row or column of tap cells that is placed inside the boundary of the
standard cell placement area of a block, a macro, hard placement blockage, or nondefault
voltage area.

Note:
You can insert interior tap walls only for designs with a single site definition.

To insert an interior tap wall, use the create_interior_tap_walls command. You must
specify the following information:

• The tap cell used in the tap wall (the -lib_cell option)

The specified tap cell must be a single-height cell that matches the row height and site
width.

By default, the command inserts the tap cells with the row orientation. To place the
cells with a different orientation, use the -orientation option.

By default, the tool uses the following naming convention for inserted tap cells:

tapfiller__library_cell_name_R#_C#_number

To identify the tap cells inserted in a specific run, use the -prefix option to specify a
prefix string. When you use this option, the tool uses the following naming convention:

prefix__library_cell_name_R#_C#_number

• The side along which to insert the tap wall (the -side option)

You can specify only a single side, top, bottom, right, or left. To insert a tap wall on
more than one side, run the command multiple times.

IC Compiler™ II Implementation User Guide
T-2022.03

468

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

By default, the tap cells are placed along all edges on the specified side of the standard
cell placement area with no gaps between the tap cells.

• To specify the tap insertion region, use the -bbox option to specify the lower-left and
upper-right corners of its bounding box:

-bbox {{llx lly} {urx ury}}

When you use this option, the command inserts a tap wall along the longest edge
on the specified side of the placeable area encompassed by the bounding box. The
alignment of the tap wall depends on the number of corners of the edge segment
encompassed by the bounding box.

◦ If the edge segment does not contain a corner, the tap wall starts at the left edge for
a horizontal tap wall or the bottom edge for a vertical tap wall.

◦ If the edge segment contains one corner, the tap wall starts at that corner.

◦ If the edge segment contains two corners along the specified side, the tap wall
starts at the left edge for a horizontal tap wall or the bottom edge for a vertical tap
wall.

For a horizontal tap wall with two corners, the spacing between the last two cells
might be shortened to align with the right corner. If there is not enough space, the
last cell might not abut the right corner.

• For horizontal tap walls, you can specify a gap distance between tap cells by using the
-x_spacing option.

If you specify a value smaller than the tap cell width, the command uses a spacing of
zero. If you specify a value that is not a multiple of the site width, the command rounds
it down to a multiple of the site width.

When inserting the tap wall, the command honors the standard cell rows and sites; if the
rows and sites are not defined, the command does not insert tap cells. Obstructions such
as placement blockages, fixed cells, and macros can prevent the insertion of the tap cells
and result in an incomplete or missing tap wall.

After insertion, the command fixes the placement of the inserted tap cells.

IC Compiler™ II Implementation User Guide
T-2022.03

469

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

Inserting Tap Meshes
A tap mesh is a two-dimensional array of tap cells with a tap cell in each mesh window. A
tap mesh is typically inserted outside of a place and route block, but you can insert one in
any area that is either completely inside or completely outside the core area.

To insert a tap mesh, use the create_tap_meshes command. You must specify the
following information:

• The tap cell used in the tap mesh (the -lib_cell option)

By default, the command inserts the tap cells with R0 orientation. To place the cells
with a different orientation, use the -orientation option.

By default, the tool uses the following naming convention for inserted tap cells:

headerfooter__library_cell_name_R#_C#_number

To identify the tap cells inserted in a specific run, use the -prefix option to specify a
prefix string. When you use this option, the tool uses the following naming convention:

prefix__library_cell_name_R#_C#_number

• The tap insertion region (the -bbox option)

You specify the tap insertion region by specifying the lower-left and upper-right corners
of its bounding box:

-bbox {{llx lly} {urx ury}}
• The mesh window (the -mesh_window option)

You specify the size of the mesh window by specifying an integer value for the pitch in
the x- and y-directions.

-mesh_window {x_pitch y_pitch}

The mesh window is aligned with the lower-left corner of the tap insertion region.

When inserting the tap mesh, the command does not honor the standard cell rows or sites.
It places a tap cell in the lower-left corner of each mesh window. If that location is blocked,
the command uses the closest available location, which is measured as the Manhattan
distance to the lower-left corner of the mesh window. If there is no available location, the
command issues a warning and does not place a tap cell in that mesh window.

After insertion, the command fixes the placement of the inserted tap cells.

IC Compiler™ II Implementation User Guide
T-2022.03

470

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Tap Cells

Feedback

Inserting Dense Tap Arrays
A dense tap array is a tap cell array whose tap distance is smaller than the tap distance
used by the create_tap_cells command.

To insert a dense tap array, use the create_dense_tap_cells command. You must
specify the following information:

• The tap cell used in the tap wall (the -lib_cell option)

You must specify the same tap cell as when you ran the create_tap_cells command.

By default, the tool uses the following naming convention for inserted tap cells:

tapfiller!library_cell_name!number

Use the -separator option to change the separator character from its default of “!.”

To identify the tap cells inserted in a specific run, use the -prefix option to specify a
prefix string. When you use this option, the tool uses the following naming convention:

tapfiller!prefix!library_cell_name!number

• The tap distance (the -distance option)

The specified distance must be smaller than the tap distance used by the
create_tap_cells command.

• The tap insertion region (the -bbox option)

You specify the tap insertion region by specifying the lower-left and upper-right corners
of its bounding box:

-bbox {{llx lly} {urx ury}}
The create_dense_tap_cells command first removes the existing tap cells
that are completely within the tap insertion region, and then reinserts the tap cells
with the specified tap distance to create a denser array in the specified region. To
avoid tap rule violations, specify the same tap cell insertion pattern as was used
by the create_tap_cells command. The create_dense_tap_cells command
supports the following options to control the tap cell insertion: -offset, -pattern,
-skip_fixed_cells, and -at_distance_only. For details about these options, see the
man page.

After insertion, the command fixes the placement of the inserted tap cells.

IC Compiler™ II Implementation User Guide
T-2022.03

471

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Performing Boundary Cell Insertion

Feedback

Performing Boundary Cell Insertion
Before placing the standard cells, you can add boundary cells to the block. Boundary
cells consist of end-cap cells, which are added to the ends of the cell rows and around the
boundaries of objects such as the core area, hard macros, blockages, and voltage areas,
and corner cells, which fill the empty space between horizontal and vertical end-cap cells.
End-cap cells are typically nonlogic cells such as a decoupling capacitor for the power rail.
Because the tool accepts any standard cell as an end-cap cell, ensure that you specify
suitable end-cap cells.

To insert boundary cells,

1. Specify the boundary cell insertion requirements by using the
set_boundary_cell_rules command, as described in Specifying the Boundary Cell
Insertion Requirements.

2. Insert the boundary cells based on the specified rules by using the
compile_boundary_cells or compile_targeted_boundary_cells command, as
described in Inserting Boundary Cells.

3. Verify the boundary cell placement by using the check_boundary_cells or
check_targeted_boundary_cells command, as described in Verifying the Boundary
Cell Placement.

This process supports a single site definition per run. The compile_boundary_cells
and compile_targeted_boundary_cells commands determine the site definition based
on the library cells specified with the set_boundary_cell_rules command, and insert
boundary cells only in the regions that use this site definition. If your design has multiple
site definitions, you must run this process one time for each site definition.

Specifying the Boundary Cell Insertion Requirements
To specify the boundary cell insertion requirements, use the set_boundary_cell_rules
command. You use this command to specify the following requirements:

• The library cells to use for the boundary cells, as described in Specifying the Library
Cells for Boundary Cell Insertion

• The rules used to place the boundary cells, as described in Specifying Boundary Cell
Placement Rules

• The naming convention used for the inserted cells, as described in Specifying the
Naming Convention for Boundary Cells

• The creation of routing guides to honor the metal cut allowed and forbidden preferred
grid extension rules, as described in Creating Routing Guides During Boundary Cell
Insertion

IC Compiler™ II Implementation User Guide
T-2022.03

472

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Performing Boundary Cell Insertion

Feedback

Note:
This feature is supported only by the compile_boundary_cells command;
it is not supported by the compile_targeted_boundary_cells command.

• The creation of placement blockages to honor the minimum jog and minimum
separation rules, as described in Creating Placement Blockages During Boundary Cell
Insertion

Note:
This feature is supported only by the compile_boundary_cells command;
it is not supported by the compile_targeted_boundary_cells command.

Note:
The settings specified by the set_boundary_cell_rules command are saved
in the design library.

See Also

• Reporting the Boundary Cell Insertion Requirements

Specifying the Library Cells for Boundary Cell Insertion
Boundary cells include both end-cap cells placed on the left, right, top, and bottom
boundaries, and inside and outside corner cells. You can specify different library cells for
each boundary cell type. To specify the library cells, use the following options with the
set_boundary_cell_rules command:

• -left_boundary_cell and -right_boundary_cell
These options specify a single library cell that is used for the end-cap cells for the left
and right boundaries, respectively.

• -top_boundary_cells and -bottom_boundary_cells
These options specify a list of library cells that are used for the end-cap cells for the top
and bottom boundaries, respectively. The command inserts the cells in the specified
order. If the remaining space is smaller than the current cell, the command inserts the
next cell in order that fits in the remaining space.

For a vertical-row block, rows start at the bottom and end at the top, so the top
boundary is along the left side of the block and the bottom boundary is along the right
side of the block.

For the flipped rows in a double-back block, the top boundary cells are used on the
bottom boundaries and the bottom boundary cells are used on the top boundaries.

• -top_tap_cell and -bottom_tap_cell

IC Compiler™ II Implementation User Guide
T-2022.03

473

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Performing Boundary Cell Insertion

Feedback

These options specify a single library cell that is used for the tap cells on the top and
bottom boundary rows, respectively. The tool inserts the tap cells to ensure that the
end-cap cells inserted on the top and bottom boundary rows comply with the maximum
diffusion-to-tap distance limit.

• -top_left_outside_corner_cell, -top_right_outside_corner_cell,
-bottom_left_outside_corner_cell, and -bottom_right_outside_corner_cell
These options specify a single library cell that is used for each outside corner location.

• -top_left_inside_corner_cells, -top_right_inside_corner_cells,
-bottom_left_inside_corner_cells, and -bottom_right_inside_corner_cells
These options specify a list of library cells for each inside corner location. The tool
inserts the first corner cell that matches the size of the inside corner. If none matches
exactly, it inserts the first cell that can be placed without violating any rules.

Figure 83 shows the boundary and corner cell locations for a horizontal-row block with two
hard macros or blockages. Note that the cell locations are flipped when the row is flipped.

Figure 83 Boundary Cell Locations

IC Compiler™ II Implementation User Guide
T-2022.03

474

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Performing Boundary Cell Insertion

Feedback

Specifying Boundary Cell Placement Rules
By default,

• When you run the compile_boundary_cells command, the tool places the boundary
cells in their default orientation around the core area, hard macros, and hard placement
blockages.

• When you run the compile_targeted_boundary_cells command, the tool places the
boundary cells in their default orientation around the specified objects.

To flip the boundary cell orientations, use one or more of the
following options with the set_boundary_cell_rules command:
-mirror_left_boundary_cell, -mirror_right_boundary_cell,
-mirror_left_outside_corner_cell, -mirror_right_outside_corner_cell,
-mirror_left_inside_corner_cell, -mirror_right_inside_corner_cell,
-mirror_left_inside_horizontal_abutment_cell, and
-mirror_right_inside_horizontal_abutment_cell. You cannot flip the orientation of
the top and bottom boundary cells.

In addition, when you use the compile_boundary_cells command, you can modify the
following aspects of the default placement behavior:

• Swapping of the top and bottom inside corner cells on flipped rows

Use the -do_not_swap_top_and_bottom_inside_corner_cell option with the
set_boundary_cell_rules command to prevent the command from using the bottom
inside corner cell on the top inside corner of flipped rows and the top inside corner cell
on the bottom inside corner of flipped rows.

• Consideration of voltage areas

Use the -at_va_boundary option with the set_boundary_cell_rules command to
insert horizontal boundary cells on both sides of the voltage area boundaries.

• Existence of one-unit-tile gaps

Use the -no_1x option with the set_boundary_cell_rules command to prevent
boundary cell insertion from creating one-unit-tile gaps. When you use this option, the
command does not insert boundary cells on a row when the row length equals two
times the corner cell width plus one unit tile width. Note that if the row length equals
two times the corner cell width, the command does insert boundary cells.

• Distance between tap cells

Use the -tap_distance option with the set_boundary_cell_rules command to
specify the distance in microns between the tap cells inserted on the top and bottom
boundary rows.

IC Compiler™ II Implementation User Guide
T-2022.03

475

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Performing Boundary Cell Insertion

Feedback

• Insertion of boundary cells on short rows

Use the -min_row_width option with the set_boundary_cell_rules command
to prevent insertion of boundary cells on short rows. This option defines the width
threshold for inserting boundary cells on a row. If the row width is less than the
specified value, the command does not insert boundary cells on the row.

• Insertion of boundary cells in child blocks

Use the -insert_into_blocks option with the set_boundary_cell_rules command
to recursively insert boundary cells in the child blocks. By default, the tool does not
insert boundary cells in the child blocks.

Specifying the Naming Convention for Boundary Cells
By default, the tool uses the following naming convention for inserted boundary cells:

boundarycell!library_cell_name!number

To change the separator character from its default of “!,” use the -separator option with
the set_boundary_cell_rules command..

To identify the boundary cells inserted in a specific run, use the -prefix option with the
set_boundary_cell_rules command to specify a prefix string. When you use this option,
the tool uses the following naming convention:

boundarycell!prefix!library_cell_name!number

Creating Routing Guides During Boundary Cell Insertion
If your technology file defines metal cut allowed and forbidden preferred grid extension
rules, you can create routing guides for these rules during boundary cell insertion by using
the -add_metal_cut_allowed option with the set_boundary_cell_rules command.
When you use this option, the compile_boundary_cells command creates the following
routing guides:

• Metal cut allowed routing guides, which cover the area taken up by all the placeable
site rows reduced by the vertical shrink factor, which is 50 percent of the smallest site
row height

• Forbidden preferred grid extension routing guides, which cover the remaining area up
to the block boundary

Note:
This feature is supported only by the compile_boundary_cells command; it is
not supported by the compile_targeted_boundary_cells command.

IC Compiler™ II Implementation User Guide
T-2022.03

476

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Performing Boundary Cell Insertion

Feedback

Creating Placement Blockages During Boundary Cell Insertion
If your technology has minimum jog or minimum separation requirements, you can
create placement blockages for these requirements during boundary cell insertion
with the compile_boundary_cells command by using the following options with the
set_boundary_cell_rules command:

• -min_horizontal_jog
If a horizontal edge of a macro, including its hard keepout margin, hard placement
blockage, or voltage area, including its guard band, is less than the specified value,
the compile_boundary_cells -add_placement_blockage command creates a
placement blockage to prevent a violation.

• -min_vertical_jog
If a vertical edge of a macro, including its hard keepout margin, hard placement
blockage, or voltage area, including its guard band, is less than the specified value,
the compile_boundary_cells -add_placement_blockage command creates a
placement blockage to prevent a violation.

• -min_horizontal_separation
If the continuous horizontal placement area is less than the specified value, the
compile_boundary_cells -add_placement_blockage command creates a
placement blockage to prevent a violation.

• -min_vertical_separation
If the continuous vertical placement area is less than the specified value, the
compile_boundary_cells -add_placement_blockage command creates a
placement blockage to prevent a violation.

Note:
By default, the compile_boundary_cells command checks the specified
rules, but does not create the placement blockages. To create the placement
blockages, you must use the -add_placement_blockage option with the
compile_boundary_cells command.

This feature is supported only by the compile_boundary_cells command; it is
not supported by the compile_targeted_boundary_cells command.

Reporting the Boundary Cell Insertion Requirements
To report the boundary cell insertion requirements specified by the
set_boundary_cell_rules command, use the report_boundary_cell_rules
command. This command reports only the user-specified settings; it does not report any
default settings.

IC Compiler™ II Implementation User Guide
T-2022.03

477

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Performing Boundary Cell Insertion

Feedback

Removing Boundary Cell Insertion Requirements
To remove one or more of the boundary cell insertion requirements specified by the
set_boundary_cell_rules command, use the remove_boundary_cell_rules
command.

Inserting Boundary Cells
The IC Compiler II tool provides several methods for inserting boundary cells, depending
on where you want to insert the boundary cells.

• To insert boundary cells around the core area, hard macros, and placement blockages,
use the compile_boundary_cells command.

• To insert boundary cells only around one or more voltage areas, use the
compile_boundary_cells command with the -voltage_area option.

• To insert boundary cells only around specific objects, use the
compile_targeted_boundary_cells command with the -target_objects option.
You can use this command to insert boundary cells around specific macros, voltage
areas, voltage area shapes, placement blockages, routing blockages, and the core
area.

The set_boundary_cell_rules command configures boundary cell insertion for both
the compile_boundary_cells and compile_targeted_boundary_cells commands.
However, some rules are honored only by the compile_boundary_cells command. For
details, see Specifying the Boundary Cell Insertion Requirements.

Verifying the Boundary Cell Placement
After inserting the boundary cells with the compile_boundary_cells command, verify the
placement by using the check_boundary_cells command. To create an error data file to
view the errors in the error browser, use the -error_view option. For information about
using the error browser, see the IC Compiler II Graphical User Interface User Guide.

This command checks the boundary cell placement for the following issues:

• Missing boundary or corner cells

This check verifies that there are boundary and corner cells around the entire
boundary, with no gaps. Figure 84 shows a valid placement, as well as errors caused
by missing cells.

IC Compiler™ II Implementation User Guide
T-2022.03

478

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Figure 84 Check for Missing Boundary or Corner Cells

Note:
For established nodes, boundary cells are inserted only on the left and right
sides. In this case, the command verifies only that there are no gaps on
these sides.

• Incorrect boundary or corner cells

This check verifies that the library cells used for the boundary and corner cells match
the cells specified by the set_boundary_cell_rules command.

• Incorrect orientation of boundary cells

This check verifies that the orientation of each boundary cell matches the allowed
orientations specified by the set_boundary_cell_rules command.

• Short rows and edges

This check verifies that each row of boundary cells is wider than the value
specified by the set_boundary_cell_rules -min_row_width option and that
the horizontal edges of each blockage are greater than the value specified by the
set_boundary_cell_rules -min_horizontal_jog option.

Finding and Fixing Antenna Violations
In chip manufacturing, gate oxide can be easily damaged by electrostatic discharge. The
static charge that is collected on wires during the multilevel metalization process can
damage the device or lead to a total chip failure. The phenomenon of an electrostatic
charge being discharged into the device is referred to as either antenna or charge-
collecting antenna problems.

IC Compiler™ II Implementation User Guide
T-2022.03

479

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

To prevent antenna problems, the tool verifies that for each input pin the metal antenna
area divided by the gate area is less than the maximum antenna ratio given by the
foundry:

(antenna-area)/(gate-area) < (max-antenna-ratio)

This check is based on the global and layer-specific antenna rules defined for the block
and the antenna properties of the cells in the block.

The antenna flow consists of the following steps:

1. Define the antenna rules.

2. Specify the antenna properties of the pins and ports.

3. Analyze and fix the antenna violations.

Defining Antenna Rules
Antenna rules define how to calculate the maximum antenna ratio for the nets in a block,
as well as the antenna ratio for a pin. You must define a global antenna rule by using the
define_antenna_rule command. You can also specify layer-specific antenna rules by
using the define_antenna_layer_rule command. The tool uses the global antenna rule
whenever a layer-specific antenna rule does not exist.

The following topics describe how to define the antenna rules:

• Calculating the Maximum Antenna Ratio

• Calculating the Antenna Ratio for a Pin

Calculating the Maximum Antenna Ratio
To control the method used to calculate the maximum allowable antenna ratio, you must
specify the following information:

• How much protection the diodes provide (the diode protection mode)

To specify the diode protection mode, use the -diode_mode option with the
define_antenna_rule command, as described in Setting the Diode Protection Mode.
This is a required option of the define_antenna_rule command.

• How to perform antenna ratio calculation with diode protection (the diode ratio vector)

To specify the diode ratio vector, use the -diode_ratio option with the
define_antenna_layer_rule command, as described in Specifying the Diode Ratio
Vector. This is a required option of the define_antenna_layer_rule command.

IC Compiler™ II Implementation User Guide
T-2022.03

480

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Setting the Diode Protection Mode
The diode protection mode specifies how much protection the diodes provide.

Advanced technology designs often use cells and macros with different gate oxide
thicknesses, which affect the antenna rule calculations. The IC Compiler II tool uses gate
classes to represent the various gate oxide thicknesses. The tool supports up to four gate
oxide thicknesses: gate class 0, gate class 1, gate class 2, and gate class 3. If a cell pin
does not have gate class data, it is treated as gate class 0.

The IC Compiler II tool supports 18 diode protection modes, most of which support only a
single gate oxide thickness. For advanced technology designs that use cells and macros
with different gate oxide thicknesses, you must use one of the diode protection modes that
support multiple gate oxide thicknesses: 14, 16, and 18.

To specify the diode protection mode, use the -diode_mode option with the
define_antenna_rule command. This is a required option of the define_antenna_rule
command.

Table 28 defines how each of the diode protection mode settings affect the maximum
antenna ratio for a net. The diode protection mode also affects the computation of the
maximum antenna ratio for individual diodes. The antenna ratio calculation formulas for
diodes are shown in Table 30; these formulas use the values in the diode ratio vector
specified in the -diode_ratio option of the define_antenna_layer_rule command, as
described in Specifying the Diode Ratio Vector.

Table 28 Diode Protection Mode Settings

Diode protection mode Definition

0 The diodes do not provide any protection.

1 The diodes provide unlimited protection.
In this mode, the highest metal layer is not checked for antenna
violations because the input-to-output connection is completed when
the highest metal layer is formed.

2 Diode protection is limited; if more than one diode is connected, the
largest value of the maximum antenna ratio for all diodes is used.

3 Diode protection is limited; if more than one diode is connected, the
sum of the maximum antenna ratios for all diodes is used.

4 Diode protection is limited; if more than one diode is connected, the
sum of the diode-protection values for all diodes is used to compute
the maximum antenna ratio.

5 Diode protection is limited; the maximum diode-protection value for all
diodes is used to calculate the equivalent gate area.

IC Compiler™ II Implementation User Guide
T-2022.03

481

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Table 28 Diode Protection Mode Settings (Continued)

Diode protection mode Definition

6 Diode protection is limited; the sum of the diode-protection values for
all diodes is used to calculate the equivalent gate area.

7 Diode protection is limited; the maximum diode-protection value for all
diodes is used to calculate the equivalent metal area.

8 Diode protection is limited; the sum of the diode-protection values for
all diodes is used to calculate the equivalent metal area.

9 Diode protection is limited; scaling is based on maximum diode
protection.

10 Diode protection is limited; scaling is based on total diode protection.

11 Diode protection is limited; scaling is based on maximum diode
protection.

12 Diode protection is limited; scaling is based on total diode protection.

13 Obsolete.

14 Diode protection is limited; two separate calculation formulas.
Supports gate classes.

15 Internal use only.

16 Diode protection is limited; if more than one diode is connected, the
sum of the diode-protection values for all diodes is used to compute
the maximum antenna ratio. Supports gate classes.

17 Diode protection is limited; the sum of the diode-protection values for
all diodes is used to calculate the equivalent gate area. The gate area
calculation is done separately for the input and output pins.

18 Diode protection is limited; if more than one diode is connected, the
sum of the diode-protection values for all diodes is used to compute
the maximum antenna ratio. Supports gate classes and calculation
depends on whether the pin is connected to a diode.

Specifying the Diode Ratio Vector
The diode ratio vector specifies the values used to calculate the maximum antenna
ratio. To specify the diode ratio vector, use the -diode_ratio option with the
define_antenna_layer_rule command. If you do not specify a diode ratio, the tool uses
{0 0 1 0 0}. The actual usage of the diode ratio vector depends on the diode mode that
was specified in the define_antenna_rule -diode_mode option.

IC Compiler™ II Implementation User Guide
T-2022.03

482

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Table 29 shows the format of the diode ratio vector for the various diode modes. Table 30
shows how the vector values are used to calculate the maximum antenna ratio for each
diode mode. In this table,

• dp represents the diode protection value specified for an output pin. For information
about specifying this value, see Specifying Antenna Properties.

• layerMaxRatio represents the maximum antenna ratio for the layer, as specified
by the -ratio option of the define_antenna_layer_rule command or one the
-metal_ratio or -cut_ratio option of the define_antenna_rule command if the
layer-specific value is not defined.

For examples of the maximum antenna ratio calculations, see

• Example for Diode Modes 2, 3, and 4

• Example for Diode Modes 5 and 6

• Example for Diode Modes 7 and 8

• Example for Diode Mode 14 With Multiple Gate Oxide Thicknesses

Table 29 Diode Ratio Vector Formats

Diode modes Format

2-10, 17 {v0 v1 v2 v3 [v4]}

The v4 value represents the upper limit of the diode protection and is optional. If
you do not specify the v4 value, it is assumed to be 0, which means there is no
upper limit.

11, 12 {{v0 v1 v2 v3 [v4]}{s0 s1 s2 s2 s4 s5}}

The second vector, {s0 s1 s2 s3 s4 s5}, specifies scaling values.

14 {v01 v11 v21 v31 v41 v51 v61 v71 v81 v91}
{v02 v12 v22 v32 v42 v52 v62 v72 v82 v92}
{v03 v13 v23 v33 v43 v53 v63 v73 v83 v93}
{v04 v14 v24 v34 v44 v54 v64 v74 v84 v94}

You specify one 10-value vector for each of the four gate classes.

16 {v01 v11 v21 v31 v41 v51 v61 v71}
{v02 v12 v22 v32 v42 v52 v62 v72}
{v03 v13 v23 v33 v43 v53 v63 v73}
{v04 v14 v24 v34 v44 v54 v64 v74}

You specify one 8-value vector for each of the four gate classes.

IC Compiler™ II Implementation User Guide
T-2022.03

483

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Table 29 Diode Ratio Vector Formats (Continued)

Diode modes Format

18 {v01 v11 v21 v31 v41 v51 v61 v71 v81 v91 v101 v111}
{v02 v12 v22 v32 v42 v52 v62 v72 v82 v92 v102 v112}
{v03 v13 v23 v33 v43 v53 v63 v73 v83 v93 v103 v113}
{v04 v14 v24 v34 v44 v54 v64 v74 v84 v94 v104 v114}

You specify one 12-value vector for each of the four gate classes.

Table 30 Antenna Ratio Calculation Based on Diode Mode

Diode mode Calculation

0, 1 Not used

2, 3, 4 • If dp>v0 and v4<>0,
antenna_ratio = min (((dp + v1) * v2 + v3), v4)

• If dp>v0 and v4=0,
antenna_ratio = (dp + v1) * v2 + v3

• If dp<=v0,
antenna_ratio = layerMaxRatio

5 antenna_ratio = metal_area / (gate_area + equi_gate_area)
• If max_diode_protection>v0 and v4<>0,

equi_gate_area = min (((max_diode_protection + v1) * v2 + v3), v4)
• If max_diode_protection>v0 and v4=0,

equi_gate_area = (max_diode_protection + v1) * v2 + v3
• If max_diode_protection<=v0,

equi_gate_area = 0

6 antenna_ratio = metal_area / (gate_area + equi_gate_area)
• If total_diode_protection>v0 and v4<>0,

equi_gate_area = min (((total_diode_protection + v1) * v2 + v3), v4)
• If total_diode_protection>v0 and v4=0,

equi_gate_area = (total_diode_protection + v1) * v2 + v3
• If total_diode_protection<=v0,

equi_gate_area = 0

7 antenna_ratio = (metal_area - equi_metal_area) / gate_area
• If max_diode_protection>v0 and v4<>0,

equi_metal_area = min (((max_diode_protection + v1) * v2 + v3), v4)
• If max_diode_protection>v0 and v4=0,

equi_metal_area = (max_diode_protection + v1) * v2 + v3
• If max_diode_protection<=v0,

equi_metal_area = 0
• If equi_metal_area>metal_area,

equi_metal_area = metal_area

IC Compiler™ II Implementation User Guide
T-2022.03

484

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Table 30 Antenna Ratio Calculation Based on Diode Mode (Continued)

Diode mode Calculation

8 antenna_ratio = (metal_area - equi_metal_area) / gate_area
• If total_diode_protection>v0 and v4<>0,

equi_metal_area = min (((total_diode_protection + v1) * v2 + v3), v4)
• If total_diode_protection>v0 and v4=0,

equi_metal_area = (total_diode_protection + v1) * v2 + v3
• If total_diode_protection<=v0,

equi_metal_area = 0
• If equi_metal_area > metal_area,

equi_metal_area = metal_area

9 antenna_ratio = scale * metal_area / gate_area
• If max_diode_protection>v0,

scale = max (1 / ((max_diode_protection + v1) * v2 + v3), v4)
• If max_diode_protection<=v0,

scale = 1.0

10 antenna_ratio = scale * metal_area / gate_area
• If total_diode_protection>v0,

scale = max (1 / ((total_diode_protection + v1) * v2 + v3), v4)
• If total_diode_protection<= v0,

scale = 1.0

11 antenna_ratio = scale * metal_area / gate_area
• If max_diode_protection<v0,

scale = s0
• If max_diode_protection<v1,

scale = s1
• If max_diode_protection<v2,

scale = s2
• If max_diode_protection<v3,

scale = s3
• If max_diode_protection<v4,

scale = s4
• If max_diode_protection>=v4,

scale = s5

IC Compiler™ II Implementation User Guide
T-2022.03

485

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Table 30 Antenna Ratio Calculation Based on Diode Mode (Continued)

Diode mode Calculation

12 antenna_ratio = scale * metal_area / gate_area
• If total_diode_protection<v0,

scale = s0
• If total_diode_protection<v1,

scale = s1
• If total_diode_protection<v2,

scale = s2
• If total_diode_protection<v3,

scale = s3
• If total_diode_protection<v4,

scale = s4
• If total_diode_protection>=v4,

scale = s5

13 N/A

14 If connected to a diode,
• (metal or via area) / (gate-area) <= (dp*v1 + v2) // formula1

and
(metal or via area) / (v5*gate-area + v6* dp) <= v7// formula2

If not connected to a diode,
• (metal or via area) / (gate-area) <= v3 // formula1

and
(metal or via area) / (v8 * gate-area) <= v9 // formula2

15 N/A

16 • If dp>v0 and v4<>0,
allowable max-antenna-ratio = min (((dp + v1) * v2 + v3), v4)

• If dp>v0 and v4=0,
allowable max-antenna-ratio = (dp + v1) * v2 + v3

• If dp<=v0,
allowable max-antenna-ratio = layerMaxRatio

• If (gate-area <= v5),
antenna-ratio = antenna-area/(gate-area + v6*dp)
else
antenna-ratio = antenna-area/ (gate-area + v6*dp + v7)

17 antenna_ratio = metal_area / (gate_area + equi_gate_area)
• If total_diode_protection>v0 and v4<>0,

equi_gate_area = min (((total_diode_protection + v1) * v2 + v3), v4)
• If total_diode_protection>v0 and v4=0,

equi_gate_area = (total_diode_protection + v1) * v2 + v3
• If total_diode_protection<=v0,

equi_gate_area = 0

IC Compiler™ II Implementation User Guide
T-2022.03

486

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Table 30 Antenna Ratio Calculation Based on Diode Mode (Continued)

Diode mode Calculation

18 If connected to a diode,
• If dp>v0 and v4<>0,

allowable max-antenna-ratio = min (((dp + v1) * v2 + v3), v4)
• If dp>v0 and v4=0,

allowable max-antenna-ratio = (dp + v1) * v2 + v3
• If dp<=v0,

allowable max-antenna-ratio = layerMaxRatio
• If (gate-area <= v5),

antenna-ratio = antenna-area/(gate-area + v6*dp)
else
antenna-ratio = antenna-area/(gate-area + v6*dp + v7)

If not connected to a diode,
• If (gate-area < v8),

allowable max-antenna-ratio = v9
else
allowable-max-antenna-ratio = v10*(gate-area)v11

• antenna-ratio = (antenna-area)/(gate-area)

Example for Diode Modes 2, 3, and 4
Assume that the antenna area is calculated using surface area in single-layer mode
(antenna mode 1), the diode ratio vector for the M1 layer is {0.7 0.0 200 2000}, the
layerMaxRatio value for the M1 layer is 400, and the following diodes are connected to a
single M1 net: diode A with a diode-protection value of 0.5, diode B with a diode-protection
value of 1.0, and diode C with a diode-protection value of 1.5. In this example, the v4
value is not specified so a value of 0 is used.

Use the following commands to define the antenna rules for this example:

icc2_shell> define_antenna_rule -mode 1 -diode_mode diode_mode \
 -metal_ratio 400 -cut_ratio 20
icc2_shell> define_antenna_layer_rule -mode 1 -layer "M1" \
 -ratio 400 -diode_ratio {0.7 0.0 200 2000}

IC Compiler™ II Implementation User Guide
T-2022.03

487

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

The maximum antenna ratio for each diode is computed by using the formula for the diode
mode from Table 30. In this case,

• If dp>v0 and v4<>0,

allowable max-antenna-ratio = min (((dp + v1) * v2 + v3), v4)

• If dp>v0 and v4=0,

allowable max-antenna-ratio = (dp + v1) * v2 + v3

• If dp<=v0,

allowable max-antenna-ratio = layerMaxRatio

Table 31 shows the maximum antenna ratio for each diode calculated using this formula.

Table 31 Calculation of Maximum Antenna Ratio for Each Diode

Diode Protection value Maximum Antenna Ratio

A 0.5 400
Protection value is less than the v0 value of 0.7, so use maximum
antenna ratio of 400.

B 1.0 2200
Protection value is greater than the v0 value of 0.7, so maximum
antenna ratio is (1.0+0.0) * 200 + 2000 = 2200.

C 1.5 2300
Protection value is greater than the v0 value of 0.7, so maximum
antenna ratio is (1.5+0.0) * 200 + 2000 = 2300.

The maximum antenna ratio for the net is computed by using the formula for the diode
mode from Table 29:

• For diode mode 2, the maximum antenna ratio for the net is the largest of the maximum
antenna ratio values for the diodes, 2300.

• For diode mode 3, the maximum antenna ratio for the net is the sum of the maximum
antenna ratios for the diodes, 400 + 2200 + 2300 = 4900.

• For diode mode 4, the maximum antenna ratio for the net is computed by using the
formula from Table 30 using the sum of the diode-protection values of the diodes,
(0.5+1.0+1.5) * 200 + 2000 = 2600.

Example for Diode Modes 5 and 6
Assume that the antenna area is calculated using surface area in single-layer mode
(antenna mode 1), the diode ratio vector for the M1 layer is {0 0 1 0} (the default diode

IC Compiler™ II Implementation User Guide
T-2022.03

488

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

ratio vector), the layerMaxRatio value for the M1 layer is 400, and the following diodes are
connected to a single M1 net: diode A with a diode-protection value of 0.5, diode B with
a diode-protection value of 1.0, and diode C with a diode-protection value of 1.5. In this
example, the v4 value is not specified so a value of 0 is used.

Use the following command to define the antenna rules for this example:

icc2_shell> define_antenna_rule -mode 1 -diode_mode diode_mode \
 -metal_ratio 400 -cut_ratio 20
Because this example uses the global layerMaxRatio value and the default diode ratio
vector, you do not need to define a layer-specific antenna rule.

As shown in Table 30, for diode modes 5 and 6, the maximum antenna ratio is computed
as

metal_area / (gate_area + equi_gate_area)

where the equivalent gate area, equi_gate_area, is computed by using the diode ratio
vector: (diode_protection + v1) * (v2 + v3).

• For diode mode 5, the equivalent gate area is computed using the maximum diode
protection, which is 1.5, so the maximum antenna ratio for the net is

metal_area / (gate_area + ((1.5 + 0) * (1 + 0))) = metal_area/(gate_area + 1.5)

• For diode mode 6, the equivalent gate area is computed using the total diode
protection, which is 0.5+1.0+1.5=3.0, so the maximum antenna ratio for the net is

metal_area / (gate_area + ((3.0 + 0) * (1 + 0))) = metal_area/(gate_area + 3.0)

Example for Diode Modes 7 and 8
Assume that the antenna area is calculated using surface area in single-layer mode
(antenna mode 1), the diode ratio vector for the M1 layer is {0.7 0.0 150 800}, the
layerMaxRatio value for the M1 layer is 400, and the following diodes are connected to a
single M1 net: diode A with a diode-protection value of 0.5, diode B with a diode-protection
value of 1.0, and diode C with a diode-protection value of 1.5. In this example, the v4
value is not specified so a value of 0 is used.

Use the following commands to define the antenna rules for this example:

icc2_shell> define_antenna_rule -mode 1 -diode_mode diode_mode \
 -metal_ratio 400 -cut_ratio 20
icc2_shell> define_antenna_layer_rule -mode 1 -layer "M1" \
 -ratio 400 -diode_ratio {0.7 0.0 150 800}

IC Compiler™ II Implementation User Guide
T-2022.03

489

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

As shown in Table 30, for diode modes 7 and 8, the maximum antenna ratio is computed
as

(metal_area - equi_gate_area) / gate_area

where the equivalent gate area, equi_gate_area, is computed by using the diode ratio
vector: (diode_protection + v1) * (v2 + v3).

• For diode mode 7, the equivalent metal area is computed using the maximum diode
protection, which is 1.5, so the maximum antenna ratio for the net is

(metal_area - ((1.5 + 0) * (150 + 800))) / gate_area = (metal_area - 1025) / gate_area

• For diode mode 8, the equivalent metal area is computed using the total diode
protection, which is 0.5+1.0+1.5=3.0, so the maximum antenna ratio for the net is

(metal_area - ((3.0 + 0) * 150 + 800)) / gate_area = (metal_area - 1250) / gate_area

Example for Diode Mode 14 With Multiple Gate Oxide Thicknesses
Assume that the antenna area is calculated using surface area in single-layer mode
(antenna mode 1), the design contains cells with two different gate oxide thicknesses, the
diode ratio vector for the first oxide thickness (gate class 0) for the M1 layer is {1 0 1e9
1e9 0 1 2 285 1 285}, the diode ratio vector for the second oxide thickness (gate class 1)
for the M1 layer is {1 0 1e9 1e9 1 0 2 165 1 28}, and the layerMaxRatio value for the M1
layer is 285.

For diode mode 14, the diode ratio vector contains 10 values for each gate class. Because
the design uses only two gate oxide thicknesses, only the vectors for gate class 0 and
gate class 1 are used. However, you must specify all 40 values when defining the antenna
rule. For unused gate classes (gate class 2 and gate class 3 in this example), specify very
large ratios to disable the checks.

Use the following commands to define the antenna rules for this example:

icc2_shell> define_antenna_rule -mode 1 -diode_mode 14 \
 -metal_ratio 285 -cut_ratio 10
icc2_shell> define_antenna_layer_rule -mode 1 -layer "M1" \
 -ratio 285 -diode_ratio {1 0 1e9 1e9 0 1 2 285 1 285 \
 1 0 1e9 1e9 1 0 2 165 1 28 \
 1 0 1e9 1e9 0 1 2 1e9 1 1e9 \
 1 0 1e9 1e9 0 1 2 1e9 1 1e9 }

IC Compiler™ II Implementation User Guide
T-2022.03

490

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Calculating the Antenna Ratio for a Pin
The tool supports several ways to calculate the antenna ratio (antenna-area/gate-area).
You control this calculation by specifying the following information:

• How the antenna area is calculated (the antenna area mode)

• Which metal segments are considered for the calculation (the antenna recognition
mode)

To specify these modes, use the -mode option with the define_antenna_rule and
define_antenna_layer_rule commands, as described in Setting the Antenna Mode.
This is a required option for both of these commands.

Setting the Antenna Mode
The antenna mode controls the antenna ratio calculation by determining

• How the antenna area is calculated (the antenna area mode)

The tool supports the following area calculation modes:

◦ Surface area, which is calculated as W x L

◦ Sidewall area, which is calculated as (W + L) x 2 x thickness

Note:
If you use sidewall area calculation, you must define the metal thickness
by specifying the unitMinThickness, unitNomThickness, and
unitMaxThickness attributes in each Layer section of the technology
file.

IC Compiler™ II Implementation User Guide
T-2022.03

491

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

• Which metal segments are considered for the calculation (the antenna recognition
mode)

To tool supports the following antenna recognition modes:

◦ Single-layer mode

In single-layer mode, the tool considers only the metal segments on the current
layer; the metal segments on all lower layers are ignored. This mode allows the
best routability. In this mode, the antenna ratio is calculated as

antenna_ratio = connected metal area of the layer / total gate area

◦ Accumulated-ratio mode

In accumulated-ratio mode, the tool considers the metal segments on the current
layer and the lower-layer segments connected to the input pins. In this mode, the
antenna ratio is calculated as

antenna_ratio = accumulation of the single-layer mode ratios of the current layer
and layers below

◦ Accumulated-area mode

In accumulated-area mode, the tool considers the metal segments on the current
and lower layers. In this mode, the antenna ratio is calculated as

antenna_ratio = connected metal area of the current and lower layers/ total gate
area

For a detailed example of the antenna recognition modes, see Antenna Recognition
Mode Example.

The IC Compiler II tool supports six antenna modes, which are described in Table 32.
To specify the antenna mode, use the -mode option with the define_antenna_rule and
define_antenna_layer_rule commands. This is a required option for both commands.

Table 32 Antenna Mode Settings

Antenna mode value Area calculation mode Antenna recognition mode

1 Surface Single-layer

2 Surface Accumulated-ratio

3 Surface Accumulated-area

4 Sidewall Single-layer

5 Sidewall Accumulated-ratio

IC Compiler™ II Implementation User Guide
T-2022.03

492

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Table 32 Antenna Mode Settings (Continued)

Antenna mode value Area calculation mode Antenna recognition mode

6 Sidewall Accumulated-area

Antenna Recognition Mode Example

Figure 85 shows a layout example with a lateral view, which is used to explain the antenna
recognition modes. Table 33 shows the antenna ratios for each antenna recognition mode
for this layout example.

Figure 85 Layout Example for Antenna Recognition Modes

Table 33 Antenna Recognition Modes and Ratios

Considered segments Antenna ratio

Single-layer mode M1 ratios
• Gate1: M1b / Gate1
• Gate2: M1c / Gate2
• Gate3: M1d / Gate3
M2 ratios
• Gate1: M2b / Gate1
• Gate2: M2d / Gate2
• Gate3: M2e / Gate3
M3 ratios
• Gate1, 2: (M3b + M3c) / (Gate1 + Gate2)
• Gate3: M3d / Gate3
M4 ratios
• Gate1, 2, 3: (M4a + M4b) / (Gate1 + Gate2 + Gate3)

IC Compiler™ II Implementation User Guide
T-2022.03

493

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Table 33 Antenna Recognition Modes and Ratios (Continued)

Considered segments Antenna ratio

Accumulated-ratio mode M1 ratios
• Gate1: M1b / Gate1
• Gate2: M1c / Gate2
• Gate3: M1d / Gate3
M2 ratios
• Gate1: M1b / Gate1 + M2b / Gate1
• Gate2: M1c / Gate2 + M2d / Gate2
• Gate3: M1d / Gate3 + M2e / Gate3
M3 ratios
• Gate1: M1b / Gate1 + M2b / Gate1 + (M3b + M3c) / (Gate1 +

Gate2)
• Gate2: M1c / Gate2 + M2d / Gate2 + (M3b + M3c) / (Gate1 +

Gate2)
• Gate3: M1d / Gate3 + M2e / Gate3 + M3d / Gate3
M4 ratios
• Gate1: M1b / Gate1 + M2b / Gate1 + (M3b + M3c) / (Gate1 +

Gate2) + (M4a + M4b) / (Gate1 + Gate2 + Gate3)
• Gate2: M1c / Gate2 + M2d / Gate2 + (M3b + M3c) / (Gate1 +

Gate2) + (M4a + M4b) / (Gate1 + Gate2 + Gate3)
• Gate3: M1d / Gate3 + M2e / Gate3 + M3d / Gate3 + (M4a + M4b) /

(Gate1 + Gate2 + Gate3)

Accumulated-area mode M1 ratios
• Gate1: M1b / Gate1
• Gate2: M1c / Gate2
• Gate3: M1d / Gate3
M2 ratios
• Gate1: (M1b + M2b) / Gate1
• Gate2: (M1c + M2d) / Gate2
• Gate3: (M1d + M2e) / Gate3
M3 ratios
• Gate1, 2: (M1b + M1c + M2b + M2c + M2d + M3b + M3c) / (Gate1

+ Gate2)
• Gate3: (M1d + M2e + M3d) / Gate3
M4 ratios
• Gate1, 2, 3: all metal areas / (Gate1 + Gate2 + Gate3)

Specifying Antenna Properties
In general, the antenna properties for standard cells and hard macros are defined in
their frame views in the reference libraries. You can set default values for the antenna

IC Compiler™ II Implementation User Guide
T-2022.03

494

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

properties, which apply to cells that do not have antenna properties defined in the
reference libraries.

• route.detail.default_diode_protection
Specifies the diode protection value used for standard cell output pins during antenna
analysis if the diode protection value is not specified in the e view of the cell.

• route.detail.default_gate_size
Specifies the gate size used for standard cell input pins during antenna analysis if the
gate size is not specified in the e view of the cell.

• route.detail.default_port_external_antenna_area
Specifies the antenna area used for ports (top-level pins) during antenna analysis if the
antenna area is not specified in the e view of the cell.

• route.detail.default_port_external_gate_size
Specifies the gate size used for ports (top-level pins) during antenna analysis if the
gate size is not specified in the e view of the cell.

• route.detail.macro_pin_antenna_mode
Specifies how macro cell pins are treated for antenna considerations.

• route.detail.port_antenna_mode
Specifies how the ports (top-level pins) are treated for antenna considerations.

If you are using a hierarchical flow and create a block abstraction for a block, you must
use the derive_hier_antenna_property command to extract the antenna information
from the block to use at the next level of hierarchy.

Note:
If the hierarchical antenna properties are not defined for all layers for a macro,
Zroute treats the data as incomplete, skips antenna analysis, and issues a
ZRT-311 warning message. If you get this error message, see SolvNet article
027178, “Debugging the ZRT-311 Message.”

See Also

• Annotating Antenna Properties on Hard Macro Cells

IC Compiler™ II Implementation User Guide
T-2022.03

495

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/027178.html
https://solvnet.synopsys.com/retrieve/027178.html

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

Analyzing and Fixing Antenna Violations
antenna rulescheckingenablingIf the design library contains antenna rules, Zroute automatically analyzes and antenna violationsenablingfixingfixes
antenna violations. antenna violationsfixingdisablingantenna rulescheckingdisablingTo disable the analysis and correction of antenna rules during detail
routing, set the route.detail.antenna application option to false.

Just like other design rules, antenna rules are checked and corrected during detail routing.
This concurrent antenna rule correction architecture reduces total runtime by minimizing
the iterations.

By default, Zroute

• Checks antenna rules and corrects violations for all clock and signal nets

To disable fixing of antenna violations on specific nets, set the
route.detail.skip_antenna_fixing_for_nets application option. Note that Zroute
analyzes the antenna rules and reports the antenna violations on these nets, but does
not fix the violations.

• Does not check or correct antenna rules for power and ground nets

To check and correct antenna rules for power and ground nets, set the
route.detail.check_antenna_on_pg application option to true.

• Starts fixing antenna violations in the second iteration, after initial routing is complete
and the basic DRC violations have been fixed

To change the iteration in which Zroute starts fixing antenna violations, set the
route.detail.antenna_on_iteration application option.

• Performs layer hopping to fix antenna violations

Layer hopping decreases the antenna ratio by splitting a large metal polygon into
several upper-level polygons. Zroute performs the following types of layer hopping:

◦ Breaking the antenna with a higher-level metal segment

Zroute uses this technique to fix most antenna violations. For antenna violations
that happen at metal-N, inserting a small segment of metal-(N+1) close to the gate
reduces the ratio between the remaining metal-N, making the ratio much lower.
This approach is not suitable for fixing top-metal layer antenna violations when the
output pin can provide only limited protection because there is no way for the router
to break antenna violations at the topmost metal layer.

◦ Moving down to a lower-level metal

Zroute uses this technique to fix only topmost layer antenna violations when output
pins provide only limited protection. For antenna violations that happen at metal-N,

IC Compiler™ II Implementation User Guide
T-2022.03

496

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

replace part of the metal-N with metal-(N-1 or lower) to reduce the ratio. However,
splitting the metal layer into many pieces might have a negative impact on RC and
timing delay.

Zroute can also insert diodes to fix antenna violations. To enable the insertion of diodes
to fix antenna violations, set the route.detail.insert_diodes_during_routing
application option to true. To force Zroute to fix antenna violations by inserting diodes,
disable layer hopping by setting the route.detail.hop_layers_to_fix_antenna
application option to false. For information about inserting diodes to fix antenna
violations, see Inserting Diodes During Detail Routing.

If both layer hopping and diode insertion are enabled, by default, Zroute first tries
to use layer hopping to fix the antenna violation. To change the preference to diode
insertion, set the route.detail.antenna_fixing_preference application option to
use_diodes.

As with other design rule violations, antenna violations are reported at the end of each
detail routing iteration. For example,

DRC-SUMMARY:
 @@@@@@@ TOTAL VIOLATIONS = 506
 @@@@ Total number of instance ports with antenna violations = 1107

antenna rulescheckingTo check for antenna violations, use the check_routes -antenna true command.

Inserting Diodes During Detail Routing
One way to protect gates from antenna effects is to provide a discharge path for the
accumulated charge to leave the net. However, the discharge path should not allow
current to flow during normal chip operation. Discharging can be accomplished by
inserting a reverse-biased diode on the net close to the gate that is being protected.

To enable diode insertion during detail routing, set the
route.detail.insert_diodes_during_routing application option to true.

To control diode insertion, set the following application options:

• To specify a preference for fixing antenna violations by using diode insertion rather than
layer hopping, set the route.detail.antenna_fixing_preference application option
to use_diodes.

• To require fixing of antenna violations by using diode insertion, disable layer hopping by
setting the route.detail.hop_layers_to_fix_antenna application option to false.

• By default, when you enable diode insertion, Zroute can fix an antenna violation either
by adding a new diode or by using an existing spare diode. Zroute determines which

IC Compiler™ II Implementation User Guide
T-2022.03

497

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Finding and Fixing Antenna Violations

Feedback

method to use, based on which is closest to the required location: an empty location for
a new diode or an existing spare diode.

◦ To specify a preference for using a new diode or using an existing spare diode,
set the route.detail.diode_preference application option to new or spare,
respectively. To reset the diode preference to the default behavior, set the
route.detail.diode_preference application option to none.

◦ If you want Zroute to use only one of these methods, set the
route.detail.diode_insertion_mode application option to new to force the
insertion of new diodes or to spare to force the use of existing spare diodes.

To reset the diode insertion method to the default behavior, set the
route.detail.diode_insertion_mode application option to new_and_spare.

Note:
To take advantage of spare diodes for antenna violation fixing, you need
to add the spare diodes either before or after standard-cell placement and
before routing the areas where antenna violations might occur.

• When inserting new diodes, Zroute selects the diodes from the reference libraries
and inserts them into existing open spaces. To control which diodes are used, set the
route.detail.diode_libcell_names application option.

When you specify the diode library cells, use only the cell names. If you include the
library name, the tool does not recognize the diode cells.

• By default, Zroute reuses existing filler cell locations for diode insertion.

To prevent Zroute from reusing these locations, set the
route.detail.reuse_filler_locations_for_diodes application option to false.

Zroute considers voltage areas when inserting diode cells and also observes the logic
hierarchy assignments for diode cells.

• If a pin has an antenna violation, the diode cells are inserted at the same level of logic
hierarchy as the violating pin.

• If a top-level port has an antenna violation, by default, the diode cells are inserted
at the top level. However, if the port belongs to a voltage area, you can insert the
diode cells in the logic hierarchy associated with the voltage area by setting the
route.detail.use_lower_hierarchy_for_port_diodes application option to true.

Inserting Diodes After Detail Routing
You can fix antenna violations after detail routing by explicitly specifying which violations
to fix and providing constraints for fixing them. Based on the specified constraints and the

IC Compiler™ II Implementation User Guide
T-2022.03

498

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

setting of the route.detail.diode_insertion_mode application option, Zroute either
inserts new diodes or reuses existing spare diodes to fix the specified violations.

To insert diodes after detail routing, use the create_diodes command. When you use
this command, you must use the -options option to specify the location of each antenna
violation to fix by specifying the port and cell instance, the reference cell for the diode,
the number of diodes to insert, the highest allowed routing layer used for connecting the
diode, and the maximum distance from the specified pin that the diode can be inserted. If
a diode cannot be inserted or reused within the specified distance, the tool does not insert
a diode for that violation.

Use the following format to specify these values:

{port_name instance_name diode_reference number_of_diodes
 max_routing_layer max_routing_distance}

Note:
You can use this command to insert diodes for top-level ports by specifying the
name of the top-level block for the cell instance.

The create_diodes command uses the following application options to control diode
insertion:

• To control whether Zroute inserts new diodes or reuses spare diodes, set the
route.detail.diode_insertion_mode application option.

• To control whether Zroute can reuse filler cell locations, set the
route.detail.reuse_filler_locations_for_diodes application option.

• To specify the logic hierarchy in which to insert the diodes for top-level ports, set the
route.detail.use_lower_hierarchy_for_port_diodes application option.

For example, to insert 2 Adiode diode cells to fix an antenna violation on the A port of the
CI cell instance, where the diodes must be inserted using no higher layer than M5 and
within 2.5 microns of the port, enter the following command:

icc2_shell> create_diodes {{A CI Adiode 2 M5 2.5}}

Inserting Redundant Vias
Redundant via insertion is an important design-for-manufacturing (DFM) feature that is
supported by Zroute throughout the routing flow. In each routing stage, Zroute concurrently
optimizes via count as well as wire length. The redundant via result is measured by
the redundant via conversion rate, which is defined as the percentage of single vias
converted into redundant vias. You should also pay attention to the number of unoptimized

IC Compiler™ II Implementation User Guide
T-2022.03

499

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

single vias. If a block has fewer unoptimized single vias, it is usually better for DFM. The
following topics describe how to insert redundant vias:

• Inserting Redundant Vias on Clock Nets

• Inserting Redundant Vias on Signal Nets

Inserting Redundant Vias on Clock Nets
Zroute can insert redundant vias on clock nets either during or after routing. This topic
describes how to insert redundant vias during clock routing. For information about
postroute redundant via insertion, see Postroute Redundant Via Insertion.

To insert redundant vias on clock nets during clock routing,

1. Specify the redundant vias in a nondefault routing rule by using the
create_routing_rule command, as described in Specifying Nondefault Vias.

Be sure to consider both DFM and routing when you select the redundant vias;
otherwise, if you select the redundant vias based only on DFM considerations, you
could negatively impact the routability.

In addition to using nondefault routing rules to define the redundant vias for clock nets,
you can also use them to define stricter wire width and spacing rules and to define
the tapering distance. For more information about nondefault routing rules, see Using
Nondefault Routing Rules.

2. Assign the nondefault routing rule to the clock nets by using the
set_clock_routing_rules command.

icc2_shell> set_clock_routing_rules -rules clock_via_rule
3. Run clock tree synthesis.

icc2_shell> synthesize_clock_trees
4. Route the clock nets.

icc2_shell> route_group -all_clock_nets \
 -reuse_existing_global_route true
Zroute reserves space for the redundant vias during global routing and inserts the
redundant vias during detail routing.

IC Compiler™ II Implementation User Guide
T-2022.03

500

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

Inserting Redundant Vias on Signal Nets
You can perform redundant via insertion in the following ways:

• Postroute redundant via insertion

• Concurrent soft-rule-based redundant via insertion

• Near 100 percent redundant via insertion

In general, you should start with postroute redundant via insertion. If postroute redundant
via insertion results in a redundant via rate of at least 80 percent, you can try to improve
the redundant via rate by using concurrent soft-rule-based redundant via insertion. If
postroute redundant via insertion results in a redundant via rate of at least 90 percent,
you can try to improve the redundant via rate by using near 100 percent redundant via
insertion.

Note:
As the redundant via rate increases, it becomes more difficult to converge
on the routing design rules and you might see a reduction in signal integrity;
therefore, you should use near 100 percent redundant via insertion only for
those blocks that truly require such a high redundant via rate. In addition,
achieving very high redundant via rates might require you to modify the
floorplan utilization to allow enough space for the redundant vias.

The following topics describe the default via mapping table, how to define a customized
via mapping table, how to insert redundant vias by using various methods, and how to
report the redundant via rate.

• Viewing the Default Via Mapping Table

• Defining a Customized Via Mapping Table

• Postroute Redundant Via Insertion

• Concurrent Soft-Rule-Based Redundant Via Insertion

• Near 100 Percent Redundant Via Insertion

• Preserving Timing During Redundant Via Insertion

• Reporting Redundant Via Rates

IC Compiler™ II Implementation User Guide
T-2022.03

501

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

Viewing the Default Via Mapping Table
By default, Zroute reads the default contact codes from the technology file and
generates an optimized via mapping table. To see the default mapping table, use the
add_redundant_vias -list_only true command.

In most cases you achieve better results if you use a customized mapping table rather
than the default mapping table. For information about defining a customized mapping
table, see Defining a Customized Via Mapping Table.

If you have not previously defined a customized mapping table for the block, you can
see the default mapping table by using the add_redundant_vias -list_only true
command.

Note:
After you have created a customized mapping table by using the method
described in Defining a Customized Via Mapping Table, this command shows
the customized mapping table.

Example 25 shows an example of a default via mapping table.

Example 25 Default Via Mapping Table
icc2_shell> add_redundant_vias –list_only
...
Redundant via optimization will attempt to replace the following vias:

 VIA12SQ_C -> VIA12SQ_C_2x1 VIA12SQ_C_2x1(r) VIA12SQ_C_1x2 VIA12SQ_
C_1x2(r)
 VIA12SQ_C(r) -> VIA12SQ_C_2x1 VIA12SQ_C_2x1(r) VIA12SQ_C_1x2 VIA12SQ_
C_1x2(r)
...
 VIA89(r) -> VIA89_C_1x2(r) VIA89_1x2(r) VIA89_1x2 VIA89_C_1x2
 VIA89_C_2x1(r) VIA89_2x1(r) VIA89_2x1 VIA89_C_2x1
 VIA9RDL -> VIA9RDL_2x1 VIA9RDL_1x2

IC Compiler™ II Implementation User Guide
T-2022.03

502

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

Defining a Customized Via Mapping Table
To define a customized via mapping, use the add_via_mapping command. At a minimum,
you must specify the source via and its replacement vias by using the -from and -to
options. The vias listed in these options must be either vias defined in the technology
file or design-specific vias created by the create_via_def command. The vias listed in
the -from option must be simple vias or via arrays. The vias listed in the -to option can
be simple vias, simple via arrays, or custom vias. For information about creating design-
specific vias, see Defining Vias.

Use the following options to refine the via mapping:

• -weight
By default, all mappings have the same priority, and Zroute selects the redundant vias
to use based on routability. To set the priority for a mapping, use the -weight option to
assign an integer weight value between 1 and 10 to the mapping. If you do not assign
a weight, the tool assigns a weight of 1. During redundant via insertion, Zroute uses the
higher weighted redundant vias first.

• -transform
By default, Zroute can rotate or flip the via arrays during redundant via insertion (the
-transform all option).

◦ To allow only rotation of the via arrays during redundant via insertion, use the
-transform rotate option.

◦ To allow only flipping of the via arrays during redundant via insertion, use the
-transform flip option.

◦ To allow only the specified orientation of the via array during redundant via
insertion, use the -transform none option.

The tool saves the mappings defined by the add_via_mapping command in a via mapping
table in the design library. By default, if you try to add a via mapping that already exists in
the table, the command fails. To overwrite an existing mapping definition, use the -force
option.

Example 26 shows an example of using the add_via_mapping command to define a
customized via mapping table.

Example 26 Customized Via Mapping Table
icc2_shell> add_via_mapping \
 -from {VIA12 1x1} -to {VIA12T 2x1} -weight 5
icc2_shell> add_via_mapping \
 -from {VIA12 1x1} -to {VIA12 2x1} -weight 1

IC Compiler™ II Implementation User Guide
T-2022.03

503

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

To see the customized via mappings associated with a block, use the
report_via_mapping command.

• By default, this command shows all user-defined via mappings.

• To show the via mappings for specific source vias, use the -from option.

• To show the via mappings for specific replacement vias, use the -to option.

To remove mappings from the via mapping table, use the remove_via_mappings
command.

• To remove all via mappings, use the -all option.

• To remove the via mappings for specific source vias, use the -from option.

• To remove the via mappings for specific replacement vias, use the -to option.

Using a Subset of the Via Mapping Table for Redundant Via Insertion
To use a subset of the via mapping table for redundant via insertion, specify which
weight groups from the via mapping table to use by setting one or both of the
route.common.redundant_via_include_weight_group_by_layer_name and
route.common.redundant_via_exclude_weight_group_by_layer_name application
options.

• If you set only the
route.common.redundant_via_include_weight_group_by_layer_name application
option, Zroute selects redundant vias only from the specified weight groups. If you do
not specify an entry for a layer, redundant via insertion is not performed on that layer.

• If you set only the
route.common.redundant_via_exclude_weight_group_by_layer_name application
option, Zroute selects redundant vias from all weight groups in the original via mapping
table, except the specified weight groups. If you do not specify an entry for a layer, all
weight groups are used for that layer.

• If you set both application options, Zroute selects
redundant vias from the weight groups specified in the
route.common.redundant_via_include_weight_group_by_layer_name
application, excluding the weight groups specified in the
route.common.redundant_via_exclude_weight_group_by_layer_name application
option.

Postroute Redundant Via Insertion
To perform postroute redundant via insertion, use the add_redundant_vias command.

This command can replace single-cut vias with multiple-cut via arrays, single-cut vias
with other single-cut vias that have a different contact code, and multiple-cut via arrays

IC Compiler™ II Implementation User Guide
T-2022.03

504

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

with different multiple-cut via arrays. During redundant via insertion, the detail router also
checks the design rules within the neighboring partition to minimize DRC violations.

By default, the add_redundant_vias command inserts redundant vias on all nets. To
insert redundant vias only on specific nets, use the -nets option to specify the nets. Using
net-specific redundant via insertion allows you to further improve the optimized via rate
without causing large-scale routing and timing changes.

After the vias are checked and replaced, the detail router rechecks for DRC violations and
corrects any violations.

If the percentage of redundant vias is not high enough, you can increase the effort level
by using the -effort option to get a better redundant via rate. Increasing the effort level
to high can increase the redundant via rate by about 3 to 5 percent by shifting the vias
to make room for additional vias. However, because high-effort redundant via insertion
moves the vias more, it can result in a less lithography-friendly pattern at the 45-nm
technology node and below. In this case, you should use concurrent soft-rule-based
redundant via insertion to improve the redundant via rate.

You can also try to increase the postroute redundant via rate by setting the
route.detail.optimize_wire_via_effort_level application option to high, which
reduces the number of single vias and makes more room for redundant vias by reducing
wire length.

After you perform the initial postroute redundant via insertion, set the
route.common.post_detail_route_redundant_via_insertion application option
to enable automatic insertion of redundant vias after subsequent detail routing or ECO
routing. This helps to maintain the redundant via rate in your block.

Concurrent Soft-Rule-Based Redundant Via Insertion
Soft-rule-based redundant via insertion can improve the redundant via rate by reserving
space for the redundant vias during routing. You can use concurrent soft-rule-based
redundant via insertion during both initial routing and ECO routing. The actual via insertion
is not done during routing; you must still perform postroute redundant via insertion by
using the add_redundant_vias command.

Note:
Reserving space during routing increases the routing runtime. You should use
this method only when needed to improve the redundant via rate beyond that
provided by postroute redundant via insertion and the postroute approach
resulted in a redundant via rate of at least 80 percent.

IC Compiler™ II Implementation User Guide
T-2022.03

505

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

To perform concurrent soft-rule-based redundant via insertion,

1. (Optional) Define the via mapping table as described in Defining a Customized Via
Mapping Table.

2. Enable concurrent soft-rule-based redundant via insertion.

By default, concurrent redundant via insertion is disabled.

• To enable concurrent soft-rule-based redundant via insertion during initial routing,
set the route.common.concurrent_redundant_via_mode application option to
reserve_space.

icc2_shell> set_app_options \
 -name route.common.concurrent_redundant_via_mode \
 -value reserve_space
To control the effort used to reserve space for the redundant vias during initial
routing, set the route.common.concurrent_redundant_via_effort_level
application option. By default, Zroute uses low effort. The higher effort levels result
in a better redundant via conversion rate at the expense of runtime. The low and
medium efforts affect only global routing and track assignment, while high effort also
affects detail routing, which can impact design rule convergence.

Note:
If you enable the route.common.concurrent_redundant_via_mode
option before running the place_opt command, the redundant vias are
considered during congestion estimation.

• To enable concurrent soft-rule-based redundant via insertion during ECO routing,
set the route.common.eco_route_concurrent_redundant_via_mode application
option to reserve_space.

icc2_shell> set_app_options \
 -name route.common.eco_route_concurrent_redundant_via_mode \
 -value reserve_space
To control the effort used to reserve space for
the redundant vias during ECO routing, set the
route.common.eco_route_concurrent_redundant_via_effort_level
application option.

Note:
Using concurrent soft-rule-based redundant via insertion during ECO
routing can impact timing and design rule convergence. In general, you
should use this method only when you used near 100 percent redundant
via insertion during initial routing.

IC Compiler™ II Implementation User Guide
T-2022.03

506

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

3. Route the block.

During routing, Zroute reserves space for the redundant vias and fixes hard design rule
violations.

4. Perform postroute redundant via insertion.

During postroute redundant via insertion, Zroute inserts the redundant vias in the
reserved locations.

Near 100 Percent Redundant Via Insertion
You can achieve a redundant via rate near 100 percent by using hard-rule-based
redundant via insertion. Hard-rule-based redundant via insertion can improve the
redundant via rate by treating redundant vias as hard design rules during routing. You can
use nearly 100 percent redundant via insertion only during initial routing; this method is not
supported during ECO routing. When you use near 100 percent redundant via insertion
during initial routing, you should use soft-rule-based redundant via insertion during ECO
routing to preserve the redundant via rate achieved during initial routing.

Note:
This method can result in a very large runtime increase for congested blocks.
You should use this method only when needed to improve the redundant via
rate beyond that provided by concurrent soft-rule-based redundant via insertion
and the soft-rule-based approach resulted in a redundant via rate of at least 90
percent.

To perform concurrent hard-rule-based redundant via insertion,

1. Enable nearly 100 percent via insertion by setting the
route.common.concurrent_redundant_via_mode application option to
insert_at_high_cost. (By default, concurrent redundant via insertion is disabled.)

icc2_shell> set_app_options \
 -name route.common.concurrent_redundant_via_mode \
 -value insert_at_high_cost
To control the effort used to reserve space for the redundant vias, set the
route.common.concurrent_redundant_via_effort_level application option.

Note:
If you enable the route.common.concurrent_redundant_via_mode option
before running the place_opt command, the redundant vias are considered
during congestion estimation.

IC Compiler™ II Implementation User Guide
T-2022.03

507

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

2. Route the block.

During routing, Zroute inserts the redundant vias and fixes hard design rule violations.
In general, redundant via insertion has the same priority as other hard design rules;
however, if design rule checking does not converge during detail routing, Zroute
automatically relaxes the redundant via constraints to improve DRC convergence.

Preserving Timing During Redundant Via Insertion
When you insert redundant vias, it changes the timing of your block. Short nets tend to
slow down due to increased capacitance, whereas long nets tend to speed up due to
decreased resistance. Zroute redundant via insertion has a timing-preservation mode
that allows you to perform redundant via insertion without affecting the block timing by
preventing insertion of redundant vias on critical nets.

To enable timing-preservation mode for redundant via insertion, define the timing
preservation constraints by using the following options of the add_redundant_vias
command:

• -timing_preserve_setup_slack_threshold

• -timing_preserve_hold_slack_threshold

• -timing_preserve_nets
You should timing-preservation mode only at the end of the flow, after using the normal
redundant via insertion flows, which converge both the redundant via rate and the timing
QoR. Timing-preservation mode can slightly increase the redundant via rate while
maintaining timing. However, if you use timing-preservation mode earlier in the flow, before
timing is met, it might severely reduce the redundant via rate due to critical nets.

Reporting Redundant Via Rates
After redundant via insertion, whether concurrent or postroute, Zroute generates a
redundant via report that provides the following information:

• The via conversion rate for nondefault vias

The via conversion rate for nondefault vias is listed at the top of the report as the total
optimized via conversion rate.

IC Compiler™ II Implementation User Guide
T-2022.03

508

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Redundant Vias

Feedback

• The optimized via conversion rate for each layer

The optimized via conversion rate includes both double vias and DFM-friendly bar vias,
which have a single cut but a larger metal enclosure. The tool reports two values for
the via conversion rate:

◦ The total optimized via conversion rate

This value is computed based on the total via count, which includes both fixed vias
and routed vias. Fixed vias are vias that cannot be optimized by the router, such as
unrouted vias and user-defined vias.

◦ The optimized via conversion rate based on the total routed via count

This value is computed based only on the routed via count, which includes only
those vias that can be optimized by the router.

Note:
The optimized via conversion rate is not useful if you are using bar vias.

• The distribution of optimized vias by weight for each layer

To determine the via conversion rate for conversions above a certain weight, you must
add the reported conversion rates for those weights. For example, in Example 27, the
via conversion rate for weight 5 and above for layer V03 is 10.75+64.50=75.25%.

Note:
The conversion rate for unweighted vias is reported as “Un-optimized.”

• The total double via conversion rate for the block

Note:
The redundant via rate reported by the report_design command differs from
the redundant via rate reported by Zroute during redundant via insertion or the
check_routes command. This difference occurs because the report_design
command reports the double via rate for both PG vias and signal vias, while
Zroute reports the double via rate only for signal vias. In addition, Zroute bases
the conversion rate only on the redundant via mapping.

Example 27 shows an example of the redundant via report.

Example 27 Redundant Via Report
Total optimized via conversion rate = 96.94% (1401030 / 1445268 vias)
Layer V01 = 41.89% (490617 / 1171301 vias)
 Weight 10 = 9.64% (112869 vias)
 Weight 5 = 32.25% (377689 vias)
 Weight 1 = 0.01% (59 vias)
 Un-optimized = 58.11% (680684 vias)

IC Compiler™ II Implementation User Guide
T-2022.03

509

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Optimizing Wire Length and Via Count

Feedback

Layer V02 = 76.20% (1567822/ 2057614 vias)
 Weight 10 = 43.51% (895270 vias)
 Weight 5 = 28.62% (588805 vias)
 Weight 1 = 4.07% (83747 vias)
 Un-optimized = 23.80% (489792 vias)
Layer V03 = 81.87% (687115 / 839297 vias)
 Weight 10 = 64.50% (541369 vias)
 Weight 5 = 10.75% (90224 vias)
 Weight 1 = 6.62% (55522 vias)
 Un-optimized = 18.13% (152182 vias)
Layer V04 = 81.60% (226833 / 277977 vias)
 Weight 10 = 81.45% (226418 vias)
 Weight 1 = 0.15% (415 vias)
 Un-optimized = 18.40% (51144 vias)
...
Layer V09 = 85.47% (1329 / 1555 vias)
 Weight 10 = 85.47% (1329 vias)
 Un-optimized = 14.53% (226 vias)

Total double via conversion rate = 46.69% (2158006 / 4622189 vias)

Optimizing Wire Length and Via Count
During detail routing, Zroute optimizes wire length and via count in the areas where DRC
violations occur; however, it does not optimize the layout in areas where no DRC violations
occur.

To improve the manufacturing yield, use the optimize_routes command to perform
standalone optimization of wire length and via count after performing detail routing and
redundant via insertion.

By default, Zroute selects the nets to reroute based on the overall cost. For each selected
net, Zroute determines whether to reroute all the shapes in the net or just a portion of
them. To select the nets to reroute, use the -nets option to specify the nets. When you
specify the nets to optimize, you can also use the -reroute_all_shapes_in_nets option
to control whether Zroute must reroute all the associated net shapes.

By default, Zroute performs a maximum of 40 detail routing iterations to fix DRC violations
that exist after the optimization. You can use the -max_detail_route_iterations option
to control the maximum number of detail routing iterations.

Reducing Critical Areas
A critical area is a region of the block where, if the center of a random particle defect falls
there, the defect causes circuit failure, thereby reducing yield. A conductive defect causes
a short fault, and a nonconductive defect causes an open fault.

IC Compiler™ II Implementation User Guide
T-2022.03

510

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Reducing Critical Areas

Feedback

The following topics describe how to

• Reduce critical area short faults by performing wire spreading

• Reduce critical area open faults by performing wire widening

Performing Wire Spreading
After you have performed detail routing and redundant via insertion, you can perform wire
spreading to increase the average spacing between wires, which reduces the critical area
short faults and therefore improves yield.

To perform wire spreading, use the spread_zrt_wires commandcommandsspread_zrt_wiresspread_wires command. By default, the spread_zrt_wires

commandcommandsspread_zrt_wiresspread_wires command uses the following settings to spread the signal wires on the
same layer:

To perform wire spreading, use the spread_zrt_wires commandcommandsspread_zrt_wiresspread_wires command. By default, the spread_zrt_wires

commandcommandsspread_zrt_wiresspread_wires command uses the following settings to spread the signal wires on the
same layer:

• Spreads the wires by half a pitch in the preferred direction

To modify the spread distance, use the -pitch option. You specify the spread distance
as a multiplier for the layer pitch. For example, to specify a spread distance of 1.5 times
the layer pitch, use the following command:

icc2_shell> spread_wires -pitch 1.5
• Uses twice the layer pitch as the minimum jog length

To modify the minimum jog length, use the -min_jog_length option. You specify the
minimum jog length as an integer multiple of the layer pitch.

• Uses the minimum layer spacing plus one half the layer pitch as the minimum jog
length

To modify the minimum jog spacing, use the -min_jog_spacing_by_layer_name
option. You specify the minimum jog spacing in microns for each layer. The tool uses
the default jog spacing for any unspecified layers.

Figure 86 shows how the jog length and jog spacing values are used in wire spreading.

IC Compiler™ II Implementation User Guide
T-2022.03

511

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Reducing Critical Areas

Feedback

Figure 86 Wire Spreading Results

In the following example, the minimum jog length is set to three times the layer pitch,
the minimum jog spacing for the M1 layer is set to 0.07 microns, and the minimum jog
spacing for the M2 layer is 0.08 microns. All other metal layers use the default minimum
jog spacing.

icc2_shell> spread_wires -min_jog_length 3 \
 -min_jog_spacing_by_layer_name {{M1 0.07} {M2 0.08}}
After spreading, the spread_wires command performs detail routing iterations to fix any
DRC violations caused as a result of spreading.

When you change the layout, it can change the timing of your block. Wire spreading has a
timing-preservation mode that allows you to perform wire spreading without affecting the
block timing.

To enable timing-preservation mode for wire spreading, define the timing preservation
constraints by using the following options with the spread_wires command:

• -timing_preserve_setup_slack_threshold threshold

• -timing_preserve_hold_slack_threshold threshold

• -timing_preserve_nets nets
The threshold values are floating-point numbers in library units. Wire spreading is
performed only on nets with slack greater than or equal to the specified values or the nets
specified in the -timing_preserve_nets option, as well as adjacent nets on the same
layer within two routing pitches.

Performing Wire Widening
After you have performed detail routing, redundant via insertion, and wire spreading, you
can perform wire widening to increase the average width of the wires, which reduces the
critical area open faults and therefore improves yield.

To perform wire widening, use the widen_zrt_wires commandcommandswiden_zrt_wireswire wideningwiden_wires command. By default, the widen_wires
command widens all wires in the block to 1.5 times their original width. For more flexibility,
you can use the -widen_widths_by_layer_name option to define up to five possible wire
widths to use for each layer. For example, to define possible wire widths of 0.07 and 0.06

IC Compiler™ II Implementation User Guide
T-2022.03

512

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Reducing Critical Areas

Feedback

microns for the M1 layer; wire widths of 0.08 and 0.07 microns for the M2 layer; and 1.5
times the existing wire width for all other layers, enter the following command:

icc2_shell> widen_wires \
 -widen_widths_by_layer_name {{M1 0.07 0.06} {M2 0.08 0.07}}
When you perform wire widening, the spacing between neighboring wires is decreased,
which can reduce the improvement in critical area shorts gained from wire spreading.
You can control the tradeoff between wire spreading and wire widening by using the
-spreading_widening_relative_weight option. By default, wire spreading and wire
widening are given equal priority. To weight the priority toward wire widening and reduced
critical area open faults, set this option to a value between 0.0 and 0.5. To weight the
priority toward wire spreading and reduced critical area short faults, set this option to a
value between 0.5 and 1.0.

After widening, the widen_wires command performs detail routing iterations to fix any
DRC violations caused as a result of widening. Note that the widened wires do not trigger
fat wire spacing rules.

When you widen the wires, it changes the timing of your block. Wire widening has a
timing-preservation mode that allows you to perform wire widening without affecting the
block timing.

To enable timing-preservation mode for wire widening, define the timing preservation
constraints by using the following options with the widen_wires command:

• -timing_preserve_setup_slack_threshold threshold

• -timing_preserve_hold_slack_threshold threshold

• -timing_preserve_nets nets
The threshold values are floating-point numbers in library units. Wire widening is not
performed on nets with slack less than the specified values or the nets specified in the
-timing_preserve_nets option.

IC Compiler™ II Implementation User Guide
T-2022.03

513

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Metal-Insulator-Metal Capacitors

Feedback

Inserting Metal-Insulator-Metal Capacitors
A metal-insulator-metal (MiM) capacitor is made of two special-purpose conducting layers
separated by an insulator. This capacitor is inserted between two regular metal layers, as
shown in Figure 87.

Figure 87 Cross-Section View of MiM Capacitor Layers

maskName = "mimtop"

M9 M9 M9

M8

maskName = "mimbottom"

v
ia

v
ia v

ia

M9 layer

M8 layer

MBOT layer

MTOP layer

MiM capacitor

maskName =

"viaMimtop"

maskName =

"viaMimbottom"

MiM capacitors are typically connected between power and ground to help maintain a
constant supply voltage in the presence of electrical noise. The dimensions of a MiM
capacitor are usually customized to fit the power strap geometry of a specific power plan.

To insert an array of MiM capacitors into a block and connect them to the power rails, use
the create_mim_capacitor_array command. At a minimum, you must specify the MiM
capacitor library cell, as well as the x- and y-increments of the array.

For example,

icc2_shell> create_mim_capacitor_array \
 -lib_cell my_lib/mim_ref_cell
 -x_increment 20 -y_increment 20
By default, the create_mim_capacitor_array command

• Inserts MiM capacitors for the entire block

To restrict the insertion to a specific region, use the -boundary option to specify the
rectangular or rectilinear region. You can specify only a single region.

The command does not consider standard cells, macros, placement blockages, or
voltage areas when inserting the MiM capacitors.

• Inserts the MiM capacitors in the R0 orientation

To change the orientation, use the -orientation option. When you change the
orientation, it affects all MiM capacitor cells in the inserted array.

IC Compiler™ II Implementation User Guide
T-2022.03

514

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

• Uses the following naming convention for the inserted MiM capacitor cells:

mimcap!library_cell_name!number

To identify the MiM capacitor cells inserted in a specific run, use the -prefix option
to specify a prefix string. When you use this option, the tool uses the following naming
convention:

mimcap!prefix!library_cell_name!number

Inserting Filler Cells
To ensure that all power nets are connected, you can fill empty space in the standard-cell
rows with filler cells. The IC Compiler II tool supports filler cells with and without metal and
supports both single-height and multiheight filler cells. Filler cell insertion is often used to
add decoupling capacitors to improve the stability of the power supply.

Note:
Before inserting filler cells, ensure that the block is legalized by using the
check_legality command.

The IC Compiler II tool can select the filler cells to use based on

• An ordered list of filler cell references

In the standard filler cell insertion flow, you specify an ordered list of filler library cells
and the tool inserts the first cell that fits in each gap. If your technology requires
specific filler cells abutting the standard cells, you can insert these required filler cells
first, and then use standard filler cell insertion to fill the remaining space.

For details about this method, see Standard Filler Cell Insertion.

• Threshold-voltage rules

In the threshold-voltage-based flow, the tool selects the filler cells by using user-defined
insertion rules, which are based the threshold-voltage types of the cells that border the
gap. This flow is typically used only for established foundry nodes.

For details about this method, see Threshold-Voltage-Based Filler Cell Insertion.

Standard Filler Cell Insertion
The standard filler cell insertion flow uses the create_stdcell_fillers command
to insert filler cells in the block and the remove_stdcell_fillers_with_violation

IC Compiler™ II Implementation User Guide
T-2022.03

515

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

command to perform design rule checking on the filler cells and remove filler cells with
violations.

During filler cell insertion, the create_stdcell_fillers command uses the placement
legalizer to ensure that the inserted filler cells honor advanced node placement rules
and physical constraints such as placement blockages and keepout margins. When
the place.legalize.enable_advanced_legalizer application option is set to true,
the command uses the advanced legalization algorithms for 2D rule checking and cell
interaction, which can reduce filler cell insertion runtime.

To insert filler cells in your block,

1. Ensure that the block is legalized by using the check_legality command.

When verifying that a block is fillable, the check_legality command assumes that all
standard cells that have a design_type attribute of filler can be used as filler cells.
However, the create_stdcell_fillers command inserts only the cells specified in
the -lib_cells option. This difference might result in unfillable gaps after filler cell
insertion even though the check_legality command did not report any issues.

2. (Optional) Insert required filler cells to abut specific standard cells by using the
create_left_right_filler_cells command, as described in Abutting Standard
Cells With Specific Filler Cells.

3. (Optional) Enable multithreaded filler cell insertion by using the set_host_options
command to specify the multicore configuration.

icc2_shell> set_host_options -max_cores n
The create_stdcell_fillers command uses the multicore configuration only
when the technology file contains minimum threshold voltage, oxide-diffusion (OD), or
trimpoly (TPO) rules.

Note:
The multicore configuration specified with the set_host_options command
applies to all IC Compiler II commands that support multicore processing.

4. Insert metal filler cells by using the create_stdcell_fillers command.

Use the -lib_cells option to specify the metal filler library cells to insert. The
command tries to insert the filler cells in the order that you specify; for the best results,
specify them from the largest to the smallest.

To determine the filler cells available in a cell library, use the following command:

icc2_shell> get_lib_cells ref_lib/* -filter "design_type==filler"

IC Compiler™ II Implementation User Guide
T-2022.03

516

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

To sort the filler cells by decreasing size, use the sort_collection command, as
shown in the following example:

icc2_shell> set FILLER_CELLS \
 [get_object_name [sort_collection -descending \
 [get_lib_cells ref_lib/* -filter "design_type==filler"] area]]
For more information, see Controlling Standard Filler Cell Insertion.

5. Connect the inserted filler cells to the power and ground (PG) network by using the
connect_pg_net -automatic command.

6. Remove the metal filler cells with DRC violations by using the
remove_stdcell_fillers_with_violation command.

Removing the filler cells can expose new violations; therefore, you must sometimes run
this command multiple times to remove all violating filler cells.

For more information, see Checking for Filler Cell DRC Violations.

7. Insert nonmetal filler cells by using the create_stdcell_fillers command.

Use the -lib_cells option to specify the nonmetal filler library cells to insert. The tool
tries to insert the filler cells in the order that you specify; for the best results, specify
them from the largest to the smallest.

For more information, see Controlling Standard Filler Cell Insertion.

8. Connect the inserted filler cells to the PG network by using the connect_pg_net
-automatic command.

See Also

• Generic ECO Flow for Timing or Functional Changes

• Removing Filler Cells

Controlling Standard Filler Cell Insertion
By default, the create_stdcell_fillers command fills all empty space in the horizontal
standard-cell rows of the entire block by inserting instances of the filler library cells
specified by the -lib_cells option.

You can control the following aspects of the filler cell insertion:

• The selection of filler cells based on lowest leakage current

By default, the command does not consider leakage current when inserting filler cells.
To reduce the leakage current, use the -leakage_vt_order option to specify the
threshold voltage layers in order of decreasing leakage current. The command uses

IC Compiler™ II Implementation User Guide
T-2022.03

517

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

this information to select the filler cells with the lowest leakage current that meet the
legalization requirements.

To check whether the filler cells inserted in the current block result in the
lowest possible leakage power, use the -leakage_vt_check option with the
create_stdcell_fillers command. When you use this option, the command only
checks the existing filler cells; it does not insert filler cells. You must also use the
-lib_cells and -leakage_vt_order options to specify the available filler cells. The
check reports the filler cells that could be replaced with a specified filler cell with lower
leakage current without causing legalization errors. By default, the command reports a
maximum of 100 violations. To change the maximum number of reported violations, set
the chf.create_stdcell_fillers.max_leakage_vt_order_violations application
option.

Note:
This feature has the following requirements:

◦ You must enable the advanced legalizer by setting the
place.legalize.enable_advanced_legalizer application option to
true. For more information about the advanced legalizer, see Enabling
Advanced Legalization Algorithms.

◦ The threshold voltage layers must be defined in the technology file. A
threshold voltage layer is identified by a maskType attribute of implant in
the Layer section of the technology file.

• The percentage of empty space to fill

By default, the command fills all the empty space. To leave some empty space, use the
-utilization option to specify the percentage of empty space to fill.

To control the relative amount of various types of filler cells, such as ULVT and
LVT decoupling capacitor cells, use the -type_utilization option to specify
the insertion percentage for each type of cell. The sum of all the percentages
specified in this option must be less than or equal to 100. When you use this option,
the create_stdcell_fillers command might leave some empty spaces. To
fill these empty spaces, use the -fill_remaining option. When you use this
option, the command uses the cells specified in the -lib_cells option but not the
-type_utilization option to fill the empty spaces. For example,

insert 70 percent ULVT cells, 30 percent LVT cells
icc2_shell> create_stdcell_fillers -lib_cells $FILLER_CELLS \
 -type_utilization { {*/DCAP16*ULVT */DCAP8*ULVT */DCAP4*ULVT
 */DCAP2*ULVT */DCAP1*ULVT} 70
 {*/DCAP16*LVT */DCAP8*LVT */DCAP4*LVT
 */DCAP2*LVT */DCAP1*LVT} 30 } \
 -fill_remaining

IC Compiler™ II Implementation User Guide
T-2022.03

518

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

By default, the tool randomly selects the filler cells from the specified library cells. To
control the cell selection priority, use the -prefer_type_ordering option with the
-type_utilization option. When you use the -prefer_type_ordering option,
the tool selects the library cells in each group specified in the -type_utilization
option in priority order, from left to right. If some of the cells are difficult to insert due to
legalization rules or library cell size, specify them before cells that are easier to insert to
ensure that they are selected. For example, when the -prefer_type_ordering option
is used with the previous example, the tool

◦ First tries to insert the ULVT decoupling capacitors to a utilization of 70 percent, first
trying to insert */DCAP16*ULVT cells, then */DCAP8*ULVT cells, and so on

◦ Then tries to insert the LVT decoupling capacitors to a utilization of 30 percent, first
trying to insert */DCAP16*LVT cells, then */DCAP8*LVT cells, and so on

◦ Then filling the remaining gaps using the remaining cells specified in the -lib_cells
option

insert 70 percent ULVT cells, 30 percent LVT cells
icc2_shell> create_stdcell_fillers -lib_cells $FILLER_CELLS \
 -type_utilization { {*/DCAP16*ULVT */DCAP8*ULVT */DCAP4*ULVT
 */DCAP2*ULVT */DCAP1*ULVT} 70
 {*/DCAP16*LVT */DCAP8*LVT */DCAP4*LVT
 */DCAP2*LVT */DCAP1*LVT} 30 } \
 -prefer_type_ordering \
 -fill_remaining

• The region in which to insert the filler cells

◦ Use the -bboxes option to restrict filler cell insertion to the specified bounding
boxes.

◦ Use the -voltage_area option to restrict filler cell insertion to the specified voltage
areas.

• Whether to check for power net violations

By default, the command does not check for power net violations, as this check
increases runtime and is required only for metal filler cell insertion. However, this might
result in the remove_stdcell_fillers_with_violation command removing many
decoupling capacitors.

To prevent power net violations caused by filler cell insertion, use the -rules
check_pnet option.

• Gap prevention

By default, the command assumes that the smallest cell size is one unit site. If
the smallest cell in your design is larger than one unit site, this could cause gaps

IC Compiler™ II Implementation User Guide
T-2022.03

519

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

during filler cell insertion. To prevent the command from inserting filler cells that
leave a gap, specify the smallest cell size as a multiple of the unit site by using the
-smallest_cell_size option. You can specify a value of 1, 2, or 3.

Note:
The advanced legalizer automatically prevents gaps; therefore, this option is
ignored when place.legalize.enable_advanced_legalizer application
option is set to true.

• The handling of hard placement blockages

By default, the command honors hard placement blockages and does not insert filler
cells in regions affected by these blockages. To ignore the hard placement blockages
and insert filler cells in those regions, use the -ignore_hard_blockages option.

• The naming convention used to identify the inserted filler cell instances

By default, the command uses the following naming convention for inserted filler cells:

xofiller!filler_library_cell_name!number

To identify the filler cells inserted in a specific run, use the -prefix option to specify
a prefix string. When you use this option, the command uses the following naming
convention:

xofiller!prefix!filler_library_cell_name!number

• The behavior when the legalizer detects errors

By default, the command fails if the legalizer detects an error. To force the command
to complete filler cell insertion even when errors occur, use the -continue_on_error
option. When you use this option, the resulting block might have legalization errors that
must be fixed manually.

Checking for Filler Cell DRC Violations
By default, the remove_stdcell_fillers_with_violation command checks for DRC
violations between all cell instances with xofiller in their name and top-level signal routing
objects and removes the violating filler cells.

You can control the following aspects of the filler cell checking:

• The string used to identify the filler cells

To specify a different string to identify the filler cells, use the -name option.

• The region in which to check for violations

To restrict filler cell check to specific regions, use the -boundary option.

IC Compiler™ II Implementation User Guide
T-2022.03

520

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

• The checked objects

To check for violations between filler cells and all neighboring objects, such as
signal net shapes, other filler cells, standard cells, PG rails, and terminals, use the
-check_between_fixed_objects true option.

• Restrict DRC to shorts-checking only

By default, the command removes all filler cells that cause a routing DRC violation. To
remove only those filler cells that cause a short by overlapping a routing shape, use the
-shorts_only true option.

• Whether double-patterning rules are checked

The command checks for double-patterning violations only when the following criteria
are met:

◦ The route.common.color_based_dpt_flow application option is true.

◦ The technology file defines double-patterning rules

To check for DRC violations on filler cells before removing them, use the -check_only
true option. When you use this option, this command writes a report to a file named
block_fillers_with_violation.rpt in the current working directory. The report lists the filler
cells with violations and reports the first violation for each filler cell.

Fixing Remaining Mask Design Rule Violations
Some mask design rules are not handled during filler cell insertion because they have
a low probability of occurrence and they require extensive computation time if handled
during insertion.

After filler cell insertion, use the replace_fillers_by_rules command to fix these
design rule violations. You must specify the rule to fix by using the -replacement_rule
option. Table 34 lists the design rules supported by this command and the keywords used
to specify these rules.

Table 34 Design Rules Supported by the replace_fillers_by_rules Command

Design rule Description -replacement_rule keyword

End orientation This rule allows the leftmost or rightmost
filler cell to be flipped to a different
orientation. For more information, see
End Orientation Rule.

end_orientation

Half row adjacency for
half-height filler cells

This rule restricts the placement
of half-height filler cells. For more
information, see Half Row Adjacency
Rule.

half_row_adjacency

IC Compiler™ II Implementation User Guide
T-2022.03

521

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

Table 34 Design Rules Supported by the replace_fillers_by_rules Command (Continued)

Design rule Description -replacement_rule keyword

Illegal abutment This rule prevents a filler cell from
abutting certain other filler cells. For more
information, see Illegal Abutment Rule.

illegal_abutment

Maximum horizontal
length

This rule restricts the horizontal length of
a continuous row of filler cells. For more
information, see Maximum Horizontal
Length Rule.

od_horiztonal_distance

Maximum horizontal
edge length

This rule restricts the horizontal length
of a sequence of abutted objects on a
specific layer. For more information, see
Maximum Horizontal Edge Length Rule.

horizontal_edges_distance

Maximum stacking for
small filler cells

This rule restricts the horizontal length
of a sequence of abutted objects on a
specific layer. For more information, see
Maximum Stacking for Small Filler Cells
Rule.

small_filler_stacking

Maximum vertical edge
length

This rule restricts the vertical length of a
column of stacked filler cells. For more
information, see Maximum Vertical Edge
Length Rule.

max_vertical_constraint

Tap cell spacing This rule restricts the distance between
a tap cell’s oxide diffusion (OD) layer
and the neighboring OD layers. For more
information, see Tap Cell Spacing Rule.

od_tap_distance

N/A Randomly replace filler cells with custom
filler cells. For more information, see
Random Filler Cell Replacement.

random

End Orientation Rule
The end orientation rule searches for a continuous horizontal sequence of cells and
modifies the orientation of the leftmost or rightmost filler cells if they are in the specified list
of target filler cells.

To select this rule, use the -replacement_rule end_orientation option with the
replace_fillers_by_rules command. When you select this rule, you must specify

• The target filler cells

To specify the target filler cells, use the -target_fillers option.

IC Compiler™ II Implementation User Guide
T-2022.03

522

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

• The orientation modification

◦ To change the orientation for the leftmost filler cells, use the -left_end option.

◦ To change the orientation for the rightmost filler cells, use the -right_end option.

◦ To change the orientation for both the leftmost and rightmost filler cells, use both
options.

The valid values for these options are

◦ inverse, which flips the cell from its existing orientation

◦ R0_or_MX, which changes an MY orientation to R0 or an R180 orientation to MX

◦ MY_or_R180, which changes an R0 orientation to MY or an MX orientation to R180

To report the cells whose orientation would be changed, without actually changing the
orientations, use the -check_only option. This option is valid only for the end orientation
rule.

Half Row Adjacency Rule
The half row adjacency rule searches for half-height filler cells and replaces them based
on the types of their neighboring standard cells. The standard cells are classified as one of
the following types:

• Inbound

The top or bottom boundary of an inbound standard cell is at the half-height location of
the cell rows. When a half-height filler cell abuts an inbound cell, the abutting side of
the half-height filler cell must have inbound-cell interaction polygons (ICIP).

• Regular

The top and bottom boundaries of a regular standard cell are at the full-height location
of the cell rows. When a half-height filler cell abuts a regular cell, the abutting side of
the half-height filler cell must not have inbound-cell interaction polygons (ICIP).

The replacement filler cells have the same height, width, and threshold voltage as the
original filler cells. The cell libraries include both p-type and n-type replacement filler cells
with inbound-cell interaction polygons (ICIP). For p-type half-height filler cells, the inbound-
cell interaction polygons (ICIP) are at the bottom corners. For n-type half-height filler cells,
the inbound-cell interaction polygons (ICIP) are at the top corners. Figure 88 shows the
replacement of the half-height filler cells using the half row adjacency rule.

IC Compiler™ II Implementation User Guide
T-2022.03

523

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

Figure 88 Half-Height Filler Cell Replacement With Half Row Adjacency Rule

Regular
height

Inbound
height

Inbound
heightFILL2_P

FILL4_N

Regular
height

Inbound
height

Inbound
heightFILL2_PR

FILL4_NR

Inbound-cell
interaction
polygons

To select this rule, use the -replacement_rule half_row_adjacency option with the
replace_fillers_by_rules command. The following table lists the options used to
specify the replacement half-height filler cells. Each list can contain only one cell of each
size.

Table 35 Half-Height Replacement Filler Cells

Abutting inbound standard cells Option to specify replacement filler cells

None -p_none, -n_none

Left-only -p_left, -n_left

Right-only -p_right, -n_right

Left and right -p_left_right, -n_left_right

Top or bottom (applies only to 2X
filler cells)

-p_left_center_right, -n_left_center_right

IC Compiler™ II Implementation User Guide
T-2022.03

524

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

Illegal Abutment Rule
The illegal abutment rule restricts the filler cells that can abut certain other filler cells.

To select this rule, use the -replacement_rule illegal_abutment option with the
replace_fillers_by_rules command. When you select this rule, you must specify

• The filler cells considered for the check and their replacements

The filler cells considered for the check are called target cells. To specify the target filler
cells and their replacements, use the following syntax with the -replace_abutment
option:

{ {target_cell1 refill_cell1} ... }

To ignore filler cells that have a physical_status attribute of fixed or locked, use
the -skip_fixed_cells option with the replace_fillers_by_rules command.

• The filler cells that cannot abut the target filler cells

These filler cells are called illegal cells. To specify the illegal cells, use the
-illegal_abutment option. Note that the target filler cells specified in the
-replace_abutment option are also considered illegal cells.

For example, the following command fixes illegal abutment violations where the FILL1a
and FILL1b filler cells cannot abut the FILLx and FILLy cells:

icc2_shell> replace_fillers_by_rules -replacement_rule illegal_abutment \
 -replace_abutment { {FILL1a CFILL1a} {FILL1b CFILL1b} } \
 -illegal_abutment {FILLx FILLy}
Figure 89 shows the original row, which violates this rule, and the resulting row, which
uses the replacement filler cells to fix the violations. The target filler cells are shown in red,
while the replacement filler cells are shown in green.

Figure 89 Fixing an Illegal Abutment Violation

IC Compiler™ II Implementation User Guide
T-2022.03

525

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

Maximum Horizontal Edge Length Rule
The maximum horizontal edge length rule restricts the horizontal length of a sequence of
abutted objects on a specific layer.

To select this rule, use the -replacement_rule horizontal_edges_distance option
with the replace_fillers_by_rules command. When you select this rule, you must
specify

• The maximum horizontal length

To specify the maximum length, use the -max_constraint_length option.

• The layer to check

To specify the layer, use the -layer option.

• The cells considered for the check and the filler cells that can be used to replace the
violating filler cells

The filler cells considered for the check are called constrained cells. The filler cells
considered to replace violating cells are called unconstrained cells.

◦ To specify multiple constrained cell groups and their replacement cells, use the
following syntax with the -refill_table option:

{ {{refill_cell1 {constrained_cells1}} ... }

You can use this syntax to fix violations for threshold-voltage-based filler cells.

◦ To specify a single constrained cell group, use the -constraint_fillers option.
To specify the replacement cells, use the -non_constraint_fillers option.

Note:
If you use both methods, the command uses only the information
specified in the -refill_table option.

For example, the following command identifies and fixes maximum horizontal edge length
violations where the horizontal length on the M2 layer exceeds 30 um:

icc2_shell> replace_fillers_by_rules \
 -replacement_rule horizontal_edges_distance \
 -max_constraint_length 30 -layer M2 \
 -refill_table { {{VT1_FILL1} {VT1_DECAP4 VT1_DECAP2}}
 {{VT2_FILL1} {VT2_DECAP4 VT2_DECAP2}} }

IC Compiler™ II Implementation User Guide
T-2022.03

526

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

Maximum Horizontal Length Rule
The maximum horizontal length rule restricts the horizontal length of a sequence of
abutted filler cells.

To select this rule, use the -replacement_rule od_horiztonal_distance option with
the replace_fillers_by_rules command. When you select this rule, you must specify

• The maximum horizontal length

To specify the maximum length, use the -max_constraint_length option.

• The cells considered for the check and the filler cells that can be used to replace the
violating filler cells

The filler cells considered for the check are called constrained cells. The filler cells
considered to replace violating cells are called unconstrained cells.

◦ To specify multiple constrained cell groups and their replacement cells, use the
following syntax with the -refill_table option:

{ {{refill_cell1 {constrained_cells1}} ... }

You can use this syntax to fix violations for threshold-voltage-based filler cells.

◦ To specify a single constrained cell group, use the -constraint_fillers option.
To specify the replacement cells, use the -non_constraint_fillers option.

Note:
If you use both methods, the command uses only the information
specified in the -refill_table option.

For example, the following command identifies and fixes maximum horizontal length
violations where the horizontal length exceeds 70 um:

icc2_shell> replace_fillers_by_rules \
 -replacement_rule od_horiztonal_distance -max_constraint_length 70 \
 -refill_table { {{VT1_FILL1} {VT1_DECAP4 VT1_DECAP2}}
 {{VT2_FILL1} {VT2_DECAP4 VT2_DECAP2}} }
Figure 90 shows the original row, which violates this rule, and the resulting row, which
uses unconstrained filler cells to fix the violation. The constrained cells are shown in red,
while the unconstrained cells are shown in green.

IC Compiler™ II Implementation User Guide
T-2022.03

527

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

Figure 90 Fixing a Maximum Vertical Edge Length Violation

Maximum Stacking for Small Filler Cells Rule
The maximum stacking for small filler cells rule restricts the stacking height of small filler
cells.

To select this rule, use the -replacement_rule small_filler_stacking option with the
replace_fillers_by_rules command. When you select this rule, you must specify

• The maximum stacking height

To specify the maximum stacking height, use the -max_constraint_length option.

• The cells considered for the check

To specify the small filler cells to consider for the check, use the -small_fillers
option.

• The filler cells that can be used to replace the violating filler cells

To specify the filler cells that can be used to replace the violating filler cells, use the
-replacement_fillers option.

If the vertical stacking of the small filler cells specified in the -small_fillers option
exceeds the height specified in the -max_constraint_length option, the command
replaces two or three consecutive filler cells adjacent to the violating cell with one of
the large filler cells specified in the -replacement_fillers option. If it is not possible
to replace the filler cells, the command reorders the filler cells to fix the violation. The
command maintains the threshold voltage at the location of the violating filler cell;
however, the threshold voltage at the location of non-violating filler cells might change. The
command does not check for threshold voltage violations caused by these changes.

IC Compiler™ II Implementation User Guide
T-2022.03

528

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

For example, the following command identifies and fixes maximum stacking violations
where the stacking height exceeds 10 um:

icc2_shell> replace_fillers_by_rules \
 -replacement_rule small_filler_stacking -max_constraint_length 10 \
 -small_fillers {FILL1 FILL2} -replacement_fillers {FILL3 FILL4} \
The following figures illustrate the replacement and reordering techniques used to fix
maximum stacking violations. In these figures, the small filler cells are shown in red, while
the large filler cells are shown in green.

Figure 91 shows the original stack, which violates this rule, and the resulting stack, which
uses a replacement filler cell to fix the violation.

Figure 91 Fixing Maximum Stacking Violation by Replacement

FILL1

vt1

FILL3
vt1

FILL1

vt1

FILL2

vt1

FILL1

vt1
FILL1

vt1
FILL1

vt1

10um
FILL2

vt1

Figure 92 shows the original stack, which violates this rule, and the resulting stack, which
uses reordering to fix the violation. Note that the threshold voltage of the FILL3 cell is
changed so that the vt2 threshold voltage is maintained in the original location.

Figure 92 Fixing Maximum Stacking Violation by Reordering

FILL1

vt1
FILL1

vt1

FILL2

vt110um
FILL2

vt1

FILL3
vt1

FILL3
vt2

FILL2

vt2
FILL2

vt2

IC Compiler™ II Implementation User Guide
T-2022.03

529

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

Maximum Vertical Edge Length Rule
The maximum vertical edge length rule restricts the vertical length of a stack of certain
filler cells and standard cells.

To select this rule, use the -replacement_rule max_vertical_constraint option with
the replace_fillers_by_rules command. When you select this rule, you must specify

• The maximum vertical length

To specify the maximum vertical length, use the -max_constraint_length option.

• The cells considered for the check

These cells are called constrained cells. To specify the constrained filler cells, use
the -constraint_fillers option. By default, all standard cells are constrained. To
exclude specific standard cells from consideration, use the -exception_cells option.
To ignore the length violation when a constrained cell abuts an exception cell, use the
-no_violation_along_exception_cells option.

• The filler cells that can be used to replace the violating filler cells

These filler cells are called unconstrained cells; they are not considered when
measuring the stack height.

◦ To specify the filler cells that can be used to break a continuous edge of constrained
cells, use the -non_constraint_fillers option.

◦ To specify the filler cells whose left side can be used to break a continuous edge of
constrained cells, use the -non_constraint_left_fillers option.

◦ To specify the filler cells whose right side can be used to break a continuous edge
of constrained cells, use the -non_constraint_right_fillers option.

Note:
Any filler cells that are not identified as constrained, unconstrained, or exception
cells are considered constrained cells.

For example, the following command identifies and fixes maximum vertical edge length
violations where the vertical length exceeds 180 um:

icc2_shell> replace_fillers_by_rules \
 -replacement_rule max_vertical_constraint -max_constraint_length 180 \
 -constraint_fillers {DECAP8 DECAP4} -non_constraint_fillers {FILL1} \
 -exception_cells {BUF1 TAP1}
Figure 93 shows the original stack, which violates this rule, and the resulting stack, which
uses unconstrained filler cells to fix the violation. The constrained cells are shown in red,
while the unconstrained cells are shown in green.

IC Compiler™ II Implementation User Guide
T-2022.03

530

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

Figure 93 Fixing a Maximum Vertical Edge Length Violation

Tap Cell Spacing Rule
The tap cell spacing rule restricts the distance between a target tap cell’s oxide diffusion
(OD) layer and the OD layers of its neighboring cells on the left and right sides.

To select this rule, use the -replacement_rule od_tap_distance option with the
replace_fillers_by_rules command. When you select this rule, you must specify

• The disallowed spacing range

The spacing distance is specified as the number of sites. To specify the disallowed
spacing range, use the -tap_distance_range option.

• The tap cells considered for the check

These cells are called target cells. To specify the target tap cells, use the -tap_cells
option.

• The tap cells used to replace the violating tap cells

These cells are called replacement cells.

◦ To specify the replacement tap cell for left-side violations, use the
-left_violation_tap option.

◦ To specify the replacement tap cell for right-side violations, use the
-right_violation_tap option.

◦ To specify the replacement tap cell for both-side violations, use the
-both_violation_tap option.

Note:
The target and replacement tap cells must all have the same size.

IC Compiler™ II Implementation User Guide
T-2022.03

531

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

By default, the command measures the distance to the cells that abut the target
tap cell. If the tap cells abut library cells that do not have an OD layer, use the
-adjacent_non_od_cells option to specify these library cells. The command skips
the specified non-OD cells and measures to distance from the target tap cell to the first
neighbor with an OD layer.

For example, the following command replaces tap cells named TAP that have a separation
distance of three sites:

icc2_shell> replace_fillers_by_rules -replacement_rule od_tap_distance \
 -tap_cells {TAP} -tap_distance_range {3 3} \
 -left_violation_tap {TAPl} -right_violation_tap {TAPr} \
 -both_violation_tap {TAPb}
Figure 94 shows the original row, which violates this rule, and the resulting row, which
uses the replacement filler cells to fix the violations. The target filler cells are shown in red,
while the replacement filler cells are shown in green.

Figure 94 Fixing a Tap Cell Spacing Violation

Random Filler Cell Replacement
To randomly replace existing filler cells, use the -replacement_rule random option with
the replace_fillers_by_rules command. When you select this rule, you must specify

• The filler cells to be replaced and their replacements

The filler cells to be replaced are called target cells. To specify the target filler cells and
their replacements, use the following syntax with the -random_replace option:

{ {target_cell1 {refill_cell1a refill_cell1b ...}} ... }

To ignore filler cells that have a physical_status attribute of fixed or locked, use
the -skip_fixed_cells option with the replace_fillers_by_rules command.

IC Compiler™ II Implementation User Guide
T-2022.03

532

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

When the command finds one of the target cells, it replaces it by randomly selecting one
of the replacement cells specified for that target cell. For example, the following command
replaces FILL1 cells with one of FILL1a, FILL1b, or FILL1c and replaces FILL2 cells with
one of FILL2a or FILL2b:

icc2_shell> replace_fillers_by_rules -replacement_rule random \
 -random_replace { {FILL1 {FILL1a FILL1b FILL1c}}
 {FILL2 {FILL2a FILL2b}} }

Abutting Standard Cells With Specific Filler Cells
If your technology requires specific filler cells on the left or right sides of certain standard
cells, use the create_left_right_filler_cells command to insert these filler cells.
After you run the create_left_right_filler_cells command, perform standard filler
cell insertion to fill the remaining gaps in the design.

You must use the -lib_cells option to specify the rules for filler cell insertion. Each rule
uses the following format:

{standard_cells} {left_filler_cells} {right_filler_cells}

• For the standard_cells argument,

◦ You must specify a list of one or more standard cells

◦ You can use wildcards to specify the cell names

◦ If you specify multiple rules for the same standard cell, the command uses only the
last rule specified for that cell.

• For the left_filler_cells and right_filler_cells arguments,

◦ At least one of these arguments must contain one or more filler library cells

If only one of the arguments contains filler library cells, the tool inserts filler cells
only on that side of the standard cells.

◦ The specified filler cells must meet the following requirements:

▪ They must have a design_type attribute of lib_cell or filler.

▪ They must use the same site definition as the standard cells.

▪ The height of the standard cells must be an integer multiple of the filler cell
heights.

◦ The command tries to insert the filler cells in the order that you specify; for the best
results, specify them from the largest to the smallest.

IC Compiler™ II Implementation User Guide
T-2022.03

533

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

◦ You can use wildcards for the filler cell names.

When you use wildcards, the order of the cells is the same as that returned by the
get_lib_cells command.

The following example inserts filler cells on the left and right sides of the SC1 standard
cells and only on the left side of the SC2 standard cells. The left and right filler cells are
specified in decreasing size order, so that the command inserts the largest possible filler
cell.

icc2_shell> create_left_right_filler_cells \
 -lib_cells {
 { {mylib/SC1} {mylib/LF4X mylib/LF2X} {mylib/RF2X mylib/RF1X} }
 { {mylib/SC2} {mylib/LF2X mylib/LF1X} {} } }
When the create_left_right_filler_cells command inserts the filler cells,

• It checks for legal locations for the filler cells, but does not check advanced rules such
as minimum threshold voltage, oxide-diffusion (OD), or trimpoly (TPO) rules.

• It inserts the filler cells immediately next to the standard cells; it does not consider the
intercell spacing rules.

See Also

• Standard Filler Cell Insertion

Controlling Cell-Based Filler Cell Insertion
You can control the following aspects of the filler cell insertion with the
create_left_right_filler_cells command:

• The region in which to insert the filler cells

By default, the command inserts filler cells next to the specified standard cells in the
entire block.

◦ Use the -boundaries option to restrict filler cell insertion to the specified regions.
You can specify one or more rectangular or rectilinear regions.

◦ Use the -voltage_areas option to restrict filler cell insertion to the specified
voltage areas.

• The orientation of the filler cells

By default, the command uses the allowable orientations of the row to place
the filler cells. To use the same orientation as the standard cell, use the
-follow_stdcell_orientation option. When you use this option, the tool swaps the
right and left filler cells when the cell is flipped.

IC Compiler™ II Implementation User Guide
T-2022.03

534

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

• The handling of one-unit-tile gaps

By default, the command does not consider the one-unit-tile rule. To prevent the tool
from inserting filler cells that would leave a one-unit-tile gap, use the -rules no_1x
option. When you enable this rule, do not include filler library cells with a width of one-
unit tile in the -lib_cells option; otherwise, the tool ignores this rule.

• The naming convention used to identify the inserted filler cell instances

By default, the command uses the following naming convention for inserted filler cells:

xofiller!filler_library_cell_name!number

To identify the filler cells inserted in a specific run, use the -prefix option to specify
a prefix string. When you use this option, the command uses the following naming
convention:

xofiller!prefix!filler_library_cell_name!number

Threshold-Voltage-Based Filler Cell Insertion
In the threshold-voltage-based flow, the tool selects the filler cells by using user-defined
insertion rules, which are based the threshold-voltage types of the cells that border the
gap. This flow is typically used only for established foundry nodes.

To perform threshold-voltage-based filler cell insertion,

1. Ensure that the block is legalized by using the check_legality command.

2. Annotate the threshold-voltage types on the reference cells by using the
set_cell_vt_type command.

For example, to specify that all cells whose names end with _vtA have a threshold
voltage type of vtA and the invx1 cell has a threshold voltage type of default, use the
following commands:

icc2_shell> set_cell_vt_type -lib_cells "*/*_vtA" -vt_type vtA
icc2_shell> set_cell_vt_type -lib_cells "mylib/invx1" -vt_type default

3. Define the rules for inserting the filler cells by using the set_vt_filler_rule
command.

You define the rules by specifying the filler cells to insert based on the threshold-
voltage types of the cells on the left and right of the gap being filled.

For example, to specify that filler2x or filler1x cells can be inserted in a gap that has
default threshold-voltage cells on the left and right sides and fillerA2x and fillerA1x cells

IC Compiler™ II Implementation User Guide
T-2022.03

535

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Filler Cells

Feedback

can be inserted in a gap that has vtA threshold-voltage cells on the left and right sides,
use the following commands:

icc2_shell> set_vt_filler_rule -vt_type {default default} \
 -filler_cells {myLib/filler2x myLib/filler1x}
icc2_shell> set_vt_filler_rule -vt_type {vtA vtA} \
 -filler_cells {myLib/fillerA2x myLib/fillerA1x}

4. Insert the filler cells by using the create_vtcell_fillers command.

Controlling Threshold-Voltage-Based Filler Cell Insertion
By default, the create_vtcell_fillers command fills all empty space in the horizontal
standard-cell rows of the entire block.

You can control the following aspects of the filler cell insertion:

• The region in which to insert the filler cells

◦ Use the -region option to restrict filler cell insertion to the specified regions.

◦ Use the -voltage_area option to restrict filler cell insertion to the specified voltage
areas.

• The naming convention used to identify the inserted filler cell instances

By default, the command uses the following naming convention for inserted filler cells:

xofiller!filler_library_cell_name!number

To identify the filler cells inserted in a specific run, use the -prefix option to specify
a prefix string. When you use this option, the command uses the following naming
convention:

xofiller!prefix!filler_library_cell_name!number

To change the separator character from the default exclamation mark (!), use the
-separator option.

IC Compiler™ II Implementation User Guide
T-2022.03

536

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Chip Finishing and Design for Manufacturing
Inserting Metal Fill

Feedback

Removing the Threshold-Voltage Filler Cell Information
To remove the filler cell insertion rules and the threshold-voltage type annotations, use the
-clear_vt_information option with the create_vtcell_fillers command.

Removing Filler Cells
Filler cells inserted by the IC Compiler II tool have instance names that start with the string
xofiller. To remove all the filler cells from a block, use the remove_cells command, as
shown in the following example:

icc2_shell> remove_cells [get_cells xofiller*]
If you used the standard filler cell insertion flow and want to remove only those filler cells
with DRC violations, use the remove_stdcell_fillers_with_violation command, as
described in Checking for Filler Cell DRC Violations.

Inserting Metal Fill
After routing, you can fill the empty spaces in the block with metal wires to meet the metal
density rules required by most fabrication processes. Before inserting metal fill, the block
should be close to meeting timing and have very few or no DRC violations.

To insert metal fill, run the signoff_create_metal_fill command, as described in
Inserting Metal Fill With IC Validator In-Design.

Note:
An IC Validator license is required to run the signoff_create_metal_fill
command.

IC Compiler™ II Implementation User Guide
T-2022.03

537

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

7
IC Validator In-Design

The IC Validator In-Design feature provides the ability to use the IC Validator tool to
perform physical implementation and verification tasks within the IC Compiler II tool. You
can use IC Validator In-Design to perform the following tasks:

• Signoff design rule checking (the signoff_check_drc command)

• Fixing the violations detected during signoff design rule checking (the
signoff_fix_drc command)

• Augmenting the power grid based on voltage drop information (the
signoff_create_pg_augmentation command)

• Inserting metal fill (the signoff_create_metal_fill command)

• Fixing isolated vias (the signoff_fix_isolated_via command)

Note:
An IC Validator license is required to run the IC Validator In-Design functions.

To learn about using these IC Validator In-Design functions, see the following topics:

• Preparing to Run IC Validator In-Design Commands

• Performing Signoff Design Rule Checking

• Automatically Fixing Signoff DRC Violations

• Improving Instance Voltage Drop by Augmenting the Power Grid

• Inserting Metal Fill With IC Validator In-Design

• Automatically Fixing Isolated Vias

IC Compiler™ II Implementation User Guide
T-2022.03

538

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Preparing to Run IC Validator In-Design Commands

Feedback

Preparing to Run IC Validator In-Design Commands
The following topics describe the tasks you must perform before you run the IC Validator
In-Design commands:

• Setting Up the IC Validator Environment

• Enabling IC Validator Multicore Processing

• Defining the Layer Mapping for IC Validator In-Design Commands

Setting Up the IC Validator Environment
To run an IC Validator In-Design command, you must specify the location of the
IC Validator executable by setting the ICV_HOME_DIR environment variable. You can set
this variable in your .cshrc file. To specify the location of the IC Validator executable, use
commands similar to those shown in the following example:

setenv ICV_HOME_DIR /root_dir/icv
set path = ($path $ICV_HOME_DIR/bin/LINUX.64)

You must ensure that the version of the IC Validator executable that you specify is
compatible with the IC Compiler II version that you are using. To report the version
compatibility, use the report_versions command.

For more information about the IC Validator tool, see the IC Validator documentation,
which is available on SolvNet.

Enabling IC Validator Multicore Processing
By default, the IC Validator In-Design commands use a single process to perform design
rule checking. To reduce the turnaround time for design rule checking, use multicore
processing, which includes multithreading, distributing processing, and parallel command
execution. After you specify how many cores to use on different hosts, the IC Validator
tool determines exactly how to take advantage of multithreading and parallel command
execution to achieve the fastest runtimes.

To enable multicore processing, you must define the configuration by using the
set_host_options command. By default, the configuration applies to all IC Compiler II
commands that support multicore processing. To define a configuration that applies only to
the IC Validator In-Design commands, use the -target ICV option.

IC Compiler™ II Implementation User Guide
T-2022.03

539

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Preparing to Run IC Validator In-Design Commands

Feedback

You can enable multicore processing on specific hosts, by using a job scheduler such
as the Load Sharing Facility (LSF), or by using a combination of these methods. The
following topics describe these methods:

• Running IC Validator on Specific Hosts

• Running IC Validator Using a Job Scheduler

• Running IC Validator Using Hybrid Multicore Processing

For general information about the set_host_options command, see Enabling Multicore
Processing.

Running IC Validator on Specific Hosts
To enable IC Validator multicore processing on one or more specific hosts, use the
set_host_options command to specify the following information:

• The host names

If you do not specify a host name or submit protocol, the IC Validator tool runs on the
host on which the IC Compiler II tool is currently running.

• The number of cores

Use the -num_processes or -max_cores options to specify the number of cores. If you
use both options, the IC Validator tool uses the product of the settings as the number of
cores.

The specified number of cores applies to each specified host.

For example, to enable the IC Validator tool to use 4 cores on the current host, use the
following command:

icc2_shell> set_host_options -target ICV -num_processes 4
To enable the IC Validator tool to use 16 cores (8 cores each on machineA and
machineB), use the following command:

icc2_shell> set_host_options -target ICV \
 -num_processes 2 -max_cores 4 {machineA machineB}

IC Compiler™ II Implementation User Guide
T-2022.03

540

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Preparing to Run IC Validator In-Design Commands

Feedback

Running IC Validator Using a Job Scheduler
To enable IC Validator multicore processing using a job scheduler, use the
set_host_options command to specify the following information:

• The submit protocol

◦ To use LSF, use the -submit_protocol lsf option.

The LSF bsub command must be in your Linux path.

◦ To use the Univa Grid Engine (UGE) job scheduler, which was previously
known as SGE (Sun Grid Engine) or GRD (Global Resource Directory), use the
-submit_protocol grid option.

The Grid qsub command must be in your Linux path.

If you do not specify a host name or submit protocol, the IC Validator tool runs on the
host on which the IC Compiler II tool is currently running.

• The number of hosts to use

Use the -num_processes option to specify the number of hosts.

• The number of cores to use on each host

Use the -max_cores option to specify the number of cores per host.

• (Optional) Extra arguments needed for the submit command

Use the -submit_command option to specify the submit command with the extra
arguments.

For example, to enable 4 hosts to be acquired by LSF, each of which can use 8 cores (for
a total of 32 cores), use the following command:

icc2_shell> set_host_options -submit_protocol lsf -target ICV \
 -num_processes 4 -max_cores 8
To set the memory requirement of the jobs in the previous example to 1000M, use the
following command:

icc2_shell> set_host_options -submit_protocol lsf -target ICV \
 -num_processes 4 -max_cores 8 \
 -submit_command {bsub -R rusage[mem=1000]}
To enable 4 hosts to be acquired by the Grid Engine, each of which can use 8 cores (for a
total of 32 cores), use the following command:

icc2_shell> set_host_options -submit_protocol grid -target ICV \
 -num_processes 4 -max_cores 8

IC Compiler™ II Implementation User Guide
T-2022.03

541

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Preparing to Run IC Validator In-Design Commands

Feedback

To set the process name of the jobs in the previous example to bnormal, use the following
command:

icc2_shell> set_host_options -submit_protocol grid -target ICV \
 -num_processes 4 -max_cores 8 -submit_command "qsub -P bnormal"

Running IC Validator Using Hybrid Multicore Processing
If you are using LSF, you can specify both specific hosts and an LSF configuration for
adding additional hosts as they become available. To use this method,

• Specify the configuration for the specific hosts as described in Running IC Validator on
Specific Hosts.

• Specify the LSF configuration as described in Running IC Validator Using a Job
Scheduler, but use the -add_hosts option in addition to the other command options.

This configuration represents both optional resources and maximum resources – the
resources can be given to the IC Validator tool at the beginning, middle, or end of the
run, or not given at all.

For example, to use four cores on the current host and potentially acquire up to four more
hosts from LSF, use the following commands:

icc2_shell> set_host_options -target ICV -max_cores 4
icc2_shell> set_host_options -target ICV -add_hosts \
 -submit_protocol lsf -num_processes 4

Defining the Layer Mapping for IC Validator In-Design Commands
A layer mapping file maps the technology layers to the layers used in the
runset file. You specify the location of the layer mapping file by setting the
signoff.physical.layer_map_file application option.

Each line in the layer mapping file specifies a layer in the technology file and the
corresponding layer in the runset file using the following syntax:

tf_layer[:tf_purpose][:use_type][:mask_type]
 runset_layer[:runset_data_type]

Each line can contain the following items:

• tf_layer – Layer number in the technology file, a required item

• tf_purpose – Purpose number in the technology file

• use_type – IC Compiler II usage of the geometries in the design

IC Compiler™ II Implementation User Guide
T-2022.03

542

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Valid values are power, ground, signal, clock, boundary,
hard_placement_blockage, soft_placement_blockage, routing_blockage,
area_fill, and track.

• mask_type – Multiple-patterning mask constraint of the geometries

Valid values for metal layers are mask_one, mask_two, mask_three, and mask_same.
Via layers support the additional values MASK_FOUR through MASK_FIFTEEN.

• runset_layer – Layer number in the runset file, a required item

• runset_data_type – Layer data type number in the runset file

Any text in a line that comes after a semicolon character (;) is considered a comment and
has no effect on layer mapping.

Performing Signoff Design Rule Checking
IC Validator In-Design signoff design rule checking (DRC) runs the IC Validator tool within
the IC Compiler II tool to check the routing design rules defined in the foundry signoff
runset.

You can perform signoff design rule checking by

• Running the signoff_check_drc command

• Using the Live DRC feature in the IC Compiler II GUI

After place and route, use the signoff_check_drc command to perform signoff design
rule checking on the entire block. After engineering change orders (ECO), use either
method to perform incremental signoff design rule checking on the modified portions of the
block.

See Also

• Automatically Fixing Signoff DRC Violations

Running the signoff_check_drc Command
To perform signoff design rule checking by running the signoff_check_drc command,

1. Set up the IC Validator environment as described in Setting Up the IC Validator
Environment.

2. (Optional) Enable distributed processing by using the set_host_options command,
as described in Enabling IC Validator Multicore Processing.

IC Compiler™ II Implementation User Guide
T-2022.03

543

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

3. Set the application options for signoff design rule checking.

At a minimum, you must specify the foundry runset to use for design rule checking by
setting the signoff.check_drc.runset application option.

For information about the options for command-based signoff design rule checking, see
Setting Options for Signoff Design Rule Checking.

4. Save the block to disk.

When you run signoff design rule checking, the IC Validator tool uses the on-
disk information for the block, not the information in memory. To ensure accurate
information, use the save_block command to save the current state of the block
before running signoff design rule checking.

5. Run signoff design rule checking by using the signoff_check_drc command.

By default, the signoff_check_drc command performs the following tasks:

1. Loads the block into the IC Validator tool, as described in Reading Blocks for Signoff
Design Rule Checking

2. Performs signoff design rule checking, as described in Signoff Design Rule Checking

3. Generates an error data file and IC Validator results files, as described in Signoff DRC
Results Files

You can use the results files to view the violations in the error browser, as described
in Using the Error Browser, or to perform automatic design rule fixing, as described in
Automatically Fixing Signoff DRC Violations.

You can use the following methods to analyze the DRC violations reported by the
signoff_check_drc command:

• View the violations in the error browser, as described in Using the Error Browser.

• View the density of violations in a heat map, as described in Viewing the Violations in
an ICV Heat Map.

See Also

• Checking Signoff Design Rules Interactively in the GUI

IC Compiler™ II Implementation User Guide
T-2022.03

544

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Setting Options for Signoff Design Rule Checking
Before you run the signoff_check_drc command, configure the run by setting
the application options shown in Table 36. To set the application options, use the
set_app_options command. To see the current settings, use the report_app_options
command.

Table 36 Application Options for Signoff Design Rule Checking

Application option Default Description

signoff.check_drc.runset
(required)

N/A Specifies the foundry runset to use for
design rule checking.

signoff.check_drc.
auto_eco_threshold_value

20 Specifies the maximum percentage of
change to the block to perform incremental
design rule checking using the -auto_eco
true option.

signoff.check_drc.
excluded_cell_types

{} Specifies the cell types to exclude from
checking. You can specify one or more of
the following values: lib_cell (standard
cells), macro (macro cells), pad (I/O pad
cells), and filler (filler cells).

signoff.check_drc.
fill_view_data

read_if_uptodate Controls whether the IC Validator tool reads
the fill data. By default, it reads the fill data
only if its timestamp is newer than the
timestamp of the design view. To read the
fill data regardless of its timestamp, set this
application option to (read). To never read
the fill data, set this application option to
discard.

signoff.check_drc.
ignore_blockages_in_cells

true Controls whether the IC Validator tool reads
only the pin information from the frame view
(true) or both the blockages and the pin
information (false).

signoff.check_drc.
ignore_child_cell_errors

false Controls whether the IC Validator tool
reports both top-level and child-level errors
to the error data file (false) or only top-level
errors (true).

signoff.check_drc.
max_errors_per_rule

1000 Specifies the maximum number of errors to
report per rule.

signoff.check_drc.
read_design_views

{} Specifies the reference cells for which the
IC Validator tool reads the design view
instead of the frame view. Using the design
view can expose problems that are masked
by the frame view abstraction.

IC Compiler™ II Implementation User Guide
T-2022.03

545

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Table 36 Application Options for Signoff Design Rule Checking (Continued)

Application option Default Description

signoff.check_drc.
read_layout_views

{} Specifies the reference cells for which
the IC Validator tool reads the layout view
instead of the frame view. Using the layout
view can expose problems that are masked
by the frame view abstraction.

signoff.check_drc.
run_dir

signoff_check_drc_run Specifies the run directory, which
contains the files generated by the
signoff_check_drc command.
You can specify either a relative path, in
which case the directory is created under
the current working directory, or an absolute
path.

signoff.check_drc.
user_defined_options

(none) Specifies additional options for the
IC Validator command line.
The string that you specify in this option is
added to the command line used to invoke
the IC Validator tool. The IC Compiler II
tool does not perform any checking on the
specified string.

signoff.physical.
layer_map_file

(none) Specifies the name of the layer mapping file.
If the technology file and the foundry runset
file used by the IC Validator tool do not
use the same layer numbers, you must
supply a layer mapping file to map the
technology layers to the layers used in the
runset file. For details about the format of
the layer mapping file, see Defining the
Layer Mapping for IC Validator In-Design
Commands.

signoff.physical.
merge_exclude_libraries

(none) Specifies the cell libraries whose cells are
excluded from replacement with the cell
data in the stream files specified in the
signoff.physical. merge_stream_files
application option.

signoff.physical.
merge_stream_files

(none) Specifies the stream (GDSII or OASIS) files
to merge into the current block for signoff
design rule checking.
When you use this option, the GDSII or
OASIS data replaces the cell library data for
the cells defined in the specified stream files.

IC Compiler™ II Implementation User Guide
T-2022.03

546

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Reading Blocks for Signoff Design Rule Checking
By default, the IC Validator tool reads the design view for the top-level block and library
cell instances, and the pin information from the frame view for the macro cell and I/O pad
cell instances.

• To read both the pin information and the routing blockages
from the frame view for macro cells and I/O pad cells, set the
signoff.check_drc.ignore_blockages_in_cells application option to false.

• To read the GDSII or OASIS data for specific reference cells, specify the stream files by
setting the signoff.physical.merge_stream_files application option.

When you use this option, the GDSII or OASIS data replaces the cell library view
for the cells defined in the specified stream files, except for cells in the cell libraries
specified in the signoff.physical.merge_exclude_libraries application option.

• To read the layout view for specific reference cells, specify the cells by setting the
signoff.check_drc.read_layout_views application option.

The layout view is identical to the GDSII or OASIS data that was used to create it, but
reduces the runtime for signoff design rule checking.

Note:
By default, layout views are not included in the cell libraries. To save the
layout views, you must set the lib.workspace.save_layout_views
application option to true during library preparation, as described in the
Library Manager User Guide.

• To read the design view for specific reference cells, specify the cells by setting the
signoff.check_drc.read_design_views application option.

Note:
By default, design views are not included in the cell libraries. To save the
design views, you must set the lib.workspace.save_design_views
application option to true during library preparation, as described in the
Library Manager User Guide.

The order of precedence for child cell data is

1. GDSII or OASIS data specified with the signoff.physical.merge_stream_files
application option

2. Layout views specified with the signoff.check_drc.read_layout_views application
option

If the IC Validator tool cannot find a layout view and the cell is specified in the
signoff.check_drc.read_design_views application option, it reads the design view.

IC Compiler™ II Implementation User Guide
T-2022.03

547

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Otherwise, it reads the frame view. If it cannot find the frame view, the cell is ignored
during design rule checking.

3. Design views specified with the signoff.check_drc.read_design_views application
option

If the IC Validator tool cannot find a design view, it reads the frame view instead. If it
cannot find the frame view, the cell is ignored during design rule checking.

4. Frame views

For example, to read the design view for all blocks, use the following commands:

icc2_shell> set_app_options \
 -name signoff.check_drc.read_design_views -value {*}
icc2_shell> signoff_check_drc
To read the design view for the top-level block and all instances of reference cells whose
name start with mc, and the frame view for all other child blocks, use the following
commands:

icc2_shell> set_app_options \
 -name signoff.check_drc.read_design_views -value {mc*}
icc2_shell> signoff_check_drc

Signoff Design Rule Checking
By default, signoff design rule checking has the following default behavior:

• Performs checking on all cell types (standard cells, filler cells, macro cells, and I/O pad
cells)

To exclude certain cell types from design rule checking, set the signoff.check_drc.
excluded_cell_types application option. Specify one or more of the following values:
lib_cell (standard cells), filler (filler cells), macro (macro cells), and pad (I/O pad
cells).

• Performs design rule checking on the entire block

◦ To perform design rule checking only on those areas of the block that have been
modified since the last run, use the -auto_eco option.

Note:
You can use this option only if you have previously run the
signoff_check_drc command and the percentage of change to the
block since that run is less than the change threshold. The default
change threshold is 20 percent; to modify the change threshold, set the
signoff.check_drc.auto_eco_threshold_value application option.

IC Compiler™ II Implementation User Guide
T-2022.03

548

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

By default, the tool compares the current block to the version used for the previous
signoff_check_drc run. To compare the current block to a different block, use
the -pre_eco_design option to specify the comparison block. The tool gets the
information required for incremental change detection from the error data file named
block_sdrc.err, where block is either the current block name or the name specified
by the -pre_eco_design option.

By default, the DRC violations reported after performing incremental
signoff design rule checking represent only the DRC violations detected
in the changed areas of the block. To merge the initial DRC violations
with the DRC violations detected during the incremental run, set the
signoff.check_drc.merge_incremental_error_data application option to true
before running the signoff_check_drc -auto_eco command. By default, the
command reads the initial DRC violations from the signoff_check_drc.err file. To
read the initial DRC violations from a different error data file, specify the file name
with the signoff.check_drc.merge_base_error_name application option.

◦ To perform design rule checking only in specific regions, use the -coordinates
option, the -excluded_coordinates option, or both. You can specify one or more
regions for both options. If you specify both options, the command does not check
design rules in the overlapping regions.

To specify the coordinates, use the following format:

{{x1 y1} {x2 y2} ... {xn yn}}

Note that there must be a space between each set of coordinates.

• Performs design rule checking for all rules specified in the foundry runset

◦ To check only specific rules, use the -select_rules option. Specify the rules by
specifying a matching pattern for the rule names. The rule names are specified in
the COMMENT section in the runset file.

◦ To prevent checking of specific rules, use the -unselect_rules option. Specify
the rules by specifying a matching pattern for the rule names. The rule names are
specified in the COMMENT section in the runset file.

Note:
You can use this option with the -select_rules option to customize
the set of rules checked by the signoff_check_drc command.
For example, to restrict the signoff_check_drc command to route
validation, select the metal layer rules and exclude the metal density
rules.

IC Compiler™ II Implementation User Guide
T-2022.03

549

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

• Performs design rule checking for all routing layers

◦ To perform design rule checking only on specific routing layers, use the
-select_layers option. Specify the routing layers by using the layer names from
the technology file.

◦ To perform design rule checking on all runset layers, including nonrouting layers,
use the -check_all_runset_layers true option.

You would typically use this setting to perform a quick design rule check on the
entire block after you complete design rule checking on the routing layers. When
you use this option, the block information comes from the design view and the
validation tool checks all layers, including the nonrouting layers.

• Reports a maximum of 1000 errors for each rule, including both top-level and child-
level violations

◦ To override the maximum error count, set the
signoff.check_drc.max_errors_per_rule application option.

◦ To ignore child-level violations, set the
signoff.check_drc.ignore_child_cell_errors application option to true.

The signoff_check_drc command uses the options that you specify to generate
the command used to invoke signoff design rule checking in the IC Validator tool.
You can specify additional options for the IC Validator command line by setting the
signoff.check_drc.user_defined_options application option. The string that you
specify in this option is added to the command line used to invoke the IC Validator tool.
The IC Compiler II tool does not perform any checking on the specified string.

Generating Input for the Automatic Fixing Flow
If you plan to use the signoff DRC results as input to the automatic fixing flow, set the
signoff.check_drc.ignore_child_cell_errors application option to true before you
run the signoff_check_drc command. Zroute can fix only top-level violations; using this
option ensures that signoff design rule checking reports only fixable violations.

Signoff DRC Results Files
The signoff_check_drc command writes its output files to the run directory,
which is specified by the signoff.check_drc.run_dir application option (or the
signoff_check_drc_run directory if you do not use this option). The following files are
written to the run directory:

• The error data file

By default, the error data generated by the signoff_check_drc command is saved in
a file named signoff_check_drc.err, which is stored in the design library. To specify the
name for the error data file, use the -error_data option. The error data shows child-

IC Compiler™ II Implementation User Guide
T-2022.03

550

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

level errors on only one of the cell instances, which makes it easier to identify lower-
level errors.

You can use the error data file to report or display the DRC violations in the error
browser. For information about using the error browser, see Using the Error Browser.

• The IC Validator results files

You can use the following IC Validator results files for debugging the signoff DRC
results:

◦ block.LAYOUT_ERRORS

This file contains details about the errors detected during the signoff_check_drc
run.

◦ block.RESULTS

This file contains a summary of the signoff_check_drc run results.

◦ signoff_check_drc.log

This file contains a summary of the signoff_check_drc run environment.

◦ icv_config_out

This file contains the paths to the top-level block and the cell libraries.

◦ icv_sdrc.conclude

This file contains an error summary report.

◦ layer.map

This file contains the layer mapping file generated by the signoff_check_drc
command.

◦ signoff_check_drc.rc

This file contains the IC Validator runset environment variables.

◦ ./run_details directory

This directory contains all the data generated by the IC Validator tool for the signoff
DRC run.

For more information about these files, see the IC Validator documentation.

Viewing the Violations in an ICV Heat Map
An ICV heat map displays the density of signoff DRC violations in a block. You can use the
heat map to locate problematic areas in your design.

IC Compiler™ II Implementation User Guide
T-2022.03

551

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Note:
This feature requires version P-2019.06 or later of the IC Validator tool and an
IC Validator NXT license.

To view the ICV heat map,

1. Enable the ICV heat map by setting the
signoff.check_drc.enable_icv_explorer_mode application option to true.

icc2_shell> set_app_options -name
 signoff.check_drc.enable_icv_explorer_mode \
 -value true

2. Perform signoff design rule checking as described in Running the signoff_check_drc
Command.

3. In the GUI, choose View > Map > ICV Heatmap.

Figure 95 shows an ICV heat map.

IC Compiler™ II Implementation User Guide
T-2022.03

552

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Figure 95 ICV Heat Map

IC Compiler™ II Implementation User Guide
T-2022.03

553

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Configuring an ICV Heat Map
You can select or unselect violation types from the heat map, as shown in figure Figure 96
and Figure 97.

Figure 96 Violation Type

IC Compiler™ II Implementation User Guide
T-2022.03

554

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Figure 97 Violation Type in ICV Heat Map

To control the opacity of the heat map squares, adjust the Alpha percentage value. Set this
percentage to 100% to create a completely filled block. The lower you set the percentage,
the more transparent the block becomes, as shown in Figure 98 and Figure 99.

Figure 98 Completely Filled Block

IC Compiler™ II Implementation User Guide
T-2022.03

555

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Figure 99

You can adjust the range of colored squares by modifying the Bins value, as shown in
Figure 100 and Figure 101.

Figure 100 Bins Value Set to 5

IC Compiler™ II Implementation User Guide
T-2022.03

556

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Figure 101 Bins Value Set to 8

You can select or unselect layers from the heat map, as shown in Figure 102 and
Figure 103.

Figure 102 Selecting Layers

IC Compiler™ II Implementation User Guide
T-2022.03

557

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Figure 103 Selecting Layers in the ICV Heatmap

You can modify the squares of the heat map by right-clicking the colored squares and
selecting Set Style. See Figure 104 and Figure 105.

IC Compiler™ II Implementation User Guide
T-2022.03

558

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Figure 104 Set Style

Figure 105 Select Style

IC Compiler™ II Implementation User Guide
T-2022.03

559

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Highlighting Violations From the Error Browser Onto an ICV Heat
Map
To highlight violations from the Error Browser:

1. In the GUI, choose View > Error Browser.

2. Select the error data generated from the DRC run.

3. Select violations from the Error Browser to automatically highlight them on the heat
map.

IC Compiler™ II Implementation User Guide
T-2022.03

560

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

IC Compiler™ II Implementation User Guide
T-2022.03

561

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Automatically Fixing Signoff DRC Violations
Zroute can use the signoff DRC results generated by the signoff_check_drc command
to automatically fix the detected design rule violations.

To perform automatic fixing of the signoff DRC violations,

1. Set up the IC Validator environment as described in Setting Up the IC Validator
Environment.

2. Set up the physical signoff options as described in Setting Options for Signoff Design
Rule Checking.

3. (Optional) Generate a configuration file that aids in the fixing process.

The configuration file defines the layer-to-DRC-rule mapping. The signoff_fix_drc
command processes only those rules that are specified in the configuration file.

By default, the signoff_fix_drc command automatically generates the configuration.
You can manually generate a configuration file, as described in Creating an Autofix
Configuration File.

4. Set the application options for signoff DRC fixing.

For information about the options for signoff DRC fixing, see Setting Options for Signoff
Design Rule Checking.

5. Save the block to disk.

When you run the signoff_fix_drc command, the IC Validator tool uses the on-
disk information for the block, not the information in memory. To ensure accurate
information, use the save_block command to save the current state of the block
before running the signoff_fix_drc command.

6. Run signoff DRC fixing by using the signoff_fix_drc command as described in
Running the signoff_fix_drc Command.

If your block uses double-patterning technology, first perform signoff DRC fixing for all
other routing design rules, and then perform signoff DRC fixing for only the double-
patterning rules, as described in Automatically Fixing Double-Patterning Odd-Cycle
Violations.

Creating an Autofix Configuration File
The autofix configuration file has the following format:

"mask_layer_name" "full_IC_Validator_DRC_rule_comment"

You can put comments in the configuration file by starting the line with the pound sign (#).

IC Compiler™ II Implementation User Guide
T-2022.03

562

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

If you have already run the signoff_check_drc command, you can generate a
configuration file by running the $ICV_HOME_DIR/contrib/generate_layer_rule_map.pl
script. This script has the following syntax:

generate_layer_rule_map.pl
 -dplog IC_Validator_log_file
 -tech_file technology_file
 -o config_file_name

The IC Validator log file that you specify in the -dplog option is the log file that was
generated by the previous signoff_check_drc run. This file is called runset.dp.log and
is located in the run_details subdirectory of the signoff_drc_run directory (or the directory
specified by the signoff.check_drc.run_dir application option.

To specify the location of the configuration file you created, use the
signoff.fix_drc.config_file application option.

Setting Options for Signoff DRC Fixing
Before you run the signoff_fix_drc command, configure the run by setting
the application options shown in Table 37. To set the application options, use the
set_app_options command. To see the current settings, use the report_app_options
command.

Table 37 Application Options for Signoff DRC Fixing

Application option Default Description

signoff.fix_drc.
advanced_guidance_for_rules

all Controls whether signoff DRC fixing uses
advanced routing guidance.
By default, the signoff_fix_drc
command uses advanced routing
guidance (all). To disable this feature, set
the application option to off.

signoff.fix_drc.check_drc local Controls whether signoff DRC checking
is performed only on those portions of
the block affected by signoff DRC fixing
(local, which is the default) or on the
entire block (global).

signoff.fix_drc.
custom_guidance

(none) Enables a signoff DRC fixing run that
targets double-patterning odd-cycle
violations when it is set to dpt. For
information about fixing double-patterning
odd-cycle violations, see Automatically
Fixing Double-Patterning Odd-Cycle
Violations.

IC Compiler™ II Implementation User Guide
T-2022.03

563

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Table 37 Application Options for Signoff DRC Fixing (Continued)

Application option Default Description

signoff.fix_drc.
fix_detail_route_drc

global Controls whether the signoff_fix_drc
command fixes routing DRC violations
for the entire block (global) or only in
the areas near the signoff DRC violations
(local).

signoff.fix_drc.
init_drc_error_db

(none) Specifies the location of the signoff DRC
results from the previous run.
By default, the signoff_fix_drc
command runs the signoff_check_drc
command to generate the initial signoff
DRC results.

signoff.fix_drc.
last_run_full_chip

false Controls whether the signoff DRC
checking in the final repair loop runs only
on those portions of the block affected by
signoff DRC fixing (false) or on the whole
block (true).

signoff.fix_drc.
max_detail_route_iterations

5 Specifies the maximum number of search
and repair loops to run after signoff DRC
fixing.

signoff.fix_drc.
max_errors_per_rule

1000 Specifies the maximum number of DRC
violations to fix per rule.

signoff.fix_drc.run_dir signoff_fix_drc_run Specifies the run directory, which
contains the files generated by the
signoff_fix_drc command.
You can specify either a relative path,
in which case the directory is created
under the current working directory, or an
absolute path.

signoff.fix_drc.
target_clock_nets

false Controls whether signoff DRC fixing
targets data nets (false) or clock nets
(true).

signoff.fix_drc.
user_defined_options

(none) Specifies additional options for the
IC Validator command line.
The string that you specify in this option is
added to the command line used to invoke
the IC Validator tool. The IC Compiler II
tool does not perform any checking on the
specified string.

IC Compiler™ II Implementation User Guide
T-2022.03

564

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Running the signoff_fix_drc Command
By default, the signoff_fix_drc command performs the following tasks:

1. Runs the signoff_check_drc command to generate the initial signoff DRC results, as
described in Checking for DRC Violations

If you have already run the signoff_check_drc command, you can use the existing
signoff DRC results instead of rerunning signoff design rule checking. To reuse
the existing results, specify the directory that contains the results by setting the
signoff.fix_drc.init_drc_error_db application option. You can specify either
a relative path or an absolute path. If you specify a relative path, it is relative to the
current working directory.

For example, to use the results from the default signoff_check_drc run directory, use
the following commands:

icc2_shell> set_app_options \
 -name signoff.fix_drc.init_drc_error_db \
 -value signoff_check_drc_run
icc2_shell> signoff_fix_drc
Note:

To use existing signoff DRC results as input to the signoff_fix_drc
command, you must use the signoff DRC application options described in
Generating Input for the Automatic Fixing Flow.

2. Runs two repair loops to fix the DRC violations

In each repair loop, the signoff_fix_drc command performs the following tasks;

a. Tries to fix the DRC violations detected in the previous IC Validator signoff DRC run,
as described in Fixing DRC Violations

b. Runs IC Validator signoff design rule checking on the modified block, as described
in Checking for DRC Violations

To change the number of repair loops, use the -max_number_repair_loop option; you
can specify an integer between 1 and 10. If no signoff DRC violations remain after a
loop, the tool does not perform additional repair loops.

As the repair loop number increases, so does the physical scope of the rerouting
performed by that repair loop. To change the scope, increase the number of the initial
repair loop by using the -start_repair_loop option. Note that increasing the initial
loop number might cause a greater disturbance to the block, which would require
additional design rule checking and fixing by Zroute.

IC Compiler™ II Implementation User Guide
T-2022.03

565

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

3. Writes a summary report of the results

For information about the summary report, see Summary Report for Automatic Design
Rule Fixing.

Fixing DRC Violations
In each repair loop, the signoff_fix_drc command tries to fix the DRC violations
detected in the previous signoff DRC run.

• For the first loop, the tool uses the IC Validator data in the directory specified by the
signoff.fix_drc.init_drc_error_db application option (or the signoff_drc_run_init
directory if you do not use this option).

• For successive loops, the tool uses the IC Validator DRC data from the previous loop,
which is stored in the directory specified by the signoff.fix_drc.run_dir application
option (or the signoff_fix_drc_run directory if you do not use this option).

When fixing DRC violations, the signoff_fix_drc command has the following default
behavior:

• Tries to fix all design rule violations detected in the previous signoff DRC run except
those design rules that have more than 1000 violations

• Performs DRC fixing on data nets for the whole block

To modify the regions for design rule fixing, use one or both of the following options:

◦ -coordinates
This option restricts design rule fixing to the specified regions.

◦ -excluded_coordinates
This option prevents design rule fixing in the specified regions. If you specify this
option with the -coordinates option, the command does not fix design rules in the
overlapping regions.

To specify the coordinates, use the following format:

{{x1 y1} {x2 y2} ... {xn yn}}

Note that there must be a space between each set of coordinates.

IC Compiler™ II Implementation User Guide
T-2022.03

566

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

To prevent fixes that might impact timing-critical nets, use one or both of the following
options:

◦ -nets
This option explicitly specifies the critical nets.

◦ -timing_preserve_setup_slack_threshold
This option enables the tool to automatically determine the critical nets based on a
setup slack threshold. The unit for the slack threshold setting is the library time unit.

• Performs five iterations of detail routing after DRC fixing to fix any DRC violations
introduced during DRC fixing

• Saves the modified block in a design view named block_ADR_#

To change the default behavior, use the following options:

• signoff.fix_drc.max_errors_per_rule
This application option specifies the error threshold for ignoring a design rule.

• signoff.fix_drc.fix_detail_route_drc
This application option controls the scope of DRC fixing. To reduce runtime by
performing DRC fixing only in areas near the signoff DRC violations, set this application
option to local.

• signoff.fix_drc.target_clock_nets
This application option controls whether DRC fixing targets data nets or clock nets. To
target clock nets, set this application option to true.

• signoff.fix_drc.max_detail_route_iterations
This application option specifies the number of detail routing iterations; you can specify
an integer between 0 and 1000.

Checking for DRC Violations
When performing signoff design rule checking, the signoff_fix_drc command has the
following default behavior:

• Reads the design view for the top-level block and library cell instances, and the pin
information from the frame view for the macro cell and I/O pad cell instances

For information about changing the view used for specific cells, see Reading Blocks for
Signoff Design Rule Checking.

• After the initial run, performs design rule checking only on those portions of the design
affected by design rule fixing

IC Compiler™ II Implementation User Guide
T-2022.03

567

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

To perform signoff design rule checking on the entire block for the last repair loop, set
the signoff.fix_drc.last_run_full_chip application option to true. Setting this
option to true increases accuracy but also increases runtime.

To perform signoff design rule checking on the entire block for all repair loops, set the
signoff.fix_drc.check_drc application option to global. Setting this option to
global increases accuracy but can greatly increase runtime.

• Does not check for violations in child blocks

• Excludes rules that are not suitable for automatic design rule fixing

To explicitly specify the design rules checked by the IC Validator tool, set the
-select_rules rules and -unselect_rules rules application options.

• Stores the IC Validator results in the signoff_fix_drc_run directory

To use a different run directory, set the signoff.fix_drc.run_dir application option.

Note:
The IC Validator results for the initial signoff DRC run are stored in the
signoff_drc_run_init directory.

In addition, you can specify options to add to the IC Validator command line by setting the
signoff.fix_drc.user_defined_options application option.

See Also

• Performing Signoff Design Rule Checking

IC Compiler™ II Implementation User Guide
T-2022.03

568

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Automatically Fixing Double-Patterning Odd-Cycle Violations
If your block uses double-patterning technology, you must perform separate signoff DRC
fixing runs for the non-double-patterning routing rules and the double-patterning routing
rules.

To perform automatic fixing of the signoff DRC violations for a block that uses double-
patterning technology,

1. Perform automatic fixing for the non-double-patterning signoff DRC violations by using
the process described in Automatically Fixing Signoff DRC Violations.

When you run the signoff_check_drc and signoff_fix_drc commands, use the
-unselect_rules option to ignore the double-patterning rules during signoff design
rule checking.

icc2_shell> signoff_check_drc -unselect_rules {list_of_dpt_rules}
Note:

To determine the double-patterning rules for your technology, see the design
rule manual (DRM) provided by your vendor.

2. Perform automatic fixing for the double-patterning odd-cycle violations by using the
process described in Automatically Fixing Signoff DRC Violations.

Before you run the signoff_fix_drc command, set the
signoff.fix_drc.custom_guidance application option to dpt.

icc2_shell> set_app_options \
 -name signoff.fix_drc.custom_guidance -value dpt
When you run the signoff_check_drc and signoff_fix_drc commands, use the
-select_rules option to consider only the double-patterning rules during signoff
design rule checking.

icc2_shell> signoff_check_drc -select_rules {list_of_dpt_rules}
3. Perform signoff design rule checking to verify the results by using the process

described in Performing Signoff Design Rule Checking.

Summary Report for Automatic Design Rule Fixing
The signoff_fix_drc command writes a summary report file, result_summary.rpt, to the
current working directory. Example 28 shows an example of this report.

Example 28 result_summary.rpt Example
Input DRC Error Database............ ./inputs/signoff_check_drc_run
Limit to Cell....................... my_design
Maximum Errors/Command.............. 1000

IC Compiler™ II Implementation User Guide
T-2022.03

569

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

SIGNOFF AUTOFIX DRC SUMMARY:
 : : : : REMAINING : :
 : TOTAL : PROCESSED : TARGETED : TARGETED : FIX :
DRC NAME : DRC : DRC : DRC : DRC : RATE : COMMENT
M0.W.3 :
Maximum width : 1 : 1 : 0 : 0 : -- : 1 ignore
d: <#1>
M4.L.3 :
Edge length wi : 4 : 4 : 0 : 0 : -- : 4 ignor
ed: <#2>
M4.L.5:2 :
Edge length : 2 : 2 : 0 : 0 : -- : 2 ignore
d: <#2>
M4.W.3 :
Maximum width : 1 : 1 : 0 : 0 : -- : 1 ignore
d: <#1>
VIA1.S.10.3 :
Space of : 10 : 10 : 2 : 0 : 100.0% : 8 ignored
: <#2>
TOTAL : : : 2 : 0 : 100.0% :

NOTE:
Reasons : Detail Info
 #1 : size of error shapes greater than threshold
 #2 : shapes associated with error are not Zroute modifiable

The following table describes each of the columns in the summary report:

Table 38 Definitions of Columns in result_summary.rpt

Column heading Description

DRC NAME Name of the design rule from the runset

TOTAL DRC Total number of DRC violations detected by the
signoff_check_drc run

PROCESSED DRC Total number of the detected DRC violations that went through
the filtering process to determine whether they can be targeted

TARGETED DRC Number of DRC violations that automatic DRC fixing will
attempt to fix after the filtering process

REMAINING TARGETED DRC Number of DRC violations that remain after automatic DRC
fixing

FIX RATE The ratio of remaining targeted DRC violations to targeted DRC
violations

COMMENT Explanation for ignored DRC violations; the detailed reason
codes are provided in the NOTES section of the report

IC Compiler™ II Implementation User Guide
T-2022.03

570

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Checking Signoff Design Rules Interactively in the GUI
The Live DRC feature performs interactive signoff design rule checking in the IC Compiler
II GUI.

Note:
This feature requires version P-2019.06 or later of the IC Validator tool.

To perform interactive signoff design rule checking using Live DRC,

1. Set up the IC Validator environment as described in Setting Up the IC Validator
Environment.

2. Set the application options for interactive signoff design rule checking.

At a minimum, you must specify the following information:

• The foundry runset to use for design rule checking by setting the
signoff.check_drc_live.runset application option

• The layer mapping file that maps the technology file layers to the runset layers by
setting the signoff.physical.layer_map_file application option

For information about the options for interactive signoff design rule checking, see
Setting Options for Interactive Design Rule Checking.

3. Ensure that the layout window displays the objects on which you want to perform
design rule checking.

By default, interactive design rule checking uses the frame view of each cell. If
you want more detail than what is provided in the frame view, use the GDSII or
OASIS view for specific cells by specifying the files containing the cells in the
signoff.physical.merge_stream_files application option. For example,

icc2_shell> set_app_options \
 -name signoff.physical.merge_stream_files \
 -value {stdcell.gds macro.oas}
For information about controlling the objects displayed for design rule checking, see
Displaying Objects for Design Rule Checking.

4. Display the DRC toolbar by right-clicking in the GUI menu bar and selecting DRC
Tools.

For details about the icons in the DRC toolbar, see DRC Toolbar.

5. Configure the rules to use for design rule checking by choosing Edit > Options > ICV-
Live or by clicking the gear icon () in the DRC toolbar.

IC Compiler™ II Implementation User Guide
T-2022.03

571

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

To exclude all density or connectivity rules from design rule checking, set
thesignoff.check_drc_live.exclude_command_class application option.

6. Run design rule checking by choosing Edit > ICV > Run ICV-Live on Current View or by
clicking the ICV Run button () in the DRC toolbar.

The first time that you run Live DRC, the tool performs the following initialization steps,
which can take a couple of minutes:

• Processes the IC Validator runset to get the list of available rules and caches the
runset

• Processes the GDSII or OASIS files specified in the
signoff.physical.merge_stream_files application option

Unless the layers, rules, or stream files change, subsequent runs do not perform this
caching and therefore are much quicker. To reduce the initial runtime, you can perform this
initialization before running Live DRC by using the signoff_init_live_drc command.

The tool displays the design rule checking results in the error browser. You can select
errors in the error browser and then fix them interactively. For information about using the
error browser, see Using the Error Browser

See Also

• Running the signoff_check_drc Command

Displaying Objects for Design Rule Checking
When you run interactive design rule checking, the IC Validator tool performs design
rule checking on what is displayed in the layout window, plus an extension of 1 micron.
You can modify the size of the extension by setting the signoff.check_drc_live.halo
application option.

Use the View Settings and Hierarchy Settings panels to control the layers, levels, and cell
types displayed in the layout window.

• Display the View Settings panel by clicking the View Settings icon () in the panel
area.

◦ Specify the number of levels to display in the Level field.

◦ Select the Layers tab and enable visibility for the desired layers.

• Display the Hierarchy Settings panel by clicking the Hierarchy Settings icon () in the
View Settings panel or the menu bar.

IC Compiler™ II Implementation User Guide
T-2022.03

572

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

◦ Specify the number of view levels in the “View level” field.

◦ Select Standard, “Fill Cell,” and Block in the “Expanding cell types” section.

Figure 106shows the View Settings and Hierarchy Settings panels used to control the
layout window display for design rule checking.

Figure 106 Settings Used to Display Objects for Design Rule Checking

DRC Toolbar
The DRC toolbar provides buttons that you can use to configure and run interactive design
rule checking with Live DRC, and to view the reported DRC violations in the layout view.
Figure 107 shows the DRC toolbar.

IC Compiler™ II Implementation User Guide
T-2022.03

573

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Figure 107 DRC Toolbar

Table 39 DRC Toolbar Buttons

Button Description

Runs design rule checking using Live DRC.

Opens the dialog box to view and sets the Live
DRC application options.

Opens the dialog box to configure the rules to
use for design rule checking .

Selects the region in which to perform design
rule checking.

Resets the design rule checking region to that
used in the previous Live DRC run.

Enables or disables the error environment
overlay of GDSII or OASIS shapes from lower
level cells that contribute to DRC errors.
The error environment overlay
is available only when the
signoff.physical.merge_stream_files
application option is set before doing DRC
checking.

Clears or highlights all DRC violations detected
by Live DRC.

Iterates through the DRC violations for the
current rule from Live DRC.

Controls zoom or pan when iterating through the
DRC violations.

Shows the design rule being highlighted.

IC Compiler™ II Implementation User Guide
T-2022.03

574

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Setting Options for Interactive Design Rule Checking
Before you run interactive design rule checking, configure the run by setting the
application options shown in Table 40. To set the application options, use the
set_app_options command. To see the current settings, use the report_app_options
command.

Table 40 Application Options for Interactive Design Rule Checking

Application option Default Description

signoff.check_drc_live.
check_only_visible_layers

all_layers Controls whether Live DRC includes the
rules defined on non-displayed layers. By
default, Live DRC includes the rules for
all layers. Valid values are all_layers,
visible_involved, and visible_only.

signoff.check_drc_live.
default_layers

(none) Specifies the layers with color masks to
write into the default layers for Live DRC.

signoff.check_drc_live.
exclude_command_class

{{density true}
 {connectivity true}}

Specifies the types of rules to exclude from
DRC checking by Live DRC. By default, the
density and connectivity rules are excluded.

signoff.check_drc_live.
halo

Specifies the distance in microns by which
to expand the region in which Live DRC
performs checking.

signoff.check_drc_live.
hierarchy_level

visible Specifies the maximum hierarchical depth
processed by Live DRC..

signoff.check_drc_live.
keep_enclosing_results

false Specifies whether to keep DRC violations
that are outside of the checking region.
By default, Live DRC keeps only those
violations that are fully within the checking
region.
If you set this application option to true,
Live DRC keeps the DRC violations
that are fully inside the trim region.
The trim region is the checking region
plus half of the distance specified by
the signoff.check_drc_live.halo
application option.
Violations that are fully outside the trim
region are always discarded.

IC Compiler™ II Implementation User Guide
T-2022.03

575

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Performing Signoff Design Rule Checking

Feedback

Table 40 Application Options for Interactive Design Rule Checking (Continued)

Application option Default Description

signoff.check_drc_live.
run_dir

signoff_check_drc_live_run Specifies the run directory, which contains
the files generated by the interactive signoff
design rule checking.
You can specify either a relative path, in
which case the directory is created under
the current working directory, or an absolute
path.

signoff.check_drc_live.
runset
(required)

(none) Specifies the foundry runset to use for
design rule checking.

signoff.check_drc_live.
user_defined_options

(none) Specifies additional options for the
IC Validator command line.
The string that you specify in this option is
added to the command line used to invoke
the IC Validator tool. The IC Compiler II
tool does not perform any checking on the
specified string.

signoff.physical.
layer_map_file
(required)

(none) Specifies the name of the layer mapping file
that maps the layer names in the technology
file to those in the foundry runset.
For details about the format of the layer
mapping file, see Defining the Layer
Mapping for IC Validator In-Design
Commands.

signoff.physical.
merge_stream_files

(none) Specifies the stream (GDSII or OASIS)
files to merge into the current block for
interactive design rule checking.
When you use this option, the GDSII or
OASIS data replaces the cell library data
for the cells defined in the specified stream
files.

IC Compiler™ II Implementation User Guide
T-2022.03

576

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Improving Instance Voltage Drop by Augmenting the Power Grid

Feedback

Improving Instance Voltage Drop by Augmenting the Power Grid
Power grid augmentation is a technique used to improve the instance voltage drop. When
you augment the power grid, the added metal shapes act as parallel resistors, which
reduces the resistance of the power grid as seen by the standard cells. Figure 108 shows
an example of power grid augmentation and how it lowers the power grid resistance.

Figure 108 Power Grid Augmentation

The IC Compiler II tool supports the following methods of power grid augmentation:

• Standard power grid augmentation, which inserts as many PG augmentation shapes as
possible to lower the instance voltage drop

• Timing-driven power grid augmentation, which inserts PG augmentation shapes in the
specified regions of the block, except around timing-critical nets

• Guided power grid augmentation, which inserts PG augmentation shapes only from
cells with IR violations to their tap with the minimum path resistance

Each method uses RedHawk Fusion analysis to drive the power grid augmentation and
uses the IC Validator tool to insert the PG augmentation shapes. For detailed information
about performing power grid augmentation, see the topic associated with the method you
want to use.

See Also

• RedHawk and RedHawk-SC Fusion

IC Compiler™ II Implementation User Guide
T-2022.03

577

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Improving Instance Voltage Drop by Augmenting the Power Grid

Feedback

Standard Power Grid Augmentation
Standard power grid augmentation inserts as many PG augmentation shapes as possible
to lower the instance voltage drop.

To perform standard power grid augmentation,

1. Ensure that the block is fully routed with very few or no DRC violations.

2. Run voltage drop analysis using RedHawk Fusion, as described in Performing Voltage
Drop Analysis.

The IC Validator tool uses the results of this voltage drop analysis to drive the power
grid augmentation.

3. Set up the IC Validator environment as described in Setting Up the IC Validator
Environment.

4. (Optional) Enable distributed processing by using the set_host_options command,
as described in Enabling IC Validator Multicore Processing.

5. Set the application options for performing power grid augmentation, as described in
Setting Options for Power Grid Augmentation.

At a minimum, you must define the power and ground nets on which to perform PG
augmentation.

• To specify the power net, set the
signoff.create_pg_augmentation.power_net_name application option.

• To specify the ground net, set the
signoff.create_pg_augmentation.ground_net_name application option.

If your design contains more than one power net, you must perform PG augmentation
once for each power net.

6. Save the block to disk.

When you run the signoff_create_pg_augmentation command, the IC Validator tool
uses the on-disk information for the block, not the information in memory. To ensure
accurate information, use the save_block command to save the current state of the
block before running the signoff_create_pg_augmentation command.

7. Perform power grid augmentation by using the signoff_create_pg_augmentation
command.

When you run this command, you must specify the technology node for which to
perform the augmentation by using the -node option.

IC Compiler™ II Implementation User Guide
T-2022.03

578

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Improving Instance Voltage Drop by Augmenting the Power Grid

Feedback

If you must perform incremental PG augmentation because your design contains more
than one power net, use the -mode add command on subsequent runs to append the
PG augmentation shapes to the existing shapes.

8. Run voltage drop analysis using RedHawk Fusion, as described in Performing Voltage
Drop Analysis.

This second voltage drop analysis run measures the voltage drop after power grid
augmentation.

During standard PG augmentation, the signoff_create_pg_augmentation command
performs the following tasks:

1. Inserts PG augmentation shapes for the specified regions

When the IC Validator tool inserts the PG augmentation shapes, it considers the
routing design rules to ensure that it does not create design rule violations.

By default, the command performs PG augmentation for the entire block. To specify the
regions for PG augmentation, use one or more of the following options:

• -coordinates_ground
This option restricts PG augmentation for the ground net to the specified regions.

• -excluded_coordinates_ground
This option prevents PG augmentation for the ground net in the specified regions. If
you specify this option with the -coordinates_ground option, the command does
not perform PG augmentation in the overlapping regions.

• -coordinates_power
This option restricts PG augmentation for the power net to the specified regions.

• -excluded_coordinates_power
This option prevents PG augmentation for the power net in the specified regions. If
you specify this option with the -coordinates_power option, the command does
not perform PG augmentation in the overlapping regions.

The shapes added during PG augmentation have a shape_use attribute of
pg_augmentation. You can use this attribute to query the shapes added during PG
augmentation. For example,

icc2_shell> get_shapes -filter {shape_use=~pg_augmentation}

IC Compiler™ II Implementation User Guide
T-2022.03

579

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Improving Instance Voltage Drop by Augmenting the Power Grid

Feedback

2. Generates a summary report that shows the following information for each PG net:

• The distribution of power grid augmentation shapes added on each layer

• The total number of metal shapes added, the total number of via shapes added,
and the total number of all shapes added

3. Saves the updated block to disk

See Also

• Timing-Driven Power Grid Augmentation

• Guided Power Grid Augmentation

• Removing PG Augmentation Shapes

Setting Options for Power Grid Augmentation
Before you run the signoff_create_pg_augmentation command, configure the run by
setting the application options shown in Table 41. To set the application options, use the
set_app_options command. To see the current settings, use the report_app_options
command.

Table 41 Application Options for Power Grid Augmentation

Application option Default Description

signoff.
create_pg_augmentation.
ground_net_name
(required)

(none) Specifies the name of the ground
net.

signoff.
create_pg_augmentation.po
wer_net_name
(required)

(none) Specifies the name of the power net.

signoff.
create_pg_augmentation.
run_dir

signoff_create_pg_
augmentation_run

Specifies the run directory, which
contains the files generated by the
signoff_create_pg_augmentation
command.
You can specify either a relative
path, in which case the directory is
created under the current working
directory, or an absolute path.

IC Compiler™ II Implementation User Guide
T-2022.03

580

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Improving Instance Voltage Drop by Augmenting the Power Grid

Feedback

Table 41 Application Options for Power Grid Augmentation (Continued)

Application option Default Description

signoff.
create_pg_augmentation.
user_defined_options

(none) Specifies additional options for the
IC Validator command line.
The string that you specify in this
option is added to the command
line used to invoke the IC Validator
tool. The IC Compiler II tool does
not perform any checking on the
specified string.

Timing-Driven Power Grid Augmentation
Timing-driven power grid augmentation inserts PG augmentation shapes in the specified
regions of the block, except around timing-critical nets. By default, the tool does not
perform timing-driven PG augmentation.

To perform timing-driven power grid augmentation,

1. Ensure that the block is fully routed with very few or no DRC violations.

2. Run voltage drop analysis using RedHawk Fusion, as described in Performing Voltage
Drop Analysis.

The IC Validator tool uses the results of this voltage drop analysis to drive the power
grid augmentation.

3. Set up the IC Validator environment as described in Setting Up the IC Validator
Environment.

4. (Optional) Enable distributed processing by using the set_host_options command,
as described in Enabling IC Validator Multicore Processing.

5. Set the application options for performing power grid augmentation, as described in
Setting Options for Power Grid Augmentation.

At a minimum, you must define the power and ground nets on which to perform PG
augmentation.

• To specify the power net, set the
signoff.create_pg_augmentation.power_net_name application option.

• To specify the ground net, set the
signoff.create_pg_augmentation.ground_net_name application option.

If your design contains more than one power net, you must perform PG augmentation
once for each power net.

IC Compiler™ II Implementation User Guide
T-2022.03

581

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Improving Instance Voltage Drop by Augmenting the Power Grid

Feedback

6. Save the block to disk.

When you run the signoff_create_pg_augmentation command, the IC Validator tool
uses the on-disk information for the block, not the information in memory. To ensure
accurate information, use the save_block command to save the current state of the
block before running the signoff_create_pg_augmentation command.

7. Perform timing-driven power grid augmentation by using the
signoff_create_pg_augmentation command with one or both of the following
options:

• -nets
This option explicitly specifies the critical nets.

• -timing_preserve_setup_slack_threshold
This option enables the tool to automatically determine the critical nets based on a
setup slack threshold. The unit for the slack threshold setting is the library time unit.

You must also specify the technology node for which to perform the augmentation by
using the -node option.

If you must perform incremental PG augmentation because your design contains more
than one power net, use the -mode add command on subsequent runs to append the
PG augmentation shapes to the existing shapes.

8. Run voltage drop analysis using RedHawk Fusion, as described in Performing Voltage
Drop Analysis.

This second voltage drop analysis run measures the voltage drop after power grid
augmentation.

During timing-driven PG augmentation, the signoff_create_pg_augmentation
command

1. Performs timing analysis, including multicorner-multimode analysis, to minimize timing
impact

2. Identifies timing-critical nets based on the options you specify

3. Removes existing PG augmentation shapes

By default, the command removes the PG augmentation shapes from the entire block.
To keep the existing PG augmentation shapes, use the -mode add option.

4. Inserts PG augmentation shapes for the specified regions, except in the areas around
the critical nets

IC Compiler™ II Implementation User Guide
T-2022.03

582

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Improving Instance Voltage Drop by Augmenting the Power Grid

Feedback

5. Saves the updated block to disk

6. Generates a summary report

See Also

• Standard Power Grid Augmentation

• Guided Power Grid Augmentation

• Removing PG Augmentation Shapes

Guided Power Grid Augmentation
Guided power grid augmentation inserts PG augmentation shapes only near cells with
IR violations. For each candidate cell, guided PG augmentation inserts PG augmentation
shapes in the region from the cell to its tap with the minimum path resistance. Because the
shapes are added only in specific regions, guided PG augmentation inserts fewer metal
shapes and uses less routing area, which decreases the coupling capacitance impacts.

To perform guided power grid augmentation,

1. Ensure that the block is fully routed with very few or no DRC violations.

2. Run voltage drop and minimum path resistance analysis using RedHawk Fusion,
as described in Performing Voltage Drop Analysis and Performing Minimum Path
Resistance Analysis.

The IC Validator tool uses the results of these analyses to drive the power grid
augmentation.

3. Set up the IC Validator environment as described in Setting Up the IC Validator
Environment.

4. (Optional) Enable distributed processing by using the set_host_options command,
as described in Enabling IC Validator Multicore Processing.

5. Save the block to disk.

When you run the fix_pg_wire command, the IC Validator tool uses the on-
disk information for the block, not the information in memory. To ensure accurate
information, use the save_block command to save the current state of the block
before running the fix_pg_wire command.

IC Compiler™ II Implementation User Guide
T-2022.03

583

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Improving Instance Voltage Drop by Augmenting the Power Grid

Feedback

6. Perform guided power grid augmentation by using the fix_pg_wire command with
one or both of the following options:

• -number_pins
This option specifies the number of worst IR-drop violators for which to perform PG
augmentation.

• -voltage_drop_threshold
This option enables the tool to automatically determine the cells to process based
on a voltage drop threshold.

In addition, you must specify

• The power and ground nets on which to perform PG augmentation by using the
-supply_nets option

• The technology node for which to perform the augmentation by using the -node
option

For information about the fix_pg_wire command, see the man page.

7. Run voltage drop analysis using RedHawk Fusion, as described in Performing Voltage
Drop Analysis.

This second voltage drop analysis run measures the voltage drop after power grid
augmentation.

See Also

• Standard Power Grid Augmentation

• Timing-Driven Power Grid Augmentation

• Removing PG Augmentation Shapes

Removing PG Augmentation Shapes
To remove PG augmentation shapes, use the -mode remove option with the
signoff_create_pg_augmentation command. When you use this command, the
IC Validator tool removes all PG augmentation shapes from the current block.

IC Compiler™ II Implementation User Guide
T-2022.03

584

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Inserting Metal Fill With IC Validator In-Design
After routing, you can fill the empty spaces in the block with fill shapes to meet the metal
density rules required by most fabrication processes. Before inserting metal and via fill, the
block should be close to meeting timing and have only a very few or no DRC violations.

To insert metal fill,

1. Set up the IC Validator environment as described in Setting Up the IC Validator
Environment.

2. (Optional) Enable distributed processing by using the set_host_options command,
as described in Enabling IC Validator Multicore Processing.

3. Set the application options for metal fill insertion.

For information about the metal fill insertion options, see Setting Options for Signoff
Metal Fill Insertion.

4. Save the block to disk.

When you run the signoff_create_metal_fill command, the IC Validator tool
uses the on-disk information for the block, not the information in memory. To ensure
accurate information, use the save_block command to save the current state of the
block before running the signoff_create_metal_fill command.

5. Perform metal fill insertion by using the signoff_create_metal_fill command as
described in Performing Metal Fill Insertion.

The signoff_create_metal_fill command respects routing blockages defined
by the create_routing_blockage command and does not insert metal fill
in the blockages; however, it does not respect routing guides created by the
create_routing_guide command.

Note:
If you are performing pattern-based metal fill insertion and the blockage
layer numbers differ between the technology file and the foundry runset file,
you must provide a layer mapping file, as described in Defining the Layer
Mapping for IC Validator In-Design Commands.

When the IC Validator tool performs metal fill insertion, it creates an internal subdesign
named block.FILL in the design view of the block and inserts the fill cells in this internal
subdesign. The fill cells are named FILL_INST_#. To query the fill cells, use the
get_fill_cells command.

For information about the result files generated by the signoff_create_metal_fill
command, see Signoff Metal Fill Result Files.

IC Compiler™ II Implementation User Guide
T-2022.03

585

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

After you insert metal fill, you can

• Display the added metal fill in the layout view in the GUI, as described in Viewing Metal
Fill in the GUI

• Modify the metal fill, as described in Modifying Metal Fill

• Perform extraction for timing analysis using the real metal fill, as described in
Performing Real Metal Fill Extraction

Setting Options for Signoff Metal Fill Insertion
Before you run the signoff_create_metal_fill command, configure the run by
setting the application options shown in Table 42. To set the application options, use the
set_app_options command. To see the current settings, use the report_app_options
command.

Table 42 Application Options for Signoff Metal Fill Insertion

Application option Default Description

Options that apply to all flows

signoff.create_metal_fill.
apply_nondefault_rules

false Controls whether metal fill insertion honors
nondefault routing rules.

signoff.create_metal_fill.
auto_eco_threshold_value

20 Specifies the maximum percentage of change
to the block to perform incremental metal fill
insertion using the -auto_eco true option.

signoff.create_metal_fill.
flat

false Controls whether the IC Validator tool uses the
metal fill mode specified in the runset file (false)
or uses the flat metal fill mode (true).

signoff.create_metal_fill.
read_design_views

{} Specifies the reference cells for which the
IC Validator tool reads the design view instead
of the frame view. Using the design view can
expose problems that are masked by the frame
view abstraction.

signoff.create_metal_fill.
read_layout_views

{} Specifies the reference cells for which the
IC Validator tool reads the layout view instead of
the frame view. Using the layout view can expose
problems that are masked by the frame view
abstraction.

IC Compiler™ II Implementation User Guide
T-2022.03

586

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Table 42 Application Options for Signoff Metal Fill Insertion (Continued)

Application option Default Description

signoff.create_metal_fill.
run_dir

signoff_fill_run Specifies the run directory, which
contains the files generated by the
signoff_create_metal_fill command.
You can specify either a relative path, in which
case the directory is created under the current
working directory, or an absolute path.

signoff.create_metal_fill.
user_defined_options

(none) Specifies additional options for the IC Validator
command line.
The string that you specify in this option is
added to the command line used to invoke the
IC Validator tool. The IC Compiler II tool does not
perform any checking on the specified string.

signoff.physical.
merge_exclude_libraries

(none) Specifies the cell libraries whose cells are
excluded from replacement with the cell
data in the stream files specified in the
signoff.physical. merge_stream_files
application option.

signoff.physical.
merge_stream_files

(none) Specifies the stream (GDSII or OASIS) files
to merge into the current block for metal fill
insertion.
When you use this option, the GDSII or OASIS
data replaces the cell library data for the cells
defined in the specified stream files.

Options that apply only to pattern-based metal fill insertion

signoff.create_metal_fill.
runset

N/A Specifies the foundry runset to use for
pattern-based metal fill insertion. This application
option is not used for track-based metal fill
insertion

signoff.physical.
layer_map_file

(none) Specifies the name of the layer mapping file.
In general, the technology file and the foundry
runset file used by the IC Validator tool use the
same layer numbers. If they do not, you must
supply a layer mapping file to map the technology
layers to the layers used in the runset file (for
details about the format of the layer mapping file,
see Defining the Layer Mapping for IC Validator
In-Design Commands.

Options that apply only to track-based metal fill insertion

IC Compiler™ II Implementation User Guide
T-2022.03

587

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Table 42 Application Options for Signoff Metal Fill Insertion (Continued)

Application option Default Description

signoff.create_metal_fill.
max_density_threshold

(none) Specifies the maximum density threshold value
for a track fill layer. Use the following format to
specify this information for each layer:
{layer_name max_density}

This application option applies only to
track-based metal fill insertion and does not apply
when you use the -mode add option.

Options that apply only to timing-driven metal fill insertion (pattern-based or track-based)

signoff.create_metal_fill.
fill_over_net_on_adjacent_la
yer

false Controls whether the IC Validator tool inserts
metal fill within the minimum spacing in the
vertical extension of the net on the adjacent
layers when performing timing-driven metal fill
insertion.

signoff.create_metal_fill.
fill_shielded_clock

false Controls whether the IC Validator tool inserts
metal fill for shielded clock nets when performing
timing-driven metal fill insertion.

signoff.create_metal_fill.
fix_density_errors

false Controls whether the IC Validator tool performs
density error fixing during timing-driven metal fill
insertion.

signoff.create_metal_fill.
space_to_clock_nets

Two times the
minimum spacing
specified in the
technology file

Specifies the minimum spacing between metal
fill and a clock net on the same layer. Note that
you must specify clock nets by using the -nets
option.
Any unspecified layers use the default spacing.

signoff.create_metal_fill.
space_to_nets

Two times the
minimum spacing
specified in the
technology file

Specifies the minimum spacing between metal fill
and a timing-critical net on the same layer.
Any unspecified layers use the default spacing.

signoff.create_metal_fill.
space_to_nets_on_adjacent_la
yer

Two times the
minimum spacing
specified in the
technology file

Specifies the minimum spacing between metal fill
and a timing-critical net on an adjacent layer.
Any unspecified layers use the default spacing.

IC Compiler™ II Implementation User Guide
T-2022.03

588

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Performing Metal Fill Insertion
You can use the signoff_create_metal_fill command to perform the following tasks:

• Pattern-Based Metal Fill Insertion

• Track-Based Metal Fill Insertion

• Using an IC Validator Parameter File

• Typical Critical Dimension Metal Fill Insertion

• Timing-Driven Metal Fill Insertion

• Incremental Metal Fill Insertion

Pattern-Based Metal Fill Insertion
Pattern-based metal fill insertion is the default mode for the signoff_create_metal_fill
command. It inserts metal and via fill by using a foundry runset. Before running the
signoff_create_metal_fill command, you must specify the runset by setting the
signoff.create_metal_fill.runset application option.

During pattern-based metal fill insertion, the signoff_create_metal_fill command
performs the following tasks:

1. Loads the block into the IC Validator tool, as described in Reading Blocks for Signoff
Metal Fill Insertion

2. Removes existing metal and via fill

By default, the command removes the metal and via fill from the entire block. For
information about performing incremental metal fill insertion, see Incremental Metal Fill
Insertion.

3. Inserts metal and via fill in the empty regions

By default, the command uses the spacing rules defined in the technology file
to perform metal fill insertion on all metal and via layers for the entire block. The

IC Compiler™ II Implementation User Guide
T-2022.03

589

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

command uses the metal fill mode specified in the runset file, which is either
hierarchical or flat.

To modify the default behavior,

• Set one or more of the following application options before running the
signoff_create_metal_fill command:

◦ signoff.create_metal_fill.apply_nondefault_rules
To enable the use of nondefault spacing rules in addition to the spacing rules
defined in the technology file, set this application option to true.

◦ signoff.create_metal_fill.flat
To force the use of the flat metal fill mode, set this application option to true.

• Use one or more of the following command options with the
signoff_create_metal_fill command:

◦ -select_layers or -all_runset_layers
To restrict the layers on which to insert metal fill, use these options, as described
in Specifying the Layers for Metal Fill Insertion.

◦ -coordinates and -excluded_coordinates
To restrict the regions on which to insert metal fill, use these options, as
described in Specifying the Regions for Metal Fill Insertion.

4. Removes floating via fill from the specified via layers and from the via layers associated
with the specified metal layers

Floating via fill is via fill that does not have both an upper and lower metal enclosure.

5. Saves the fill data in the design view

6. Writes the result files to the run directory

For information about the generated result files, see Signoff Metal Fill Result Files.

See Also

• Timing-Driven Metal Fill Insertion

IC Compiler™ II Implementation User Guide
T-2022.03

590

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Reading Blocks for Signoff Metal Fill Insertion
By default, the IC Validator tool reads the design view for the top-level block and the library
cell instances, and the pin information from the frame view for the macro cell and I/O pad
cell instances.

• To read the GDSII or OASIS data for specific reference cells, specify the stream files by
setting the signoff.physical.merge_stream_files application option.

When you use this option, the GDSII or OASIS data replaces the cell library view
for the cells defined in the specified stream files, except for cells in the cell libraries
specified with the signoff.physical.merge_exclude_libraries application option.

• To read the layout view for specific reference cells, specify the cells by setting the
signoff.create_metal_fill.read_layout_views application option.

The layout view is identical to the GDSII or OASIS data that was used to create them,
but reduces the runtime for signoff design rule checking.

Note:
By default, layout views are not included in the cell libraries To save the
layout views, you must set the lib.workspace.save_layout_views
application option to true during library preparation, as described in the
Library Manager User Guide.

• To read the design view for specific reference cells, specify the cells by setting the
signoff.create_metal_fill.read_design_views application option.

Note:
By default, design views are not included in the cell libraries To save the
design views, you must set the lib.workspace.save_design_views
application option to true during library preparation, as described in the
Library Manager User Guide.

The order of precedence for child cell data is

1. GDSII or OASIS data specified with the signoff.physical.merge_stream_files
application option

2. Layout views specified with the signoff.create_metal_fill.read_layout_views
application option

If the IC Validator tool cannot find a layout view and the cell is specified in the
signoff.check_drc.read_design_views application option, it reads the design view.
Otherwise, it reads the frame view. If it cannot find the frame view, the cell is ignored
during design rule checking.

IC Compiler™ II Implementation User Guide
T-2022.03

591

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

3. Design views specified with the signoff.create_metal_fill.read_design_views
application option

If the IC Validator tool cannot find a design view, it reads the frame view instead. If it
cannot find the frame view, the cell is ignored during design rule checking.

4. Frame views

Specifying the Layers for Metal Fill Insertion
By default, the signoff_create_metal_fill command inserts metal fill on all the metal
routing layers and via fill on all the via layers. To modify the layers for metal fill insertion,
use one of the following options:

• -select_layers metal_fill_layers
This option restricts metal fill insertion to the specified set of metal and via layers.

• -all_runset_layers true
This option enables metal fill insertion on all the fill layers specified in the runset. This
option applies only to pattern-based metal fill insertion.

When you specify the layers for metal fill insertion, the signoff_create_metal_fill
command

1. Removes the existing metal and via fill from the block

By default, the command removes all existing metal and via fill. For incremental metal
fill insertion, the command removes metal and via fill only from the specified layers.

2. Inserts metal and via fill only on the specified layers

3. Removes floating via fill from the specified via layers and from the via layers associated
with the specified metal layers

For example, if you specify -select_layers {M2}, the tool removes floating via fill
from the V1 and V2 layers.

IC Compiler™ II Implementation User Guide
T-2022.03

592

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Specifying the Regions for Metal Fill Insertion
By default, the signoff_create_metal_fill command inserts metal and via fill for the
whole chip. To modify the regions for metal fill insertion, use one or both of the following
options:

• -coordinates
This option restricts metal fill insertion to the specified regions.

Note:
The bounding box coordinates passed to the IC Validator tool in the
METAL_FILL_SELECT_WINDOW parameter are enlarged by 1 um to avoid
DRC violations on the boundary of the specified regions during metal fill
insertion. The actual metal fill insertion occurs within the regions specified by
the -coordinates option.

In addition, when you use the -coordinates option, the
signoff_create_metal_fill command always uses the flat metal fill
mode.

• -excluded_coordinates
This option prevents metal fill insertion in the specified regions. If you specify this
option with the -coordinates option, the command does not perform metal fill
insertion in the overlapping regions.

To specify the coordinates, use the following format:

{{x1 y1} {x2 y2} ... {xn yn}}

Note that there must be a space between each set of coordinates.

When you specify the regions for metal fill insertion, the signoff_create_metal_fill
command

1. Removes all existing metal and via fill from the block

For standard metal fill insertion, the command removes all existing metal and via fill.
For incremental metal fill insertion, the command removes metal and via fill only from
the specified regions.

2. Inserts metal and via fill only on the specified regions

3. Removes floating via fill from the specified regions

For example, to remove all metal fill from the block and then fill all empty regions outside
the bounding box with corners at (100,150) and (300,200), use the following command:

icc2_shell> signoff_create_metal_fill \
 -excluded_coordinates {{100 150} {300 200}}

IC Compiler™ II Implementation User Guide
T-2022.03

593

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Track-Based Metal Fill Insertion
Track-based metal fill insertion inserts metal and via fill by using a runset derived from the
attributes and rules in the technology file to create fill shapes aligned to tracks. It does not
use the runset specified by the signoff.create_metal_fill.runset application option.
Track-based metal fill insertion offers the following benefits as compared to pattern-based
metal fill insertion:

• Higher density

• Better control of density

• Well-balanced mask distribution for double-patterning layers

To perform track-based metal fill insertion, set the -track_fill option of the
signoff_create_metal_fill command to a value other than off. Track-based metal fill
insertion supports three modes:

• Sparse

This is the default mode. In this mode, track-based metal fill insertion skips one track
between signal shapes and fill shapes.

• Dense

To enable this mode, use the -fill_all_tracks true option. In this mode, track-
based metal fill insertion does not skip tracks between signal shapes and fill shapes.

Note:
If your block uses double-patterning technology, using this option increases
runtime if the block is not precolored.

• Mixed

To use sparse mode for some layers and dense mode for other layers, you must set
the appropriate parameters in a parameter file, as described in Using an IC Validator
Parameter File.

During track-based metal fill insertion, the signoff_create_metal_fill command
performs the following tasks:

1. Loads the block into the IC Validator tool, as described in Reading Blocks for Signoff
Metal Fill Insertion

2. Removes existing metal and via fill

By default, the command removes the metal and via fill from the entire block. For
information about performing incremental metal fill insertion, see Incremental Metal Fill
Insertion.

IC Compiler™ II Implementation User Guide
T-2022.03

594

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

3. Inserts metal and via fill in the empty regions

By default, the command uses the design rules defined in the technology file to insert
fill shapes on-track on all metal and via layers for the entire block. The fill shapes have
a length of 5 microns and a width equal to the defaultWidth attribute defined for the
layer in the technology file.

You can modify the default behavior by using

• Application options set before running the signoff_create_metal_fill
command:

◦ signoff.create_metal_fill.apply_nondefault_rules
To enable the use of nondefault spacing rules in addition to the spacing rules
defined in the technology file, set this application option to true.

• Command options used with the signoff_create_metal_fill command:

◦ -track_fill foundry_node
To enable foundry-specific design rules, use the appropriate foundry keyword
with the -track_fill option. To see the list of supported keywords, use the
following command:

icc2_shell> signoff_create_metal_fill -track_fill list
◦ -select_layers

To restrict the layers on which to insert metal fill, use this option, as described in
Specifying the Layers for Metal Fill Insertion.

◦ -coordinates and -excluded_coordinates
To restrict the regions on which to insert metal fill, use these options, as
described in Specifying the Regions for Metal Fill Insertion.

• Parameters set in the IC Validator parameter file:

◦ mx_fill_width, mx_min_fill_length, and mx_max_fill_length
To change the size of the fill shapes, set these parameters, as described in
Using an IC Validator Parameter File.

4. Removes floating via fill from the specified via layers and from the via layers associated
with the specified metal layers

Floating via fill is via fill that does not have both an upper and lower metal enclosure.

IC Compiler™ II Implementation User Guide
T-2022.03

595

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

5. (Optional) Trims the metal fill for each layer to try to meet the maximum density
threshold defined by the signoff.create_metal_fill.max_density_threshold
application option

The metal fill is trimmed only for those layers specified in the application option. If you
do not set this option, the metal fill is not trimmed.

6. Saves the fill data in the design view

By default,

• The IC Validator tool assigns a data type of 0 to the fill shapes

To use different data type values, set the mx_fill_datatype and
viax_fill_datatype parameters in the IC Validator parameter file.

• The IC Validator tool does not set mask constraints on the fill shapes

If your block uses double-patterning technology, use the -output_colored_fill
true option to set mask constraints on the fill shapes.

If your block uses double-patterning technology, use the -output_colored_fill
option to set mask constraints on the fill shapes. When you use this
option, the IC Validator tool assigns a data type of 235 for fill shapes with
a mask_one mask constraint and 236 for fill shapes with a mask_two mask
constraint. To assign different data types for the colored fill, set the following
parameters in the IC Validator parameter file: mx_fill_datatype_color1,
viax_fill_datatype_color1, mx_fill_datatype_color2, and
viax_fill_datatype_color2.

• The IC Validator tool does not write exclude layers

If your foundry uses exclude layers, define the data types for the exclude layers by
setting the mx_exclude_layer_datatype parameters in the IC Validator parameter
file. The IC Validator tool outputs the exclude layers that have defined data types.

For information about using an IC Validator parameter file, see Using an IC Validator
Parameter File.

7. Writes the result files to the run directory

In addition to the standard output files generated by signoff metal fill insertion, when
you perform track-based metal fill insertion, you can output detailed density and density
gradient reports by using the -report_density option. When you enable this option,
the signoff_create_metal_fill command writes the following report files:

• prefix_color_balance_and_density_report.txt

• prefix_fill_density_gradient_report.txt

IC Compiler™ II Implementation User Guide
T-2022.03

596

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

You can specify either on (in which case the tool uses “track_fill” as the prefix) or the
prefix string. For example, to perform track-based metal fill insertion and use a prefix
of my_prefix for the detailed density and density gradient reports, use the following
command:

icc2_shell> signoff_create_metal_fill -track_fill true \
 -report_density my_prefix
For information about the generated result files, see Signoff Metal Fill Result Files.

See Also

• Timing-Driven Metal Fill Insertion

Using an IC Validator Parameter File
You can customize the metal fill insertion by using an IC Validator parameter file.

• For pattern-based metal fill insertion, you pass the parameter file to the IC Validator
tool by setting the signoff.create_metal_fill.user_defined_options application
option.

icc2_shell> set_app_options \
 -name signoff.create_metal_fill.user_defined_options \
 -value {-D INDESIGN_USER_DEFINED_PARAM_FILE=file_name}

• For track-based metal fill insertion, you pass the parameter file to the IC
Validator tool by using the -track_fill_parameter_file option with the
signoff_create_metal_fill command.

icc2_shell> signoff_create_metal_fill -track_fill true \
 -track_fill_parameter_file file_name
When you run track-based metal fill insertion, the IC Validator tool writes a parameter
file named track_fill_params.rh into the run directory. This file contains the default
settings for the supported parameters. You can modify this file as necessary and use it
on subsequent signoff_create_metal_fill runs.

Note:
In some cases, the IC Validator behavior can be controlled by either an
IC Validator parameter or an application option. In these cases, if both are
specified, the IC Validator parameter setting overrides the application option
setting.

Table 43 shows the commonly used parameters supported in the parameter file. Unless
otherwise specified, these parameters apply only to track-based metal fill insertion.

IC Compiler™ II Implementation User Guide
T-2022.03

597

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Table 43 IC Validator Metal Fill Insertion Parameters

Parameter Default Description

Metal fill insertion mode parameters

mx_sparse_fill 1 Controls whether metal fill insertion uses sparse
mode (1) or dense mode (0) for the specified metal
layer.
Note:

If you use the -fill_all_tracks true option,
the default changes to 0.

mx_fill_staggering 0.075 microns Controls staggering for fill patterns.

mx_ignore_route_guide 0 Controls whether the IC Validator tool honors (0)
or ignores (1) routing guides on the specified layer
during metal fill insertion.

mx_ignore_system_blockage 0 Controls whether the IC Validator tool honors (0) or
ignores (1) system blockages on the specified layer
during metal fill insertion.

mx_via_enclosure Derived from
ContactCode
section

Specifies the minimum metal enclosure values for
vias.

Fill size and spacing parameters

mx_fill_width defaultWidth9 Specifies the width of the metal fill shapes.

mx_min_fill_length Derived from
minArea9 Specifies the minimum length of the metal fill shapes.

mx_max_fill_length 5 microns Specifies the maximum length of the metal fill
shapes.
Decreasing this value can increase the via density at
the expense of decreasing the metal density.

mx_fill2fill_side_
spacing

Specifies the minimum spacing between fill shapes.

mx_fill2route_side_
spacing

Specifies the minimum spacing between metal fill and
net shapes.

mx_fill2fill_end_ spacing Specifies the minimum end-to-end spacing between
fill shapes.

mx_fill2route_end_
spacing

Specifies the minimum end-to-end spacing between
metal fill and net shapes.

9. Attribute setting from the Layer section of the technology file

IC Compiler™ II Implementation User Guide
T-2022.03

598

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Table 43 IC Validator Metal Fill Insertion Parameters (Continued)

Parameter Default Description

mx_fill2Blockage_x
mx_fill2Blockage_y

Specifies the minimum spacing between fill shapes
and blockages.

mx_fill2routeGuide_x
mx_fill2routeeGuide_y

Specifies the minimum spacing between fill shapes
and routing guides.

mx_fill2chipBoundary_x
mx_fill2chipBoundary_y

Specifies the minimum spacing between fill shapes
and the chip boundary.

mx_min_area_with_via Specifies the minimum fill area on which vias can be
created.

mx_EXCLUDED_CELLS_
OVERSIZE_VALUE

0.2 microns Specifies the minimum spacing between the macros
specified in the mx_EXCLUDED_CELLS parameter and
fill shapes.

mx_EXCLUDED_CELLS {} Specifies the macros that use the spacing defined
in the mx_EXCLUDED_CELLS_OVERSIZE_VALUE
parameter.

vx_iso_via_distance 3.0 microns Specifies the maximum distance within which a
neighboring via must exist.

vx_min_spacing minSpacing 9 Specifies the minimum spacing between vias.
Be careful when changing the value of these
parameters. A value smaller than the default can
cause DRC violations, while a value larger than the
default negatively impacts the via density.

vx_per_metal 1 Specifies the maximum number of via fill shapes
contained in a metal fill shape.
You can use this parameter to increase the via
density. However, changing the default can cause
many metal fill shapes to be connected to each other,
which can increase the overall capacitance for the
nearby signal nets.

Exclude layer parameters

mx_exclude_layer_
datatype

-1 Creates an exclude layer with the specified data type.
The default setting of -1 prevents the creation of an
exclude layer.

Fill output mode parameters

IC Compiler™ II Implementation User Guide
T-2022.03

599

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Table 43 IC Validator Metal Fill Insertion Parameters (Continued)

Parameter Default Description

mx_compress_fill
vx_compress_fill

0 Controls whether the fill is compressed (1) or
uncompressed (0) for the specified layer.
Note:

If you use the -mode add option, compression
is not performed regardless of the setting of this
parameter.

mx_fill_datatype
vx_fill_datatype

0 Specifies the data type of the inserted fill shapes.

output_colored_fill 0 Controls whether fill shapes are assigned mask
constraints in blocks that use double-patterning
technology.
Note:

If you use the -output_colored_fill true
option, the default changes to 1.

mx_fill_datatype_ color1
vx_fill_datatype_ color1
mx_fill_datatype_ color2
vx_fill_datatype_ color2

0 Specifies the data type of the inserted colored fill
shapes.
Note:

This parameter is used only colored fill is
enabled.

Density calculation parameters

exclude_bounding_box_
blockage_for_density_
computation

1 Controls whether the regions specified by the
-excluded_coordinates option are excluded from
the density computation.

exclude_route_guides_
for_density_computation

0 Controls whether routing guides are excluded from
the density computation.

exclude_system_metal_
blockages_for_density_
computation

0 Controls whether system metal blockages are
excluded from the density computation.

IC Compiler™ II Implementation User Guide
T-2022.03

600

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Table 43 IC Validator Metal Fill Insertion Parameters (Continued)

Parameter Default Description

mx_density_gradient_
window 10

windowSize 9 Specifies the window size used for density gradient
checking.
You can also control the window size by setting the
signoff.report_metal_density.gradient_windo
w_size application option.
Note:

If the windowSize attribute is not
specified in the technology file and the
signoff.report_metal_density.gradient_wi
ndow_size application option is not set, the tool
uses a default of 50 microns.

mx_max_density_window 50 microns Specifies the window size used for maximum density
checking.

mx_max_open_area_rule 10 Specifies the maximum size of a square area that
contains no polygons and does not interact with any
polygons.

mx_min_density 10 minDensity 9 Specifies the minimum percentage of metal allowed
in the window.
You can also control the window size by setting the
signoff.report_metal_density.min_density
application option.
Note:

If the minDensity attribute is not
specified in the technology file and the
signoff.report_metal_density.min_density
application option is not set, the tool uses a
default of 10 percent.

mx_min_density_window 10 windowSize 9 Specifies the window size used for minimum density
checking.
You can also control the window size by setting the
signoff.report_metal_density.density_window
application option.
Note:

If the windowSize attribute is not
specified in the technology file and the
signoff.report_metal_density.density_win
dow application option is not set, the tool uses a
default of 50 microns.

10. This parameter applies to timing-driven metal fill insertion, whether pattern-based or track-based.

IC Compiler™ II Implementation User Guide
T-2022.03

601

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Table 43 IC Validator Metal Fill Insertion Parameters (Continued)

Parameter Default Description

mx_window_step_size Half the window
size

Specifies the step size in the x- and y-directions used
for density checking. The first value is the x-direction
step size. The second value is the y-direction step
size. These can be the same or different values.
You can also control the step size by setting the
signoff.report_metal_density.density_window
_step application option. When you use this
application option, it uses the specified value for the
step size in both the x- and y-directions.

Typical Critical Dimension Metal Fill Insertion
Typical critical dimension (TCD) structures can improve yield for designs. These structures
are made up of marker and fill layers, both of which are added to the block during TCD
metal fill insertion.

To enable TCD metal fill insertion, set the signoff.create_metal_fill.tcd_fill
application option to true before running the signoff_create_metal_fill command.

By default, the command inserts TCD structures on all metal and via layers for the entire
block. To modify the default behavior, use the following options:

• -select_layers
To restrict the layers on which to insert metal fill, use this option, as described in
Specifying the Layers for Metal Fill Insertion.

• -coordinates and -excluded_coordinates
To restrict the regions on which to insert metal fill, use these options, as described in
Specifying the Regions for Metal Fill Insertion.

Note:
You cannot use timing-driven metal fill insertion with TCD metal fill insertion.

See Also

• Removing Metal Fill

Timing-Driven Metal Fill Insertion
Timing-driven metal fill insertion inserts metal and via fill in the specified regions of the
block, except around timing-critical nets. Timing-driven metal fill insertion is supported

IC Compiler™ II Implementation User Guide
T-2022.03

602

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

for both pattern-based and track-based metal fill insertion. By default, the tool does not
perform timing-driven metal fill insertion.

To perform timing-driven metal fill insertion, use one or both of the following options with
the signoff_create_metal_fill command:

• -nets
This option explicitly specifies the critical nets.

• -timing_preserve_setup_slack_threshold
This option enables the tool to automatically determine the critical nets based on a
setup slack threshold. The unit for the slack threshold setting is the library time unit.

Be careful when choosing the threshold value; using a large threshold value can result
in too many critical nets, which could reduce the metal density and create large empty
areas.

During timing-driven metal fill insertion, the signoff_create_metal_fill command

1. Performs timing analysis, including multicorner-multimode analysis, to minimize timing
impact

2. Identifies timing-critical nets based on the options you specify

3. Removes existing metal and via fill

By default, the command removes the metal and via fill from the entire block. For
information about performing incremental metal fill insertion, see Incremental Metal Fill
Insertion.

4. Inserts metal and via fill in the empty regions for the specified regions, except in the
areas around the critical nets

To enable fill insertion for shielded timing-critical clock nets, set the
signoff.create_metal_fill.fill_shielded_clock application option to true.

5. Invokes the IC Validator tool to perform metal fill insertion

By default, the minimum spacing between the metal fill and the net shapes of the
critical nets is two times the minimum spacing specified in the technology file. This
spacing requirement also applies to the vertical extension of the critical net on the
adjacent layers. To modify these requirements, set the appropriate application options,
as described in Specifying the Spacing Requirements for Timing-Driven Metal Fill
Insertion.

Note:
You can restrict the regions in which to perform timing-driven metal fill
insertion, as described in Specifying the Regions for Metal Fill Insertion

IC Compiler™ II Implementation User Guide
T-2022.03

603

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

and Performing Metal Fill Insertion Only in Modified Regions; however, you
cannot specify the layers. When performing timing-driven metal fill insertion,
the signoff_create_metal_fill command inserts metal fill on all routing
layers (or all changed layers, if you perform metal fill insertion only in the
changed regions).

6. (Optional) Fixes density errors

In some cases, the spacing requirements for timing-driven metal fill insertion might
cause density errors. To fix these errors automatically during timing-driven metal fill
insertion, set the signoff.create_metal_fill.fix_density_errors application
option to true (the default is false). For information about the density design rules,
see Defining the Density Design Rules.

7. Stores the metal fill data as fill cell objects in the design view

8. Writes the result files to the run directory

For information about the generated result files, see Signoff Metal Fill Result Files.

See Also

• Pattern-Based Metal Fill Insertion

• Track-Based Metal Fill Insertion

Specifying the Spacing Requirements for Timing-Driven Metal Fill Insertion
By default, the minimum spacing between the metal fill and the net shapes of the critical
nets is based on the minimum spacing specified in the technology file.

• For metal fill on the same layer as the net shape, the default minimum spacing is two
times the minimum spacing value specified for the layer in the technology file.

• For metal fill on layers adjacent to the net shape, the default minimum spacing is the
minimum spacing value specified for the layer in the technology file.

For example, assume that the red rectangle in Figure 109 is a critical net shape. The
yellow regions indicate where fill cannot be inserted and the gray regions indicate the
inserted fill.

Figure 109 Minimum Spacing From Metal Fill to Critical Net Shape

IC Compiler™ II Implementation User Guide
T-2022.03

604

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

To override the default spacing requirements for timing-driven metal fill insertion, set the
following application options:

• signoff.create_metal_fill.space_to_nets
This application option defines the same-layer minimum spacing requirements between
metal fill and a net shape of a timing-critical net.

• signoff.create_metal_fill.space_to_clock_nets
This application option defines the same-layer minimum spacing requirements between
metal fill and a net shape of a user-defined clock net that is specified in the -nets
option.

• signoff.create_metal_fill.space_to_nets_on_adjacent_layer
This application option defines the adjacent-layer minimum spacing requirements
between metal fill and a net shape of a timing-critical net.

• signoff.create_metal_fill.space_to_clock_nets_on_adjacent_layer
This application option defines the adjacent-layer minimum spacing requirements
between metal fill and a net shape of a user-defined clock net that is specified in the
-nets option.

For each of these application options, use the following syntax to specify the spacing to
use for each layer:

{ {layer1 value1} ... {layern valuen} }

You can specify the spacing value either as a multiple of the minimum spacing (nx) or a
distance in microns.

For example, to set the minimum spacing between metal fill and a timing-critical net on the
same layer to four times the minimum spacing for the M2 and M3 layers, use the following
command:

icc2_shell> set_app_options \
 -name signoff.create_metal_fill.space_to_nets \
 -value {{M2 4x} {M3 4x}}
To set the minimum spacing between metal fill and a timing-critical net on the same layer
to 0.125 microns for the M2 layer and 0.133 microns for the M3 layer, use the following
command:

icc2_shell> set_app_options \
 -name signoff.create_metal_fill.space_to_nets \
 -value {{M2 0.125} {M3 0.133}}

IC Compiler™ II Implementation User Guide
T-2022.03

605

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Defining the Density Design Rules
The IC Validator tool can check and fix the following density design rules:

• Minimum density, which specifies the minimum percentage of metal allowed in the
density checking window

This rule is checked when you enable density error fixing by setting the
signoff.create_metal_fill.fix_density_errors application option to true.

By default, the IC Validator tool uses the setting defined for the minDensity attribute
in the DensityRule sections of the technology file. If this attribute is not defined for a
layer, the IC Validator tool uses a default of 10 percent. To override the default, define
the mx_min_density parameter in the IC Validator parameter file.

• Density gradient, which specifies the maximum percentage difference between the fill
density of adjacent density checking windows

This rule is checked if it is defined in the technology file and you enable density error
fixing by setting the signoff.create_metal_fill.fix_density_errors application
option to true.

The IC Validator tool uses the setting defined for the maxGradientDensity attribute
in the DensityRule sections of the technology file. If this attribute is not defined for a
layer, the IC Validator tool does not check this rule.

• Maximum open area, which specifies the maximum size of a square area that contains
no polygons and does not interact with any polygons

This rule is checked if it is defined.

The maximum open area rule is defined in an IC Validator parameter file. Use the
following syntax to define the maximum open area rule for each metal layer:

mn_max_open_area_rule = value;

where n is the metal layer number and value is the side length of the square in
microns.

For more information about the IC Validator parameter file, see Using an IC Validator
Parameter File.

For more information about the technology file, see the Synopsys Technology File and
Routing Rules Reference Manual.

IC Compiler™ II Implementation User Guide
T-2022.03

606

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Incremental Metal Fill Insertion
If you have already used the signoff_create_metal_fill command to performed metal
fill insertion on a block, you can use incremental metal fill insertion to perform the following
tasks:

• Insert additional metal and via fill to specific layers or regions, as described in Adding
to Existing Metal and Via Fill.

• Replacing existing metal and via fill in specific locations, as described in Replacing
Existing Metal and Via Fill.

• Replacing existing metal and via fill in modified regions, as described in Performing
Metal Fill Insertion Only in Modified Regions.

Adding to Existing Metal and Via Fill
To insert metal and via fill without first removing the existing metal fill, use the -mode add
option with the signoff_create_metal_fill command. When you use this mode, you
can control where the metal fill insertion occurs by using one or more of the following
options:

• -select_layers, which restricts the layers on which to perform metal fill insertion, as
described in Specifying the Layers for Metal Fill Insertion

• -coordinates or -excluded_coordinates, which restrict the regions on which
to perform metal fill insertion, as described in Specifying the Regions for Metal Fill
Insertion.

When you use these options with the -mode add option, the
tool does not fix density errors regardless of the setting of the
signoff.create_metal_fill.fix_density_errors application option.

See Also

• Pattern-Based Metal Fill Insertion

• Track-Based Metal Fill Insertion

Replacing Existing Metal and Via Fill
To remove and insert metal and via fill only for the specified locations, use the -mode
replace option with the signoff_create_metal_fill command. You would typically

IC Compiler™ II Implementation User Guide
T-2022.03

607

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

use this mode after ECO changes. When you use this mode, you must also specify one or
more of the following options:

• -select_layers, which restricts the layers on which to perform metal fill insertion

For example, to remove all metal fill on the M1 and M3 layers and refill those two layers
without affecting the metal fill on other layers, use the following command:

icc2_shell> signoff_create_metal_fill -mode replace \
 -select_layers {M1 M3}
For more information about this option, see Specifying the Layers for Metal Fill
Insertion.

• -coordinates or -excluded_coordinates, which restrict the regions on which to
perform metal fill insertion

For more information about these options, see Specifying the Regions for Metal Fill
Insertion.

• -nets or -timing_preserve_setup_slack_threshold, which restricts the nets on
which to perform metal fill insertion

For more information about these options, see Timing-Driven Metal Fill Insertion.

See Also

• Pattern-Based Metal Fill Insertion

• Track-Based Metal Fill Insertion

• Timing-Driven Metal Fill Insertion

Performing Metal Fill Insertion Only in Modified Regions
If you have previously run the signoff_create_metal_fill command on a block, you
can use the -auto_eco true option to restrict the metal fill insertion to those regions of
the block that have been modified since the last run.

Note:
You can use this option only if the percentage of change to the block since the
previous signoff_create_metal_fill run is less than the change threshold.
The default change threshold is 20 percent; to modify the change threshold, set
the signoff.create_metal_fill.auto_eco_threshold_value application
option.

When you use the -auto_eco true option, the tool automatically determines the modified
regions and layers, and then removes the existing metal fill and redoes metal fill insertion
only in those locations; all other existing metal fill is retained.

IC Compiler™ II Implementation User Guide
T-2022.03

608

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

By default, the tool compares the current block to the version used for the previous
signoff_create_metal_fill run. To compare the current block to a different block, use
the -pre_eco_design option to specify the comparison block.

Note:
A change on a metal layer triggers metal fill removal and insertion on the
adjacent via layers to ensure that no floating or hanging vias remain when the
metal shapes are removed from the ECO area. If a cell instance changes, the
tool takes a conservative approach and considers changes on all layers.

For example, to remove the metal fill from the regions modified since the last time you ran
the signoff_create_metal_fill command and then fill only those regions using the
pattern-based mode, use the following command:

icc2_shell> signoff_create_metal_fill -auto_eco true
You can use the -select_layers option to specify the layers on which to perform metal
fill insertion; however, the tool performs metal fill insertion on a specified layer only if it is
one of the automatically detected changed layers. You cannot use the -coordinates or
-excluded_coordinates options to restrict the metal fill insertion regions.

When you use the -auto_eco true option,

• You cannot use the -mode, -all_runset_layers, and -report_density options

• The tool does not insert dense fill on the double-patterning layers regardless of the
setting of the -fill_all_tracks option

• The tool does not fix density errors regardless of the setting of the
signoff.create_metal_fill.fix_density_errors application option

See Also

• Pattern-Based Metal Fill Insertion

• Track-Based Metal Fill Insertion

• Timing-Driven Metal Fill Insertion

Signoff Metal Fill Result Files
The signoff_create_metal_fill command stores the output files in the run directory
specified by the signoff.create_metal_fill.run_dir application option (or the

IC Compiler™ II Implementation User Guide
T-2022.03

609

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

signoff_fill_run directory if you do not use this option). For each fill run, the command
creates a subdirectory named icv_run_# that contains the files generated for that run.

When you perform metal fill insertion, the tool writes the following files to the output
directory:

• block.LAYOUT_ERRORS, which contains details about the detected errors

• block.RESULTS, which contains a summary of the run results

• signoff_create_metal_fill.log, which contains a summary of the run environment

• icv_config_out, which contains the paths to the top-level block and the cell libraries

• layer.map, which contains the generated layer mapping file

• metal_fill_params.rh, which contains the metal fill parameters and options that you
specified

• metal_fill_compress_params.rh, which contains the storage commands and indicates
whether the compression mode was flat (NONE) or hierarchical (AUTO)

• ./run_details directory, which contains all the data generated by the IC Validator tool for
the metal fill insertion run

Querying Metal Fill
Metal fill shapes are stored in fill cells, which use the following naming convention:
FILL_INST_#.

• To query the fill cells in the block, use the get_fill_cells command.

By default, this command reports only the fill cells in the top-level design. To report all
of the fill cells in the hierarchy, use the -hierarchical option.

• To query the fill shapes, use the get_shapes -include_fill command.

To return only the fill shapes associated with specific fill cells, use the -of_objects
option to specify the fill cells.

IC Compiler™ II Implementation User Guide
T-2022.03

610

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Viewing Metal Fill in the GUI
To view the metal fill shapes in the layout view of the GUI,

1. Display the View Settings panel by clicking the View Settings icon () in the panel
area.

• Set the Level to 1.

• Select the Objects tab and enable visibility for Fill Cell objects and Area Fill metal
shapes (if you do not see Area Fill in the object list, expand the Route object and
Shape Use attribute).

2. Display the Hierarchy Settings panel by clicking the Hierarchy Settings icon () in the
View Settings panel or the menu bar.

• Set the “View level” to 1.

• Select “Fill Cell” in the “Expanding cell types” section.

Figure 110 shows the View Settings and Hierarchy Settings panels with the required
settings for displaying fill shapes.

IC Compiler™ II Implementation User Guide
T-2022.03

611

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Figure 110 Settings Used to Display Fill Shapes in the GUI

Reporting the Metal Density
To report the metal density information, run the signoff_report_metal_density
command.

IC Compiler™ II Implementation User Guide
T-2022.03

612

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

To calculate the metal density information for a metal layer, the tool requires the following
information:

• The density rule for the layer

The tool determines the density rule for each layer by using the following settings, in
order of priority:

1. The setting of the mx_min_density parameter in the IC Validator parameter file
specified by the signoff.report_metal_density.user_defined_options
application option

2. The setting of the signoff.report_metal_density.min_density application
option

3. The setting of the minDensity attribute in the DensityRule section of the
technology file

4. 10 percent

• The grid sizes for the layer

The tool determines the grid sizes for each layer by using the following settings, in
order of priority:

1. The setting of the mx_min_density_window or mx_density_gradient_window
parameter in the IC Validator parameter file specified by the
signoff.report_metal_density.user_defined_options application option

2. The setting of the signoff.report_metal_density.density_window or
signoff.report_metal_density.gradient_window_size application option

3. The setting of the windowSize attribute in the DensityRule section of the
technology file

4. 50 microns

For information about defining the metal density and density gradient rules in the
technology file, including the windowSize attribute, see the Synopsys Technology File and
Routing Rules Reference Manual.

By default, the signoff_report_metal_density command

• Uses the fill data for the metal density calculation

◦ To use the design view if its timestamp is newer than the fill data, set the
signoff.report_metal_density.fill_view_data application option to
read_if_uptodate.

◦ To use the design view regardless of its timestamp, set the
signoff.report_metal_density.fill_view_data application option to discard.

IC Compiler™ II Implementation User Guide
T-2022.03

613

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

• Creates the density and gradient windows starting from the lower-left corner of the chip
boundary using a step size of half the window size

◦ To change the starting point for creating the windows, use the -starting_point
option with the signoff_report_metal_density command.

◦ To change the step size, set the
signoff.report_metal_density.density_window_step application option or the
mx_window_step_size parameter in the IC Validator parameter file specified by the
signoff.report_metal_density.user_defined_options application option. If
you specify both, the IC Validator parameter overrides the application option.

• Computes the metal density for the entire block

To compute the metal density for specific regions, use the -coordinates option with
the signoff_report_metal_density command. When you use this option, the
command combines the specified regions when reporting the metal density; it does not
report the metal density individually for each specified region.

To specify the coordinates, use the following format:

{{x1 y1} {x2 y2} ... {xn yn}}

Note that there must be a space between each set of coordinates.

• Computes the metal density for each metal layer from the minimum routing layer to the
maximum routing layer

To compute the metal density for specific layers, use the -select_layers option with
the signoff_report_metal_density command.

• Does not generate heat maps

To generate heat maps to enable viewing of the metal density information in the GUI,
set the signoff.report_metal_density.create_heat_maps application option to
true. For information about viewing the heat maps, see Viewing Density Heat Maps in
the GUI.

• Writes the report files to a directory named signoff_report_metal_density_run under the
current working directory

To change the name of the IC Validator working directory, set the
signoff.report_metal_density.run_dir application option.

By default, the report files are named report_metal_density.txt and
gradient_density_report.txt. To change the file names, use the -output option with the
signoff_report_metal_density command. When you use this option, the density
report has the specified file name, while the gradient density report adds a .gradient
file extension. For example, if you specify -output density.rpt, the density report is
named density.rpt and the gradient density report is named density.rpt.gradient.

IC Compiler™ II Implementation User Guide
T-2022.03

614

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

The signoff_report_metal_density command uses the options that you
specify to generate the command line to invoke the IC Validator tool. You can
specify additional options for the IC Validator command line by setting the
signoff.report_metal_density.user_defined_options application option. The string
that you specify in this option is added to the command line used to invoke metal density
reporting in the IC Validator tool. The IC Compiler II tool does not perform any checking on
the specified string.

See Also

• Using an IC Validator Parameter File

Viewing Density Heat Maps in the GUI
After running the signoff_report_metal_density command, you can view heat maps in
the GUI for both the minimum density and gradient density reports.

Note:
The signoff_report_metal_density command generates the heat maps
only when the signoff.report_metal_density.create_heat_maps
application option is set to true.

• To display the minimum density heat map, choose View > Map > ICV Metal Fill
Density.

Figure 111 shows a minimum density heat map. In this heat map, each colored tile
corresponds in size to the density window step. To customize or standardize the
density values in the heat map, set the bin range, which is indicated by a red oval in the
figure.

IC Compiler™ II Implementation User Guide
T-2022.03

615

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Figure 111 Minimum Density Heat Map

• To display the density gradient heat map, choose View > Map > ICV Metal Fill
Gradient.

IC Compiler™ II Implementation User Guide
T-2022.03

616

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Figure 112 shows a density gradient heat map. In this heat map, each colored bar
corresponds in size to the gradient window size.

Figure 112 Density Gradient Heat Map

Removing Metal Fill
The method you use to remove metal fill depends on the extent of the metal fill removal:

• To remove all metal fill from a block, specific layers of a block, or specific regions of a
block, use the signoff_create_metal_fill command with the -mode remove option.

This command uses the IC Validator tool to remove metal fill from the current block, as
described in Removing Metal Fill With the IC Validator Tool.

• To remove specific fill shapes, use the remove_shapes or remove_fill_cells
commands.

You would typically use this method when manually fixing DRC violations related to
the metal fill. You might also be able to fix the DRC violation by modifying the metal fill
shapes, as described in Modifying Metal Fill.

IC Compiler™ II Implementation User Guide
T-2022.03

617

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Removing Metal Fill With the IC Validator Tool
By default, when you use the signoff_create_metal_fill -mode remove command,
the IC Validator tool removes all metal and via fill from the current block, including the
typical critical dimension (TCD) structures.

• To remove the metal fill only from specific regions, use the -coordinates option, as
described in Specifying the Regions for Metal Fill Insertion.

• To remove the metal fill only from specific layers, use the -select_layers option, as
described in Specifying the Layers for Metal Fill Insertion.

By default, when you use this option, the IC Validator tool does not remove the TCD
structures. To remove the TCD structures in addition to the metal and via fill, set the
signoff.create_metal_fill.tcd_fill application option to true before running the
signoff_create_metal_fill command.

• To remove the metal fill only over critical nets, use one or both of the -nets and
-timing_preserve_setup_slack_threshold options to identify the critical nets.

Note:
The existing fill is not considered when determining the critical nets for
pattern-based metal fill, but not for track-based metal fill.

• To honor certain rules when removing the metal fill, use the -remove_by_rule option.
You can specify one or more of the following rules:

◦ Nondefault routing rules (ndr)

This rule applies to both pattern-based and track-based metal fill.

◦ Maximum density rules (max_density_threshold)

This rule applies only to track-based metal fill. When you enable this
rule, metal fill removal honors the maximum density threshold set by the
signoff.create_metal_fill.max_density_threshold application option.

For example, to honor nondefault routing rules during fill removal, use the following
command:

icc2_shell> signoff_create_metal_fill -mode remove \
 -remove_by_rule {ndr}

See Also

• Specifying the Layers for Metal Fill Insertion

• Specifying the Regions for Metal Fill Insertion

IC Compiler™ II Implementation User Guide
T-2022.03

618

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Inserting Metal Fill With IC Validator In-Design

Feedback

Modifying Metal Fill
In some cases, you might find that you can manually fix a DRC violation by changing the
boundary of metal fill shapes, adding metal fill shapes, or removing metal fill shapes.

• To change the boundary of a metal fill shape, use the set_attribute command to
modify its bbox attribute.

• To add a metal fill shape in the top-level fill cell, use the create_shape -shape_use
area_fill command.

• To add a metal fill shape in a specific fill cell, use the create_shape -fill_cell
command.

• To remove a metal fill shape, use the remove_shapes command.

You can also modify metal fill shapes in the GUI. To select or modify fill shapes in the GUI,

1. Select “Multiple Levels Active” () in the View Settings panel.

2. In the “Hierarchy Settings” panel, set “View level” to a minimum of 2 and select “Fill
Cell” in “Expanding cell types.”

Performing Real Metal Fill Extraction
To enable metal fill extractionrealreal metal fill extraction,

1. Associate non-emulation TLUPlus files with the timing corners by using the
set_parasitic_parameters command, as described in the IC Compiler II Timing
Analysis User Guide.

2. Enable real metal fill extraction by using the following command:

icc2_shell> set_extraction_options \
 -real_metalfill_extraction floating

For more information about performing extraction in the IC Compiler II tool, see the IC
Compiler II Timing Analysis User Guide.

IC Compiler™ II Implementation User Guide
T-2022.03

619

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Automatically Fixing Isolated Vias

Feedback

Automatically Fixing Isolated Vias
An isolated via is a via that does not have neighboring vias close enough to meet the
requirements of the technology.

To check for and fix isolated vias,

1. Set up the IC Validator environment as described in Setting Up the IC Validator
Environment.

2. (Optional) Enable distributed processing by using the set_host_options command,
as described in Enabling IC Validator Multicore Processing.

3. Set the application options for fixing isolated vias.

At a minimum, you must define the maximum distance within which a neighboring via
must exist so that a via is not considered an isolated via. To define this information
for each via layer, set the signoff.fix_isolated_via.isolated_via_max_range
application option, which has the following syntax:

{ {via_layer1 distance1} ... {via_layern distancen} }

where the via_layer argument uses the mask names, such as via1, and the distance
argument is in microns.

For information about the options available for fixing isolated vias, see Setting Options
for Fixing Isolated Vias.

4. Run isolated via checking and fixing by using the signoff_fix_isolated_via
command as described in Running the signoff_fix_isolated_via Command.

Setting Options for Fixing Isolated Vias
Before you run the signoff_fix_isolated_via command, configure the run by
setting the application options shown in Table 44. To set the application options, use the
set_app_options command. To see the current settings, use the report_app_options
command.

IC Compiler™ II Implementation User Guide
T-2022.03

620

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Automatically Fixing Isolated Vias

Feedback

Table 44 Application Options for Signoff Isolated Via Fixing

Application option Default Description

signoff.
fix_isolated_via.
isolated_via_max_range
(required)

N/A Specifies the distance in microns
within which a neighboring via must
exist on each via layer.
If a neighboring via is not found
within this distance, a via is
considered an isolated via and the
command tries to add a fixing via
within the specified distance.

signoff.
fix_isolated_via.
avoid_net_types

{clock pg} Specifies the types of nets to avoid
when fixing isolated vias. Specify
a list that contains one or more of
the following values: clock, pg, and
none.

signoff.
fix_isolated_via.
run_dir

signoff_fix_isolated_via_run Specifies the run directory, which
contains the files generated by
the signoff_fix_isolated_via
command.
You can specify either a relative
path, in which case the directory is
created under the current working
directory, or an absolute path.

signoff.
fix_isolated_via.
user_defined_options

(none) Specifies additional options for the
IC Validator command line.
The string that you specify in this
option is added to the command
line used to invoke the IC Validator
tool. The IC Compiler II tool does
not perform any checking on the
specified string.

Running the signoff_fix_isolated_via Command
You can use the signoff_fix_isolated_via command either to check for isolated vias
only, or to check for and fix the isolated vias.

Checking for Isolated Vias
To check for isolated vias without fixing them, run the signoff_fix_isolated_via
command with the -check_only true option.

icc2_shell> signoff_fix_isolated_via -check_only true

IC Compiler™ II Implementation User Guide
T-2022.03

621

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Automatically Fixing Isolated Vias

Feedback

When run you run the signoff_fix_isolated_via command in check-only mode, it
generates a summary report that specifies the number of isolated vias detected on each
via layer.

Checking and Fixing Isolated Vias
By default, the signoff_fix_isolated_via command both checks for and fixes isolated
vias.

The command performs the following tasks:

1. Checks for isolated vias by using the ranges defined in the
signoff.fix_isolated_via.isolated_via_max_range application option

2. (Optional) Performs track-based metal fill insertion to insert dummy fill shapes within
the specified range around each detected isolated via

• By default, the signoff_fix_isolated_via command ignores the existing fill data
and performs track-based metal fill insertion to insert the fill shapes to use for fixing
the isolated vias.

The fill shapes are inserted on-track following the design rules defined in the
technology file. Some foundries have additional design rules, which you enable
by setting the appropriate TRACK_FILL_FOUNDARY_name IC Validator variable. To
set this variable, set the signoff.create_metal_fill.user_defined_options
application option, as shown in the following example:

icc2_shell> set_app_options \
 -name signoff.create_metal_fill.user_defined_options \
 -value {-D TRACK_FILL_FOUNDARY_name}

• If you have already performed track-based metal fill insertion, you can use the
existing fill shapes to fix isolated vias by using the -update_track_fill true
option.

When you use this option, you must use the -track_fill_runset_include_file
option to specify the parameter file used for the initial track-based metal fill
insertion. This parameter file is named track_fill_params.rh and is located in the run
directory for the initial run. For example, if the run directory for the initial track-based
metal fill insertion run is named init_fill, use the following command to fix isolated
vias using the existing fill shapes:

icc2_shell> signoff_fix_isolated_via -update_track_fill true \
 -track_fill_runset_include_file init_fill/track_fill_params.rh

For information about performing track-based metal fill insertion, see Track-Based
Metal Fill Insertion.

IC Compiler™ II Implementation User Guide
T-2022.03

622

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: IC Validator In-Design
Automatically Fixing Isolated Vias

Feedback

3. Inserts fixing vias within the specified range by using one of the following methods, in
order of priority:

a. Inserting a via between an existing non-wide net shape and a fill shape

b. Extending the line end of an existing non-wide net shape and inserting a via
between the extension and a fill shape

c. Inserting a via between a wide metal shape and a fill shape

When inserting the fixing vias, the tool considers the routing rules, including double-
patterning rules and nondefault spacing rules, to prevent the introduction of DRC
violations.

Note:
If the block is either very congested or very sparse, the
signoff_fix_isolated_via command might not be able to fix all isolated
vias.

4. Removes the unused dummy fill shapes

5. (Optional) Saves the updated block to disk

• By default, the signoff_fix_isolated_via command does not save the updated
block to disk. After running the command, you must use the save_block command
to save the updated block to disk.

• To save the block at the end of the signoff_fix_isolated_via run, use the
-save_design true option with the signoff_fix_isolated_via command.

6. Saves the results to disk

The signoff_fix_isolated_via command generates the following results files:

• A summary report

This report specifies the number of isolated vias for each via layer before and after
fixing.

• An error data file

By default, the error data generated by the signoff_fix_isolated_via command
is saved in a file named signoff_fix_isolated_via.err. To specify the name for the
error data file, use the -error_data option. To report or display the information
in the error data file, use the error browser, as described in the IC Compiler II
Graphical User Interface User Guide.

IC Compiler™ II Implementation User Guide
T-2022.03

623

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

8
Routing Using Custom Router

Custom Router is a shape-based router that supports gridded or gridless routing for
custom digital, mixed signal, and analog routing needs. In the IC Compiler II environment,
you can use Custom Router to create interconnects (or routes) for critical signals between
blocks and continue with the IC Compiler II tool to complete the physical implementation.
You can also preroute critical signals or clock nets by using a set of custom routing
constraints.

In the IC Compiler II environment, Custom Router provides the following features:

• Prerouting in the batch mode

• Tcl-based routing constraint management

• Automatic routing with custom routing constraints

• Hybrid flow for prerouting

• Double Data Rate (DDR) net routing flow

Custom Router is fully integrated with the IC Compiler II tool, and supports advanced
design rules for 20 nm and below technologies.

To learn about using Custom Router in the IC Compiler II environment, see the following
topics:

• Using Custom Router in the IC Compiler II Tool

• Before Using Custom Router

• Defining Routing Constraints

• Managing Constraint Groups

• Using Custom Routing Application Options

• Routing With the Custom Router

• Shielding the Nets

• Checking the Routing Results

IC Compiler™ II Implementation User Guide
T-2022.03

624

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Router in the IC Compiler II Tool

Feedback

• Using a Hybrid Routing Flow

• Using a DDR Routing Flow

These topics describe how to use Custom Router to create custom routes in the IC
Compiler II environment. For detailed information about Custom Router, see the Custom
Compiler Custom Router User Guide.

Using Custom Router in the IC Compiler II Tool
The IC Compiler II tool provides a set of Tcl commands to run Custom Router in the IC
Compiler II environment. These commands define routing constraints for adding wires
on one or more nets at the block level or adding differential pair routing, bus routing,
shielding, and other routing features.

A set of application options is also available for specifying the parameters for performing
custom routing. For more information about how to define routing constraints and
application options, see Defining Routing Constraints and Using Custom Routing
Application Options.

The route_custom command uses the specified routing constraints, as well as information
from the technology file and the design, to perform automatic routing using the Custom
Router. For more information about using the route_custom command, see Routing With
the Custom Router.

Custom Router supports the following constraints:

• Net shielding and differential pairs

• Matched length

• Variable width and space

• Pin width matching and tapering

Custom Router supports the following IC Compiler II nondefault routing rules:

• Routing layers and vias

• Routing width and spacing

• Routing grids

• Inter- and intra-group spacing

• Taper halo

• Routing blockage

IC Compiler™ II Implementation User Guide
T-2022.03

625

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Before Using Custom Router

Feedback

• Routing corridors

• Shielding

Figure 113 shows the basic Custom Router flow.

Figure 113 Basic Custom Router Flow

Define routing constraints

Perform custom routing

Block with routed power nets
and unrouted clock trees

Technology file with
design rule definitions

Perform postroute optimization

Analyze routing results

Before Using Custom Router
Before you run Custom Router, you must

• Ensure the necessary design rules are correctly defined in the technology file, such as
layer and via definitions.

For more information, see the Synopsys Technology File and Routing Rules Reference
Manual.

• Check the connectivity information and look for pin blockages in the design.

For more information, see the "Reviewing the Design" topic in the Custom Compiler
Custom Router User Guide.

• Ensure sure that the power and ground nets in the block have been routed.

IC Compiler™ II Implementation User Guide
T-2022.03

626

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

For more information, see the IC Compiler II Design Planning User Guide.

• Check the routability of the placement as explained in Checking Routability.

Defining Routing Constraints
The IC Compiler II tool provides a set of application options to control custom routing
results. The application options are applied globally. See Using Custom Routing
Application Options.

You can also define net-specific routing constraints that override the routing application
options. Routing constraints provide guidance during routing. In the IC Compiler II
environment, Custom Router honors both the Custom Router constraints and the IC
Compiler II nondefault routing rules.

Note:
You must apply net-specific routing constraints to physical nets. When
specifying nets that will be constrained, use the get_nets -physical_context
command to ensure the physical net is returned. For example:

icc2_shell> create_net_shielding \
 -for [get_nets -physical_context pr*]\
 -disabled_layers {M5 M6} -sharing true \
 -layer_gaps {M2 3 M3 5}
 {shielding_4}

Table 45 lists the commands to define the Custom Router constraints by creating
constraint groups. For information about the supported IC Compiler II nondefault routing
rules, see Using Nondefault Routing Rules.

To check or remove the created constraint groups, use the report_constraint_groups
or remove_constraint_groups command. For more information about checking or
removing constraint groups, see Managing Constraint Groups.

Table 45 Commands to Define Custom Router Routing Constraints

Command Description

create_bus_routing_style Specifies the routing style for group of nets that are routed as
a single bus structure (or trunk). For more information, see
Defining the Bus Routing Style.

create_differential_group Defines a differential group for routing. For more information,
see Creating Differential Groups.

IC Compiler™ II Implementation User Guide
T-2022.03

627

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Table 45 Commands to Define Custom Router Routing Constraints (Continued)

Command Description

create_wire_matching Defines matched wire length for a group of nets or pin-to-pin
connections. For more information, see Defining Matching Wire
Lengths.

create_length_limit Defines the minimum wire length for a group of nets or
pin-to-pin connections. For more information, see Defining
Minimum Wire Lengths.

create_net_shielding Defines the shielding style for a group of nets or bundles. For
more information, see Inserting Shields on the Nets

create_net_priority Determines the order in which the nets are routed. Nets with
a higher priority are routed first. For more information, see
Defining the Net Priority.

Defining the Bus Routing Style
To route a collection of nets or bundles as a single bus structure (trunk),
create a constraint group that defines the bus routing style by using the
create_bus_routing_style command.

You need to specify the following information:

• The name of the constraint group

If you do not specify a name, the command names the constraint group bus_style_n,
where n is a unique integer.

By default, the command returns an error if the assigned name already exists. To
delete the existing constraint group, use the -force option.

• The nets, bundles, and topology edges to which the constraint group applies

To specify the objects that constitute the constraint group, use the -for option.

• The constraints

To specify the constraints that are applied per layer to the trunk and override any
settings on the individual bits, use the options listed in Table 46.

IC Compiler™ II Implementation User Guide
T-2022.03

628

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Table 46 Bus Routing Style Constraints

Option Description

-valid_layers Specifies a list of the valid layers for trunk routing. When
specified, the tool derives the minimum and maximum layer
information from the list.

-layer_spacings Specifies the minimum spacing for each routing layer. For
example, {M1 5.0 M2 6.0}

-layer_widths Specifies the minimum width for each routing layer. For
example, {M1 5.0 M2 6.0}

-shield_placement Specifies the trunk shielding placement. Valid values are:
◦ default (default): Uses the value from

custom.route.bus_intra_shield_placement.
◦ double_interleave: Shields each wire individually.
◦ half_interleave: Inserts shared shielding every two wires.
◦ interleave: Inserts shared shielding between adjacent

wires.
◦ outside: Places shields on the outside of the trunk or group.
See also Intra-shield Placement.

-corner_type Specifies how the tool routes the bus trunks at corners. Valid
values are:
◦ auto (default): Automatically determines the optimal corner

type for the bit or pin alignment to reduce routing congestion.
◦ cross: Routes the bit so that they overlap at the corner.
◦ river: Routes the bit so that they do not overlap at the

corner.
See also Bus Routing Options.

-gap Specifies the spacing between the outermost bus bits and other
shapes in the block. The default is 0.

The following example creates a bus routing constraint group for the nets that match the
pattern pr*. The command names the constraint group bus_style_1, because no name
is assigned to the constraint group. The shield placement is interleave. The minimum
spacing is 3 microns for the M2 layer and 5 microns for the M3 layer.

icc2_shell> create_bus_routing_style \
 -for [get_nets -physical_context pr*] \
 -shield_placement interleave \
 -layer_spacings {M2 3 M3 5}
{bus_style_1}

IC Compiler™ II Implementation User Guide
T-2022.03

629

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Creating Differential Groups
To create a differential group or a differential pair for the nets, bundles, or topology edges,
use the create_differential_group command. Custom Router pairs the closest pins,
one from each net, and routes from a common gather point between the pins. The tool
routes the net pair the closest to each other with the most similar routing patterns.

You need to specify the following information:

• The name of the constraint group

If you do not specify a name, the command names the constraint group
differential_pair_n or differential_group_n, where n is a unique integer.

By default, the command returns an error if the assigned name already exists. To
delete the existing constraint group, use the -force option.

• The nets in the differential group

To specify the nets included in the created group, use the -for option. If you specify
two nets, the nets form a differential pair. If you specify three nets, the nets form a
differential group.

• The constraints for the differential group

To define the constraints that are applied per layer to the trunks and override any
settings on the individual bits, use the options listed in Table 47.

Table 47 Differential Group Constraints

Option Constraint

-twist_style Specifies the twist style. Valid values are
◦ diagonal: Applies 45-degree twists to the wires.
◦ none (default): Does not twist the wires.
◦ orthogonal: Applies 90-degree twists to the wires.

-twist_interval Specifies the distance between each twist.

-twist_offset Specifies the distance between the first twist and the
connected pins. The default is 0.

-valid_layers Specifies the layers on which to route the differential group.

-layer_spacings Specifies the minimum spacing for each routing layer.

-layer_widths Specifies the minimum width for each routing layer.

IC Compiler™ II Implementation User Guide
T-2022.03

630

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Option Constraint

-shield_placement Specifies how to shield the main bus trunk if one or more nets
of the constraint group are shielded.
Valid values are
◦ double_interleave: Shields each wire individually.
◦ half_interleave: Inserts shared shielding every two

wires.
◦ interleave: Inserts shared shielding between adjacent

wires.
◦ outside (default): Places shields on the outside of the

trunk or group.
See also Intra-shield Placement.

-gap Specifies the spacing in microns between the outermost bus
bits and other shapes in the block. The default is 0.

The following example creates a differential pair for the prn and prp nets. The command
names the differential pair differential_pair_0, because there is no name assigned to the
different pair. No twist style is specified and the shield placement is set to default.

icc2_shell> create_differential_group \
 -for [get_nets -physical_context {prn prp}] \
 -shield_placement default
{differential_pair_0}

Inserting Shields on the Nets
To add shielding on the selected nets to reduce crosstalk or parasitic effects, run the
create_net_shielding command.

You need to specify the following information:

• The name of the constraint group

If you do not specify a name, the command names the constraint group shielding_n,
where n is a unique integer.

By default, the command returns an error if the assigned name already exists. To
delete the existing constraint group, use the -force option.

• The nets, bundles, and topology edges to which the constraint group applies

Use the -for option.

• The constraints for shielding styles and layer-specific requirements

To define the net shielding constraints that are applied per layer to the trunk and
override any settings on the individual bits, use the options listed in Table 48.

IC Compiler™ II Implementation User Guide
T-2022.03

631

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Table 48 Net Shielding Constraints

Option Description

-shield_net Specifies the net you want to use as the shield.
When routing a single signal net, the tool uses this net for the left and
bottom shields.

-shield_net_2 Specifies the secondary net you want to use as the shield.
When routing a single signal net, the tool uses this net for the right and
top shields.

-via_defs Specifies the vias that can be used to connect to the shield.
By default, all via definitions can be used.

-gap Specifies the global minimum spacing between route objects and
shield objects. The default is 0.

-max_gap Specifies the global maximum spacing between route objects and
shield objects. The default is 0.

-width Specifies the global shield width. The default is 0.

-layer_gaps Specifies the layer-specific minimum spacing between route objects
and shield objects. The default is 0.

-layer_max_gaps Specifies the layer-specific maximum spacing between route objects
and shield objects. The default is 0.

-layer_widths Specifies the layer-specific shield width. The default is 0.

-min_segment Specifies the minimum length of wiring to shield. The default is 0.

-sharing Specifies whether the shielding can be shared among the nets in the
constraint group. Valid values are unset, true and false.

-group_shield Uses a single set of shield shapes to shield all nets in the constraint
group.
This option is mutually exclusive with the -enclose_pins option.

-enclose_pins Specifies whether pins are enclosed by the shield.
This option is mutually exclusive with the -group_shield option.
Valid values are unset, true, and false.

-enclose_vias Specifies whether vias are enclosed by the shield.Valid values are
unset, true, and false.

-disabled_layers Specifies the layers that cannot be used for shielding.

The following example creates a constraint group and specifies constraints for adding
shields on the nets whose names start with pr. The minimum spacing is 3 microns for the

IC Compiler™ II Implementation User Guide
T-2022.03

632

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

M2 layer and 5 microns for the M3 layer. All constituent objects can share the shield; the
M5 and M6 layers cannot be used for shielding.

icc2_shell> create_net_shielding \
 -for [get_nets -physical_context pr*] \
 -disabled_layers {M5 M6} -sharing true -layer_gaps {M2 3 M3 5}
{shielding_4}

Defining the Net Priority
Use the net priority constraint to define the routing order for specific nets. Nets with a
higher priority are routed first. To define the priority for a collection of nets or bundles,
create a constraint group by using the create_net_priority command. You need to
specify the following information:

• The name of the constraint group

If you do not specify a name, the command assigns a name.

By default, the command returns an error if the assigned name already exists. To
delete the existing constraint group, use the -force option.

• The nets, bundles, and topology edges to which the constraint group applies

Use the -for option.

• The net priority

To specify the priority, use the -priority option. You can specify an integer between
-128 and 128, inclusive.

The following example creates a constraint group named abc for the nets and bundles that
match the pattern pr*. The net priority is set to 15.

icc2_shell> create_net_priority abc \
 -for [get_nets -physical_context pr*] \
 -priority 15
{abc}

Defining Minimum Wire Lengths
To define different minimum wire lengths for each object in a group of nets or pin-to-
pin connections, use the create_length_limit command. Use this feature to perform
length-limit routing on the nets with a single driver and multiple receivers, and run point-to-
point routing between the drivers, steiners, and receivers. The Custom Router generates
the steiner nodes in the background when the create_length_limit command is
executed. Each of the receivers has either a matched length constraint or an independent
length constraint from the driver.

IC Compiler™ II Implementation User Guide
T-2022.03

633

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Figure 114 shows an example of a single driver with multiple receivers, where each
receiver has an individual length constraint.

Figure 114 Receivers With Individual Wire Length Constraints From Driver D

Syntax:

create_length_limit
 -for objects
 [-min_value float]
 [-exclude pins or ports]
 [-driver pin or port]
 [-force]
 [intent_name]

Command or Options Description

create_length_limit Creates a length-limit constraint.

-for Name of the driver pin or port, or net group that must comply with
the constraint.

-min_value (Optional) Minimum wire length. Default: 0

-exclude (Optional) Excludes the specified pins or ports from the length
matching constraint.

-driver (Optional) Name of the driver pin or port.

-force (Optional) Overwrites the existing constraint.
Use the option to delete existing constraint groups.

intent_name (Optional) Name of the constraint.
If you do not specify a name, the command assigns a name.
By default, the command returns an error if the assigned name
already exists. To delete an existing constraint, use the -force
option.

IC Compiler™ II Implementation User Guide
T-2022.03

634

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

In Example 29, the commands create five wire-length constraints, one for each of the
receivers shown in Figure 114.

Example 29 Five Wire-Length Constraints for the Five Receivers Connected to Driver D
icc2_shell> create_length_limit -for [get_nets -physical_context $net] \
 -driver [get_pins -physical_context D/o1]
icc2_shell> create_length_limit -for [get_pins -physical_context R1/a] \
 -min_value 38.0
icc2_shell> create_length_limit -for [get_pins -physical_context R2/a] \
 -min_value 40.0
icc2_shell> create_length_limit -for [get_pins -physical_context R3/a] \
 -min_value 45.0
icc2_shell> create_length_limit -for [get_pins -physical_context R4/a] \
 -min_value 42.0
icc2_shell> create_length_limit -for [get_pins -physical_context R5/a] \
 -min_value 41.0
In Example 30, the command creates a constraint group named abc for the nets and
bundles that match the pattern pr*. The minimum wire length is set to 10, so the length for
each of the wires in the group is at least 10 microns. See Figure 115.

Example 30 Minimum Wire Length Constraint for pr* Nets
icc2_shell> create_length_limit abc -for [get_nets -physical_context pr*]
 \
 -min_value 10
{abc}

Figure 115 Minimum Wire Length Constraint for pr* Nets

In Example 31, the command creates a constraint group named gcr_length_limit_a2 for
the a2/A pin. The minimum wire length is set to 2000. See Figure 116.

Example 31 Minimum Wire Length Constraint for the a2/A Pin
icc2_shell> create_length_limit -for [get_pins -physical_context a2/A] \
 -min_value 2000.0 -force gcr_length_limit_a2

IC Compiler™ II Implementation User Guide
T-2022.03

635

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Figure 116 Minimum Wire Length Constraint for the a2/A Pin

Defining Matching Wire Lengths
To define a group of nets or pin-to-pin connections that must have the same wire length,
use the create_wire_matching command. By matching wire lengths, you can minimize
clock skews and timing violations.

Two types of length-matching methods are available:

• Pin-based: Wire lengths between pins must match.

Figure 117 and Figure 118 show examples of pin-based wire length matching. In both
examples, all the receivers have a matched length constraint from driver D.

• Net-based: Total length of wires of specified nets must match.

Figure 119 shows an example of net-based wire length matching. In the example, the
total wire length of nets pr1 and pr2 are within the specified 10-um tolerance.

Figure 117 Receivers With Matched Wire Length From Driver D

IC Compiler™ II Implementation User Guide
T-2022.03

636

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Figure 118 Receivers With Matched Wire Length From Driver D'

Figure 119 Net-Based Wire Length Matching

Syntax:

create_wire_matching
 -for objects
 -tolerance float
 [-match_type type]
 [-exclude objects]
 [-relative]
 [-driver pin or port]
 [-force]
 [intent_name]

Command or Options Description

create_wire_matching Creates a length-matching constraint.

-for Name of the driver pin or port (Figure 117 and
Figure 118), or net group (Figure 119) that must comply
with the constraint.

-tolerance Length tolerance. The float value must be >= 0.
To specify the tolerance as a percentage, use the
-relative option.

-relative (Optional) Interprets a -tolerance value <=1 as a
percentage. The option must always be used with the
-tolerance option.

IC Compiler™ II Implementation User Guide
T-2022.03

637

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Command or Options Description

-match_type (Optional) Type of length matching. Valid values are:
• length: (Default) Compares the length of each object

in the constraint group to make sure they have the
same total length.

• length_per_layer: Compares the per-layer length.

-exclude (Optional) Excludes the specified pins or ports from the
length matching constraint.

-driver (Optional) Name of the driver pin or port.

-force (Optional) Overwrites the existing constraint.
Use the option to delete existing constraint groups.

intent_name (Optional) Name of the constraint.
If you do not specify a name, the command assigns a
name.
By default, the command returns an error if the assigned
name already exists. To delete an existing constraint,
use the -force option.

After routing, a matched-length summary report is generated. You can use the report to
troubleshoot and resolve the lengths that do not meet the set tolerance.

The content of the report depends on the -for option that you specified:

• If the -for option specifies pin-based length matching, a Length Constraint Report is
generated. See Figure 120.

• If the -for option specifies net-based length matching, a Routed Length report is
generated. See Figure 121.

Figure 120 Pin-Based Length Matching Report

IC Compiler™ II Implementation User Guide
T-2022.03

638

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Figure 121 Net-Based Length Matching Report

In Example 32, the commands create wire matching constraints for the scenario shown
in Figure 117. All receivers (R) have a matched length constraint from the balanced driver
(D).

Example 32 Wire Matching Constraints for All Receivers to Driver D
icc2_shell> create_wire_matching -for [get_nets -physical_context $net] \
 -relative -tolerance 0.01 -driver [get_pins -physical_context D/o1]

icc2_shell> create_wire_matching -for [get_pins \
 -physical_context {R1/a R2/a R3/a}] -tolerance 0.01 -relative
In Example 33, the commands create wire matching constraints for the example in
Figure 118.

Example 33 Wire Matching Constraints for Receivers Connected to Driver D'
icc2_shell> create_wire_matching -for [get_nets -physical_context $net] \
 -tolerance 0.01 -relative -driver $driver_full_name

icc2_shell> create_wire_matching \
 -for [get_pins -physical_context -of_objects $net] \
 -exclude $driver_full_name -tolerance 0.01 -relative
In Example 34, the command creates a constraint group named abc for the nets and
bundles that match the pattern pr*. An absolute tolerance of 10 um is set to match the
length of each object in the constraint group. See Figure 119.

Example 34 Wire Matching Constraints for pr* Nets
icc2_shell> create_wire_matching abc \
 -for [get_nets -physical_context pr*] \
 -tolerance 10
{abc}

In Example 35, the command creates a constraint group named def for the nets and
bundles that match the pattern pr*. A tolerance of 10 percent is set to match the length of
each object in the constraint group.

IC Compiler™ II Implementation User Guide
T-2022.03

639

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Defining Routing Constraints

Feedback

Example 35 Wire Matching Constraints for pr* Nets With Percent Tolerance
icc2_shell> create_wire_matching def \
 -for [get_nets -physical_context pr*] \
 -tolerance 0.10 -relative
{def}

In Example 36, the command creates a wire matching constraint named clk_match for
the clk net. Each of the endpoints that connect to the clk net has an individual matching
constraint.

Example 36 Wire Matching Constraints for the clk Net
icc2_shell> create_wire_matching -for [get_pins -physical_context \
 -of_objects [get_nets -physical_context {clk}]] \
 -tolerance 0.01 -match_type length_per_layer -relative \
 -force clk_match
In Example 37, the command creates a wire matching constraint named clk_match2 for all
the nets in the block, except the pins whose names match the keyword u1/a.

Example 37 Wire Matching Constraints With Exclusions
icc2_shell> create_wire_matching -for $nets -tolerance 0.05 \
 -exclude [get_pins -physical_context u1/a] -force clk_match2
In Example 38, the script creates a net-based wire matching constraint for the scenario
shown in Figure 122. The cell instance has an o1 terminal that servers as an inverter pin,
driving signals on net1 and net1p to the pins. The I2 and I3 pins are excluded from the
length matching constraint.

Example 38 Net-Based Wire Matching Constraints With Pin Exclusions

set nets to match length
set nets [get_nets -physical_context {net1 net1p}]
set allowed layers
set_routing_rule -min_routing_layer m7 -max_routing_layer m8 \
 -min_layer_mode allow_pin_connection -max_layer_mode hard $nets
setup Custom Router wire match constraint
set exclude_pin_names [get_pins -physical_context {i2/a i3/a}]
create_wire_matching -for $nets -tolerance 0.01 -relative \
 -exclude $exclude_pin_names
run Custom Router
route_custom -nets $nets

IC Compiler™ II Implementation User Guide
T-2022.03

640

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Managing Constraint Groups

Feedback

Figure 122 Net-Based Wire Matching Constraints With Pin Exclusions

Managing Constraint Groups
You can report or remove the constraint groups that you create when specifying the
routing constraints.

To report the created constraint groups, use the report_constraint_groups command
and specify the constraint types to report by using the -type option. By default, all
constraint types are reported. To specify the number of objects to report, use the -count
option.

The supported constraint types are:

• bus_style, which is specified by the create_bus_routing_style command

• differential_group, which is specified by the create_differential_group
command

• differential_pair, which is specified by the create_differential_group
command

• matched_wire, which is specified by the create_wire_matching command

• net_priority, which is specified by the create_net_priority command

• shielding, which is specified by the create_net_shielding command

• wire_length_limit, which is specified by the create_length_limit command

IC Compiler™ II Implementation User Guide
T-2022.03

641

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Routing Application Options

Feedback

The following example shows the default output of the report_constraint_groups
command:

icc2_shell> report_constraint_groups
**
Report : report_constraint_groups
Design : top_new
Version:
Date :
**

--
Name Type Objects
--
NDR_bus bus_style bus1
NDR_diff differential_pair clk0 clk1
shield_diff shielding clk0 clk1
matchL_con matched_wire match1

To remove the created constraint groups, use the remove_constraint_groups command
and specify the constraint groups to remove. To remove all the constraint groups, use
the -all option. The command disassociates the constituent objects from the removed
constraint groups, and reports the number of the groups that are removed.

For example,

icc2_shell> report_constraint_groups
{shield_1} {shield_2}
icc2_shell> remove_constraint_groups $a

Using Custom Routing Application Options
The IC Compiler II tool provides a set of application options to control custom routing
results. The application options are applied globally. To define net-specific routing
constraints to override the routing applications options, see Defining Routing Constraints.

To list all application options that are available for custom routing, use the following
command:

icc2_shell> report_app_options custom.route.*
Table 49 lists the application options for custom routing.

IC Compiler™ II Implementation User Guide
T-2022.03

642

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Routing Application Options

Feedback

Table 49 Application Options for Running Custom Routing

Application option Description

custom.route.bus_corner_type
custom.route.bus_intra_shield_placement
custom.route.bus_pin_trunk_offset
custom.route.bus_split_even_bits
custom.route.bus_split_ignore_width
custom.route.bus_tap_off_enable
custom.route.bus_tap_off_shielding

Specifies constraints for bus routing.
See Bus Routing Options.

custom.route.match_box Specifies the area within which the
Custom Router performs length
matching.

custom.route.layer_grid_mode Specifies whether the route and
corresponding parallel shields, jumpers
for parallel shields, and bus shields
snap to the wire tracks or the routing
grid. See Track Adherence Options.

custom.route.diffpair_twist_jumper_enable
custom.route.diffpair_twist_jumper_interval
custom.route.diffpair_twist_jumper_offset
custom.route.diffpair_twist_jumper_style

Specifies constraints for
differential-pair routing. See
Differential-Pair Options.

custom.route.net_min_layer_mode
custom.route.net_min_layer_mode_soft_cost
custom.route.net_max_layer_mode
custom.route.net_max_layer_mode_soft_cost

Specifies the minimum and maximum
layer mode and the layer cost.
See Specifying Net-Specific Layer
Constraints.

custom.route.routing_area Defines an area within which the
Custom Router creates routes. Use
this option if your block is large and
you only need to create or modify
routes within a specific area.

custom.route.shield_connect_mesh_overlap
custom.route.shield_connect_route
custom.route.shield_connect_to_supply
custom.route.shield_min_open_loop
custom.route.shield_min_shield_seg
custom.route.shield_min_signal_seg
custom.route.shield_net
custom.route.shield_second_net

Specifies shielding constraints. See
Shielding Options.

IC Compiler™ II Implementation User Guide
T-2022.03

643

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Routing Application Options

Feedback

Table 49 Application Options for Running Custom Routing (Continued)

Application option Description

custom.route.single_loop_match
custom.route.single_loop_match_max_spacing
custom.route.single_loop_match_min_spacing
custom.route.single_loop_match_offset_layer

Specifies how to extend the wire. See
Single-Loop Matching and Using a
DDR Routing Flow.

custom.route.skip_connect_pin_type Enables the hybrid flow.

custom.route.distance_to_net_pin (Hybrid flow only) When using the
skip_connect_pin_type option,
skips the connection if the distance
between the pin and the route is <=
distance_to_net_pin.
Specify the distance_to_net_pin
option as a list of pairs. The syntax for
each pair of values is as follows:
{{netName distance}}

Bus Routing Options
The Custom Router bus routing application options allow you to specify:

• Corner Type

• Intra-shield Placement

• Pin-Trunk Offset

• Trunk Splitting

• Tapoffs

Corner Type
The custom.route.bus_corner_type application option specifies how the tool routes the
bus trunks at corners. Valid values are:

Valid Value Description

auto (Default) Automatically determines the optimal corner type for
the bit or pin alignment to reduce routing congestion.

IC Compiler™ II Implementation User Guide
T-2022.03

644

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Routing Application Options

Feedback

Valid Value Description

cross Routes the bits so that they overlap at the corner.

river Routes the bits so that they do not overlap at the corner.

Intra-shield Placement
The custom.route.bus_intra_shield_placement application option specifies how the
bus trunk will be shielded. Valid values are:

Valid Value Description

double_interleave Shields each wire individually.

half_interleave Inserts shared shielding every two wires.

interleave Inserts shared shielding between adjacent wires.

IC Compiler™ II Implementation User Guide
T-2022.03

645

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Routing Application Options

Feedback

Valid Value Description

outside (Default) Places shields on the outside of the trunk or group.

Pin-Trunk Offset
The custom.route.bus_pin_trunk_offset application option changes the default
spacing between the bus trunk and the bus bit pins.

Trunk Splitting
The following Custom Router application options determine whether bus trunks will be split
when routing through obstacles and how the bits will be split.

• custom.route.bus_split_ignore_width

• custom.route.bus_split_even_bits
The custom.route.bus_split_ignore_width application option specifies the wire width
threshold of any obstructing power grid or route that triggers the bus trunk to be split into
more than one section.

The custom.route.bus_split_even_bits application option requires that
you set the custom.route.bus_split_ignore_width application option. If the
custom.route.bus_split_ignore_width requirement is met, you can use the
custom.route.bus_split_even_bits application option to control whether automatic
bus splitting routes an even number of nets between pre-routes (power stripes).

In the following example, the bus trunk consists of four bits and the
custom.route.bus_split_ignore_width application option is set. The spacing between
the power and ground rails can accommodate three bits only. Figure 123a shows the two
possible results when the custom.route.bus_split_even_bits application option is
turned off. Figure 123b shows the result when the custom.route.bus_split_even_bits
application option is turned on.

IC Compiler™ II Implementation User Guide
T-2022.03

646

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Routing Application Options

Feedback

Figure 123 Splitting Bus Trunk to Route Through Power and Ground Rails

Tapoffs
Two Custom Router application options allow you to control tapoff operations:

• custom.route.bus_tap_off_enable

• custom.route.bus_tap_off_shielding
The custom.route.bus_tap_off_enable application option connects pins to the bus
trunk.

If the custom.route.bus_tap_off_enable application option is turned on, you can use
the custom.route.bus_tap_off_shielding application option to add shielding to the
bus tapoffs.

Track Adherence Options
To specify whether the route and corresponding parallel shields, jumpers for parallel
shields, and bus shields will snap to the wire tracks or the routing grid, use the
custom.route.layer_grid_mode application option. Specify the application option with a
list of paired values. The syntax for each pair of values is as follows:

{{layerName mode}}
where

layerName is the name of the layer. To include all layers, specify All.

IC Compiler™ II Implementation User Guide
T-2022.03

647

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Routing Application Options

Feedback

mode is one of the following:

• on: Snaps routes and shields to tracks. If the layer does not have tracks, the routes and
shields will snap to the routing grid.

• off: Does not snap routes and shields to tracks or grids. Choose this option for
gridless routing.

• off_cost <costValue>: Snaps routes and shields to tracks when possible. The value
you specify determines the adherence of routes to tracks. The higher the value, the
more likely the route will remain on the track or grid.

If tracks and routing grids are not defined and you specify on, the Custom Router uses an
internally determined grid. The grid pitch is route width + minSpacing between shapes.
The grid offset is 0 or pitch/2, whichever permits more pins on the grid.

Example 39 Layer and Cost Specification for Track Adherence
{{M2 off} {M3 off_cost 4}}

Differential-Pair Options
The following Custom Router application options allow you to control differential-pair
routing:

Application Option Description

custom.route.diffpair_twist_jumper_enable Twists the nets in the group.

custom.route.diffpair_twist_jumper_interval Specifies the distance between
each twist.

custom.route.diffpair_twist_jumper_offset Specifies the distance between
the first twist and the connected
pins. The default is 0.

custom.route.diffpair_twist_jumper_style Specifies the twist style. Valid
values are:
• diagonal: Applies 45-degree

twists to the wires.
• none (default): Does not twist

the wires.
• orthogonal: Applies

90-degree twists to the wires.

IC Compiler™ II Implementation User Guide
T-2022.03

648

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using Custom Routing Application Options

Feedback

Shielding Options
The following Custom Router shielding application options allow you to control shielding:

Application Option Description

custom.route.shield_connect_mesh_overlap Creates multiple shield connections to the
power mesh for a shield. Creates a shield
via at each intersection of a shield path
segment and a power strap. If a shield
does not intersect with any power strap,
the default four-pass connecting process is
followed.

custom.route.shield_connect_route Connects shields to ground. This option
creates long ties that might block future
routing. Set this option only if you must
connect shields to ground. Note that these
shields are marked as dynamic shields.

custom.route.shield_connect_to_supply Connects shields to the nearest power
mesh.

custom.route.shield_min_open_loop Specifies the minimum total length of an
open shield-loop placed on the same layer.
The shield shapes must be longer than
shield_min_open_loop, or no shielding will
be added.

custom.route.shield_min_shield_seg Specifies the minimum length of shield
segments. The default value is 0 um.

custom.route.shield_min_signal_seg Specifies the minimum length of wiring to
shield. The default value is 0 um.

custom.route.shield_net Specifies the net you want to use as the
shield.
When routing a single-signal net, the tool
uses this net for the left and bottom shields.

custom.route.shield_second_net Specifies the secondary net you want to
use as the shield.
When routing a single-signal net, the tool
uses this net for the right and top shields.

Single-Loop Matching
To create single-loops to extend wires for length matching, use the Custom Router single-
loop matching application options. Single-loop matching is typically used in DDR routing
flows.

IC Compiler™ II Implementation User Guide
T-2022.03

649

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Routing With the Custom Router

Feedback

Figure 124 Adding Single Loops to Extend Wires

Application Option Description

custom.route.single_loop_match Adds single loops to extend wire lengths.

custom.route.single_loop_match_max_spacing Specifies the maximum spacing in the
loop.

custom.route.single_loop_match_min_spacing Specifies the minimum spacing in the
loop.

custom.route.single_loop_match_offset_layer Routes the segment at the top of the
figure on a layer different from other
segments in the loop.

Routing With the Custom Router
Before performing custom routing on your block, you need to define routing constraints
by using the commands described in Defining Routing Constraints, and setting the
appropriate application options.

To perform custom routing with Custom Router in the IC Compiler II environment, run the
route_custom command. By default, the tool routes all nets in the block. To route specific
nets, use the -nets option.

By default, the tool removes the configuration data when the command run is complete.
To keep the data in the cache for running other Custom Router commands in the current
session, set the -keep_session option to true. The default is false.

The following example specifies the bus routing style and then performs bus routing.

icc2_shell> create_bundle -name Bus1 {net0 net1}
icc2_shell> create_bus_routing_style -for {Bus1} \
 -valid_layers {M5 M6} \
 -layer_widths {M5 0.4 M6 0.44} -force bus1

IC Compiler™ II Implementation User Guide
T-2022.03

650

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Shielding the Nets

Feedback

icc2_shell> create_net_shielding -for {Bus1} -shield_net VSS \
 –layer_gaps 0.21 -layer_widths 0.2 –sharing true –force sh1
icc2_shell> set_app_options –name custom.route.bus_corner_type \
 -value river
icc2_shell> set_app_options \
 -name custom.route.bus_intra_shield_placement -value interleave
icc2_shell> route_custom –nets {net0 net1}
The following example creates a constraint group and then performs routing on the nets
with the same length.

icc2_shell> set matchNets {net1 net2 net3 net4}
icc2_shell> create_bundle -name MatchL1 $matchNets
icc2_shell> create_wire_matching -for MatchL1s \
 -match_type length -tolerance 1 \
 –force matchL1_con
icc2_shell> route_custom -nets {net1 net2 net3 net4}
The following example creates a differential group and then performs custom routing.

icc2_shell> create_differential_group -for {net1 net2} \
 -valid_layers {M3 M4} -layer_widths {M3 0.4 M4 0.4} \
 -layer_spacings {M3 0.4 M4 0.4} \
 -twist_style diagonal -twist_interval 80.0 -force Diff
icc2_shell> set_app_options\
 -name custom.route.diffpair_twist_jumper_offset -value 10
icc2_shell> route_custom -nets {net1 net2}

Shielding the Nets
Shielding is needed around sensitive nets to reduce noise and crosstalk. When you
perform custom routing by using the route_custom command, the tool automatically
creates shields for the nets based on the constraints you specify by using the
create_net_shielding command.

To add shielding to the selected nets in a separate run, use the create_custom_shields
command.The following example creates shields for net1 and net2.

icc2_shell> create_custom_shields -nets {net1 net2}
To remove the shielding created by the create_custom_shields command, use the
remove_custom_shields command. Doing this also removes the shielding created by the
route_custom command.

IC Compiler™ II Implementation User Guide
T-2022.03

651

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Checking the Routing Results

Feedback

Checking the Routing Results
After running Custom Router to perform custom routing on the nets, you can check the
routing results by reporting the routing results, generating a congestion map, running DRC
checks, and so on.

For more information about the tasks to check the routing results, see Analyzing the
Routing Results.

Using a Hybrid Routing Flow
In the hybrid flow, Custom Router is used to perform trunk routing without completing
some pin connections, and then Zroute is used to complete the pin connections. This flow
enables the use of Custom Router for prerouting while avoiding or reducing inconsistency
and DRC violations associated with differences in the pin connection behavior between
the two tools.

To enable the hybrid routing flow, set the custom.route.skip_connect_pin_type
application option to one or more of the following values, depending on your routing
requirements. By default, this application option is set to none, which disables the hybrid
routing flow.

• auto
Custom Router identifies the routability of the pins in the block, and then completes the
pin connections for the pins that can be connected.

• all
Custom Router does not complete the pin connections for all pins in the block.

• stdcell
Custom Router completes the pin connections for all pins in the block, except for
standard cell pins.

• io
Custom Router completes the pin connections for all pins in the block, except for I/O
cell pins.

• macro
Custom Router completes the pin connections for all pins in the block, except for macro
pins.

By default, when the hybrid flow is enabled, Custom Router determines how much space
to leave between a route and an unconnected pin. To specify the maximum distance,

IC Compiler™ II Implementation User Guide
T-2022.03

652

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using a DDR Routing Flow

Feedback

use the custom.route.distance_to_net_pin application option. Set the value in the
following format: {net_name distance}.

The following script uses Custom Router for trunk routing and Zroute for all pin
connections.

set_app_options –name custom.route.skip_connect_pin_type -value all
route_custom –nets {net1 net2}
route_eco –nets {net1 net2}
remove_redundant_shapes –nets {net1 net2}
route_detail –incremental true
The following script uses Custom Router for trunk routing and pin connections except
standard cell pins, and then uses Zroute for standard cell pin connections.

set_routing_rule –min_routing_layer m3 \
 –max_routing_layer m9 \
 –min_layer_mode allow_pin_connection \
 –max_layer_mode hard {net1 net2}
set_app_options –name custom.route.skip_connect_pin_type \
 -value stdcell
set_app_options –name custom.route.distance_to_net_pin \
 -value {{{net1 5.0} {net2 3.0}}}
route_custom -nets {net1 net2}
route_eco –nets {net1 net2}
remove_redundant_shapes –nets {net1 net2}
route_detail –incremental true

Using a DDR Routing Flow
This topic describes how to use Custom Router to perform routing on a double data rate
(DDR) design.

Figure 125 illustrates the basic steps to create interconnects (routes) between a DDR net
and the core.

IC Compiler™ II Implementation User Guide
T-2022.03

653

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using a DDR Routing Flow

Feedback

Figure 125 A Basic DDR Flow

Prepare input data

Run custom routing

Insert buffer cells

Run ECO routing

Define single-loop lengthening

Trimming

Define net bundles

Define and apply routing rules

route_custom -nets

Set the length match

route_custom -nets

add_buffer_on_route

route_eco -nets

route_detail -incremental

remove_redundant_shapes

create_bundle

create_routing_rule

set_routing_rule

Run custom routing

create_wire_matching

To perform routing on a DDR design with Custom Router,

1. Before you run Custom Router to perform routing on a DDR design,

• Group the nets as a bundle for length matching.

icc2_shell> create_bundle -name GRP1 [get_nets $nets]
• Create and apply the routing rules for the DDR nets.

icc2_shell> create_routing_rule DDR -widths {layer value …} \
 -spacings {layer value … }
icc2_shell> set_routing_rule -rule DDR -min_routing_layer M4 \
 -max_routing_layer M5 $all_ddr_nets

IC Compiler™ II Implementation User Guide
T-2022.03

654

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using a DDR Routing Flow

Feedback

Set two or more layers for initial routing and length matching. For postroute length
matching, you should include two additional layers. For example, if you use the M4
and M5 layers for initial routing, set the M3, M4, M5, and M6 layers for postroute
length matching.

• Add routing blockages as needed.

Add routing blockages to prevent Custom Router from routing in the area that is
covered by placement blockages. This helps avoid possible unplaceable buffers
during buffer insertion.

2. Create routes for the DDR nets by running the route_custom command.

icc2_shell> route_custom -nets $all_ddr_nets
3. Define the routing constraints.

• Use the following application options to set the single-loop constraints.

icc2_shell> set_app_options \
 -name custom.route.single_loop_match -value true
icc2_shell> set_app_options \
 -name custom.route.single_loop_match_min_spacing -value 0.75
icc2_shell> set_app_options \
 -name custom.route.single_loop_match_max_spacing -value 10.0
icc2_shell> set_app_options \
 -name custom.route.single_loop_match_offset_layer -value true

• Set the wire matching constraint for the group.

icc2_shell> create_wire_matching -for [get_bundles GRP1] \
 -match_type length -tolerance 20 -force match1
icc2_shell> create_wire_matching -for [get_bundles GRP2] \
 -match_type length -tolerance 20 -force match2

• Set the bounding box for the wire matching routing constraint.

icc2_shell> set_app_options -name custom.route.match_box \
 -value {{1000 1000} {1500 1500}}
By default, the bounding box coordinates are set to {{0 0} {0 0}}. When set to other
values, the router limits matching routes to the area inside the box, which might
result in connections that do not meet the matching constraint. The matching box
should cover the entire available channel space.

4. Perform custom routing with length matching.

icc2_shell> route_custom -nets [get_bundles {GRP1}]
If you define multiple matching boxes at step 3, you need to run the route_custom
command on each matching box.

IC Compiler™ II Implementation User Guide
T-2022.03

655

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using a DDR Routing Flow

Feedback

5. Report the list of mismatching nets.

% grep "Mismatch" log_file
6. Reduce the number of the mismatched nets (if any) by using one of the following

methods:

• Rebalance the net routing of one or more groups in the same channel among the
available routing layers by

a. Resetting the routing layers. For example,

- Set the routing layers for route group A to the M3 and M4 layers, and for group
B to the M5 and M6 layers, or

- Set the routing layers for route groups A and B to the M3 and M4 layers, and
route all mismatched nets on the M5 and M6 layers.

b. Rerunning initial routing with the rebalanced routing layer settings.

• Set a larger value for the custom.route.single_loop_match_max_spacing
application option.

• Allow different layers for the single loop.

icc2_shell> set_app_options \
 -name custom.route.single_loop_match_offset_layer -value true

7. Insert buffer cells on the routed DDR net.

In the following example, ddr_BUF is used as the prefix for the names of the added
ECO nets and buffers for easy identification. The buffer cells are added at an interval
that is 20 percent of the total net length.

icc2_shell> set ddr_buf "BUF001"
icc2_shell> add_buffer_on_route -net_prefix ddr_BUF \
 -cell_prefix ddr_BUF \
 -repeater_distance_length_ratio 0.2 \
 -respect_blockages [get_nets $ddr_nets] $ddr_BUF

8. Perform legalization and verify that the placement is legal.

icc2_shell> legalize_placement -cells $ddr_BUF
icc2_shell> check_legality -cells $ddr_BUF
Note:

Using the -cells option with the legalize_placement and
check_legality commands is supported only in the standard legalizer.

IC Compiler™ II Implementation User Guide
T-2022.03

656

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Routing Using Custom Router
Using a DDR Routing Flow

Feedback

9. Preserve the route shapes of the clock nets by setting the shape_use attribute of the
clock nets to user_route.

icc2_shell> set_attribute [get_shapes -of_object $all_nets] \
 shape_use "user_route"
icc2_shell> set_attribute [get_vias -of_object $all_nets] \
 shape_use "user_route"

10. Limit rerouting to minor changes by setting the physical_status attribute on the nets
to minor_change.

icc2_shell> set_attribute [get_shapes -of_object $all_nets] \
 physical_status "minor_change"
icc2_shell> set_attribute [get_vias -of_object $all_nets] \
 physical_status "minor_change"

11. Run ECO routing to reconnect the nets by using the route_eco command.

icc2_shell> route_eco -nets $all_nets -reroute modified_nets_only
12. Run incremental detail routing to fix the DRC violations by running the route_detail

-incremental true command. After routing is complete, clean up the routed nets by
running the remove_redundant_shapes command.

icc2_shell> set_attribute \
 [get_shapes -of_object $all_nets] shape_use "detail_route"
icc2_shell> set_attribute \
 [get_vias -of_object $all_nets] shape_use "detail_route"
icc2_shell> route_detail -incremental true
icc2_shell> remove_redundant_shapes -nets $all_nets

13. Check the routing results by using one of the following methods:

• Check for DRC violations.

icc2_shell> check_routes
By default, the tool checks for DRC violations between signal shapes. To check
for DRC violations between signal shapes and user shapes, use the following
command:

icc2_shell> check_routes -check_from_user_shapes true
• View the ECO nets and buffers in the GUI.

• Report the lengths of the DDR nets and the ECO nets.

IC Compiler™ II Implementation User Guide
T-2022.03

657

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

9
Physical Datapath With Relative Placement

The physical datapath with relative placement capability provides a way for you to create
structures in which you specify the relative column and row positions of instances. During
placement and legalization, these structures, which are placement constraints called
relative placement structures, are preserved and the cells in each structure are placed
as a single entity. Relative placement is also called physical datapath and structured
placement.

The concepts and tasks necessary for doing relative placement are described in these
sections:

• Introduction to Physical Datapath With Relative Placement

• Relative Placement Flow

• Creating Relative Placement Groups

• Adding Objects to a Group

• Specifying Options for Relative Placement Groups

• Changing the Structures of Relative Placement Groups

• Generating Relative Placement Groups for Clock Sinks

• Performing Placement and Legalization of Relative Placement Groups

• Analyzing Relative Placement Groups

• Saving Relative Placement Information

• Summary of Relative Placement Commands

Introduction to Physical Datapath With Relative Placement
Relative placement is usually applied to datapaths and registers, but you can apply it to
any cell in your design, controlling the exact relative placement topology of gate-level logic
groups and defining the circuit layout. You can use relative placement to explore QoR
benefits, such as shorter wire lengths, reduced congestion, better timing, skew control,
fewer vias, better yield, and lower dynamic and leakage power.

IC Compiler™ II Implementation User Guide
T-2022.03

658

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Introduction to Physical Datapath With Relative Placement

Feedback

The relative placement constraints that you create and annotate implicitly generate a
matrix structure of the instances and control the placement of the instances. You use the
resulting annotated netlist for physical optimization, during which the tool preserves the
structure and places it as a single entity or group, as shown in Figure 126.

Figure 126 Relative Placement in a Floorplan

Relative placement groups
can be floating or fixed.

Obstructions

Relative placement cells

Macro

Relative placement groups

Standard cells

Benefits of Relative Placement
Along with being technology-independent and having the ability to improve routability,
relative placement provides the following benefits:

• Reduces the placement search space in critical areas of the design, which improves
the predictability of QoR (wire length, timing, power, area) and congestion.

• Maintains relative placement during placement, optimization, clock tree synthesis, and
routing.

• Provides a method for maintaining structured placement for legacy or intellectual
property (IP) designs.

IC Compiler™ II Implementation User Guide
T-2022.03

659

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Relative Placement Flow

Feedback

• Handles flat and hierarchical designs.

• Allows sizing of relative placement cells while maintaining relative placement.

Relative Placement Flow
The relative placement flow consists of the following steps:

1. Prepare the design as described in Preparing the Design.

2. Specify placement constraints as described in Setting Up Multivoltage Designs.

3. Define the relative placement constraints and settings.

a. Create the relative placement groups by using the create_rp_group command, as
described in Creating Relative Placement Groups.

b. Add relative placement objects to the groups by using the add_to_rp_group
command.

See Adding Objects to a Group.

c. Specify options for the relative placement groups by using the
set_rp_group_options command, as described in Specifying Options for Relative
Placement Groups.

4. Perform placement and optimization as described in Performing Placement and
Optimization.

5. Analyze the relative placement results as described in Analyzing Relative Placement
Groups.

If the relative placement is not what you want, modify the relative placement group or
the constraints and settings, and rerun placement and optimization.

Creating Relative Placement Groups
A relative placement group is an association of cells, other relative placement groups, and
blockages. A group is defined by the number of rows and columns it uses.

Use the create_rp_group command to create a relative placement group. When you do
so, you must specify a name for the relative placement group by using the -name option.

You can specify the number of columns and rows for the relative placement group by using
the -columns and -rows options. If you do not do so, the tool create a relative placement
group with one row and column.

IC Compiler™ II Implementation User Guide
T-2022.03

660

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Creating Relative Placement Groups

Feedback

For example, to create a relative placement group named RP1 that has six columns and
six rows, use the following command:

icc2_shell> create_rp_group -name RP1 -columns 6 -rows 6
Figure 127 shows the relative placementpositions for datapositions of columns and rows in a relative placement group.

Figure 127 Relative Placement Column and Row Positions

0 5

0 4

0 2

1 5

1 4

1 3

3 5

3 4

3 3

4 52 5

3 2

2 3

4 2

0 0 1 0 3 0 4 02 0

5 5

5 4

5 2

5 0

2 4

5 3

0 1 1 1 3 12 1 5 1

col 0

row 0

row 2

row 4

row 5

row 3

row 1

col 1 col 2 col 4 col 5col 3

1 2 2 2

4 4

4 3

For the relative placement group in Figure 127,

• The column count begins from column 0 (the leftmost column).

• The row count begins from row 0 (the bottom row).

• The width of a column is the width of the widest cell in that column.

• The height of a row is the height of the tallest cell in that row.

• All positions in the structure are not used. For example, positions 0 3 (column 0, row 3)
and 4 1 (column 4, row 1) are not used.

By default, the tool creates the relative placement group in the current design. You can
create it in a different design by specifying its name using the -design option. If you
create a relative placement group in a design that has multiple instantiations in a top-level
design, the changes you make to the relative placement group in one instance is reflected
in all its instances.

To remove relative placement groups, use the remove_rp_groups command.

IC Compiler™ II Implementation User Guide
T-2022.03

661

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Adding Objects to a Group

Feedback

Adding Objects to a Group
After you create a relative placement group by using the create_rp_group command, you
can add the following types of objects to it by using the add_to_rp_group command:

• Leaf cells, as described in Adding Leaf Cells

• Leaf cells, as described in Adding Hard Macro Cells

• Relative placement groups, as described in Adding Relative Placement Groups

• Blockages, as described in Adding Blockages

When you add an object to a relative placement group,

• The relative placement group to which you are adding the object must exist.

• The object must be added to an empty location in the relative placement group.

• Only one object can be added in one location of relative placement group.

To remove objects from a relative placement group, use the remove_from_rp_group
command. You can remove leaf cells (-cells), relative placement groups (-rp_group),
and blockages (-blockage).

When you remove objects from a group, the space previously occupied by the removed
objects is left unoccupied.

Adding Leaf Cells
To add leaf cells, including physical only cells, to a relative placement group, use the
-cells option with the add_to_rp_group command. Specify the column and row position
within the relative placement group at which to add the cell by using the -column and -row
options.

In a relative placement group, a leaf cell can occupy multiple column positions or multiple
row positions, which is known as leaf cell straddling. To specify the number of columns
and rows the cells occupies, use the -num_columns and -num_rows options respectively.
If you do not set these options, the default is 1 for both the number of columns and rows.

For example, to add a leaf cell that occupies two columns and one row at position (0,0),
use

icc2_shell> add_to_rp_group rp1 -cells U23 \
 -column 0 -row 0 -num_columns 2 -num_rows 1
Straddling is for leaf cells only, and not for hierarchical groups or blockages.

IC Compiler™ II Implementation User Guide
T-2022.03

662

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Adding Objects to a Group

Feedback

Specifying Orientations for Leaf Cells
You can specify orientations for leaf cells when you add them to a relative placement
group. If you do not specify a leaf cell orientation, the tool automatically assigns a legal
orientation for the leaf cells. relative placementdirectingorientation optimization

To specify the orientation for leaf cells, use one of the following two methods:

• Use the -orientation option with a list of possible orientations when you add the cells
to the group with the add_to_rp_group command.

• Set the rp_orientation attribute on leaf cells by using the set_attribute command.

physopt_rp_enable_orient_opt variablevariablesphysopt_rp_enable_orient_optThe tool chooses one legal orientation from the list of orientations that you provide.

Adding Hard Macro Cells
The add_to_rp_group command supports hard macro cells. When you add macro cells to
a relative placement group, you cannot specify

• A pin name with which to align the macro cell by using the -pin option

• An orientation for the macro cells by using the -orientation option

When you add hard macro cells, use the following steps:

1. Create the relative placement groups, add the cells, including the hard macro cells, and
specify the relative placement options and settings.

2. Place the design by using the create_placement -floorplan command.

3. Fix the placement of the hard macro cells in the relative placement groups by using the
set_placement_status fixed command.

Before you can perform further placement and optimization,

• The hard macro cells in the relative placement groups must be placed and fixed

• The other cells in the relative placement groups that contain hard macro cells must
be placed

4. Perform further placement and optimization.

Adding Relative Placement Groups
Hierarchical relative placement allows relative placement groups to be embedded within
other relative placement groups. The embedded groups then are handled similarly to leaf
cells.

IC Compiler™ II Implementation User Guide
T-2022.03

663

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Adding Objects to a Group

Feedback

You can use hierarchical relative placement to simplify the expression of relative
placement constraints. With hierarchical relative placement, you do not need to provide
relative placement information multiple times for a recurring pattern.

Using hierarchical relative placement provides these benefits:

• Allows you to organize your relative placement in a manner that is easier to maintain
and understand. For example, you can create the relative placement group to parallel
your Verilog or VHDL organization.

• Allows reuse of a repeating placement pattern, such as an adder.

• Can reduce the number of lines of relative placement information you need to write.

• Allows integrating blocks.

• Provides flexibility for the configuration you want.

Creating Hierarchical Relative Placement Groups
To create a hierarchical relative placement group by adding a group to another group, use
the -rp_group option with the add_to_rp_group command. Specify the column and row
position within the relative placement group by using the -column and -row options.

The group you specify with the -rp_group option must be in the same design as the
hierarchical group in which you are including it.

When you include a relative placement group in a hierarchical group, it is as if the included
group is directly embedded within its parent group. An included group can be used only in
a group of the same design and only one time. However, a group that contains an included
group can be further included in another group in the same design or can be instantiated
in a group of a different design.

The script in Example 40 creates a hierarchical group (rp4) that contains three included
groups (rp1, rp2, and rp3). Groups rp1, rp2, rp3, and rp4 are all in the design top. The
contents of groups rp1, rp2, and rp3 are treated as leaf cells when they are included in
group rp4. You can further include group rp4 in another group in the design top, or you can
instantiate group rp4 in a group of a different design.

The resulting hierarchical relative placement group is shown in Figure 128.

Example 40 Including Groups in a Hierarchical Group
create_rp_group -name rp1 -columns 2 -rows 1
add_to_rp_group rp1 -cells U1 -column 0 -row 0
add_to_rp_group rp1 -cells U4 -column 1 -row 0

create_rp_group -name rp2 -columns 2 -rows 1
add_to_rp_group rp2 -cells U2 -column 0 -row 0
add_to_rp_group rp2 -cells U5 -column 1 -row 0

IC Compiler™ II Implementation User Guide
T-2022.03

664

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Adding Objects to a Group

Feedback

create_rp_group -name rp3 -columns 2 -rows 1
add_to_rp_group rp3 -cells U3 -column 0 -row 0
add_to_rp_group rp3 -cells U6 -column 1 -row 0

create_rp_group -name rp4 -columns 1 -rows 3
add_to_rp_group rp4 -rp_group rp1 \
 -column 0 -row 0
add_to_rp_group rp4 -rp_group rp2 \
 -column 0 -row 1
add_to_rp_group rp4 -rp_group rp3 \
 -column 0 -row 2

Figure 128 Including Groups in a Hierarchical Group

rp3

rp2

rp1

U3

U2

U4

U5

U6

U1

rp4

rp1

U4U1

U3 U6

rp2

U2 U5

rp3

col 0 col 1

col 0 col 1

col 0 col 1

row 0

row 0

row 0

row 2

row 0

row 1

col 0

Using Hierarchical Relative Placement for Straddling
A cell can occupy multiple column positions or multiple row positions, which is known as
straddling. For more information about leaf cell straddling, see Adding Leaf Cells.

Figure 129 shows a relative placement group in which cells straddle columns (instance
U2) and rows (instance U7).

Figure 129 Hierarchical Relative Placement Group With Straddling

U3

U4

U6

U1

U2

U7

IC Compiler™ II Implementation User Guide
T-2022.03

665

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Adding Objects to a Group

Feedback

Figure 130 shows the process of using hierarchical relative placement to build this
structure. First, define relative placement groups that contain the leaf cells: rp1 contains
U1 and U4, rp2 contains U2, and rp3 contains U3 and U6. Then define a group (rp4) that
contains these groups. Finally, define a group (rp5) that contains the hierarchical group rp4
and the leaf cell U7. The resulting group includes both the column and the row straddle.
Example 41 shows the commands used in this process.

Figure 130 Straddling With Hierarchical Relative Placement

rp3

rp2

rp1

U3

U2

U4

U7U6

U1 rp4

U4U1

U2

U3 U6

rp1

rp2

rp3

rp5

U4U1

U2

U3 U6

col 0 col 1

row 0

col 0 col 1

col 0 col 1

row 0

row 0

row 2

row 1

row 0

col 0
row 2

row 1

row 0

col 0 col 1

U7

col 1

row 2

row 1

row 0

rp4

Example 41 Straddling With Hierarchical Relative Placement
create_rp_group -name rp1 -columns 2 -rows 1
add_to_rp_group rp1 -cells U1 -column 0 -row 0
add_to_rp_group rp1 -cells U4 -column 1 -row 0

create_rp_group -name rp2 -columns 1 -rows 1
add_to_rp_group rp2 -cells U2 -column 0 -row 0

create_rp_group -name rp3 -columns 2 -rows 1
add_to_rp_group rp3 -cells U3 -column 0 -row 0
add_to_rp_group rp3 -cells U6 -column 1 -row 0

create_rp_group -name rp4 -columns 1 -rows 3
add_to_rp_group rp4 -rp_group rp1 -column 0 -row 0
add_to_rp_group rp4 -rp_group rp2 -column 0 -row 1
add_to_rp_group rp4 -rp_group rp3 -column 0 -row 2

create_rp_group -name rp5 -columns 2 -rows 1

IC Compiler™ II Implementation User Guide
T-2022.03

666

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Adding Objects to a Group

Feedback

add_to_rp_group rp5 -rp_group rp4 -column 0 -row 0
add_to_rp_group rp5 -cells U7 -column 1 -row 0

Using Hierarchical Relative Placement for Compression
By default, construction for relative placement aligns cells from their bottom-left corner.
Compression removes empty space in rows to create a more compact structure. The
columns are no longer aligned, and utilization is higher in the area of the compressed
cells.

Figure 131 shows the same cells aligned with and without compression. To create the
compressed structure shown in this example, first create three relative placement groups,
rp1, rp2, and rp3, that contains a row of leaf cells. Then create a group, rp4, that contains
all these groups. Example 42 shows the commands used to build the compressed
structure.

Figure 131 Bottom-Left Alignment Construction and Compression

rpA rpB

rpC

Without compression With compression

U3 U6

U2 U5

U1 U4 U1

U2

U3 U6

U5

U4rp3

rp2

rp1

rp4

Example 42 Compression With Hierarchical Relative Placement
create_rp_group -name rp1 -columns 2 -rows 1
add_to_rp_group rp1 -cells U1 -column 0 -row 0
add_to_rp_group rp1 -cells U4 -column 1 -row 0

create_rp_group -name rp2 -columns 2 -rows 1
add_to_rp_group rp2 -cells U2 -column 0 -row 0
add_to_rp_group rp2 -cells U5 -column 1 -row 0

create_rp_group -name rp3 -columns 2 -rows 1
add_to_rp_group rp3 -cells U3 -column 0 -row 0
add_to_rp_group rp3 -cells U6 -column 1 -row 0

IC Compiler™ II Implementation User Guide
T-2022.03

667

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Adding Objects to a Group

Feedback

create_rp_group -name rp4 -columns 1 -rows 3
add_to_rp_group rp4 -rp_group rp1 -column 0 -row 0
add_to_rp_group rp4 -rp_group rp2 -column 0 -row 1
add_to_rp_group rp4 -rp_group rp3 -column 0 -row 2

Alternatively, you can apply compression in the horizontal direction by using the
-tiling_type option with the set_rp_group_options command, as described in
Controlling the Tiling Within Relative Placement Groups.

Adding Blockages
To add a blockage within relative placement groups, use the -blockage option with the
add_to_rp_group command.

When you add a blockage using this command, you can specify

• The column and row position within the relative placement group by using the -column
and -row options.

If you do not specify a position, the tool adds the blockage to position (0,0).

• The size of the blockage by using the -height and -width options.

If you do not specify the -height or -width option, the tool determines the size based
on the tiling type of the relative placement group as follows:

◦ For a tiling type setting of bit_slice, the height default to the height of site row and
the width to width of the column.

◦ For a tiling type setting of compression, the height default to the height of site row
and the width to the width of one site.

• That the blockages can overlap with other relative placement blockages or other
objects that are not relative placement cells by using the -allow_overlap option.

The following example adds a blockage named gap1 to the rp1 relative placement group
at position (0,2) that is one site row high and five site rows wide:

icc2_shell> add_to_rp_group rp1-blockage gap1 \
 -column 0 -row 2 -width 5 -height 1

IC Compiler™ II Implementation User Guide
T-2022.03

668

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Adding Cells Within a Predefined Relative Placement Area
To add cells anywhere within a predefined area of a relative placement group, use the
-free_placement option with the add_to_rp_group command. With this option, you must
specify

• The origin of the placement area by using the -column and -row options

• The height and width of the placement area by using the -height and -width options

• The number of columns and rows the cells occupy by using the -num_columns and
-num_rows options

For example, to add a leaf cell that occupies two columns and two rows to a placement
area with a height of 4 and a width of 5 and is at position (0,0), use

icc2_shell> add_to_rp_group rp2 -cells U41 -free_placement \
 -column 0 -row 0 -height 4 -width 5 -num_columns 2 -num_rows 2

Specifying Options for Relative Placement Groups
To specify properties of relative placement groups, use the set_rp_group_options
command as described in Table 50.

Table 50 Specifying Relative Placement Group Properties

To do this Use this option

Specify the anchor location.
See Anchoring Relative Placement Groups.

-x_offset
-y_offset

Specify a corner for the anchor point set by the -x_offset and
-y_offset options.
See Anchoring Relative Placement Groups.

-anchor_corner

Specify the type of alignment used by the cells in the group.
See Aligning Leaf Cells Within a Column.

-alignment

Specify the group alignment pin name, when using pin alignment.
See Aligning by Pin Location.

-pin_name

Specify a tiling type.
See Controlling the Tiling Within Relative Placement Groups.

-tiling_type

Specify the orientation.
See Specifying the Orientation of Relative Placement Groups.

-group_orientation

Specify the utilization (default is 100 percent). -utilization

IC Compiler™ II Implementation User Guide
T-2022.03

669

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Table 50 Specifying Relative Placement Group Properties (Continued)

To do this Use this option

Specify how to treat fixed cells in the floorplan during legalization.
See Handling Fixed Cells During Relative Placement.

-place_around_fixed_cells

Control the type of optimization that is allowed for relative
placement cells
See Controlling the Optimization of Relative Placement Cells.

-optimization_restriction

Control the movement of the group during legalization.
See Controlling Movement When Legalizing Relative Placement
Groups.

-move_effort

To remove relative placement group option settings, use the remove_rp_group_options
command. You must specify the group name and at least one option; otherwise, this
command has no effect.

Anchoring Relative Placement Groups
By default, the IC Compiler II tool can place a relative placement group anywhere within
the core area. You can control the placement of a top-level relative placement group by
anchoring it.

To anchor a relative placement group, use the set_rp_group_options command with the
-x_offset and -y_offset options. The offset values are float values, in microns, relative
to the lower-left corner in the core area.

If you specify both the x- and y-coordinates, the group is anchored at that location. If
you specify only one coordinate, the IC Compiler II tool determines the placement by
maintaining the specified coordinate and sliding the group along the line passing through
the unspecified coordinate.

To specify a corner of relative placement group to anchor it by, use the -anchor_corner
option. The tool places the relative placement group such that the corner specified by this
option is placed on the anchor point specified by the -x_offset and -y_offset options.

The settings for the -anchor_corner option are as follows, and are shown in Figure 132:

• bottom_left
The anchor point of the relative placement group is set to its bottom-left corner. The
default is the bottom-left corner.

• bottom_right

IC Compiler™ II Implementation User Guide
T-2022.03

670

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

The anchor point of the relative placement group is set to its bottom-right corner.

• top_left
The anchor point of the relative placement group is set to its top-left corner.

• top_right
The anchor point of the relative placement group is set to its top-right corner.

• rp_location
The anchor point of the relative placement group is the element in the relative
placement group at the position specified by the -anchor_row and -anchor_column
options.

When you use the -anchor_corner rp_location setting, the position specified with
the -anchor_row and -anchor_column options must contain a cell, keepout, or a
relative placement hierarchy.

Figure 132 Bottom-Left, Bottom-Right, Top-Left and Top-Right Anchor Corners

Bottom-left anchor corner Bottom-right anchor corner

Top-left anchor corner Top-right anchor corner

For example, to anchor a relative placement by its bottom let corner at location (100, 100),
as shown Figure 133, use the following command:

icc2_shell> set_rp_group_options misc1 -anchor_corner bottom_left \
 -x_offset 100 -y_offset 100

IC Compiler™ II Implementation User Guide
T-2022.03

671

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Figure 133 Anchored Relative Placement Group

I33

I32

I34

misc1

I30

I31

I35

I43

I42

I44

I40

I41

I45

I53

I52

I54

I50

I51

I55

(100,100)

...

The following example specifies that relative placement cell at column 1, row 2 of the RP1
relative placement group should be anchored at location (100, 100).

icc2_shell> set_rp_group_options RP1 \
 -anchor_corner rp_location -anchor_column 1 -anchor_row 2 \
 -x_offset 100 -y_offset 100

Figure 134 Using an Object Within the Relative Placement Group for Anchoring

The relative placement group is anchored by placing the cell at column 1 row 2 at location (100, 100)

0

0

1

1

2 3

3

4

2

4

IC Compiler™ II Implementation User Guide
T-2022.03

672

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Aligning Leaf Cells Within a Column
You can align the leaf cells in a column of a relative placement group by using the
following alignment methods:

• Left alignment (default)

• Right alignment

• Pin alignment

Controlling the cell alignment can improve the timing and routability of your design.

Aligning by the Left Edges
By default, the IC Compiler II tool aligns the leaf cells by aligning the left edges. To
explicitly specify this alignment method, use the -alignment left option of the
set_rp_group_options command.

Figure 135 shows cells that are left aligned.

Figure 135 Bottom-Left-Aligned Relative Placement Group

U4

U3

U2

U1

row 3

row 2

row 1

row 0

col 0

Aligning by the Right Edges
To align a group by aligning the right edges, use the -alignment right option of the
set_rp_group_options command.

Note:
For hierarchical relative placement groups, the bottom-right alignment does not
propagate through the hierarchy.

Figure 135 shows cells that are right aligned.

IC Compiler™ II Implementation User Guide
T-2022.03

673

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Figure 136 Bottom-Right-Aligned Relative Placement Group

U4

U3

U2

U1

row 3

row 2

row 1

row 0

col 0

Aligning by Pin Location
To align a group by pin location, use the -alignment pin and -pin_name options with the
set_rp_group_options command.

The tool looks for the specified alignment pin in each cell in the column. If the alignment
pin exists in a cell, the cell is aligned by using the pin location. If the specified alignment
pin does not exist in a cell, the cell is aligned by the left edge, and the tool issues an
information message. If the specified alignment pin does not exist in any cell in the
column, the IC Compiler II tool issues a warning message.

The script in Example 43 creates a relative placement group rp1, adds cells to it, and
specifies that the cells are aligned by pin A.

Example 43 Definition for Relative Placement Group Aligned by Pins
create_rp_group -name rp1 -columns 1 -rows 4
set_rp_group_options -alignment pin -pin_name A
add_to_rp_group rp1 -cells U1 -column 0 -row 0
add_to_rp_group rp1 -cells U2 -column 0 -row 1
add_to_rp_group rp1 -cells U3 -column 0 -row 2
add_to_rp_group rp1 -cells U4 -column 0 -row 3

When aligning by pins, the tool tries different orientations for the cells and selects the
orientation for each cell that gives the minimum column width. For example, changing the
orientation of cell U2, as shown in Figure 137, reduces the width of column 0. However, if
you specify an orientation when adding a cell to a relative placement group by using the
-cells and -orientation options with the add_to_rp_group command, the tool honors
the orientation you specify.

IC Compiler™ II Implementation User Guide
T-2022.03

674

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Figure 137 Minimizing the Column Width of a Relative Placement Group Aligned by Pins

U4

U3

U2

U1

row 3

row 2

row 1

row 0

column 0

Pin A U4

U3

U2

U1

row 3

row 2

row 1

row 0

column 0

When you specify an alignment pin for a group, the pin applies to all cells in the group.
You can override the group alignment pin for specific cells in the group by specifying the
-pin_name option when you use the add_to_rp_group command to add the cells to the
group.

The script in Example 44 defines relative placement group rp2, and specified pin A as the
group alignment pin. However, instances I5 and I6 use pin B as their alignment pin, rather
than the group alignment pin. The resulting structure is shown in Figure 138.

Example 44 Definition for Aligning a Group and Leaf Cells by Pins
create_rp_group -name rp2 -columns 1 -rows 6
set_rp_group_options rp2 -alignment pin -pin_name A
add_to_rp_group rp2 -cells I3 -column 0 -row 0
add_to_rp_group rp2 -cells I4 -column 0 -row 1
add_to_rp_group rp2 -cells I5 -column 0 -row 2 -pin_name B
add_to_rp_group rp2 -cells I6 -column 0 -row 3 -pin_name B
add_to_rp_group rp2 -cells I7 -column 0 -row 4
add_to_rp_group rp2 -cells I8 -column 0 -row 5

IC Compiler™ II Implementation User Guide
T-2022.03

675

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Figure 138 Relative Placement Group Aligned by Different Pins

I5

I4

I3

row 3

row 2

row 1

row 0

col 0

I6

I7

I8

row 4

row 5

Pin A

Pin B

Overriding the Alignment When Adding Objects
When you add an object to a relative placement group by using the add_to_rp_group
command, you can override its alignment and specify a different alignment for the
object you are adding by using the -override_alignment option. However, if the
relative placement group is pin aligned, you cannot override the alignment with the
-override_alignment option.

The following example creates a relative placement group named rp1 that is right aligned.
It then adds a cell named U0, which overrides the alignment of the group and cells named
U1, U2, and U3, which honor the alignment of the relative placement group:

icc2_shell> create_rp_group rp1 -name rp1 -columns 1 -rows 4
icc2_shell> set_rp_group_options rp1 -alignment right
icc2_shell> add_to_rp_group rp1 -cells U0 -column 0 -row 0 \
 -override_alignment left
icc2_shell> add_to_rp_group rp1 -cells U1 -column 0 -row 1
icc2_shell> add_to_rp_group rp1 -cells U2 -column 0 -row 2
icc2_shell> add_to_rp_group rp1 -cells U3 -column 0 -row 3
The following figure shows the relative placement group after placement.

IC Compiler™ II Implementation User Guide
T-2022.03

676

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Figure 139 Right-Aligned Relative Placement Group With One Cell That is Left Aligned

U3

U2

U1

U0

row 3

row 2

row 1

row 0

col 0

Controlling the Tiling Within Relative Placement Groups
To control the tiling of objects within a relative placement group, use the
set_rp_group_options -tiling_type command with the settings shown in the
following table.

Table 51 Controlling Placement With the set_rp_group_options -tiling_type Command

To do this Use this setting

Tile objects in a bit-slice pattern and preserve both the row
and column alignment.
• The height of a row is determined by the tallest object in

the row
• The width of a column is determined by the widest object in

the column

bit_slice (Default)

Horizontally compress the objects in each row and maintain
row alignment.

horizontal_compression

Vertically compress the objects in each column and preserve
the column alignment

vertical_compression

IC Compiler™ II Implementation User Guide
T-2022.03

677

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Figure 140 Bit-Slice Placement Versus Horizontal or Vertical Compression

4

3

2
1
0

0 1 3 42

Bit-slice placement

4

3

2
1
0

0 1 3 42

4

3

2
1
0

0 1 3 42

Vertical compressionHorizontal compression

The setting of the -tiling_type option is not propagated from a parent group to child
groups.

Applying Compression to Groups With Straddling Leaf Cells
You can apply compression to a relative placement group with cells that straddle multiple
rows or columns, as shown in the following example:

icc2_shell> add_to_rp_group rp -cells U5 \
 -column 0 -row 0 -num_columns 1 -num_rows 2
icc2_shell> set_rp_group_options rp -tiling_type horizontal_compression
Figure 141 shows the placement of the relative placement group in the previous example.

Figure 141 Compression of a Relative Placement Group With a Cell That Straddles Multiple
Rows

4

3

2
1
0

0 1 3 42

Cell U5 straddles two rows

For information about adding cells that straddle multiple rows or columns to a relative
placement group, see Adding Leaf Cells.

IC Compiler™ II Implementation User Guide
T-2022.03

678

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Specifying the Orientation of Relative Placement Groups
The IC Compiler II tool supports the following orientations for relative placement groups:

• R0

The column position of the relative placement group is from left to right, and the row
position is from bottom to top.

• R180

The column position of the relative placement group is from right to left, and the row
position is from top to bottom.

• MY

The column position of the relative placement group is from right to left, and the row
position is from bottom to top; that is, the orientation of the group is flipped with respect
to the R0 orientation.

• MX

The column position of the relative placement group is from left to right, and the row
position is from top to bottom; that is, the group is flipped with respect to the R180
orientation.

Figure 142 shows how the column and row positions in a relative placement group are
placed for the four orientations.

IC Compiler™ II Implementation User Guide
T-2022.03

679

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Figure 142 Orientation of Relative Placement Groups

Col 0 Col 1 Col 2 Col 2 Col 1 Col 0

R0 MY

U3

U1

U23 U24

U21 U22

U1

U3

U4

U5

U6

U7

U8

U9

U7

U8

U9

U4

U5

U6

U24

U22

U23

U21

Row 2Row 2

Row 1Row 1

Row 0Row 0

Col 0Col 1Col 2 Col 2Col 1Col 0

R180 MX

U3

U1

U23U24

U21U22

U1

U3

U4

U5

U6

U7

U8

U9

U7

U9

U4

U6

U24

U22

U23

U21
U5 U8

Row 0Row 0

Row 1 Row 1

Row 2 Row 2

The orientation of relative placement groups is automatically set by the tool to minimize
wire length. You can also choose to set the orientation of relative placement groups by
using the set_rp_group_options command.

For example, the following command sets the relative placement group orientation to MY.

icc2_shell> set_rp_group_options [get_rp_groups design::rp] \
 -group_orientation MY
For designs with hierarchical relative placement groups, the orientation settings are
propagated down to the lowest level in hierarchy.

IC Compiler™ II Implementation User Guide
T-2022.03

680

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Note:
When the orientation of a relative placement group is changed, the constraints
on the relative placement group, such as alignment and utilization, are
preserved according to the specifications that you provide.

Specifying a Keepout Margin
To prevent other relative placement groups from being placed close to a specific relative
placement group, you can specify a keepout margin that applies only to other relative
placement groups. To do so, use the -rp_only_keepout_margin option with the
set_rp_group_options command. You can specify a different margin for the left, bottom,
right, and top sides of the group.

The following command applies a margin of 15 on the left and right and a margin of 10 on
the top and bottom of the relative placement group named rp1:

icc2_shell> set_rp_group_options rp1 \
 -rp_only_keepout_margin {15 10 15 10}

Performing Row Balancing
Relative placement supports variable-row designs, where it performs row balancing by
changing the height of relative placement cells from tall to short or the other way around.
The objective of this row balancing is to achieve compact placement.

To allow relative placement tiling to perform row balancing, set the
-place.rp.enable_balancing_for_hybrid_row_design application option to true. By
default, this option is not enabled and the legalization is performed based on the provided
cells.

Handling Fixed Cells During Relative Placement
To specify how to handle fixed cells in the floorplan during legalization of relative
placement groups, use the -place_around_fixed_cells option with the
set_rp_group_options command. Table 52 shows the different settings you can specify
for the -place_around_fixed_cells option.

Table 52 Settings for the -place_around_fixed_cells Option

To do this Use this setting

Legalize relative placement groups around fixed standard cells
and avoid fixed physical-only cells.

standard

IC Compiler™ II Implementation User Guide
T-2022.03

681

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

Table 52 Settings for the -place_around_fixed_cells Option (Continued)

To do this Use this setting

Legalize relative placement groups around fixed physical-only
cells and avoid fixed standard cells.

physical_only

Legalize relative placement groups around both fixed standard
cells and fixed physical-only cells. This is the default.

all

Avoid both fixed standard cells and fixed physical-only cells. none

For hierarchical relative placement groups, you can use the set_rp_group_options
-place_around_fixed_cells command and specify different settings for the top-level
and the lower-level relative placement groups. If you do not specify a setting for the lower-
level placement groups, the value of the top-level relative placement group is used for the
lower-level relative placement groups.

Assume a hierarchical relative placement group named top-rp contains three lower-level
relative placement groups named rp1, rp2, and rp3. The following example specifies a less
restrictive setting for the top level and a more restrictive setting for the lower-level group
named rp1. It also specifies that the setting for the rp1 lower-level group overrides the top-
level setting when legalizing the cells in the rp1 group.

icc2_shell> set_rp_group_options top-rp \
 -place_around_fixed_cells physical_only
icc2_shell> set_rp_group_options rp1 \
 -place_around_fixed_cells none
icc2_shell> set_app_options -name set_rp_group_options -value true

Allowing Nonrelative Placement Cells
By default, nonrelative placement cells are

• Not allowed within relative placement groups during coarse placement

• Allowed within relative placement groups during optimization and legalization

To reduce congestion and improve QoR, you can allow the tool to place nonrelative
placement cells within the unused areas of a specific relative placement group by using
the -allow_non_rp_cells option with the set_rp_group_options command.

You can add blockages to relative placement group by using the -blockage option
with the add_to_rp_group command. By default, no cells are allowed within these
blockages during placement, optimization, and legalization. To allow nonrelative
placement cells within relative placement blockages and unused areas of a specific

IC Compiler™ II Implementation User Guide
T-2022.03

682

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Specifying Options for Relative Placement Groups

Feedback

relative placement group, use the -allow_non_rp_cells_on_blockages option with the
set_rp_group_options command.

The following example allows nonrelative placement cells within the unused areas of the
RP1 relative placement group:

icc2_shell> set_rp_group_options rp1 \
-allow_non_rp_cells
The following example allows nonrelative placement cells within the blockages and
unused areas of the RP2 relative placement group:

icc2_shell> set_rp_group_options rp2 \
-allow_non_rp_cells_on_blockages

Controlling the Optimization of Relative Placement Cells
When a relative placement cell is modified or moved, the relative placement structure can
be disturbed. When a relative placement cell is removed during optimization, the relative
placement information of the instance is also removed, disrupting the relative placement
structure.

To preserve the relative placement structures during various postplacement
optimization processes, use the -optimization_restriction option with the
set_rp_group_options command and specify the appropriate setting as shown in
Table 53.

Table 53 Settings for the -optimization_restriction Option

To do this Use this setting

Allow unrestricted optimization of the relative placement cells all_opt

Allow only sizing of the relative placement cells size_only

Allow only in-place sizing of the relative placement cells size_in_place

Prevent any optimization of the relative placement cells no_opt

For a hierarchical relative placement group, the -optimization_restriction option
setting applied to the top level is propagated to the lower-level groups and any settings
applied to the lower-level groups are ignored.

IC Compiler™ II Implementation User Guide
T-2022.03

683

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Changing the Structures of Relative Placement Groups

Feedback

Controlling Movement When Legalizing Relative Placement
Groups
You can control the movement of a relative placement group during legalization by using
the -move_effort option of the set_rp_group_options command. During coarse
placement, the tool estimates an initial location for every top-level relative placement
group. The -move_effort option controls the extent to which a relative placement group
can be moved from its initial location to preserve the relative placement without violating
relative placement constraints. When you change the option setting from a higher effort
level to a lower effort level, you reduce the size of the region searched for placement of a
relative placement group.

Changing the Structures of Relative Placement Groups
To modify the structures of existing relative placement groups, use the modify_rp_groups
command as follows:

• To add a row or column to a relative placement group, use the -add_rows or
-add_columns option respectively.

• To remove a row or column, use the -remove_rows or -remove_columns option
respectively.

• To flip a row or column, use the -flip_row or -flip_column option respectively.

• To swap two rows or columns, use the -swap_rows or -swap_columns option
respectively.

For example, to swap the first and third columns of the my_rp_group relative placement
group, as shown in Figure 143, enter

icc2_shell> modify_rp_groups [get_rp_groups my_rp_group] \
 -swap_columns {0 2}

IC Compiler™ II Implementation User Guide
T-2022.03

684

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Generating Relative Placement Groups for Clock Sinks

Feedback

Figure 143 Swapping Columns of a Relative Placement Group

Col 0 Col 1 Col 2 Col 0 Col 1 Col 2

Row 2Row 2

Row 1Row 1

Row 0Row 0 C00

C01

C02

C21

C20

C22

C20

C21

C22

C01

C00

C02

To flip the second column of the my_rp_group relative placement group, as shown in
Figure 144, enter

icc2_shell> modify_rp_groups [get_rp_groups my_rp_group] \
 -flip_column 1

Figure 144 Flipping a Column of a Relative Placement Group

Col 0 Col 1 Col 2 Col 0 Col 1 Col 2

Row 2Row 2

Row 1Row 1

Row 0Row 0 C10

C11

C12

C12

C11

C10

Generating Relative Placement Groups for Clock Sinks
You can generate a relative placement group for clock sinks and their drivers in a placed
design by using the create_clock_rp_groups command. When you run placement
and optimization, the tool places the clocks sinks and their drivers based on their relative
placement constraints it generated. This can improve routability and reduce dynamic
power.

IC Compiler™ II Implementation User Guide
T-2022.03

685

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Performing Placement and Legalization of Relative Placement Groups

Feedback

You can control the sinks being considered for relative placement groups as follows:

• Specify the minimum and maximum of sinks that should be driven by a single driver to
be considered by using the -min_sinks and -max_sinks options.

The default minimum is 2 sinks and the default maximum is 128 sinks.

• Exclude timing critical sinks by using the -timing_driven option.

By default, the tool excludes all sinks with a negative slack.

• Specify the cells to consider by using the -cells option.

B default, the tool considers all the sinks.

You can control the size and shape of the relative placement group by using one of the
following methods:

• Specify the maximum allowed Manhattan distance between the sinks in one relative
placement group by using the -distance option.

If the Manhattan distance between sinks is more than the specified distance, they are
put into separate relative placement groups. The default distance is 100 microns.

• Specify a maximum number of rows by using the -max_rp_rows option.

The default is 32.

• Allow the tool to decide the number of rows and columns based on the distribution of
the cells by using the -auto_shape option.

Before you run the create_clock_rp_groups command, the block must be placed. After
you create the clock relative placement groups, reset the placement of the block by using
the reset_placement command, and rerun placement and optimization by using the
place_opt command.

Performing Placement and Legalization of Relative Placement
Groups

The following topics provide information related to the placement and legalization of
relative placement groups:

• Relative Placement in a Design Containing Obstructions

• Legalizing Relative Placement Groups in a Placed Design

• Creating New Relative Placement Groups in a Placed Design

IC Compiler™ II Implementation User Guide
T-2022.03

686

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Performing Placement and Legalization of Relative Placement Groups

Feedback

Relative Placement in a Design Containing Obstructions
During placement, relative placement groups avoid placement blockages (obstructions)
that are defined in the DEF file or created by the create_placement_blockage
command. A relative placement group can be broken into pieces that straddle
obstructions, yet maintain the relative placement structure.

If the height of the obstruction is below a certain threshold, the relative placement cells are
shifted vertically; otherwise, the relative placement column is shifted horizontally.

Figure 145 shows the placement of relative placement cells in a design
containing obstructions that are either defined in the DEF file or created by
create_placement_blockage. The obstruction in columns one and two is below the
threshold, so the tool shifts the cells vertically. The obstruction in column four is greater
than the threshold, so the tool shifts all the cells of the column horizontally.

Figure 145 Relative Placement in a Design Containing Obstructions

0 4

0 0

4 4

4 3

4 1

4 2

0 1

4 0

col 0

row 0

row 2

row 4

row 3

row 1

col 1 col 2 col 4col 3

0 3

0 2

1 4

1 3

1 0

1 1

1 2

2 4

2 3

2 0

2 2

2 1

3 4

3 3

3 1

3 2

3 0

Obstruction

O
b

s
tr

u
c

ti
o

n

Legalizing Relative Placement Groups in a Placed Design
You can improve the placement of relative placement groups in a placed design by
legalizing only the relative placement groups. To legalize the placement of only the relative
placement groups, but not nonrelative placement cells, use the legalize_rp_groups
command. You can also specify a list of relative placement groups to be legalized.

To perform a fast legalization of the relative placement groups, use the -prototype
option. When you use this option, the tool does not ensure that all legalization constraints

IC Compiler™ II Implementation User Guide
T-2022.03

687

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Performing Placement and Legalization of Relative Placement Groups

Feedback

are met. Therefore, use it during the prototyping stages of the design flow when you are
developing relative placement groups.

To specify that relative placement groups can overlap with each other, use the
-legalize_over_rp option. For example, the following command legalizes the RP3
relative placement group over the RP1 and RP2 relative placement groups.

icc2_shell> legalize_rp_groups -legalize_over_rp RP3
Figure 146 shows the placement before and after running the command.

Figure 146 Legalizing the RP3 Relative Placement Group Over Other Groups

RP1

RP2

RP1

RP2

RP3

After you legalize one or more relative placement groups by using the
legalize_rp_groups command, there might be overlaps with cells in other
relative placement groups or cells that are not in relative placement groups.
Use the check_legality command to identify any cell overlaps and use the
legalize_placement command to resolve any remaining cell overlaps.

Creating New Relative Placement Groups in a Placed Design
You can create a new relative placement group of cells in a placed design and relative placementincremental relative placementplace the
relative placement groups incrementally by using the place_opt -from final_place
command. If you select cells that are placed far apart in the initial placement for the same
relative placement group, performing incremental relative placement might degrade the
QoR.

IC Compiler™ II Implementation User Guide
T-2022.03

688

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Analyzing Relative Placement Groups

Feedback

The following example shows how to add a new relative placement group to a design that
is already placed and optimized, and performs incremental placement and optimization:

icc2_shell> create_rp_group -name new_rp -columns 1 -rows 2
icc2_shell> add_to_rp_group new_rp -cells U1 -column 0 -row 0
icc2_shell> add_to_rp_group new_rp -cells U2 -column 0 -row 1
...
icc2_shell> place_opt -from final_place
For a placed design, if you create a new relative placement group and specify an anchor
location by using the -x_offset and -y_offset options with the set_rp_group_options
command, you can use the legalize_rp_groups command to legalizes the
newly created group anchored by the specified x- and y-coordinates. Using the
legalize_rp_groups command for incremental relative placement groups reduces the
turnaround time.

Analyzing Relative Placement Groups
The following sections explain methods for analyzing your relative placement groups:

• Checking Relative Placement Groups Before Placement

• Analyzing the Placeability of a Relative Placement Group

• Reporting Relative Placement Constraint Violations

• Querying Relative Placement Groups

• Analyzing Relative Placement in the GUI

Checking Relative Placement Groups Before Placement
Before you run placement and optimization, you can check the relative placement
constraints for issues that might lead to critical or noncritical failures after placement by
using the check_rp_constraints command.

The following example checks for possible relative placement constraint violation in the
group named rp_volt1:

icc2_shell> check_rp_constraints rp_volt1

 **
*
Report : Relative Placement Summary
Total number of specified top level relative placement groups: 1
Total number of relative placement groups which may not honor its
 constraints: 1

RP Group: rp_volt1

IC Compiler™ II Implementation User Guide
T-2022.03

689

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Analyzing Relative Placement Groups

Feedback

Warning: The height of relative placement group 'rp_volt1' is more than
 the height of voltage area or exclusive move bound. (RPGP-018)

Analyzing the Placeability of a Relative Placement Group
Before you run placement and optimization, you can check if a specific relative placement
group can be placed by using the check_rp_constraints -analyze_placement
command.

• To limit the analysis to a specific region or a specific number of random sites of the
core area, use the -region or -trials option, respectively.

• To ignore physical design constraints, advanced design rules, or relative
placement constraints during placement analysis, use the -no_pdc, -no_adv, or
-no_rp_constraints option, respectively.

• To report only the relative placement groups that do not meet a specific threshold, use
the -threshold option. The tool reports a group only if the percentage of sites the
group can be placed, relative to the total number of sites analyzed, is less than the
specified threshold.

Reporting Relative Placement Constraint Violations
After you run placement and optimization, use the report_rp_groups command to
identify placement issues and relative placement violations. You must either specify which
relative placement groups to analyze or specify the -all option to analyze all relative
placement groups.

By default, the command reports the following types of relative placement groups:

• Placed groups that do not have constraint violations

• Placed groups that have constraint violations that are not critical

• Failed groups that have constraint violations that are critical

• Groups that have not yet been placed

You can modify the default behavior by using the options described in Table 54.

Table 54 The report_rp_groups Command Options

To do this Use this option

Report information only about the groups that are not placed due
to critical relative placement violations

-critical

IC Compiler™ II Implementation User Guide
T-2022.03

690

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Analyzing Relative Placement Groups

Feedback

Table 54 The report_rp_groups Command Options (Continued)

To do this Use this option

Report information only about the groups that are placed but do
not meet their relative placement constraints

-non_critical

Report information only about the groups that have not yet been
placed

-unplaced

Report detailed information -verbose

You can also run this command before you run placement and optimization and identify
the unplaced groups in the design.

Querying Relative Placement Groups
To query relative placement groups that contain specific objects or attribute values, use
the get_rp_groups command.

For example, the following command returns a collection consisting of all the relative
placement groups:

icc2_shell> get_rp_groups
{RP_TA RP_TCO RP_HO_1 RP_HO_2 RP_HO_3 RP_HO_4 RP_THO}

The following command returns only the top-level relative placement groups:

icc2_shell> get_rp_groups -top
{RP_TA RP_TCO RP_THO}

The following command returns the relative placement group that contains the leaf cell
named U129:

icc2_shell> get_rp_groups -of_objects U129
{RP_HO_4}

Analyzing Relative Placement in the GUI
The IC Compiler II GUI provides tools to help you visualize and analyze the relative
placement groups in your design:

• Relative Placement (RP) Groups Visual Mode

• Relative Placement (RP) Net Connection Visual Mode

IC Compiler™ II Implementation User Guide
T-2022.03

691

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Saving Relative Placement Information

Feedback

For more information about analyzing relative placement groups in the GUI, see the Using
Map and Visual Modes topic in the IC Compiler II Graphical User Interface User Guide.

Saving Relative Placement Information
The relative placement information is automatically saved in the design library database
when you save the design by using the save_lib command.

You can also save the relative placement information to a file that contains Tcl commands
that re-creates the relative placement groups, their objects, and their settings. To do so,
use the write_rp_groups -file_name command. You must either specify which relative
placement groups to write commands for or specify the -all option to write commands for
all relative placement groups.

By default, the write_rp_groups command writes out commands for creating the
specified relative placement groups and to add leaf cells, hierarchical groups, and
blockages to these groups. The commands for generating subgroups within hierarchical
groups are not written. You can modify the default behavior by using the options described
in Table 55.

Table 55 The write_rp_groups Command Options

To do this Use this option

Write all the relative placement groups within the hierarchy of the relative
placement groups. If you omit this option, only the top-level group is written
and subgroups are not.

-hierarchical

Write only create_rp_group commands to the script. -create

Write only add_to_rp_group -cells commands to the script. -cell

Write only add_to_rp_group -rp_group commands to the script. -rp_group

Write only add_to_rp_group -blockage commands to the script. -blockage

Summary of Relative Placement Commands
Table 56 shows some of the key commands used to perform relative placement.

IC Compiler™ II Implementation User Guide
T-2022.03

692

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Physical Datapath With Relative Placement
Summary of Relative Placement Commands

Feedback

Table 56 Relative Placement Commands

Command Described in section

create_rp_group and
remove_rp_groups

Creating Relative Placement Groups

add_to_rp_group and
remove_from_rp_group

Adding Objects to a Group

set_rp_group_options and
remove_rp_group_options

Specifying Options for Relative Placement Groups

modify_rp_groups Changing the Structures of Relative Placement Groups

legalize_rp_groups Legalizing Relative Placement Groups in a Placed Design

check_rp_constraints Checking Relative Placement Groups Before Placement

report_rp_groups Reporting Relative Placement Constraint Violations

get_rp_groups Querying Relative Placement Groups

write_rp_groups Saving Relative Placement Information

IC Compiler™ II Implementation User Guide
T-2022.03

693

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

10
Hierarchical Implementation

The following topics describe how to perform placement, optimization, clock tree
synthesis, routing, and postroute optimization on hierarchical designs.

• Overview of Abstract Views

• Creating Abstract Views

• Reporting Abstract Reasons

• Making Changes to a Block After Creating an Abstract

• Shrinking Abstract Views While Maintaining Timing

• Creating a Frame View

• Linking to Abstract Views at the Top-Level

• Linking to Subblocks With Multiple Labels

• Specifying the Editability of Blocks From the Top-Level

• Preparing for Top-Level Closure With Abstracts

• Checking Designs With Abstracts for Top-Level-Closure Issues

• Performing Top-Level Closure With Abstract Views

• Creating ETMs and ETM Cell Libraries

• Linking to ETMs at the Top Level

• Performing Top-Level Closure With ETMs

IC Compiler™ II Implementation User Guide
T-2022.03

694

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Overview of Abstract Views

Feedback

Overview of Abstract Views
In an abstract view, the gate-level netlist for the block is modeled by a partial gate-
level netlist that contains only the required interface logic of the block. All other logic is
removed.

Figure 147 shows a block and its abstract view, where the logic is preserved between

• The input port and the first register of each timing path

• The last register of each timing path and the output port

Logic associated with pure combinational input-port-to-output-port timing paths (A to X)
is also preserved. Clock connections to the preserved registers are kept as well. The
register-to-register logic is discarded.

Figure 147 A Block and Its Abstract View

A

B

CLK

X

Y

Block

A

B

CLK

X

Y

Abstract View

The interface logic of an abstract view consists of the following:

• All cells, pins, and nets in timing paths from input ports to registers or output ports

• All cells, pins, and nets in timing paths to output ports from registers or input ports

• Any logic in the connection from a master clock to generated clocks

• The clock trees that drive interface registers, including any logic in the clock tree

• The longest and shortest clock paths from the clock ports

• All pins with timing constraints that are part of the interface logic

IC Compiler™ II Implementation User Guide
T-2022.03

695

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Creating Abstract Views

Feedback

In addition to the interface logic, an abstract view contains the following information
associated with the interface logic:

• Placement information

• Timing constraints

• Clock tree exceptions

• Parasitic information

• Transition and case values of dangling pins

• Power management cells and UPF constraints

• Nondefault routing rule association and minimum and maximum layer constraints, if
any, for the nets that are retained in the abstract view

Creating Abstract Views
In the IC Compiler II tool, you can create an abstract view for a block at various stages of
the design flow, such as, after , placement, optimization, clock tree synthesis, routing, and
so on. Before you create the abstract view, ensure that the scenarios needed at the top
level have been created and are active.

To create an abstract view for top-level closure, use the create_abstract command.

• To control the amount of timing information in the abstract view, use the
-timing_level option with the following settings:

◦ To create an abstract that contains only the boundary cells (one level of logic)
connected to each boundary port, use the boundary setting.

Such an abstract also contains feedthrough data paths, feedthrough combinational
clock paths, and internal clock logic driving output ports. You can use this type of
abstract to fix DRC violations at the top level.

◦ To create a compact abstract that contains the timing information for only the critical
setup and hold timings paths of the interface logic, use the compact setting.

◦ To create an abstract with timing information for all the interface logic, use the
full_interface setting.

• To create the abstracts for lower-level blocks of the current block, use one of the
following methods:

◦ Create abstracts for specific lower-level blocks by using the -blocks option and
specify the names of the blocks.

◦ Create abstracts for all lower-level blocks by using the -all_blocks option.

IC Compiler™ II Implementation User Guide
T-2022.03

696

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Creating Abstract Views

Feedback

When you use the -blocks or -all_blocks option, if a specified block has an
abstract view, by default, the tool does not re-create it. To force the tool to re-create the
abstract, use the -force_recreate option.

• To include specific nets, ports, hierarchical pins, or leaf pins in a placement or timing
abstract, use the -include_objects option.

• To create a read-only abstract, use the -read_only option.

By default, the tool creates an editable abstract that you can modify in the context
of a parent block. However, the tool makes the design view of the block read-only,
preventing any changes from being made to the block.

When you create the abstract view as read-only, the design view of the block is
editable, and you can make changes to it.

• To flatten the physical hierarchy and retain only the relevant logic of the lower-level
blocks, use the -preserve_block_instances false option.

• To specify if the abstract is going to be used for design planning or top-level
implementation, use the -target_use planning or -target_use implementation
option.

Based on the intended usage, the tool applies appropriate internal settings to the
abstract.

• To specify host options for distributed processing, use -host_options option and
specify the appropriate settings. You can use this option to reduce the runtime when
you create more than one abstract view by using the -blocks or -all_blocks option.

Creating Abstracts With Power Information
To create an abstract that contains power information of the corresponding block, use the
following steps at the block level:

1. Activate the scenarios for which you want to perform power analysis by using the
-active true option of the set_scenario_status command and enable them for
power analysis by using the following options:

• -dynamic_power true for dynamic power analysis

• -leakage_power true for leakage power analysis

Power information is stored only for active scenarios that are enabled for dynamic or
leakage power.

IC Compiler™ II Implementation User Guide
T-2022.03

697

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Creating Abstract Views

Feedback

2. (Optional) Apply switching activity by either reading in a SAIF file with the read_saif
command or annotating the switching activity information on the nets with the
set_switching_activity command.

For more information about applying switching activity, see Annotating the Switching
Activity.

3. Store the power information in the abstract by setting the abstract.annotate_power
application option to true.

4. Create the abstract for the block by using the create_abstract command.

When you create an abstract with power information, the tool stores the power information
only for the logic that is removed.

When you instantiate such an abstract and perform power analysis at the top level, the
tool

• Recomputes the power for the interface logic in the abstract, in context, based on the
switching activity and loading seen at the top level

• Uses the stored power in the abstract for the logic that was removed when the abstract
was created

To report the power information in an abstract instantiated at the top level, use the
report_power -blocks command. If there are multiple levels of physical hierarchy, to
specify the number of level for which you want to report, use the -levels option.

Creating Abstracts for Signal Electromigration Analysis
To create an abstract that can be used for signal electromigration analysis at the top-level,
set the abstract.enable_signal_em_analysis application option to true before you
run the create_abstract command.

Handling Multiple Levels of Physical Hierarchy
For designs with multiple levels of physical hierarchy, before you create an abstract for a
block with an abstract instantiated in it,

• Bind the lower-level blocks that you want represented by abstracts to the specific
abstracts

For example, assume you have a design with multiple levels of physical hierarchy as
shown in the following figure.

IC Compiler™ II Implementation User Guide
T-2022.03

698

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Reporting Abstract Reasons

Feedback

Figure 148 A Design With Multiple Levels of Physical Hierarchy

BOT

MID

TOP

To create an abstract for the block named BOT, use the following commands:

icc2_shell> open_block BOT
icc2_shell> create_abstract
To create an abstract for the block named MID, use the following commands:

icc2_shell> open_block MID
icc2_shell> change_abstract -view abstract -references BOT
icc2_shell> create_abstract
By default, the create_abstract command preserves all levels of the physical hierarchy.
To flatten the physical hierarchy and retain only the relevant logic of the lower-level blocks,
use the -preserve_block_instances false option, as shown in the following example:

icc2_shell> open_block MID
icc2_shell> create_abstract -preserve_block_instances false
Use flattened abstracts in top-level implementation flows where the lower-level blocks are
treated as read-only. Using flattened abstracts reduces the netlist size at the top level.
It also simplifies data management because you do not need to include the lower-level
blocks in the reference library list of the top level.

Reporting Abstract Reasons
In the IC Compiler II tool, the create_abstract command includes netlist objects such
as the cells, nets, and pins in the abstract view at both the top-level and block-level. This
command reports the reasons for the inclusion of netlist objects.

To report the reasons for including specific netlist objects in the abstract view, you can use
the report_abstract_inclusion_reason command for objects across all hierarchies in
the abstract.

For each reason reported, a reason code is displayed. These reason codes correspond to
the valid reasons for inclusion in the abstract. There can be multiple reasons for the same
netlist object.

IC Compiler™ II Implementation User Guide
T-2022.03

699

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Making Changes to a Block After Creating an Abstract

Feedback

Note:
The report_abstract_inclusion_reason command does not report reasons
for the hierarchical cells or pins on hierarchical cells.

You can perform reason reporting from the top-level design, where the abstract is
instantiated, without having the abstract as the current block.

The following example reports the reasons for abstract inclusion for the pins in abstract
view:

prompt> report_abstract_inclusion_reason [get_pins -of_object [get_cells
 -filter "is_hierarchical==false" -hierarchical *]]

Legend
mv - MV Logic
comp - Compact interface logic
cell - Cell inclusion
--
Pin name Reason(s) for inclusion
--
AINV_P_260/I comp, cell
AINV_P_260/VDD cell
AINV_P_260/VSS cell
AINV_P_260/ZN comp, cell
AINV_P_262/I comp, cell
AINV_P_262/VDD cell
AINV_P_262/VSS cell
AINV_P_262/ZN comp, cell
AINV_P_263/I mv, comp, cell

A legend is displayed at the beginning of the report for the queried objects, specifying the
detailed reason for each reason code.

Making Changes to a Block After Creating an Abstract
When you create an abstract view for a block with the create_abstract command, by
default, the tool saves both the abstract and design views of the block and changes the
design view to read-only.

IC Compiler™ II Implementation User Guide
T-2022.03

700

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Shrinking Abstract Views While Maintaining Timing

Feedback

You can open a read-only block and make changes to it in-memory, but you cannot save
these changes by using the save_block or save_lib command. To save the change you
make to a read-only block, use one of the following methods:

• Save it as a different block by using the save_block -as command.

• Re-create an abstract for the block by using the create_abstract command. The tool
then automatically saves the design view.

• Remove the abstract by using the remove_abstract command, if you no longer need
the abstract. This changes the design view from being read-only to editable, and you
can save the block by using the save_block or save_lib command.

If you create a read-only abstract by using the create_abstract -read_only command,
the tool does not make the design view of the block read-only and you can save any
subsequent changes to the block by using the save_block or save_lib command, as
shown in the following example:

icc2_shell> create_abstract -read_only
icc2_shell> change_link [get_cells U25] AND2
icc2_shell> save_block

Shrinking Abstract Views While Maintaining Timing
You can incrementally update the physical information of the abstract from the top level,
without changing the associated timing information inside the abstract. With this feature,
the Top Engineer can continue the place and route flow after shrinking the block abstract,
while the block owner reimplements the subblock with a modified floorplan.

After shrinking an abstract view, for example, using the GUI, use the
update_block_views command to update the physical information of the abstract view as
well as the frame view.

Note:
Use the -verbose option to output to the log file detailed information about the
changes.

If there is an existing frame view, the frame view is re-created using the same value for
-block_all that was used to create the existing frame view. If there is no existing frame
view, -block_all true is used for the frame view.

After block shrinking, because of pin-snapping (of blocks), the length of the top segment of
the boundary nets changes, which impacts parasitics and therefore the timing of these net
segments.

IC Compiler™ II Implementation User Guide
T-2022.03

701

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Shrinking Abstract Views While Maintaining Timing

Feedback

The procedure for using the update_block_views command is as follows:

1. To allow updated views of the subblock to be saved, open the reference library in edit
mode:

icc2_shell> open_lib top.nlib -ref_libs_for_edit
Note:

If using -ref_libs_for_edit is not allowed, copy the subblock to the top
design library.

2. To prevent the changes made to the abstract from being merged to the design view,
create abstracts using create_abstract -read_only, open top.design linked to
read-only abstracts, then enable editing of the subblock:

icc2_shell> set_editability -blocks <> -value true
3. After shrinking the subblock (for example, using the GUI), use the

update_block_views command to update the physical information of the abstract and
frame views, then disable editing of the subblock:

icc2_shell> update_block_views -verbose
icc2_shell> set_editability -blocks <> -value false

The update_block_views commands handles different design objects as follows:

• Standard cells: Moved inside the resized block boundary.

• Macros and child subblock instances: Moved inside the resized block boundary and
may overlap with existing objects in the block. If the block has been reshaped such that
the aspect ratio of an object cannot fit, then the tool issues an error.

• Pins: Snapped to the new boundary.

• Global Route (GR) congestion map: Removed from the abstract view.

• Voltage area and routing blockages: Trimmed and adjusted inside the resized block
boundary.

• Placement blockages, bounds, edit groups, routes, floating shapes, g-links, and
routing corridors: Removed if they are partially or completely outside the resized block
boundary.

• Site rows: Any portion present outside the resized block boundary is cut.

Recreating the Power and Ground (PG) Structure
After shrinking an abstract view and using the update_block_views command, the top-
level power and ground (PG) structure becomes obsolete, so you must re-create it as
follows:

IC Compiler™ II Implementation User Guide
T-2022.03

702

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Creating a Frame View

Feedback

1. Open top.design linked to read-only abstracts, then remove the top PG structure and
block PG pins:

icc2_shell> remove_shapes [get_shapes -filter "net_type==power"]
icc2_shell> remove_shapes [get_shapes -filter "net_type==ground"]
icc2_shell> remove_vias [get_vias -filter "net_type==power"]
icc2_shell> remove_vias [get_vias -filter "net_type==ground"]
icc2_shell> remove_terminals [get_terminals -of_objects [get_pins
 block_name/VSS]]

icc2_shell> remove_terminals [get_terminals -of_objects [get_pins
 block_name/VDD]]

2. Shrink the subblocks, then use the update_block_views command:

icc2_shell> update_block_views -verbose
3. Ensure that the top level PG strategies are defined:

icc2_shell> compile_pg {< Top PG strategies >}

Creating a Frame View
To perform top-level routing, including virtual routing, every abstract view must have a
corresponding frame view. To create a frame view, use the create_frame command,
which extracts the blockage, pin, and via information from the design view.

After you create the frame view, save the design library by using the save_lib command.

Linking to Abstract Views at the Top-Level
For a top-level design to link to an abstract view of a lower-level block, the design library
containing the abstract view of the lower-level block must be one of the reference libraries
of the top level.

For example, assume you have a top-level design named TOP with two lower-level blocks
named BLK1 and BLK2, as shown in the following figure.

Figure 149 Top-Level Design With Instantiated Blocks

BLK1

TOP

BLK2

IC Compiler™ II Implementation User Guide
T-2022.03

703

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Linking to Abstract Views at the Top-Level

Feedback

To link to the abstracts of the BLK1 and BLK2 blocks, the design libraries containing the
abstract views of these block must be reference libraries of the TOP design. If not, you
can add it to the reference libraries of the TOP design by using the set_ref_libs -add
command as shown in the following example:

current_block TOP
set_ref_libs -add {../BLK1/BLK1.nib ../BLK2/BLK2.nib}

To report the reference libraries for the current design, use the report_ref_libs
command.

When you link a top-level design, if an abstract view for a lower-level block is available,
the tool links to that abstract view by default. The default precedence of the different views
used when linking lower-level blocks is as follows:

1. Abstract view

2. Design view

3. Frame view

4. Outline view

To change a block from its abstract to its design view or vice versa, use the
change_abstract command and specify the view you are changing to by using the -view
option. When you change a block from its abstract view to its design view, remove the
existing constraints and apply full-chip timing constraints.

The following example changes the BLK1 block from its abstract view to its design view
and applies full-chip timing constraints.

1. Remove any existing timing constraints:

icc2_shell> remove_scenarios -all
icc2_shell> remove_modes -all
icc2_shell> remove_corners -all

2. Use the change_abstract command to change from the abstract view to the design
view:

icc2_shell> change_abstract -view design -references BLK1
3. Apply the full-chip scenario creation script:

icc2_shell> source full_chip_scenario_creation.tcl
If the abstract view for a block has changed in its design library, you can reload the new
abstract view by using the change_abstract -reload command.

To report the abstract views the design is linking to, use the report_abstracts
command.

IC Compiler™ II Implementation User Guide
T-2022.03

704

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Linking to Subblocks With Multiple Labels

Feedback

More information about specifying reference libraries and linking to abstract views at the
top level, see SolvNet article 2436119, Setting Up Designs for Hierarchical Place and
Route

Linking to Subblocks With Multiple Labels
When saving a block at different stages of an implementation flow, you can use the -as
blockName/labelName or -label labelName option with the save_block command to
specify a unique label for each version of the block you save.

By default, during linking, the top-level block links to lower-level blocks with the same
label. If a subblock has been saved with multiple labels, you can specify which label
the top level should link to by using the set_label_switch_list command. The
command specifies a precedence-ordered list of labels to use during linking. By default,
the command applies to all subblocks; to specify a different block or blocks, use the
-reference option.

The following example specifies that the top level should link to the preroute label of the
BLOCK1 and BLOCK2 subblocks:

icc2_shell> set_label_switch_list \
 -reference {BLOCK1 BLOCK2} preroute
The following example specifies that the postroute label has a higher priority than the
preroute label when linking any subblock at the top level.

icc2_shell> set_label_switch_list {postroute preroute}
You can use the set_label_switch_list command again to update the block’s label
switch list and then relink the block using the link_block -rebind command. Note the
following when relinking a block:

• If none of the labels in the switch list are available in a subblock, or if you specify an
empty switch list, the tool links the subblock to the label it was previously linked to

• If you have removed all the labels for a subblock, the tool links the subblock to the label
of its parent block

Specifying the Editability of Blocks From the Top-Level
For designs with physical hierarchy, you can specify if changes can be made to lower-level
blocks by using the set_editability command at the top level.

IC Compiler™ II Implementation User Guide
T-2022.03

705

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2436119.html
https://solvnet.synopsys.com/retrieve/2436119.html

Chapter 10: Hierarchical Implementation
Preparing for Top-Level Closure With Abstracts

Feedback

You can change the editability of

• Specific blocks by using the -blocks option

• All blocks starting from a specific level of the physical hierarchy by using the
-from_level option

• All blocks up to a specific level of the physical hierarchy by using the -to_level option

For top-level implementation flows with read-only abstracts, after you link the design,
explicitly set the lower-level blocks as read-only by using the following command:

icc2_shell> set_editability -blocks [get_blocks -hierarchical] \
 -value false
By default, if you change a library or block name with one of the following commands, the
tool does not propagate the editability settings from the old reference to the new reference:

• change_abstract -lib

• link_block -rebind -force

• set_reference
To retain the editability settings, set the design.preserve_reference_editability
application option to true before you change a library or block name.

When you save the hierarchical design with the save_block command, the editability
settings are saved.

Preparing for Top-Level Closure With Abstracts
Before you can perform , placement, optimization, clock tree synthesis, and routing at the
top level, you must perform the following tasks:

• Apply the top-level-timing constraints and settings.

You can split the chip-level constraints in to separate top- and block-level constraints
by using the split_constraints command.

• Review and specify the relationship between the top- and block-level modes, corners,
and clocks by using the set_block_to_top_map command.

• If the pre-clock tree implemented blocks, which have undergone CCD optimization,
are used for top-level placement and optimization, then the ideal clock latencies
adjusted dynamically by different engines such as CCD and clock-gate estimation
on the clock pins of registers or integrated clock gating (ICG) cells inside the blocks
might not be seen at the top-level leading to timing inaccuracies at the top-level.

IC Compiler™ II Implementation User Guide
T-2022.03

706

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

Promote these clock latency constraints from block-level to the top-level by using the
promote_clock_data -latency_offset -auto_clock connected command.

• Apply the top-level clock tree synthesis settings and exceptions.

◦ If the top-level exceptions do not include the balance points on the pins within
lower-level blocks, promote the balance points from the lower levels by using the
promote_clock_data -auto_clock connected -balance_points command.

◦ If concurrent clock and data (CCD) optimization is performed at the block level,
the tool derives median clock latencies for the block-level clock ports, which
accounts for the latency adjustments that were derived for the block-level registers
during concurrent clock and data optimization. Promote these block-level clock
latencies as clock balance point delays for the block-level clock pins by using the
promote_clock_data -auto_clock connected -port_latency command.

◦ If the lower-level blocks contain clock-meshes, promote the mesh annotations
(annotated transitions and delays) by using the promote_clock_data
-mesh_annotations command.

• If you need to promote clock data for a specific top-level clock, use the
promote_clock_data -clocks {top_clock} -port_latency command. The
command also promotes clock-independent exceptions. If any of the given top-level
clocks has no mapping to any block-level clock in any mode, the tool issues a warning.

• If there are any active modes, corners, or clocks at the top-level, which cannot be
mapped to corresponding modes, corners, or clocks in the block-level, you can
still promote the clock data for other mapped modes, corners, or clocks using the
promote_clock_data -balance_points -force command. This command issues
errors for the unmapped modes, or corners, or clocks.

• Apply the top-level UPF constraints, which you can create from the full-chip UPF
constraints by using the split_constraints command.

The tool promotes the required UPF constraints from the lower-level blocks to the top
level.

Checking Designs With Abstracts for Top-Level-Closure Issues
You can check a hierarchical design that contains abstracts for possible issues such as the
application option consistency issues and the design issues related to top-level closure by

IC Compiler™ II Implementation User Guide
T-2022.03

707

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

using the check_hier_design command. Identifying issues and fixing them before you
perform top-level closure can help reduce turnaround time.

When you use the check_hier_design command, you can specify

• The references to check by using the -reference option.

If you do not specify this option, the command checks all the references in the physical
hierarchy.

• The type of checks to perform by using the -stage option as follows:

◦ Use the -stage timing option to perform timing related checks.

If you do not specify the -stage option, by default, the tool performs timing related
checks.

◦ Use the -stage pre_placement to perform both timing and preplacement related
checks.

The check_hier_design command can check the consistency between the top-level
constraints and the constraints of every lower-level instance linked to an abstract. To
enable this feature, set the abstract.check_constraints_consistency application
option to true before you run the check_hier_design command.

The tool saves the settings of the predetermined list of timer application options during the
create_abstract command. At the top-level design, the check_hier_design command
compares these timer application option settings with those of the block-level design.

The following application options are automatically saved during the create_abstract
command and verified by the check_hier_design command:

• time.case_analysis_propagate_through_icg

• time.case_analysis_sequential_propagation

• time.clock_gating_propagate_enable

• time.clock_gating_user_setting_only

• time.clock_marking

• time.clock_reconvergence_pessimism

• time.create_clock_no_input_delay

• time.crpr_remove_clock_to_data_crp

• time.delay_calc_waveform_analysis_mode

• time.delay_calculation_style

IC Compiler™ II Implementation User Guide
T-2022.03

708

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

• time.disable_case_analysis_ti_hi_lo

• time.disable_clock_gating_checks

• time.disable_cond_default_arcs

• time.disable_internal_inout_net_arcs

• time.disable_recovery_removal_checks

• time.edge_specific_source_latency

• time.enable_auto_mux_clock_exclusivity

• time.enable_ccs_rcv_cap

• time.enable_clock_propagation_through_preset_clear

• time.enable_clock_propagation_through_three_state_enable_pins

• time.enable_clock_to_data_analysis

• time.enable_non_sequential_checks

• time.enable_preset_clear_arcs

• time.enable_si_timing_windows

• time.gclock_source_network_num_master_registers

• time.special_path_group_precedence

• time.use_lib_cell_generated_clock_name

• time.use_special_default_path_groups
For more information about the issues the check_hier_design command identifies and
how to fix them, see the man page for the corresponding message ID.

In addition to generating a report, the check_hier_design command generates an
enhanced messaging system (EMS) database that you can view by using the message
browser in the IC Compiler II GUI. Create the EMS database before you run the
check_hier_design command, as shown in the following example:

icc2_shell> create_ems_database check_hier.ems
icc2_shell> check_hier_design -stage timing
icc2_shell> save_ems_database
In the IC Compiler II GUI message browser, you can sort, filter, and link the messages to
the corresponding man page, as shown in the following figure.

IC Compiler™ II Implementation User Guide
T-2022.03

709

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

Figure 150 Viewing the EMS Database in the Message Browser

You can also output the information in the EMS database in ASCII format by using the
report_ems_database command.

The checks performed by the check_hier_design command are also available in the
check_design command.

You can perform

• Timing checks specific to top-level closure by using the check_design -checks
hier_timing command

• All timing checks, including those specific to top-level closure, by using the
check_design -checks timing command

• Preplacement checks specific to top-level closure by using the check_design
-checks hier_preplacement command

• All preplacement checks, including those specific to top-level closure, by using the
check_design -checks preplacement command

You can generate an EMS database for the check_design command and view it in the
GUI, similar to the check_hier_design command.

Handling Design Data Using the Early Data Check Manager
While you identify the issues related to top-level closure and fix them, the tool enables you
to explore the top-level flow in the presence of design data violations. The hierarchical
checks can detect different types of mismatched, incomplete, and inconsistent data in

IC Compiler™ II Implementation User Guide
T-2022.03

710

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

designs. You can configure the following policies for the hierarchical checks to manage the
design data violations:

• Error: When you apply this policy, the tool does not mitigate the violation, but issues an
error message.

• Tolerate: When you apply this policy, the tool makes predictable and explainable
assumptions to continue with the flow. No changes are made to the design or setup.

• Repair: When you apply this policy, the tool mitigates the violation using one or more
repair strategies and records it. Repair can include changes in design and setup.

• Strict: When you apply this policy, depending on the policy supported by the check, the
tool applies the policies in this order – error, tolerate, repair.

• Lenient: When you apply this policy, depending on the policy supported by the check,
the tool applies the policies in this order – repair, tolerate, error.

Note:
• Quality of results of the top-level flow might get impacted due to the

toleration and repair of errors. Error toleration and repair is mainly provided
for managing data violations during the early design exploration phases. In
the implementation flow, you should use the strict policy for all checks.

Prerequisites for Handling Early Design Data
The tool performs the repairs and saves the records in the subblocks within the
check_hier_design command itself. For the repairs, which need frame recreation, you
need to run the save_lib command to save the frame on disk.

• To save the repair and its record to the subblock successfully, the following setup is
required:

1. Enable the reference libraries, containing the subblocks, for edit

open_lib top.nlib -ref_libs_for_edit
2. Enable editability on the subblocks, on which repair has to be performed

set_editability -blocks <> -value true
The check_hier_design command checks for the required editability settings, if repair
has to be performed. If the required editability settings are not performed,then the
check_hier_design command issues TL-170 error message.

Note:
The tool supports the repairs on subblocks, which are linked to the read_only
abstracts rather than editable abstracts because managing the mismatched

IC Compiler™ II Implementation User Guide
T-2022.03

711

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

design data mechanism only aims to continue the top-level flow for exploration
and as such no repair work performed on the subblock abstracts should get
merged with the actual design view. If the top-level uses editable design views,
the repair work still continues.

Early Data Checks, Policies, and Strategies
The tool can identify issues and violations in data during the early stages of design. You
can set policies and strategy configurations for the predefined checks to allow, tolerate, or
repair data. Table 57 describes the predefined checks for top-level closure.

Table 57 Top-Level Closure Checks, Policies, and Strategies

Check Description Strategy Supported
Policies

Supported
References

hier.block.miss
ing_frame_view

Checks whether
the frame view
is missing for a
hierarchical block

Re-create frame
views from the
bound view

error,
tolerate,
repair

MID, BOT

hier.block.refe
rence_missing_p
ort_location

Checks whether
the location of a
physical hierarchy
boundary pin is
missing

Assign a location
for the block
pin on the block
boundary based
on connectivity

error,
tolerate,
repair

MID, BOT

hier.block.refe
rence_port_outs
ide_boundary

Checks whether
the location of a
physical hierarchy
boundary pin
is outside the
physical hierarchy
boundary

Reassign a
location for
the block pin
on the block
boundary based
on connectivity

error,
tolerate,
repair

MID, BOT

hier.block.refe
rence_missing_p
ort

Checks whether
a port is missing
in the physical
hierarchy
reference

Create missing
ports in the
reference block
and update its
location

error,
tolerate,
repair

MID, BOT

hier.block.inst
ance_bound_to_f
rame

Checks whether a
physical hierarchy
instance is bound
to a frame view

error, tolerate TOP

hier.block.inst
ance_with_desig
n_type_macro

Checks whether a
physical hierarchy
instance is bound
to a macro

error, tolerate TOP

IC Compiler™ II Implementation User Guide
T-2022.03

712

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

Table 57 Top-Level Closure Checks, Policies, and Strategies (Continued)

Check Description Strategy Supported
Policies

Supported
References

hier.top.estima
ted_corner

Checks whether
the estimated
corner is at top
level

error, tolerate TOP

hier.block.miss
ing_leaf_cell_l
ocation

Checks whether
the location of
a leaf cell of a
physical hierarchy
is missing

Assign an
approximate
location inside the
block boundary
for the leaf cell
(legality not
considered)

error,
tolerate,
repair

MID, BOT

hier.block.leaf
_cell_outside_b
oundary

Checks whether
the location of
a leaf cell of a
physical hierarchy
is outside the
physical hierarchy
boundary

Reassign the leaf
cell location to the
nearest location
inside the block
boundary (legality
not considered)

error,
tolerate,
repair

MID, BOT

hier.block.miss
ing_child_block
_instance_locat
ion

Checks whether
the location of
a child physical
hierarchy instance
is missing in the
specified physical
hierarchy

Assign an
approximate
location for
the lower-level
subblock based
on connectivity
inside the block
boundary (overlap
removal not
considered)

error,
tolerate,
repair

MID

hier.block.chil
d_block_instanc
e_outside_bound
ary

Checks whether
the location of
a child physical
hierarchy instance
is outside
the specified
physical hierarchy
boundary

Move the subblock
to the nearest
location inside the
block boundary
(overlap removal
not considered).

error,
tolerate,
repair

MID

hier.block.port
_mismatch_betwe
en_views

Checks whether
there is a
mismatch of ports
between the views
of a physical
hierarchy

Bound view is
treated as golden
and the frame
view is recreated
to match the
bound view

error,
tolerate,
repair

MID, BOT

IC Compiler™ II Implementation User Guide
T-2022.03

713

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

Table 57 Top-Level Closure Checks, Policies, and Strategies (Continued)

Check Description Strategy Supported
Policies

Supported
References

hier.block.miss
ing_design_view
_for_abs

Checks whether
the design view
for an abstract is
missing

error, tolerate MID, BOT

hier.block.inst
ance_unlinked

Checks whether
the physical
hierarchy
reference is not
linked properly
to the top-level
design due to a
view change from
frame or ETM to
abstract or design

error TOP

hier.block.abst
ract_type_non_t
iming

Checks whether
the abstract type
is not timing

error MID, BOT

hier.block.abst
ract_target_use
_non_implementa
tion

Checks whether
the target use of
an abstract is not
implementation

error MID, BOT

hier.block.miss
ing_core_area

Checks whether
the core area for a
physical hierarchy
is missing

error MID, BOT

hier.block.unma
pped_logic

Checks whether
unmapped logic
is present in the
physical hierarchy

error MID, BOT

Where

• BOT signifies bottom level design.

• MID signifies intermediate level design, which instantiates BOT.

• TOP signifies the top-level design, which instantiates MID.

IC Compiler™ II Implementation User Guide
T-2022.03

714

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

Setting the Policy for Early Data Checks
To set or modify the policy for all the checks, or modify the policy settings for data
checks, use the set_early_data_check_policy command. Use the following options to
configure the policy:

• -checks: Specifies a predefined list of data checks. It supports an asterisk wildcard
character (*) as the name of a check.

• -policy: Specifies the type of policy depending on what is supported by the check.
This can be

◦ error: The tool issues an error message if the check does not support error as a
policy.

◦ tolerate: The tool issues an error message if the check does not support
tolerate as a policy.

◦ repair: The tool issues an error message if the check does not support repair as
a policy.

◦ strict: The tool sets the first matching policy in the following order:

1. error
2. tolerate
3. repair
For example, when a check supports the error and tolerate policies, and you
select strict as the policy type, the error policy type is set.

◦ lenient: The tool sets the first matching policy in the following order:

1. repair
2. tolerate
3. error
For example, when a check supports the error and tolerate policies, and you
select lenient as the policy type, the tolerate policy type is set.

Note:
If you specify both the checks and policies, the configuration supports all the
policies described in this section, depending on what the application-specific
check supports. However, if you specify only the policies, but not the checks,
the configuration supports only the strict and lenient policies.

IC Compiler™ II Implementation User Guide
T-2022.03

715

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

• You can also use the if_not_exists keyword with the -policy option to set a policy
on the current design only if the design does not already have a policy set.

• -strategy: Specifies the strategy to apply for a check.

Note:
-strategy is not applicable for the hierarchical checks.

• -references: Specifies the policy and strategy for reference subdesigns.

Reporting Early Data Check Records
You can report the policy set for all checks or for a specific set of checks by using the
report_early_data_checks command. Use the following options to configure the report:

• -policy: Reports configuration details for all checks. It shows the selected policy and
strategy for each check. Using the -hierarchical option with the -policy option
reports the configuration of the subblocks.

• -checks: Reports the current policy, supported policies, and strategies for each check.
Using the -hierarchical option with the -checks option reports the checks of the
subblocks.

• -verbose: Reports a summary of all failed checks, policies, strategies applied, and
checked objects with comments. Using the -hierarchical option with the -verbose
option reports the records of all failed checks, policies, strategies applied, and checked
objects from the subblocks.

• -hierarchical: Traverses the hierarchy and reports the check, policy, strategy, and
fail count for each design in the hierarchy.

In the following example, the report_early_data_checks -hierarchical -policy
command reports the policy settings for the hierarchical checks set on the top-level design
and the block-level designs:
icc2_shell> report_early_data_checks -policy
**
Report : report_early_data_checks
Design : top
Version: R-2020.09
Date : Thu Aug 20 23:53:54 2020
**
Design Check Policy
 Strategy

unit_des.nlib:top.design hier.block.instance_bound_to_frame error

unit_des.nlib:top.design hier.block.instance_unlinked error

unit_des.nlib:top.design hier.block.instance_with_design_type_macro error

IC Compiler™ II Implementation User Guide
T-2022.03

716

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

unit_des.nlib:top.design hier.top.estimated_corner error

blk hier.block.abstract_missing_design_view error

blk hier.block.abstract_target_use_non_implementation error

blk hier.block.abstract_type_non_timing error

blk hier.block.leaf_cell_outside_boundary error

In the following example, the report_early_data_checks -hierarchical -verbose
command reports the repair performed on the checked object and also provides the details
of policies, strategies applied, and checked objects on the subblocks.

icc2_shell> report_early_data_checks -hierarchical -verbose
**
Design Check Policy Strategy Checked Comment
 Object
--
blk hier.block.missing_leaf_cell_location repair eco_cell Instance location
 updated to
 X:150145 Y:69620

While running the top-level early flow, you might run into top-level errors or warnings
because of the design data violations in the subblocks or top-level design. To use
the data checks and policies capability for exploring early flows, you need to know
the check name corresponding to the top-level errors seen on the design. The
report_hier_check_description command provides the required information about
the checks associated with each top-level error. The following example shows the report
generated by the report_hier_check_description command:

icc2_shell> report_hier_check_description

Report : Hier check description
Design : top
Version: R-2020.09
Date : Fri Aug 21 00:08:32 2020

Legend
 E - error
 R - repair
 T - tolerate
 TOP - Top-Design
 BLK - Respective Block-Ref

--

Check Error Tolerate Repair Allowed Allowed
 Description

IC Compiler™ II Implementation User Guide
T-2022.03

717

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Checking Designs With Abstracts for Top-Level-Closure Issues

Feedback

 ID ID ID Policies References
--

hier.block.missing_frame_view TL-101 TL-401 TL-501 E|R|T BLK
 Missing frame view
hier.block.abstract_missing_design_view TL-101 TL-401 N/A E|T BLK
 Missing design view for abstract
hier.block.reference_missing_port_location TL-126 TL-426 TL-526 E|R|T BLK
 Missing location of physical

 hierarchy boundary pin
hier.block.reference_port_outside_boundary TL-127 TL-427 TL-527 E|R|T BLK
 Location of physical hierarchy boundary

 pin outside physical hierarchy boundary

Generating a Report of Early Data Check Records
You can generate a report of check records from a design by using the
get_early_data_check_records command. Using the -hierarchical option with this
command enables to you get check records for all subblocks.

The report generated is in the following format:

check_name@object

For example,

icc2_shell> get_early_data_check_records -hierarchical
{hier.block.missing_leaf_cell_location@eco_cell}

You can use the -filter option to filter the results of this command by various
parameters such as object class and check name.

For example,

icc2_shell> get_early_data_check_records \
-filter "checked_object_class==port"
{place.port_type_mismatch@clk route.missing_layer_direction@feed_in
 route.layer_name_mismatch@out}

IC Compiler™ II Implementation User Guide
T-2022.03

718

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Performing Top-Level Closure With Abstract Views

Feedback

Performing Top-Level Closure With Abstract Views
You can perform top-level closure by implementing the blocks first, and then implementing
the top level, as shown in the following flow diagram:

Figure 151 Top-Level Implemented After Blocks are Completed

Placement and

optimization

Clock tree

synthesis

Routing

Postroute

optimization

Placement and

optimization

Clock tree

synthesis

Routing

Postroute

optimization

Abstract and frame views
for each block

Block-level flow Top-level flow

IC Compiler™ II Implementation User Guide
T-2022.03

719

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Creating ETMs and ETM Cell Libraries

Feedback

Alternatively, you can implement the blocks and top-level in parallel, as shown in the
following flow diagram:

Figure 152 Top and Block Levels Implemented in Parallel

Placement and

optimization

Clock tree

synthesis

Routing

Postroute

optimization

Placement and

optimization

Clock tree

synthesis

Routing

Postroute

optimization

Block-level flow Top-level flow

A
b
s
tr

a
c
t
a
n
d
 f
ra

m
e
 v

ie
w

s
 f
o
r

e
a
c
h
 b

lo
c
k

When using abstracts at the top-level, you can perform top-level synthesis, placement,
optimization, clock tree synthesis, routing, and postroute optimization using the commands
supported at the block level. Currently the tool does not make changes within the abstracts
during top-level closure. Therefore, you can create and use read-only abstracts.

Creating ETMs and ETM Cell Libraries
To create ETMs and ETM cell libraries in the IC Compiler II tool, see the Creating ETMs
and ETM Cell Libraries in the IC Compiler II Tool topic.

To create ETMs and ETM cell libraries in the PrimeTime and the Library Manager tools
respectively, see the following topics:

• Creating ETMs in the PrimeTime Tool

• Creating ETM Cell Libraries in the Library Manager Tool

Creating ETMs and ETM Cell Libraries in the IC Compiler II Tool
Rather than creating an ETM for each mode and corner combination using the
extract_model command in the PrimeTime tool and then using the Library Manager tool

IC Compiler™ II Implementation User Guide
T-2022.03

720

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Creating ETMs and ETM Cell Libraries

Feedback

to combine the ETMs with the corresponding physical information to create a cell library,
you can perform both steps together by using the extract_model command directly in the
IC Compiler II tool.

The following IC Compiler II script creates an ETM for every mode and corner of the
design and then combines them with the corresponding physical information and creates
the corresponding cell library:

Open the design, create a frame view, and set the PrimeTime options
open block.nlib:block.design
create_frame <options> ;# extract_model needs Frame for library
 preparation
set_pt_options -pt_exec_path <> -work_dir ETM_work_dir \
 -post_link_script <tcl script with extract_model*
 variables> \

To use StarRC for Parasitic extraction
set_app_options -name extract.starrc_mode -value true
set_starrc_options -config <starrc_config_file>

Create the ETM and generate the ETM cell library
extract_model

By default, the IC Compiler II tool writes out the generated ETM library into

• [pwd]/ETM_Lib_work_dir/block_name/label_name/ for labelled blocks

• [pwd]/ETM_Lib_work_dir/block_name/ for non-labelled blocks

Creating ETMs in the PrimeTime Tool
You can create an ETM for design by using the extract_model command in the
PrimeTime tool. For multicorner-multimode designs, you must create an ETM for each
scenario by applying the appropriate corner and mode constraints for each scenario.

The following PrimeTime script creates an ETM for the S3 scenario, which consists of the
m1 mode and c3 corner, of the AMS_BLK design:

#Read in the design
read_verilog ./AMS_BLK.v
link

Apply parasitics
read_parasitics ./AMS_BLK.spef

#For multivoltage designs, apply UPF data and settings
load_upf ./AMD_BLK.upf
set extract_model_include_upf_data true

Apply the mode (m1) and corner (c3) constraints for the scenario (S3)
source m1_constraints.tcl

IC Compiler™ II Implementation User Guide
T-2022.03

721

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Creating ETMs and ETM Cell Libraries

Feedback

source c3_constraints.tcl

Enable clock latencies for designs with synthesized clock trees
set extract_model_with_clock_latency_arcs true
set extract_model_clock_latency_arcs_include_all_registers false

Create the ETM
extract_model -library_cell -format db -output AMS_BLK_m1_c3

For more information about creating ETMs in the PrimeTime tool, see the Extracted Timing
Models chapter in the PrimeTime User Guide.

IC Compiler™ II Implementation User Guide
T-2022.03

722

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Creating ETMs and ETM Cell Libraries

Feedback

Creating ETM Cell Libraries in the Library Manager Tool
After you create an ETM for each mode and corner combination, use the Library Manager
tool to combine the ETMs with the corresponding physical information and create a cell
library. For more information, see the Library Manager User Guide.

The following Library Manager scripts combine the ETMs created for every mode and
corner of the AMS_BLK design with the corresponding physical information and creates
the corresponding cell library:

Create a library work space
create_workspace -flow etm_moded AMS_BLK

Read the physical data (frame view)
read_ndm -views frame AMS_BLK.ndm

Read the ETMs for every scenario
read_db -mode_label m1 AMS_BLK_m1_c1.db
read_db -mode_label m1 AMS_BLK_m1_c2.db
read_db -mode_label m1 AMS_BLK_m1_c3.db
read_db -mode_label m2 AMS_BLK_m2_c1.db
read_db -mode_label m2 AMS_BLK_m2_c2.db
read_db -mode_label m2 AMS_BLK_m2_c3.db

Check the compatibility of the libraries you read in
check_workspace

Generate cell library
commit_workspace -output AMS_BLK_ETM.ndm

When you create a cell library for an ETM, you can use one of the following methods to
obtain the physical data:

• Read the frame view of the corresponding block by using the read_ndm -views frame
command.

• Read a LEF file for the block by using the read_lef command.

• Read a GDSII file for the block by using the read_gds command

• Read an OASIS file for the block by using the read_oasis command.

IC Compiler™ II Implementation User Guide
T-2022.03

723

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Linking to ETMs at the Top Level

Feedback

Linking to ETMs at the Top Level
To link to ETMs at the top level, add the ETM libraries to the reference library list before
you create the top-level design library, as shown in the following example:

icc2_shell> lappend nt_ref_lib "AMS_BLK_ETM.ndm"
icc2_shell> create_lib -technology tech.tf -ref_libs $nt_ref_lib TOP
An ETM that contains multiple modes is called a moded ETM. For a cell instance that
links to a moded ETM, you must specify the required mode by using the set_cell_mode
command, as shown in the following example:

icc2_shell> current_mode m1
icc2_shell> set_cell_mode m1 U1
For a cell instance that links to a moded ETM, if you do not specify a mode, the tool does
not activate the timing arcs, timing checks, generated clocks, and case values.

To report the cell modes for specific cell instances, use the report_cell_modes
command.

To switch a cell instance from its abstract view to its ETM or vice versa, use the
set_reference command. The following example switches the UI cell instance from its
abstract view to its ETM:

icc2_shell> set_reference -block AMS_BLK_ETM.ndm:AMS_BLK.timing U1
The following example switches the UI cell instance from its ETM to its abstract view:

icc2_shell> set_reference -block AMS_BLK.ndm:AMS_BLK.abstract U1
When you switch between ETMs and abstract views, reapply the top-level timing
constraints.

IC Compiler™ II Implementation User Guide
T-2022.03

724

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Hierarchical Implementation
Performing Top-Level Closure With ETMs

Feedback

Performing Top-Level Closure With ETMs
Before you can use the ETMs at the top level, you must perform the following tasks:

• Apply the top-level-only timing constraints and settings.

If the cell instances represented by ETMs have internal clocks, you must reapply these
clock definition from the top level. Avoid cross-boundary timing exceptions that refer to
objects inside the blocks.

• To apply the UPF constraints and settings, you must:

1. Generate the block-level UPF from each of the block-level designs using the
save_upf command.

2. At the top level, load the block UPF for each of the block instances that are
represented by an ETM and the top only UPF:

load_upf -scope <instance_name> block.upf
load_upf top.upf

• Apply top-level placement constraints and settings such as hard keepout margins.

When using ETMs at the top-level, you can perform , top-level placement, optimization,
clock tree synthesis, routing, and postroute optimization using the commands supported at
the block level.

IC Compiler™ II Implementation User Guide
T-2022.03

725

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

11
RedHawk and RedHawk-SC Fusion

<$nopage>power and ground networkanalyzing (<emphitalic>see<Default Para Font> In-Design Rail AnalysisThe RedHawk™ and RedHawk-SC™ power integrity solution is integrated with the
IC Compiler II implementation flow through the RedHawk Fusion and RedHawk-SC Fusion
interface. You can use the RedHawk Fusion and RedHawk-SC Fusion feature for rail
analysis at different points in the physical implementation flow after power planning and
initial placement are completed. This enables you to detect potential power network issues
before you perform detail routing and thus significantly reduce the turnaround time of the
design cycle.

When placement is complete and the PG mesh is available, use RedHawk Fusion or
RedHawk-SC Fusion to perform voltage drop analysis on the power and ground network
to calculate power consumption and to check for voltage drop violations. You can perform
voltage drop analysis at other stages in the design flow, such as after detail routing.
When chip finishing is complete, use RedHawk Fusion or RedHawk-SC to perform PG
electromigration analysis to check for current density violations.

This chapter describes how to use the RedHawk Fusion or RedHawk-SC Fusion feature to
perform rail analysis in the IC Compiler II environment. For a detailed description about the
RedHawk or RedHawk-SC analysis flows and commands, see the RedHawk User Manual
or RedHawk-SC User Manual.

This chapter includes the following topics:

• Running Rail Analysis Using RedHawk-SC Fusion

• An Overview for RedHawk Fusion and RedHawk-SC Fusion

• Setting Up the Executables

• Specifying RedHawk and RedHawk-SC Working Directories

• Preparing Design and Input Data for Rail Analysis

• Specifying Ideal Voltage Sources as Taps

• Missing Via and Unconnected Pin Checking

• Running Rail Analysis with Multiple Rail Scenarios

• Performing Voltage Drop Analysis

• Performing PG Electromigration Analysis

IC Compiler™ II Implementation User Guide
T-2022.03

726

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Running Rail Analysis Using RedHawk-SC Fusion

Feedback

• Performing Minimum Path Resistance Analysis

• Performing Effective Resistance Analysis

• Performing Distributed RedHawk Fusion Rail Analysis

• Working With Macro Models

• Performing Signoff Analysis

• Writing Analysis and Checking Reports

• Displaying Maps in the GUI

• Displaying ECO Shapes in the GUI

• Voltage Hotspot Analysis

• Querying Attributes

Running Rail Analysis Using RedHawk-SC Fusion
Similar to the RedHawk Fusion capability, RedHawk-SC Fusion supports gate-level
rail analysis and checking capabilities in the IC Compiler II environment. To enable the
RedHawk-SC Fusion capability, you need to enable the rail.enable_redhawk_sc
application option and disable the rail.enable_redhawk application option at the same
time.

For more information about RedHawk-SC Fusion, see Setting Up the Executables and
Specifying RedHawk and RedHawk-SC Working Directories.

RedHawk Fusion and RedHawk-SC share the same set of analysis and checking
commands for rail analysis, and the same GUI for examining the analysis results, except
for some limitations. Table 58 compares the analyze_rail options that are supported in
either or both of RedHawk Fusion and RedHawk-SC Fusion.

Table 58 Comparing Analysis Features Between RedHawk Fusion and RedHawk-SC
Fusion

RedHawk Fusion RedHawk-SC Fusion

-redhawk_script_file Supported Supported

-voltage_drop Supported Supported

-switching_activity Supported Supported

-electromigration Supported Supported

IC Compiler™ II Implementation User Guide
T-2022.03

727

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Running Rail Analysis Using RedHawk-SC Fusion

Feedback

Table 58 Comparing Analysis Features Between RedHawk Fusion and RedHawk-SC
Fusion (Continued)

RedHawk Fusion RedHawk-SC Fusion

-power_analysis Supported Supported

-result_name Supported Supported

-script_only Supported Supported

-bg Supported Supported

-min_path_resistance Supported Supported together with the
-voltage_drop option only

-effective_resistance Supported Supported together with the
-voltage_drop -option only

-check_missing_via Supported Supported together with the
-voltage_drop option only
Displaying missing via check results
does not honor the IR threshold
setting.

-extra_gsr_option_file Supported Not supported

-multiple_script_files Supported Not supported

-submit_to_other_machines Supported Not supported

Before performing rail analysis using the RedHawk-SC Fusion capability, you must specify
the location of the libraries and the required input files as described in Preparing Design
and Input Data for Rail Analysis. The following two application options are available only in
RedHawk-SC Fusion:

rail.toggle_rate:
Specify toggle rates for different cell types for rail analysis.

For example:

icc2_shell> set_app_options -name rail.toggle_rate \
 -value {clock 2.0 data 0.2 combinational 0.15 \
 sequential 0.15}

rail.em_only_tech_file:
Specify the electromigration rule file for performing PG electromigration analysis.
Use this option when the electromigration rule information is defined in a

IC Compiler™ II Implementation User Guide
T-2022.03

728

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
An Overview for RedHawk Fusion and RedHawk-SC Fusion

Feedback

separate technology file other than the one specified by the rail.tech_file
application option.

For example,

icc2_shell> set_app_options -name rail.em_only_tech_file \
 –value EM_ONLY.rule

An Overview for RedHawk Fusion and RedHawk-SC Fusion
Both RedHawk Fusion and RedHawk-SC Fusion support gate-level rail analysis
capabilities, including static and dynamic rail analysis. You can use RedHawk Fusion and
RedHawk-SC Fusion to perform the following types of checking and analysis in the IC
Compiler II environment:

• Missing via and unconnected pin shape checking

To check for missing vias or unconnected pin shapes in the design, you first configure
the checking-related settings by using the set_missing_via_check_options
command, and then perform the check by using the analyze_rail
-check_missing_via command.

For more information, see Missing Via and Unconnected Pin Checking.

• Voltage drop analysis

To perform voltage drop analysis, use the analyze_3d_rail -voltage_drop
-electromigration command.

To perform voltage drop analysis, use the analyze_rail -voltage_drop command or
choose Rail > Analyze Rail and select “Voltage drop analysis” in the GUI.

Set the -voltage_drop option to static, dynamic, dynamic_vcd, or
dynamic_vectorless to choose the type of analysis you want to perform.

For more information, see Performing Voltage Drop Analysis.

• PG electromigration analysis

To perform PG electromigration analysis, use the analyze_rail -electromigration
command.

For more information, see Performing PG Electromigration Analysis.

IC Compiler™ II Implementation User Guide
T-2022.03

729

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
An Overview for RedHawk Fusion and RedHawk-SC Fusion

Feedback

• Minimum path resistance analysis

To perform minimum path resistance analysis, use the analyze_rail
-min_path_resistance command.

In the RedHawk-SC analysis flow, you must use the -voltage_drop option together
with the -min_path_resistance option for minimum path resistance analysis.

For more information, see Performing Minimum Path Resistance Analysis.

Depending on the type of analysis you run, the tool generates visual displays (maps)
of the results that you can view in the IC Compiler II GUI, as well as error data that you
can display in the IC Compiler II error browser. These maps and error data help you
discover problem areas and determine corrective action without leaving the IC Compiler II
environment.

Note:
RedHawk Fusion in the IC Compiler II tool does not support RedHawk signoff
analysis features, such as hierarchical analysis or dynamic analysis with
lumped or SPICE packages. For more information, see Preparing Design and
Input Data for Rail Analysis.

By default, RedHawk Fusion analyzes only the current design scenario when
analyzing a multicorner-multimode design. For more information about how to
create and specify a rail scenario for rail analysis, see Running Rail Analysis
with Multiple Rail Scenarios.

Figure 153 shows where you would use these analysis capabilities in a typical design flow.

Figure 153 Using RedHawk Fusion in the IC Compiler II Design Flow

Find missing vias

Design planning
place_opt

Initial placement

Static voltage

clock_opt

Static voltage
Filler cell insertiondrop analysis

drop analysis

Power-switch cell insertion

Dynamic voltage
drop analysis

route_opt
PG electromigration
analysis and fixing

IC Compiler™ II Implementation User Guide
T-2022.03

730

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
An Overview for RedHawk Fusion and RedHawk-SC Fusion

Feedback

RedHawk Fusion and RedHawk-SC Fusion Data Flow
The RedHawk/RedHawk-SC Fusion feature allows you to perform rail analysis during
the implementation stage. With the required input files, the IC Compiler II tool creates
the RedHawk run script and the Global System Requirements (GSR) configuration
file for invoking the RedHawk tool (or the RedHawk-SC python script for invoking the
RedHawk-SC tool) to run PG net extraction, power analysis, voltage drop analysis, and
PG electromigration analysis.

When analysis is complete, the IC Compiler II tool generates analysis reports and maps
using the results calculated by the RedHawk or RedHawk-SC tool. You can then check
for hotspots graphically in the IC Compiler II GUI. Error data and ASCII reports are also
available to check for locations where limits are violated.

Figure 154 illustrates the data flow when using RedHawk Fusion or RedHawk-SC Fusion
to perform rail analysis in the IC Compiler II environment.

IC Compiler™ II Implementation User Guide
T-2022.03

731

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
An Overview for RedHawk Fusion and RedHawk-SC Fusion

Feedback

Figure 154 RedHawk Fusion and RedHawk-SC Fusion Data Flow

RedHawk/RedHawk-SC Fusion Analysis Flow
When you have specified the necessary input and design data, you can perform voltage
drop and PG electromigration analyses on the design.

Figure 155 illustrates the steps in a basic static rail analysis flow.

IC Compiler™ II Implementation User Guide
T-2022.03

732

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
An Overview for RedHawk Fusion and RedHawk-SC Fusion

Feedback

Figure 155 Required Steps for a Basic Rail Analysis Using RedHawk and RedHawk-SC
Fusion

Run rail analysis

analyze_rail -voltage_drop

Run PG electromigration analysis

Check current violations

Check rail analysis results

Set application options

set_app_options

Read design data

open_lib, open_block

Specify ideal voltage sources

create_taps

analyze_rail -electromigration

Running RedHawk Fusion Commands in the Background
By default, when you execute the analyze_rail command to perform rail analysis, the
RedHawk or RedHawk-SC tool is invoked to perform the specified analysis types with the
input data and then load the analysis results back to the rail database when rail analysis
is finished. You cannot run any IC Compiler II commands unless the RedHawk Fusion or
RedHawk-SC Fusion process is finished.

To perform layout editing tasks while the tool is running in the background, run the
analyze_rail -bg command. When analysis is completed, run the open_rail_result
-back_annotate command to upload the analysis results to the rail database.

By default, RedHawk or RedHawk-SC loads the analysis results back to the rail database
when analysis is completed. However, when you specify the -bg option with the
analyze_rail command, you need to run the open_rail_result -back_annotate
command to reconstruct rail database and create the new RAIL_DATABASE file from the
latest analysis results.

IC Compiler™ II Implementation User Guide
T-2022.03

733

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Setting Up the Executables

Feedback

Note:
When back-annotating the analysis results from the previous run after moving
nets in the design, the instance-based map reflects the updated instance
location change, but the parasitic map does not.

When opening rail results, the tool does not detect if the result is generated with
or without the -bg option. The command might not work correctly if you run the
open_rail_result -back_annotate command to open the rail result that is
generated without the -bg option, or vice versa.

Reporting and Checking the Status of the Background Process

When the RedHawk or RedHawk-SC Fusion process is finished, the tool issues the
following message:

Info: Running REDHAWK_BINARY in background with log file: LOG_FILE
The LOG_FILE file is saved in the PWD directory.

To check if the background analyze_rail process is active, use the
report_background_jobs command.

Setting Up the Executables
To run RedHawk Fusion or RedHawk-SC Fusion features, enable the features
and specify the location of the RedHawk/RedHawk-SC executable by setting the
rail.enable_redhawk and rail.redhawk_path application options. By default, the
rail.enable_redhawk application option is set to true.

For example,

icc2_shell> set_app_options -name rail.enable_redhawk -value true
icc2_shell> set_app_options –name rail.redhawk_path \
 –value /tools/RedHawk_Linux64e5_V19.0.2p2/bin
You must ensure that the specified executable is compatible with the IC Compiler II
version that you are using.

See Also

• Specifying RedHawk and RedHawk-SC Working Directories

Specifying RedHawk and RedHawk-SC Working Directories
During rail analysis, RedHawk/RedHawk-SC Fusion creates a working directory to store
the generated files, including analysis logs, scripts, and various output data. By default,

IC Compiler™ II Implementation User Guide
T-2022.03

734

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Specifying RedHawk and RedHawk-SC Working Directories

Feedback

the RedHawk or RedHakw-SC working directory is named RAIL_DATABASE. To use a
different name for the working directory, use the rail.database application option.

The following figure shows the data structures:

• RAIL_CHECKING_DIR: The directory where RedHawk Fusion saves report files on the
missing information during rail analysis.

For example, the tool generates the following report files in the RAIL_CHECKING_DIR
directory when static rail analysis is run:

◦ libcell.apl_current

◦ libcell.apl_cap

◦ libcell.missing_liberty

• RAIL_DATABASE: The directory where the tool saves and retrieves results and log
files that are generated during power calculation and rail analysis.

This directory contains the following sub-directories:

◦ in-design.redhawk or in-design.redhawk_sc: The directory that contains the
following sub-directory:

design_name.result: The directory where RedHawk or RedHawk-SC saves the
analysis result files.

◦ design_name: The directory where RedHawk or RedHawk-SC writes analysis
results for the IC Compiler II tool to retrieve for map display and data query.
For example, running the open_rail_result command loads the data in this
design_name directory for displaying maps in the GUI.

IC Compiler™ II Implementation User Guide
T-2022.03

735

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Preparing Design and Input Data for Rail Analysis

Feedback

If you finish the analysis and want to keep the data for later retrieval, you need to save
the existing rail data to another working directory by using the rail.database application
option before proceeding to another analyze_rail run.

For example,

icc2_shell> set_app_options –name rail.database \
 –value RAIL_DATABASE_STATIC_RUN
Otherwise, the RedHawk/RedHawk-SC tool overwrites the previously generated rail data
with the new data, and issues the following warning message:

Warning: Rail result still open! Will be overwritten!

To avoid the warning message, run the close_rail_result command to remove all rail
data from memory before proceeding to another analyze_rail command run.

Preparing Design and Input Data for Rail Analysis
Before analyzing voltage drop and current density violations in a design using the
RedHawk/RedHawk-SC Fusion capability, use the set_app_options command to specify
the location of the libraries and the required input files.

Table 59 lists the application options for specifying design and input data for running
RedHawk/RedHawk-SC rail analysis within the IC Compiler II environment.

Table 59 Application Options for Specifying Design and Input Data

Application Option Description

rail.lib_files Specifies the library files in .lib format.
For example,
icc2_shell> set_app_options \
 -name rail.lib_files \
 -value {test1.lib test2.lib}

rail.tech_file Specifies the Apache technology file for performing PG extraction
and PG electromigration analysis.
For example,
icc2_shell> set_app_options \
 -name rail.tech_file \
 -value ChipTop.tech

Specifies the dies that are included in detailed analysis.
For example,
icc2_shell> set_app_options \
 -name rail.3dic_enable_die\
 -value {DIE1 true DIE2 true ...}

IC Compiler™ II Implementation User Guide
T-2022.03

736

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Preparing Design and Input Data for Rail Analysis

Feedback

Table 59 Application Options for Specifying Design and Input Data (Continued)

Application Option Description

rail.instance_power_file Specifies user-defined Instance Power File (IPF) for providing
power to pins.
For example,
icc2_shell> set_app_options \
 -name rail.instance_power_file\
 -value {E1 FILE1 DIE2 FILE2 ...}

rail.apl_files Specifies the Apache APL files, which contain current waveforms
and intrinsic parasitics for performing dynamic rail analysis.
For example,
icc2_shell> set_app_options \
 -name rail.apl_files -value \
 {cell.current current \
 cell.cdev cap}

rail.switch_model_files Specifies the RedHawk switch cell model files for performing
dynamic rail analysis.
For example,
icc2_shell> set_app_options \
 -name rail.switch_model_files \
 -value {switch.model}

rail.macro_models Specifies the macro model files.
For example,
icc2_shell> set_app_options \
 -name rail.macro_models \
 -value {gds_cell1 mm_dir1 \
 gds_cell2 mm_dir2}

rail.lef_files (Optional) Specifies a list of LEF files. When not specified, the
tool generates one using the data in the design library.

rail.def_files (Optional) Specifies a list of DEF files. When not specified, the
tool generates one using the data in the design library.

rail.pad_files (Optional) Specifies a list of pad location files. When not
specified, you need to specify the ideal voltage sources by
running the create_taps command.

rail.sta_file (Optional) Specifies the static timing file (STA), which contains
the final slew and delay information. When not specified, the tool
generates the static timing window information using the data in
the design library.

IC Compiler™ II Implementation User Guide
T-2022.03

737

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Preparing Design and Input Data for Rail Analysis

Feedback

Table 59 Application Options for Specifying Design and Input Data (Continued)

Application Option Description

rail.spef_files (Optional) Specifies a list of SPEF files, which contain the
detailed parasitic resistive and capacitive loading data of the
signal nets. When not specified, the IC Compiler II tool generates
the SPEF file using the data in the design library.

rail.effective_resistance_
instance_file

(Optional) Specifies the instance file, which lists the cell instances
for effective resistance calculation.

rail.generate_file_type (Optional) Specifies the type of the script file to generate for
RedHawk Fusion or RedHawk-SC Fusion rail analysis. The
available file types are:
• tcl (default): Generates the file in Tcl format. The default file

name is set_user_input.tcl.
• python: Generates the file in python format. The default file

name is input_files.py. The python script file is supported only
in RedHawk-SC Fusion rail analysis flow.

This application option is required when you run the
RedHawk-SC rail analysis with a customized python script file.
For more information, see Supporting RedHawk-SC Customized
Python Script Files.
Example:
icc2_shell> set_app_options \
 –name rail.generate_file_type –value python

rail.generate_file_variabl
es

This appliction option is supported in RedHawk-SC only.
Specifies the preferred user variables when a customized python
script file is used for RedHawk-SC rail analysis. This application
option is required when the script contains non-standard
collateral python variable names. See Supporting RedHawk-SC
Customized Python Script Files for details.
Supported file types are:
• LEF
• DEF
• SPEF
• TWF
• PLOC
Example:
icc2_shell> set_app_options \
 –name rail.generate_file_variables –value \
 {PLOC ploc LEF lef_files DEF def_files \
 SPEF spef_files TWF tw_files}

rail.enable_new_rail_scena
rio

(Optional) Enables RedHawk Fusion or RedHawk-SC Fusion rail
analysis with multiple rail scenarios. The default is false. See
Running Rail Analysis with Multiple Rail Scenarios for details.

rail.enable_parallel_run_r
ail_scenario

(Optional) Enables distributed RedHawk Fusion or RedHawk SC
Fusion analysis within the analysis flow.

IC Compiler™ II Implementation User Guide
T-2022.03

738

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Preparing Design and Input Data for Rail Analysis

Feedback

Table 59 Application Options for Specifying Design and Input Data (Continued)

Application Option Description

rail.scenario_name (Optional) Specifies the scenario for RedHawk or RedHawk-SC
Fusion rail analysis. The tool honors the specified design
scenario for the IR-driven features in power integrity flow, such
as IR-driven placement, IR-driven concurrent clock and data
optimization, and IR-driven optimization. See Running Rail
Analysis with Multiple Rail Scenarios for details.

Generating Rail Analysis Script Files
You can run the analyze_rail -script_only command to generate the settings
required for running rail analysis based on the information in the design library without
actually executing the analysis run.

The analyze_rail -script_only command writes data to the working directory. The
output files that are saved to the directory are

Table 60 Output data when running analyze_rail -script_only

File Name Description RedHawk RedHawk-SC

RedHawk GSR file Contains configuration
settings for running
RedHawk Fusion rail
analysis

Yes No

LEF/DEF, SPEF, and
STA files

Generated if you do
not specify these input
files before running
the analyze_rail
command

Yes Yes

RedHawk Fusion
run script file
(analyze_rail.tcl)

Includes the commands
that are required for
running rail analysis

Yes No

RedHawk-SC
Fusion run script file
(analyze_rail.py)

Includes the python
commands that are
required for running rail
analysis

No Yes

Supporting RedHawk-SC Customized Python Script Files
RedHawk-SC Fusion provides application options and commands to read in user-
customized python script files. The tool generates all design collaterals (including

IC Compiler™ II Implementation User Guide
T-2022.03

739

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Preparing Design and Input Data for Rail Analysis

Feedback

DEF, LEF, SPEF, TWF and PLOC) from the design library and adds them to the
user-customized python script to run voltage drop analysis in a single iteration of
analyze_rail. The user-customized python script file is supported in rail analysis with
multiple rail scenarios, as well as other IR-driven features, such as IR-driven placement or
IR-driven concurrent clock and data optimization.

To use a customized python script file for RedHawk-SC Fusion rail analysis,

1. Set the type of script file to python.

icc2_shell> set_app_options -name rail.generate_file_type
 -value python

2. Set the rail.generate_file_variables application option to specify the variables
for generating the input files (including DEF, LEF, SPEF, TWF and PLOC files) to add to
the user-customized python script file. You do not need to set this application option if
the customized python script file uses the same values as in RedHawk-SC Fusion.

DEF File LEF File SPEF File TWF File PLOC File

Default name in
icc2_shell

DEF LEF SPEF TWF PLOC

Default variable
name in
RedHawk-SC
Fusion

def_files lef_files spef_files tw_files ploc

For example, if you specify a test_def_file for the DEF variable to match with the DEF
file specified in the customized python script file, set the following:

icc2_shell> set_app_options -name rail.generate_file_variables \
 -value {DEF test_def_files}

3. Create and specify rail scenarios for generating the necessary input files to add to the
customized python script.

Run the create_rail_scenario command to create a rail scenario and associate it
with a design scenario in the current design. You can create multiple rail scenarios and
associate them with the same scenario in the current design.

Then run the set_rail_scenario –generate_file {LEF | TWF | DEF | SPEF |
PLOC} command to specify the rail scenario and the type of input files to generate from
the design library.

Note:
When running rail analysis using multicorner-multimode technology, you
must create rail scenarios using the create_rail_scenario command
before the set_rail_scenario command.

IC Compiler™ II Implementation User Guide
T-2022.03

740

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Preparing Design and Input Data for Rail Analysis

Feedback

The following example creates the T_low and T_high rail scenarios and generates
input files for them:

icc2_shell> create_rail_scenario -name T_low \
 –scenario func_cbest
icc2_shell> set_rail_scenario -name T_low \
 –generate_file {PLOC DEF SPEF TWF LEF} \
 –custom_script_file ./customized.py
icc2_shell> create_rail_scenario -name T_high \
 –scenario func_cbest
icc2_shell> set_rail_scenario -name T_high \
 –generate_file {PLOC DEF SPEF TWF LEF} \
 –custom_script_file ./customized.py

You can then use the customized.py file for multi-rail-scenario rail analysis or other IR-
driven features, such as IR-driven placement or IR-driven concurrent clock and data
optimization.

Examples
The following example uses a customized python script for multi-rail-scenario rail analysis
on a grid system.

#Required. Specify the below options to enable multi-rail-scenario rail
 analysis.
set_app_options -list {
 rail.enable_new_rail_scenario true
 rail.enable_parallel_run_rail_scenario true
}

#Required. Set the type of the script file to python.
set_app_options -name rail.generate_file_type -value python

#Use user-defined test_def_files for DEF variable to match
#with customized python.
set_app_options -name rail.generate_file_variables \
 -value {DEF test_def_files }

create_rail_scenario -name func.ss_125c -scenario func.ss_125c
set_rail_scenario -name func.ss_125c –voltage_drop dynamic

create_rail_scenario –name func.ff_125c_ –scenario func.ff_125c
set_rail_scenario –name func.ff_125c \
 –generate_file {PLOC DEF SPEF TWF LEF} \
 –custom_script_file ./customized.py

set_host_options -submit_protocol sge \
 -submit_command {qsub -V -notify -b y \
 -cwd -j y -P bnormal -l mfree=16G}

analyze_rail –rail_scenario {func.ss_125c func.ff_125c} \

IC Compiler™ II Implementation User Guide
T-2022.03

741

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Preparing Design and Input Data for Rail Analysis

Feedback

 -submit_to_other_machine

The following example uses a customized python script for multi-rail-scenario rail analysis
on a local machine.

#Required. Specify the below options to enable multi-rail-scenario rail
 analysis.
set_app_options -list {
 rail.enable_new_rail_scenario true
 rail.enable_parallel_run_rail_scenario true
}

#Required. Set the type of the script file to python.
set_app_options -name rail.generate_file_type -value python

#Use user-defined test_def_files for DEF variable to match
#with customized python.
set_app_options -name rail.generate_file_variables \
 -value {DEF test_def_files }

create_rail_scenario -name func.ss_125c -scenario func.ss_125c
set_rail_scenario -name func.ss_125c –voltage_drop dynamic

create_rail_scenario –name func.ff_125c_ –scenario func.ff_125c
set_rail_scenario –name func.ff_125c \
 –generate_file {PLOC DEF SPEF TWF LEF} \
 –custom_script_file ./customized.py

set_host_options -submit_command {local}

analyze_rail –rail_scenario {func.ss_125c func.ff_125c}

The following example uses a customized python script for single-scenario rail analysis on
a grid system.

Required. Specify the below options to enable multi-rail-scenario rail
 analysis.
set_app_options -list {
 rail.enable_new_rail_scenario true
 rail.enable_parallel_run_rail_scenario true
}

#Required. Set the type of the script file to python.
set_app_options -name rail.generate_file_type -value python

#Use user-defined test_def_files for DEF variable to match
#with customized python.
set_app_options -name rail.generate_file_variables \
 -value {DEF test_def_files }

create_rail_scenario –name func.ff_125c_ –scenario func.ff_125c
set_rail_scenario –name func.ff_125c \

IC Compiler™ II Implementation User Guide
T-2022.03

742

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Preparing Design and Input Data for Rail Analysis

Feedback

 –generate_file {PLOC DEF SPEF TWF LEF} \
 –custom_script_file ./customized.py

set_host_options -submit_protocol sge \
 -submit_command {qsub -V -notify -b y \
 -cwd -j y -P bnormal -l mfree=16G}

analyze_rail –rail_scenario {func.ff_125c} \
 -submit_to_other_machine

The following example uses a customized python script for IR-driven placement on a grid
system.

Required. Specify the below options to enable multi-rail-scenario rail
 analysis.
set_app_options -list {
 rail.enable_new_rail_scenario true
 rail.enable_parallel_run_rail_scenario true
}

#Required. Set the type of the script file to python.
set_app_options -name rail.generate_file_type -value python

#Use user-defined test_def_files for DEF variable to match
#with customized python.
set_app_options -name rail.generate_file_variables \
 -value {DEF test_def_files }

create_rail_scenario -name func.ss_125c -scenario func.ss_125c
set_rail_scenario -name func.ss_125c –voltage_drop dynamic

create_rail_scenario –name func.ff_125c_ –scenario func.ff_125c
set_rail_scenario –name func.ff_125c \
 –generate_file {PLOC DEF SPEF TWF LEF} \
 –custom_script_file ./customized.py

set_host_options -submit_protocol sge \
 -submit_command {qsub -V -notify -b y \
 -cwd -j y -P bnormal -l mfree=16G}

Enable IR-driven placement before running clock_opt –from final_opto
set_app_options -name opt.common.power_integrity -value true

clock_opt –from final_opto
The following example uses a customized python script for concurrent clock and data
optimization on a multicorner and multimode design on a grid system.

#Required. Specify the below options to enable MCMM-based optimization.
set_app_options -list {
 rail.enable_new_rail_scenario true
 rail.enable_parallel_run_rail_scenario true

IC Compiler™ II Implementation User Guide
T-2022.03

743

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Specifying Ideal Voltage Sources as Taps

Feedback

}
set_app_options -name rail.generate_file_type -value python

#Use user-defined test_def_files for DEF variable to match
#with customized python
set_app_options -name rail.generate_file_variables \
 -value {DEF test_def_files }

create_rail_scenario -name func.ss_125c -scenario func.ss_125c
set_rail_scenario -name func.ss_125c –voltage_drop dynamic

create_rail_scenario –name func.ff_125c_ –scenario func.ff_125c
set_rail_scenario –name func.ff_125c \
 –generate_file {PLOC DEF SPEF TWF LEF} \
 –custom_script_file ./customized.py

set_host_options -submit_protocol sge \
 -submit_command {qsub -V -notify -b y -cwd -j y \
 -P bnormal -l mfree=16G}

Enable IR-driven CCD analysis before running route_opt
set_app_options -name opt.common.power_integrity -value true

route_opt

See Also

• Specifying RedHawk and RedHawk-SC Working Directories

Specifying Ideal Voltage Sources as Taps
Taps are used to model the external voltage source environment in which the device under
analysis operates; they are not part of the design itself, but can be thought of as virtual
models of voltage sources. The locations of the ideal voltage sources and the ideal power
supplies in the design are required to achieve accurate rail analysis results.

To create a tap, use the create_taps command. You can create multiple taps by running
multiple create_taps commands.

To specify a name for the created tap, use the -name option. If the specified name is
already present in the design, the tool issues a warning message, and replaces the
original tap with the new one. When you create multiple taps by a single invocation of the
create_taps command, all of the created taps are named by using the tap_name_NNN
naming convention, where NNN is a unique integer identifier and tap_name is the string
argument to the -name option.

IC Compiler™ II Implementation User Guide
T-2022.03

744

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Specifying Ideal Voltage Sources as Taps

Feedback

You can create taps in any of the following ways:

• Treating top-level PG pins as taps

Use the -top_pg option when the block does not have physical pad or bump
information available.

Use the -supply_net option to explicitly associate a tap to the supply (either power
or ground) net connected to the object from which the tap was defined. To implicitly
associate a tap with the supply net, run the create_taps command without the
-supply_net option.

The following example creates taps for all the top-level supply pins.

icc2_shell> create_taps -supply_net VDD -top_pg
• Creating taps at absolute coordinates

Use the -layer and -point options to create taps at the specified coordinates. If
there is no supply net, supply pin, or via shape at the specified location, which means
there is no conductive path to the supply network, the tap has no effect on rail analysis
despite being present.

If you define a tap in a location where a tap already exists, the tool issues a warning
message and replaces the original tap with the new one.

You must specify the supply net with which this tap is associated by using the
-supply_net option.

Note:
When you use the -point option with the -of_objects option, the location
is relative to the origin of the specified object. Otherwise, it is relative to the
origin of the current top-level block.

The following example creates a tap using absolute coordinates. The command checks
whether the coordinate location touches any layout shape.

icc2_shell> create_taps -supply_net VDD \
 -layer 3 -point {100.0 200.0}
Warning: Tap point (100.0, 200.0) on layer 3 for net VDD does not
touch any polygon (RAIL-305)

• Using existing instances as taps

To create taps on specified objects, use the create_taps -of_objects command.
Each item in the object list can be a cell or a library cell, or a collection of cells and
library cells. By default, the tool creates the taps on the power and ground pins of the
objects. If you specify the -point option, the tool creates the taps at the specified
physical location relative to the origin of each object.

IC Compiler™ II Implementation User Guide
T-2022.03

745

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Specifying Ideal Voltage Sources as Taps

Feedback

Use existing instances for creating taps when analyzing a top-level design where pad
cells are instantiated physically.

Use the -supply_net option to explicitly associate a tap to the supply (either power
or ground) net connected to the object from which the tap was defined. To implicitly
associate a tap with the supply net, run the create_taps command without the
-supply_net option.

The following example creates taps for each instance of the some_pad_cell library cell.
The tool creates one tap per instance on the metal1 layer at a location of {30.4 16.3}
relative to the origin of the cell instance.

icc2_shell> create_taps -of_objects [get_lib_cell */some_pad_cell]\
 -layer metal1 -point {30.4 16.3}
The following example creates taps on all power and ground pins of all cell instances
that match the *power_pad_cell* pattern.

icc2_shell> create_taps -of_objects [get_cells -hier \
 power_pad_cell]

• Importing a tap file

If you are working with a block that does not yet have pins defined, or if the location or
design of the pad cells is not finalized, you can define tap locations, layer numbers, and
supply nets in an ASCII file and then import it into the tool by using the create_taps
-import command.

The supported tap file format is as follows:

net_name layer_number [X-coord Y-coord]

Lines starting with semicolon (;) or pound (#) symbols are treated as comments. The x-
coordinate and y-coordinate values are specified in microns.

For example,

icc2_shell> exec cat tap_file
 VDD 3 500.000 500.000
 VSS 5 500.000 500.000
icc2_shell> create_taps -import tap_file

• Creating taps with packages

A simple package RLC (resistance-inductance-capacitance) model provides a fixed
set of electrical characteristics assigned to all power and ground pads. To use simple
package RLC models for rail analysis, you need to specify the pad location file which
defines the simple RLC model by using rail.pad_files application option.

IC Compiler™ II Implementation User Guide
T-2022.03

746

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Specifying Ideal Voltage Sources as Taps

Feedback

For a detailed description about simple package RLC models, see the related section
in the RedHawk User Manual.

Note:
Before creating taps with simple package RLC models, you
must enable the RedHawk signoff license key using the
rail.allow_redhawk_license_checkout application option.

Validating the Taps and Finding Invalid Taps
When creating taps, by default the create_taps command verifies that the created taps
are inserted in valid locations. The tool issues a warning message if the tap does not touch
any layout shape. To place taps outside a shape without issuing a warning message,
disable the checking by using the -nocheck option.

The following command creates a tap with the -nocheck option enabled. No warning
message is issued.

icc2_shell> create_taps -supply_net VDD -layer 3 \
 -point {100.0 200.0} -nocheck
Tap Attributes

During validation checking, the tool marks each inserted tap object with the
is_valid_location attribute to indicate its validity. When validation checking is enabled,
the attribute value is true for the valid taps and false for the invalid taps. When the
-nocheck option is used, the attribute value is unknown for all taps.

The tool updates the tap attributes in subsequent voltage drop and minimum path
resistance analyses. Each tap belonging to the PG nets is checked against the extracted
shape. When the analysis is complete, the tool updates the tap validity status based on
the rail analysis results.

The following example first lists the attributes of tap objects that are added to the block in
this command run, and then checks if the Tap_1437 tap passes the validation checking.

icc2_shell> list_attributes -application -class tap
...
Properties:
 A - Application-defined
 U - User-defined
 I - Importable from design/library (for user-defined)
 S - Settable
 B - Subscripted

Attribute Name Object Type Properties Constraints

IC Compiler™ II Implementation User Guide
T-2022.03

747

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Specifying Ideal Voltage Sources as Taps

Feedback

context tap string A integrity,
 rail,
 session
full_name tap string A
is_valid_location tap boolean A
layer_name tap string A
layer_number tap int A
net tap string A
object_class tap string A
parasitics tap string A
position tap coord A
static_current tap double A
type tap string A
 absolute_coord,
auto_pg, cell_coord, cell_pg, lib_cell_coord, lib_cell_pg, signal,
 terminal,
top_pg
icc2_shell> get_attribute [get_taps Tap_1437] is_valid_location
true

Finding Invalid Taps
To find taps that fail the validity checking, use the get_taps command to report the taps
that have is_valid_location attribute set to false.

For example,

icc2_shell> get_attribute [get_taps Tap_1437] is_valid_location
false

Finding Substitute Locations for Invalid Taps
If the specified location for a tap is invalid, use the -snap_distance option of the
create_taps command to find a substitute location for the tap. The command searches
the nearby layout shapes within the specified snap distance both horizontally and vertically
on the same layer as defined by the -layer option. The tap is reinserted at the corner of a
valid shape which is within the minimum distance to the specified location.

Note:
You can search for a substitute location only for the invalid taps that are
specified by the -point and -layer options. For example,

icc2_shell> create_taps -point {50,50} -layer {M1} \
 -snap_distance 100
Snap tap point from original location (50.000, 50.000) to new
 location (90.000, 65.910)

As shown in Figure 156, the specified tap location does not touch any layout shape. The
red rectangle is the shape closest to the specified location and its lower-right corner has

IC Compiler™ II Implementation User Guide
T-2022.03

748

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Missing Via and Unconnected Pin Checking

Feedback

the minimum distance among all the other rectangles. The tool reinserts the tap at the
lower-right corner of the red rectangle.

Figure 156 Finding a Substitute Location for an Invalid Tap

Original {x,y}

100

100
1
0
0

1
0
0

Snapped tap

Removing Taps
To remove taps that were previously created using the create_taps command, use
the remove_taps command. To remove specific taps, use the -filter option with the
get_taps command. The following example removes all the supply pin taps that are of the
type top_pg:

icc2_shell> remove_taps [get_taps -filter type==top_pg]
To remove all the taps in the block, run the following command:

icc2_shell> remove_taps

Missing Via and Unconnected Pin Checking
Note:

Missing via and unconnected pin checking is supported in both RedHawk
Fusion and RedHawk-SC Fusion analysis flows.

Before you check for missing vias and unconnected pins, make sure you have the
required input files as described in Preparing Design and Input Data for Rail Analysis.

Check for missing vias or unconnected pins in the block during voltage drop analysis or
in a separate run. For example, you can perform the checking after completing the power

IC Compiler™ II Implementation User Guide
T-2022.03

749

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Missing Via and Unconnected Pin Checking

Feedback

structure and before running the place_opt command. This allows you to find power
network errors in the design before rail analysis.

By default, RedHawk/RedHawk-SC Fusion detects the following types of power network
errors:

• Unconnected pin shapes: Pin shapes that are not contiguously and physically
connected to an ideal voltage source.

• Missing vias: If two overlapping metal shapes do not contain a via within their
overlapping area, it is considered a potential missing via error.

To check for and fix missing vias or unconnected pins,

1. Define configuration options by using the set_missing_via_check_options
command, as described in Setting Checking Options.

2. Save the block by using the save_block command.

3. Perform the checking by using the analyze_rail -check_missing_via command,
as described in Checking Missing Vias and Unconnected Pins. In the RedHawk-SC
Fusion flow, you must specify the -check_missing_via option together with the
-voltage_drop option.

4. Examine the checking results by opening the generated error files in the error browser
or writing the checking results to an output file, as described in Viewing Error Data and
Writing Analysis and Checking Reports.

5. Insert PG vias to fix the reported missing vias, as described in Fixing Missing Vias.

Setting Checking Options
Before checking for missing vias or unconnected pins in the design, use the
set_missing_via_check_options command to specify the necessary options.

To check or remove the option settings, use the report_missing_via_check_options or
remove_missing_via_check_options command, respectively.

Table 61 lists the commonly used options for the set_missing_via_check_options
command. For a detailed description about each option, see the man page.

Table 61 Commonly Used Options for the set_missing_via_check_options Command

Option Description

-redhawk_script_file Uses an existing RedHawk script file for the missing via check.

IC Compiler™ II Implementation User Guide
T-2022.03

750

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Missing Via and Unconnected Pin Checking

Feedback

Table 61 Commonly Used Options for the set_missing_via_check_options Command
(Continued)

Option Description

-exclude_stack_via Excludes stacked vias from the missing via check. By default, the
tool includes stacked vias during analysis.

-check_valid_vias Reports if the metal overlap can accommodate a valid via model.

-exclude_cell /
-exclude_instance

Excludes the area covered by all instances of the specified cell, or
by a list of cell instances from the missing via check. By default, the
tool performs checking at the full-chip level.

-exclude_regions Specifies rectangular regions to exclude from the missing via check.

-sort_by_hot_inst Sorts missing vias by voltage drop values. By default, the tool sorts
by the average delta voltage between defined layers.

-threshold Sets a voltage threshold that triggers a missing via check. Set the
option to -1 to disable voltage check filtering. The default is 1 V. This
option is valid only when the checking is run during voltage drop
analysis.

-min_width Ignores segments smaller than the specified width.

-pitch Specifies the pitch for missing vias on parallel wires crossing or
touching GDSII blocks.

-gds Flags missing vias that are inside the GDSII block region and are in
routes across the GDSII blocks. By default, the missing via check
ignores items that are inside or overlap a block that has been
processed by the GDS2DEF or GDSMMX utility.

-ignore_inter_met,
-toplayer, -bottomlayer

Ignores wires on all layers between the specified top and bottom
layers.

Checking Missing Vias and Unconnected Pins
Use the analyze_rail -check_missing_via command to check for missing
vias and unconnected pins in the block based on the settings specified by the
set_missing_via_check_options command.

Use the -voltage_drop option if you want to run missing via and unconnected pin
checks together with voltage drop analysis. The tool then reports all missing vias
found in the geometry with voltage values in the missing via report. To set a voltage
threshold across layers for filtering the report, use the -threshold option of the
set_missing_via_check_options command. You can set multiple threshold values in a
missing via check.

IC Compiler™ II Implementation User Guide
T-2022.03

751

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Missing Via and Unconnected Pin Checking

Feedback

Note:
In RedHawk-SC Fusion flow, you must specify the -check_missing_via option
together with the -voltage_drop option.

In cases you want to report missing vias with and without setting a voltage threshold in
one analyze_rail run, first set the desired threshold value (for example, 0.001) and then
reset the value to -1. Setting -threshold option to -1 disables voltage checking.

When the missing via check is completed, open the generated error data to examine the
errors in the error browser. For details, see Viewing Error Data.

Example 45
icc2_shell> set_missing_via_check_options -exclude_stack_via \
 -threshold 0.0001
icc2_shell> analyze_rail –voltage_drop static –check_missing_via \
 –nets {VDD VSS}
The above example sets the threshold value to 0.0001 and compares voltages across
two ends of a via, excluding stack vias. It then runs the missing via check during static rail
analysis.

The RedHawk script file includes the following commands:

perform extraction -power -ground
perform analysis -static
mesh vias -report_missing -exclude_stack_via -threshold 0.0001 \
 -o apache.missingVias1

Example 46
icc2_shell> set_missing_via_check_options -exclude_stack_via \
 -threshold -1
icc2_shell> analyze_rail -voltage_drop –check_missing_via \
 –nets {VDD VSS}
The above example sets the threshold value to -1 to disable the voltage checking, and
runs the missing via check.

The RedHawk script file includes the following commands:

perform extraction -power -ground
mesh vias -report_missing -exclude_stack_via -threshold -1 \
 -o apache.missingVias1.nothreshold

Example 47
icc2_shell> set_missing_via_check_options -exclude_stack_via \
 -threshold 0.001
icc2_shell> set_missing_via_check_options -exclude_stack_via \
 -threshold 0.002
icc2_shell> set_missing_via_check_options -exclude_stack_via \

IC Compiler™ II Implementation User Guide
T-2022.03

752

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Missing Via and Unconnected Pin Checking

Feedback

 -threshold -1
icc2_shell> analyze_rail -voltage_drop static -check_missing_via \
 -nets {VDD VSS}
icc2_shell> report_rail_result -type missing_vias -supply_nets \
 {VDD VSS} rpt.missing_vias
 Information: writing rpt.missing_vias.no_threshold done
 Information: writing rpt.missing_vias done

In the above example, three different threshold values are set for a missing via check.
The tool generates two missing via reports: rpt.missing_vias.no_threshold includes all
missing vias found in the geometry, while rpt.missing_vias includes the vias whose voltage
difference across two ends is less than 0.001 and 0.002.

Viewing Error Data
RedHawk/RedHawk-SC Fusion saves the checking error data file, named
missing_via.supplyNetName.err, in the working directory. The tool generates one error
data file for each supply net. Before you quit the current session, be sure to save the block
to keep the generated error data in the block.

To open an error data file in the error browser, choose File > Open ... from the Error
Browser dialog box, and then select the error data file to open in the Open Error Data
dialog box (see Figure 157).

For more information about the error browser, see “Using the Error Browser” in the IC
Compiler II Graphical User Interface User Guide.

IC Compiler™ II Implementation User Guide
T-2022.03

753

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Missing Via and Unconnected Pin Checking

Feedback

Figure 157 Opening Error Data from the Error Browser

See Also

• Specifying RedHawk and RedHawk-SC Working Directories

Fixing Missing Vias
To fix the missing vias by inserting PG vias based on the specified DRC error objects
written by the analyze_rail command, use the fix_pg_missing_vias command.

When the tool inserts a PG via for a missing via error object, it sets the status of the error
object to fixed in the error browser (see Figure 158). This allows you to quickly check if
all the missing vias are fixed.

IC Compiler™ II Implementation User Guide
T-2022.03

754

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Running Rail Analysis with Multiple Rail Scenarios

Feedback

Figure 158 Error Status After Inserting PG Vias for Missing Vias

The tool marks the error object as fixed

The following example inserts PG vias for all error objects of the VDD nets reported by the
analyze_rail -check_missing_via command:

icc2_shell> set errdm [open_drc_error_data rail_miss_via.VDD.err]
icc2_shell> set errs [get_drc_errors -error_data $errdm]
icc2_shell> fix_pg_missing_vias -error_data $errdm $errs

Running Rail Analysis with Multiple Rail Scenarios
To control scenarios for RedHawk Fusion or RedHawk-SC Fusion rail analysis:

• Use the rail.scenario_name application option to specify a different design scenario
for rail analysis.

For details, see Specifying a Design Scenario for Rail Analysis.

IC Compiler™ II Implementation User Guide
T-2022.03

755

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Running Rail Analysis with Multiple Rail Scenarios

Feedback

• You can create rail scenarios and associate them with a design scenario in the
current design. This allows you to identify possible power integrity issues by running
optimization and rail analysis on one or more rail scenarios.

For details, see Creating and Specifying Rail Scenarios for Rail Analysis.

Specifying a Design Scenario for Rail Analysis
By default, RedHawk or RedHawk-SC Fusion analyzes only the current design scenario
for a multicorner-multimode design. To specify a different design scenario for rail analysis,
use the rail.scenario_name application option. The tool honors the specified design
scenario for the IR-driven features in power integrity flow, such as IR-driven placement, IR-
driven concurrent clock and data optimization, and IR-driven optimization.

Here is a script example:

open_lib
open_block

set_app_option -name rail.technology -value 7
set_app_options -name rail.tech_file -value ./Apache.tech
set_app_options -name rail.lib_files -value {\
 A.lib \
 B.lib }
set_app_options -name rail.switch_model_files -value
 {./switch_cells.txt }
source ./test_taps.tcl

current_scenario func_max
set_app_options -name rail.scenario_name -value func_typ

analyze_rail -voltage_drop

Creating and Specifying Rail Scenarios for Rail Analysis
You can create multiple rail scenarios and associate them with a design scenario in the
current design. The created rail scenarios are saved in the design library.

To run rail analysis on multiple rail scenarios:

1. Specify the following application options to enable multi-rail-scenario rail analysis:

icc2_shell> set_app_options -list {
 rail.enable_new_rail_scenario true
 rail.enable_parallel_run_rail_scenario true
}

IC Compiler™ II Implementation User Guide
T-2022.03

756

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Running Rail Analysis with Multiple Rail Scenarios

Feedback

2. Run the set_scenario_status –ir_drop command to enable rail analysis for the
specified design scenario.

icc2_shell> set_scenario_status func_cbest -ir_drop true
3. Create a rail scenario and associate it with an existing design scenario. Specify rail

attributes for the created rail scenario with the set_rail_scenario command. You can
create multiple rail scenarios for different purposes and associate them with an existing
design scenario.

icc2_shell> create_rail_scenario -name T_low \
 –scenario func_cbest
icc2_shell> set_rail_scenario -name T_low \
 -voltage_drop dynamic -extra_gsr_option_file extra.gsr \
 -nets {VDD VSS}
icc2_shell> create_rail_scenario -name T_high \
 –scenario func_cbest
icc2_shell> set_rail_scenario -name T_high \
 -voltage_drop dynamic -extra_gsr_option_file extra2.gsr \
 -nets {VDD VSS}

4. Specify the multicore processing setting with the set_host_options command. For
example, to run rail analysis on a local host, use the following command:

icc2_shell> set_host_options -submit_command {local}
To run analysis on a grid system, use the following command:

icc2_shell> set_host_options -submit_protocol sge \
 -submit_command {qsub -V -b y -cwd -P bnormal -l mfree=16G}

5. Run rail analysis with the analyze_rail command.

icc2_shell> analyze_rail -rail_scenario {T_high T_low} \
 -submit_to_other_machines

Note:
To use the multi-rail-scenario rail analysis capability for IR-driven placement or
IR-driven concurrent clock and data optimization, you must set the following
application option before the clock_opt –from final_opto or route_opt
command:

icc2_shell> set_app_options \
 –name opt.common.power_integrity –value true
For more information about power integrity analysis, see the Enabling the
Power Integrity Features section.

Examples
The following example runs rail analysis on multiple rail scenarios.

IC Compiler™ II Implementation User Guide
T-2022.03

757

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Running Rail Analysis with Multiple Rail Scenarios

Feedback

Specify options for multi-rail-scenario rail analysis
set_app_options -list {
 rail.enable_new_rail_scenario true
 rail.enable_parallel_run_rail_scenario true
}

set_host_options -submit_protocol sge \
 -submit_command {qsub -V -notify -b y -cwd -j y \
 -P bnormal -l mfree=16G}

Custom RedHawk-SC Fusion python script to specify user-defined
toggle rate for scenario T_custom
create_rail_scenario -name T_custom -scenario func_cbest
set_rail_scenario -name T_custom -custom_script_file custom_sc.py

Default RedHawk-SC Fusion toggle rate for scenario T_def
create_rail_scenario -name T_def -scenario func_cbest
set_rail_scenario -name T_def -voltage_drop dynamic -nets {VDD VSS}

Run RedHawk-SC Fusion rail analysis on the specified rail scenario
analyze_rail -rail_scenario {T_custom T_def} -submit_to_other_machines

(Optional) Open and examine the generated rail results
open_rail_result {T_custom T_def}

The following example runs multi-rail-scenario rail analysis in the power integrity flow.

Specify RedHawk/RedHawk-SC based options
set_app_options -name rail.enable_redhawk -value true
set_app_options -name rail.enable_redhawk_sc -value false
set_app_options -name rail.redhawk_path -value /test/bin
set_app_options -name rail.tech_file -value design_data/tech/rh.tech
set_app_options -name rail.lib_files -value {
inputs/test/CCSP_test.lib
}
set_host_options -submit_protocol sge -submit_command {qsub -V \
 -notify -b y -cwd -j y -P bnormal -l mfree=16G}

Specify options for running optimization on multiple rail scenarios
set_app_options -list {
 rail.enable_new_rail_scenario true
 rail.enable_parallel_run_rail_scenario true
}
Enable IR drop flag for a given scenario
set_scenario_status [current_scenario] -ir_drop true

Create a rail scenario and specify associated options
create_rail_scenario -name T_low -scenario func_cbest
set_rail_scenario -name T_low -voltage_drop dynamic \
 -extra_gsr_option_file extra.gsr -nets {VDD VSS}

create_rail_scenario -name T_high –scenario func_cbest

IC Compiler™ II Implementation User Guide
T-2022.03

758

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Voltage Drop Analysis

Feedback

set_rail_scenario -name T_high -voltage_drop dynamic \
 -extra_gsr_option_file extra2.gsr -nets {VDD VSS}

Enable power integrity flow
set_app_options –name opt.common.power_integrity –value true

Performing Voltage Drop Analysis
Note:

Before running the analyze_rail command to calculate voltage drops and
current violations, ensure you have provided the input files required by each
analysis mode.

For more information about preparing input files, see Preparing Design and
Input Data for Rail Analysis.

Voltage drop analysis is supported in both RedHawk Fusion and RedHawk-SC
Fusion analysis flows.

To invoke the RedHawk/RedHawk-SC tool for calculating voltage drops of the specified
power and ground networks, use the analyze_rail command with the following options:

• Use the -voltage_drop option to specify the analysis mode.

◦ static: Performs static voltage drop analysis.

◦ dynamic: Performs dynamic voltage drop analysis.

◦ dynamic_vectorless: Performs dynamic voltage drop analysis without Verilog
Change Dump (VCD) inputs.

◦ dynamic_vcd: Performs dynamic voltage drop analysis with VCD inputs. When
enabled, use the -switching_activity option to specify a switching activity file.

• Use the -nets option to specify the power and ground supply nets to analyze. The
tool considers all the switched or internal power nets of the specified power nets in the
analysis. You do not need to explicitly specify the internal power nets.

• (Optional) Use the -switching_activity option to specify a switching activity file.
The supported file formats are: VCD, SAIF, and ICC_ACTIVITY. When not specified, by
default the tool uses the toggle rate for rail analysis.

IC Compiler™ II Implementation User Guide
T-2022.03

759

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Voltage Drop Analysis

Feedback

Note:
If you are using the dynamic vector-free mode, you do not need to provide
switching activity information.

To specify a switching activity file, use the -switching_activity option by using the
following syntax:

-switching_activity {type file_name [strip_path] [start_time
 end_time]}

◦ VCD: Specifies a VCD file that is generated from a gate-level simulation. By default,
rail analysis reads and uses all time values in the VCD file.

To specify the time window to read from the VCD file, use the optional start_time
and end_time arguments with the -switching_activity option. When specified,
the tool reads all time values from the VCD file, but uses only the specified time
window for rail analysis.

◦ SAIF: Specifies one or more SAIF files generated from a gate-level simulation.

◦ icc_activity: Runs the IC Compiler II write_saif command to generate a SAIF
file that contains the user-annotated and simulated switching activity (including
state-dependent and path-dependent information) for the complete design without
running the propagation engine.

The strip_path argument removes the specified string from the beginning of the object
names. Using this option modifies the object names in the VCD or SAIF file to make
them compatible with the object names in the block. The strip_path argument is case-
sensitive.

• (Optional) By default, the tool uses the RedHawk/RedHawk-SC power analysis feature
to calculate the power consumption of the specified power and ground network. If
you prefer having the IC Compiler II tool generate the necessary power data for rail
analysis, set the -power_analysis option to icc2.

For a detailed description about how to run power analysis using the IC Compiler II
report_power command, see Analyzing Power.

• (Optional) By default, the analyze_rail command automatically generates a GSR
file for running RedHawk rail analysis. To specify an external GSR file to append to the
GSR file generated in the current run, use the -extra_gsr_option_file option.

• (Optional) Use the -redhawk_script_file option to specify an existing RedHawk
script file generated in an earlier analyze_rail run.

When using an existing script file for rail analysis, the tool honors the settings in
this file and ignores all other currently enabled options. For example, if you run the

IC Compiler™ II Implementation User Guide
T-2022.03

760

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Voltage Drop Analysis

Feedback

analyze_rail -voltage_drop static -redhawk_script_file myscript.tcl
command, the tool ignores the -voltage_drop option setting.

When the -redhawk_script_file option is not specified, you must specify the nets to
analyze by using the -nets option.

The following example performs static voltage drop analysis on the VDD and VSS nets
with the optional settings defined in a GSR configuration file.

icc2_shell> analyze_rail -voltage_drop static -nets {VDD VSS} \
 -extra_gsr_option_file add_opt.gsr

Viewing Voltage Drop Analysis Results
When analysis is complete, the tool saves the analysis results and logs in the working
directory. For more information about the working directories, see Specifying RedHawk
and RedHawk-SC Working Directories.

The analyze_rail command generates the following files to invoke the RedHawk tool for
running rail analysis:

• The RedHawk run script (analyze_rail.tcl)

• The RedHawk GSR configuration file (*.gsr)

The analyze_rail command generates the following file to invoke the RedHawk-SC tool
for running rail analysis:

• The RedHawk-SC python script (analyze_rail.py)

The RedHawk or RedHawk-SC tool generates the following files in the in-
design.redhawk/design_name.result (or in-design.redhawk_sc/design_name.result in
RedHawk-SC flow) directory when rail analysis is complete:

• The RedHawk analysis log (analyze_rail.log.*)

• Timing window file (*.sta)

• Signal SPEF files (*.spef)

• DEF/LEF files (*.def, *.lef) for the full-chip analysis

When voltage drop analysis is complete, the tool saves the analysis results (*.result) in
the design_name directory under the working directory. The rail analysis results are used
to display maps and query attributes to determine the problem areas with large voltage
drops.

IC Compiler™ II Implementation User Guide
T-2022.03

761

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing PG Electromigration Analysis

Feedback

• To reload the rail results for displaying maps in the GUI, use the open_rail_result
command.

For example,

icc2_shell> open_rail_result
REDHAWK_RESULT

For more information about displaying maps, see Displaying Maps in the GUI.

• To write out the rail analysis results, use the report_rail_result command. You
must specify the result type with the -type option. For example, to write out the voltage
drop values for the current block, set the -type option with the voltage_drop_or_rise
argument.

For more information, see Writing Analysis and Checking Reports.

• To query the results stored in the current rail results cache, use the get_attribute
commands.

For more information, see Querying Attributes.

Note:
RedHawk Fusion does not support results that are generated by the
RedHawk tool outside of the IC Compiler II environment. The RedHawk dump
icc2_result command works only within the IC Compiler II session.

Performing PG Electromigration Analysis
Note:

PG electromigration analysis is supported in both RedHawk Fusion and
RedHawk-SC Fusion analysis flows.

To analyze the current density on PG nets and identify the segments with potential
electromigration issues, run the analyze_rail -electromigration command. The
analysis results are saved in the working directory.

To perform electromigration analysis,

1. Set the rail.tech_file application option to specify the Apache technology file
(*.tech) that defines the layer-by-layer current density limits.

For example,

icc2_shell> set_app_options -name rail.tech_file \
 -value design_data/tech/test.tech

IC Compiler™ II Implementation User Guide
T-2022.03

762

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing PG Electromigration Analysis

Feedback

2. Run the analyze_rail command with the following options:

• Use the -voltage_drop and -electromigration options to enable
electromigration analysis.

• Use the -nets option to specify the power and ground supply nets to analyze. The
tool considers all the switched or internal power nets of the specified power nets in
the analysis. You do not need to explicitly specify the internal power nets.

• (Optional) By default, the analyze_rail command automatically generates a GSR
file for running RedHawk rail analysis. To specify an external GSR file to append
to the GSR file generated in the current run, use the -extra_gsr_option_file
option.

• (Optional) To specify an existing RedHawk script file that was generated in an
earlier analyze_rail run, use the -redhawk_script_file option.

When using an existing script file for rail analysis, the tool honors the settings
in this script file and ignores all other currently enabled options. For example, if
you run the analyze_rail -voltage_drop static -redhawk_script_file
myscript.tcl command, the tool ignores the -voltage_drop option.

When the -redhawk_script_file option is not specified, you must specify the
nets to analyze by using the -nets option.

3. Check the analysis results, as described in Viewing PG Electromigration Analysis
Results.

Viewing PG Electromigration Analysis Results
When PG electromigration analysis is complete, you can check for current violations
by displaying a PG electromigration map or checking the generated errors in the error
browser.

• Displaying the PG Electromigration Map

• Checking PG Electromigration Violations

Displaying the PG Electromigration Map
A PG electromigration map is a visual display of the color-coded electromigration values
overlaid on the physical supply nets.

For static analysis, the map displays average electromigration values. For dynamic
analysis, the map displays average electromigration values, peak electromigration values,
or root mean square electromigration values.

Figure 159 shows an example of the electromigration map in which problem areas
are highlighted in different colors. Use the options to investigate the problem areas by

IC Compiler™ II Implementation User Guide
T-2022.03

763

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing PG Electromigration Analysis

Feedback

selecting layers or nets to display. For example, to examine the current value of one
specific net, deselect all the nets and then select the net to display from the list. To analyze
only the shapes on a layer, select the layer from the list.

For a detailed procedure about how to display an electromigration map, see Displaying
Maps in the GUI.

Figure 159 Displaying a PG Electromigration Map

Checking PG Electromigration Violations
When PG electromigration analysis is complete, you can check the generated error files in
the error browser or write the generated errors to an output file.

The tool does not write the generated errors to the working directory, meaning the error
data is deleted if you exit the tool without saving the block. Ensure that you save the block
to keep the generated error data if you want to examine the errors in another session.

IC Compiler™ II Implementation User Guide
T-2022.03

764

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing PG Electromigration Analysis

Feedback

You can examine the generated error files in the error browser or write the generated
errors to an output ASCII file.

• To examine the generated errors in the error browser,

1. Choose View > Error Browser from the GUI.

2. In the Open Error Data dialog box, select the errors to examine and click Open
Selected.

3. Check the details of the errors in the Error Browser (see Figure 160).

IC Compiler™ II Implementation User Guide
T-2022.03

765

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing PG Electromigration Analysis

Feedback

Figure 160 Opening Generated Errors in the Error Browser

• To write errors to an ASCII file, use the following script:

set fileName "errors.txt"
set fd [open $fileName w]
set dm [open_drc_error_data rail_pg_em.VDD.err]
set all_errs [get_drc_errors -error_data $dm *]
foreach_in_collection err $all_errs {
 set info [get_attribute $err error_info];
 puts $fd $info }
close $fd

IC Compiler™ II Implementation User Guide
T-2022.03

766

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Minimum Path Resistance Analysis

Feedback

Here is an example of the output error file:

M1 (414.000,546.584 414.344,546.584) em ratio 23585.9% width 0.06
 blech
 length 0.000 um current 0.0024963
M1 (414.344,546.584 416.168,546.584) em ratio 23401.3% width 0.06
 blech
 length 0.000 um current 0.0024768
M1 (416.168,546.584 416.776,546.584) em ratio 23241.7% width 0.06
 blech
 length 0.000 um current 0.0024599
M1 (416.776,546.584 417.992,546.584) em ratio 23082.2% width 0.06
 blech
 length 0.000 um current 0.0024430
M1 (417.992,546.584 419.208,546.584) em ratio 22897.7% width 0.06
 blech
 length 0.000 um current 0.0024235
M1 (419.208,546.584 419.512,546.584) em ratio 22731.1% width 0.06
 blech
 length 0.000 um current 0.0024059
M1 (419.512,546.584 421.184,546.584) em ratio 22564.4% width 0.06
 blech
 length 0.000 um current 0.0023882
M1 (421.184,546.584 421.488,546.584) em ratio 22349% width 0.06 blech
 length 0.000 um current 0.0023654
M1 (421.488,546.584 423.160,546.584) em ratio 22133.5% width 0.06
 blech
 length 0.000 um current 0.0023426
M1 (423.160,546.584 423.616,546.584) em ratio 21967.2% width 0.06
 blech
 length 0.000 um current 0.0023250

Performing Minimum Path Resistance Analysis
Note:

Minimum path resistance analysis is supported in both RedHawk Fusion and
RedHawk-SC Fusion analysis flows.

Perform minimum path resistance analysis to quickly detect power and ground network
weaknesses in the design. The minimum path resistance value of a node is the resistance
value on the smallest resistive path to the ideal voltage source locations (taps). The ideal
voltage sources can be power or ground pins, user-defined taps, or packages. Because
this value represents only the resistance on a single path, it is not necessarily same as the
effective resistance value from the node to the supply or ground; instead, it represents an
upper bound on the effective resistance of a node to the supply or ground.

IC Compiler™ II Implementation User Guide
T-2022.03

767

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Minimum Path Resistance Analysis

Feedback

To perform minimum path resistance analysis, run the analyze_rail
-min_path_resistance command. You must specify the power and ground nets to
analyze by using the -nets option.

Note:
In RedHawk-SC rail analysis flow, you must specify both the -voltage_drop
and -min_path_resistance options for minimum path resistance calculation.

You can perform minimum path resistance analysis before or during voltage drop analysis.
When the analysis is completed, the tool writes the minimum path resistance values and
the voltage drop results into the same rail result.

The following example performs voltage drop analysis and minimum path resistance
calculation at the same time.

icc2_shell> analyze_rail -nets {VDD VSS} \
 -min_path_resistance -voltage_drop static
The following example performs only minimum path resistance analysis.

icc2_shell> analyze_rail -nets {VDD VSS} -min_path_resistance

Viewing Minimum Path Resistance Analysis Results
When the analysis is complete, run the report_rail_result -type
minimum_path_resistance command to display a minimum path resistance map, write
the results to an output file, or query the attributes on the cell instances or pins.

The following example writes the calculated minimum path resistances for the VDD net to
an output file called minres.rpt.

icc2_shell> open_rail_result
icc2_shell> report_rail_result -type minimum_path_resistance \
 -supply_nets { vdd } minres.rpt
icc2_shell> sh cat minres.rpt
FEED0_14/vbp 518.668
INV61/vdd 158.268
ARCR0_1/vbp 145.582
FEED0_5/vdd 156.228
INV11/vbp 518.669

The output minres.rpt report includes the entire resistance information.

icc2_shell> sh cat minres.rpt
FEED0_14/vbp 518.668
INV61/vdd 158.268
ARCR0_1/vbp 145.582
FEED0_5/vdd 156.228
INV11/vbp 518.669

IC Compiler™ II Implementation User Guide
T-2022.03

768

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Minimum Path Resistance Analysis

Feedback

To write out a detailed minimum resistance path report for a cell instance, run the
report_rail_minimum_path command and specify the net and the cell to report. To see
the segment-by-segment resistance of that minimum resistance path shown in the GUI,
use the -error_cell option of the report_rail_minimum_path command to save the
geometries on the path of the minimum path resistance to an error cell. You can then open
the error cell in an error browser and check the minimum resistance path from the pin of
the cell to the nearest tap and trace each go-through geometries.

In the following example, all geometries on the minimum resistance path are traced and
written to the error cell named test.err.

icc2_shell> open_rail_result
icc2_shell> report_rail_minimum_path -cell U19 -net VDD -error_cell
Shown in Figure 161, each geometry is classified by layer in the error browser. Click a
geometry to check for detailed information, such as IR drop, resistance, bounding box,
and so on. In the GUI, the traced path is highlighted in yellow in the design layout (see
Figure 162).

Figure 161 Displaying Error Cells in the Error Browser

IC Compiler™ II Implementation User Guide
T-2022.03

769

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Minimum Path Resistance Analysis

Feedback

Figure 162 Traced Segment is Highlighted in the Design Layout

See Also

• Displaying Maps in the GUI

• Writing Analysis and Checking Reports

• Querying Attributes

Tracing Minimum Path Resistance Using the Mouse Tool
Use the minimum path resistance (MPR) mouse tool to interactively trace the path with
the least resistance from the specified power or ground net to the boundary nodes in the
design.

To trace the calculated minimum path resistance with the MPR interactive tracing tool,

1. In the GUI, choose Task > Rail and then select Analysis Tools from the task list to open
the Task Assistant window (see Figure 163).

2. In the Task Assistant - Rail window that opens, click MPR Mouse Tool.

3. Specify the nets to analyze. Click OK.

IC Compiler™ II Implementation User Guide
T-2022.03

770

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Minimum Path Resistance Analysis

Feedback

The MPR interactive mouse tool, which is shown in Figure 164, provides the following
features:

• Zoom in and out to review the traces

• Provide two operation modes: the Add mode to trace multiple paths in the map, and the
Replace mode to trace one path at a time in the map

• Use the standard query tool to show tracing information

• Select a region to trace multiple cells at a time

• Document the interactive actions by scripts

Figure 163 Invoking the MPR Mouse Tool

IC Compiler™ II Implementation User Guide
T-2022.03

771

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Minimum Path Resistance Analysis

Feedback

Figure 164 Tracing the Path With the Least Resistance

Click to hide all
objects from showing
in the map

Then select Cell

IC Compiler™ II Implementation User Guide
T-2022.03

772

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Effective Resistance Analysis

Feedback

Performing Effective Resistance Analysis
Note:

Effective resistance analysis is supported in both RedHawk Fusion and
RedHawk-SC Fusion analysis flows.

To calculate effective resistance for the specified power and ground nets, use the
analyze_rail -effective_resistance command.

To specify a list of cell instances for effective resistance calculation,
describe the target instances in a text file. Then specify this text file with the
rail.effective_resistance_instance_file application option.

For example,

icc2_shell> sh cat cell_list.txt
u_GS_PRO_65
u_GS_PRO_64
ChipTop_U_compressor_mode/U3

icc2_shell> set_app_options \
 -name rail.effective_resistance_instance_file \
 –value cell_list.txt
icc2_shell> analyze_rail -nets {VDD VSS} -effective_resistance
You can perform effective resistance analysis before or during voltage drop analysis.
When the analysis is completed, the tool writes the effective resistance values into the
same rail result with the voltage drop results.

Note:
In RedHawk-SC rail analysis flow, you must specify both the
-effective_resistance and -voltage_drop options for effective resistance
calculation.

When the calculation is complete, the tool saves the results in the working directory.
To write the effective resistance values to a text file, use the report_rail_result
-type effective_resistance command. To query the resistance value, use the
get_attribute command.

For example,

icc2_shell> get_attribute [get_pins u_GS_PRO_65/VDD] \
 effective_resistance

IC Compiler™ II Implementation User Guide
T-2022.03

773

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Distributed RedHawk Fusion Rail Analysis

Feedback

See Also

• Specifying RedHawk and RedHawk-SC Working Directories

• Writing Analysis and Checking Reports

Performing Distributed RedHawk Fusion Rail Analysis
Note:

The distributed rail analysis feature is supported only in RedHawk Fusion
analysis flow.

By default, the analyze_rail command uses a single process to perform RedHawk
rail analysis. To reduce memory usage and total runtime, use the distributed processing
method to run RedHawk Fusion on a machine other than the one on which the IC
Compiler II tool is run.

You can submit multiple RedHawk jobs to the target farm machines and run the jobs in
parallel in the same IC Compiler II session. This allows you to run multiple RedHawk
analyses with only one IC Compiler II license. Each of the RedHawk jobs requires one
SNPS_INDESIGN_RH_RAIL license key.

To examine the generated analysis result, first run the open_rail_result command
to load the result that is saved in the directory you specify. You can then investigate the
problematic areas in the map and check for violations in a text file or in an error view.

You can open one result context at a time. To load the rail context generated in another
analysis run, first close the current rail result using the close_rail_result command,
and then open the desired rail result (see Displaying Maps in the GUI).

License Requirement

By default, the number of required licenses is the number of script files or configurations
specified with the –multiple_script_files option during distributed processing mode. If
the number of available licenses is less than the number of script files at the time when the
analyze_rail command is run, the command stops with an error message.

To check for available SNPS_INDESIGN_RH_RAIL licenses continuously during
the analyze_rail run, set the rail.license_checkout_mode application option to
wait. If the tool detects that a license becomes available, the tool reuses or checks
out the license and submits a script to a farm machine immediately. By default, the
rail.license_checkout_mode application option is set to nowait.

When the analysis is finished, run the remove_licenses command to release the
SNPS_INDESIGN_RH_RAIL licenses.

icc2_shell> remove_licenses SNPS_INDESIGN_RH_RAIL

IC Compiler™ II Implementation User Guide
T-2022.03

774

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Distributed RedHawk Fusion Rail Analysis

Feedback

In Figure 165, the rail.license_checkout_mode application option is set to
wait. There are six scripts to submit to the farm machines with only two available
SNPS_INDESIGN_RH_RAIL licenses. In this case, the tool first checks out two licenses
and waits for other licenses to become available. When a script finishes the job, the tool
reuses its license immediately to submit other scripts.

Figure 165 Waiting for Available Licenses During Distributed RedHawk Fusion Run

Invoke analyze_rail

Check the number of
available licenses

Script 1

Script 2

license 1

license 2

Script 3

Script 4

Script 5

Script 6

1

3 5

2

4 6

Set rail.license_checkout_mode to wait
The tool first submits two scripts
to the farm machines, because there
are only two licenses available.

2

3 ... The tool checks for available licenses
during the analyze_rail run. When
a license becomes available, the tool
reuses it.

1

Steps to Enable Distributed Processing

To enable distributed processing for RedHawk Fusion,

1. Define the distributed processing configuration by using the set_host_options
command. You can specify one or more of the following options:

Option Description

-submit_protocol Specifies the protocol to submit jobs, such as LSF, GRD, or
SGE.Note: Before job submission, run the rsh command to
check if the target farm machine supports the rsh protocol to
accept distributed processing from on a remote machine.

-target Specifies to submit jobs for RedHawk only.

-timeout Specifies the job submission timeout value.

IC Compiler™ II Implementation User Guide
T-2022.03

775

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Distributed RedHawk Fusion Rail Analysis

Feedback

Option Description

-submit_command Specifies the full path name of the LSF, GRD, SGE, or custom
job submission program along with other options as needed,
such as qsub or bsub.

-max_cores Controls the number of cores each distributed worker job can
use. The default is 1.

2. Run the analyze_rail command with the following options:

Option Description

-submit_to_other_machines Enables RedHawk job submission to the target farm machines.

–multiple_script_files\
directory_name script_name

Specifies the RedHawk scripts and the directories for saving
analysis results.

Example 48
%> rsh myMachine ls
test1
CSHRC
DESKTOP
> set_host_options "myMachine" –target RedHawk \
 –max_cores 2 –timeout 100
> analyze_rail -submit_to_other_machines \
 -voltage_drop static -nets {VDD VDDG VDDX VDDY VSS}

The above example first checks if the machine myMachine supports the rsh protocol,
and then enables job submission to the myMachine machine for RedHawk Fusion only.
Timeout value is 100 and the number of cores to use is 2.

Example 49
> set_host_options –submit_protocol sge \
 –submit_command { qsub –P normal }
> analyze_rail -submit_to_other_machines -voltage_drop \
 static -nets {VDD VSS}

The above example enables job submission to a machine on the SGE farm machine.

Example 50
> set_host_options -submit_protocol lsf \
 -submit_command {bsub}
> analyze_rail -submit_to_other_machines \
 –multiple_script_files {{result1 RH1.tcl} {result2 RH2.tcl}}

> open_rail_result result1
> close_rail_result
> open_rail_result result2

IC Compiler™ II Implementation User Guide
T-2022.03

776

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Working With Macro Models

Feedback

The above example submits two RedHawk jobs with two RedHawk scripts to the LSF
farm machines and specifies the directories for saving the analysis results as result1 and
result2.

Example 51
> set_app_options -name rail.license_checkout_mode \
 -value wait
> set_host_options -submit_protocol sge \
 -submit_command {qsub}
> analyze_rail -submit_to_other_machines \
 -multiple_script_files {{ result1 RH1.tcl} {result2 RH2.tcl} \
 {result3 RH3.tcl}}

The above example submits three RedHawk scripts to the SGE farm machines and waits
for an available license during the analyze_rail run.

Working With Macro Models
Memory and macro cells are used in designs with advanced process technologies to
reduce memory usage and improve the rail analysis performance. Macro models are
supported in both RedHawk Fusion and RedHawk-SC Fusion analysis flows.

To learn about working with macro models, see the following topics:

• Generating Macro Models

• Creating Block Contexts

Generating Macro Models
To consider current and power distribution inside the memory blocks when analyzing
hierarchical designs, use the exec_gds2rh command to generate RedHawk macro
models for memory blocks. The command invokes the RedHawk gds2rh utility under
the hood and extracts power grids and current sources from the memory blocks with
varying levels of abstraction―from fully detailed models for accurate block-level analysis
to abstract models for full-chip dynamic analysis.

Note:
To create RedHawk macro models using the RedHawk gds2rh utility, you must
specify the path to the RedHawk executable with the rail.redhawk_path
application option before running the exec_gds2rh command.

The generated macro models are saved in the current working directory or the one you
specify in the configuration file. To run rail analysis with the generated macro models, set
the rail.macro_models -value {cell1 path1} application option before running the
analyze_rail command.

IC Compiler™ II Implementation User Guide
T-2022.03

777

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Working With Macro Models

Feedback

For more information about how to run the RedHawk gds2rh utility, see the RedHawk
User Manual.

Required Configuration File

To generate a RedHawk macro model using the gds2rh utility, you must provide a
configuration file that includes the following information:

• GDS II files

• Top design name

• Layer mapping file

• Power and ground net names

Specify one configuration file per memory. Make sure the configuration file contains the
correct syntax for macro model generation. Otherwise, the tool issues an error message
and terminates the model generation process.

The following is an example of the configuration file:

LEF_FILE {
 ./lef/saed32sram.lef
}
GDS_FILE ./gds/SRAMLP2RW128x16.gds
GDS_MAP_FILE ./redhawk.gdslayermap
OUTPUT_DIRECTORY SRAMLP2RW128x16_output

USE_LEF_PINS_FOR_TRACING 1

VDD_NETS {
 VDD
}
GND_NETS {
 VSS
}
TOP_CELL SRAMLP2RW128x16

Examples

The following example generates RedHawk macro models for the SRAMLP2RW128x16,
SRAMLP2RW32x4, SRAMLP2RW64x32 and SRAMLP2RW64x8 memories:

Specify the path to the RedHawk executable
set_app_options -name rail.redhawk_path -value $env(REDHAWK_IMAGE)/bin

Specify one configuration file per memory
exec_gds2rh -config_file SRAMLP2RW128x16.config
exec_gds2rh -config_file SRAMLP2RW32x4.config
exec_gds2rh -config_file SRAMLP2RW64x32.config
exec_gds2rh -config_file SRAMLP2RW64x8.config

IC Compiler™ II Implementation User Guide
T-2022.03

778

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Working With Macro Models

Feedback

The following example runs top-level rail analysis with the macro models that are
generated in the previous example:

Run rail analysis at top level

open_lib
open_block top
link_block

Specify rail analysis setting
create_taps
set_app_options -name rail.tech_file -value test.tech
set_app_options -name rail.lib_files -value test.lib
…
Set macro model file
set_app_options –name rail.macro_models \
 –value { SRAMLP2RW128x16 ./data_ SRAMLP2RW128x16
 SRAMLP2RW32x4 ./data_SRAMLP2RW32x4
 SRAMLP2RW64x32 ./data_SRAMLP2RW64x32
 SRAMLP2RW64x8 ./data_ SRAMLP2RW64x8
 }

Run rail analysis
analyze_rail -voltage_drop static -all_nets

Check rail results
open_rail_result
gui_start

Creating Block Contexts
Macro models are used to reduce total turnaround time for designs with advanced process
technology. When violations are reported in the macros during full-chip signoff voltage
drop analysis, it might be time-consuming to fix the violations at the block level and then
rerun full-chip analysis to verify the fix.

To reduce the turnaround time, you can create a context model for the macro block.
A context model depicts the relationship between the block and the full-chip design,
including both physical and electrical information, and enables you to verify the fixes by
running block-level analysis rather than full-chip analysis.

To create a context model, use the create_context_for_sub_block command.

To run voltage drop analysis with the generated block contexts, set the rail.pad_files
and rail.block_context_model_file application options before running the
analyze_rail command.

IC Compiler™ II Implementation User Guide
T-2022.03

779

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Working With Macro Models

Feedback

Note:
Creating full-chip contexts for blocks is supported only in RedHawk Fusion.

The following figure shows that a fix in the block can effectively improve the performance
of the top design.

Figure 166 Fixing Violations in Block Contexts

Content of Block Contexts

The create_context_for_sub_block command models the full-chip context of a block,
including physical models and electrical models.

• Physical model, which describes the locations of the connections between the block
and full-chip design. These tap locations are derived by tracing the RedHawk parasitics
data. The physical model is generated when the create_context_for_sub_block
command process is complete, in the .ploc format.

• Electrical model, which is an effective resistance- and capacitance-based model. The
tool uses the native resistance engine to calculate the effective resistance, which is
used to calculate equivalent current during peak dynamic voltage drop analysis. By

IC Compiler™ II Implementation User Guide
T-2022.03

780

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Performing Signoff Analysis

Feedback

default, the tool models the full-chip context for the specified block. The capacitance
data is derived by the RedHawk extraction engine.

To create an electrical model for the specified block, specify the
-electric_model_file option with the create_context_for_sub_block command.
The electrical model is written in the .context format.

Examples

The following example creates a block context for the top/cell_inst_1 block. The generated
physical and electrical models are block.ploc and block.context, respectively.

##Create block context in top block ##
open_block top
create_context_for_sub_block \
 -block_instance top/cell_inst_1 block.ploc \
 -nets {VDD_TOP VSS_TOP} \
 -electric_model_file block.context
close_block

##Run IR analysis with block context information in block-level design ##
open_block block
set_app_options -name rail.pad_files -value block.ploc
set_app_options -name rail.block_context_model_file \
 -value block.context
analyze_rail -nets {VDD_BLOCK VSS_BLOCK} \
 -voltage_drop static -extra_gsr_option_file extra.gsr
...

The following example creates only a physical model for the top/cell_inst_1 block.

##Create block context in top block ##
open_block top
create_context_for_sub_block \
 -block_instance top/cell_inst_1 block.ploc \
 -nets {VDD_TOP VSS_TOP}
close_block

##Run IR analysis with block context information in block-level design ##
open_block block
set_app_options -name rail.pad_files -value block.ploc
analyze_rail -nets {VDD_BLOCK VSS_BLOCK} \
 -voltage_drop static -extra_gsr_option_file extra.gsr
...

Performing Signoff Analysis
RedHawk Fusion or RedHawk-SC Fusion does not support RedHawk signoff
analysis capabilities, such as signal electromigration or inrush current analysis.

IC Compiler™ II Implementation User Guide
T-2022.03

781

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Writing Analysis and Checking Reports

Feedback

If you have the RedHawk signoff licenses, you can enable the following
RedHawk signoff analysis features in the IC Compiler II environment by using the
rail.allow_redhawk_license_checkout application option. Signoff analysis features
not included in the following list can only be run with the RedHawk standalone tool.

• Dynamic analysis with custom macro models

• Dynamic analysis with package models

• Analysis with RTL-level VCD files

To perform RedHawk signoff analysis,

1. Modify your GSR file or RedHawk run script to include the related configuration
settings.

2. Set the following application option to enable the RedHawk signoff features:

icc2_shell> set_app_options \
 -name rail.allow_redhawk_license_checkout –value true
Setting the rail.allow_redhawk_license_checkout application option to true
allows the RedHawk tool to retrieve the related RedHawk licenses for performing
signoff features inside the IC Compiler II tool. The default is off.

3. Run the analyze_rail command with the -extra_gsr_option_file or
-redhawk_script_file option to perform the analysis defined in the GSR or
RedHawk script file. Specify other settings as necessary.

Note:
You cannot display the RedHawk signoff analysis results in the IC Compiler
II GUI.

4. Proceed to other steps in the analysis flow.

See Also

• An Overview for RedHawk Fusion and RedHawk-SC Fusion

Writing Analysis and Checking Reports
When the checking or analysis is complete, run the report_rail_result command to
write the analysis or checking results to a text file. The power unit in the report file is watts,
the current unit is amperes, and the voltage unit is volts.

To display block-level rail results from top-level RAIL_DATABASE for debugging purposes,
use the-top_design and -block_instance options. For more information, see Displaying
Block-Level Rail Results.

IC Compiler™ II Implementation User Guide
T-2022.03

782

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Writing Analysis and Checking Reports

Feedback

To write rail results for the cells or geometries in the hotspot area only, use the
get_instance_result and get_geometry_result commands. For more information,
see Generating Instance-Based Analysis Reports and Generating Geometry-Based
Analysis Reports.

To specify the data or error types to report, use the -type option. Table 62 lists the
supported data and error types.

To limit the number of the elements to report, use the -limit option. Set the value to zero
to write all elements to the output file in descending order.

To filter the data to write to the report file, use the -threshold option. The tool writes the
data greater than the specified threshold to the output file. The option is valid only for the
following data types:

• pg_pin_power

• voltage_drop_or_rise

• effective_voltage_drop
To restrict the report to the specified supply nets, use the -supply_nets option. This
option is valid only for the following data types:

• effective_voltage_drop

• instance_minimum_path_resistance

• minimum_path_resistance

• pg_pin_power

• voltage_drop_or_rise

Table 62 Supported Data and Error Types for report_rail_result

Type Description

effective_voltage_drop The effective voltage values, in volts.

effective_resistance The effective resistance values.

instance_minimum_path_resistance The minimum path resistance value on each instance.

instance_power The power value on each instance, in watts.

minimum_path_resistance The minimum path resistance value on each power or
ground pin.

missing_vias Overlaps of supply net routing on different layers that
do not have vias connected.

IC Compiler™ II Implementation User Guide
T-2022.03

783

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Writing Analysis and Checking Reports

Feedback

Table 62 Supported Data and Error Types for report_rail_result (Continued)

Type Description

pg_pin_power The power value on each power or ground pin, in watts.

unconnected_instances Instances that are not connected to any ideal voltage
drop sources.

voltage_drop_or_rise The dynamic voltage drop or rise violations, in volts.

In the output report file, the tool lists the data in different formats. For example:

• For the effective_voltage_drop type,

◦ When reporting the static analysis results, the format is

cell_instance_pg_pin_name mapped_pg_pin_name supply_net_name
 effective_voltage_drop

◦ When reporting the dynamic analysis results, the format is

cell_instance_pg_pin_name mapped_pg_pin_name supply_net_name
 average_effective_voltage_drop_in_tw
 max_effective_voltage_drop_in_tw
 min_effective_voltage_drop_in_tw
 max_effective_voltage_drop

• For the instance_minimum_path_resistance type, the result is sorted by the
Total_R value in the following format:

Supply_net Total_R(ohm) R_to_power(ohm) R_to_ground(ohm)
 Location Pin_name Instance_name

• For the minimum_path_resistance type, the format is

full_path_cell_instance_name/pg_pin_name resistance

• For the missing_vias type, the format is

net_name via_location_x_y top_metal_layer bottom_via_layer
 delta_voltage

• For the pg_pin_power type, the format is

full_path_cell_instance_name pg_pin_name power

• For the voltage_drop_or_rise type, the format is

full_path_cell_instance_name/pg_pin_name voltage

• For the unconnected_instances error type, the format depends on the error condition.

IC Compiler™ II Implementation User Guide
T-2022.03

784

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Writing Analysis and Checking Reports

Feedback

◦ When either or both of power and ground nets are physically disconnected from
ideal voltage sources, the format is

unconnected_type {net_names} instance_name instance bbox

◦ When the power or ground nets are either floating or logically floating but physically
connected to ideal voltage sources, the format is

unconnected_type {net_names} instance_name:pin_name instance bbox

The following example writes a file containing the top five PG pin power values to an
output file called power.rpt.

icc2_shell> open_rail_result
icc2_shell> report_rail_result -type pg_pin_power -limit 5 \
 -supply_nets { VSS } power.rpt
icc2_shell> sh cat power.rpt
FI2/vss 4.81004e-06
FI6/vss 4.80959e-06
FI3/vss 4.79702e-06
FI4/vss 4.79684e-06
FI1/vss 4.79594e-06
...

The following example writes the calculated effective voltage drop values for the VDD and
VSS nets to an output file called inst_effvd.rpt.

icc2_shell> open_rail_result
icc2_shell> report_rail_result -type effective_voltage_drop \
 -supply_nets { VDD VSS } inst_effvd.rpt
icc2_shell> sh cat inst_effvd.rpt

#cell_instance_pg_pin_name mapped_pg_pin_name supply_net_name
#average_effective_voltage_drop_in_tw
#max_effective_voltage_drop_in_tw min_effective_voltage_drop_in_tw
#max_effective_voltage_drop

S32_reg_14_/VDD VSS VDD -7.750034332e-03 -1.017999649e-02
-5.850076675e-03 -1.029992104e-02

S32_reg_15_/VDD VSS VDD -7.709980011e-03 -1.013994217e-02
-5.810022354e-03 -1.026010513e-02

S46_reg_8_/VDD VSS VDD -7.179975510e-03 -9.490013123e-03
 -5.330085754e-03
-1.021003723e-02
...

The following example writes the minimum path resistance values of cell instances to an
output file called inst_minres.rpt.

IC Compiler™ II Implementation User Guide
T-2022.03

785

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Writing Analysis and Checking Reports

Feedback

icc2_shell> open_rail_result
icc2_shell> report_rail_result -type instance_minimum_path_resistance \
 -supply_nets { VDD VSS } inst_minres.rpt
icc2_shell> sh cat inst_minres.rpt

Rmax(ohm) = 162.738
Rmin(ohm) = 4.418
==
Supply_net Total_R(ohm) R_to_power(ohm) R_to_ground(ohm)
Location Pin_name Instance_name
==
VDD 162.738 152.686 10.052 586.000,
496.235 VDDL dataout_44_u
VSS 156.266 137.963 18.303 544.000,
613.235 VSS GPRs/U2317
VDD 156.266 137.963 18.303 544.000,
613.235 TVDD GPRs/U2317
VDD 152.690 135.223 17.467 602.400,
467.435 VDDL dataout_33_u

Displaying Block-Level Rail Results
After you perform rail analysis on the top-level design, the tool saves the analysis results
in the top-level rail database. To locate issues that are reported in a block-level design, run
the open_rail_result command with the -top_design and -block_instance options
to excerpt block-level instance data from the top-level rail database. The tool then displays
maps for the specified block instances based on the extracted block-level rail analysis
data.

Note:
The excerpt of the block-level rail results is saved in memory and is deleted
when you exit the current IC Compiler II session.

The following example opens the rail result named REDHAWK_RESULT in the ./
RAIL_DATABASE directory; the result is the rail analysis result for the top design named
bit_coin. The example then creates an excerpt of rail analysis data for the block instance
slice_5. Note that in this example, the block design of instance slice_5 has to be opened,
not the top-level design.

icc2_shell> open_lib block.nlib
icc2_shell> open_block block
icc2_shell> set_app_options -name rail.database -value RAIL_DATABASE
icc2_shell> open_rail_result REDHAWK_RESULT \
 -top_design bit_coin \
 -block_instance slice_5
icc2_shell> report_rail_result

IC Compiler™ II Implementation User Guide
T-2022.03

786

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Writing Analysis and Checking Reports

Feedback

Generating Instance-Based Analysis Reports
Use the get_instance_result command to write the cell instances with rail data to an
output text file, in the units defined with the report_units command.

To specify which analysis or checking types to report, use the -type option. The supported
analysis types are: effective_voltage_drop, current, effective_resistance,
min_path_resistance, and power.

Here are commonly used options of the get_instance_result command:

Option Description

-net (Optional) Specifies the net to report. When not specified, the
command reports data for all power nets.

-touching (Optional) Reports cell instances that touch the specified rectangle
region in the format of {{x1 y1} {x2 y2}}.

-top value (Optional) Reports cell instances with the top N voltage drop
values.

-threshold (Optional) Reports cell instances with voltage drop values that are
greater than the specified threshold. This option is supported by all
analysis types.

-percentage (Optional) Reports cell instances with voltage drop values that
are greater than specified percentage of the ideal voltage drop
value. This option is supported only by the voltage_drop type.
The default is 0.1, meaning 10% of the ideal supply voltage.

-histogram (Optional) Includes a histogram that shows the average voltage
drop value per net in the report.

-collection (Optional) Reports cell instances as a cell collection rather than a
column-based text report.

Example

The following example reports instance voltage drop results within the specified area:

prompt> get_instance_result -net VDD -type voltage_drop \
 -touching {{1610 1968} {1620 1969}}
Isw2/Isw2_pktpro/U179070 -0.053533
Isw2/Isw2_pktpro/U64076 -0.0535949
Isw2/Isw2_pktpro/U83035 -0.0535949
Isw2/Isw2_pktpro/U181017 -0.0535949
Isw2/Isw2_pktpro/U103335 -0.05366
Isw2/Isw2_pktpro/U181049 -0.05366
Isw2/Isw2_pktpro/U98988 -0.05366

IC Compiler™ II Implementation User Guide
T-2022.03

787

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Writing Analysis and Checking Reports

Feedback

Isw2/Isw2_pktpro/U201986 -0.053713
Isw2/Isw2_pktpro/U181064 -0.053719
Isw2/Isw2_pktpro/U79791 -0.053809
Isw2/Isw2_pktpro/U179052 -0.054007
Isw2/Isw2_pktpro/U4120 -0.054073
Isw2/Isw2_pktpro/U20408 -0.054287

See Also

• Voltage Hotspot Analysis

Generating Geometry-Based Analysis Reports
Use the get_geometry_result command to write the geometry information with rail
results to an output file, in the units defined with the report_units command.

You can specify one net at a time. When more than one net is specified, an error message
is displayed. To specify which analysis or checking types to report, use the -type option.
The supported analysis types are: voltage_drop and min_path_resistance.

The report is in the following format:

geometry bbox_value

Here are commonly used options of the get_geometry_result command:

Option Description

-layer (Optional) Specifies the name or number of the layer to report.
When not specified, all layers are reported.

-touching (Optional) Specifies a rectangular region in the format of {{x1 y1}
{x2 y2}} in which all geometry layers that touch the specified
region are reported.

-top value (Optional) Reports the geometry layers with the top N voltage drop
values.

-threshold (Optional) Specifies a threshold value. Reports geometry layers with
voltage drop values that are greater than specified threshold.

-percentage (Optional) Specifies a percentage value. Reports geometry layers
with voltage drop values that are greater than the specified percent
of the ideal supply voltage. For example, if the percentage is set to
0.1, geometries with voltage drop values greater than 10% of the
ideal supply voltage are reported.

-histogram (Optional) Includes a histogram that shows the average voltage drop
value per net in the report.

IC Compiler™ II Implementation User Guide
T-2022.03

788

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Displaying Maps in the GUI

Feedback

Example

The following example writes geometry data with voltage drop values that are within the
specified area:

prompt> get_geometry_result -net VDD -type voltage_drop \
 -touching {{1610 1968} {1620 1969}}
{ { 1616.475 1967.000 } { 1617.525 1969.800 } } metal5 0.00448
{ { 1608.810 1946.000 } { 1611.190 1974.000 } } metal7 0.00446
{ { 1608.000 1946.000 } { 1612.000 1974.000 } } metal9 0.00446

See Also

• Voltage Hotspot Analysis

Displaying Maps in the GUI
When analysis is complete, the tool saves the design data and analysis results (*.result)
in the in-design.redhawk/design_name.result directory under the RedHawk working
directory. You must run the open_rail_result command to load the analysis results
before displaying a map in the IC Compiler II GUI.

Table 63 lists the map types that are supported in the RedHawk Fusion analysis flow.

Table 63 Analysis Maps Supported in RedHawk Fusion Flow

Map Type Description

Rail voltage drop map Displays the voltage drop map, which is a color-coded display of voltage
drop values overlaid on the physical supply nets. For static analysis, the
map displays average voltage drop values. For dynamic analysis, the
map displays peak voltage drop values, average voltage drop values, or
peak voltage rise values.
Note:

The tool shows all the layers in the LEF or DEF file on the voltage
drop map even if the layers are absent in the IC Compiler II library
file.

Rail parasitics map Shows parasitic resistance of a given supply net in the block when
voltage drop analysis is complete. It shows the resistance for any given
shape of the net.

Rail power map Displays instance-based power map or power density map for the block
when voltage drop analysis is complete, based on the RedHawk power
calculation results. Instance-based power map: Shows power values of
the cell instances in the block Power density map: Shows power density
values for area in the block

Rail current map Displays current distribution for the block when voltage drop analysis is
complete.

IC Compiler™ II Implementation User Guide
T-2022.03

789

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Displaying Maps in the GUI

Feedback

Table 63 Analysis Maps Supported in RedHawk Fusion Flow (Continued)

Map Type Description

Rail minimal path
resistance map

Shows minimum path resistance values for a selected net when minimal
path resistance analysis is complete.

Rail electromigration
map

Shows current violations for the block when static or dynamic
electromigration analysis is complete.

Rail instance peak
current map

Shows peak current values for different instances or areas in the block.

Rail instance effective
voltage drop map

Shows effective voltage values of a given instance in the block when
voltage drop analysis is complete.

Rail instance effective
resistance map

Shows effective resistance values of a given instance in the block when
effective resistance analysis is complete.

Rail instance switch cell Displays current, effective voltage, and voltage difference maps for
switch cells in the block when dynamic analysis is complete and switch
cell model input files are available. If no switch model input file is
available, the tool treats these switch cells as black boxes and no rail
map is displayed. Instance-based current map: This map shows how
current flows through the selected switch cell.Instance-based effective
voltage map: This map shows the effective voltage at the selected switch
cell.Instance-based voltage difference map: This map shows the voltage
difference across the selected switch cell.

To display maps in the IC Compiler II GUI,

1. To load the rail analysis result using the GUI, choose Task > Rail Analysis > 2D Rail
Analysis. The Block Level 2D Rail Analysis window appears. In the window, click the
open_rail_result link.

Alternatively, run the open_rail_result command to load the design data and
analysis results (*.result) saved in the design_name directory under the RedHawk
working directory when analysis is complete.

2. In the GUI layout window, choose View > Map and select the map to display.

In the map, problem areas are highlighted in different colors. Move the pointer over
an instance to view more information in the InfoTip. By default, the tool displays
information for all instances in the block. To examine information of one specific
instance, deselect all the instances and then select the instance to display from the list.

Use the options in the map panel to change map display:

• Value: Sets the type of map to display

• Bins: Changes the number of unique bins used to display the map

IC Compiler™ II Implementation User Guide
T-2022.03

790

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Displaying Maps in the GUI

Feedback

• From: and To: Sets the range of density values displayed in the power density map

• Text: Displays the calculated values in the layout; if the values are not visible, zoom
in to view them

Examples

The following examples show how to display various types of maps in the GUI:

Figure 167 shows how to display a rail instance effective voltage drop map and check for
hotspots in the instance effective voltage drop map.

Figure 168 shows how to display a rail map for the switch cells in the block and examine
the voltage information of the selected switch cell.

Figure 169 shows how to display a power density map for the block.

IC Compiler™ II Implementation User Guide
T-2022.03

791

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Displaying Maps in the GUI

Feedback

Figure 167 Displaying a Rail Instance Effective Voltage Drop Map

Hover over the red spot to

see the voltage drop

number on the instance

Select the instance to display

Choose Rail Instance Effective
Voltage Drop

Click “Zoom to Critical”

to examine the critical area

Histogram for the range of

map values (in volts)

Options for map

display control

IC Compiler™ II Implementation User Guide
T-2022.03

792

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Displaying Maps in the GUI

Feedback

Figure 168 Displaying Maps for Switch Cells

Choose Rail Instance Switch Cell.

Select the instance to

Choose the type of map
to display

The tool shows the switch cells

display

on the selected power domain
in the map.

In the map, hover over
a switch cell to examine
its voltage information

IC Compiler™ II Implementation User Guide
T-2022.03

793

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Displaying Maps in the GUI

Feedback

Figure 169 Displaying a Power Density Map

Choose Rail Power

Choose Density to display
power density values

See Also

• Specifying RedHawk and RedHawk-SC Working Directories

IC Compiler™ II Implementation User Guide
T-2022.03

794

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Displaying ECO Shapes in the GUI

Feedback

Displaying ECO Shapes in the GUI
When you use the RedHawk mesh add command to add virtual PG meshes in the
top block for the current subblock, by default the virtual PG meshes created by the
RedHawk mesh add command are not shown as layout objects in the GUI. Therefore,
these GUI shapes cannot be queried using layout object collection commands (such as,
get_shapes), and are not saved to the design library when you save the block.

To save ECO shapes along with rail results and display them in the GUI, enable the
rail.display_eco_shapes application option, like

set_app_options –name rail.display_eco_shapes –value true

Note:
The mesh add command is available only in RedHawk, not in RedHawk
SC. Therefore, the tool issues an error message when you enable both the
rail.enable_redhawk_sc and rail.display_eco_shapes application
options.

To display ECO shapes in GUI, you must first enable the RedHawk signoff
license key by setting the rail.allow_redhawk_license_checkout
application option to true. Otherwise, an error message is issued.

To add virtual PG meshes and display the created ECO shapes in the GUI,

1. Prepare a script file (such as, mesh.tcl) that contains the mesh add command.

2. Run design setup with the mesh.tcl script file.

prompt> set_rail_command_options –script_file mesh.tcl \
 –command setup_design –order after_the_command

The tool generates the RedHawk script file and sources the mesh.tcl file after design
setup.

3. Perform rail analysis using the following command:

prompt> analyze_rail -nets -voltage_drop
4. Run the open_rail_result command to load the design data and analysis results.

5. Run the gui_start command to open the IC Compiler II GUI. In the GUI layout
window, choose View > Map and select the map to display.

You can now display and query the ECO shapes that are created by the RedHawk
mesh add command in the GUI.

Script Examples

IC Compiler™ II Implementation User Guide
T-2022.03

795

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Voltage Hotspot Analysis

Feedback

The following script displays ECO shapes in the GUI by using the
set_rail_command_option command.

Open design ##
open_block
link_block
Specify taps ##
create_taps
Specify RedHawk Fusion input files or variables ##
set_app_options -name rail.enable_redhawk -value 1
set_app_options -name rail.redhawk_path -value
set_app_options -name rail.disable_timestamps -value true
set_app_options -name rail.display_eco_shapes -value true
set_rail_command_options –script_file mesh.tcl –command \
 setup_design ...
Analyze##
analyze_rail -voltage_drop ... -nets {VDD VSS}
Check GUI ##
open_rail_result

The following script displays ECO shapes in the GUI by using a RedHawk script.

Open design
open_block
link_block
Specify taps ##
create_taps
Specify RedHawk Fusion input files or variables ##
set_app_options -name rail.enable_redhawk -value 1
set_app_options -name rail.redhawk_path -value
set_app_options -name rail.disable_timestamps -value true
set_app_options -name rail.display_eco_shapes -value true
Analyze ##
analyze_rail -voltage_drop ... -nets {VDD VSS} -script_only
Modify the script.tcl containing mesh add command ##
analyze_rail -redhawk_script_file
Check GUI ##
open_rail_result

Voltage Hotspot Analysis
When rail analysis is complete, there might be hundreds to thousands of voltage drop
violations reported in the analysis report, which might make it difficult to identify the root
causes for the violations.

Use the voltage hotspot analysis capability to generate hotspots for a power or ground
net by dividing the whole chip into small grid boxes, and report rail-related information
for the generated grid boxes. In addition, you can query cell- or geometry-based rail

IC Compiler™ II Implementation User Guide
T-2022.03

796

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Voltage Hotspot Analysis

Feedback

results only for the specific analysis type by using the get_instance_result and
get_geometry_result commands.

Hotspot analysis provides the following features:

• Identify the root cause of aggressors with high voltage drop, such as large current from
the aggressor itself or from the neighboring cells due to simultaneous switching by the
overlapping timing windows.

• Determine which design technique to use for fixing voltage violations based on the
report, such as choosing a candidate reference cell for cell sizing replacement, moving
or relocating cells to reduce voltage drops, or applying PG augmentation to solve a
voltage drop issue.

This section contains the following topics:

• Generating Hotspots

• Reporting Hotspots

• Removing Hotspots

• Voltage Hotspot Analysis Examples

To write rail results only for the cell instances or geometries that reside in the hotspot
area, use the get_instance_result and get_geometry_result commands. For more
information, see Generating Instance-Based Analysis Reports and Generating Geometry-
Based Analysis Reports.

Generating Hotspots
To generate voltage drop hotspots for a power or ground net, use the
generate_hot_spots command. This command divides the whole chip area into multiple
grids in terms of rows and columns, such as 100x100. The grid boxes are sorted by the
maximum effective voltage drop value in each grid box and are indexed with an integer
number starting from 0.

To create rows based on standard cell site rows, and columns by using vertical PG straps
on the lowest metal layers, use the -site_row option. Alternatively, you can specify the
number of rows and columns for dividing the whole region with the -row and -column
options.

The command creates error cells for the grids with voltage drop values greater than the
specified percentage of the ideal voltage drop. The default is 0.1, meaning that error cells
are created for the grids with voltage drop values greater than 10% of the ideal supply
voltage. The error cell type is effective voltage drop.

To examine the content of the generated error cells, open the error cells in the error
browser. To examine the content of the grid box, use the report_hot_spots command.

IC Compiler™ II Implementation User Guide
T-2022.03

797

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Voltage Hotspot Analysis

Feedback

To remove the generated voltage hotspot data from memory, use the remove_hot_spots
command.

Option Description

-net Specifies the net name for generating hotspots. When not specified, all
power nets are used.

-percentage Specifies the percentage used to generate hotspot error cells. The
default is 0.1.

-site_row integer By default, the command uses the standard site row height to divide
the whole region into multiple rows, and the lowest PG net vertical
straps to divide the whole region into multiple columns.
To use a multiple of the site row height for creating grid rows, specify
the -site_row option with an integer. For example, when the
-site_row option is set to 2, the command uses twice the site row
height to construct grid rows; that is, a row is constructed for every two
site rows.

-row Specifies the number of rows into which to divide the whole region.

-column Specifies the number of columns into which to divide the whole region.

See Also

• Reporting Hotspots

• Removing Hotspots

• Voltage Hotspot Analysis Examples

Reporting Hotspots
After you generate hotspots on the block using the generate_hot_spots command, run
the report_hot_spots command to report cells with voltage-related cell attributes for
a hotspot grid box. The voltage-related cell attributes are: current, overlap_current,
effective_resistance, timing_ window, slack, output_load and static_power.

Use these voltage-related cell attributes to identify root causes of voltage violations. For
example, you can

• Use the current and output loading capacitance information to determine if a cell’s high
peak is caused by too much load. If this is the case, splitting the output might be an
effective approach to reduce high voltage drops.

• Check and compare the timing windows in the current hotspot to those of the
neighboring grids to determine if a cell can be moved to other grids (targets). Doing so

IC Compiler™ II Implementation User Guide
T-2022.03

798

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Voltage Hotspot Analysis

Feedback

reduces the voltage drop of the original grid without increasing the voltage drop of the
target grid.

• Compare slew and load capacitance among all cells in the region to determine if high
peak current is caused by sharp slew or large load capacitance.

• Find cells that have overlapping timing windows to identify cells that might switch at the
same time during dynamic rail analysis.

Here are commonly used options of the report_hot_spots command:

Option Description

-index Lists the hotspot grids by index.

-summary Reports a summary for all grids, such as the number of grids created,
the number of instances in the block, and the number of grids whose
voltage drop values are higher than the specified percentage of the
ideal voltage drop value.

-object Specifies the name of the object to report. Lists the hotspot grid that
contains the specified cell instance object.

-verbose Prints a detailed report.

Listing Voltage Grid Boxes by Index
By default, the tool searches three rows up and down and three columns left and right to
determine the neighboring grids of the current one. Use the -index option to specify the
index used to report voltage hotspot grids.

The grid box with the smallest index number has the highest effective voltage drop
values. This allows you to determine the size of the hotspot area. For example, if all the
surrounding grids have bigger index numbers and only a few central grids have much
smaller numbers, this voltage drop hotspot is assumed to be an island.

Accumulating Current
For an instance in a grid box, the overlap current is estimated by accumulating the timing-
window-based current across its neighboring cells.

The command scans all timing windows from smallest to biggest, and accumulates current
on the way as time passes by. Use the information to determine how many cells are
switching simultaneously and how much time shift to apply when shifting timing windows
for voltage drop reduction.

IC Compiler™ II Implementation User Guide
T-2022.03

799

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Voltage Hotspot Analysis

Feedback

Assume the design has three instances with current as follows:

As shown in the following report, the accumulated current on point 2.0 is from inst2 and
inst3, and does not include the current from inst1.

inst1 [0.0 2.0] current 0.11
inst2 [1.0 2.5] current 0.22
inst3 [2.0 3.0] current 0.33

See Also

• Generating Hotspots

• Removing Hotspots

• Voltage Hotspot Analysis Examples

Removing Hotspots
The tool saves the generated hotspot data in memory. If you want to generate hotspots
for other nets in another run, you need to remove the previously generated hotspot data
from memory with the remove_hot_spots command before proceeding to another hotspot
analysis run.

IC Compiler™ II Implementation User Guide
T-2022.03

800

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Voltage Hotspot Analysis

Feedback

For example, if you have run the generate_hot_spots command on the VDD net, you
must first remove the hotspot data for the VDD net before generating hotspots for other
nets.

See Also

• Generating Hotspots

• Reporting Hotspots

• Voltage Hotspot Analysis Examples

Voltage Hotspot Analysis Examples
This topic provides examples about how to use the hotspot analysis capability to identify
the root cause of voltage violations.

Cells with overlapping timing windows might switch at the same time, leading to high
voltage drops. Figure 170 shows how to identify if the cell has overlapping timing windows.

IC Compiler™ II Implementation User Guide
T-2022.03

801

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Voltage Hotspot Analysis

Feedback

Figure 170 Checking High Voltage Drop Caused by Overlapping Timing Window (I)

Next, run the report_hot_spots command with the -index option to find which grid
has overlapping timing windows that contribute to large current. As shown in Figure 171,
when the -index option is set to 5, the grid 5 is reported with small total current. When
the -index option is set to 2, the grid 2 is reported with large total current. In this case,
overlapping time windows contribute to the high effective voltage drop in grid 2.

IC Compiler™ II Implementation User Guide
T-2022.03

802

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Querying Attributes

Feedback

Figure 171 Checking High Voltage Drop Caused by Overlapping Timing Window (II)

See Also

• Generating Hotspots

• Reporting Hotspots

• Removing Hotspots

Querying Attributes
When rail analysis or missing via checking is complete, use the get_attribute attribute
to query the results stored in the RedHawk working directory. You can query the attributes
shown in Table 64, which are specific to the rail analysis results.

Table 64 Rail Result Object Attributes

Object Attributes

Cell static_power

IC Compiler™ II Implementation User Guide
T-2022.03

803

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: RedHawk and RedHawk-SC Fusion
Querying Attributes

Feedback

Table 64 Rail Result Object Attributes (Continued)

Object Attributes

Pin static_current
peak_current
static_power
switching_power
leakage_power
internal_power
min_path_resistance
voltage_drop
average_effective_voltage_drop_in_tw
max_effective_voltage_drop
(=effective_voltage_drop)
max_effective_voltage_drop_in_tw
min_effective_voltage_drop_in_tw
effective_resistance

The following example retrieves the effective_voltage_drop attribute for the cellA/VDD
pin.

icc2_shell> get_attribute [get_pins cellA/VDD] effective_voltage_drop
-0.02812498807907104

The following example retrieves the static_power attribute for the cellA cell.

icc2_shell> get_attribute [get_cells cellA] static_power
2.014179968645724e-05

IC Compiler™ II Implementation User Guide
T-2022.03

804

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

12
ECO Flow

An engineering change order (ECO) is an incremental change made to a complete or
nearly complete design. You can use ECOs to fix functional, timing, noise, and crosstalk
violations without synthesizing, placing and routing the entire design. You can also use
ECOs to implement late-arriving design changes while maintaining design performance.

The following topics describe the various ECO flows supported in the IC Compiler II tool,
and tasks you perform in these flows:

• Generic ECO Flow for Timing or Functional Changes

• Freeze Silicon ECO Flow

• Signoff ECO Flow

• Incremental Signoff ECO Flow

• ECO Fusion Flow

• ECO Fusion Power Integrity Flow

• Manually Instantiating Spare Cells

• Automatically Adding Spare Cells

• Adding Programmable Spare Cells

• Making ECO Changes Using the eco_netlist Command

• Making ECO Changes Using Netlist Editing Commands

• Resizing Cells

• Adding Buffers on Routed Nets

• Optimizing the Fanout of a Net

• Reporting Available Sites for Placing ECO Cells

• Identifying and Reverting Nonoptimal ECO Changes

• Placing ECO Cells

• Placing and Mapping ECO Cells to Spare Cells

IC Compiler™ II Implementation User Guide
T-2022.03

805

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Generic ECO Flow for Timing or Functional Changes

Feedback

• Updating Supply Nets for ECO Cells

• Recording the Changes Made to a Layout

• Performing Prerequisite Check for Group Repeater Insertion and Placement

• Adding a Group of Repeaters

• Querying Group Repeater

• Swapping Variant Cell

• Fixing Multivoltage Violations

Generic ECO Flow for Timing or Functional Changes
Use this flow to incorporate timing or functional ECO changes when you have the flexibility
to add new cells and move or delete existing cells. This flow is recommended if you have
not taped out your design.

The unconstrained ECO flow consists of the following steps:

1. Update the design with the ECO changes by using one of the following methods:

• Using the eco_netlist command, as described in Making ECO Changes Using
the eco_netlist Command

• Using netlist editing Tcl commands, as described in Making ECO Changes Using
Netlist Editing Commands.

2. Update the placement by using the place_eco_cells command, as described in
Placing ECO Cells.

3. Add filler cells to the empty spaces in the site array, as described in Inserting Filler
Cells.

To reduce runtime, use the -post_eco option when you

• Insert metal filler cells with the create_stdcell_fillers command, and the tool
marks the inserted filler cells as post-ECO cells.

• Remove filler cells with DRC violations with the
remove_stdcell_fillers_with_violation command, and the tool performs
DRC checking only for the post-ECO cells.

4. Update the routing by using the route_eco command, as described in Performing
ECO Routing, or by manually rerouting the affected nets.

IC Compiler™ II Implementation User Guide
T-2022.03

806

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Freeze Silicon ECO Flow

Feedback

Freeze Silicon ECO Flow
Use this flow if your cell placement is fixed, and you can only change the metal and via
mask patterns. This flow is recommended if you have taped out your design and you want
to avoid the expense of generating a whole new mask set.

To perform the freeze silicon ECO flow, your block must contain spare cells. You can
add spare cells to a block, anytime during the design flow, by using one of the following
methods:

• Manually instantiate spare cells, as described in Manually Instantiating Spare Cells.

• Automatically add spare cells after placement by using the add_spare_cells
command, as described in Automatically Adding Spare Cells.

• Add programmable spare cells during the chip finishing stage by using the
create_stdcell_fillers, as described in Adding Programmable Spare Cells.

The freeze silicon ECO flow consists of the following steps:

1. Enable ECO changes in the freeze silicon mode by setting the
design.eco_freeze_silicon_mode application option to true.

2. Update the design with the ECO changes by using one of the following methods:

• Using the eco_netlist command, as described in Making ECO Changes Using
the eco_netlist Command

• Using netlist editing Tcl commands, as described in Making ECO Changes Using
Netlist Editing Commands.

3. Analyze the mapping of ECO cells to spare cells by using the check_freeze_silicon
command.

4. Automatically map all the ECO changes to spare cells by using the
place_freeze_silicon command or manually map each ECO cell to a specific
spare cell by using the map_freeze_silicon command, as described in Placing and
Mapping ECO Cells to Spare Cells.

5. Update the routing by using the route_eco command, as described in Performing
ECO Routing, or by manually rerouting the affected nets.

Signoff ECO Flow
After you perform place and route in the IC Compiler II tool, if your design has timing or
design rule violations, you can fix these violations in the PrimeTime tool. You can also
perform power or area recovery in the PrimeTime tool.

IC Compiler™ II Implementation User Guide
T-2022.03

807

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Signoff ECO Flow

Feedback

If you make changes to your design in the PrimeTime tool, you can generate an ECO
change list file and incorporate those changes into the design by using the IC Compiler II
ECO capabilities, as shown in Figure 172.

Figure 172 Signoff ECO Flow

IC Compiler II ECO

StarRC parasitic extraction

ECO change list file

PrimeTime timing ECO

Violations?

PrimeTime timing and signal

integrity analysis

PrimeTime area and

power recovery

ECO change list file

IC Compiler II ECO

Yes

No

To incorporate the PrimeTime ECO changes, use the following steps:

1. Update the design by sourcing the PrimeTime ECO change list file, which is a Tcl file
containing netlist editing commands.

2. Update the placement by using the place_eco_cells command as shown in the
following example:

place_eco_cells -legalize_mode minimum_physical_impact \
 -eco_changed_cells -legalize_only -displacement_threshold 10

For more information about the place_eco_cells command, see Placing ECO Cells.

3. Add filler cells to the empty spaces in the site array, as described in Inserting Filler
Cells.

IC Compiler™ II Implementation User Guide
T-2022.03

808

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Incremental Signoff ECO Flow

Feedback

To reduce runtime, use the -post_eco option when you

• Insert metal filler cells with the create_stdcell_fillers command, and the tool
marks the inserted filler cells as post ECO cells

• Remove filler cells with DRC violations with the
remove_stdcell_fillers_with_violation command, and the tool performs
DRC checking only for the post ECO cells

4. Update the routing by using the route_eco command, as described in Performing
ECO Routing, or by manually rerouting the affected nets.

Incremental Signoff ECO Flow
When you make ECO changes in the PrimeTime tool and incorporate these changes by
performing the IC Compiler II unconstrained ECO flow, it might be necessary to iterate
multiple times between the tools to meet the required QoR goals. To reduce the overall
turnaround time for the flow, you can reduce the runtime of each iteration by using the
incremental signoff ECO flow. This flow generates incremental design data from the IC
Compiler II tool, which enables you to perform incremental extraction in the StarRC tool
and incremental timing analysis and ECO in the PrimeTime tool, as shown in the following
figure.

IC Compiler™ II Implementation User Guide
T-2022.03

809

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Incremental Signoff ECO Flow

Feedback

Figure 173 Incremental Signoff ECO Flow

StarRC incremental

parasitic extraction

ECO change list file

IC Compiler II incremental

signoff ECO flow

ECO change list file

Incremental

parasitics

PrimeTime incremental timing

analysis and ECO

PrimeTime timing ECO

Incremental design

data

To perform the incremental signoff ECO flow within the IC Compiler II tool, use the
record_signoff_eco_changes command. This command incorporates the PrimeTime
ECO into the design library, tracks all the changes made to the design, and generates the
incremental files that are required to run StarRC incremental extraction and PrimeTime
incremental timing analysis and ECO.

The IC Compiler II incremental signoff ECO flow consists of the following steps:

1. Open the design library by using the open_block command.

2. Incorporate the PrimeTime ECO changes and begin tracking the ECO changes to the
design by using the record_signoff_eco_changes -start -input command as
shown in the following example:

icc2_shell> record_signoff_eco_changes -start -input pt_eco.tcl
3. (Optional) Perform additional timing ECO changes to the design by using netlist editing

commands.

Do not perform functional ECO changes to the design. If you do so, the tool stops
tracking the ECO changes being performed on the design.

IC Compiler™ II Implementation User Guide
T-2022.03

810

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
ECO Fusion Flow

Feedback

4. Place the ECO cells by using the place_eco_cells command.

5. Update the routing by using the route_eco command, as described in Performing
ECO Routing, or by manually rerouting the affected nets.

6. Stop tracking the ECO changes and complete the incremental signoff ECO flow by
using the record_signoff_eco_changes -stop command as shown in the following
example:

icc2_shell> record_signoff_eco_changes -stop

ECO Fusion Flow
The IC Compiler II ECO Fusion flow allows you to use the PrimeTime physically aware
ECO capabilities and the StarRC extraction capabilities (In-Design signoff extraction)
within the IC Compiler II tool. You can use this flow to fix timing and DRC violations and
improve area and power QoR at the very late stages of the implementation flow.

The IC Compiler II ECO Fusion flow consists of the following steps:

1. Specify the settings required to run the PrimeTime ECO capabilities within the IC
Compiler II tool by using the set_pt_options command.

The following example specifies the path to the PrimeTime executable and the settings
for distributed processing:

icc2_shell> set_host_options -name pteco_host_option \
 -submit_command "/lsf/bin/bsub -R \"rusage\[mem=$MEM\]\""
icc2_shell> set_pt_options -pt_exec /snps_tools/PT/pt_shell \
 -host_option pteco_host_option
If there is a .synopsys_pt.setup file in the current working directory, the IC Compiler II
tool uses the information in this file. However, you can specify additional PrimeTime
settings by using the -pre_link_script and -post_link_script options of the
set_pt_options command.

For more information, see the man page for the set_pt_options command.

2. Set up StarRC extraction as follows:

a. Ensure that StarRC extraction is enabled.

StarRC extraction is controlled by the extract.starrc_mode application option.
The default is fusion_adv. You can also set the value to in-design or none.

To use the native extractor, set the value to none.

b. Specify a configuration file for running StarRC extraction by using the
set_starrc_options -config command.

IC Compiler™ II Implementation User Guide
T-2022.03

811

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
ECO Fusion Power Integrity Flow

Feedback

3. Perform optimization by using the eco_opt command.

By default, the eco_opt command fixes timing (setup and hold) and DRC violations,
removes redundant buffers, and improves the total power QoR by using PrimeTime
ECO capabilities. It then incorporates the ECO changes by using the IC Compiler II
ECO place and route capabilities. However, you can control the type of optimization by
using the -type option.

The following example uses the eco_opt command to fix only timing and DRC
violations using exhaustive path-based analysis:

icc2_shell> eco_opt -pba_mode exhaustive -types {timing drc}
The following example uses the eco_opt command to improve the leakage power
QoR. However, it does not incorporate the ECO changes. Instead, it generates a file
containing the ECO changes.

icc2_shell> eco_opt -pba_mode exhaustive -types {timing drc} \
 -write_change_file_only
For more information, see the man page for the eco_opt command.

4. Analyze the PrimeTime QoR by using the check_pt_qor command.

For more information, see the man page for the check_pt_qor command.

Note:
When you run the eco_opt command, the IC Compiler II tool specifies the
PrimeTime settings based on the IC Compiler II timing analysis settings, such
as derating factors, on-chip-variation settings, and so on. Therefore, for optimal
convergence, ensure that the IC Compiler II timing analysis settings at the
postroute stage are consistent with the PrimeTime timing analysis settings. You
can identify the differences in the IC Compiler II and PrimeTime settings by
using the check_consistency_settings command.

ECO Fusion Power Integrity Flow
The IC Compiler II ECO Fusion power integrity flow allows you to use the RedHawk
Fusion rail analysis feature to identify power integrity issues and the PrimeTime physically
aware ECO capabilities to fix them.

IC Compiler™ II Implementation User Guide
T-2022.03

812

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Manually Instantiating Spare Cells

Feedback

The IC Compiler II ECO Fusion power integrity flow consists of the following steps:

1. Specify the path for saving the RedHawk Fusion rail analysis results by setting the
rail.database application option.

2. Perform dynamic-vectorless or dynamic-vector-based voltage-drop analysis by using
the analyze_rail -voltage_drop dynamic_vcd or analyze_rail -voltage_drop
dynamic_vectorless command.

3. Specify the settings required to run the PrimeTime ECO capabilities within the IC
Compiler II tool by using the set_pt_options command.

4. Fix the identified power integrity issues by using the eco_opt -type
power_integrity command.

To fix power integrity (voltage drop) violations, the tool downsizes aggressor cells while
considering the timing and DRC QoR. However, for this optimization to be effective,

• The aggressor cells should not be timing- or DRC-critical

• The cell library should have smaller versions of the aggressor cells without dont_use
or dont_touch attribute settings.

The following is an example script for running the ECO Fusion power integrity flow:

set_app_options -name rail.database -value RAIL_DATABASE_BASELINE
analyze_rail -voltage_drop dynamic_vcd -all_nets \
 -switching_activity {VCD ./top.vcd top}
set_pt_options -pt_exec /snps_tools/PT/pt_shell
eco_opt -type power_integrity

Manually Instantiating Spare Cells
You can manually instantiate spare cells in a block by using one of the following methods:

• Instantiating them in the Verilog netlist

• Adding them by using netlist editing commands such as create_cell, connect_pins,
and so on

When manually instantiating spare cells, you should

• Evenly distribute the spare cells through the logical hierarchy to better handle ECO
changes anywhere in the block

• Tie their inputs to power or ground, as appropriate, to prevent the spare cells from
creating noise and consuming power

IC Compiler™ II Implementation User Guide
T-2022.03

813

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Manually Instantiating Spare Cells

Feedback

If a cell meets the following criteria, the tool automatically identifies it as a spare cell:

• It is not a physical-only cell

• All inputs except for the clock pin are unconnected or tied to a logic constant

The clock pin of the spare cell, if any, can be connected to the clock network.

• All outputs are unconnected

If you instantiate the spare cells before you perform physical synthesis on a block,
the tool places and legalizes the spare cells during the subsequent physical synthesis
steps. However, if you instantiate the spare cells in a block that is optimized, placed and
legalized, you must place and legalize the spare cells by using the following steps:

1. Spread the spare cells by using the spread_spare_cells command.

By default, this command distributes and places all the spare cells evenly throughout
the core area.

You can specify the spare cells to place by using one of the following two methods:

• To place specific spare cells, use the -cells option.

• To place all the spare cells that belong to specific voltage areas, use the
-voltage_areas option.

You can control the placement of the spare cells as follows:

• Specify an area within which to place the spare cells by using the -boundary
option.

• Ignore specific types of placement blockages by using the
-ignore_blockage_types option. By default, the add_spare_cells command
honors all placement blockage types.

• Ignore the current cell density and place the spare cells randomly by using the
-random_distribution option.

• Specify a percentage of spare cells to be placed based on the cell density
distribution by using the -density_aware_ratio option. The rest of the spare
cells are placed randomly throughout the design. By default, all the spare cells are
placed based on the cell density distribution.

For example, if you specify a setting of -density_aware_ratio 80, the tool places
80 percent of the spare cells based on the cell density distribution and 20 percent
randomly across the design.

2. Legalize the spare cells by using the place_eco_cells -legalize_only -cells
command.

IC Compiler™ II Implementation User Guide
T-2022.03

814

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Automatically Adding Spare Cells

Feedback

Automatically Adding Spare Cells
After placement and optimization, you can add spare cells and legalize them by using the
following steps:

1. Add spare cells by using the add_spare_cells command and specify the following
information:

• A name prefix for the spare cells by using the -cell_name option

• The type and number of spare cells to insert by using one of the following two
methods:

◦ Specify the library cells to use for the spare cell and the number of instances of
each library cell by using the -lib_cell and -num_instances options

For example, to insert 250 instances each of the AND2 and OR2 library cells,
use the following command:

icc2_shell> add_spare_cells -cell_name spare \
 -lib_cell {AND2 OR2} -num_instances 250

◦ Specify the library cells and a different number of instances for each library cell
by using the -num_cells option

For example, to insert 200 instances of the NAND2 library cell and 150
instances of the NOR2 library cell, use the following command:

icc2_shell> add_spare_cells -cell_name spare \
 -num_cells {NAND2 200 NOR 150}

• (Optional) A repetitive placement window in which to add the spare cells by using
the -repetitive_window option

For example, to add 15 instances each of the AND2 and OR2 library cells in a 20 by
20 micron window that is repeated throughout the placement area, use the following
command:

icc2_shell> add_spare_cells -cell_name spare \
 -lib_cell {AND2 OR2} -num_instances 15 \
 -repetitive_window {20 20}
To add 20 instances of the NAND2 and 15 instances of the NOR2 library cells in a
25 by 20 micron window that is repeated throughout the placement area, use the
following command:

icc2_shell> add_spare_cells -cell_name spare \
 -num_cells {NAND2 20 NOR 15} -repetitive_window {25 20}

IC Compiler™ II Implementation User Guide
T-2022.03

815

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Automatically Adding Spare Cells

Feedback

By default, the add_spare_cells command distributes the spare cells evenly
throughout the entire design. To distribute the spare cells within a specific

• Hierarchical block, use the -hier_cell option.

When you use this option, the tool distributes the spare cells in a rectangular area
that encloses all of the cells that belong to the specified hierarchical block.

• Bounding box, use the -boundary option.

• Voltage areas, use the -voltage_areas option.

You can further control the placement of the spare cells as follows:

• Ignore specific types of placement blockages by using the
-ignore_blockage_types option. By default, the add_spare_cells command
honors all placement blockage types.

• Ignore the current cell density and place the spare cells randomly by using the
-random_distribution option.

• Specify a percentage of spare cells to be placed based on the cell density
distribution by using the -density_aware_ratio option. The rest of the spare
cells are placed randomly throughout the design. By default, all the spare cells are
placed based on the cell density distribution.

For example, if you specify a setting of -density_aware_ratio 80, the tool places
80 percent of the spare cells based on the cell density distribution and 20 percent
randomly across the design.

• Specify the type of connection for the input pins of the spare cells by using the
-input_pin_connect_type option. The valid values are tie_low, tie_high, or
open.

2. Legalize the spare cells by using the place_eco_cells -legalize_only -cells
command.

IC Compiler™ II Implementation User Guide
T-2022.03

816

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding Programmable Spare Cells

Feedback

Adding Programmable Spare Cells
The IC Compiler II tool supports programmable spare cells, also known as gate array filler
cells, if they are provided by your vendor. These cells can be programmed by metal mask
changes for ECO implementation, reducing mask costs and time-to-results.

To insert programmable spare cells, use the following steps:

1. Specify the programmable spare cell that a standard cell can map to by setting the
same psc_type_id attribute setting on the corresponding library cell for the standard
cell and the programmable spare cell.

The following example specifies that

• The standard cells named BUF1 and INV1 can map to the programmable spare cell
named fill1x by setting the psc_type_id attribute to 1 for the corresponding library
cells.

• The standard cells named NAND2 and NOR2 can map to the programmable spare
cell named fill2x by setting the psc_type_id attribute to 2 for the corresponding
library cells.

icc2_shell> set_attribute [get_lib_cells fill_lib/fill1x] \
 psc_type_id 1
icc2_shell> set_attribute [get_lib_cells stdcell_lib/BUF1] \
 psc_type_id 1
icc2_shell> set_attribute [get_lib_cells stdcell_lib/INV1] \
 psc_type_id 1
icc2_shell> set_attribute [get_lib_cells fill_lib/fill2x] \
 psc_type_id 2
icc2_shell> set_attribute [get_lib_cells stdcell_lib/NAND2] \
 psc_type_id 2
icc2_shell> set_attribute [get_lib_cells stdcell_lib/NOR2] \
 psc_type_id 2

2. Insert the programmable spare cells by using the create_stdcell_fillers
command.

The following example inserts programmable spare cells named fill1x and fill2x:

icc2_shell> create_stdcell_fillers \
 -lib_cells {fill_lib/fill1x fill_lib/fill2x}

During the ECO flow, the tool swaps an ECO cell with a programmable spare cell based
on the psc_type_id attribute setting, cell width, and voltage area. If the tool removes an
ECO cell from the design, it can reuse the corresponding programmable spare cell.

IC Compiler™ II Implementation User Guide
T-2022.03

817

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Making ECO Changes Using the eco_netlist Command

Feedback

Making ECO Changes Using the eco_netlist Command
You can make ECO changes to a block by using the eco_netlist command.

If you are using the freeze silicon ECO flow, enable ECO changes in the freeze silicon
mode by setting the design.eco_freeze_silicon_mode application option to true,
before you run the eco_netlist command.

When you use the eco_netlist command, use one of the following two methods to make
the ECO changes:

• Specify a golden Verilog netlist that includes the ECO changes by using the
-by_verilog_file option

• Specify a golden block that includes the ECO changes by using the -block option

When you use the -block option, by default,

◦ The tool assumes the golden block is in the current design library.

To specify a different design library, use the -golden_lib option.

◦ The tool makes the ECO changes to the current design.

To make the ECO changes to a different design, use the -working_block
option. To specify the design library that contains the design specified by the
-working_block option, use the -working_lib option.

The tool compares the working design to the input Verilog netlist or the golden design
and generates a change file containing netlist editing Tcl commands that implements
the functional changes. You must specify the name of the output file by using the
-write_changes option.

By default, the tool ignores the following:

• Differences in the physical-only cells

To consider the differences in the physical-only cells, use the
-compare_physical_only_cells option.

• Timing ECO changes, such as cells that are resized or repeaters that are added or
removed.

To consider the timing ECO changes, in addition to the functional ECO changes, use
the -extract_timing_eco_changes option.

• Differences in power and ground objects.

IC Compiler™ II Implementation User Guide
T-2022.03

818

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Making ECO Changes Using Netlist Editing Commands

Feedback

To make the ECO changes to the working design, source the change file that the
eco_netlist command generates, as shown in the following example:

icc2_shell> eco_netlist -by_verilog_file eco.v \
 -compare_physical_only_cells -write_changes eco_changes.tcl
icc2_shell> source eco_changes.tcl

Making ECO Changes Using Netlist Editing Commands
If the ECO changes are minimal, you can update the design by using netlist editing
commands given. If you are using the freeze silicon ECO flow, enable ECO changes in the
freeze silicon mode by setting the design.eco_freeze_silicon_mode application option
to true, before you run the netlist editing commands.

For a list of netlist editing commands, see the Common Design Objects topic in the IC
Compiler II Data Model User Guide.

Using ECO Scripts for Netlist Editing
The IC Compiler II tool supports using ECO scripts to make changes in the netlist during
design planning. You can use the

• write_split_net_eco command to push up the branching of a physical multiple-
fanout net to the top level

• write_push_down_eco command to push down a tree of standard cells one level

• write_spare_ports_eco command to create spare ports and nets on a child block

For more information, see the Generating ECO Scripts for Netlist Editing topic in the IC
Compiler II Design Planning User Guide.

Resizing Cells
You can resize a cell by using the size_cell command, as shown in the following
example:

icc2_shell> size_cell U21 -lib_cell AND2X4
If you enable the freeze silicon mode by setting the design.eco_freeze_silicon_mode
application option to true, by default, the size_cell command checks if a compatible

IC Compiler™ II Implementation User Guide
T-2022.03

819

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding Buffers on Routed Nets

Feedback

spare cell is available within a distance of five times the unit site height before sizing the
cell. If a compatible spare cell is not available, the tool does not size the cell.

• To control this distance, use the -max_distance_to_spare_cell option.

• To disable this feature, use the -not_spare_cell_aware option.

Reverting Changes Made During Resizing
To revert the ECO changes made with the size_cell command, use the
revert_cell_sizing command. To include the sized cells that are adjacent to the
specified cell in the same row, use the -include_adjacent_sized_cells option.
When you use this option, by default, the tool also reverts the cells that abut the
specified cell on either side, if they are also sized cells. However, if you use the
-adjacent_cell_distance option, the tool recursively reverts the sized cells that are
adjacent to sized cells within the specified distance in the same row.

Adding Buffers on Routed Nets
To add buffers or pairs of inverters on a fully routed net, use the add_buffer_on_route
command as described in the following topics:

• Specifying the Net Names, Buffers Types, and Their Locations

• Controlling How Buffers are Added

• Specifying Settings for Multivoltage Designs

• Specifying Settings for the Freeze Silicon ECO Flow

Specifying the Net Names, Buffers Types, and Their Locations
When you use the add_buffer_on_route command, you must specify the following:

• The net on which to add buffers

• The type of buffers to add and where to add them on the net by using one of the
following methods:

◦ Adding Buffers in a Specified Configuration

◦ Adding Buffers at Specified Locations

◦ Adding Buffers at a Specified Interval

◦ Adding Buffers at an Interval That is a Ratio of the Net Length

◦ Adding Buffers on a Bus in a Specified Pattern

IC Compiler™ II Implementation User Guide
T-2022.03

820

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding Buffers on Routed Nets

Feedback

Adding Buffers in a Specified Configuration
To add buffers in an exact configuration, specify the configuration of cells and their
locations by using the -user_specified_buffers option.

With the -user_specified_buffers option, you can add cells only on one net at a time.
You can insert different types of buffers or inverter pairs by using this option, but you
cannot combine both buffers and inverter pairs.

For each cell you add, use the {instance_name library_cell_name x y layer_name... }
format with the -user_specified_buffers option to specify the

• Instance name

• Library cell to use

• Coordinates of the exact location

• Layer at that location with an existing routing shape to connect to

Instead of specifying the routing layer, you can have the tool automatically detect the
closest routing shape to that location by using the -detect_layer option.

The following example adds two cells named ECO1 and ECO2 on net n22. The ECO1 cell
is of type BUF2, at location (100, 70), connecting to a routing shape on the M3 layer. The
ECO2 cell is of type BUF4, at location (150, 70), also connecting to a routing shape on the
M3 layer.

icc2_shell> add_buffer_on_route net22 \
 -user_specified_buffers {ECO1 BUF2 100 70 M3 ECO2 BUF4 150 70 M3}

Adding Buffers at Specified Locations
To add buffers at specific locations of a net, specify

• A list of one or more library cells to select from by using the -lib_cell option

• The exact locations by using the -location option

With the -location option, you must specify the x- and y-coordinates and a layer with
an existing routing shape at that location by using the {x1 y1 layer1} format. Instead
of specifying the routing layer, you can have the tool automatically detect the closest
routing shape to that location by using the -detect_layer option.

With this method, you can add cells only on one net at a time.

The following example adds the BUF1 library cell on the net1 net at location (100, 200)
and connects it to an existing route shape on the M4 layer.

icc2_shell> add_buffer_on_route net1 -lib_cell BUF1 \
 -location {100 200 M4}

IC Compiler™ II Implementation User Guide
T-2022.03

821

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding Buffers on Routed Nets

Feedback

By default, the tool uses eco_cell and eco_net as the name prefix of all new cells and
nets. To specify a name prefix for the new cells and nets, use the -cell_prefix and
-net_prefix options, respectively.

Adding Buffers at a Specified Interval
To add buffers at a specified interval to one or more nets, specify

• A list of one or more library cells to select from by using the -lib_cell option

• The distance between the driver of the net and the first buffer by using the
-first_distance option

• The interval between the buffers by using the -repeater_distance option

Optionally, you can scale the distance between the buffers by

◦ Specifying a different scaling factor for each layer using the -scaled_by_layer
option

◦ Using the ratio between the default width for the layer and the actual route width as
the scaling factor by specifying the -scaled_by_width option

The following example adds the BUF1 library cell on the nets n2 and n5 at an interval of
150 microns. The distance between the driver and the first repeater cell is 100 microns.

icc2_shell> add_buffer_on_route {n2 n5} -lib_cell BUF1 \
 -first_distance 100 -repeater_distance 150
By default, the tool uses eco_cell and eco_net as the name prefix of all new cells and
nets. To specify a name prefix for the new cells and nets, use the -cell_prefix and
-net_prefix options, respectively.

Adding Buffers at an Interval That is a Ratio of the Net Length
To add buffers at an interval that is a ratio of the total net length, specify

• A list of one or more library cells to select from by using the -lib_cell option

• The distance between the driver and the first buffer as a ratio of the total net length by
using the -first_distance_length_ratio option

• The distance between the buffers as a ratio of the total net length by using the
-repeater_distance_length_ratio option

The following example adds the BUF1 library cell on the nets n3, n21, and n41 at an
interval that is 20 percent of the total net length. The distance between the driver and the
first repeater cell is 10 percent of the total net length.

IC Compiler™ II Implementation User Guide
T-2022.03

822

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding Buffers on Routed Nets

Feedback

icc2_shell> add_buffer_on_route {n3 n21 n41} -lib_cell mylib/BUF1 \
 -first_distance_length_ratio 0.1 \
 -repeater_distance_length_ratio 0.2
By default, the tool uses eco_cell and eco_net ad the name prefix of all new cells and
nets. To specify a name prefix for the new cells and nets, use the -cell_prefix and
-net_prefix options, respectively.

Adding Buffers on a Bus in a Specified Pattern
To add buffers in a specific pattern to the individual nets of a bus, use the following steps:

1. Define buffer patterns for the nets of a bus by using the
create_eco_bus_buffer_pattern command.

This command allows you to define patterns for staggering buffers on bused nets,
which prevent clumping and overlapping of buffers.

Table 65 Commands Associated With Bus Patterns

To do this Use this command

Create bus patterns create_eco_bus_buffer_pattern

Report information about bus patterns report_eco_bus_buffer_patterns

Get a collection of buffer patterns get_eco_bus_buffer_patterns

Remove bus patterns remove_eco_bus_buffer_patterns

The following example creates the buffer pattern shown in Figure 174 for a horizontal
bus, where the first buffer is placed on the topmost net. The buffers are staggered
by a distance of 2, starting from the left, and the pattern is repeated after every three
buffers.

icc2_shell> create_eco_bus_buffer_pattern -name top_left \
 -first_buffer top -measure_from left -distance 2 -repeat_after 3

IC Compiler™ II Implementation User Guide
T-2022.03

823

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding Buffers on Routed Nets

Feedback

Figure 174 Buffer Patterns for a Horizontal Bus

2 2

First buffer

The following example creates the buffer pattern shown in Figure 175 for a vertical bus,
where the first buffer is placed on the rightmost net. Starting from the top, the second
buffer is staggered by a distance of 2 from the first, the third a distance of 3 from the
second, and the fourth a distance 2 from the third. After that, the pattern is repeated.

icc2_shell> create_eco_bus_buffer_pattern -name right_top \
 -first_buffer right -measure_from top \
 -user_specified_distance {2 3 2}

Figure 175 Buffer Patterns for a Vertical Bus

2

3

First buffer

2

2. Add buffers on the nets of the bus by using the add_buffer_on_route
-user_specified_bus_buffers command.

For each group of buffers that you add on the bused nets, use the
{buffer_pattern_name library_cell_name x y } format with the
-user_specified_bus_buffers option to specify the

IC Compiler™ II Implementation User Guide
T-2022.03

824

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding Buffers on Routed Nets

Feedback

• Name of the buffer pattern that you defined using the
create_eco_bus_buffer_pattern command

• Library cell to use

• Coordinates of the location of the first buffer in the pattern

The following example adds a group of buffers of type BUF2 on the bus named data_A,
using a buffer pattern named BP1. The first buffer of the pattern is placed at location
(100, 70).

icc2_shell> add_buffer_on_route [get_net data_A*] \
 -user_specified_bus_buffers {BP1 BUF2 100 70}

Controlling How Buffers are Added
By default, the add_buffer_on_route command

• Adds buffers over all placement blockages, soft macros, and hard macros.

To prevent buffers from being placed over specific macro cells, use the
-dont_allow_insertion_over_cell option.

Alternatively, you can prevent the buffers from being placed over all blockages and
macro cells by using the -respect_blockages option. When you use this option,
you can specify a list of macro cells over which buffers are allowed by using the
-allow_insertion_over_cell option.

• Adds buffers on both global routed and detail routed nets.

To add buffers only on nets that are global routed only, without assigned tracks or detail
routing, use the -only_global_routed_nets option.

• Adds buffers at the lowest common level of hierarchy of the pins being driven by the
buffers.

To add the buffers on the highest possible level of hierarchy, use the
-on_top_hierarchy option.

• Does not add buffers on a route segment if it is necessary to create new ports because
of a difference in the logical and physical topology of the net.

To add buffers on such route segments by creating new ports, use the -punch_port
option.

IC Compiler™ II Implementation User Guide
T-2022.03

825

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding Buffers on Routed Nets

Feedback

Specifying Settings for Multivoltage Designs
For multivoltage designs, to

• Ensure that primary and secondary voltage areas are honored and cells are added
in logical hierarchies that are physically in the corresponding voltage areas, use the
-respect_voltage_areas option with the add_buffer_on_route command.

• Specify different library cells for different voltage areas, use the
-voltage_area_specific_lib_cells option and specify the list of library cells using
the {va1 lib_cell1 va2 lib_cell2 ...} format.

When you use this option, you must also use the -lib_cell option.

• Specify different single-rail and dual-rail library cells for different voltage areas, use
the -select_mv_buffers option and specify the list of library cells by using the {va1
single_rail_lib_cell1 dual_rail_lib_cell1 va2 single_rail_lib_cell2 dual_rail_lib_cell2 ...}
format.

When you use this option, you must also use the -lib_cell option. For voltage areas
that you do not specify with this option, the tool uses library cells specified with the
-lib_cell option. For the default voltage area, specify DEFAULT_VA as the voltage
area name.

• Allow buffers on physical feedthrough nets of a voltage area, specify the voltage areas
with the -allow_physical_feedthrough_buffer option.

This option can only be used with the -respect_voltage_areas or
-voltage_area_specific_lib_cells option, and the voltage area you specify must
be a primary voltage area.

After you run the add_buffer_on_route command with this option, update
the supply net and power domain setting for the added buffers by using the
set_eco_power_intention command.

• Add cells within gas stations of specified supply nets, use the -respect_gas_station
option and specify the supply net.

Gas stations are areas with a constant power supply. These areas used for buffering
nets that go through power domains that are powered down.

To specify the maximum allowed distance from the gas station to the added buffer, use
the -max_distance_route_to_gas_station option.

Specifying Settings for the Freeze Silicon ECO Flow
When you set the design.eco_freeze_silicon_mode application option to true and run
the add_buffer_on_route command in the freeze silicon mode, the tool checks if a spare

IC Compiler™ II Implementation User Guide
T-2022.03

826

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Optimizing the Fanout of a Net

Feedback

cell is available within a distance of five times the unit site height before adding a buffer. If
a spare cell is not available, the tool does not add the buffer.

• To control this distance, use the -max_distance_to_spare_cell option.

• To disable this feature, use the -not_spare_cell_aware option.

Optimizing the Fanout of a Net
During the timing ECO flow, you can add buffers to a net and optimize its fanout by using
the split_fanout command.

With this command, you must specify

• The net to optimize by specifying its name by using the -net option or its driver by
using the -driver option

• The library cell to use by using the -lib_cell option

• The method in which to optimize the net by specifying one of the following:

◦ A maximum fanout constraints for the net by using the -max_fanout option

◦ The load pins or ports to buffer by using the -load option

When you use this option, you can specify the logical hierarchy to add the buffer by
using the -hierarchy option.

In addition, you can

• Add the buffers on the existing route topology of the net by using the -on_route option

If you use this option with the -load option, you cannot specify the -hierarchy option.

• Split the fanout of a routed net that is not fully connected to the terminals of the driver
or loads of the net by specifying a maximum distance between terminals of the driver or
load pins and the incomplete route using the -max_distance_for_incomplete_route
option.

If the tool is unable to find a routed segment or finds more than one routed segment
within the specified distance from the unconnected terminal, it issues an error
message.

• Avoid placement blockages and macro cells when placing buffers by using the
-respect_blockages option

IC Compiler™ II Implementation User Guide
T-2022.03

827

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Reporting Available Sites for Placing ECO Cells

Feedback

• Specify a name prefix for the new cells and nets by using -cell_prefix and
-net_prefix options

By default, the tool uses eco_cell and eco_net as the name prefix for the new cells and
nets.

Reporting Available Sites for Placing ECO Cells
You can report sites available for placing ECO cells by using the
report_cell_feasible_space command. By default, the tool reports the available
sites in the entire block. You can restrict the report to specific voltage areas by using
the -voltage_areas option or to a specific rectangle or rectilinear area by using the
-boundary option.

Identifying and Reverting Nonoptimal ECO Changes
You can identify if ECO changes made with the size_cell, add_buffer, and
add_buffer_on_route commands can cause large displacements during ECO placement
and legalization by using the report_eco_physical_changes command.

You can revert the nonoptimal ECO changes made by the size_cell, add_buffer, and
add_buffer_on_route commands by using the revert_eco_changes command. To
specify the cells for which to revert the ECO changes, use the -cells option.

Placing ECO Cells
For the unconstrained ECO flow, place the ECO cells by using the place_eco_cells
command. This command derives the placement of each ECO cell based on the
connectivity and the delays associated with the cell. The tool then legalizes each ECO cell
to the closest unoccupied site. The existing cells are untouched to minimize the impact to
their placement.

To place

• All unplaced cells, use the -unplaced_cells option.

• Specific cells, use the -cells option.

IC Compiler™ II Implementation User Guide
T-2022.03

828

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Placing ECO Cells

Feedback

• Only the cells that have changed due to ECO operations, use the
-eco_changed_cells option.

A cell is considered changed if the eco_change_status attribute of the cell has one of
the following values:

◦ create_cell

◦ change_link

◦ add_buffer

◦ size_cell
When you run the eco_netlist command, the tool automatically sets the
eco_change_status attribute on the changed cells. If you update the design without
using the eco_netlist command, you can manually set the eco_change_status
attribute by using the set_attribute command.

Controlling Placement When Using the place_eco_cells Command
The place_eco_cells command places and legalizes each ECO cell based on the
connectivity and the delays associated with the cell.

You can control the placement of the ECO cells as follows:

• To use the channels areas between macro cells for ECO placement, use the
-channel_aware option.

By default, the command avoids channel areas during ECO placement.

• To place ECO cells closer to fixed points, such as I/O pads or macro cells,
specify a weight for the nets connected to the fixed cells by using the
-fixed_connection_net_weight option.

By default, nets connected to fixed cells have a weight of one. To place ECO cells
closer to fixed points, specify an integer value greater than one for the corresponding
net.

• To prioritize specific nets during ECO placement by specifying net weights,

1. Specify net weights by using the set_eco_placement_net_weight command.

2. Specify that the tool honors the net weights by using the -honor_user_net_weight
option with the place_eco_cells command.

To report the net weights you specify, use the report_eco_placement_net_weight
command.

IC Compiler™ II Implementation User Guide
T-2022.03

829

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Placing ECO Cells

Feedback

• To create virtual connections for ECO cells and use them during ECO placement,
instead of the actual connections,

1. Create virtual connections by using the create_virtual_connection command

2. Use these virtual connections during ECO placement by using the
-use_virtual_connection option with the place_eco_cells command.

The following example creates virtual connections for the inputs and output of the cell
named ECO17 and performs ECO placement using these virtual connections:

icc2_shell> create_virtual_connection -name VC_0 \
 -pins {U1/Y ECO17/A}
icc2_shell> create_virtual_connection -name VC_1 \
 -pins {U2/Y ECO17/B}
icc2_shell> create_virtual_connection -name VC_2 \
 -pins {ECO17/Y D17_OUT} -weight 3
icc2_shell> place_eco_cells -cells ECO17 -use_virtual_connection
To remove virtual connections you have created, use the
remove_virtual_connections command. To query virtual connections, use the
get_virtual_connections command.

• To ignore high-fanout nets connected to ECO cells that exceed a specific threshold,
use the -max_fanout option with the place_eco_cells command.

• To ignore the connections of specific pins on ECO cells, use the
-ignore_pin_connection option with the place_eco_cells command.

Controlling Legalization When Using the place_eco_cells
Command
After placing the ECO cells, the place_eco_cells command legalizes each ECO cell to
the closest unoccupied site. The existing cells are untouched to minimize the impact to
their placement.

You can control the legalization of the ECO cells by using one of the following methods:

• To not legalize the cells after ECO placement, use the -no_legalize option.

• To perform legalization only, use the -legalize_only option.

IC Compiler™ II Implementation User Guide
T-2022.03

830

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Placing ECO Cells

Feedback

• To specify the mode in which to legalize, use the -legalize_mode option with one of
the following settings:

◦ free_site_only
When you specify this setting, the default, the tool legalizes the ECO cells on free
sites without moving preexisting cells. An ECO cells can have a large displacement,
if a free site is unavailable nearby.

◦ allow_move_other_cells
When you specify this setting, the tool legalizes the ECO cells to the nearest legal
location by moving preexisting cells.

◦ minimum_physical_impact
When you specify this setting, the tool first legalizes the ECO cells the can be
legalized to a free site nearby without moving preexisting cells. For the ECO cells
that do not have a free site nearby, the tool legalizes them by moving preexisting
cells.

• To specify a displacement threshold for legalization, use the
-displacement_threshold option.

When you use the -displacement_threshold option, you can also use the
-max_displacement_threshold option to specify a second displacement threshold
that is larger than the value specified with the -displacement_threshold option.

How the tool uses these displacement thresholds depends on the setting you use for
the -legalize_mode option as follows:

◦ free_site_only
When you specify this setting, the tool legalizes the ECO cells that have available
free sites within the specified displacement threshold.

If the displacement of an ECO cell exceeds this threshold, the tool does not legalize
the cell. It creates a collection named epl_legalizer_rejected_cells that consists of
such ECO cells that are not legalized.

You can subsequently legalize the ECO cells in the epl_legalizer_rejected_cells
collection by using the following command:

icc2_shell> place_eco_cells
 -legalize_mode allow_move_other_cells \
 -legalize_only -cells $epl_legalizer_rejected_cells
This command moves existing cells to find legal locations for the ECO cells in the
collection named epl_legalizer_rejected_cells.

IC Compiler™ II Implementation User Guide
T-2022.03

831

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Placing ECO Cells

Feedback

If you also specify the -max_displacement_threshold option with
-displacement_threshold option, the tool also creates a collection named
epl_max_displacement_cells that consists of ECO cells with a displacement larger
than that specified by this option. The collection epl_max_displacement_cells is
a subset of the collection epl_legalizer_rejected_cells and its cells are also not
legalized.

You can use the -max_displacement_threshold option to identify ECO cells with
a very large displacement, for which you want to reject the ECO changes.

◦ allow_move_other_cells
When you specify this setting, you cannot specify the -displacement_threshold
and -max_displacement_threshold options.

◦ minimum_physical_impact
When you specify this setting, the tool first legalizes the ECO cells that have
available free sites within the specified displacement threshold.

If the displacement of an ECO cell exceeds this threshold, the tool legalizes them
by moving preexisting cells.

If you also specify the -max_displacement_threshold option, the tool does not
legalize the cells that exceed this maximum displacement threshold specified with
this option and the tool creates a collection named epl_max_displacement_cells
that consists of ECO cells with a displacement larger than that specified by this
option. You can use the -max_displacement_threshold option to identify ECO
cells with a very large displacement, for which you want to reject the ECO changes.

• To specify the types of filler cells that can be removed during legalization, use the
-remove_filler_references option.

When you use this option, the filler cells are removed if they do not have a fixed
placement and they overlap with ECO cells. By default, the tool does not remove any
filler cells when legalizing ECO cells.

Placing ECO Cells With Minimal Physical Impact (MPI)
To minimize the disturbance to the existing placement during ECO placement, use the
following options with the place_eco_cells command:

• -legalize_mode minimum_physical_impact

• -max_displacement_threshold

• -remove_filler_references

IC Compiler™ II Implementation User Guide
T-2022.03

832

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Placing and Mapping ECO Cells to Spare Cells

Feedback

Placing and Mapping ECO Cells to Spare Cells
For the freeze silicon ECO flow, place and map the ECO cells to spare cells by using the
place_freeze_silicon command. By default, this command places and maps all ECO
cells. To place and map specific ECO cells, use the -cells option. The following example
places and maps the ECO cells named ECO1, ECO2, and ECO3:

icc2_shell> place_freeze_silicon -cells {ECO1 ECO2 ECO3}
This command places each ECO cell and maps it to the nearest matching spare cell. Cells
that are deleted as a result of the ECO changes are not removed from the design. They
are converted to spare cells and remain in the design.

When you use the place_freeze_silicon command, you can

• Place the ECO cells by the target spare cells, but not map them to the spare cells, by
using the -no_spare_cell_swapping option

This feature allows you to place the ECO cells and analyze the QoR before you map
them.

• Map the spare cells that are already placed by the target spare cells by using the
-map_spare_cells_only option.

• Generate an ECO cell to spare cell mapping file by using the -write_map_file
command.

You can edit the mapping file, if necessary, and map the ECO cells by using the
map_freeze_silicon command.

• Specify a minimum distance between ECO cells that are mapped to programmable
filler cells by using the -min_filler_distance option.

Specifying Mapping Rules for Programmable Spare Cells
You can define mapping rules for programmable spare cells to control the

• Overlapping of spare cells and PG nets

• Splitting of multiple-height and merging of single-height spare cells

• Compatibility of the different types of spare cells

To do so, use the set_programmable_spare_cell_mapping_rule command before you
run the place_freeze_silicon or place_freeze_silicon command.

To report or remove the mapping rules you specify, use the
report_programmable_spare_cell_mapping_rule or
remove_programmable_spare_cell_mapping_rule command.

IC Compiler™ II Implementation User Guide
T-2022.03

833

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Placing and Mapping ECO Cells to Spare Cells

Feedback

Mapping ECO Cells to Specific Spare Cells
To map an ECO cell to a specific spare cell, use the map_freeze_silicon command.
Specify the ECO cell name and the corresponding spare cell name by using the
-eco_cell and -spare_cell options. The following example maps the ECO cell named
ECO1 to the spare cell named spare_1:

icc2_shell> map_freeze_silicon -eco_cell ECO1 -spare_cell spare_1
You can specify the ECO cell to spare cell mapping by using a map file and specifying this
map file name by using the -map_file option with the map_freeze_silicon command.
The map file has the following format:

ECO_cell_1 spare_cell_1
ECO_cell_2 spare_cell_2
... ...

Mapping ECO Cells to Logically Equivalent Spare Cells
When the tool maps an ECO cell, it looks for a spare cell with the same library cell name.
If it is unable to find such a spare cell, the ECO cells remains unmapped. To identify and
map such ECO cells to logically equivalent (LEQ) spare cells, use the following steps:

1. Identify the ECO cells that do not have matching spare cells by using the
check_freeze_silicon command.

2. Find logically equivalent spare cells for these ECO cells by using the
create_freeze_silicon_leq_change_list command.

Specify

• The names of the unmapped ECO cells by using the -cells option

• A name for the output file by using the -output option

This output file is a Tcl script with netlist editing commands. The commands replace
each ECO cell with logically equivalent spare cells, which can be a

◦ Single spare cell with the same logical functionality, but a different library cell
name

◦ Combination of up to two spare cells that give the same logical functionality

3. View the output Tcl file to ensure that the ECO mapping is satisfactory, and edit it if
necessary.

4. Source the Tcl file in the tool to replace the ECO cells with their logical equivalents.

IC Compiler™ II Implementation User Guide
T-2022.03

834

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Updating Supply Nets for ECO Cells

Feedback

Updating Supply Nets for ECO Cells
To update the supply nets for ECO cells, use the eco_update_supply_net command.
By default, it updates the supply nets for all cell added by using the following ECO
commands:

• size_cell in freeze-silicon mode

• add_buffer

• add_eco_repeater

• split_fanout

• add_buffer_on_route
To update the supply nets for specific cells, use the eco_update_supply_net -cells
command.

Recording the Changes Made to a Layout
You can record the changes you make to a layout and generate a Tcl file containing the
changes by using the record_layout_editing command, as shown in the following
example:

icc2_shell> record_layout_editing -start
icc2_shell> remove_shapes RECT_32_0
icc2_shell> record_layout_editing -stop -output layout_changes1.tcl
You can make the following layout changes:

• Create or remove layout objects by using Tcl commands

• Set attributes by using the set_attribute command

• Move or resize objects by using the GUI

With this feature, multiple users can make ECO changes to different parts of a layout in
parallel. Each user can output a Tcl file that contains the layout changes they make by
using the record_layout_editing command, and all the Tcl files can be applied to the
original layout.

IC Compiler™ II Implementation User Guide
T-2022.03

835

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Performing Prerequisite Check for Group Repeater Insertion and Placement

Feedback

Performing Prerequisite Check for Group Repeater Insertion and
Placement

Use the -check_prerequisites option of the place_group_repeaters or
add_group_repeaters command to perform a prerequisite check for a design. This
prerequisite check detects the design errors at the beginning of the command flow.

• For the place_group_repeaters command, use the -check_prerequisites option
with the following options to provide necessary information for the check:

place_group_repeaters
 -cells | -repeater_groups
 [-lib_cell_input]
 [-lib_cell_output]
 -check_prerequisites

• For the add_group_repeaters command, use the -check_prerequisites option with
the following options to provide necessary information for the check:

add_group_repeaters
 -nets | -bundles
 [-lib_cell_input]
 [-lib_cell_output]
 -check_prerequisites

• The prerequisite check validates the following in a design and search region:

◦ Site rows are present in the design.

◦ Each net has only one driver and can have multiple loads.

◦ Locations of pins or ports are assigned.

◦ For pins on standard cells, the standard cells are placed.

◦ Supernets must be routed.

◦ Route ends must not be more than 5 μm away from the driver, load pins, or ports in
the search region.

◦ The routes are defined for a driver or load in the search region.

◦ Load is connected to a driver.

◦ When the end of a route is open, no other route of the same net is present in the
vicinity of the pin or port.

◦ Routes must be assigned to the net of the supernet driver pin.

IC Compiler™ II Implementation User Guide
T-2022.03

836

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding a Group of Repeaters

Feedback

◦ Vias must be created for routes.

◦ Repeaters have a physical library cell.

The following example shows the usage of -check_prerequisites option using the
add_group_repeaters command:

icc2_shell> add_group_repeaters -bundles bundle_wo_load \
 -lib_cell ref_lib1/libCell1 -lib_cell_input A -lib_cell_output X \
 -repeater_distance 10 -check_prerequisite
Error: The net net_wo_load does not have loads. (ECO-329)
Error: The cell driver1 of the pin driver1/X is not placed. (ECO-331)
Error: 0
 Use error_info for more info. (CMD-013)

Adding a Group of Repeaters
To add a group of repeaters, use the add_group_repeaters command as described in the
following sections:

• Defining a group of repeaters

• Grouping a list of repeaters

• Setting Constraints for a Group of Repeaters

• Reporting the Constraints Assigned to a Group of a Repeaters

• Removing Constraints for a Group of Repeaters

• Placing Group Repeaters Before Routing

• Performing On Route Placement of Repeaters

• Placing Group Repeaters For Multibit Registers

• Specifying Locations for Repeater Groups

• Allowing Repeater Groups Over Macros

• Specifying Cut Space and Cut Distance for Repeater Groups

• Specifying Horizontal and Vertical Spacing for Repeater Groups

• Specifying Library Cells as Repeaters

• Avoiding Overlapping Repeaters With Existing Tap Cells

• Avoiding Crosstalk During Group Repeater Insertion

• Previewing Repeater Groups

IC Compiler™ II Implementation User Guide
T-2022.03

837

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding a Group of Repeaters

Feedback

• Unplacing the Repeaters

• Removing Repeater Groups

Defining a group of repeaters
To define a group of repeaters for cutline support, use the set_repeater_group or
create_repeater_groups command.

The following examples show the command usage.

set_repeater_group -group_id group_id \
 -check_connection \
 [-cells cell_list] \
 [-cutline { {{x1 y} {x2 y}} | {{x y1} {x y2}} }] \
 [-driver_group_id group_id] \
 [-path_drivers pin_port_list] \
 [-path_loads pin_port_list] \
 [-override]
 [-lib_cell_input string]
 [-lib_cell_output string]
 [-clear]

Grouping a list of repeaters
To automatically group a list of repeaters or repeaters of supernets, use the
create_repeater_groups command.

This command takes a list of repeaters, a list of supernets, or bundles of supernets and
returns a list of repeater groups created by the set_repeater_group command.

The command supports both single load and multiple loads supernets.

create_repeater_groups -supernets supernet_list | \
 -supernet_bundles supernet_bundle_list | \
 -cells cell_list \
 -lib_cells lib_cell_list \
 [-lib_cell_input lib_pin] \
 [-lib_cell_output lib_pin] \
 [-group_pin_spacing spacing] \
 [-ignore_pin_layers]

Setting Constraints for a Group of Repeaters
To define the constraints for a group of repeaters, use the
set_repeater_group_constraints command.

IC Compiler™ II Implementation User Guide
T-2022.03

838

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding a Group of Repeaters

Feedback

The set_repeater_group_constraints command has a lower priority
than the corresponding command options in the add_group_repeaters and
place_group_repeaters commands.

set_repeater_group_constraints -type type_list \
 [-horizontal_repeater_spacing spacing] \
 [-vertical_repeater_spacing spacing] \
 [-layer_cutting_distance layer_scale_list]

Reporting the Constraints Assigned to a Group of a Repeaters
To report the constraints that were assigned to a group of repeaters
using the place_group_repeaters, add_group_repeaters,
or set_repeater_group_constraints commands, use the
report_repeater_group_constraints command. For example:

icc2_shell> report_repeater_group_constraints

Removing Constraints for a Group of Repeaters
To remove the constraints that were assigned to a group of repeaters, use
remove_repeater_group_constraints command. For example:

icc2_shell> remove_repeater_group_constraints -type type_list

Placing Group Repeaters Before Routing
Use the preplace_group_repeaters command to place the group repeaters before the
routing. This command places the group repeaters either in an ascending or descending
order, default is ascending. The ascending order means that the command places the cells
in a group from the lowest or left-most available track to the highest or right-most track.

Note:
A FAA-Base-Beta license is required to run the preplace_group_repeaters
command.

You must specify either the cell collections or group IDs of the group repeaters.

The following example places group repeaters when the cell collections are specified.

icc2_shell> preplace_group_repeaters \
 -repeater_group_locations { { $cellGroup1, M2, {720 363.5}, \
 north, descending} {$cellGroup2, M2, {920 363.5}, east, ascending} \
 {$cellGroup3, M2, {1230 328.5}, east, ascending} \
 {$cellGroup4, M2, {1430 328.5}}, east}
The following example places group repeaters when the group ID is specified.

IC Compiler™ II Implementation User Guide
T-2022.03

839

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding a Group of Repeaters

Feedback

icc2_shell> preplace_group_repeaters \
 -repeater_group_locations { { 1,M2, {720 363.5}, south, ascending} \
 {2, M2, {920 363.5},west, ascending} {3, M2, {1230 328.5}, \
 south, ascending} {4, M2, {1430 328.5}, west, descending}}

Performing On Route Placement of Repeaters
To perform on route placement of interconnect repeaters, use the
place_group_repeaters command.

place_group_repeaters \
 -cells cell_list | -repeater_groups group_id_list \
 [-lib_cell_input pin_name] \
 [-lib_cell_output pin_name] \
 [-max_distance_for_incomplete_route distance] \
 [-first_distance distance] \
 [-last_distance distance] \
 [-blockage_aware] \
 [-horizontal_repeater_spacing spacing] \
 [-vertical_repeater_spacing spacing] \
 [-layer_cutting_distance layer_scale_list]
 [-verbose]

Placing Group Repeaters For Multibit Registers
To place group repeaters for multibit registers, use the create_repeater_groups
command with the -multi_bit option with the following command options:

create_repeater_groups
 -cells | -supernet_bundles | -supernets
 -multi_bit
 -pin_mapping {{lib_cell1 {inp1 outp1} {inp2 outp2}…}

The -multi_bit option determines the order of a multibit repeater based on the path
driver and creates the repeater groups for the multibit repeaters. In a design, when a net
has no route defined, this option places the group repeaters based on their location.

To verify the support for multibit register placement, use the following command:

icc2_shell> preplace_group_repeater
 -repeater_group_locations repeater_group_location_list
The format for the repeater_group_location_list argument is

{ {cell_collection, layer, location, potential routing direction, placing
 order} ...}

or

IC Compiler™ II Implementation User Guide
T-2022.03

840

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding a Group of Repeaters

Feedback

 { {group_id, layer, location, potential routing direction, placing
 order} ...}.

Specifying Locations for Repeater Groups
Use one of the following mutually exclusive options to control repeater group location:

• -repeater_distance specifies the distance between repeater groups. This option
supports the following additional options:

◦ -first_distance specifies the distance between the driver and the center of the
first repeater group.

◦ -min_distance_repeater_to_load specifies the minimum distance between the
last repeater group and the load. The default is one half of the value specified for
the -repeater_distance option.

◦ -tolerance specifies the maximum delta distance over the value specified for
-repeater_distance. The default is 5 μm.

• -relative_distance specifies the distance between the driver and the first repeater
group, the distance between the first and second repeater groups, the distance
between the second and third repeater group, and so on.

• -location specifies the location of the center of each repeater group.

• -number_of_repeater_groups specifies the total number of repeater groups to be
inserted evenly along the route.

• -cutlines specifies the location pairs that define the cutlines. Cutlines must be
perpendicular to the routes and the repeater groups are centered around the cutlines.

Allowing Repeater Groups Over Macros
Use the -allow_insertion_over_block option to allow repeater groups to be added on
top of soft or hard macros.

Note:
If the repeater cell is an inverter, you are responsible for ensuring logical
correctness.

IC Compiler™ II Implementation User Guide
T-2022.03

841

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding a Group of Repeaters

Feedback

Specifying Cut Space and Cut Distance for Repeater Groups
Use one of the following mutually exclusive options to control cutting for repeater groups:

• -layer_cutting_spacing specifies the cut space of the routes to the driver pin. The
cut starts from the driver side.

• -layer_cutting_distance specifies the cut distance from the repeater center to the
input and output routes.

Specifying Horizontal and Vertical Spacing for Repeater Groups
Use one of the following mutually exclusive options to control spacing for repeater groups:

• -horizontal_repeater_spacing specifies the horizontal spacing between repeaters
by cell site width.

• -vertical_repeater_spacing specifies the vertical spacing between repeaters by
site row height.

Specifying Library Cells as Repeaters
Use the -lib_cell option to specify a library cell as a repeater. This option supports the
following additional options:

• -lib_cell_input specifies the input pin of the library cell to connect, if it has multiple
inputs.

• -lib_cell_output specifies the output pin of the library cell to connect, if it has
multiple outputs.

Avoiding Overlapping Repeaters With Existing Tap Cells
Use the -honor_special_cell option to avoid overlapping with existing tap cells when
inserting repeaters.

Avoiding Crosstalk During Group Repeater Insertion
The crosstalk management is only supported in the create_group_repeaters_guidance
and add_group_repeaters commands flow.

IC Compiler™ II Implementation User Guide
T-2022.03

842

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Adding a Group of Repeaters

Feedback

The flow to avoid crosstalk during group repeater insertion is as follows:

1. Use the following command to query interleaving groups:

create_group_repeaters_guidance -net
 -number_of_interleaving_groups number

By default, the number argument is set to 1.

For example, if the value of the number is 2, one net group is separated into two
interleaving net groups.

2. Use the following command to manage crosstalk during group repeater insertion:

add_group_releaters
 -nets | -bundles
 -first_distance_of_net_groups
 { {group_id1 $first_dist1} {group_id2
 $first_dist2} …}
 -repeater_distance $dist

or

add_group_releaters
 -nets | -bundles
 -cutlines_of_net_groups
 { {group_id1 $cutline_list1} {group_id2 $cutline_list2} …}

• If the option -first_distance_of_net_groups is specified, the command groups
the nets based on the existing group IDs on nets and inserts repeaters based on
the specified first distance for the various net groups. The repeater distance is same
for all net groups.

• If the option -cutlines_of_net_groups is specified, the command groups the
nets based on the existing group IDs of the nets and inserts repeaters based on the
cutlines for the various net groups.

Previewing Repeater Groups
Use the -preview option to preview repeater group locations before insertion. The
repeaters are represented by annotation objects at the same locations where they are to
be inserted, with the same width and height as a repeater lib cell, and with the group ID
eco_preview_id.

Note:
Before previewing the repeater groups again, you must first remove
the annotation objects using either the gui_remove_annotations or
gui_remove_all_annotations command.

IC Compiler™ II Implementation User Guide
T-2022.03

843

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Querying Group Repeater

Feedback

Unplacing the Repeaters
To unplace the previous placement of repeaters, use the unplace_group_repeaters
command.

unplace_group_repeaters \
 -cells cell_list | -repeater_groups group_id_list \
 [-lib_cell_input pin_name] \
 [-lib_cell_output pin_name]

Removing Repeater Groups
To remove a group of repeaters, use the remove_eco_repeater command. The nets are
restored to their original names and routes shapes.

Querying Group Repeater
The group repeater query commands provide improved ease of use for interconnect
repeater while planning. The group repeater query

• Provides capability to query group repeater path info

• Supports cross-session query operation

• Supports query operation before group repeater placement

To query the group repeater during planning, you must be familiar with the following key
information

• Cells of a repeater group

• Cutline of a repeater group

• Group virtual connection

If a group has either driver group or path drivers, then it is categorized as group virtual
connection. Cell connection between groups depend on cell order in a group.

The following topics describe the steps in this flow

• Performing Auto Grouping Flow

• Performing Manual Grouping Flow

• Cell Input Mode

IC Compiler™ II Implementation User Guide
T-2022.03

844

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Querying Group Repeater

Feedback

Performing Auto Grouping Flow
Auto repeater group creation allows you to derive virtual connections for register
paths. For repeater group input mode, place_group_repeaters applies cutline based
placement. You must specify cutline for each group. Repeaters are placed based on the
intersection point between cutline and route.

Build connectivity based on real connections for target cells.

1. To group a list of repeaters or repeaters of supernets, use the
create_repeater_groups command. Also, specify the constraint option.

The command automatically performs cell grouping and groups virtual connection with
the following attributes:

• group_repeater_driver

• group_repeater_loads

• pin_pair

• group_id

2. Verify the path with the get_attribute, report_repeater_group, and
get_repeater_path_info commands. The get_attribute command reports the
attributes of the group_repeater_driver or group_repeater_loads command.
The command report_repeater_groups reports group information for specified
groups or all groups, and reports repeater paths for all groups if -verbose is on. The
get_repeater_paths_info command returns cells on repeater paths that include
input cells.

3. Specify the cutline for a group manually with the set_repeater_group -group_id-
cutline command.

4. Place interconnect repeaters on route with cutline for input repeater groups.

Performing Manual Grouping Flow
Auto grouping is based on the create_repeater_groups command. Use manual
grouping in case the auto grouping command result does not meet the requirement.

Check your target cell connection before placement. Perform the following steps for
manual grouping:

1. Group your cells by -cells, cell order intends the cell connection.

2. Define group virtual connection by -driver_group_id or -path_drivers.

3. Specify the cutline by -cutline.

IC Compiler™ II Implementation User Guide
T-2022.03

845

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

1. To define register path connections (virtual connection) for each set of repeater groups,
use the set_repeater_group command.

• To check cell connection before placement, use the set_repeater_group
-check_connection command. If the cell connection is not placed as expected,
repeat a reset repeater group for desired cell connection. It also adds new options
to record pin pair for the -check_connection option. The pin_pair option is used
to find cell real connection based on specified lib cell pin name.

2. Verify the path with the get_attribute, report_repeater_group, and
get_repeater_path_info commands. The get_attribute command reports the
attributes of the group_repeater_driver or group_repeater_loads commands. The
report_repeater_groups command reports group information for specified groups or
all groups, and reports repeater paths for all groups if -verbose is on. The command
get_repeater_paths_info returns cells on repeater paths that include input cells.

3. Check and report invalid paths based on real connection with the
set_repeater_group -check connection command.

4. Place interconnect repeaters on route with cutline for input repeater groups.

Cell Input Mode
Cell input mode enables to set distance based on route placement. By default, repeaters
are placed based on even distance on route for one repeater path. This mode allows you
to set the -first_distance or -last_distance option to control the distance at driver
side or load side.

1. Use the place_group_repeaters -cells -blockage_aware command, to
internally enable auto grouping . To internally enable auto grouping use the
create_repeater_groups -cells command and derive cutline based on distance.
Then, define repeater group by using the set_repeater_group -group_id -cutline
command,

After placing group repeaters, you can query repeater groups using the
report_repeater_groups command and repeater paths info using the
get_repeater_paths_info command.

2. To establish cell connection based on real connection and apply distance based
placement, use the place_group_repeaters -cells command. No repeater group is
created.

Swapping Variant Cell
The add_group_repeater and place_group_repeater commands support variant cell in
group repeater insertion and placement.

IC Compiler™ II Implementation User Guide
T-2022.03

846

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

The following topics describe the steps in this flow

• Setting Constraints of Variant Cell

• Setting Application Option

• Grouping Variant Cell

• Running and Placing Group Repeaters

• Troubleshooting

Setting Constraints of Variant Cell
To set the constraints of variant cell:

1. Use the set_repeater_group_constraints -type variant_cell_swapping
command to set the variant for cell swapping.

2. Use the report_repeater_group_constraints command to view the report of the
repeater group constraint settings, after setting the variant for cell swapping. The report
provides the

• Track pattern of the variant cell group

• Variant site ids

• Honor cell group not sharing timing

• First track alignment

3. Use the remove_repeater_group_constraints command to remove the constraints
and reset the settings based on the report.

Setting Application Option
To set application option before using the add group repeaters and
place_group_repeaters commands, use the set_app_option -name
eco.placement.variant_cell_swapping -value true command.

Based on the requirement, you can plan the variant cell flow. The rules of variant reference
swapping differ in various variant cell flows. By default, the variant cell support in the
eco_change_legal_reference command detects the variant mode and settings
automatically.

The eco_change_legal_reference command checks whether the current reference of
the cell is legal or illegal for the placed location. If it is illegal, the command attempts to find
a legal reference from its variant cell group defined to swap with the illegal one.

IC Compiler™ II Implementation User Guide
T-2022.03

847

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

To use the variant cell features directly for other cells, use the
eco_change_legal_reference command.

For complicated scenarios, you can switch the variant mode and tune the settings
manually. Following are the new application options for variant cell support:

• To set variant mode for different customers and different design flows, use the
set_app_options -name eco.placement.variant_cell_group_mode -value
command.

• To honor the variant cell groups, which are not sharing
timing view, use the set_app_options -name
eco.placement.honor_cell_group_not_sharing_timing -value command.

Grouping Variant Cell
In the same variant cell group, the library cell variants differ from the master-variant only in
mask color (or small geometry), while the timing data is same for these variants.

The variant cell feature supports the following

• track_pattern mode

• siteId_based mode

track_pattern mode

To specify the first metal layer for track alignment checking in track_pattern mode, use the
set_app_options -name eco.placement.first_track_alignment_layer -value
name command.

Figure 176 shows the cell group with two variants.

IC Compiler™ II Implementation User Guide
T-2022.03

848

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Figure 176 Cell Group With Two Variants

Based on the first track offset of library cells and the pitch value, you can define and derive
the variant library cell types, which start from 0.

Figure 177 shows variant type id definition.

Figure 177 Variant Type id Definition

IC Compiler™ II Implementation User Guide
T-2022.03

849

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

You can detect the variant type id for target cell current location. You can also check if
the current reference is legal or illegal. If it is not legal, select the legal reference from cell
group and swap it.

Figure 178 shows the check and swap with legal reference for target cell.

Figure 178 Check and Swap With Legal Reference for Target Cell.

siteId_based mode

The variant mapping and flipped mapping information are defined in the cell group.
Following is an example of the report_cell_groups command.

Figure 179 shows the cell group definition for mapping id and flipped mapping id.

IC Compiler™ II Implementation User Guide
T-2022.03

850

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Figure 179 Cell Group Definition for Mapping id and Flipped Mapping id

There are two sub flows for siteId_based mode: 2-Variants and N-Variant.

Figure 180 shows the 2-Variants and N-Variants sub flows in siteId_based mode

IC Compiler™ II Implementation User Guide
T-2022.03

851

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Figure 180 2-Variants and N-Variants Sub Flows in siteId_based Mode

Each variant reference has both legal mapping id and flipped mapping id.

Figure 181 shows the variant mapping and flipped mapping id.

IC Compiler™ II Implementation User Guide
T-2022.03

852

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Figure 181 Variant Mapping and Flipped Mapping id

For variant siteId, you can get the cycle and offset from site rows first, then use the cell
placed location to do the calculation.

Figure 182 shows the calculation for variant siteId

IC Compiler™ II Implementation User Guide
T-2022.03

853

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Figure 182 Calculation for Variant siteId

Running and Placing Group Repeaters
Use the add_group_repeaters and place_group_repeaters commands to display the
summary report for variant cell swapping in command cell collections.

Troubleshooting
Table 66 lists the messages of group repeater placement and insertion for the problems
encountered during defining the group repeaters.

Table 66 Group Repeater Placement and Insertion Troubleshooting

Command Error Code Message Troubleshooting
Tips

place_group_repeater
s

ECOUI-136 Error: The repeater group
(%d) is invalid.

Check if the input
group id exists
by running the
report_repeater_g
roups command.

IC Compiler™ II Implementation User Guide
T-2022.03

854

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Table 66 Group Repeater Placement and Insertion Troubleshooting (Continued)

Command Error Code Message Troubleshooting
Tips

place_group_repeater
s

ECO-220 Warning: Failed to
connect to route for %d
object: {%s }.

Check the pin shape
of object and route
shapes. The object
as driver or load can
be port, macro pin,
and placed cell.

place_group_repeater
s

ECO-224 Error: The option
-repeater_groups
cannot be used when
the app option
eco.placement.eco_enable_
pipeline_register_placer
is false.

Check the pin shape
of object and route
shapes. The object
as driver or load can
be port, macro pin,
and placed cell.

place_group_repeater
s

ECO-227 Warning: Failed to place
%d repeaters for %d
drivers in collection
(%s), and failed cells
are in collection (%s).

Check the failed
drivers by running
the query_objects,
get_ports,
get_pins and
get_cells
commands. The
driver can be port,
macro pin, and
placed cell.

place_group_repeater
s

ECO-228 Warning: Some repeaters
from path driver (%s)
have same repeater group
id. The cells belonging
to the path are {%s}.

Check if the group
id of cells are on
the same path.
The command
skips to place some
repeaters. The group
id of cells on one
path should be
different.

place_group_repeater
s

ECO-229 Warning: Failed to find
intersection of cutline
%s and route for cell
{%s}.

place_group_repeater
s

ECO-231 Error: The repeater group
(%d) has no cutline or
invalid cutline.

Check the right
cutline for this group.
Set right cutline for
this group using the
set_repeater_grou
p command.

IC Compiler™ II Implementation User Guide
T-2022.03

855

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Table 66 Group Repeater Placement and Insertion Troubleshooting (Continued)

Command Error Code Message Troubleshooting
Tips

place_group_repeater
s

ECO-232 Error: Cutline {{%s}
{%s}} is invalid.

Check the format of
the cutline. The valid
format of cutline is
{{x1 y} {x2 y}} or {{x
y1} {x y2}}.

place_group_repeater
s
unplace_group_repeat
ers

ECO-233 Error: The cells in
collection (%s) are
invalid since they have
no target input pin name
(%s) and output pin name
(%s).

Check the input
and output pin
name. The input pin
name and output
pin name can be
specified by using the
-lib_cell_input
and
-lib_cell_output
options if needed,
or filter out invalid
cells from input. The
default value for
-lib_cell_input
is D. The
default value for
-lib_cell_output
is Q.

place_group_repeater
s

ECO-234 Warning: There is no
repeater to be placed for
the path driver (%s).

place_group_repeater
s

ECO-235 Warning: There is no
route on driver net (%s).

place_group_repeater
s

ECO-236 Warning: There is no
target load for path
driver (%s).

place_group_repeater
s

ECO-237 Warning: Some cell to be
placed has no load for
path driver (%s).

place_group_repeater
s

ECO-239 Info:%s. Check the place and
connection mode.
Show the place mode
(cutline/distance)
and connection
mode (virtual
connection/real
connection) on this
command.

IC Compiler™ II Implementation User Guide
T-2022.03

856

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Table 66 Group Repeater Placement and Insertion Troubleshooting (Continued)

Command Error Code Message Troubleshooting
Tips

place_group_repeater
s
unplace_group_repeat
ers

ECO-240 Error: The option
-cells cannot be used
when the app option
eco.placement.eco_enable_
virtual_connection is
true.

Check the command
for virtual connection.
Specify the
-repeater_groups
command if you
need to use virtual
connection.

place_group_repeater
s

ECO-241 Warning: The distance
based placement does not
support multi-fanout path
driver(%s).

Check the cutline
based placement for
the multi-fanout path
driver.

place_group_repeater
s
unplace_group_repeat
ers

ECO-242 Warning: The cell (%s)
has no driver or load
(number of driver: %d,
number of load: %d).

place_group_repeater
s

ECO-243 Error: The cells in
collection (%s) are
invalid since they have
no driver or load.

Check for invalid
cells. Ensure the cell
that is placed has
both driver and load.
Else, remove such
cells from input.

place_group_repeater
s

ECO-244 Warning: The %s %s has no
shape.

Check if the top port
or macro pin has
shape.

place_group_repeater
s

ECO-246 Warning: Skip the path
driver (%s) since the
driver or load for the
path has no shape.

place_group_repeater
s

ECO-251 Info: Place group
repeaters successfully.

Check if all the input
cells are placed
successfully.

place_group_repeater
s

ECO-252 Warning: Failed to place
repeaters for repeater
path which driver is %s.

place_group_repeater
s

ECO-253 Warning: The cutline
information %s for cell
%s is not on valid route.

IC Compiler™ II Implementation User Guide
T-2022.03

857

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Table 66 Group Repeater Placement and Insertion Troubleshooting (Continued)

Command Error Code Message Troubleshooting
Tips

place_group_repeater
s

ECO-254 Warning: Failed to cut
route for cell %s.

Check if the
command failed to
cut route for cell.

place_group_repeater
s

ECO-255 Warning: Gap %s between
driver and nearest route
is larger than placing
distance %s

Check if the route
to the nearest pin
distance is larger
than placing distance
for driver or load.

place_group_repeater
s

ECO-256 Warning: The first
distance (%s) specified
by command option is
shorter than the gap (%s)
between pin and route for
driver (%s). (warning)
The last distance (%s)
specified by command
option is shorter than
the gap (%s) between pin
and route for load (%s).

Check if the
-first_distance
or -last_distance
option specified is
shorter than the gap
between pin and
route for driver or
load.

place_group_repeater
s

ECO-257 Warning: Cannot find
cutline information for
cell %s.

place_group_repeater
s

ECO-258 Info: The app option
about virtual connection
is turned on. Please
make sure the cells in
repeater group keep in
order.

Check if the
eco.placement.eco
_enable_virtual_c
onnection option is
set to true and the
place_group_repea
ters
-repeater_groups
option is specified.

place_group_repeater
s
unplace_group_repeat
ers

ECO-259 Warning: The number of
cells from repeater group
(%d) is not consistent
with the number of
drivers from driver group
(%s).

place_group_repeater
s
unplace_group_repeat
ers

ECO-260 Warning: The number of
cells from repeater group
(%d) is not consistent
with the number of loads
from load group (%s).

IC Compiler™ II Implementation User Guide
T-2022.03

858

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Table 66 Group Repeater Placement and Insertion Troubleshooting (Continued)

Command Error Code Message Troubleshooting
Tips

place_group_repeater
s
unplace_group_repeat
ers

ECO-261 Warning: The number of
path loads is less than
the number of cells in
group (%d), so skip these
path loads.

place_group_repeater
s
unplace_group_repeat
ers

ECO-262 Warning: The number of
path loads is not an
integral multiple of the
number of cells in group
(%d), so use path loads
in order.

place_group_repeater
s

ECO-265 Warning: The pin shape
{%s} of %s (%s) is
projected to route %s
{%s}.

Check if the route is
far away from driver
or loads. The tool
projects the closest
pin shape to the
route.

unplace_group_repeat
ers

ECO-266 Warning: The cells in
collection %s which
are not placed before
cannot be unplaced by
unplace_group_repeaters.

Check if the cells are
not placed. The cells
that are not placed
cannot be unplaced.
Also, only the
cells added by the
add_group_repeate
rs command and
placed by the
placed_group_repe
aterscommand can
be unplaced by the
unplace_group_rep
eaters command.

unplace_group_repeat
ers

ECO-267 Error: Input and output
routes are not merged
after unplacing repeater
%s since the routes are
not aligned or not at the
same layer.

Check if the routes
are merged after
unplacing repeaters.
This error occurs
when the routes are
not aligned or not at
the same layer since
they are not merged.

IC Compiler™ II Implementation User Guide
T-2022.03

859

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Swapping Variant Cell

Feedback

Table 66 Group Repeater Placement and Insertion Troubleshooting (Continued)

Command Error Code Message Troubleshooting
Tips

place_group_repeater
s

ECO-268 Error: The cells in
collection (%s) are
invalid since they
are placed before.
Apply the command
unplace_group_repeaters
to unplace them.

Check if the cells
were placed before
and added by the
add_group_repeate
rs command or
placed the by
place_group_repea
ters command.

add_group_repeaters
place_group_repeater
s

ECO-269 Error: Unable to check
the current reference of
cell '%s': %s.

Check the reported
reason and other
printed messages
for more details.
Use the appropriate
command to check if
the current reference
of cell is legal
or illegal for the
reported issue.

add_group_repeaters
place_group_repeater
s

ECO-270 Error: Unable to find
swappable variant
reference for cell '%s':
%s.

Check if the current
reference of cell
is illegal for the
reported issue.

add_group_repeaters
place_group_repeater
s

ECO-271 Error: Candidate
reference '%s' and
reference (%s) of cell
(%s) are not in the same
variant cell group.

Check errors
for compatible
issues between
the candidate and
current reference of
cell. Error also occurs
if they do not belong
to the same variant
cell group.

unplace_group_repeat
ers

ECO-272 Error: The mixed
input cells are not
supported, which includes
the cells added by
add_group_repeaters
and the cells placed by
place_group_repeaters.

unplace_group_repeat
ers

ECO-273 Error: There are no
placed cells to be
unplaced. Please double
check the cell status.

Check if there are
placed cells that are
not qualified.

IC Compiler™ II Implementation User Guide
T-2022.03

860

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Fixing Multivoltage Violations

Feedback

Table 66 Group Repeater Placement and Insertion Troubleshooting (Continued)

Command Error Code Message Troubleshooting
Tips

ECO-274 Warning: You are
deleting cell %s with
eco_repeater_group_id %d.

Check if you are
trying to delete a
cell belonging to a
repeater group.

place_group_repeater
s

ECO-275 Error: Failed to traverse
cutlines. The nets may
have too many blockages.

Check the location
to insert cell
groups. Remove
blockages or find
cutlines and use the
-repeater_group
option.

add_group_repeaters ECO-276 Warning: Unable to find
free area for repeater on
net (%s) at location (%s)
within range {%s}.

Check if
checkerboard
snapping service can
find free space for a
repeater

set_repeater_group ECO-277 Warning: You are trying
to override cells of
repeater group %d. Use
-override if you have to
override cells.

Check if you are
trying to override
cells without using
the -override
option.

create_repeater_grou
ps

ECO-278 Error: Get 0 transparent
cells from all supernets.

Check if the input
supernets have no
transparent cells to
group.

create_repeater_grou
ps

ECO-279 Error: %s has
multiple(%lu) inputs.

Check if a cell or load
has multiple inputs.

Fixing Multivoltage Violations
Design changes in the ECO flow sometimes result in isolation or voltage violations. The
fix_mv_design command can identify and fix violations for buffer trees and diodes.

You must use either the -buffer or -diode option with the fix_mv_design command. For
more information, see the following topics:

• Fixing Buffers

• Fixing Diodes

IC Compiler™ II Implementation User Guide
T-2022.03

861

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Fixing Multivoltage Violations

Feedback

If the UPF has not already been committed, the fix_mv_design command automatically
commits the UPF before performing any operations.

Netlist changes that the tool makes as a result of the fix_mv_design command are not
guaranteed to be placement or timing legal. You must check the design after running the
fix_mv_design command.

Fixing Buffers
The -buffer option of the fix_mv_design command fixes isolation violations and illegal
library cells in buffer trees throughout the design. The command can perform the following
changes:

• Minimize the number of dual-rail buffers or inverters

• Fix isolation violations in buffer trees

• Fix buffers and inverters that have illegal settings, as follows:

◦ Process, voltage, and temperature settings

◦ Library cell purpose or subset settings

◦ Target library subset settings

◦ Bias voltages

• Fix a mismatch between a buffer's power domain and the voltage area in which the
buffer or inverter is physically placed

The command can change the netlist as follows:

• Swap buffer library cells to fix illegal settings

• Swap single-rail buffers for dual-rail buffers

• Swap dual-rail buffers for single-rail buffers

• Change the backup supplies of dual-rail buffers and inverters

• Change the input or output supplies of level shifters

• Fix a mismatch between a buffer's power domain and a voltage area by using a
physical or logical feedthrough

• Fix a mismatch between a buffer's power domain and a gas station voltage area by
using a physical or logical feedthrough

The fix_mv_design command keeps the placement of the original buffers or inverters and
honors the repeater strategies associated with existing buffers and inverters. In addition,

IC Compiler™ II Implementation User Guide
T-2022.03

862

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Fixing Multivoltage Violations

Feedback

the command only uses supplies that are available in the voltage area or voltage area
region.

The fix_mv_design command does not insert isolation cells or level-shifter cells to fix
existing isolation or voltage violations. Netlist changes caused by the command do not
introduce new isolation or voltage violations.

To specify a buffer tree, use the -from option with the name of a net or driver pin. If you
specify a net name, its driver pin is used. In both cases, the driver pin defines a full or
partial buffer tree. Wildcards are supported.

The -lib_cells option specifies a list of single-rail and dual-rail buffer or inverter library
cells that the fix_mv_design command can use as replacement cells. By default, the
command does not swap dual-rail and single-rail cells if the swap is not necessary to fix
isolation violations. However, if you also specify the -minimize_dual_rail option, the
tool tries to minimize the usage of dual-rail buffers to save area.

If the tool inserts a new library cell as a result of the fix_mv_design command, the new
cell is chosen according to the following rules, in priority order:

• A cell from the same library as the original library cell

• A cell from a library with a name similar to the original library

• A cell with a name similar to the original library cell name

By default, buffer trees stop at level-shifter cells. Specify the -level_shifter option to
allow the fix_mv_design command to modify the input or output supplies of level-shifter
cells. However, the command does not change level-shifter library cells.

To report the changes that the tool recommends without making any netlist changes, use
the -report_only option.

Fixing Diodes
The -diode option of the fix_mv_design command fixes mismatches between power
domains and voltage areas for diodes throughout the design. The fix_mv_design
-diode command examines all diodes, including diodes inserted by the create_cell,
create_diodes, and add_port_protection_diodes commands, as well as several
routing commands that insert diodes to fix antenna violations.

If a power domain and voltage area mismatch for a diode is found, the tool uses the
voltage area to explicitly assign a corresponding power domain. If multiple power domains
exist in a single voltage area, the tool picks one of the available power domains. Any of the
available power domains is acceptable because all diode cells are single-rail cells and all
power domains in the same voltage area have the same primary supply.

IC Compiler™ II Implementation User Guide
T-2022.03

863

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: ECO Flow
Fixing Multivoltage Violations

Feedback

To obtain a report of the changes that the tool recommends without making any netlist
changes, use the -report_only option. To obtain detailed information in the report, use
the -verbose option. These are the only two options that you can use with the -diode
option.

IC Compiler™ II Implementation User Guide
T-2022.03

864

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	About This User Guide
	New in This Release
	Related Products, Publications, and Trademarks
	Conventions
	Customer Support
	Accessing SolvNetPlus
	Contacting Customer Support

	Statement on Inclusivity and Diversity

	1 Working With the IC Compiler II Tool
	Place and Route Design Flow Overview
	IC Compiler II Concepts
	Power Intent Concepts
	UPF Concepts
	UPF Flows

	Multiple-Patterning Concepts
	Mask Constraints

	User Interfaces
	Starting the Command-Line Interface
	Exiting the IC Compiler II Tool

	Entering icc2_shell Commands
	Interrupting or Terminating Command Processing
	Getting Information About Commands
	Displaying Command Help

	Using Application Options
	Using Variables
	Viewing Man Pages
	Using Tcl Scripts
	Adding Changes to a Script With Checkpoints
	Defining Checkpoints
	Configuring Checkpoints
	Defining Checkpoint Behaviors
	Associating Checkpoints and Checkpoint Behaviors

	Querying Checkpoints and Checkpoint Behaviors
	Viewing Your Checkpoint History

	Using Setup Files
	Using the Command Log File
	Enabling Multicore Processing
	Configuring Multithreading
	Configuring Distributed Processing
	Reporting Multicore Configurations
	Removing Multicore Configurations
	Running Tasks in Parallel
	Running Commands in Parallel on Your Local Host
	Running Commands in the Background
	Reporting Background Jobs

	Running Commands in Parallel

	2 Preparing the Design
	Defining the Search Path
	Setting Up Libraries
	Working With Design Libraries
	Setting Up Reference Libraries
	Library Configuration
	Restricting Library Cell Usage
	Restricting the Target Libraries Used

	Working With Designs
	Importing the Floorplan Information
	Reading DEF Files
	Fixing Site Name Mismatches
	Validating DEF Files
	Physical Constraints Extracted From the DEF File
	Placement Area
	Port Locations
	Cell Locations
	Placement Blockages
	Site Rows
	Routing Tracks
	Placement Bounds
	Routing Blockages
	Preroutes

	Setting Up Multivoltage Designs
	Applying the Multivoltage Power Intent
	Loading and Applying UPF Information
	Specifying UPF Constraints for Physical-Only Cells
	Saving UPF Information

	Preparing the Power Network
	Creating Logical Power and Ground Connections
	Creating Floating Logical Supply Nets

	Defining Voltage Areas
	Merging Voltage Area Shapes
	Resolving Overlapping Voltage Areas
	Modifying the Stacking Order
	Defining Guard Bands
	Defining Gas Stations
	Querying Voltage Areas
	Modifying Voltage Areas
	Controlling Physical-Feedthrough Nets in Voltage Areas
	Removing Voltage Areas

	Inserting Multivoltage Cells
	Inserting Level Shifters
	Inserting Isolation Cells
	Associating Power Strategies With Existing Multivoltage Cells

	Controlling the Placement of Multivoltage Cells
	Enabling Improved Buffering for Multivoltage Nets
	Analyzing Multivoltage Information

	Specifying Timing Constraints and Settings
	Specifying Logical Design Rule Constraints
	Controlling Clock-Gate Latencies
	Integrated Clock-Gate Latency Estimation
	User-Specified Clock-Gate Latency

	Specifying Physical Constraints for Placement and Legalization
	Defining Keepout Margins
	Defining an Outer Keepout Margin
	Defining an Inner Keepout Margin

	Defining Area-Based Placement Blockages
	Defining a Hard Placement Blockage
	Defining a Hard Macro Placement Blockage
	Defining a Soft Placement Blockage
	Defining a Partial Placement Blockage
	Define a Blockage of a Predefined Category
	Defining Blockages That Exclude Registers
	Defining Blockages That Exclude Relative Placement Groups
	Defining Blockages That Allow Relative Placement Cells Only
	Defining Blockages That Allow Buffers Only
	Querying Placement Blockages
	Removing Placement Blockages

	Defining Placement Bounds
	Defining Move Bounds
	Defining Group Bounds
	Querying Placement Bounds
	Removing Placement Bounds

	Defining Placement Attractions
	Defining Cell Spacing Constraints for Legalization
	Reporting Cell Spacing Constraints
	Removing Cell Spacing Constraints

	Specifying Placement Settings
	Performing Placement With Inaccurate Constraints at Early Stages
	Generating Automatic Group Bounds for Clock Gating Cells
	Controlling the Placement Density
	Controlling Congestion-Driven Restructuring During Placement
	Reducing Congestion
	Considering Wide Cell Density During Placement
	Considering the Effects of Cell Pins During Placement
	Considering the Congestion Effects Due to the Nondefault Routing Rules of Clock Nets
	Considering the Effects of Clock Gating Cells of Sequential Arrays During Placement
	Considering Legalization Effects During Placement
	Considering DFT Connections During Placement
	Considering the Dynamic Power QoR During Placement
	Performing IR-Drop-Aware Placement
	Controlling IR-Drop-Aware Placement

	Spreading Repeater Cells During Placement

	Specifying Legalization Settings
	Minimizing Large Displacements During Legalization
	Optimizing Pin Access During Legalization
	Enabling Advanced PG Net Checks
	Enabling Advanced Legalization Algorithms
	Setting Up for Variant-Aware Legalization
	Defining Equivalent Cell Groups
	Enabling Variant-Aware Legalization

	Checking if Library Cells Are Legally Placeable

	Controlling the Optimization of Cells, Nets, Pins, and Ports
	Preserving Cells and Nets During Optimization
	Restricting Optimization to Cell Sizing Only
	Preserving Networks During Optimization
	Marking the Clock Networks
	Disabling Design Rule Checking (DRC)
	Preserving Pin Names During Sizing
	Preserving Ports of Existing Hierarchies
	Isolating Input and Output Ports
	Fixing Multiple-Port Nets
	Controlling the Addition of New Cells to Modules, Hierarchical Cells, and Voltage Areas
	Specifying a Cell Name Prefix for Optimization

	Specifying Settings for Preroute Optimization
	Controlling DFT Optimization for the place_opt Command
	Specifying Parasitic Estimation Settings for the Preroute Optimization
	Enabling Global-Route-Layer-Based (GRLB) Preroute Optimization
	Enabling Route-Driven Estimation (RDE) for Preroute Optimization

	Specifying Automatic Via Ladder Insertion Settings for Preroute Optimization
	Specifying Via Ladder Candidates for Library Pins

	Enabling Area Recovery in Regions of High Utilization
	Enabling Advanced Logic Restructuring

	Setting Up for Power-Related Features
	Annotating the Switching Activity
	Using RTL Switching Activity With a Name-Mapping File
	Controlling the Name Mapping

	Scaling the Switching Activity
	Specifying Switching Probability for Supply Nets

	Enabling Power Optimization for the place_opt and clock_opt Commands
	Performing Conventional Leakage-Power Optimization
	Performing Dynamic-Power Optimization
	Performing Total-Power Optimization

	Improving Yield By Limiting the Percentage of Low-Threshold-Voltage (LVT) Cells
	Updating Activity for Improved Power Optimization
	Enabling the Power Integrity Features
	Setting Up for Dynamic Power Shaping
	Setting Up for Voltage-Drop-Aware Placement
	Manually Enabling Dynamic Power Shaping and Voltage-Drop-Aware Placement

	Specifying the Routing Resources
	Specifying the Global Layer Constraints
	Reporting Global Layer Constraints
	Removing Global Layer Constraints

	Specifying Net-Specific Layer Constraints
	Removing Net-Specific Routing Layer Constraints

	Specifying Clock-Tree Layer Constraints
	Setting the Preferred Routing Direction for Layers

	Handling Design Data Using the Early Data Check Manager
	Applying Mega-Switch Command Settings
	Applying Required Settings for Advanced Technology Nodes
	Applying Required Settings for High Performance Cores
	Applying Required Settings for Improving Specific QoR Metrics

	3 Placement and Optimization
	Performing Placement and Optimization
	Performing Standalone Placement and Legalization
	Performing Placement and Optimization With the place_opt Command
	Creating a Temporary Clock Tree for Placement and Optimization
	Optimizing Clock-Gating Cells
	Using Accurate Latencies for Clock Gates
	Enabling Global Route Based High-Fanout Synthesis
	Enabling the Rebuilding of Buffer Trees
	Changing the Congestion Effort
	Using of Nondefault Routing Rules for Critical Nets
	Enabling Path Optimization
	Performing IR-Drop-Aware Placement During the place_opt Command
	Performing Concurrent Clock and Data Optimization During the place_opt Command

	Using Physical Guidance From the Design Compiler Tool
	Performing Multibit Register Optimization
	Performing Integrated Multibit Register Optimization
	Performing Multibit Register Optimization Using Discrete Commands
	Identifying Multibit Banks
	Splitting Multibit Banks

	Banking Multibit Retention Registers

	Performing Magnet Placement
	Refining Placement
	Performing Placement and Optimization on Multivoltage Blocks
	Rebuilding Buffer Trees
	Adding and Removing Tie Cells

	Identifying Issues That Cannot Be Fixed During Optimization
	Analyzing the Bufferability of Nets
	Analyzing Violations That Cannot Be Fixed

	Analyzing the Placement
	Reporting Utilization
	Reporting the Placement QoR
	Querying and Changing the Placement Status
	Analyzing the Placement in the GUI

	Analyzing Timing
	Analyzing Power
	Creating Power Groups for Reporting
	Reporting Pin-Based Clock Network Power

	Comparing QoR Data
	Setting Your Baseline Run
	Changing the QoR Display Style
	Sorting and Filtering the Data
	Sorting the Data
	Filtering Metrics
	Filtering Runs
	Example Analysis

	Exploring the Detailed Comparison Data
	Filtering the Detailed Data

	4 Clock Tree Synthesis
	Prerequisites for Clock Tree Synthesis
	Defining the Clock Trees
	Deriving the Clock Trees
	Identifying the Clock Roots
	Specifying the Clock Root Timing Characteristics

	Identifying the Clock Endpoints

	Defining Clock Tree Exceptions
	Defining Sink Pins
	Defining Insertion Delay Requirements
	Defining Ignore Pins
	Ensuring Clock Tree Exceptions are Valid

	Restricting Optimization on the Clock Network
	Setting Don’t Touch Settings
	Setting Size-Only Settings

	Copying Clock Tree Exceptions Across Modes
	Deriving Clock Tree Exceptions From Ideal Clock Latencies
	Handling Endpoints With Balancing Conflicts

	Verifying the Clock Trees
	Setting Clock Tree Design Rule Constraints
	Specifying the Clock Tree Synthesis Settings
	Specifying the Clock Tree References
	Deriving Clock Tree References for Preexisting Gates
	Restricting the Target Libraries Used

	Setting Skew and Latency Targets
	Enabling Local Skew Optimization
	Specifying the Primary Corner for Clock Tree Synthesis
	Preventing Specific Clocks From Being Synthesized
	Preserving Preexisting Clock Trees
	Enabling Clock Tree Power Reduction Techniques
	Reducing Electromigration
	Handling Inaccurate Constraints During Clock Tree Synthesis
	Defining Clock Cell Spacing Rules
	Creating Skew Groups
	Defining a Name Prefix for Clock Cells
	Using the Global Router During Initial Clock Tree Synthesis
	Specifying Constraints for Clock Nets
	Reducing Signal Integrity Effects on Clock Nets
	Specifying Settings for Clock Latency Adjustments
	Reporting the Clock Tree Settings

	Implementing Clock Trees and Performing Post-CTS Optimization
	Performing Standalone Clock Trees Synthesis
	Synthesizing, Optimizing, and Routing Clock Trees With the clock_opt Command
	Considering Voltage Drop Information During Clock Tree Synthesis
	Using Nondefault Routing Rules for Critical Nets During Optimization
	Performing Concurrent Clock and Data Optimization During the clock_opt Command
	Controlling Multibit Optimization Performed During the clock_opt Command
	Enabling the Rewiring of Mixed-Drive-Strength Multibit Cells
	Enabling Post-Clock-Tree-Synthesis Multibit Debanking

	Performing Power or Area Recovery on the Clock Network
	Performing IR-Drop-Aware Placement During the clock_opt Command

	Controlling Concurrent Clock and Data Optimization
	Limiting the Latency Adjustment Values
	Excluding Boundary Paths
	Excluding Specific Path Groups
	Excluding Specific Scenarios
	Excluding Specific Sinks
	Controlling Timing Optimization Effort
	Controlling Hold Time Optimization Effort
	Controlling the Adjustment of I/O Clock Latencies
	Performing Dynamic-Voltage-Drop-Driven Concurrent Clock and Data Optimization During the route_opt Command
	Specifying Optimization Targets at the Preroute Stage
	Specifying Optimization Targets at the Postroute Stage
	Enabling Buffer Removal at the Postroute Stage
	Reporting Concurrent Clock and Data Timing

	Splitting Clock Cells
	Balancing Skew Between Different Clock Trees
	Defining the Interclock Delay Balancing Constraints
	Reporting Clock Balance Groups
	Removing Clock Balance Groups

	Generating Interclock Delay Balancing Constraints Automatically
	Running Interclock Delay Balancing

	Improving Timing Correlation By Performing Post-CTS Optimization Using Machine Learning Data From the Postroute Stage
	Performing Global-Route-Based Optimization Using Machine Learning Data
	Routing Clock Trees
	Inserting Via Ladders During Clock Tree Synthesis, Optimization, and Clock Routing
	Marking Clocks as Propagated After Clock Tree Synthesis
	Performing Postroute Clock Tree Optimization
	Performing Voltage Optimization
	Marking Clock Trees as Synthesized
	Removing Clock Trees

	Implementing Multisource Clock Trees
	Introduction to Multisource Clock Trees Structures
	Implementing a Regular Multisource Clock Tree
	Implementing a Regular Multisource Clock Tree Using Integrated Tap Assignment
	Implementing a Regular Multisource Clock Tree With an H-Tree-Only Global Clock Tree Structure
	Implementing a Structural Multisource Clock Tree
	Implementing a Structural Multisource Clock Tree Using Integrated Subtree Synthesis
	Inserting Clock Drivers
	Inserting Clock Drivers for Designs With Multiple Levels of Physical Hierarchy

	Synthesizing the Global Clock Trees
	Inserting Clock Drivers for Designs With Multiple Levels of Physical Hierarchy

	Creating Clock Straps
	Routing to Clock Straps
	Analyzing the Clock Mesh
	Performing Automated Tap Insertion and H-Tree Synthesis
	Specifying Tap Assignment Options and Settings
	Building the Local Clock Subtree Structures

	Analyzing the Clock Tree Results
	Generating Clock Tree QoR Reports
	Reporting Clock Tree Power
	Creating Collections of Clock Network Pins
	Analyzing Clock Timing
	Analyzing Clock Trees in the GUI

	5 Routing and Postroute Optimization
	Introduction to Zroute
	Basic Zroute Flow
	Prerequisites for Routing
	Defining Vias
	Reading Via Definitions from a LEF File
	Creating a Via Definition
	Defining Simple Vias
	Defining Custom Vias

	Inserting Via Ladders
	Defining Via Ladder Rules
	Generating Via Ladder Rules for Electromigration Via Ladders
	Generating Via Ladder Rules for Performance Via Ladders
	Via Ladder Rule Files
	Via Ladder Association File

	Constraint-Based Via Ladder Insertion
	Defining Via Ladder Constraints
	Defining Global Via Ladder Constraints
	Defining Instance-Specific Via Ladder Constraints

	Inserting Via Ladders
	Protecting Via Ladders
	Verifying Via Ladders
	Updating Via Ladders
	Manual Via Ladder Insertion
	Querying Via Ladders
	Removing Via Ladders

	Checking Routability
	Routing Constraints
	Defining Routing Blockages
	Reserving Space for Top-Level Routing
	Querying Routing Blockages
	Removing Routing Blockages

	Defining Routing Guides
	Using Routing Guides to Control the Routing Direction
	Using Routing Guides to Limit Edges in the Nonpreferred Direction
	Using Routing Guides to Control the Routing Density
	Using Routing Guides to Prioritize Routing Regions
	Using Routing Guides to Encourage River Routing
	Querying Routing Guides
	Removing Routing Guides

	Deriving Routing Guides
	Deriving Pin Access Routing Guides
	Deriving Metal Cut Routing Guides

	Controlling Routing Around the Block Boundary
	Inserting Metal Shapes in the Preferred Direction
	Inserting Continuous Metal Shapes Parallel to Preferred-Direction Edges
	Inserting Metal Stubs Parallel to Preferred-Direction Edges
	Inserting Short Metal Shapes Perpendicular to Nonpreferred-Direction Edges

	Inserting Routing Guides Along the Nonpreferred-Direction Edges
	Inserting Routing Blockages Along the Boundary Edges
	Removing Perimeter Constraint Objects

	Routing Nets Within a Specific Region
	Defining Routing Corridors
	Assigning Nets to a Routing Corridor
	Verifying Routing Corridors
	Modifying Routing Corridors
	Reporting Routing Corridors
	Removing Routing Corridors

	Using Nondefault Routing Rules
	Defining Nondefault Routing Rules
	Defining Minimum Wire Width Rules
	Defining Minimum Wire Spacing Rules
	Configuring Nondefault Spacing Checks
	Specifying the Routing Effort for Soft Spacing Violations

	Defining Minimum Via Spacing Rules
	Specifying Nondefault Vias
	Specifying Mask Constraints
	Defining Shielding Rules
	Reporting Nondefault Routing Rule Definitions
	Removing Nondefault Routing Rules
	Modifying Nondefault Routing Rules

	Assigning Nondefault Routing Rules to Nets
	Assigning Nondefault Routing Rules to Clock Nets
	Assigning Nondefault Routing Rules to Signal Nets
	Reporting Nondefault Routing Rule Assignments

	Controlling Off-Grid Routing
	Preventing Off-Grid Routing
	Discouraging Off-Grid Routing for Vias

	Routing Must-Join Pins
	Controlling Pin Connections
	Controlling Pin Tapering
	Specifying the Tapering Method
	Controlling the Tapering Width

	Controlling Via Ladder Connections
	Setting the Rerouting Mode

	Routing Application Options
	Routing Clock Nets
	Routing Critical Nets
	Routing Secondary Power and Ground Pins
	Verifying the Secondary Power and Ground Pin Attributes
	Setting the Routing Constraints
	Routing the Secondary Power and Ground Pins

	Routing Signal Nets
	Global Routing
	Global Routing During Design Planning
	Timing-Driven Global Routing
	Crosstalk-Driven Global Routing
	Incremental Global Routing

	Track Assignment
	Detail Routing
	Routing Signal Nets by Using Automatic Routing

	Shielding Nets
	Defining the Shielding Rules
	Performing Preroute Shielding
	Soft Shielding Rules During Signal Routing
	Performing Postroute Shielding
	Shielding Example

	Performing Incremental Shielding
	Reporting Shielding Information
	Querying Shield Shapes
	Reporting Shielding Statistics

	Performing Shielding Checks

	Performing Postroute Optimization
	Performing Postroute Logic Optimization
	Performing Postroute Optimization Using the hyper_route_opt Command
	Fixing DRC Violations Caused by Pin Access Issues

	Analyzing and Fixing Signal Electromigration Violations
	Loading the Signal Electromigration Constraints
	Analyzing Signal Electromigration
	Fixing Signal Electromigration Violations

	Performing ECO Routing
	Routing Nets in the GUI
	Modifying Routed Nets

	Cleaning Up Routed Nets
	Analyzing the Routing Results
	Generating a Congestion Report
	Generating a Congestion Map
	Performing Design Rule Checking Using Zroute
	Performing Signoff Design Rule Checking
	Performing Design Rule Checking in an External Tool
	Performing Layout-Versus-Schematic Checking
	Reporting the Routing Results
	Using the DRC Query Commands

	Saving Route Information
	Deriving Mask Colors
	Inserting and Removing Cut Metal Shapes

	6 Chip Finishing and Design for Manufacturing
	Inserting Tap Cells
	Using the create_tap_cells Command
	Using the create_cell_array Command
	Inserting Exterior Tap Walls
	Inserting Interior Tap Walls
	Inserting Tap Meshes
	Inserting Dense Tap Arrays

	Performing Boundary Cell Insertion
	Specifying the Boundary Cell Insertion Requirements
	Specifying the Library Cells for Boundary Cell Insertion
	Specifying Boundary Cell Placement Rules
	Specifying the Naming Convention for Boundary Cells
	Creating Routing Guides During Boundary Cell Insertion
	Creating Placement Blockages During Boundary Cell Insertion

	Reporting the Boundary Cell Insertion Requirements
	Removing Boundary Cell Insertion Requirements
	Inserting Boundary Cells
	Verifying the Boundary Cell Placement

	Finding and Fixing Antenna Violations
	Defining Antenna Rules
	Calculating the Maximum Antenna Ratio
	Setting the Diode Protection Mode
	Specifying the Diode Ratio Vector
	Example for Diode Modes 2, 3, and 4
	Example for Diode Modes 5 and 6
	Example for Diode Modes 7 and 8
	Example for Diode Mode 14 With Multiple Gate Oxide Thicknesses

	Calculating the Antenna Ratio for a Pin
	Setting the Antenna Mode

	Specifying Antenna Properties
	Analyzing and Fixing Antenna Violations
	Inserting Diodes During Detail Routing
	Inserting Diodes After Detail Routing

	Inserting Redundant Vias
	Inserting Redundant Vias on Clock Nets
	Inserting Redundant Vias on Signal Nets
	Viewing the Default Via Mapping Table
	Defining a Customized Via Mapping Table
	Using a Subset of the Via Mapping Table for Redundant Via Insertion

	Postroute Redundant Via Insertion
	Concurrent Soft-Rule-Based Redundant Via Insertion
	Near 100 Percent Redundant Via Insertion
	Preserving Timing During Redundant Via Insertion
	Reporting Redundant Via Rates

	Optimizing Wire Length and Via Count
	Reducing Critical Areas
	Performing Wire Spreading
	Performing Wire Widening

	Inserting Metal-Insulator-Metal Capacitors
	Inserting Filler Cells
	Standard Filler Cell Insertion
	Controlling Standard Filler Cell Insertion
	Checking for Filler Cell DRC Violations
	Fixing Remaining Mask Design Rule Violations
	End Orientation Rule
	Half Row Adjacency Rule
	Illegal Abutment Rule
	Maximum Horizontal Edge Length Rule
	Maximum Horizontal Length Rule
	Maximum Stacking for Small Filler Cells Rule
	Maximum Vertical Edge Length Rule
	Tap Cell Spacing Rule
	Random Filler Cell Replacement

	Abutting Standard Cells With Specific Filler Cells
	Controlling Cell-Based Filler Cell Insertion

	Threshold-Voltage-Based Filler Cell Insertion
	Controlling Threshold-Voltage-Based Filler Cell Insertion
	Removing the Threshold-Voltage Filler Cell Information

	Removing Filler Cells

	Inserting Metal Fill

	7 IC Validator In-Design
	Preparing to Run IC Validator In-Design Commands
	Setting Up the IC Validator Environment
	Enabling IC Validator Multicore Processing
	Running IC Validator on Specific Hosts
	Running IC Validator Using a Job Scheduler
	Running IC Validator Using Hybrid Multicore Processing

	Defining the Layer Mapping for IC Validator In-Design Commands

	Performing Signoff Design Rule Checking
	Running the signoff_check_drc Command
	Setting Options for Signoff Design Rule Checking
	Reading Blocks for Signoff Design Rule Checking
	Signoff Design Rule Checking
	Generating Input for the Automatic Fixing Flow

	Signoff DRC Results Files

	Viewing the Violations in an ICV Heat Map
	Configuring an ICV Heat Map
	Highlighting Violations From the Error Browser Onto an ICV Heat Map

	Automatically Fixing Signoff DRC Violations
	Creating an Autofix Configuration File
	Setting Options for Signoff DRC Fixing
	Running the signoff_fix_drc Command
	Fixing DRC Violations
	Checking for DRC Violations

	Automatically Fixing Double-Patterning Odd-Cycle Violations
	Summary Report for Automatic Design Rule Fixing

	Checking Signoff Design Rules Interactively in the GUI
	Displaying Objects for Design Rule Checking
	DRC Toolbar
	Setting Options for Interactive Design Rule Checking

	Improving Instance Voltage Drop by Augmenting the Power Grid
	Standard Power Grid Augmentation
	Setting Options for Power Grid Augmentation

	Timing-Driven Power Grid Augmentation
	Guided Power Grid Augmentation
	Removing PG Augmentation Shapes

	Inserting Metal Fill With IC Validator In-Design
	Setting Options for Signoff Metal Fill Insertion
	Performing Metal Fill Insertion
	Pattern-Based Metal Fill Insertion
	Reading Blocks for Signoff Metal Fill Insertion
	Specifying the Layers for Metal Fill Insertion
	Specifying the Regions for Metal Fill Insertion

	Track-Based Metal Fill Insertion
	Using an IC Validator Parameter File
	Typical Critical Dimension Metal Fill Insertion
	Timing-Driven Metal Fill Insertion
	Specifying the Spacing Requirements for Timing-Driven Metal Fill Insertion
	Defining the Density Design Rules

	Incremental Metal Fill Insertion
	Adding to Existing Metal and Via Fill
	Replacing Existing Metal and Via Fill
	Performing Metal Fill Insertion Only in Modified Regions

	Signoff Metal Fill Result Files
	Querying Metal Fill
	Viewing Metal Fill in the GUI
	Reporting the Metal Density
	Viewing Density Heat Maps in the GUI

	Removing Metal Fill
	Removing Metal Fill With the IC Validator Tool

	Modifying Metal Fill
	Performing Real Metal Fill Extraction

	Automatically Fixing Isolated Vias
	Setting Options for Fixing Isolated Vias
	Running the signoff_fix_isolated_via Command
	Checking for Isolated Vias
	Checking and Fixing Isolated Vias

	8 Routing Using Custom Router
	Using Custom Router in the IC Compiler II Tool
	Before Using Custom Router
	Defining Routing Constraints
	Defining the Bus Routing Style
	Creating Differential Groups
	Inserting Shields on the Nets
	Defining the Net Priority
	Defining Minimum Wire Lengths
	Defining Matching Wire Lengths

	Managing Constraint Groups
	Using Custom Routing Application Options
	Bus Routing Options
	Corner Type
	Intra-shield Placement
	Pin-Trunk Offset
	Trunk Splitting
	Tapoffs

	Track Adherence Options
	Differential-Pair Options
	Shielding Options
	Single-Loop Matching

	Routing With the Custom Router
	Shielding the Nets
	Checking the Routing Results
	Using a Hybrid Routing Flow
	Using a DDR Routing Flow

	9 Physical Datapath With Relative Placement
	Introduction to Physical Datapath With Relative Placement
	Benefits of Relative Placement

	Relative Placement Flow
	Creating Relative Placement Groups
	Adding Objects to a Group
	Adding Leaf Cells
	Specifying Orientations for Leaf Cells

	Adding Hard Macro Cells
	Adding Relative Placement Groups
	Creating Hierarchical Relative Placement Groups
	Using Hierarchical Relative Placement for Straddling
	Using Hierarchical Relative Placement for Compression

	Adding Blockages
	Adding Cells Within a Predefined Relative Placement Area

	Specifying Options for Relative Placement Groups
	Anchoring Relative Placement Groups
	Aligning Leaf Cells Within a Column
	Aligning by the Left Edges
	Aligning by the Right Edges
	Aligning by Pin Location
	Overriding the Alignment When Adding Objects

	Controlling the Tiling Within Relative Placement Groups
	Applying Compression to Groups With Straddling Leaf Cells

	Specifying the Orientation of Relative Placement Groups
	Specifying a Keepout Margin
	Performing Row Balancing
	Handling Fixed Cells During Relative Placement
	Allowing Nonrelative Placement Cells
	Controlling the Optimization of Relative Placement Cells
	Controlling Movement When Legalizing Relative Placement Groups

	Changing the Structures of Relative Placement Groups
	Generating Relative Placement Groups for Clock Sinks
	Performing Placement and Legalization of Relative Placement Groups
	Relative Placement in a Design Containing Obstructions
	Legalizing Relative Placement Groups in a Placed Design
	Creating New Relative Placement Groups in a Placed Design

	Analyzing Relative Placement Groups
	Checking Relative Placement Groups Before Placement
	Analyzing the Placeability of a Relative Placement Group
	Reporting Relative Placement Constraint Violations
	Querying Relative Placement Groups
	Analyzing Relative Placement in the GUI

	Saving Relative Placement Information
	Summary of Relative Placement Commands

	10 Hierarchical Implementation
	Overview of Abstract Views
	Creating Abstract Views
	Creating Abstracts With Power Information
	Creating Abstracts for Signal Electromigration Analysis
	Handling Multiple Levels of Physical Hierarchy

	Reporting Abstract Reasons
	Making Changes to a Block After Creating an Abstract
	Shrinking Abstract Views While Maintaining Timing
	Recreating the Power and Ground (PG) Structure

	Creating a Frame View
	Linking to Abstract Views at the Top-Level
	Linking to Subblocks With Multiple Labels
	Specifying the Editability of Blocks From the Top-Level
	Preparing for Top-Level Closure With Abstracts
	Checking Designs With Abstracts for Top-Level-Closure Issues
	Handling Design Data Using the Early Data Check Manager
	Prerequisites for Handling Early Design Data
	Early Data Checks, Policies, and Strategies
	Setting the Policy for Early Data Checks
	Reporting Early Data Check Records
	Generating a Report of Early Data Check Records

	Performing Top-Level Closure With Abstract Views
	Creating ETMs and ETM Cell Libraries
	Creating ETMs and ETM Cell Libraries in the IC Compiler II Tool
	Creating ETMs in the PrimeTime Tool
	Creating ETM Cell Libraries in the Library Manager Tool

	Linking to ETMs at the Top Level
	Performing Top-Level Closure With ETMs

	11 RedHawk and RedHawk-SC Fusion
	Running Rail Analysis Using RedHawk-SC Fusion
	An Overview for RedHawk Fusion and RedHawk-SC Fusion
	RedHawk Fusion and RedHawk-SC Fusion Data Flow
	RedHawk/RedHawk-SC Fusion Analysis Flow
	Running RedHawk Fusion Commands in the Background

	Setting Up the Executables
	Specifying RedHawk and RedHawk-SC Working Directories
	Preparing Design and Input Data for Rail Analysis
	Generating Rail Analysis Script Files
	Supporting RedHawk-SC Customized Python Script Files

	Specifying Ideal Voltage Sources as Taps
	Validating the Taps and Finding Invalid Taps
	Finding Invalid Taps
	Finding Substitute Locations for Invalid Taps

	Removing Taps

	Missing Via and Unconnected Pin Checking
	Setting Checking Options
	Checking Missing Vias and Unconnected Pins
	Viewing Error Data
	Fixing Missing Vias

	Running Rail Analysis with Multiple Rail Scenarios
	Specifying a Design Scenario for Rail Analysis
	Creating and Specifying Rail Scenarios for Rail Analysis

	Performing Voltage Drop Analysis
	Viewing Voltage Drop Analysis Results

	Performing PG Electromigration Analysis
	Viewing PG Electromigration Analysis Results
	Displaying the PG Electromigration Map
	Checking PG Electromigration Violations

	Performing Minimum Path Resistance Analysis
	Viewing Minimum Path Resistance Analysis Results
	Tracing Minimum Path Resistance Using the Mouse Tool

	Performing Effective Resistance Analysis
	Performing Distributed RedHawk Fusion Rail Analysis
	Working With Macro Models
	Generating Macro Models
	Creating Block Contexts

	Performing Signoff Analysis
	Writing Analysis and Checking Reports
	Displaying Block-Level Rail Results
	Generating Instance-Based Analysis Reports
	Generating Geometry-Based Analysis Reports

	Displaying Maps in the GUI
	Displaying ECO Shapes in the GUI
	Voltage Hotspot Analysis
	Generating Hotspots
	Reporting Hotspots
	Removing Hotspots
	Voltage Hotspot Analysis Examples

	Querying Attributes

	12 ECO Flow
	Generic ECO Flow for Timing or Functional Changes
	Freeze Silicon ECO Flow
	Signoff ECO Flow
	Incremental Signoff ECO Flow
	ECO Fusion Flow
	ECO Fusion Power Integrity Flow
	Manually Instantiating Spare Cells
	Automatically Adding Spare Cells
	Adding Programmable Spare Cells
	Making ECO Changes Using the eco_netlist Command
	Making ECO Changes Using Netlist Editing Commands
	Using ECO Scripts for Netlist Editing

	Resizing Cells
	Reverting Changes Made During Resizing

	Adding Buffers on Routed Nets
	Specifying the Net Names, Buffers Types, and Their Locations
	Adding Buffers in a Specified Configuration
	Adding Buffers at Specified Locations
	Adding Buffers at a Specified Interval
	Adding Buffers at an Interval That is a Ratio of the Net Length
	Adding Buffers on a Bus in a Specified Pattern

	Controlling How Buffers are Added
	Specifying Settings for Multivoltage Designs
	Specifying Settings for the Freeze Silicon ECO Flow

	Optimizing the Fanout of a Net
	Reporting Available Sites for Placing ECO Cells
	Identifying and Reverting Nonoptimal ECO Changes
	Placing ECO Cells
	Controlling Placement When Using the place_eco_cells Command
	Controlling Legalization When Using the place_eco_cells Command
	Placing ECO Cells With Minimal Physical Impact (MPI)

	Placing and Mapping ECO Cells to Spare Cells
	Specifying Mapping Rules for Programmable Spare Cells
	Mapping ECO Cells to Specific Spare Cells
	Mapping ECO Cells to Logically Equivalent Spare Cells

	Updating Supply Nets for ECO Cells
	Recording the Changes Made to a Layout
	Performing Prerequisite Check for Group Repeater Insertion and Placement
	Adding a Group of Repeaters
	Defining a group of repeaters
	Grouping a list of repeaters
	Setting Constraints for a Group of Repeaters
	Reporting the Constraints Assigned to a Group of a Repeaters
	Removing Constraints for a Group of Repeaters
	Placing Group Repeaters Before Routing
	Performing On Route Placement of Repeaters
	Placing Group Repeaters For Multibit Registers
	Specifying Locations for Repeater Groups
	Allowing Repeater Groups Over Macros
	Specifying Cut Space and Cut Distance for Repeater Groups
	Specifying Horizontal and Vertical Spacing for Repeater Groups
	Specifying Library Cells as Repeaters
	Avoiding Overlapping Repeaters With Existing Tap Cells
	Avoiding Crosstalk During Group Repeater Insertion
	Previewing Repeater Groups
	Unplacing the Repeaters
	Removing Repeater Groups

	Querying Group Repeater
	Performing Auto Grouping Flow
	Performing Manual Grouping Flow
	Cell Input Mode

	Swapping Variant Cell
	Setting Constraints of Variant Cell
	Setting Application Option
	Grouping Variant Cell
	Running and Placing Group Repeaters
	Troubleshooting

	Fixing Multivoltage Violations
	Fixing Buffers
	Fixing Diodes

