

ABOUT YOUR PERSONALIZED

EBOOK EDITION OF

“FINDING YOUR WAY THROUGH

FORMAL VERIFICATION”

This copy of the electronic edition of the book, “Finding

Your Way Through Formal Verification” version 030718 is

provided to you for your use only and is electronically

marked with your identification. You may not distribute

this copy to others; instead, please refer them to download

their own free copy at: www.synopsys.com/formalbook.

Unauthorized reproduction or distribution is strictly

prohibited. Reproductions may not be shared or transmitted

in any form or by any means, electronic or mechanical,

without the express written consent of Synopsys.

For more information about this book as well as any

addenda or errata published subsequent to this edition,

please refer to the Formal Book website:

www.synopsys.com/formalbook.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://www.synopsys.com/formalbook
http://www.synopsys.com/formalbook

Finding Your Way
Through Formal
Verification

M
urphy/Pandey/

Safarpour

Bernard Murphy,
Manish Pandey, &
Sean Safarpour

Finding Your Way Through Formal Verification
Bernard Murphy, Manish Pandey, and Sean Safarpour

A SemiWiki Project

Finding Your W
ay Through Form

al Verification
A Sem

iW
iki Project

“The time for formal verification has finally come. This book is a great high level
introduction to the terminology, key concepts, and forward looking concerns that any
manager thinking about adopting the technology would be interested in.”

Jason Sprott
CTO, Verilab

“This book is a great initiative which provides much-needed information in very
simple terms and serves as a good overview for managers on all things formal.
I strongly recommend this to all DV managers who aspire to use formal verification
in their projects.”

Dr. Ashish Darbari
Founder & CEO, Axiomise Ltd

“A very readable and up-to-date introduction to formal methods as implemented in
current tools, aimed at a wide audience.”

John Aynsley
CTO, Doulos

Finding Your Way Through Formal Verification provides an introduction to formal
verification methods. This book was written as a way to dip a toe in formal waters.
You may be curious about formal verification, but you’re not yet sure it is right for your
needs. Or you may need to plan and supervise formal verification activity as a part of
a larger verification objective. You don’t plan to run formal tools yourself but you know
that effective management will require some understanding. In verification planning,
you certainly need to know where formal can play a role and where it may not be
suitable, what effort and expertise should be planned for in using these techniques
(like most verification techniques, these generally aren’t push-button) and how you
can assess effectiveness and coverage in what formal teams report back to you.

6” x 9” 6” x 9”

.375”

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

Finding Your Way
Through Formal
Verification

M
urphy/Pandey/

Safarpour

Bernard Murphy,
Manish Pandey, &
Sean Safarpour

Finding Your Way Through Formal Verification
Bernard Murphy, Manish Pandey, and Sean Safarpour

A SemiWiki Project

Finding Your W
ay Through Form

al Verification
A Sem

iW
iki Project

“The time for formal verification has finally come. This book is a great high level
introduction to the terminology, key concepts, and forward looking concerns that any
manager thinking about adopting the technology would be interested in.”

Jason Sprott
CTO, Verilab

“This book is a great initiative which provides much-needed information in very
simple terms and serves as a good overview for managers on all things formal.
I strongly recommend this to all DV managers who aspire to use formal verification
in their projects.”

Dr. Ashish Darbari
Founder & CEO, Axiomise Ltd

“A very readable and up-to-date introduction to formal methods as implemented in
current tools, aimed at a wide audience.”

John Aynsley
CTO, Doulos

Finding Your Way Through Formal Verification provides an introduction to formal
verification methods. This book was written as a way to dip a toe in formal waters.
You may be curious about formal verification, but you’re not yet sure it is right for your
needs. Or you may need to plan and supervise formal verification activity as a part of
a larger verification objective. You don’t plan to run formal tools yourself but you know
that effective management will require some understanding. In verification planning,
you certainly need to know where formal can play a role and where it may not be
suitable, what effort and expertise should be planned for in using these techniques
(like most verification techniques, these generally aren’t push-button) and how you
can assess effectiveness and coverage in what formal teams report back to you.

6” x 9” 6” x 9”

.375”

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 1

Finding Your Way Through Formal

Verification

Copyright © 2018 by Bernard Murphy, Manish Pandey,

and Sean Safarpour

All rights reserved. No part of this work covered by the

copyright herein may be reproduced, transmitted, stored,

or used in any form or by any means graphic, electronic, or

mechanical, including but not limited to photocopying,

recording, scanning, taping, digitizing, web distribution,

information networks, or information storage and retrieval

systems, except as permitted under Section 107 or 108 of

the 1976 US Copyright Act, without the prior written

permission of the publisher.

Published by SemiWiki LLC Danville, CA

Although the authors and publisher have made every

effort to ensure the accuracy and completeness of

information contained in this book, we assume no

responsibility for errors, inaccuracies, omissions, or any

inconsistency herein.

First printing: March 2018 Printed in the United States of

America

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 2

Table of Contents

Table of Contents ... 2

Foreword ... 5

Time for a fresh look at formal 9
Why now? ...9
Why another book on this topic? 11
Organization of this book ... 14

The verification treadmill ... 16
Why verification is so important 16
The price of not being perfect... 19
Why is this so hard? ... 20
Battling the exponential ... 24
Enter formal verification .. 29

Formal Verification – the Early Years 31
Background ... 31
Equivalence checking ... 36
What do we mean by correctness? 38
Properties: assertions and assumptions 42
Under the hood: the formal engines 46

What’s the catch? ... 55
Property checking goes commercial 55
A problem with assertions.. 55
Completeness is expensive ... 57
Inconclusives and debug .. 58
Stuck at the chasm ... 61

Crossing the chasm – fearless formal 63
Pre-packaged solutions .. 63
Baby steps – functional linting ... 65
Coverage analysis – formal helping simulation 67
Having the right connections .. 69
Sequential equivalence – some assembly required 73
Other apps ... 77
Are we there yet? .. 79

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 3

The role of formal in design today 81
Adoption ... 81
Size constraints .. 83
Popular targets for property checking 85

Good targets .. 85
Targets to avoid ... 87

Product and service solution providers 88

Adding formal to your flow ... 91
Organic skills growth .. 91
First-cut targets for formal verification 95
Detailed planning ... 96
Monitoring progress .. 98

Under-constraining and over-constraining 99
Bounded proofs (inconclusives) 101
Manually-guided proofs .. 103

Getting to formal signoff .. 104

Looking forward ... 108
Application domains .. 108

Functional clock domain crossing analysis 108
Functional power intent verification 110
Architectural formal verification 112
Security verification... 115
Safety verification ... 116
Datapath Validation .. 117

Technology advances ... 119
Machine learning ... 119
Advances in tools and methods 121

The outlook for formal verification 123

If you want to go deeper .. 125

Glossary of formal terms .. 126

Acknowledgements .. 130

About the Authors .. 132

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 4

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 5

Foreword

I first became aware of formal verification methods
back in the 90’s when I would hear presentations at
DAC and talk to others who were curious about this
area. It looked very interesting, but it always sounded
like a future. The problems used in examples were
cool, but they were always very small, way too small to
face real verification needs, even back then.
Mainstream simulation support continued to get
better and (more or less) kept up with Moore’s law.
Working in startups back then, where we had very
constrained budgets, formal sounded neat but
nowhere near relevant to our day-to-day tasks. Still, I
stayed in touch with progress as time allowed.

Around the mid 2000’s I joined a large microprocessor
company, heading a big verification team facing the
usual deluge of challenging verification problems. We
had the capacity and budget to experiment with formal
and had some success. But progress was in fits and
starts. We worked with different vendors and tried
different solutions. Some broke, some we were able to
make work in some fashion. Still, nothing came out of
this that looked like it would quickly go mainstream in
our verification flow. Formal was still a side-project.

The big turning point came when we had to figure out
how to verify a floating-point unit. We did a lot of
interesting work between theorem-proving and
property-proving and had great results, which also got
other people interested in what could be possible.
Progress, but back then formal tool capacities were

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 6

limited, we could usefully apply them on some blocks,
but these were still relatively small.

More recently at Samsung, I had to build a verification
team from scratch. We faced crazy schedules (who
doesn’t in verification), we were looking for ways to
accelerate bug convergence and formal was suggested.
I was good with this idea given my experience, so we
started building unit and system testbenches. It took a
while to start finding useful problems (this is
something to remember when you are building up
formal expertise – you have to be patient). We found a
few bugs this way, but payback was still not very
exciting.

Once again, a breakthrough came when we found, on
the bench, a problem which would occur only
intermittently on one machine every 17 days. We had
to brainstorm hard about why this might happen and
what we eventually concluded seemed impossible. We
had a formal setup already available, so we checked it
out. Within about 40 minutes we proved that what we
thought was impossible was actually possible. This was
a really deep bug, about 85 cycles deep. Based on this
diagnosis, we worked on confirming it in simulation.
Which we were able to do, but this took multiple
teams working full-time for 2 weeks to reproduce what
formal found in 40 minutes, because it was so
complicated to get to the bug.

That made us all believers in formal. We continued to
invest. I brought in an industry expert to head the
team, we grew the team by adding non-experts, who

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 7

we coached into becoming sufficiently expert to
become effective, and we started to see real success.

As we built up experience, formal bug-finding
productivity has shot up. We’re no longer finding just a
few critical bugs, or a handful of other bugs after
weeks of development. On our current project, 20-35%
bugs of the bugs found have been discovered by the
formal team, and they’re finding bugs as fast or faster
than the simulation team.

Another unexpected benefit is impact on better
managing shuffling workloads. Teams in big
organizations know all about this. Verifications tasks
move around as product groups need to accelerate
schedules or hiring doesn’t move as fast as you
expected. We have found that the formal team is a
great resource to pick up tasks where simulation teams
aren’t yet ready to move over. Since formal doesn’t
need to start with elaborate testbenches, they can
often start finding bugs quickly and mature a block
along the bug-finding cycle. When a simulation team
frees up, they can take the block to completion.

I understand the challenges in adopting formal. You
have to invest, and experience shows that takes time
to return value. Why take away resource from the
certain and well-understood value of simulation to
sponsor development around an uncertain future
value in formal verification? That intermittent bug
made me a believer. Finding it in 40 minutes in a
formal property check against many person-weeks in
simulation (after formal had already shown what we
had to look for) was enough to justify ramping up a

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 8

formal team. And while finding hard bugs is important,
the big bonus is in a complementary verification
strength to manage simulation overloads, to accelerate
early maturing and to bail out slow programs.

Formal will never replace simulation. All that
investment you made in UVM, constrained random,
emulation and prototyping will always be important.
Formal adds another string to your verification bow. As
you build experience, you’ll see that some problems
you will eventually find in simulation can be found
faster with formal. And that’s what we’re all ultimately
after in verification – better coverage, faster and as
cost-effectively as we can manage. This book should
give you a starting point in understanding how to get
to that value.

Jim Greene
Director at Samsung Austin R&D Center

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 9

Time for a fresh look at formal1

Why now?
You might imagine that the people who build the
advanced hardware technologies that you find almost
everywhere today would feel comfortable with almost any
aspect of technology related to their domain. Or at
minimum they wouldn’t feel intimidated by any topic.
They might not understand it now but, if the need for
understanding arises, you expect they would be confident
that they can quickly become sufficiently expert, as they
have already demonstrated through their mastery of
multiple verification techniques: static, directed and
constrained-random simulation, along with emulation and
prototyping. For rare problems where methods and tools
were available but difficult to use, they could always hand
a problem “over the wall” to dedicated experts.

It might surprise you to learn that many otherwise expert
designers and design managers, if pressed to answer
honestly, will admit that they put formal verification in
that over-the-wall category and often find it confusing or
intimidating. The problem is not so much in broad
concepts but in going any deeper, or in knowing how to
quantify value. Until relatively recently this wasn’t much of
a problem. For many, formal verification was at the
periphery of the verification toolset. Where a few

1 A quick word about nomenclature: we’ll use formal,
formal methods and formal verification fairly
interchangeably in this book. While this usage is a little
loose, it does follow common practice among non-
specialists

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 10

especially challenging problems defeated conventional
verification approaches, they were passed over that wall
to experts in formal methods, who would translate
reasonable English-language requirements (“we need to
check if this can ever happen”) to formal tool inputs, then
coax the tools into performing their magic and finally
provide back either a thumbs-up (“that problem can’t
happen”) or an example of a realistic possible failure.

Valuable though this service was, the impact of formal
verification in those early days was limited. Even point
problems are important to find, but it was difficult to
quantify how this technology contributed to overall
verification signoff. Formal methods lacked obvious, much
less signoff-quality metrics so signoff (is this design
production-ready?) clearly remained the responsibility of
traditional verification. If there was interest in using formal
methods, executives had to consider the cost of building
and maintaining a team of specialists, a worthwhile
investment for large enterprises (as we’ll see) but beyond
the reach of more modest budgets.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 11

How times have changed. Now formal verification stands
shoulder to shoulder with simulation, static methods,
emulation and prototyping, a co-equal in verification flows
across all large and many small design and verification
organizations. This is partly thanks to continuing
improvements in the capability and usability of tools, but
more significantly it has been driven by the relentless
increase in complexity of modern designs. Some
verification tasks, once solved by throwing more bodies,
more licenses, more machines at the problem, have
already moved beyond the reach of confident signoff
through non-formal methods.

Executives are always concerned about the impact of
quality problems escaping to the field; they worry
especially about critical components exhibiting
intermittent problems from product to product. Could one
of these latent problems suddenly explode into a customer
crisis? Those same executives are now doubly-sensitized to
the media and market fallout that can result from a
publicly-exposed safety problem or hack and are actively
sponsoring teams and methods to mitigate these risks.
Formal verification has become prominent in those efforts.

Why another book on this topic?
There are already many books on formal verification, from
academic to application-centric, and from tutorials for
beginners to guides for advanced users. Many are
excellent for their intended purpose; we recommend a
few at the end of this book. But most start from the
assumption that you have already committed to becoming
a hands-on expert (or in some cases that you already are
an expert). We feel that detailed tutorials are not the
easiest place to extract the introductory view many of us

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 12

are looking for – background, a general idea of how
methods work, applications and how formal verification is
managed in the overall verification objective.

There are a lot of us who aren’t yet at that commitment
stage, or who possibly may never want or even need to
become hands-on experts. If this describes you, a 300-400-
page tutorial may be more than you are ready to attempt;
you want something you can read through relatively
quickly to get a general understanding of the domain. This
book was written for you as a way to dip a toe in formal
waters. If you like what you read, you can move on
knowing that an investment in serious learning will be
worthwhile. If you don’t, hopefully you still feel you have
gained enough insight to defend, again more
knowledgeably, why a deeper understanding of formal
methods isn’t appropriate to your current objectives.

Who might this describe? You could be:

 A Designer or Verification Engineer: You’ve heard
about formal verification, maybe read a little on
the topic, or sat in on presentations or tutorials,
but you’re uncertain whether this direction is right
for your needs. You’re intrigued by the idea but not
quite ready to pick up a textbook; you want to ease
into it. This book will get you started with a good
broad understanding and should set you up to
make that textbook less daunting if that’s where
you want to go next.

 A Design or Verification Leader or Manager: If
you’re planning to directly manage a formal team,
you have to start somewhere. Just like the hands-

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 13

on engineer, you’d probably appreciate a little
orientation before you dive all the way in. Even if
you’re not directly supervising a formal team, if
you’re a designer or verification lead or manager,
you can expect formal experts to come to you
asking questions and looking for guidance about
your design, or what is covered in other testing. If
such an engineer asks you about an acceptable
state-space radius to adequately check a property,
you probably would like to know what on earth
they are talking about, without having to become a
formal expert. We can help.

 A Verification Manager or Director: Here we’re
talking about people who plan and supervise
formal verification activity as a part of their overall
verification responsibilities. In verification planning,
you certainly need to know where formal can play
a role and where it may not be suitable, what effort
and expertise should be planned for in using these
techniques (like most verification techniques, these
generally aren’t push-button) and how you can
assess effectiveness and coverage in what formal
teams report back to you. We aim to help with
some insights on getting to signoff with formal
verification.

There are others we hope will also find value in this book –
those of you who are only peripherally involved in
verification or who maybe aren’t even in engineering. You
might be in applications support in a different domain, in
sales or marketing, you might be an executive or even in
finance or legal. Perhaps you will never run a formal tool
or sit in on a verification meeting, but you feel you could

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 14

be more effective in your role with a better understanding
of this domain. As much as others more directly involved,
you deserve (if you have the interest) to better understand
formal verification and to see where it fits in enhancing
product quality. To serve the needs of this broad audience
and in the spirit of an introductory overview, we have kept
technical detail to a minimum.

Organization of this book
Since we’re writing for a fairly wide audience, we cover
some topics that some of you may consider elementary
(why verification is hard), some we hope will be of general
interest (elementary understanding of the technology) and
others that may not immediately interest some readers
(setting up a formal verification team). What we
intentionally do not cover at all is how to become a hands-
on expert.

Chapter 2 presents an overview of the verification
problem in SoC design, why this is hard and various
techniques common in managing complexity, as an
introduction to the role that formal methods can play in
the larger verification task.

Chapter 3 reviews the early history of formal verification in
our industry, along with some of the basic concepts like
assertions and constraints and a very lightweight
introduction to the engines that drive formal tools.

Chapter 4 walks through the early challenges formal
methods faced in getting to widespread adoption:
complexities in setup, running and debug and the level of
expertise required to effectively use the tools.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 15

Chapter 5 talks about how formal tool suppliers overcame
adoption challenges by introducing apps which provide
much simpler use-models for targeted applications. This
chapter also reviews a number of the most common apps.

Chapter 6 covers the ways formal is being used today and
how wide that usage is. If you want to persuade your
manager that an investment in formal is worthwhile, you
may find useful evidence here to help build your case.

Chapter 7 is for verification managers (perhaps you) – how
can you effectively build and manage a formal verification
team and what can you learn from the lessons of others?

Finally, chapter 8 talks about other formal applications you
might find useful today or can look forward to in the
(somewhat near) future.

We close with a few recommended books/papers you may
want to read if you want to dig deeper and a glossary /
magic decoder ring to help you with the sometimes-
confusing terminology popular in formal circles.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 16

The verification treadmill

Why verification is so important
The goal of verification in semiconductor and system
design is to prove that what we plan to build will do
everything it is supposed to do and will never do anything
it is not supposed to do. This is important in part because
the cost to design and build one of these systems now
runs to tens or even hundreds of millions of dollars; a trial-
and-error approach to getting the design right would take
an impossibly long time and become prohibitively
expensive.

An even bigger concern for any enterprise is the possibility
that customers might discover problems in their products.
Issues can arise especially in use-cases that product
designers didn’t consider and therefore didn’t cover in
verification. For software, we’re all too familiar with patch
updates, but issues in hardware can’t necessarily be
patched; only a new chip can fix the problem. Making field
changes to hardware is extremely difficult, in many cases
close to impossible. Problems like this can have huge
negative impact both on the supplier and their customers.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 17

The ubiquity of electronics

Meantime, the complexity of electronics is accelerating
rapidly. We now have high-resolution gaming,
smartphones, 4G (and soon 5G) cellular communication,
low-power design, cloud computing, semi-autonomous
cars, smart homes and the many other high-tech
capabilities that surround our modern lives. These System
on Chip (SoC) designs are in many ways significantly more
complex than earlier systems, in size certainly (thousands
of times larger than the Intel Pentium for example2), but
also in integrating more complex subunits such as multi-
core CPUs, GPUs and other complex sub-functions,
running multiple different types of software and inter-
operating not only with each other but also
communicating with the outside world over cellular, Wi-Fi

2
http://www.wagnercg.com/Portals/0/FunStuff/AHistoryof
MicroprocessorTransistorCount.pdf

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://www.wagnercg.com/Portals/0/FunStuff/AHistoryofMicroprocessorTransistorCount.pdf
http://www.wagnercg.com/Portals/0/FunStuff/AHistoryofMicroprocessorTransistorCount.pdf

 18

and Bluetooth links. They’re also running much faster, with
complex dynamic clocking and power management
turning functions on and off in the middle of all this
activity purely so you only have to recharge your device
every few days.

Our tolerance to bugs is dropping. Where once problems
in electronics were an inconvenience, fixable in the worst
case by a reboot, now advanced systems control safety-
critical functions in our cars or pacemakers or power
plants. In these contexts, reboots are not an option and
failures at minimum may lead to recalls, or worse still may
cause fatal accidents. Security has become a major
concern. The recently-reported Meltdown and Spectre3
bugs highlight how far we still have to go in containing
security attacks. Where verification must try to find (and
fix) every possible way in which a product might be
compromised, attackers only have to find one way in and
they delight in finding obscure loopholes.

For all these reasons, product teams invest massively in
design verification – at least 50% of the total effort that
goes into designing a product4. Thanks to hard work,
clever techniques and continuing advances in verification
tools, the industry has released many products which have
worked and continue to work extremely well. But as
design capabilities and demands continue to race ahead, it
is inevitable that these verification strategies,

3 https://meltdownattack.com/
4 There are differing views on this number – anywhere
from around 50% to 70%. One interesting review is
http://www.chipdesignmag.com/martins/2008/11/27/the
-myths-of-eda-the-70-rule/

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://meltdownattack.com/
http://www.chipdesignmag.com/martins/2008/11/27/the-myths-of-eda-the-70-rule/
http://www.chipdesignmag.com/martins/2008/11/27/the-myths-of-eda-the-70-rule/

 19

comprehensive though they are, have started to show
cracks.

The price of not being perfect
The earliest widely-visible instance of a semiconductor
verification failure in released products appeared in 1994
when a public post revealed that the (Intel) Pentium
floating-point divide returned notably incorrect answers in
a very small set of cases5. Intel have been verifying
complex designs for a long time, they have a worldwide
user-base depending on the accuracy of their platforms,
they have accumulated massive test suites over years of
development, and still a bug slipped through. Design and
verification teams around the industry paid attention; if
this could happen to Intel, who knew what unseen
problems might be lurking in their own production
designs?

The Intel floating point bug - the digits starting with 739

are incorrect

Not finding these problems can be expensive. If you isolate
a bug in-house after you manufacture (but haven’t yet
shipped) the device, you can do more testing but face
potentially millions of dollars to fix the design. If the bug
gets out into your customer base, costs explode. Intel
reportedly took a pre-tax charge of $475M against

5 https://dac.com/blog/post/history-formal-verification-
intel

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://dac.com/blog/post/history-formal-verification-intel
https://dac.com/blog/post/history-formal-verification-intel

 20

earnings to correct their floating-point divide problem and
update customers with the corrected device6.

Safety and security considerations will further amplify the
cost of bugs, perhaps as much in market impact and
liability as in replacement costs. Media hair-trigger
responses to bad news can drive instant drops in share
price and may amplify reputational damage from which it
can take years to recover. News of a glitch in an iPad app
(used by pilots to access maps of airport runways) drove
American Airlines stock down by $1.9 billion in the course
of a few hours7. This problem was attributed to a software
glitch, but we have already seen that hardware is not
immune to bugs. Frankly, social media and markets don’t
care about that hardware/software distinction anyway.
The tech failed in a serious way - dump the stock.

Why is this so hard?
At first glance, it might seem that we just need to verify
harder or smarter, or maybe both. Unfortunately, no
matter what we do, we can never ensure complete
verification. It’s important to understand why; this starts
with how we verify.

The most popular method used in verification is
simulation. We create and run (simulate) a series of tests
and compare with the results we expect. When running a
test returns the expected result, the test passes. When it
doesn’t there is a discrepancy between the design and the
expected result, which may mean we have a bug in the

6 http://www.trnicely.net/pentbug/pentbug.html
7https://cdn2.hubspot.net/hubfs/69806/Reassessing_the_
Cost_of_Software_Quality.pdf?t=1510935735043

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://www.trnicely.net/pentbug/pentbug.html
https://cdn2.hubspot.net/hubfs/69806/Reassessing_the_Cost_of_Software_Quality.pdf?t=1510935735043
https://cdn2.hubspot.net/hubfs/69806/Reassessing_the_Cost_of_Software_Quality.pdf?t=1510935735043

 21

design or it may mean that our expectation was wrong.
This approach, simulation-based testing through specific
tests, often called directed testing, is the natural way we
approach verifying almost anything. It’s also very effective,
so much so that it continues to play a very major role in all
verification today.

But it’s incomplete. No matter how many tests you create
and what clever tricks you use to cover multiple test
scenarios in each test, you can only verify correct behavior
across a finite number of possibilities, generally much
smaller than the total set of possible behaviors.
This is an intrinsic problem in verification for any but the
most trivial systems. To make this concrete, imagine the
system is a phone and pushing a button on the screen
starts a possible sequence of transitions between states
which may go through thousands (or millions) of
intermediate “next states” before finally delivering the
expected outcome, starting a phone call.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 22

Proving that this phone call always works correctly and
never works incorrectly should test all of those possible
sequences. If there were ten possible options (next states)
at each stage and you wanted to exhaustively test a
sequence of 100 steps (trivially short for hardware and
software these days), you would have to test 10100
sequences, a task which would not be remotely possible
even on a battalion of supercomputers8. The intrinsic
complexity of verification grows exponentially fast with
the number of states in the system (which in a hand-
waving way is related to the size of the system) and with
the length of the sequences9.

8 If you could test a billion sequences in a nanosecond, you
could test roughly 1025 in a year; 10100 would take 1075
years; roughly a trillion trillion trillion trillion trillion trillion
years
9 Even if you allow only two possibilities at each state,
growth is still exponential. It starts slower but still exceeds
practical reach very quickly. 2100 sequences might be
practically checkable but a modest growth in sequence
length gets you to 21000, which is again out of range of
reasonable computation power.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 23

Exponential growth is, with few exceptions10, the fastest
known growth in the natural world, and is much faster
than our ability to speed up computers and software
(Moore’s law notwithstanding). Everyone involved in
conceiving, building and testing complex systems works
hard to find ways to tame the implications of that growth
for verification; clever techniques can often manage the
early part of this growth to acceptable levels; as we’ll see,
formal methods have become important tools in this
continuing battle. Still, it is important to remember that
because of exponential growth, no one tool or
methodology will ever become a long-term silver-bullet
solution11. Verification will always depend on a range of
tools and methodologies.

10 https://en.wikipedia.org/wiki/Hyperbolic_growth
11 Notwithstanding periodic debates, always entertaining,
on formal verification eventually obsoleting simulation

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://en.wikipedia.org/wiki/Hyperbolic_growth

 24

Battling the exponential
Because simulation is incomplete, a widely-employed
strategy is to decide when you have run enough tests.
Verification teams get clever about this by testing
bounding or corner cases which lie at the edges of
acceptable behavior. For example, when testing arithmetic
functions, using biggest possible numbers and smallest
possible numbers as inputs is an obvious starting point for
bounding tests. The reasoning is that if these extreme
cases verify correctly, all other cases in between should
also work correctly. This tactic alone can massively reduce
the number of tests required for that function.

Unfortunately, corner-case reasoning can be dangerous
because it makes assumptions about the way the design is
implemented, and those assumptions may not be valid.
Often the design team decides that an architecture or
implementation must be optimized for performance, size,
power or other factors that may not be known to the
verification team. In the case of the arithmetic example
(say for multiplication) the implementation for small
numbers may be quite different than that for larger
numbers. Whenever there are architecture or
implementation transitions like this, there are new
possibilities for errors around those transitions. The
verification team now must test not just at the extreme
bounding cases but also at these new “architecture
boundaries”. Corner-case methods continue to be widely
used, because we have no choice, but we must always
acknowledge that there is an element of human
judgement in the corners we pick.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 25

A system bus managing data traffic between 2 IPs and a

memory

Another challenge for directed testing is that sometimes
the range of possible variations is simply too high for us to
even think of all possible options, much less create tests
for all those cases. A good example is a traffic manager
(called an arbiter) on a bus through which multiple
attached components (call them A and B) can
communicate to a resource like a memory, but only one at
a time .

When A is communicating with the memory, if B also
wants to communicate it will make a request but must
wait until the arbiter grants it permission. The arbiter may
do this after A has completed, or if B has higher priority it
may tell A to stop and allow B to start, but must eventually
get back to letting A complete its task; it may even allow
traffic from A and B to interleave in a controlled way. Since
behavior depends on the order and sequence of requests
to the arbiter (often from many more connected devices
than we show here), relative request priorities, the
amount of data to be communicated and what is pending

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 26

in the request queue, the number of tests needed to prove
correct behavior in all possible cases grows quickly12.

Obviously, building tests to verify that even this basic
arbiter works correctly across all possible combinations
can be challenging. Adding real-world complications like
interrupts, differing clock speeds, variations in architecture
for IPs built by different teams, and many more factors, it
quickly becomes impractical to build comprehensive suites
of directed tests to cover all cases. Even corner-case
tactics won’t work here – there are simply too many
corners.

Facing this problem with directed and corner-case based
testing, verification engineers have turned increasingly to
a technique known as constrained-random testing. In this
method, they will build a test allowing for some aspects of
the test to be randomized in a controlled way, those
controls ensuring that the randomized test behavior
remains reasonable. This technique in effect greatly
expands the number of tests that can be run. One test-
script spawns many tests, which can easily run in parallel
by adding server capacity and simulation licenses.

Constrained-random testing has been very successful in
teasing out potential hidden errors and is now a major

12 Assume 3 components attached to the bus (with 8
request scenarios – 000, 001, 011, etc), each with 3
possible lengths (short, medium long) and each with 3
possible priorities (1,2,3). If the arbiter should remember
up to 5 transaction requests for each function (which may
come in any order), you need to consider 8x3x3x5x3 =
1080 possibilities. That’s a lot of tests!

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 27

component of any strategy in directed testing. But clever
though this method is, coverage is still bounded by the
number of constrained-random tests that verification
engineers can write. While each script spawns many
randomized tests around a particular objective, none are
clever enough to run all possible tests.

The Synopsys ZeBu emulator

Another response to the scale problem is to use hardware-
based acceleration, particularly emulation and FPGA
prototyping. These technologies provide huge
improvements in performance, running thousands or
millions of times faster than simulation, which
unquestionably helps a lot. Still, acceleration effectively
offers only a constant improvement in performance (big
though that constant is).

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 28

Yet another approach depends on extensively leveraging
proven reusable IP components in designs. If these IPs
have been carefully tested and proven on multiple prior
designs, the risk that they may exhibit problems in your
design should be greatly reduced, at least in principle. This
was another big step forward; however, reuse only
provides confidence that those components work correctly
standalone, as advertised by the vendor. There’s no
guarantee that your design will not introduce bugs in the
way it interacts with those IP. Reuse reduces but does not
eliminate the need for testing around those IPs.

All of these techniques are actively used today, but we still
always come back to the exponential curve. No matter
what we do, testing will never be exhaustive or anywhere
near exhaustive because you can never test more than a
finite number of sequences. The exponential growth in
possibilities to test eventually dominates all of these
methods.

So product teams depend on expert verification engineers,
designers and managers, who hold frequent reviews, track
metrics like testing coverage and bug-trends, and who rely
heavily on their experience and gut-feel13 to decide when
they have done “enough” testing. This process is solid
enough that the semiconductor industry continues to ship
successful products. But those darn designs keep getting
bigger and more complicated and a question lingers.

13 It’s not just about tools or metrics. Knowing that a
particular function used in the current design has had a
history of problems in previous products will alert an
experienced manager to beef up testing on that function

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 29

Beyond all the great testing that has been done, do hidden
bugs still remain?

Enter formal verification
A strength of simulation-based14 verification is that it
works naturally with the way we think about testing. We
define a test, we write it, we define another test, we write
that and so on. We always know how to further expand
the range of tests we can supply. But we’ve seen the limits
of this approach, not just in the sense of covering
absolutely every possibility, but even in the sense of
covering all the important possibilities.

A carefully-designed and executed testplan should cover
well all possibilities that we consider important in normal
use, and also a set of abnormal use-cases that we deem
possible. But what we consider “abnormal” is based on
experience, subjective judgement and frankly, practicality.
We have to put a bound on abnormal cases we are
prepared to test to be able to complete verification in
reasonable time. This can mean that we fail to consider
unusual cases where a combination of conditions, building
over many cycles, conspires to cause a seemingly
impossible behavior, as in the Meltdown combination of
speculative execution and cache behavior.

A different angle of attack seems to be called for. The
problem with simulation is that we must handle testing
case-by-case. We can test only at (carefully-chosen)
corners, we can cover more testing ground with

14 From here forward we will use “simulation” to cover all
the directed (and randomized) testing methods, including
emulation and prototyping

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 30

constrained-random, we can run many cases in parallel or
we can get big speed-ups through hardware acceleration.
But all of these methods expand testing capability by fixed
amounts; none can overcome the exponential growth of
inputs and sequences to be tested. We really need a
method that can test all possible cases simultaneously (at
least up to some point)15. We shouldn’t forget also that we
want to be able to do this at signoff quality for significant
aspects of the verification plan; there’s little added-value
in any technique which has only incidental impact.

One way to do this is to use variables for inputs and state
values and a mathematical model for the design rather
than the explicit states used in simulation. To illustrate,
think of a 32 -bit integer multiplier. In simulation, we test
this works correctly by computing 1x2, 3x5, 7x13 and
many other cases. Checking all possibilities requires 264
tests (about 1019) which could take a long time. If instead,
we could test with variable (“symbolic”) inputs, say A and
B, and mathematically verify that the output was always
the formula A x B, we could completely prove correctness
for all possibilities. This is the objective of formal
verification.

15 Perhaps quantum computing can help at some point,
though there is no indication such a solution is near.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 31

Formal Verification – the Early Years

Background16
The principle behind formal verification is quite simple to
state (though somewhat harder to implement) – turn what
you want to verify into a mathematical proposition, then
prove the correctness of that proposition. This is a very
natural direction to take since digital designs are based on
(Boolean) logic. You can think of a design as a (typically
very complex) set of logical statements, and a behavior
you want to verify (maybe “pushing this button will always
initiate a phone call”) as a mathematical theorem you
want to prove in the context of those statements.

Mathematical proofs

16 A Brief History of Formal Methods

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://www.academia.edu/17969879/A_Brief_History_of_Formal_Methods

 32

Mathematical proving has a very long and distinguished
history, dating back to the earliest Greek philosophers who
recognized that it was possible, given an appropriate
construction of the problem and requirement, to prove
statements which must be universally true. The Socrates
example above is a very simple case illustrating the
mechanics of a logic proof. You start with premises (which
in our case correspond to the circuit description and
perhaps some constraints on allowed behavior), you assert
a proposition which you want to prove (in our case an
expected behavior of the circuit), then you prove that
theorem by following a logical and well-grounded
sequence of steps.

We’ll stress a point here because it underlies the basic
advantage of formal methods. When you follow a
mathematical approach, and prove a proposition formally,
you have proved it (in a finite number of steps) for all
possible cases. But when you simulate, you only prove for
the cases you simulated; if you simulate a thousand cases
but there are a million possibilities, you have still only
proven a tiny fraction of what the formal method proved.
This sounds so good that you might wonder why we still
use simulation; it turns out that simulation and formal
have complementary strengths (and challenges), as we’ll
see later.

Unsurprisingly, work in this direction advanced almost
exclusively in academia and the big labs, in part because
these were interesting technical questions but also
because concerns were being raised in the US DoD and
telecom companies, among others. Around the 1980s, a
general sense that “we need to do better” transformed
into more alarmed urgency, prompting active use for

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 33

formal methods in a number of industries beyond the
semiconductor ecosystem.

Boeing Dreamliner

In all cases, adoption of formal methods was prompted by
publicly-visible and serious failures on large and critical
systems, including a radiation therapy machine delivering
fatal overdoses of radiation17, an Ariane rocket exploding
40 seconds into flight18, Prius cars with an unexpected stall
problem19 and the recent discovery that the Boeing
Dreamliner could lock up and lose control after 248 days
of continuous operation20. Each failure was ultimately
traced to rarely-activated bugs which had been missed

17 https://en.wikipedia.org/wiki/Therac-25
18 https://around.com/ariane.html
19 http://articles.latimes.com/2014/feb/12/business/la-fi-
prius-recall-20140213
20 Boeing 787 Dreamliners contain a potentially
catastrophic software bug

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://en.wikipedia.org/wiki/Therac-25
https://around.com/ariane.html
http://articles.latimes.com/2014/feb/12/business/la-fi-prius-recall-20140213
http://articles.latimes.com/2014/feb/12/business/la-fi-prius-recall-20140213
https://arstechnica.com/information-technology/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug/
https://arstechnica.com/information-technology/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug/

 34

despite extensive testing yet had or could have had
catastrophic consequences.

Just as we saw earlier for semiconductor design, a
common conclusion from analysis of these problems was
that dynamic verification (simulation) alone was
insufficient to deliver high-levels of confidence, especially
in safety. Each of these systems providers enthusiastically
embraced formal methods with an expectation that they
could increase that confidence. In the early days, those
companies, along with military, aerospace, telecom and
other system builders had to rely on custom-crafted tools
adapted from university/lab research. Nevertheless, they
proved that formal methods could be effective in proving
correct operation, or in finding bugs that might otherwise
have been very difficult to track down.

Now formal methods have been used to prove the
correctness of driverless operation on one line of the Paris
Metro21 and operations of railway control systems22.
Toyota applies formal analysis to prove correctness in a
variety of car systems23 and Airbus has been using formal
techniques for some time in validating correctness of
avionics software24. In the very complex world of cloud
services, Amazon Web Services (AWS) depends on formal

21
https://en.wikipedia.org/wiki/Paris_M%C3%A9tro_Line_1
4
22 https://www.prover.com/
23 Hybrid Systems, Theory and Practice, Seriously
24 Formal Methods for Avionics Software Verification

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://en.wikipedia.org/wiki/Paris_M%C3%A9tro_Line_14
https://en.wikipedia.org/wiki/Paris_M%C3%A9tro_Line_14
https://www.prover.com/
http://shonan.nii.ac.jp/shonan/wp-content/uploads/2011/09/No.2012-2-1.pdf
https://www.slideshare.net/AdaCore/formal-method-for-avionics-software-verification

 35

methods25 to prove correctness of operation of the various
components of their solution.

Paris Metro

Closer to home for readers of this book, Intel took the
floating-point problem mentioned in the last chapter as a
wake-up call to get serious about formal verification26. Just
before the turn of the millennium they used formal
analysis to validate the Pentium-427, reporting that no
problems escaped to the field matching the seriousness of
the earlier bug. This industrial success, as much as
technical advances in tools, contributed to growing
interest in the field among semiconductor verification
teams.

25 How Amazon Web Services Uses Formal Methods
26 https://dac.com/blog/post/history-formal-verification-
intel
27 High Level Formal Verification of Next-Generation
Microprocessors

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://cacm.acm.org/magazines/2015/4/184701-how-amazon-web-services-uses-formal-methods/abstract
https://dac.com/blog/post/history-formal-verification-intel
https://dac.com/blog/post/history-formal-verification-intel
http://www.cse.chalmers.se/edu/year/2012/course/TDA956/Papers/Schubert.pdf
http://www.cse.chalmers.se/edu/year/2012/course/TDA956/Papers/Schubert.pdf

 36

Since early formal methods software28 was developed in
academia and labs, only deep experts inside those
domains knew how to run these tools. Over time, some of
these experts migrated into commercial enterprises (such
as Intel) where they started to build wider interest in these
strange new techniques. But formal remained a highly-
specialized art, barely impacting production design flows
except in one immediately useful application requiring
very little understanding of the underlying technology –
logic equivalence checking.

Equivalence checking
When logic synthesis from RTL started to take off, an
obvious question arose: how do I know the synthesis tool
didn’t make mistakes in converting from RTL to gates?
When design sizes were relatively small, signoff
verification29 (mostly through simulation) was still
common at gate-level so equivalence between the RTL and
the gate-level implementation wasn’t a primary concern –
all that mattered was that the gate-level implementation
behaved correctly. But as design sizes grew, high-coverage
gate-level simulations became impractical; signoff
verification increasingly moved to RTL, making the
question of functional equivalence between the gate-level
implementation and the RTL a much more pressing
concern.

28 For example, SMV and ACL2
29 Functional signoff verification, just to be clear

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 37

Addressing this need presents a perfect opportunity to
apply formal methods. Any formal proof requires some
kind of reference against which you’re going to check. In
this application, we have a ready-made reference – the
RTL. We want to check that the gate-level implementation
functionally matches the RTL design. There’s no need to
create additional statements about what should be
checked, which simplifies usability30. Thanks to this ease of
use and completeness in proving, logic equivalence
checking has become a required signoff step in all major
production design flows.

Useful though equivalence checking application is, it still
doesn’t prove “correctness” in the more general sense we
probably would like to see – correctness against intended

30 In practice, in modern flows dealing with complex logic,
equivalence signoff is still not completely pushbutton

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 38

behaviors of the design. Sure, the gate-level netlist
matches the RTL, but how do we know the RTL is correct?
Or that the architecture is correct? This requires a
different kind of analysis.

What do we mean by correctness?
We all believe we know what it means for something to be
correct, but correctness is one of those attributes that’s
not easy to define precisely. We tend to think the same
way as Supreme Court Justice Potter Stewart who, when
arguing about a definition of obscenity said that “I know it
when I see it”. This may work in legal decisions but is not
useful for the kind of proofs we need.

US Supreme Court

When we take a mathematical approach, we need a
precise specification of correctness. Here we run into a
problem: what can we use as that specification? Perhaps
we could start with the documented requirements? Every
design, IP and block (at least for significant components)

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 39

has some kind of specification, perhaps in Word or PDF.
But these are written in natural language (perhaps English)
which rarely rises to mathematical precision:

Why English “specifications” struggle with precision

If documentation specifications won’t work, perhaps we
can use an architectural or SystemC or C model? Models of
this type are sometimes available, but they are typically
developed to explore and validate high-level features of
the design; they are not normally defined with sufficient
precision to act as references against which RTL
equivalence can be checked. Think of a specification for an
integer multiplier: “c = a * b”. This may be sufficient for
architectural modeling, but it doesn’t specify timing (how
many cycles are required to complete a multiplication) or
power intent (how or when clocks or power should be
gated), among other important factors.

In the few cases where these high-level models can be
used as a reference (or extended to become an effective
reference), then high-level equivalence-checking tools can
verify the equivalency of the two models. In practice

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 40

today, these opportunities tend to be relatively rare and
require significant investment in setting up and proving31.

More commonly, whether starting from a natural language
specification or an architectural model, design teams find
that so much detail must be added to make the
description sufficiently precise for formal proving that the
effort required to build this reference outweighs the
benefit32.

31 Another approach is to develop a high-level specification
to be used for checking in a language such as TLA+. Both
AWS and Microsoft Azure teams use this method in testing
their software. Obviously, this approach requires further
investment to learn and to build specifications and still
requires an equivalence checking step for completeness
(which is often skipped due to complexity)
32 This is inevitably a balance between effort and
economics or safety, which is why some verification efforts
make the investment in comprehensive proving for some
aspects of designs

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://en.wikipedia.org/wiki/TLA%2B

 41

A more practical approach to building a reference
specification is to limit the scope of what we are trying to
prove to local expectations of correctness, since these can
be much easier to describe. Think again of our earlier bus-
arbiter example; generating a full specification for such an
arbiter could be extremely complicated, especially for
complex bus protocols like AXI. Instead you might in some
cases choose to use simulation for some of your testing
and formal for a subset of behaviors that are otherwise
very difficult to test.

As one example, the arbiter must communicate with
blocks through request and grant signals and will need to
store pending requests in a FIFO. A very important
specification is that this FIFO should never overflow,
because if it does, requests/grants will be lost. Testing for
this possibility could be very challenging in simulation
because you have to create heavy traffic/demand on the
bus to overflow the FIFO. Even then you couldn’t be sure
that there might not be a case which would create such a
problem among the many other possible configurations of
traffic and demand that you hadn’t tested.

A formal check for FIFO overflows addresses this concern;
you can prove this specific problem can never happen (or
isolate a case where it could happen). This approach,
working with specifications which target important
requirements within a function, is used in industrial flows
today and is known as model-checking or property-
checking.

In certain cases, it is very possible to accumulate sets of
property checks to provide a complete specification for a
function, in which case formal verification can assume

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 42

complete responsibility for the verifying the correctness of
that function – no simulation required. This method is
known as end-to-end (E2E) checking and is generally
considered to be a fairly advanced use of formal.

Recapping, in common usage we abandoned hope of
proving correctness against a complete specification and
are now limiting ourselves to localized proofs of
correctness, where correctness is expressed through
properties, as we’ll see next. In practice this is not a
significant compromise; a complete specification may be
redundant if simulation already provides much of the
necessary confidence in the correct working of the
function. Formal verification then complements this
testing with targeted confidence for some especially
challenging cases.

Properties: assertions and assumptions
Now we know we are checking properties, what are these
properties? We’ll start with assertions, which will lead us
to properties. An assertion is just what it sounds like: “I
assert that these two inputs can never be active at the
same time”, a behavior on which you depend but which
may or may not be true in practice and which you
therefore need to check.

The concept and practice of assertions was originally
conceived33 as a way to check basic expectations in
software through executable checks embedded in the
code; these would trigger automatically if requirements
expressed through assertions were not met. An obvious

33 As early as the 1940’s by Alan Turing
http://www.turingarchive.org/viewer/?id=462&title=01

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://www.turingarchive.org/viewer/?id=462&title=01

 43

example before a division operation would be an assertion
that the divisor is not equal to zero, since division by zero
is not defined. The intent is to catch basic problems quickly
before they lead to later and more complex bad behaviors
which might be more difficult to debug.

Assertions have been supported in hardware description
languages for quite a long time, but widespread use of
assertions as a part of hardware verification, known as
assertion-based verification (ABV)34, became popular in
the early 2000s after standards emerged. From there,
these evolved through OVL and PSL to the leading SVA
(SystemVerilog Assertions35) standard of today. ABV
continues to be very useful and popular in simulation;
most importantly, for our purposes, formal tools adapted
to read this same standard format36.

In hardware design today, assertions are predominantly
expressed in the SVA format; these can be embedded in
the RTL for a design or can be provided through separate
files. A simple assertion would be assert A == B37 which
checks that signal A is always equal to signal B. If a formal
tool proves this assertion, then the statement is true in all
cases; conversely, if the tool finds this assertion is not
correct, even for a single case, then it will report a case it

34 http://www.ijmetmr.com/oljuly2015/NKarthik-
MGurunadhaBabu-MuniPraveenaRela-113.pdf
35 SVA is a subset of the SystemVerilog standard
36 Earlier, formal tools used languages like CTL, LTL and
Sugar for property specification
37 The actual SVA assertion is slightly more complex. We’ll
stick to this simplified form here

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://www.ijmetmr.com/oljuly2015/NKarthik-MGurunadhaBabu-MuniPraveenaRela-113.pdf
http://www.ijmetmr.com/oljuly2015/NKarthik-MGurunadhaBabu-MuniPraveenaRela-113.pdf

 44

has found where A is not equal to B (this is called a
counter-example or CEX).

OK, those are assertions but what are properties? A
property is a formalized statement about the design with
no attached expectations. For example, “my car drives
forward” is a property I can associate with my car. It
doesn’t imply I can drive forward; that requires an
assertion on the property. If I assert that “my car moves
forward”, now I am making a statement that it should
move forward. If a property-checking tool could check this,
it might report that “yes indeed, your car can move
forward” or it might report that “no your car cannot move
forward because it’s out of gas”. In the example in the
previous paragraph, A == B is a property and assert A == B
is an assertion. An assertion checks the property following
the assert keyword. This division of terms isn’t nit-picking
because properties can also be used in other contexts, as
we’ll see next38.

38 In casual/common usage, property is often used as a
synonym for assertion. Even the experts do this!

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 45

Sometimes it is necessary, as a part of proving an
assertion, to constrain certain signals so that unreasonable
or uninteresting possibilities are not considered. This can
be done by defining constraints; which look very similar to
an assertion except that the keyword is assume. Using the
same property, A == B, in this case assume A == B is an
example constraint39. But where the corresponding
assertion checks for cases where A is not equal to B, the
constraint limits checking to just those cases where A is
always equal to B.

In our car example, where the assertion is “does my car
move forward?” a possible assumption could be “assume
my car has gas”. Together, the problem could be
expressed as “assuming that my car has gas, can it move
forward?” With this constraint, the formal tool could come
back with “yes, the car can move forward” or maybe “no,
it cannot move forward because the gearshift is broken”
(isolating a more serious problem).

That’s what assertions and constraints do; what do they
really look like? Our goal isn’t to help you write or even
understand the detail behind properties, but it’s worth
knowing how to recognize the real thing in the wild. They
can look rather complicated, but only the hands-on
experts need to understand this stuff in detail. And
actually, they really aren’t as complicated as they first
appear. Still, we don’t want to scare you off, so we

39 Yes, this is a little confusing; is it an assumption or a
constraint? When speaking about them, you can use either
term, but constraint is most common. But the standard
uses assume. Sorry, that’s just the way it is.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 46

promise this is the only place you’ll see these formats in
this book.

Examples of SVA assertions

Now we know how to describe what to check (through
assertions), we have to dive a little under the hood to
understand how these properties/assertions are checked.
We’ll promise not to get too technical here.

Under the hood: the formal engines

At the core of any formal verification tool, you’re going to
find the model-checker. Model-checker40 is just a fancy
name for an engine that will take a circuit and a property
(or rather an assertion) and will determine if that property
will hold true in that circuit in all possible cases. If that
doesn’t hold, it should report a failing case, appropriately
called a counter-example (CEX).

40 Ed Clarke pioneered model checking especially while at
CMU and has received multiple awards for his work in this
area.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 47

To help understanding, we’ll use a simple example – a
familiar traffic light controller problem. In this case, we
have two cross-streets with lights in both directions at the
intersection. Lights in each direction can cycle through red,
yellow and green states. The obvious safety property41 we
want to check is that we can’t get green in both directions
at the same time. If this should fail to happen under any
circumstance, the outcome could be catastrophic.
Checking this requirement is an excellent application for
formal.

Think of a model for this controller based on two finite-
state machines (FSM), one for each direction, describing
when and how the lights can change. These FSMs need to
negotiate to determine which set of lights is going to
change to what state (red, yellow or green) next. Each FSM
has to consider not only its own current state and next
possible state given various inputs (e.g. is there a car

41 A safety property is a property which must always hold
true, popularly summarized as “nothing bad happens”.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 48

stopped at my light) but also the current state of the other
FSM. You should see now that it is tricky to know for
certain that the safety property will never be violated,
especially when there may be yet more inputs like
pedestrian crossing requests. This type of property-
checking is also very relevant in SoC bus design where only
two devices can be allowed to communicate through a
common bus at any time.

Traffic lights also provide a good example for liveness
checking42. A light might avoid violating safety checks by
never turning green, but this is also not desirable behavior,
at least for drivers stuck on red. We need to add a
property check that each light will turn green eventually
(within some acceptable limit in practice). Similar
conditions apply in SoCs, again especially around bus
communication. An IP wanting to communicate through
the bus should not be stalled indefinitely (often associated
with hangs or deadlocks)43. Each should get a chance to
communicate no matter what other demands there might
be on the bus.

42 A liveness property is a property which should
eventually be true, popularly summarized as “eventually
something good happens”
43 There are very real problems SoC designers watch out
for in these cases: deadlock where control is stuck in one
state and nothing happens, starvation where one resource
is blocked from access while others continue to have
access and livelock where two or more resources are
locked in a struggle for control and still nothing useful
happens!

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 49

We don’t need to discuss here how the controller is
designed, only how we are going to check those properties
we specify. Remember that the simulation approach to
exhaustively verify the design would be to cycle through all
possible input and state combinations, and to check that
no assertions fail. In a formal approach, instead we will
calculate with variables in place of those explicit values
and we will use mathematical techniques to reach a
conclusive proof. Here rather than simulating, we build
equations expressed in Boolean logic form; these
equations cover all possible values, so if we can prove our
properties must be true given this set of equations, we
have proved it in all possible cases. This approach, called
Model Checking, was the first big step towards property
checking in hardware verification.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 50

An example finite-state machine (FSM)

The details of how this is done are too technical for our
purposes, so we’ll attempt a very simplified explanation.
Any set of Boolean equations (and therefore any digital
logic circuit) can be represented as one or more
interacting FSMs, which can be graphed as a set of states
(the bubbles in the picture above) and possible transitions
between those states (the arrows). Our traffic-light
controller can be graphed in this way. This graph can in
turn be mapped different types of graph which are
designed to be more efficient for proving properties.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 51

The flow to accomplish all of this starts with the front-end
of a logic synthesis flow, which maps your RTL into a
control/dataflow graph, from which it builds and optimizes
one of those specialized graphs. This correspondence
between logic synthesis and formal verification shouldn’t
be too surprising; the Berkeley ABC44 platform is a widely
used and adapted platform of this type, expressly designed
to serve the needs of both synthesis and verification.

The optimized graphs come in different flavors, depending
on the engine. One style is the binary decision diagram45
(BDD). Model checking based on BDDs, called Symbolic
Model Checking (SMC), became the forerunner of all
modern model checkers and made possible property-
proving for designs with 100-200 flip-flops. Impressive
progress, but hardly up to the needs of modern designs or
even sub-functions. Naturally this triggered more research,
to the point that BDD-based SMC methods can now handle
designs up to thousands of flip-flops (if components like
memories are abstracted out in some manner).

 While SMC with BDD showed promise, capacity was still a
major concern. BDD memory consumption grows
exponentially with the number of states in the circuit,
spectacularly shooting to sizes over 4GB in a matter of
seconds, making the approach impractical for many real
problems. Looking for a different approach that didn’t so
quickly succumb to unusable growth led researchers to

44 http://people.eecs.berkeley.edu/~alanmi/abc/
45 https://www.cs.cmu.edu/~emc/15414-
f12/lecture/bdd.pdf

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://people.eecs.berkeley.edu/~alanmi/abc/
https://www.cs.cmu.edu/~emc/15414-f12/lecture/bdd.pdf
https://www.cs.cmu.edu/~emc/15414-f12/lecture/bdd.pdf

 52

Bounded Model Checking (BMC), using a proof method
called Boolean Satisfiability Solvers, or SAT Solvers46.

An example of SAT on a simple logic design

SAT tests if property p can ever be false; in this case it can

Instead of building the complete problem representation
required in BDDs, BMC+SAT switched to a breadth-first
approach, looking for a violation of the property to be
checked (a counter-example) within a pre-determined
bound on clock-cycle depth.

Bounding the depth to which the search extends can
significantly reduce the size of the analysis problem,
making proofs (and especially finding counter-examples)
much more feasible both in memory requirements and in
time. At the same time, BMC naturally handled sequential
behavior by unrolling sequences. The next cycle in logic
(for all possibilities beyond this cycle) is expanded as a new

46 SAT techniques have been around for a long time,
getting their start in artificial intelligence for applications
in planning / scheduling

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 53

set of logic, taking the previous cycle states as inputs. And
so on for continuing cycles, out to whatever bound is set.
Analysis can then just work with this sequence of logic
stages without having to worry about clock cycles.

An unrolling operation on a 2-bit counter

The boundedness of BMC working together with the
natural solution-finding power of SAT has proven very
successful, so much so that now BMC+SAT is now one of
the dominant approaches to model-checking. But it’s not
perfect; while bounded methods will often satisfactorily
conclude proof of a property, they can in some cases fail
to prove that property or fail to find a counter-example
within the bound that has been set. In this case, the result
is inconclusive. We’ll talk about this more in the next
chapter. Inconclusives (also known as bounded or
undetermined proofs) are an unavoidable feature of all
formal methods but, as we’ll see later, they don’t have to
be dead-ends.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 54

Tools and methods have continued to evolve at a rapid
pace so now there is quite a range of engines, techniques
and flows to formally attack a property-checking problem.
Exploring all of these would take us too far from our goal
of providing an introduction to the field. If you want to
learn more about this rich set of possibilities, check out
our suggested reading list at the end of this book. And
remember that innovation in formal methods hasn’t
stopped; you should expect to see yet more capabilities
appearing in production tools47 48.

Among this range of proving engines, each engine has
strengths in addressing certain problems and weaknesses
when facing others. For this reason, we need access to a
toolkit of methods to attack the wide range of problems
that will arise in real circuits. Managing our way through
these options is a topic for our next chapter.

47 http://fmv.jku.at/papers/prasadbieregupta-sttt-7-2-
2005.pdf
48 http://www.springer.com/us/book/9780387691664

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://fmv.jku.at/papers/prasadbieregupta-sttt-7-2-2005.pdf
http://fmv.jku.at/papers/prasadbieregupta-sttt-7-2-2005.pdf
http://www.springer.com/us/book/9780387691664

 55

What’s the catch?

Property checking goes commercial
Thanks to the promise of property checking and success in
some high-profile design companies, several commercial
products started to appear around the early 2000’s, some
from the larger EDA vendors, others from new ventures,
and were actively promoted as a new direction in
verification.

In each case, leading edge verification teams were
enthusiastic, using these tools primarily to address the
hardest problems that were proving intractable for
conventional verification. Naturally, everyone assumed
that over time more verification teams would become
comfortable with formal methods and adoption would
quickly spread. Some enthusiasts even hoped that formal
verification might eventually replace simulation. But it
didn’t work out that way. Why it didn’t might be attributed
to several factors and is the subject of this chapter.

A problem with assertions
The idea of adding assertions to a design is simple; the
practice of adding effective assertions is not always so
simple. The easy cases (a queue should never overflow for
example) represent a small fraction of the cases you really
ought to check. And putting lots of easy assertions
throughout the design isn’t generally very useful. More
important usually is to check more complex bounding
cases dependent on multiple states and tricky sequences,
one common example being checking for correct interface
behavior between blocks in the design.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 56

In writing the associated assertions (and assumptions), you
have to think hard about the theoretical operating bounds
of the design in order to correctly draw the line between
legal and illegal operation. Draw this line in the wrong
place and you may report errors on operations which are
legal, or you may fail to error on operations which are
truly incorrect. Getting this right can be quite tricky since
you have to imagine the limits of legal use cases, whereas
in simulation you just run tests to see if any bugs appear49.

Many verification teams found the investment they had to
put into thinking of, creating and debugging high-value
assertions for formal verification was sufficiently onerous50
that they would build some, but overall assertion density
(as a measure of how effectively you were using assertion-
based verification) was not very high. Highlighting this
problem, checking the correct behavior of an interface IP
(requiring assertions running to hundreds of lines) would
have been far out of reach for a typical verification team.
And where teams had already adopted assertion-based
verification (ABV) for simulation methodology, they often
reported that adding constraints (“assumes”) to correctly
bound proofs took as much effort (or more) than
developing the assertions.

49 OK – simulation teams work hard to find those cases
too. But absolute proofs should be the central value of
formal, so “best efforts” don’t really measure up
50 The effort required per assertion (or group of related
assertions) isn’t abnormally high. It is often on the same
order as building UVM stimulus generators and
monitors/checkers. But it’s added effort which must be
traded off against other verification investments

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 57

Completeness is expensive
Remember that formal methods work by analyzing a
symbolic model of the logic, rather like solving algebraic
equations generally. This has the great advantage that
proofs (or bugs), when found, are certain; there’s no need
to test additional cases. But you pay a price for this
completeness. Problem complexity in formal methods
grows exponentially with circuit size, even with the most
powerful formal engines; in fact, there is no guarantee
that any given problem can be solved in a finite run-time
on any size machine51.

This is not the only problem in design engineering which is
theoretically unbounded. Place and route (particularly
routing) is an instance of the travelling salesman
problem52 which also theoretically may never complete in
reasonable time/space bounds. Yet place and route is
absolutely routine in digital design today. Formal methods
have a similar limitation but still continue to be useful in
finding difficult bugs beyond the reach of simulation-based
methods. In both these applications, what could in
principle be impossible has been wrestled into practical
usefulness in most cases through significant advances in
empirically-discovered best-practices. But we should
remember that completion is not guaranteed; some cases
may still require impractical or even unbounded run-times
or memory.

51 Famously proved by Alan Turing in 1937:
https://en.wikipedia.org/wiki/Turing%27s_proof
52
https://en.wikipedia.org/wiki/Travelling_salesman_proble
m

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://en.wikipedia.org/wiki/Turing%27s_proof
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem

 58

Since formal methods are bounded, if the problem space
becomes too big you could just surrender. But sometimes
it is worth switching to a different formal method because
maybe that proof or bug you are looking for is just a little
further out. Remember all those different engines and
techniques we talked about in the last chapter? Tricks to
see if it might be possible to complete a proof are to try a
different engine or to try the same engine with different
parameters. Or you might try decomposing the problem
into smaller pieces which may be easier to solve
separately. In fact, multiple techniques can be applied.
Managing all of these options starts to require more
expertise on the part of the verifier, which becomes more
apparent in the next section.

Inconclusives and debug
If during proving the formal tool stops, it can report one of
three possibilities for each property: that a property has
been proven, or that a counter-example has been found
(maybe a real bug or an artefact of insufficiently-
considered constraints), or in some cases that the run was
unable to run to completion beyond an acceptable bound.
Outcomes of the last type are known as inconclusive and
happen when the tool exceeds a set bound in memory or
time. Then you have to consider your options. A number of
possibilities were mentioned above – use a different
engine or change parameters for the engine. Another
option is to manually guide the flow of proving, though
various methods.

A common way to reduce the size of proofs is to replace
an embedded block of functionality with a simpler model
covering only what you believe to be the most important

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 59

behaviors, a process known as abstraction53. This may be
as simple as replacing a block with a black-box, if that
functionality isn’t important to what you want to prove.
Going back to our earlier car example, if we want to prove
that a car can move forward, we don’t need to worry
about the details of windows, windshield wipers,
infotainment and so on. We can start with an abstracted
model of the car with only the engine, wheels and
drivetrain. We can’t model the transmission as a black-
box, but we might abstract to a simpler model, considering
only the park and drive states and ignoring neutral, low
and reverse options.

Abstracted car

In the design world, we might model a memory as a black-
box, effectively allowing for any possibilities and
sequences in address and data behavior54. Conversely,
counters can be challenging for provers because these

53 The Art of Abstraction
54 Which might be an OK choice in some cases and not OK
in other cases – depending on use-model

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://www.techdesignforums.com/practice/technique/the-art-of-abstraction/

 60

have also many possible states, but a black-box model may
be too unrealistic. Instead, you’ll typically abstract the
counter with a greatly-simplified model which maybe
considers only values significant to downstream logic. For
example, if a downstream FSM changes at counter values
2, 5 and 10, only these three values may need be modeled
in the counter; all other possibilities are collapsed into a
default case. Proving then has a much smaller state space
to handle and has a higher chance of completion. But
doing this correctly isn’t trivial; you have to reduce the
state space enough to enable completion but not so much
that you may miss real problems.

Another approach is to decompose the problem into
smaller parts as shown here and use a technique called
assume-guarantee at the interface between those blocks.
Since each part is smaller than the original problem,
property checking in those independent parts is more
likely to complete successfully. The blocks are connected
through properties which are used as constraints
(assumptions) on the inputs to the downstream block.
Those assumptions are in turn verified (guaranteed) to
hold at the outputs of the upstream block. Careful use of
this technique can reduce problems which are unsolvable,
or which complete only in hours, to a set of sub-problems

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 61

each of which can be proven in minutes. But of course,
you have to figure out how best to divide the problem and
what invariant properties you will use at each interface.
You also need to make sure the way you divide doesn’t
generate false problems. All manageable, but this is not
for beginners.

There’s yet another approach to manage difficult proving
problems, using constraints. These will limit the scope of a
proof by forcing certain signals to take a limited range of
values. For example, a USB IP may be configurable to run
in 32-bit mode or 64-bit mode. Either mode is legal, but
the IP may only be used (at any one time) in one of these
modes. A formal tool won’t figure this out on its own; you
have to specify a constraint. If you don’t, it is quite
possible that you will get an inconclusive result or perhaps
a meaningless counter-example reflecting unrealistic
usage. This technique, systematically splitting a problem
into separate use-cases is known as case-splitting. Often
the cases are fairly obvious, but you have to be certain or
somehow prove (perhaps using assume-guarantee
methods) that there is no possible interaction between
operation in different cases.

Stuck at the chasm
You might now have a sense of why formal verification
didn’t instantly spread everywhere. Where it works, it
works very well. But in many cases, getting it there can
take quite a lot of expert supervision and effort. Those
experts were able to figure out which proof engines to use
with what parameters when something got stuck. And
they knew how to apply appropriate guidance to the tool
to confidently validate behavior without hiding problems.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 62

Design teams and tool vendors quickly learned that the
most successful way to deploy formal tools was to build an
army of formal experts and farm out all the formal
problems to them. Some of the tool companies followed
suit, building teams of highly expert AEs, many with
advanced degrees in formal verification, who would work
closely with customers, in many cases running the tools for
them. The need for help also prompted new companies
who specialized in consulting for formal applications.

This service-intensive approach worked but necessarily
limited scaling use of the technology. Formal verification
couldn’t expand to being used widely because there
weren’t enough experts available, and even if more
experts could be trained, that service-based use-model
would be too expensive to scale in the long-term. In the
terminology of Geoffrey Moore’s book Crossing the
Chasm55, formal verification was stuck on the left side of
the chasm. The experts on the left side (small teams in
perhaps ten large companies) were happily using formal in
expert use-models, but there was no way this kind of
usage could cross over to the larger market and mass
adoption. Something had to change.

Crossing the Chasm

55 https://en.wikipedia.org/wiki/Crossing_the_Chasm

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://en.wikipedia.org/wiki/Crossing_the_Chasm

 63

Crossing the chasm – fearless formal

Pre-packaged solutions
To recap, sometimes formal methods would find critical
problems, but sometimes they wouldn’t, or couldn’t
deliver a useful result without additional complex effort.
The return on investment was uncertain for many
verification managers, indeed even for the companies
supplying these tools.

Pre-packaged solutions seemed like an obvious answer –
we have verification IP (VIP)56 for simulation, why not also
for formal? Assertion IP (AIP) (also known as assertion-
based VIP or AB-VIP) are indeed a part of the answer and
vendors offer solutions for a range of interfaces. The same
concept is also scaled down to other simpler yet still
widely-used design components such as FIFOs, linked-lists
and special CDC synchronizers, where
assertions/constraints can be packaged with that design
IP.

Over time, formal experts found a complementary
approach in what is now often known as design or

56 A verification IP is a model used in place of a design IP
(such as a USB function) to verify correct interaction of the
rest of an SoC design with this IP. VIP are heavily tested
against associated standards and are widely used for their
reference quality. Simulation VIP also include verification
support through assertions, debug support and cover
properties

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 64

verification patterns. These aren’t associated with blocks
in a design necessarily but rather with commonly-
occurring verification objectives and processes. Each time
the formal team would address a certain type of
verification objective, say checking clock connectivity at
the SoC top-level, they found they were building similar
scripts, similar assertions and constraints and applying
similar abstractions, even following similar paths in
decomposing large problems.

Whenever patterns emerge, that’s a strong hint that it
should be possible to provide value in a different type of
automation – an Application or App. Pre-canned scripts,
assertions, etc. aren’t sufficient to handle many possible
SoCs with different architectures and objectives, but a
combination of a greatly simplified user input along with
application-specific code can, under the hood, construct
and drive all the steps in a specific pattern. This includes
not only problem setup but also running and managing
run-time issues through all the methods we described
earlier. You’ll even find app-specific debug in many cases.
The app approach really caused formal adoption to take
off, so much so that today you’ll find around 10 apps
offered with each of the major formal platforms.

Typical Formal Apps

A possible misconception about apps is to view them as
the beginner’s version of formal, to be abandoned as soon

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 65

as you have built enough expertise. That view is not
correct. While apps simplify use of formal methods in their
target objectives, they are not verification lightweights.
Even advanced verification teams continue to address
high-value problems through apps, much more effectively
than they could through other verification flows. In fact, it
is not unreasonable to expect that over time more
standard patterns will emerge and be handled through yet
more apps. It is arguably better to consider Apps (and AIP)
as the backbone of formal application, with custom
property verification reserved for those cases not yet
covered by packaged solutions.

Since most verification (and some design) teams get their
start in formal through these apps, we’ll discuss a few of
these in some detail. To avoid confusing generalizations
across different products we’ll use VC Formal and a few of
its associated apps, in rough order of required user
involvement, to describe applications. You should
remember that products and apps from other vendors
may differ in some features and/or use models.

Baby steps – functional linting
The simplest app goes by a number of names – auto-
extracted properties (AEP in VC Formal) or functional lint.
This app looks at the RTL for a module or block, generating
a number of assertions representing standard “best design
practices” which are then checked automatically. You
never have to be concerned with the internals of those
properties. Some of these checks are often associated with
linting, but the formal versions checked in the app are less
“noisy” (report less false errors) than you would find in a
pure lint check. Most important for those who want to get

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 66

started with formal, running these checks is almost57 as
simple as running linting. As a bonus, when an issue is
found, it is accompanied by a waveform, so it is easy to
understand the problem.

Apparent Lint problem

which is not a real problem in this case

Take for example an arithmetic overflow check. Suppose
the RTL code adds two eight-bit (unsigned) numbers and
puts the result into an eight-bit (unsigned) register. It is
possible this value can overflow the result, which is what a
lint-check would report. If you add 16 (decimal) to 240
(decimal), the result is 256 which requires 9 bits and
therefore overflows the 8-bit result. However, if the first
number is in practice limited to never be bigger than 63
and the second number is similarly limited to never be
bigger than 127, no error should be reported. Proofs in
this case require formal analysis to determine the
functionally-possible bound on the total sum. Here, the
formal check will be less noisy than the lint check,
minimizing engineering effort to check false errors which
makes this app popular in design teams.

57 You may need to add some constraints in some cases

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 67

There are other checks in the AEP app, for example
checking that a high-impedance bus can never have more
than one active driver and that it can never be floating, or
that a finite-state machine (FSM) has no inaccessible
states (states that cannot be reached through transitions
from other states in the FSM). The main point about all of
these checks is that they are really as simple to run as lint,
and any counter-examples (violations) will be reported in
the standard verification debug window. This starting step
into formal is so easy that anyone who understand RTL can
use it, without any understanding of formal verification.

Coverage analysis – formal helping simulation
The later stages of coverage-driven signoff are always
painful. As you build and run test-cases, initially coverage
rises steeply. But the more you progress, the harder it
becomes to increase coverage. You keep adding more
tests after carefully studying which parts of the design are
not yet being hit in testing, yet each new test barely moves
the coverage needle, if it moves at all.

Progress and challenges in coverage closure

An important part of this problem is that, usually, some
parts of what seems should be covered simply cannot be

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 68

covered by any test – they are inaccessible or, in formal
terms, unreachable. This might seem odd – if RTL code is
not used, why not get rid of it? Because it might be inside
a piece of logic which is used in some designs, but not in
your design. Or it might be legacy code, lingering in the
design because no-one is really sure if it can be removed
safely. Remember the engineer’s maxim: if it ain’t broke,
don’t fix it, because it’s quite likely you’ll break something
else if you try! So you leave it in there, but you can’t ever
get coverage on that code in your design and you don’t
really know what is truly unreachable and what should be
reachable if you (eventually) find the right test. Figuring
this out is part of what takes so long to get to coverage
closure.

This is where a formal app can help – the Formal Coverage
Analyzer (FCA) in the case of VC Formal. Formal coverage
analysis works together with your simulation environment
(with or without existing coverage results) to find logic
that is provably unreachable. You exclude this logic from
subsequent simulation coverage runs, giving your
simulation team a better sense of how much testing they
really have left to do. This app alone can have a huge
impact on conventional verification effort and schedules.

Formal coverage analysis requires little to no additional
input beyond the source RTL. If you already have
simulation data, you can use it to focus attention on what
has not yet been reached. And you can make your analysis
sensitive to all the standard coverage metrics when
building unreachability lists: line, condition, toggle and
FSM. The VC Formal App can be even turned on during
simulation through VCS. Which means most verification
engineers are not even aware that formal analysis is being

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 69

run; unreachable states are simply removed from
coverage analysis. How cool is that?

Having the right connections
In modern SoCs, most of the clever functionality has
moved to (reusable) IPs/blocks – CPUs, GPUs, peripherals,
sensor management, DSPs and others. At the top
integration level of the chip, design is now almost
completely about connecting all of these functions, and
this creates a new verification challenge. We mentioned
earlier that reuse emphasizes extensive verification at the
IP/block level so that functionality doesn’t need to be re-
verified at the SoC level. But then how do you verify all the
top-level connectivity is correct?

A block diagram of a typical complex SoC

Each block may have thousands of connections at this level

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 70

There are massive levels of connectivity in SoC integration
(tens to hundreds of thousands of connections) and,
despite that goal of moving all the cleverness into IPs, still
quite a lot of logic must be generated to fully manage
integration. This includes bus management logic, power
management logic, debug, test and IO control logic, and
often security and safety management logic. Much of this
is created quite late in the design schedule, simply because
some of these features can’t be completely finalized until
the rest of the design is finalized. That’s not good news for
simulation-based checking which generally requires
significant effort to build testbenches; if that effort can’t
start until the rest of the design is complete, schedules
stretch further out.

Certain specialized simulation testbenches can be used to
check connectivity (and often are for controls like clock
and reset) but these approaches become increasingly
difficult to manage as higher levels of configuration control
are added. In structures like IO connectivity with many
complex configurations, getting to satisfactory coverage
can become even more challenging.

A simpler approach is to specify and check this top-level
connectivity through a connectivity check (CC) app. For
point-to-point connections checks (is this output pin
connected to these input pins?) – each connection can be
represented as a single tool command. Lot of connections
at the top-level are like this and can be checked using
these simple commands – often by extracting a list of
connections from an early revision of the top-level RTL,

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 71

manually checking that list then using it to regress later
revisions58.

Some of connectivity required at SoC top-levels is more
complex than point-to-point connections; one example is
the input/output (IO) logic. Most SoCs have many more
internal IOs than can be supported by the limited number
of pins on a practical chip package. However, all functions
in the SoC typically don’t have to be active at the same
time so can be managed by multiplexing signals between
different function blocks and the IO pads. Architects or
application engineers build a complex spreadsheet
defining which signals should be accessible at the same
time and under what conditions so that all internal
functions can be accessed under appropriate settings.
From this spreadsheet, scripts automatically synthesize the
muxing logic which will manage connectivity between the
core and the IO pads.

58 A popular intermediate format for handling large
numbers of connections is a file of comma-separated
values (CSV), which can be viewed, checked and corrected
in a spreadsheet tool.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 72

Input path I/O logic - The mux controls determine whether

the pad or another internal signal drives Model Y

Checking this logic requires more than point-to-point
verification, but these structures are still relatively simple,
which makes them very easy to check in formal
verification. IO muxing is completely combinational (if you
don’t include the registers controlling mux selects) and is
typically not very deep so you don’t have to worry about
hitting verification bounds. Assertion generation can be
scripted easily from the same spreadsheet, or through a
different approach if you want complete independence
between generation and verification. And a formal proof
will check every possible variation of signal accesses
between pads and core under all possible mux control
settings, something which would require considerable
effort in simulation setup.

While in the IO example logic is (predominantly)
combinational, this isn’t always the case for logic
generated at the top-level. Reset trees in an SoC can be

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 73

quite complex and may include registers. Debug bus
muxing may also include registers, either to hold snapshot
values or to help in sequencing wide-debug snapshots
onto a narrower debug bus. Even so, these structures still
remain relatively simple and are well-suited to formal
proving.

Setup for connectivity checking is a bit more involved than
for AEP, but still requires no formal expertise. You must
create scripts or spreadsheets to define the connection
checks, one-line checks for point-to-point connectivity and
somewhat more complex specifications for structures like
IO muxing or debug busses. In almost all cases, verification
teams find ways to generate these scripts from existing
files – from a top-level RTL or spreadsheet for point-to-
point connections, or from specification spreadsheets for
structures like IO muxing. Naturally this implies need to
verify the scripting and the first-pass spreadsheets are
correct, but many teams still claim high value and total
engineering effort saved in this checking, especially in
regression, even for SoCs as small as 20M gates.

Sequential equivalence – some assembly required
Our next example takes us one step closer to hands-on
formal while still limiting the complexity of analysis. In this
case the app will create the required assertions for you
(given some simple inputs), it will do the run and it will
present you with results in the standard debugger, but you
start to need to get a little more involved in the proving
process, in part by adding mapping points which can help
the prover identify points of correspondence between the
two versions of the design. You may also need to get a bit
more hands-on if proofs in some cases do not complete
(are inconclusive).

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 74

First, what is sequential equivalence checking, why is it
important and why isn’t it covered in standard equivalence
checking? We talked about equivalence checking in
chapter 2. That type of check is used to verify that the
gate-level model generated though synthesis is
functionally equivalent to the source RTL (that is, that
synthesis didn’t break the functionality). Because of the
way synthesis works, this only needs to check equivalence
of combinational logic between registers59.

However, some design changes require sequential
modifications. One such case involves adding clock gating
for power optimization. The ultimate functionality should
remain the same in the enabled state, but cycle shifts
(latency) may be added when enabling and disabling the
clock since new register stages have been introduced.
What must be compared between the “before” and
“after” logic now includes logic which would confuse
conventional equivalence checking60.

59 This isn’t strictly true. Synthesis engines may re-time
logic across registers, so equivalence checkers have to
understand these cases also. But allowed deviation from
the basic principle is limited.
60 The gated and ungated functionalities are logically
different but in a well-controlled way

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 75

Clock gating optimization – before gating (above) and

after (below)

Since sequential equivalence checking is about comparing
two designs, you need a source RTL (before you make
changes) and an implementation RTL (with clock gating
changes). Just as when you compare two versions of the
same Word document, you’ll generally see these two RTLs
side by side in the debugger window. The assertion
generation part of SEQ is still hands-free – the app will
generate these for you.

The debug part of SEQ (looking at results) is based on
Verdi and is going to look very familiar to anyone who uses
that tool for simulation debug. You look at detected
problems which leads you to waveforms, then you’ll cross-

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 76

probe to RTL and trace back to root-causes. The only
aspects that are a little different here are that you are
looking at two sets of data (the specification/original
version and the implemented version) and there are some
extra debug features in Verdi, such as sequential trace-
back to a root cause. But all of this will still be very familiar
to a verification engineer.

The only part of the task that gets more (formally) hands-
on is the proving phase; you can think of this as a first
introduction to the details of formal proving. In
conventional equivalence checking, comparisons are quite
bounded – tracing most typically stops at sequential
elements like registers. But in sequential equivalence
problems, as in clock-gating verification, tracing may have
to go through multiple sequential elements. This makes
the potential complexity of the problem very large, which
in turn can result in proofs which do not complete in
reasonable time or memory. Proofs terminations of this
type are our earlier-mentioned inconclusives – no counter-
examples have been found as far as the proof was able to
reach, but equivalence has not been conclusively proven.

SEQ provides a nicely automated way to overcome this by
automatically decomposing challenging problems into
smaller sub-problems, then proving equivalence between
these sub-problems. You can track this progress in Verdi.
Where sub-problems converge, those sub-proofs are
complete. Where they fail to converge or where an
apparent mismatch (assertion fail) is found, that signals
need for a new (and automatically triggered)
decomposition. The app will continue to try to find new
decompositions, so this part continues to be largely hands-
free (you can still watch progress/status in Verdi). In the

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 77

simpler cases, the sub-problems converge, leading to a
proof (or counter-example) at the full problem level.

The cone of influence (COI) of a property

Light-colored logic is in the cone of influence, darker logic
is not

Where you may have to get involved is if it becomes clear
that certain parts of the design are resisting convergence.
This could be caused by memories or counters or other
complex blocks in the cone of influence for a proof, since
these typically lead to explosion in size in formal methods.
At this point you may need to turn to the tools we
mentioned earlier (abstraction, invariants, constraints). If
you are planning to be a hands-on verification engineer,
fear not; learning how to use these techniques doesn’t
require an advanced degree; this is just more skills
development to add to your arsenal of verification
expertise

Other apps
The apps discussed above are representative of a range of
usage, from easy to a little more involved. But they aren’t
the only apps you are likely to use. We won’t go into as
much detail on other apps, but we will give you a flavor of
what is commonly available:

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 78

 Register verification – almost all CPU-based
designs today are memory-mapped. Components
in the design are controlled, written to and read
through registers and that register logic can be
quite complex – registers which are read/write or
read-only or are cleared on read or many other
possibilities. They come in different sizes, and
different ranges (bitfields) in those registers have
different functions, each with that wide variety of
possible read/write properties. And there are more
variations. Getting this right isn’t just important to
hardware verification. Software communicates
with the hardware through these registers, so
absolute correctness in behavior is vital. Register
verification apps automate this checking against an
XML or similar specification.

 Design exploration or navigation apps are useful in
several contexts:

o For an RTL designer in exploring aspects of
the behavior of a design without needing to
create a testbench or to have a detailed
understanding of property checking

o For a verification engineer in building
assertions and constraints, to explore what
properties flag as violations or as valid

o In post-silicon debug to trace-back behavior
found in the lab to likely root-causes.

 X-propagation analysis apps: In simulation, ‘X’ is
used to indicate an unknown state (rather than 0
or 1). Registers which are not reset on design
initialization will start in this unknown state. In
some cases, this is not a problem; the state is set to

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 79

a known value before the value is needed. In other
cases, if this state is not reset an unknown value
can cascade through subsequent logic causing
serious misbehavior. X-propagation analysis looks
for and flags all potentially serious problems.

 There are other apps, around security analysis and
signoff, which we’ll talk about later in this book.

Are we there yet?
These apps provide valuable verification needing only
limited learning, but they don’t represent all that can be
accomplished with formal verification. Use for more
complex or more unique problems requires you to write
your own assertions and may require some level of
involvement in getting to proof-convergence through
abstractions, constraints and other methods. We’ll dip into
this topic later in the book.

Also, while we’ve said this before, we’ll repeat it again. A
characteristic of the bounded model checking at the core
of most formal methods is that while a proof (an assertion
passes or fails) or a counter-example will often be found
within the bound of proving, this is not guaranteed. We
started to see this in our short introduction to the SEQ
app. In these cases, to get to a proof, you can increase the
bound, or do more abstraction, or add more constraints,
or any combination of these. Or you can ask whether the
depth to which you have checked, with the abstractions
and constraints you already have, is sufficient to declare
the proof acceptable. We’ll look a little more at this topic
later in the book.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 80

Now we’re caught up with the basics, it’s time to look at
how your peers in the semiconductor industry are using
formal verification today.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 81

The role of formal in design today

Adoption
No matter how clever or easy to use a technology may be,
the only measure of success that matters to both vendors
and users is real-world effectiveness, as indicated by
adoption and growth; how many people / organizations
are using it and how quickly is that usage spreading?
Multiple surveys in the industry indicate that both are
robust and have moved beyond early expert adoption.

For example, one survey61 shows about 20% of reporting
projects using formal apps in verification and around 35%
using custom property-checking. Among these, app-based
verification contributed to significant growth in formal
usage from 2012 onward, followed by notable pickup in
custom checks from 2014 onward, indicating perhaps that
growing familiarity with app-based approaches is making
verification teams more comfortable in moving also to
those custom applications.

You might be surprised to hear that formal verification is
picking up even in FPGA-based design62, at around 10-15%
of projects in 2014, maybe reflecting the increasingly
complex nature of FPGA SoCs and the need for
development teams to check cannot-fail assertions as
completely as in ASIC designs (especially in mil-aero
applications where FPGAs are widely used, and now even

61 Verification Trends 2016
62 2014 Wilson Research Group Functional Verification
Study

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://www.semiwiki.com/forum/content/7035-verification-trends-2016-a.html
https://blogs.mentor.com/verificationhorizons/blog/2015/05/11/part-5-the-2014-wilson-research-group-functional-verification-study/
https://blogs.mentor.com/verificationhorizons/blog/2015/05/11/part-5-the-2014-wilson-research-group-functional-verification-study/

 82

in ADAS, where safety and reliability expectations are also
very high).

Regarding business growth, informal feedback supports a
view that the top 20 companies (by revenue) designing
complex SoCs are already investing $50M/year in their
formal verification flows. Perhaps twice that much is being
invested across the entire user-base. Also noteworthy is
the range of applications; designers are applying formal
methods across the spectrum, from processors and
graphics, to wireless, networking and storage, image
processing and recognition. Indeed, there is no obvious
reason not to use formal in most areas of (reasonably
complex) digital design today. That said, designs under
~100k gates (e.g. sensor logic) are not reporting formal
usage, which isn’t really a big surprise.

Among organizations that have established teams
dedicated to formal-proving, it is common to hear that
these methods now address 20-30% of the total
verification burden63. Formal is no longer a niche
technology – it is now carrying a verification load similar to
other verification methods.

An important question is why these teams are using
formal methods. A cynic might hold that “it’s hot so we
better do some to keep management off our backs”. We
doubt this accounts for any significant usage; most
verification teams are under such intense pressure they
don’t have time for “show” projects. A much more

63 See the foreword, also Simulation and Formal – Finding
the Right Balance

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://www.semiwiki.com/forum/content/7245-simulation-formal-finding-right-balance.html
https://www.semiwiki.com/forum/content/7245-simulation-formal-finding-right-balance.html

 83

common reason heard from verification leads is building
concern that as design complexity continues to grow they
already see or anticipate important verification problems
moving beyond the reach of simulation-based methods.
They are allocating budget, resource and schedule to
ramping up in formal because they have no choice. Rare or
intermittent problems which escape to the field are often
out of reach of “just try harder in simulation” but can
spiral into disproportionate costs and reputational
damage. Design and verification teams are increasingly
turning to formal methods64 65 66 67 as one way to shake
out those difficult problems.

Size constraints
Whenever formal methods are discussed, you will hear
some dismiss them as “only for small problems”. The
exhaustive nature of formal proving certainly limits the
size of the state-space that can be considered in a proof,
but this should be offset against the potential for
abstraction, automated in many high-value apps, and of
course continuing improvements in proving technologies,
especially around advances in heuristics.

Given that, what are realistic size-limits? It depends. A full
SoC state-space far exceeds the practical limits of any
current formal method, but there are multiple useful SoC-
level problems which are routinely tackled, especially in

64 Adoption, Architecture and Origami
65 System-Level Formal
66 DVCon 2017 Making Formal Property Verification
Mainstream: An Intel® Graphics Experience
67 DVCon 2018 Architectural Formal Verification of System-
Level Deadlocks: Qualcomm and Oski

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://www.semiwiki.com/forum/content/7051-adoption-architecture-origami.html
https://www.semiwiki.com/forum/content/7228-system-level-formal.html

 84

apps like connectivity checking where block abstraction is
easily automated. Cache-coherency verification is an
example of a system or large-subsystem-level problem
also commonly reduced to a manageable level through
abstraction; we’ll talk more about this later.

Unquestionably custom property-checking is most
commonly used at the IP level, since pre-tested constraints
and heuristics may not be available and therefore a limited
state space makes proving less challenging. Even at this
level, abstraction is often needed to simplify memories
and datapath elements. However, this need is really a
feature of the formal approach rather than a limitation.
You do this in order to enable formal proving on other
parts of the logic, remembering that simulation may also
be limited in exhaustively proving through such cases and
often depends on abstractions such as behavioral models.

Granting all these points, what is the real story on state-
space capacity in formal tools? This is a moving target and
you’ll no doubt hear different ways to calculate from other
sources, but one approach we like for its simplicity is this.
First, size limits are a function of the property being
tested. The size of the cone-of-influence (COI) of that
property is much more important than the design size.

Reminder: Cone of influence for a property

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 85

Given this, the problem size of the proof you are facing is
determined by the number of inputs and state elements in
that COI. Formal tools will often calculate these value for
you. Within these bounds, one experienced user in the
industry68 cites 40K state elements as a practical limit as of
2017.

Popular targets for property checking
Clearly, most teams start and continue with apps. These
add obvious value in covering important parts of the
verification plan (connectivity, coverage, registers, etc.),
they’re an easier place to start than custom property-
checking and they help you incrementally build expertise
in using formal tools. Adding custom property checks
comes later and is commonly viewed as an incremental
extension to app-based checking to handle specialized and
proprietary objectives.

Good targets
When looking at block-centric checks, whether app-based
or custom, some objectives fit well with formal while
others are better handled in simulation. In general, formal
works well with control-intensive blocks which have lots of
states and transitions, with complex conditions for
transitions and possibilities. Think of very complex FSMs or
multiple inter-operating FSMs. Common blocks in this class
include arbiters, controllers of various types (memory
controllers, power management controller, traffic
controller, interrupt controller, etc.) and schedulers (round
robin, fair etc.) for quality of service.

68 Erik Seligman in Formal Verification: An Essential Toolkit
for Modern VLSI Design

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://www.amazon.com/Formal-Verification-Essential-Toolkit-Modern/dp/0128007273/ref=sr_1_1?ie=UTF8&qid=1510251265&sr=8-1&keywords=formal+verification&dpID=51JvEynJagL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch
https://www.amazon.com/Formal-Verification-Essential-Toolkit-Modern/dp/0128007273/ref=sr_1_1?ie=UTF8&qid=1510251265&sr=8-1&keywords=formal+verification&dpID=51JvEynJagL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch

 86

A representative SoC – arrows indicate
some areas formal will likely find a role

Similarly, in networks, verification of bus bridge behavior
(from master to bus, from slave to bus or from one bus
protocol to another) is a good candidate, ensuring that
data isn’t lost due to FIFO overflow in the bridge, or loss of
request or acknowledge signals from/to the bridge.
Equally proving correct operation of network traffic
management techniques, such as token management, are
excellent candidates for formal proving. Cache coherent
networks are a very hot topic in modern multi-processor
systems and pretty much depend on a significant level of
formal validation (we’ll have more to say on this topic later
in the book).

Data transport systems are good candidates, where data is
being moved from one place to another rather than being
transformed in computation. Examples can be found in
crossbar switches and networks-on-chip (NoCs).

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 87

An area of verification that is always of high interest for
formal methods is interface checking, especially for
protocol validation. This usage should be approached with
some caution. Verifying simple interfaces is not too
onerous; for example, coding assertions and constraints
for the AMBA APB protocol can be completed in a matter
of hours. However, checking for more sophisticated
interfaces can become very complex very quickly; coding a
correct and complete set of assertions and constraints for
AXI3 (or higher) could take weeks.

The best approach for interface-verification is to use pre-
packaged assertion IP whenever possible; these are
already setup with assertions and constraints proven to
work effectively in a wide variety of contexts. Supporting
documentation will tell you what aspects of operation are
covered and what (if any) you need to handle separately in
simulation-based testing.

Targets to avoid
Datapath functions (adders, multipliers, filters, etc.) can be
challenging for formal methods since they typically expand
into gigantic state graphs, particularly thanks to the need
to do bit-level analysis on word-level values. That said, this
area continues to see advances in proving methods.
Specialized provers are already known and even available
in some cases – watch for these techniques appearing in
commercial tools69, also see the “Looking forward” section
in this book.

69 We touch later on induction methods as one way to
address this class of designs.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 88

Similarly, complex data transformation functions like JPEG,
MPEG and encryption / decryption are simply beyond the
capacity and performance of today’s formal engines, at
least at the fully elaborated design level. However,
intelligently abstracting the quite regular architectures of
these designs could put aspects of their behavior within
the reach of formal. This is another area to watch for
improvements.

Certain tests on interfaces which require proving over very
long sequences (such as for PCIe, MIPI, SATA or HDMI) are
not formal-friendly for an obvious reason. Standard formal
methods depend on proving/disproving within relatively
limited clock-cycle bounds; if a proof depends on analysis
over sequences of many thousands of clock-cycles, the
state-space can become unmanageable. Even here there
are already bug-hunting methodologies for directed
searching across many cycles.

One more example. Formal methods are naturally
designed to provide binary (pass/fail) responses rather
than statistical responses. They are not well-suited to
quality-of-service (QoS) verification, except at the fringes.
If you want to know whether your system can ever
deadlock, or will acknowledge a request within some time
bound, formal can help. But if you want to know whether
each requestor is handled fairly across different traffic
profiles, that is a problem for simulation and statistical
analysis, not a problem for formal.

Product and service solution providers
Apologies to any solution providers we may have missed;
we believe this list is fairly exhaustive.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 89

Synopsys (VC Formal)
Synopsys have built their formal product lines
entirely in-house, originally represented by their
Magellan product, later adding the Hector high-
level equivalence-checking tool. They subsequently
developed VC Formal as a completely new product,
which now has largely superseded Magellan.
Synopsys has a broad product and solutions
offering.

Cadence (Jasper Gold)
Cadence started in this space with BlackTie from
their Verplex acquisition, evolving into Incisive
Formal Verifier. Later they acquired Jasper Design
Automation. Jasper is generally credited with
raising the profile of formal verification, in part
through intensive customer support/services
model and in part by popularizing the app concept.
Cadence has a broad product and solutions
offering.

Mentor (Questa Formal)
Mentor became prominent in formal through their
acquisition of 0-In, which made them the leading
player in formal in the early days. They added
further formal capability in sequential equivalence
checking and C to RTL equivalence checking
through initial engagement with Calypto and later
acquisition. Over time they have rebranded this
solution as Questa Formal. Mentor has a broad
product and solutions offering.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 90

OneSpin (360 MV family)
OneSpin was (appropriately) spun out of Infineon
from an internal formal verification team. OneSpin
has a broad product and solutions offering.

Oski (services and verification IP)
Oski is primarily a formal verification services
company. They provide methodology setup
services, training, joint development, verification
kits and IP.

Others

Real Intent started with a strong focus in formal
verification. Market presence is now primarily
around their static verification product, while
formal capabilities are centered in the Ascent
family.
Averant provides formal verification software for
automatic design checks, sequential equivalency
checking, property-checking and timing constraints
checks
Atrenta (prior to acquisition by Synopsys) used
formal engines in SpyGlass in application-specific
uses, for example in CDC analysis and in timing
constraints checks.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 91

Adding formal to your flow

This section is written primarily for verification managers
and verification team leaders, to guide managing formal
verification in your organization, without having to be a
formal expert. We’re not going to spend any time on how
to setup and run tools; we are going to spend a little time
on how to plan for formal in the larger testplan, how to
understand and guide formal team members and how to
measure progress towards a signoff goal. That said, even
though this isn’t about tools, methodologies may vary
between vendors. Again, we’ll be guided by the Synopsys
VC Formal flow. Many of these concepts will carry over in
some manner to other flows but you should check with
your vendor for possible differences.

Organic skills growth
Despite the obvious advantages in adding formal
methodologies to a verification flow, simply jumping in as
you might with any other new capability (buy the tool,
train on the tool, start to apply on live designs) doesn’t
always work out very well, in part because formal requires
a mental switch from familiar simulation methods, also
because it may be viewed with suspicion by the rest of the
verification team. On the other hand, postponing adoption
until you are able to hire formal experts (who we’ll call
black-belts) generally becomes a decision not to make a
decision, and that can be an expensive mistake if you
already anticipate hard problems overwhelming
simulation-based flows.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 92

Formal black-belts are rare today and have little difficulty
finding jobs with big-name companies. If you want to build
formal capability in your team, you almost certainly need
to grow it internally and/or recruit whatever brown-belts
you can find. Experiences learned from companies who
have done this successfully suggest some common steps
towards adoption:

 Encouragement: Verification team members are
encouraged to learn more about formal verification
successes, applications and case studies through
conferences, EDA vendor meetings and personal
learning. Make a little white-space in those
crushing product schedules.

 Find and grow a champion: When one of those
people shows an interest in championing formal
methods, encourage and support them with a
small team, budget, schedule and supervision for
planning, discussion and feedback. This shouldn’t
be difficult - most engineers want to learn new

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 93

skills. Most important, even more than background
in formal, is willingness to take risks.

 Freedom to learn and develop a methodology:
Managers should provide plenty of flexibility for
learning and finding a path to demonstrate initial
successes. No-one gets hung up on “we already
showed that in simulation” or “we got there much
faster using simulation”. The goal is to learn and
develop a working flow, especially for the apps.
Experienced verification teams have been quite
open about this phase taking a year.

 Pick the best targets: We’ll say it again – start with
the Apps and AIPs. These are by far the easiest
path to develop expertise and show value. Over
time you can graduate to adding custom property-
checking, but there’s no need to rush to that point.

 Develop metrics: It is always important to develop
metrics for what is being proven, but early
flexibility must be allowed in these metrics – teams
need to grow into what they can prove and should
be allowed to start with simple metrics like “no
unresolved counter-examples”. Capture data on
effort (engineering, CPU hours, etc.) to help
develop ROI cases. Over time, push for harder
limits, e.g. around coverage.

 Hands-on big picture supervision: An important
point here is that the verification supervisor (you
perhaps) should not be completely hands-off. You
don’t necessarily have to run the tools or
understand the details, but you do need to keep
connecting metrics and success back to the big
picture – is this ultimately headed towards
production usefulness? At the same time, you can
become more familiar with the concepts of the

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 94

domain, so you can learn (at a high-level) how to
question approaches and provide guidance.

 Socializing in the design and verification teams: It
is also very important to socialize progress within
the larger verification team and to gather
constructive feedback. Fostering a collaborative
environment with the formal team ensures
everyone understands goals and benefits and helps
the formal folks optimize their focus. You definitely
don’t want mainstream verifiers looking at this as
low-value playtime. There is also real benefit in
including designers in these discussions, first
because formal verifiers may need their help in
handling inconclusive proofs. If designers are not
bought in, they will not provide adequate guidance
to get to formal signoff. Second, there is value in
promoting use of formal in RTL design; the formal
team can help designers use the tools to explore
behaviors in their RTL, ultimately helping them to
hand-off higher quality IP to verification.

 Socializing in the management chain: Successful
adoption efforts have also been careful to socialize
progress and goals further up the management
chain. You might be surprised – even CEOs can be
interested in what you are doing in formal,
especially where it helps add to their product
quality, safety or security pitches.

 Review, refine, advance: As in any good
engineering project management, the first round
should be followed by careful review and analysis:
what worked well, what didn’t, what should be
attempted next and how metrics should be
tightened to more effective levels. This review
should definitely involve the larger verification

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 95

team; the expectation should be that in the next
round the formal team will contribute materially to
verification closure. That said, be patient. Getting
to productivity may take a few false starts. Once
you start getting successes, that success will be
contagious.

First-cut targets for formal verification
The essential components of your verification process
don’t change when you add formal methods to the mix.
You build a verification plan, partitioned by blocks and
behaviors to be verified. Within that plan, you will
segregate the verification/coverage plan by appropriate
verification technologies:

 Goals that should be a good fit for formal

 Goals that will work well with constrained-random
(IPs, small subsystems)

 Goals that will work well with emulation
(regressions, SW/HW co-verification)

 Goals that will work well with FPGA prototyping
(regressions, SW/HW co-verification)

 Goals that must use simulation for other reasons
(eg AMS verification)

When looking at candidates for formal, consider these
cases:

 Any verification task for which an app already
exists, like top-level connectivity checking, register
checking and sequential equivalence checks around
clock gating. This is the easiest place to start; it
should be much easier than simulation and it will
be more complete. These cases should be no-
brainers.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 96

 Verification plan line-items for which assertion IP
are already available, for example the section(s) in
the verification planning covering protocol
compliance on interfaces such as the AMBA
interfaces (ACE, AXI, AHB, etc.) and common IO
standards (USB, aspects of PCIe, etc.)

 Any case where you know control complexity is
very high and difficult to cover solely in dynamic
testing (interdependent FSMs are generally good
candidates)

 Blocks which have historically been problem-prone
from release to release, exhibiting intermittent
hangs, deadlocks or other issues

And of course, remember good targets are often more
about the test than the block. Any given block may be best
served by leveraging multiple verification platforms, each
targeting different tests. The “challenging blocks” case is a
good example. Maybe these could benefit significantly
from some carefully-crafted formal proving in addition to
dynamic testing.

Detailed planning
Once targets are identified, then you start planning
detailed tests. While there is a concept of testbenches in
formal verification, this term is primarily associated with
the end-to-end verification concept we mentioned earlier
in the book. Since this is a fairly advanced usage, you
probably won’t consider it in early stages of formal
adoption. In app-based verification and your initial forays
into custom property verification, this testbench concept
is not so obviously relevant so we’ll stick to calling these
tests.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 97

Just as in detailed planning for simulation, you should have
a planning stage per block (viewing top also as a block). In
each case, you want to start with plain English descriptions
of checks you want to perform, for example “verify this
state machine always returns to IDLE after interrupt”. Get
these descriptions right first, because they’ll be easier to
understand and debate than the SVA translations they will
eventually become.

Once detailed planning for a test is complete, your formal
experts can start building an executable test. This won’t
look much like the UVM bundles you know (and maybe
love), running to thousands of lines of code. You should
expect a few Tcl files, SVA files and bind files, in total
running to a few hundreds of lines (lines of code similar to
targeted simulation setups). Again, you can get to
testbench concepts in formal verification, but that is
definitely for more advanced users.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 98

Monitoring progress
In simulation you ask team members to provide regular
updates on how many bugs they found and what coverage
they have reached. Metrics aren’t so very different in
formal verification. The team will find counter-examples
(CEXs/bugs), some in the design and some in their tests.
They’ll find these quickly at first, then more slowly as bugs
in the design and in tests are shaken out – this should
sound very familiar.

A nice surprise for verification managers is that formal
verification will start finding bugs very quickly; you don’t
have the typical simulation ramp-up phase of getting the
testbench working. You may also discover that formal will
uncover bugs in lots of unexpected places. While
simulation testing works deliberately through a plan,
formal races out to the fringes and can expose bugs before
simulation test; a very real plus for accelerating
verification closure.

In other cases, the formal team will report completed
proofs for some properties and inconclusive results for
others. This is where progress monitoring diverges from
simulation, getting into questions of whether a completed
proof is valid (related to constraints that have been set for
that proof) and what steps can be (or need to be) taken
next with inconclusive proofs.

The metrics you want to monitor, by verification plan line
item, are:

 How many properties have been developed
(asserts, assumes, covers)

 How many failures and covers have been found,
and trends on these

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 99

 How many completed proofs and trend (but first
read the next section)

 How many inconclusive proofs and trend (but first
read the section on bounded proofs)

Tracking progress on developed assertion,

constraint and cover properties

Tracking progress on assertion proof-status

Under-constraining and over-constraining
There’s a Goldilocks aspect to constraints. You don’t want
too few, you don’t want too many, you want just the right

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 100

constraints. Under-constraining can cause formal engines
to explore parts of the state space which are not
meaningful for any practical use of the DUT (or perhaps for
the usage you intend). That can have bad consequences.
Analysis may report spurious counter-examples (CEXs),
which are failures in ways that are unrealistic. Or analysis
may simply fail, running out of time or memory. Either way
this takes engineer and machine time to analyze and to
debug while not really advancing coverage.

The smallest area is an over-constrained

state space, missing some bugs
The next larger area is the ideal –

a reachable and legal space

Good understanding of the modes of operation of the DUT
or protocols or handshaking used by the blocks is the best
way to avoid this problem. If you’re finding bogus CEXs or
a run won’t converge, perhaps you need to add
constraints – after discussion with the designer or
architect. Where appropriate, one suggestion is to use pre-
built Assertion IP (AIP) which have built-in constraints. This

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 101

will help avoid spurious failures and get you up and
running more quickly.

On the other hand, you can over-constrain, creating
conditions which prevent exercise of realistic behaviors.
There are some legitimate reasons to over-constrain
during the course of setup or bug-hunting, but not in
signoff. In the VC Formal flow, you can check for this
possibility by running over-constraint analysis for each
property. You can also check using reachability analysis for
cover properties you know you should be able to reach; if
you can’t reach them, an over-constraint may be to blame.

Bounded proofs (inconclusives)
As we have (no doubt tediously) repeated again and again,
inconclusive results are a fact of life in formal verification.
Remember that verification is hard; there are no silver
bullet methods to automatically verify everything. Formal
methods provide a way to exhaustively verify properties
out to some defined clock-cycle depth (proof-depth).
Which means that it is possible for such a checker to hit
that bound without finding a counter-example and
without completing a proof that the check passes.

In earlier times, inconclusives were considered a real
barrier to formal adoption – if a result was inconclusive,
surely that meant it wasn’t useful? Over time a more
constructive and actionable viewpoint emerged70, starting
with a view that these were bounded proofs rather than

70 See for example “Signoff with Bounded Formal
verification proofs”, best paper award in DVCon 2014:
http://events.dvcon.org/events/proceedings.aspx?id=163-
-2

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://events.dvcon.org/events/proceedings.aspx?id=163--2
http://events.dvcon.org/events/proceedings.aspx?id=163--2

 102

inconclusives. It’s now much more common to view a
bounded proof as fully acceptable for signoff, as long as
the bound is well justified71

This is understandable. The tool has exhaustively proved
the absence of a counter-example out to the proof-depth;
that is already valuable information. It is very likely that at
some increased proof-depth, the proof would be
conclusive. In some cases, it is quite possible that this
proof at this depth is already sufficient or would certainly
be sufficient if extended out to a slightly deeper search.

Exploring limits on a bounded proof

Of course, you can’t just hope this is true; you need to
know if the proof you have is practically sufficient or if you
have to work harder. A starting point is to look at a
bounded coverage analysis, ideally also providing an
incremental cover analysis. Coverage as a percentage of
the property cone of influence is a good starting indicator.
If this isn’t high, look at the delta in coverage over the last

71 Formal Verification: An Essential Toolkit for Modern VLSI
Design

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://books.google.com/books?id=vN-cBAAAQBAJ&pg=PA294&lpg=PA294&dq=An+Essential+Toolkit+for+Modern+VLSI+Design+bounded+proof&source=bl&ots=YXcJ89WeZf&sig=AxlnL5xPr8fCqtth4ya8RWclq9w&hl=en&sa=X&ved=0ahUKEwiTq4jItcTZAhXlhlQKHXP4DtgQ6AEIOTAC#v=onepage&q=An%20Essential%20Toolkit%20for%20Modern%20VLSI%20Design%20bounded%20proof&f=false
https://books.google.com/books?id=vN-cBAAAQBAJ&pg=PA294&lpg=PA294&dq=An+Essential+Toolkit+for+Modern+VLSI+Design+bounded+proof&source=bl&ots=YXcJ89WeZf&sig=AxlnL5xPr8fCqtth4ya8RWclq9w&hl=en&sa=X&ved=0ahUKEwiTq4jItcTZAhXlhlQKHXP4DtgQ6AEIOTAC#v=onepage&q=An%20Essential%20Toolkit%20for%20Modern%20VLSI%20Design%20bounded%20proof&f=false

 103

two steps. A significant increase suggests that it may be
worth trying again with an increased proof depth.

Another commonly-used technique is to create cover
properties for “interesting” corner cases. Finding what
proof-depth is required to hit these properties can be a
good indicator of a minimum required depth72.

Whenever you are exploring what depth may work,
eventually you should have a discussion with the designer
to agree on the “design/property radius” (the depth) they
would consider acceptable. If the bound is not practical for
formal proving, then you have to consider abstractions to
reduce the complexity of the problem space; that’s the
subject of the next section.

Manually-guided proofs
It is quite possible that in some cases, an attempt to prove
a property on a design will fail to complete because a full
proof would exceed time or memory limits. We talked
earlier about various methods to manage these cases –
abstractions, decomposing a problem with assume-
guarantee properties at interfaces between the sub-
problems, and case-splitting with constraints.

You should expect that your team will need to resort to
this kind of guidance in more than a few cases. But you’ll

72 If you want to test your skill, you can try estimating the
maximum number of cycles required to prove an assertion
- with knowledgeable design help, of course. You may find
in this exercise that you are missing an important
constraint or two – which might further help in bringing
proofs to closure.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 104

be happy to hear that formal tools now go a long way
towards simplifying this task. For example, tools can often
auto-detect candidates for abstraction, such as datapath
elements (though replacing logic with an inferred
abstraction typically requires engineer approval).
Decomposition and managing the assume-guarantee flow
is also commonly supported by extensive automation in
apps, a major plus in managing problem size challenges.
Still, even with these advances, closing on some proofs will
continue to require hands-on effort and discussion with
design and other verification teams.

Getting to formal signoff73
Ultimately you and your formal team should assume
responsibility for signing-off meaningful components of
the verification plan. To do that, you first need to measure
progress against a set of goals. We suggest the following
table as a starting point, though you can certainly adapt
(and evolve) this to best suit your needs. These metrics
range from simple but relatively low confidence to more
complex with increasing degrees of confidence towards
signoff quality. Formal tools should help your team gather
these statistics. And of course, you will want to trend
these statistics during the evolution of projects.

73 Here we are not talking about formally signing off a
complete block or IP. That is another interesting topic, but
beyond the scope of this book.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 105

Metric Degree of
confidence
provided

Current project status

Example
target

Actual

Property
density

Low 1 assertion /
20 lines of
code

COI/Lines
covered by
assertions

Medium 90%

Logic/lines
covered by
formal core

High 85%

% (mutated)
faults covered
by assertions

Highest 95%

Metrics to use in assessing progress to signoff

In common with simulation, formal tools typically support
metrics based on (RTL) line, condition/branch, signal
toggle and FSM state coverage. You can select any one of
these metrics (in the table we use line-based metrics as an
example) to give you a measure of completeness of
coverage when performing analysis. The value of these
metrics is to provide a much more detailed and functional
assessment of assertion coverage than you got in early
assertion-density analysis and is a much more concrete
measure of verification progress than the simpler
assertion-density metrics.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 106

A formal core is usually smaller than the cone of influence

A more precise measure of formal coverage is based on
formal cores (also known as proof cores). A formal core is
the portion of logic required to prove a property and is
generally a subset of the cone of influence for that
property.

All of these coverage metrics provide a way to cross-check
between what you (or the designer) believe should be
touched in an adequate proof versus what you find the
tool tells you was really touched. If these correspond, your
confidence goes up. If not, perhaps the test needs to be
further refined with more assertions or cover points, or
perhaps some constraints need to be relaxed.

Another very useful cross-check applies RTL mutations to
insert bugs into the DUT (this is provided in the VC Formal
FTA app). You would expect that, under a mutation, at
least some assertions should fail. If they don’t, this
suggests that assertion coverage should be improved, or
perhaps that proofs are over-constrained. By running
through a number of mutation runs and correcting any
exposed coverage problems, signoff quality should
become even more secure, delivering the confidence you
ultimately want in those proofs.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 107

How you ultimately choose to define signoff based on
these metrics should not, conceptually, be very different
from how you do this for dynamic signoff. We’re just more
accustomed to the process for dynamic verification. First
you need metrics – we’ve already discussed these. You
want to know that all the assertions you are able to prove
have been proven with no open counter-examples, and
that cases which resist formal proving are passed back to
the dynamic team for a different angle of attack.

You want to know that for each of the proven cases you
have good coverage, especially for the strictest levels of
checking (formal core) and that no proofs were over-
constrained. You should have similar expectations for
bounded proofs, with the added requirement that each
bound is validated by the designer and/or reachability
tests for appropriate cover points. And finally, you will
trend metrics to determine where no further progress is
being made in formal checking – that you have done
enough within the bounds of the tasks you assigned to
formal.

Again, not so very different from how we approach signoff
in dynamic verification. Of course, you will want to build
experience and confidence, in order to decide where you
want to set the bar. When you get there, formal signoff
should be just as certain as dynamic signoff.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 108

Looking forward
Now you understand the basics of formal verification,
where can this technology take you next? There are many
ways of looking at what might come next in any
technology, from logical next steps to deeply technical
advances and even wildly-speculative potential. We
decided to focus on areas that are probably more
immediately useful to our audience, starting with
applications that go beyond those discussed earlier to
address very topical concerns for current SoC designs, and
then to look at near-term technical advances aiming to
further enhance the usability and reach of formal
verification.

Application domains
Many of the following applications are already available in
some form, though they continue to advance in
capabilities. Each builds on an application-aware
understanding of a problem to construct appropriate
assertions, limit the scope of checking to increase the
likelihood of closure and provide application-aware debug.
We’ll start with a couple of widely-used applications then
get into some emerging or more advanced use-models.

Functional clock domain crossing analysis
SoC design and CDC analysis go hand-in-hand. Any device
supporting (at minimum) multiple peripheral interfaces
must support multiple clock domains, implying lots of
clock domain crossings and need for care in managing
metastable states and lost data at those crossings. Many
design or verification teams look only at structural analysis
of these crossings; that analysis is very important but can
be further enhanced with functionally-aware analysis.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 109

When multiple paths between two clock domains converge

they must be one-hot encoded to guarantee correct
operation

One example check considers the correctness of data
transmission between domains. Conventional
synchronization deals with metastability at crossings,
ensuring that a register at a crossing doesn’t lockup under
certain conditions. However, this alone doesn’t ensure
that transitions may not be dropped or shifted in a
crossing (for single bits) or may not become temporarily
invalid (for vector signals).

Handling cases like this requires careful design, using
handshakes or grey-coding or one-hot coding for example;
formal verification is a great way to fully check that this
crossing-management logic has been implemented
correctly. The more advanced CDC tools will offer these
kinds of checks alongside structural checks.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 110

Functional power intent verification
Mobile and green technology demands, costs and
reliability have all driven power to become a high-priority
in delivering competitive designs. This led to creation of
the UPF standard for defining power intent to drive
power-aware implementation. We quickly discovered that
these intent descriptions for SoC designs can be extremely
complex, which in turn prompted new verification
methodologies to validate the correctness of the intent.

Some of this intent can be verified statically. When
crossing from one voltage domain to another, power
intent should require a level-shifter. Or an input to one
block from another block in a power-switchable domain
should have power intent specifying isolation logic. These
needs are not use-case dependent so can be checked
statically.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 111

Formally verifying isolation controls based on power state

But think a little more about the isolation case – under
what circumstances should isolation be enabled? This does
depend on the use-case, so cannot be verified statically.
Commonly verification teams further enhance their
simulation/emulation testbenches to check these cases,
which provides some level of increased confidence in
coverage. But there’s an obvious limitation in that
approach which goes back to the reason formal methods
first became popular. Creating, running and debugging a
huge number of test cases to verify the correct behavior of
the design without power considerations is already a huge
task. Now imagine having to repeat that analysis across
each of the possible power configurations for a design.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 112

Talk about combinational explosion - this would be
completely impractical.

Formal verification apps can help here. These look at
power-state switching expressions to determine if there
may be conflicts, providing you with confidence that, at
least to this extent, all possible behaviors have been
proven correct.

Architectural formal verification
Some problems cry out for formal verification because the
number of cases that have to be considered is so high. But
the system is far too big to fit in a formal proof and there
are no obvious candidates to abstract to reduce the proof
size to a reasonable level. The next logical step in these
cases is to abstract almost everything! One good example
can be found in cache-coherence checking where proofs
have to span between multiple compute cores and their
respective caches.

Multi-core architectures have become popular in SoCs for
many reasons. These bring with them a well-known and
still-challenging problem. To optimize performance, cores
depend on local cache memories which provide faster
local access to data than would be possible through main
memory, while still syncing with main memory as needed.

However, those cores still need to assume that they are
dealing with one logical memory model – the main
memory. Cache memories are a hardware trick to speed
up access, but they cannot break that logical assumption.
This gets tricky when two or more cores are working
through their respective caches with the same memory
address, say address X. If core A updates the value at

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 113

address X in its cache memory, then core B reads the value
at address X in its cache memory, the value core B reads
will be wrong. It ought to get the updated value but is
unaware of the core A update so instead reads the
outdated value in its own cache.

Cache-coherent architectures have clever ways to deal
with these cases, which essentially come down to
snooping on or otherwise being aware of addresses that
have been changed by other cores. Any attempt to read
such an address forces an update either locally or through
main memory to ensure that all cores continue to see a
consistent (coherent) logical view of the memory. As you
might imagine, making this work is not simple when still
trying to preserve most of the performance advantages of
local caches. Proving correctness of operation in all cases,
considering all cores and caches, is a complex control
problem which is perfect for formal except for the fact
that the whole system is too big.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 114

(Simplified) state diagram for cache coherence behavior

In an architectural formal analysis, you replace each of the
endpoint IPs with a manually constructed FSM, modeling
just those control behaviors that you consider important
to the proof. There are generally three steps to this
process: build each FSM starting from the architectural
specification of the associated block (because it is more
rigorous to check against what the architect wanted,
rather than what the RTL team built). Then you run the
formal proof on the abstracted system. Finally, you will
validate each abstracted FSM against the full RTL for the
corresponding block. This is driven by the assertions and
constraints you added to the abstracted model, now used

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 115

as input to the RTL model consistency check. This last step
can be accomplished though simulation or formal
verification methods.

Security verification
Security is a moving target; threats continue to evolve;
therefore, defenses must also evolve. Unfortunately,
security is an area where even 99% coverage isn’t good
enough. Hacks rely especially on rare and obscure
weaknesses, so verification has to be as close to perfect as
possible. Which means that formal methods are the only
acceptable way to signoff.

Checking for data leakage or data integrity compromise

between secure and non-secure domains

The scope of what might possibly need to be checked can
be rather large, including defenses against embedded
hardware Trojans74 and side-channel attacks75. However,
the great majority of commercial activity is centered on
attacks where software in an insecure domain tries to get
access to data in a secure domain, by exploiting design or
architecture weaknesses. As we have seen recently with
the Meltdown and Spectre bugs76, hardware is not

74 https://en.wikipedia.org/wiki/Hardware_Trojan
75 https://en.wikipedia.org/wiki/Side-channel_attack
76 https://googleprojectzero.blogspot.com/

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://en.wikipedia.org/wiki/Hardware_Trojan
https://en.wikipedia.org/wiki/Side-channel_attack
https://googleprojectzero.blogspot.com/

 116

immune from security problems, despite all the advanced
techniques that are already being used to limit attacks.

Given the range of security techniques that can be applied,
and the intentionally limited scope of secure areas in many
cases (to reduce the attack surface), this domain is a
natural for app support. An app in this area should, for
example, provide point-to-point checks to verify that data
cannot leak from critical secure domains (such as
cryptographic key-stores) to non-secure domains. Apps
along these lines are already available; you should expect
to see continuing development and research77 in this area
based on growing concern and awareness at all levels of
society.

Safety verification
Safety verification, particularly functional safety
verification, is another domain which is very hot, especially
around automotive applications, but here the role of
formal methods is a little different. A very important
aspect of safety verification is in proving that static or
transient faults in certain critical parts of the design will
either not affect safe operation or will be appropriately
mitigated by safety mechanisms designed to manage such
failures.

77 https://people.csail.mit.edu/nickolai/papers/chong-nsf-
sfm.pdf

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://people.csail.mit.edu/nickolai/papers/chong-nsf-sfm.pdf
https://people.csail.mit.edu/nickolai/papers/chong-nsf-sfm.pdf

 117

Using formal to filter fault that should be verified in safety

checks

A common technique to perform this testing is to use
mechanisms to inject faults, then determine if they will be
detected at critical outputs. This works very well but can
become expensive in simulation when faulting every node
that might be critical, even when using clever incremental
analysis techniques. Formal methods can be used to filter
faults before simulation or after simulation, finding cases
that cannot be observed or controlled, which should
greatly reduce analysis and debug time78 79.

Datapath Validation
We mentioned earlier that standard formal verification
methods struggle with datapath components. A particular

78 Automotive Safety and Security in a Verification
Continuum Context
79 How Formal Reduces Fault Analysis for ISO 26262

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://www.testandverification.com/wp-content/uploads/2017/Verification_Futures/Jean_Marc_Forey_Synopsys.pdf
http://www.testandverification.com/wp-content/uploads/2017/Verification_Futures/Jean_Marc_Forey_Synopsys.pdf
https://www.mentor.com/products/fv/resources/overview/how-formal-reduces-fault-analysis-for-iso-26262-82758134-85e7-4753-92f4-6f90e36e7d96

 118

problem in arithmetic functions is the need to do bit-level
analysis on word-level values, which quickly leads to
explosion in the corresponding state-graph80. But we use
datapath functions everywhere – in CPUs, GPUs, DSPs,
cryptography, neural nets, GPS location and many other
places (commonly these functions are add, subtract,
multiply, divide, square-root on integer or floating-point
values). Since all of these functions have well-defined
specifications, they should be a natural fit for formal. In
fact, the bigger companies are already using advanced
formal methods such as theorem-proving to verify these
designs.

Some of these methods are starting to appear in
commercial tools, although they are not typically as well-
known as the more mainstream formal methods. One
example is the Synopsys Hector81 product, optimized to
validate high-level properties / equivalence for functions
like datapath operators. You should expect solutions like
this to play a more prominent role in formal verification
platforms in the near future.

80 Formal Hardware Verification: Methods and Systems in
Comparison
81 Formal Verification and Validation of High-Level
Optimizations of Arithmetic Datapath Blocks

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://books.google.com/books?id=d2KfkP6oeYYC&pg=PA79&lpg=PA79&dq=formal+complexity+datapath&source=bl&ots=uh7A4pDat9&sig=4hIJG1nGqvKyeghMICYjoQRrWJU&hl=en&sa=X&ved=0ahUKEwiruMDyz8LZAhUM0GMKHTZEAckQ6AEIODAD#v=onepage&q=formal%20complexity%20datapath&f=false
https://books.google.com/books?id=d2KfkP6oeYYC&pg=PA79&lpg=PA79&dq=formal+complexity+datapath&source=bl&ots=uh7A4pDat9&sig=4hIJG1nGqvKyeghMICYjoQRrWJU&hl=en&sa=X&ved=0ahUKEwiruMDyz8LZAhUM0GMKHTZEAckQ6AEIODAD#v=onepage&q=formal%20complexity%20datapath&f=false
https://www.academia.edu/26351213/Formal_Verification_and_Validation_of_High-Level_Optimizations_of_Arithmetic_Datapath_Blocks
https://www.academia.edu/26351213/Formal_Verification_and_Validation_of_High-Level_Optimizations_of_Arithmetic_Datapath_Blocks

 119

Datapath verification

Technology advances

Formal tools are always advancing – improving
performance and heuristics to extend the size of problems
that can be handled, improving parallelism to more
effectively leverage scalable analysis in the cloud (a
popular advance these days in many EDA tools) and adding
further improvements in usability. We’ll mention here a
few examples of special interest.

Machine learning
A major area of development is in use of machine learning
(ML) to simplify the use of formal methods. ML is hot in
almost every domain today because it can capture and
apply human skills not easily captured in algorithms (such
as recognition, understanding and decision-making based
on incomplete data) which are difficult or impractical for

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 120

humans to reasonably process. One example presented in
a FMCAD Tutorial in 201682 simplifies debug through an
intelligent interface.

A machine-learning bot conversation during formal debug

82
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD16/
slides/tutorial1.pdf

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD16/slides/tutorial1.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD16/slides/tutorial1.pdf

 121

Modern debuggers for SoC verification are immensely
capable but they depend on a wide range of modes and
options to offer the features needed by specialists in each
verification domain. Capabilities to support specific debug
task are in the tool but learning how to use those features
effectively can take a while. There is another option – in
effect an expert chatbot supporting natural language
processing (NLP). You can tell the bot in natural language
what you want to do. It can then analyze/search and
suggest a next step (again in natural language).

This conversation can proceed through multiple steps
through a debug cycle until you get to a desired goal;
possibly from finding a counter-example, to finding the
problem was over-constrained, to correcting that problem
and re-running, to finding a different counter-example, to
finding a root-cause problem. You can still look at
waveforms, but you skip all the “set this mode, set this
option, pick this menu, …” stuff. This doesn’t just make
debugging easier, it also accelerates time to closure.

Advances in tools and methods
This is an area where vendors are naturally unwilling to
share details, but we are free to speculate based on
directions in academia and obvious needs around present
methods.

There are multiple directions that are being taken in proof
engines. One particularly interesting example is in use of
induction-based methods. Induction is a mathematical
technique of great antiquity, used to prove, in a finite
number of steps, statements which may run through an
infinite range of possibilities.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 122

What makes this kind of proof appealing is that, at least
where applicable, it has the potential to provide
unbounded proofs. One obvious application is in proving
the correctness of implementations of datapath elements
(a multiplier for example).

Example of a simple induction

Induction also has relevance to abstraction83, another area
where tools continue to advance, particularly when it
comes to automated abstraction. Ideally, you’d like a
formal tool to figure out all the structures in your design
which the tool knows will cause a proof to blow up,
determine an appropriate abstraction for each of these
functions and automatically (or in some guided manner)
generate the command to replace those functions with the
corresponding abstractions.

83 http://prod.sandia.gov/techlib/access-
control.cgi/2014/1420533.pdf

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

http://prod.sandia.gov/techlib/access-control.cgi/2014/1420533.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2014/1420533.pdf

 123

But designers have unbounded ingenuity in how they build
functions, so automatic detection isn’t easy, nor is
automatic generation of an abstraction which will
faithfully model the behavior of that function. So tool
developers continue to advance the bounds of what they
can detect and replace automatically, or if needed with a
little guidance from a verification engineer.

What we discussed in this section has been only a sampler
of R&D directions in formal verification. You may want to
check out our suggested reading on Deeper Background
for more on this topic.

The outlook for formal verification
There was a time when formal verification was looked on
as a niche technology for specialized problems, but that
view is now rare. Large systems and semiconductor
companies now look on formal as a first-class component
in any credible verification strategy, not as a way to
replace other verification technologies but as an essential
complement to those technologies. EDA companies have
recognized this trend and are investing the same level of
attention in their formal products that they invest in
simulation-based methods. This is clearly signaled in the
proliferation of easy-to-use apps and continuing expansion
in problem sizes that can be addressed, along with very
active research in directions like ML-assisted debug.

Much of what drives these advances is making formal
verification more accessible to users who are not expert in
formal methods, people like you who are expert in many
other domains, who have a job to do, and are quite willing
to embrace formal as a tool, but not necessarily as a
career choice.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 124

At a company level, pressure to use formal methods will
always increase. As designs become more complex, more
multi-core and more security- and safety-sensitive, formal
proofs are often the only way to get to satisfactory
closure. Greatly improved usability has effectively
eliminated the barriers to adoption, since you can now
ramp up formal skills along a gentle slope if needed.

And on a personal level, there is no question that adding
proven skills in formal verification will greatly enhance
your marketability84. Product teams are now looking for
verification engineers well-versed in all or at least most
verification techniques. Adding formal skills to your
resume is a pretty obvious plus, especially since you no
longer need an advanced degree to get there!

84 If you doubt this, check out searches for formal
verification engineers at companies like Google, Facebook
and Apple

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 125

If you want to go deeper
There are many excellent and more detailed sources of
information on formal verification. We have selected just a
few we think you might want to follow, either based on
continuing our theme of a high-level overview without
getting too technical or, in the deeper background
selection, information on the beginnings of this field,
current state and where it is headed.

More detail for beginners

Erik Seligman: Formal Verification: An Essential
Toolkit for Modern VLSI Design
Douglas Perry and Harry Foster: Applied Formal
Verification: For Digital Circuit Design
Ashish Darbari and Iain Singleton: Industrial
Strength Formal Using Abstractions
And, of course, training from the vendors who
supply (or may, if you buy) your formal tools

Deeper background

Ed Clarke: Model Checking (MIT Press)
Rolf Dreschler: Formal System Verification: State-of
the-Art and Future Trends
Ken McMillan: Symbolic Model Checking
Malay Ganai: SAT-Based Scalable Formal
Verification Solutions

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

https://www.amazon.com/Formal-Verification-Essential-Toolkit-Modern/dp/0128007273/ref=sr_1_1?ie=UTF8&qid=1510251265&sr=8-1&keywords=formal+verification&dpID=51JvEynJagL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch
https://www.amazon.com/Formal-Verification-Essential-Toolkit-Modern/dp/0128007273/ref=sr_1_1?ie=UTF8&qid=1510251265&sr=8-1&keywords=formal+verification&dpID=51JvEynJagL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch
https://www.amazon.com/Applied-Formal-Verification-Electronic-Engineering/dp/007144372X/ref=sr_1_1?s=books&ie=UTF8&qid=1518995428&sr=1-1&keywords=harry+foster+formal
https://www.amazon.com/Applied-Formal-Verification-Electronic-Engineering/dp/007144372X/ref=sr_1_1?s=books&ie=UTF8&qid=1518995428&sr=1-1&keywords=harry+foster+formal
https://arxiv.org/abs/1606.02347
https://arxiv.org/abs/1606.02347
https://www.amazon.com/Model-Checking-Press-Edmund-Clarke/dp/0262032708/ref=pd_sbs_14_1?_encoding=UTF8&pd_rd_i=0262032708&pd_rd_r=9MB8A4QK612SP1REB3D0&pd_rd_w=c5K6c&pd_rd_wg=Tvxus&psc=1&refRID=9MB8A4QK612SP1REB3D0
https://www.amazon.com/Formal-System-Verification-State-Art/dp/3319576836/ref=sr_1_2?ie=UTF8&qid=1510251265&sr=8-2&keywords=formal+verification&dpID=41P4R1Y56nL&preST=_SY291_BO1,204,203,200_QL40_&dpSrc=srch
https://www.amazon.com/Formal-System-Verification-State-Art/dp/3319576836/ref=sr_1_2?ie=UTF8&qid=1510251265&sr=8-2&keywords=formal+verification&dpID=41P4R1Y56nL&preST=_SY291_BO1,204,203,200_QL40_&dpSrc=srch
https://www.amazon.com/Symbolic-Model-Checking-Kenneth-McMillan/dp/0792393805/ref=sr_1_1?s=books&ie=UTF8&qid=1518995339&sr=1-1&keywords=kenneth+mcmillan
https://www.amazon.com/SAT-Based-Scalable-Verification-Solutions-Integrated/dp/0387691669/ref=sr_1_1?s=books&ie=UTF8&qid=1518995628&sr=1-1&keywords=malay+ganai+formal
https://www.amazon.com/SAT-Based-Scalable-Verification-Solutions-Integrated/dp/0387691669/ref=sr_1_1?s=books&ie=UTF8&qid=1518995628&sr=1-1&keywords=malay+ganai+formal

 126

Glossary of formal terms
Like all of us, formal experts love their jargon and don’t
always understand that the rest of us may be confused by
their specialized language. Fortunately, there aren’t too
many of these special terms:

Term Informal definition

App A pre-packaged application to make
user involvement in checking some
specific characteristic of a design
much simpler than would be required
through custom property checking

Assert A requirement on logical behavior
which can be checked in verification

Assume A SystemVerilog constraint – see
Constraint

Assume-
guarantee

A way to simplify proof problems is to
break the circuit into smaller pieces,
say an upstream piece of logic and a
downstream piece. You first constrain
the inputs to the downstream piece
(assume a certain behavior) and
prove that piece functions as
expected, then you use those
assumptions as assertions on the
outputs of the upstream piece and
prove (guarantee) that those
assumptions used in the downstream
proof are valid.

BDD Binary decision diagrams – a data-
structure used in certain proof-

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 127

engines such as for Symbolic Model
Checking.

BMC Bounded model checking – a type of
formal engine which checks a
property against the circuit in a
breadth-first approach until either a
counter-example is found, or a
specified depth is reached.

Bounded proof A case where no proof or counter-
examples were found out to a
specified proof depth, where
checking stopped. The proof is
bounded because there is no
guarantee that counter-examples do
not exist beyond that depth.

CEX See counter-example

Constraint A property which limits behavior of
some set of signals in the circuit
during proving. This could be as
simple as fixing a signal value but can
be as complex as a checking property.
One example would be to define a
one-hot constraint on a set of inputs.

Counter-
example

An example of an execution path
(generally presented as waveforms)
which demonstrates that the
property that you want to prove is
clearly false.

Inconclusive The result of a formal proof is
inconclusive, if the proof cannot be

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 128

completed or counter-example
cannot be found within the specified
time or memory bound by a given
formal method, and therefore you
can’t conclude the correctness or
incorrectness of a property. In the
case of BMCs, the proof may
terminate at a finite depth without
finding a failure.

Model-
checking

A formal technique which determines
if a defined property or specification
holds true for a given design or
model.

Proof depth One definition is the cycle bound
reached on an inconclusive property
result.

SAT A type of formal engine which looks
for a set of variable assignments
which will satisfy the disproof of an
assertion. This approach can be very
fast since it isn’t attempting to
globally prove the truth of an
assertion. It will stop as soon as a
counter-example is found, if one
exists (within the assigned proof
depth).

Sequential
depth

The number of clock-cycles required
from the start of a proof to reach a
certain goal – which might be testing
an assertion or reaching a coverage
property for example.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 129

State space The graph of all possible states and
transitions in a design.

State space
diameter (or

radius)

The minimum number of cycles
required to reach the farthest
reachable state from the starting
state.

SVA SystemVerilog Assertions – the
standard format used to express
properties, assertions and
constraints.

Vacuous proof When testing a proposition “X implies
Y”, if X is false then, by a peculiarity of
logic, the proposition is true. Of
course, this is meaningless, which is
why it is called vacuous. In formal
verification this can happen with “if X
then Y” assertions. If X is never
exercised in proving (perhaps
because of an over-constraint), the
assertion will be reported as
vacuously proved.

Witness In the case of a property that holds
true, a witness is one example of a
path which demonstrates that the
property is true.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 130

Acknowledgements

While three of us are listed as authors, this book would
not have been possible without the hard work, dedication
and support of a much larger team.

Firstly, we owe a huge debt of gratitude to our Synopsys
marketing leads (Sonia Montgomery and Kiran Vittal) who
supported us in all aspects of the book. They were the
engines that kept us moving forward over many months:
keeping us on track, taking care of graphics, searching for
background material and arranging meetings. They
simplified the process tremendously, allowing us to simply
focus on the content.

Special thanks are due to Jim Greene from the Samsung
Austin Research Center, for finding time in his busy
schedule to share with us his experience in formal
verification through a compelling foreword. His experience
and real-world application provide an encouraging
example of how far it is possible to take formal verification
with the right planning, investment and management
alignment.

We want to thank our Synopsys Verification leaders,
Michael Sanie and Mo Movahed, who had the vision and
faith in us to put together this project. Without their
funding and support this book would not exist. We also
leaned heavily on the knowledge and experience of the VC
Formal R&D and AE teams. Their insights added practical
wisdom and background to this work.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 131

We would especially like to thank our main Synopsys
reviewers Pratik Mahajan and Ravindra Aneja for giving us
valuable feedback on very short notice (sorry guys).

Finally, thanks are due to our families for their infinite
patience in supporting us over the many long hours,
evenings and weekends we consumed instead of spending
time with them.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 132

About the Authors

Bernard Murphy – SemiWiki
Bernard Murphy is a part-time
blogger and author with SemiWiki,
serves on the board of Mother
Lode Wildlife Care in the California
Gold Country and admits that he’s
never had so much fun. Earlier, he
held down a real job as CTO at
Atrenta. Earlier still, he held
technical contributor,
management, sales and marketing
roles variously at Cadence, National Semiconductor,
Fairchild and Harris Semiconductor. In his re-invention as a
writer, Bernard has published over 300 blogs between
SemiWiki and EETimes and has also released the book
“SoC Emulation: Bursting into its prime”, co-authored with
Mentor Graphics. He received his BA in Physics and D. Phil
in Nuclear Physics from the University of Oxford.

Manish Pandey – Synopsys
Manish Pandey is a Fellow at
Synopsys, and an Adjunct
Professor at Carnegie Mellon
University. He completed his
PhD in Computer Science from
Carnegie Mellon University and
a B. Tech. in Computer Science
from the Indian Institute of
Technology Kharagpur. He currently leads the R&D teams
for formal and static technologies, and machine learning at
Synopsys. He previously led the development of several

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

 133

static and formal verification technologies at Verplex and
Cadence which are in widespread use in the industry.
Manish has been the recipient of the IEEE Transaction in
CAD Outstanding Young author award and holds over two
dozen patents and refereed publications.

Sean Safarpour – Synopsys
Sean Safarpour is the Director of
Application Engineering at
Synopsys, where his team of
specialists support the
development and deployment of
products such as VC Formal,
Hector and Assertion IPs. He
works closely with customers and
R&D to solve their current
verification challenges as well as
to define and realize the next
generation of formal applications. Prior to Synopsys, Sean
was Director of R&D at Atrenta focused on new
technology, and VP of Engineering and CTO at Vennsa
Technologies, a start-up focused on automated root-cause
analysis using formal techniques. Sean received his PhD
from the University of Toronto where he completed his
thesis entitled “Formal Methods in Automated Design
Debugging”.

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y

	04112018 FormalBook Frontmatter for ebook_Edition
	FormalVerifBookCover_eBookVersion
	Finding Your Way Through Formal Verification-final 030718

