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Foreword 

I first became aware of formal verification methods 
back in the 90’s when I would hear presentations at 
DAC and talk to others who were curious about this 
area. It looked very interesting, but it always sounded 
like a future. The problems used in examples were 
cool, but they were always very small, way too small to 
face real verification needs, even back then. 
Mainstream simulation support continued to get 
better and (more or less) kept up with Moore’s law. 
Working in startups back then, where we had very 
constrained budgets, formal sounded neat but 
nowhere near relevant to our day-to-day tasks. Still, I 
stayed in touch with progress as time allowed. 

Around the mid 2000’s I joined a large microprocessor 
company, heading a big verification team facing the 
usual deluge of challenging verification problems. We 
had the capacity and budget to experiment with formal 
and had some success. But progress was in fits and 
starts. We worked with different vendors and tried 
different solutions. Some broke, some we were able to 
make work in some fashion. Still, nothing came out of 
this that looked like it would quickly go mainstream in 
our verification flow. Formal was still a side-project. 

The big turning point came when we had to figure out 
how to verify a floating-point unit. We did a lot of 
interesting work between theorem-proving and 
property-proving and had great results, which also got 
other people interested in what could be possible. 
Progress, but back then formal tool capacities were 
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 6 

limited, we could usefully apply them on some blocks, 
but these were still relatively small. 

More recently at Samsung, I had to build a verification 
team from scratch. We faced crazy schedules (who 
doesn’t in verification), we were looking for ways to 
accelerate bug convergence and formal was suggested. 
I was good with this idea given my experience, so we 
started building unit and system testbenches. It took a 
while to start finding useful problems (this is 
something to remember when you are building up 
formal expertise – you have to be patient). We found a 
few bugs this way, but payback was still not very 
exciting. 

Once again, a breakthrough came when we found, on 
the bench, a problem which would occur only 
intermittently on one machine every 17 days. We had 
to brainstorm hard about why this might happen and 
what we eventually concluded seemed impossible. We 
had a formal setup already available, so we checked it 
out. Within about 40 minutes we proved that what we 
thought was impossible was actually possible. This was 
a really deep bug, about 85 cycles deep. Based on this 
diagnosis, we worked on confirming it in simulation. 
Which we were able to do, but this took multiple 
teams working full-time for 2 weeks to reproduce what 
formal found in 40 minutes, because it was so 
complicated to get to the bug. 

That made us all believers in formal. We continued to 
invest. I brought in an industry expert to head the 
team, we grew the team by adding non-experts, who 
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 7 

we coached into becoming sufficiently expert to 
become effective, and we started to see real success. 

As we built up experience, formal bug-finding 
productivity has shot up. We’re no longer finding just a 
few critical bugs, or a handful of other bugs after 
weeks of development. On our current project, 20-35% 
bugs of the bugs found have been discovered by the 
formal team, and they’re finding bugs as fast or faster 
than the simulation team. 

Another unexpected benefit is impact on better 
managing shuffling workloads. Teams in big 
organizations know all about this. Verifications tasks 
move around as product groups need to accelerate 
schedules or hiring doesn’t move as fast as you 
expected. We have found that the formal team is a 
great resource to pick up tasks where simulation teams 
aren’t yet ready to move over. Since formal doesn’t 
need to start with elaborate testbenches, they can 
often start finding bugs quickly and mature a block 
along the bug-finding cycle. When a simulation team 
frees up, they can take the block to completion. 

I understand the challenges in adopting formal. You 
have to invest, and experience shows that takes time 
to return value. Why take away resource from the 
certain and well-understood value of simulation to 
sponsor development around an uncertain future 
value in formal verification? That intermittent bug 
made me a believer. Finding it in 40 minutes in a 
formal property check against many person-weeks in 
simulation (after formal had already shown what we 
had to look for) was enough to justify ramping up a 
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formal team. And while finding hard bugs is important, 
the big bonus is in a complementary verification 
strength to manage simulation overloads, to accelerate 
early maturing and to bail out slow programs. 

Formal will never replace simulation. All that 
investment you made in UVM, constrained random, 
emulation and prototyping will always be important. 
Formal adds another string to your verification bow. As 
you build experience, you’ll see that some problems 
you will eventually find in simulation can be found 
faster with formal. And that’s what we’re all ultimately 
after in verification – better coverage, faster and as 
cost-effectively as we can manage. This book should 
give you a starting point in understanding how to get 
to that value. 

 

Jim Greene 
Director at Samsung Austin R&D Center 
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Time for a fresh look at formal1 
 

Why now? 
You might imagine that the people who build the 
advanced hardware technologies that you find almost 
everywhere today would feel comfortable with almost any 
aspect of technology related to their domain. Or at 
minimum they wouldn’t feel intimidated by any topic. 
They might not understand it now but, if the need for 
understanding arises, you expect they would be confident 
that they can quickly become sufficiently expert, as they 
have already demonstrated through their mastery of 
multiple verification techniques: static, directed and 
constrained-random simulation, along with emulation and 
prototyping. For rare problems where methods and tools 
were available but difficult to use, they could always hand 
a problem “over the wall” to dedicated experts. 
 
It might surprise you to learn that many otherwise expert 
designers and design managers, if pressed to answer 
honestly, will admit that they put formal verification in 
that over-the-wall category and often find it confusing or 
intimidating. The problem is not so much in broad 
concepts but in going any deeper, or in knowing how to 
quantify value. Until relatively recently this wasn’t much of 
a problem. For many, formal verification was at the 
periphery of the verification toolset. Where a few 

                                                      
1 A quick word about nomenclature: we’ll use formal, 
formal methods and formal verification fairly 
interchangeably in this book. While this usage is a little 
loose, it does follow common practice among non-
specialists 
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 10 

especially challenging problems defeated conventional 
verification approaches, they were passed over that wall 
to experts in formal methods, who would translate 
reasonable English-language requirements (“we need to 
check if this can ever happen”) to formal tool inputs, then 
coax the tools into performing their magic and finally 
provide back either a thumbs-up (“that problem can’t 
happen”) or an example of a realistic possible failure. 
 

 
 

Valuable though this service was, the impact of formal 
verification in those early days was limited. Even point 
problems are important to find, but it was difficult to 
quantify how this technology contributed to overall 
verification signoff. Formal methods lacked obvious, much 
less signoff-quality metrics so signoff (is this design 
production-ready?) clearly remained the responsibility of 
traditional verification. If there was interest in using formal 
methods, executives had to consider the cost of building 
and maintaining a team of specialists, a worthwhile 
investment for large enterprises (as we’ll see) but beyond 
the reach of more modest budgets. 
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 11 

How times have changed. Now formal verification stands 
shoulder to shoulder with simulation, static methods, 
emulation and prototyping, a co-equal in verification flows 
across all large and many small design and verification 
organizations. This is partly thanks to continuing 
improvements in the capability and usability of tools, but 
more significantly it has been driven by the relentless 
increase in complexity of modern designs. Some 
verification tasks, once solved by throwing more bodies, 
more licenses, more machines at the problem, have 
already moved beyond the reach of confident signoff 
through non-formal methods. 
 
Executives are always concerned about the impact of 
quality problems escaping to the field; they worry 
especially about critical components exhibiting 
intermittent problems from product to product. Could one 
of these latent problems suddenly explode into a customer 
crisis? Those same executives are now doubly-sensitized to 
the media and market fallout that can result from a 
publicly-exposed safety problem or hack and are actively 
sponsoring teams and methods to mitigate these risks. 
Formal verification has become prominent in those efforts. 
 

Why another book on this topic? 
There are already many books on formal verification, from 
academic to application-centric, and from tutorials for 
beginners to guides for advanced users. Many are 
excellent for their intended purpose; we recommend a 
few at the end of this book. But most start from the 
assumption that you have already committed to becoming 
a hands-on expert (or in some cases that you already are 
an expert). We feel that detailed tutorials are not the 
easiest place to extract the introductory view many of us 
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 12 

are looking for – background, a general idea of how 
methods work, applications and how formal verification is 
managed in the overall verification objective.  
 
There are a lot of us who aren’t yet at that commitment 
stage, or who possibly may never want or even need to 
become hands-on experts. If this describes you, a 300-400-
page tutorial may be more than you are ready to attempt; 
you want something you can read through relatively 
quickly to get a general understanding of the domain. This 
book was written for you as a way to dip a toe in formal 
waters. If you like what you read, you can move on 
knowing that an investment in serious learning will be 
worthwhile. If you don’t, hopefully you still feel you have 
gained enough insight to defend, again more 
knowledgeably, why a deeper understanding of formal 
methods isn’t appropriate to your current objectives. 
 
Who might this describe? You could be: 
 

 A Designer or Verification Engineer: You’ve heard 
about formal verification, maybe read a little on 
the topic, or sat in on presentations or tutorials, 
but you’re uncertain whether this direction is right 
for your needs. You’re intrigued by the idea but not 
quite ready to pick up a textbook; you want to ease 
into it. This book will get you started with a good 
broad understanding and should set you up to 
make that textbook less daunting if that’s where 
you want to go next. 
 

 A Design or Verification Leader or Manager: If 
you’re planning to directly manage a formal team, 
you have to start somewhere. Just like the hands-
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 13 

on engineer, you’d probably appreciate a little 
orientation before you dive all the way in. Even if 
you’re not directly supervising a formal team, if 
you’re a designer or verification lead or manager, 
you can expect formal experts to come to you 
asking questions and looking for guidance about 
your design, or what is covered in other testing. If 
such an engineer asks you about an acceptable 
state-space radius to adequately check a property, 
you probably would like to know what on earth 
they are talking about, without having to become a 
formal expert. We can help. 
 

 A Verification Manager or Director: Here we’re 
talking about people who plan and supervise 
formal verification activity as a part of their overall 
verification responsibilities. In verification planning, 
you certainly need to know where formal can play 
a role and where it may not be suitable, what effort 
and expertise should be planned for in using these 
techniques (like most verification techniques, these 
generally aren’t push-button) and how you can 
assess effectiveness and coverage in what formal 
teams report back to you. We aim to help with 
some insights on getting to signoff with formal 
verification. 

 
There are others we hope will also find value in this book – 
those of you who are only peripherally involved in 
verification or who maybe aren’t even in engineering. You 
might be in applications support in a different domain, in 
sales or marketing, you might be an executive or even in 
finance or legal. Perhaps you will never run a formal tool 
or sit in on a verification meeting, but you feel you could 
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be more effective in your role with a better understanding 
of this domain. As much as others more directly involved, 
you deserve (if you have the interest) to better understand 
formal verification and to see where it fits in enhancing 
product quality. To serve the needs of this broad audience 
and in the spirit of an introductory overview, we have kept 
technical detail to a minimum. 
 

Organization of this book 
Since we’re writing for a fairly wide audience, we cover 
some topics that some of you may consider elementary 
(why verification is hard), some we hope will be of general 
interest (elementary understanding of the technology) and 
others that may not immediately interest some readers 
(setting up a formal verification team). What we 
intentionally do not cover at all is how to become a hands-
on expert. 
 
Chapter 2 presents an overview of the verification 
problem in SoC design, why this is hard and various 
techniques common in managing complexity, as an 
introduction to the role that formal methods can play in 
the larger verification task. 
 
Chapter 3 reviews the early history of formal verification in 
our industry, along with some of the basic concepts like 
assertions and constraints and a very lightweight 
introduction to the engines that drive formal tools. 
 
Chapter 4 walks through the early challenges formal 
methods faced in getting to widespread adoption: 
complexities in setup, running and debug and the level of 
expertise required to effectively use the tools. 
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 15 

Chapter 5 talks about how formal tool suppliers overcame 
adoption challenges by introducing apps which provide 
much simpler use-models for targeted applications. This 
chapter also reviews a number of the most common apps. 
 
Chapter 6 covers the ways formal is being used today and 
how wide that usage is. If you want to persuade your 
manager that an investment in formal is worthwhile, you 
may find useful evidence here to help build your case. 
 
Chapter 7 is for verification managers (perhaps you) – how 
can you effectively build and manage a formal verification 
team and what can you learn from the lessons of others? 
 
Finally, chapter 8 talks about other formal applications you 
might find useful today or can look forward to in the 
(somewhat near) future. 
 
We close with a few recommended books/papers you may 
want to read if you want to dig deeper and a glossary / 
magic decoder ring to help you with the sometimes-
confusing terminology popular in formal circles. 

  

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



 16 

The verification treadmill 
 

Why verification is so important 
The goal of verification in semiconductor and system 
design is to prove that what we plan to build will do 
everything it is supposed to do and will never do anything 
it is not supposed to do. This is important in part because 
the cost to design and build one of these systems now 
runs to tens or even hundreds of millions of dollars; a trial-
and-error approach to getting the design right would take 
an impossibly long time and become prohibitively 
expensive. 
 
An even bigger concern for any enterprise is the possibility 
that customers might discover problems in their products. 
Issues can arise especially in use-cases that product 
designers didn’t consider and therefore didn’t cover in 
verification. For software, we’re all too familiar with patch 
updates, but issues in hardware can’t necessarily be 
patched; only a new chip can fix the problem. Making field 
changes to hardware is extremely difficult, in many cases 
close to impossible. Problems like this can have huge 
negative impact both on the supplier and their customers. 
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The ubiquity of electronics 

 
Meantime, the complexity of electronics is accelerating 
rapidly. We now have high-resolution gaming, 
smartphones, 4G (and soon 5G) cellular communication, 
low-power design, cloud computing, semi-autonomous 
cars, smart homes and the many other high-tech 
capabilities that surround our modern lives. These System 
on Chip (SoC) designs are in many ways significantly more 
complex than earlier systems, in size certainly (thousands 
of times larger than the Intel Pentium for example2), but 
also in integrating more complex subunits such as multi-
core CPUs, GPUs and other complex sub-functions, 
running multiple different types of software and inter-
operating not only with each other but also 
communicating with the outside world over cellular, Wi-Fi 

                                                      
2 
http://www.wagnercg.com/Portals/0/FunStuff/AHistoryof
MicroprocessorTransistorCount.pdf 
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and Bluetooth links. They’re also running much faster, with 
complex dynamic clocking and power management 
turning functions on and off in the middle of all this 
activity purely so you only have to recharge your device 
every few days. 
 
Our tolerance to bugs is dropping. Where once problems 
in electronics were an inconvenience, fixable in the worst 
case by a reboot, now advanced systems control safety-
critical functions in our cars or pacemakers or power 
plants. In these contexts, reboots are not an option and 
failures at minimum may lead to recalls, or worse still may 
cause fatal accidents. Security has become a major 
concern. The recently-reported Meltdown and Spectre3 
bugs highlight how far we still have to go in containing 
security attacks.  Where verification must try to find (and 
fix) every possible way in which a product might be 
compromised, attackers only have to find one way in and 
they delight in finding obscure loopholes. 
 
For all these reasons, product teams invest massively in 
design verification – at least 50% of the total effort that 
goes into designing a product4. Thanks to hard work, 
clever techniques and continuing advances in verification 
tools, the industry has released many products which have 
worked and continue to work extremely well. But as 
design capabilities and demands continue to race ahead, it 
is inevitable that these verification strategies, 

                                                      
3 https://meltdownattack.com/ 
4 There are differing views on this number – anywhere 
from around 50% to 70%. One interesting review is 
http://www.chipdesignmag.com/martins/2008/11/27/the
-myths-of-eda-the-70-rule/ 
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comprehensive though they are, have started to show 
cracks. 
 

The price of not being perfect 
The earliest widely-visible instance of a semiconductor 
verification failure in released products appeared in 1994 
when a public post revealed that the (Intel) Pentium 
floating-point divide returned notably incorrect answers in 
a very small set of cases5. Intel have been verifying 
complex designs for a long time, they have a worldwide 
user-base depending on the accuracy of their platforms, 
they have accumulated massive test suites over years of 
development, and still a bug slipped through. Design and 
verification teams around the industry paid attention; if 
this could happen to Intel, who knew what unseen 
problems might be lurking in their own production 
designs? 
 

 
The Intel floating point bug - the digits starting with 739 

are incorrect 
 
Not finding these problems can be expensive. If you isolate 
a bug in-house after you manufacture (but haven’t yet 
shipped) the device, you can do more testing but face 
potentially millions of dollars to fix the design. If the bug 
gets out into your customer base, costs explode. Intel 
reportedly took a pre-tax charge of $475M against 

                                                      
5 https://dac.com/blog/post/history-formal-verification-
intel 
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earnings to correct their floating-point divide problem and 
update customers with the corrected device6. 
 
Safety and security considerations will further amplify the 
cost of bugs, perhaps as much in market impact and 
liability as in replacement costs. Media hair-trigger 
responses to bad news can drive instant drops in share 
price and may amplify reputational damage from which it 
can take years to recover. News of a glitch in an iPad app 
(used by pilots to access maps of airport runways) drove 
American Airlines stock down by $1.9 billion in the course 
of a few hours7. This problem was attributed to a software 
glitch, but we have already seen that hardware is not 
immune to bugs. Frankly, social media and markets don’t 
care about that hardware/software distinction anyway. 
The tech failed in a serious way - dump the stock. 
 

Why is this so hard? 
At first glance, it might seem that we just need to verify 
harder or smarter, or maybe both. Unfortunately, no 
matter what we do, we can never ensure complete 
verification. It’s important to understand why; this starts 
with how we verify. 
 
The most popular method used in verification is 
simulation. We create and run (simulate) a series of tests 
and compare with the results we expect. When running a 
test returns the expected result, the test passes. When it 
doesn’t there is a discrepancy between the design and the 
expected result, which may mean we have a bug in the 

                                                      
6 http://www.trnicely.net/pentbug/pentbug.html 
7https://cdn2.hubspot.net/hubfs/69806/Reassessing_the_
Cost_of_Software_Quality.pdf?t=1510935735043 
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design or it may mean that our expectation was wrong. 
This approach, simulation-based testing through specific 
tests, often called directed testing, is the natural way we 
approach verifying almost anything. It’s also very effective, 
so much so that it continues to play a very major role in all 
verification today. 

 
 

But it’s incomplete. No matter how many tests you create 
and what clever tricks you use to cover multiple test 
scenarios in each test, you can only verify correct behavior 
across a finite number of possibilities, generally much 
smaller than the total set of possible behaviors. 
This is an intrinsic problem in verification for any but the 
most trivial systems. To make this concrete, imagine the 
system is a phone and pushing a button on the screen 
starts a possible sequence of transitions between states 
which may go through thousands (or millions) of 
intermediate “next states” before finally delivering the 
expected outcome, starting a phone call. 
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Proving that this phone call always works correctly and 
never works incorrectly should test all of those possible 
sequences. If there were ten possible options (next states) 
at each stage and you wanted to exhaustively test a 
sequence of 100 steps (trivially short for hardware and 
software these days), you would have to test 10100 
sequences, a task which would not be remotely possible 
even on a battalion of supercomputers8. The intrinsic 
complexity of verification grows exponentially fast with 
the number of states in the system (which in a hand-
waving way is related to the size of the system) and with 
the length of the sequences9. 
 

                                                      
8 If you could test a billion sequences in a nanosecond, you 
could test roughly 1025 in a year; 10100 would take 1075 
years; roughly a trillion trillion trillion trillion trillion trillion 
years 
9 Even if you allow only two possibilities at each state, 
growth is still exponential. It starts slower but still exceeds 
practical reach very quickly. 2100 sequences might be 
practically checkable but a modest growth in sequence 
length gets you to 21000, which is again out of range of 
reasonable computation power. 
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Exponential growth is, with few exceptions10, the fastest 
known growth in the natural world, and is much faster 
than our ability to speed up computers and software 
(Moore’s law notwithstanding). Everyone involved in 
conceiving, building and testing complex systems works 
hard to find ways to tame the implications of that growth 
for verification; clever techniques can often manage the 
early part of this growth to acceptable levels; as we’ll see, 
formal methods have become important tools in this 
continuing battle. Still, it is important to remember that 
because of exponential growth, no one tool or 
methodology will ever become a long-term silver-bullet 
solution11. Verification will always depend on a range of 
tools and methodologies.  
 

                                                      
10 https://en.wikipedia.org/wiki/Hyperbolic_growth 
11 Notwithstanding periodic debates, always entertaining, 
on formal verification eventually obsoleting simulation 
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Battling the exponential 
Because simulation is incomplete, a widely-employed 
strategy is to decide when you have run enough tests. 
Verification teams get clever about this by testing 
bounding or corner cases which lie at the edges of 
acceptable behavior. For example, when testing arithmetic 
functions, using biggest possible numbers and smallest 
possible numbers as inputs is an obvious starting point for 
bounding tests. The reasoning is that if these extreme 
cases verify correctly, all other cases in between should 
also work correctly. This tactic alone can massively reduce 
the number of tests required for that function. 
 
Unfortunately, corner-case reasoning can be dangerous 
because it makes assumptions about the way the design is 
implemented, and those assumptions may not be valid. 
Often the design team decides that an architecture or 
implementation must be optimized for performance, size, 
power or other factors that may not be known to the 
verification team. In the case of the arithmetic example 
(say for multiplication) the implementation for small 
numbers may be quite different than that for larger 
numbers. Whenever there are architecture or 
implementation transitions like this, there are new 
possibilities for errors around those transitions. The 
verification team now must test not just at the extreme 
bounding cases but also at these new “architecture 
boundaries”. Corner-case methods continue to be widely 
used, because we have no choice, but we must always 
acknowledge that there is an element of human 
judgement in the corners we pick. 
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A system bus managing data traffic between 2 IPs and a 

memory 
 

Another challenge for directed testing is that sometimes 
the range of possible variations is simply too high for us to 
even think of all possible options, much less create tests 
for all those cases. A good example is a traffic manager 
(called an arbiter) on a bus through which multiple 
attached components (call them A and B) can 
communicate to a resource like a memory, but only one at 
a time . 
 
When A is communicating with the memory, if B also 
wants to communicate it will make a request but must 
wait until the arbiter grants it permission. The arbiter may 
do this after A has completed, or if B has higher priority it 
may tell A to stop and allow B to start, but must eventually 
get back to letting A complete its task; it may even allow 
traffic from A and B to interleave in a controlled way. Since 
behavior depends on the order and sequence of requests 
to the arbiter (often from many more connected devices 
than we show here), relative request priorities, the 
amount of data to be communicated and what is pending 
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in the request queue, the number of tests needed to prove 
correct behavior in all possible cases grows quickly12.  
 
Obviously, building tests to verify that even this basic 
arbiter works correctly across all possible  combinations 
can be challenging. Adding real-world complications like 
interrupts, differing clock speeds, variations in architecture 
for IPs built by different teams, and many more factors, it 
quickly becomes impractical to build comprehensive suites 
of directed tests to cover all cases. Even corner-case 
tactics won’t work here – there are simply too many 
corners. 
 
Facing this problem with directed and corner-case based 
testing, verification engineers have turned increasingly to 
a technique known as constrained-random testing. In this 
method, they will build a test allowing for some aspects of 
the test to be randomized in a controlled way, those 
controls ensuring that the randomized test behavior 
remains reasonable. This technique in effect greatly 
expands the number of tests that can be run. One test-
script spawns many tests, which can easily run in parallel 
by adding server capacity and simulation licenses. 
 
Constrained-random testing has been very successful in 
teasing out potential hidden errors and is now a major 

                                                      
12 Assume 3 components attached to the bus (with 8 
request scenarios – 000, 001, 011, etc), each with 3 
possible lengths (short, medium long) and each with 3 
possible priorities (1,2,3). If the arbiter should remember 
up to 5 transaction requests for each function (which may 
come in any order), you need to consider 8x3x3x5x3 = 
1080 possibilities. That’s a lot of tests! 
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component of any strategy in directed testing. But clever 
though this method is, coverage is still bounded by the 
number of constrained-random tests that verification 
engineers can write. While each script spawns many 
randomized tests around a particular objective, none are 
clever enough to run all possible tests.  
 

 
The Synopsys ZeBu emulator 

 
Another response to the scale problem is to use hardware-
based acceleration, particularly emulation and FPGA 
prototyping. These technologies provide huge 
improvements in performance, running thousands or 
millions of times faster than simulation, which 
unquestionably helps a lot. Still, acceleration effectively 
offers only a constant improvement in performance (big 
though that constant is). 
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Yet another approach depends on extensively leveraging 
proven reusable IP components in designs. If these IPs 
have been carefully tested and proven on multiple prior 
designs, the risk that they may exhibit problems in your 
design should be greatly reduced, at least in principle. This 
was another big step forward; however, reuse only 
provides confidence that those components work correctly 
standalone, as advertised by the vendor. There’s no 
guarantee that your design will not introduce bugs in the 
way it interacts with those IP. Reuse reduces but does not 
eliminate the need for testing around those IPs. 
 
All of these techniques are actively used today, but we still 
always come back to the exponential curve. No matter 
what we do, testing will never be exhaustive or anywhere 
near exhaustive because you can never test more than a 
finite number of sequences. The exponential growth in 
possibilities to test eventually dominates all of these 
methods. 
 
So product teams depend on expert verification engineers, 
designers and managers, who hold frequent reviews, track 
metrics like testing coverage and bug-trends, and who rely 
heavily on their experience and gut-feel13 to decide when 
they have done “enough” testing. This process is solid 
enough that the semiconductor industry continues to ship 
successful products. But those darn designs keep getting 
bigger and more complicated and a question lingers. 

                                                      
13 It’s not just about tools or metrics. Knowing that a 
particular function used in the current design has had a 
history of problems in previous products will alert an 
experienced manager to beef up testing on that function 
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Beyond all the great testing that has been done, do hidden 
bugs still remain? 
 

Enter formal verification 
A strength of simulation-based14 verification is that it 
works naturally with the way we think about testing. We 
define a test, we write it, we define another test, we write 
that and so on. We always know how to further expand 
the range of tests we can supply. But we’ve seen the limits 
of this approach, not just in the sense of covering 
absolutely every possibility, but even in the sense of 
covering all the important possibilities. 
 
A carefully-designed and executed testplan should cover 
well all possibilities that we consider important in normal 
use, and also a set of abnormal use-cases that we deem 
possible. But what we consider “abnormal” is based on 
experience, subjective judgement and frankly, practicality. 
We have to put a bound on abnormal cases we are 
prepared to test to be able to complete verification in 
reasonable time. This can mean that we fail to consider 
unusual cases where a combination of conditions, building 
over many cycles, conspires to cause a seemingly 
impossible behavior, as in the Meltdown combination of 
speculative execution and cache behavior. 
 
A different angle of attack seems to be called for. The 
problem with simulation is that we must handle testing 
case-by-case. We can test only at (carefully-chosen) 
corners, we can cover more testing ground with 

                                                      
14 From here forward we will use “simulation” to cover all 
the directed (and randomized) testing methods, including 
emulation and prototyping 
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constrained-random, we can run many cases in parallel or 
we can get big speed-ups through hardware acceleration. 
But all of these methods expand testing capability by fixed 
amounts; none can overcome the exponential growth of 
inputs and sequences to be tested. We really need a 
method that can test all possible cases simultaneously (at 
least up to some point)15. We shouldn’t forget also that we 
want to be able to do this at signoff quality for significant 
aspects of the verification plan; there’s little added-value 
in any technique which has only incidental impact. 
 
One way to do this is to use variables for inputs and state 
values and a mathematical model for the design rather 
than the explicit states used in simulation. To illustrate, 
think of a 32 -bit integer multiplier. In simulation, we test 
this works correctly by computing 1x2, 3x5, 7x13 and 
many other cases. Checking all possibilities requires 264 
tests (about 1019) which could take a long time. If instead, 
we could test with variable (“symbolic”) inputs, say A and 
B, and mathematically verify that the output was always 
the formula A x B, we could completely prove correctness 
for all possibilities. This is the objective of formal 
verification. 
 
 

  

                                                      
15 Perhaps quantum computing can help at some point, 
though there is no indication such a solution is near. 
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Formal Verification – the Early Years 
 

Background16 
The principle behind formal verification is quite simple to 
state (though somewhat harder to implement) – turn what 
you want to verify into a mathematical proposition, then 
prove the correctness of that proposition. This is a very 
natural direction to take since digital designs are based on 
(Boolean) logic. You can think of a design as a (typically 
very complex) set of logical statements, and a behavior 
you want to verify (maybe “pushing this button will always 
initiate a phone call”) as a mathematical theorem you 
want to prove in the context of those statements. 
 

 
 

 
Mathematical proofs 

 

                                                      
16 A Brief History of Formal Methods  
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Mathematical proving has a very long and distinguished 
history, dating back to the earliest Greek philosophers who 
recognized that it was possible, given an appropriate 
construction of the problem and requirement, to prove 
statements which must be universally true. The Socrates 
example above is a very simple case illustrating the 
mechanics of a logic proof. You start with premises (which 
in our case correspond to the circuit description and 
perhaps some constraints on allowed behavior), you assert 
a proposition which you want to prove (in our case an 
expected behavior of the circuit), then you prove that 
theorem by following a logical and well-grounded 
sequence of steps. 
 
We’ll stress a point here because it underlies the basic 
advantage of formal methods. When you follow a 
mathematical approach, and prove a proposition formally, 
you have proved it (in a finite number of steps) for all 
possible cases. But when you simulate, you only prove for 
the cases you simulated; if you simulate a thousand cases 
but there are a million possibilities, you have still only 
proven a tiny fraction of what the formal method proved. 
This sounds so good that you might wonder why we still 
use simulation; it turns out that simulation and formal 
have complementary strengths (and challenges), as we’ll 
see later. 
 
Unsurprisingly, work in this direction advanced almost 
exclusively in academia and the big labs, in part because 
these were interesting technical questions but also 
because concerns were being raised in the US DoD and 
telecom companies, among others. Around the 1980s, a 
general sense that “we need to do better” transformed 
into more alarmed urgency, prompting active use for 
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formal methods in a number of industries beyond the 
semiconductor ecosystem. 
 

 
Boeing Dreamliner 

 
In all cases, adoption of formal methods was prompted by 
publicly-visible and serious failures on large and critical 
systems, including a radiation therapy machine delivering 
fatal overdoses of radiation17, an Ariane rocket exploding 
40 seconds into flight18, Prius cars with an unexpected stall 
problem19 and the recent discovery that the Boeing 
Dreamliner could lock up and lose control after 248 days 
of continuous operation20. Each failure was ultimately 
traced to rarely-activated bugs which had been missed 

                                                      
17 https://en.wikipedia.org/wiki/Therac-25 
18 https://around.com/ariane.html 
19 http://articles.latimes.com/2014/feb/12/business/la-fi-
prius-recall-20140213 
20 Boeing 787 Dreamliners contain a potentially 
catastrophic software bug 
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despite extensive testing yet had or could have had 
catastrophic consequences. 
 
Just as we saw earlier for semiconductor design, a 
common conclusion from analysis of these problems was 
that dynamic verification (simulation) alone was 
insufficient to deliver high-levels of confidence, especially 
in safety. Each of these systems providers enthusiastically 
embraced formal methods with an expectation that they 
could increase that confidence. In the early days, those 
companies, along with military, aerospace, telecom and 
other system builders had to rely on custom-crafted tools 
adapted from university/lab research. Nevertheless, they 
proved that formal methods could be effective in proving 
correct operation, or in finding bugs that might otherwise 
have been very difficult to track down. 
 
Now formal methods have been used to prove the 
correctness of driverless operation on one line of the Paris 
Metro21 and operations of railway control systems22. 
Toyota applies formal analysis to prove correctness in a 
variety of car systems23 and Airbus has been using formal  
techniques for some time in validating correctness of 
avionics software24. In the very complex world of cloud 
services, Amazon Web Services (AWS) depends on formal 

                                                      
21 
https://en.wikipedia.org/wiki/Paris_M%C3%A9tro_Line_1
4 
22 https://www.prover.com/ 
23 Hybrid Systems, Theory and Practice, Seriously 
24 Formal Methods for Avionics Software Verification 
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methods25 to prove correctness of operation of the various 
components of their solution. 
 

 
Paris Metro 

 
Closer to home for readers of this book, Intel took the 
floating-point problem mentioned in the last chapter as a 
wake-up call to get serious about formal verification26. Just 
before the turn of the millennium they used formal 
analysis to validate the Pentium-427, reporting that no 
problems escaped to the field matching the seriousness of 
the earlier bug. This industrial success, as much as 
technical advances in tools, contributed to growing 
interest in the field among semiconductor verification 
teams. 
 

                                                      
25 How Amazon Web Services Uses Formal Methods 
26 https://dac.com/blog/post/history-formal-verification-
intel 
27 High Level Formal Verification of Next-Generation 
Microprocessors  
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Since early formal methods software28 was developed in 
academia and labs, only deep experts inside those 
domains knew how to run these tools. Over time, some of 
these experts migrated into commercial enterprises (such 
as Intel) where they started to build wider interest in these 
strange new techniques. But formal remained a highly-
specialized art, barely impacting production design flows 
except in one immediately useful application requiring 
very little understanding of the underlying technology – 
logic equivalence checking. 
 

Equivalence checking 
When logic synthesis from RTL started to take off, an 
obvious question arose: how do I know the synthesis tool 
didn’t make mistakes in converting from RTL to gates? 
When design sizes were relatively small, signoff 
verification29 (mostly through simulation) was still 
common at gate-level so equivalence between the RTL and 
the gate-level implementation wasn’t a primary concern – 
all that mattered was that the gate-level implementation 
behaved correctly. But as design sizes grew, high-coverage 
gate-level simulations became impractical; signoff 
verification increasingly moved to RTL, making the 
question of functional equivalence between the gate-level 
implementation and the RTL a much more pressing 
concern. 
 

                                                      
28 For example, SMV and ACL2 
29 Functional signoff verification, just to be clear 
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Addressing this need presents a perfect opportunity to 
apply formal methods. Any formal proof requires some 
kind of reference against which you’re going to check. In 
this application, we have a ready-made reference – the 
RTL. We want to check that the gate-level implementation 
functionally matches the RTL design. There’s no need to 
create additional statements about what should be 
checked, which simplifies usability30. Thanks to this ease of 
use and completeness in proving, logic equivalence 
checking has become a required signoff step in all major 
production design flows. 
 
Useful though equivalence checking application is, it still 
doesn’t prove “correctness” in the more general sense we 
probably would like to see – correctness against intended 

                                                      
30 In practice, in modern flows dealing with complex logic, 
equivalence signoff is still not completely pushbutton 
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behaviors of the design. Sure, the gate-level netlist 
matches the RTL, but how do we know the RTL is correct? 
Or that the architecture is correct? This requires a 
different kind of analysis. 
 

What do we mean by correctness? 
We all believe we know what it means for something to be 
correct, but correctness is one of those attributes that’s 
not easy to define precisely. We tend to think the same 
way as Supreme Court Justice Potter Stewart who, when 
arguing about a definition of obscenity said that “I know it 
when I see it”. This may work in legal decisions but is not 
useful for the kind of proofs we need. 
 

 
US Supreme Court 

 
When we take a mathematical approach, we need a 
precise specification of correctness. Here we run into a 
problem: what can we use as that specification? Perhaps 
we could start with the documented requirements? Every 
design, IP and block (at least for significant components) 
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has some kind of specification, perhaps in Word or PDF. 
But these are written in natural language (perhaps English) 
which rarely rises to mathematical precision: 
 

 
Why English “specifications” struggle with precision 

 
If documentation specifications won’t work, perhaps we 
can use an architectural or SystemC or C model? Models of 
this type are sometimes available, but they are typically 
developed to explore and validate high-level features of 
the design; they are not normally defined with sufficient 
precision to act as references against which RTL 
equivalence can be checked. Think of a specification for an 
integer multiplier: “c = a * b”. This may be sufficient for 
architectural modeling, but it doesn’t specify timing (how 
many cycles are required to complete a multiplication) or 
power intent (how or when clocks or power should be 
gated), among other important factors.  
 
In the few cases where these high-level models can be 
used as a reference (or extended to become an effective 
reference), then high-level equivalence-checking tools can 
verify the equivalency of the two models. In practice 
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today, these opportunities tend to be relatively rare and 
require significant investment in setting up and proving31. 
 
More commonly, whether starting from a natural language 
specification or an architectural model, design teams find 
that so much detail must be added to make the 
description sufficiently precise for formal proving that the 
effort required to build this reference outweighs the 
benefit32. 
 

 

                                                      
31 Another approach is to develop a high-level specification 
to be used for checking in a language such as TLA+. Both 
AWS and Microsoft Azure teams use this method in testing 
their software. Obviously, this approach requires further 
investment to learn and to build specifications and still 
requires an equivalence checking step for completeness 
(which is often skipped due to complexity) 
32 This is inevitably a balance between effort and 
economics or safety, which is why some verification efforts 
make the investment in comprehensive proving for some 
aspects of designs 
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A more practical approach to building a reference 
specification is to limit the scope of what we are trying to 
prove to local expectations of correctness, since these can 
be much easier to describe. Think again of our earlier bus-
arbiter example; generating a full specification for such an 
arbiter could be extremely complicated, especially for 
complex bus protocols like AXI. Instead you might in some 
cases choose to use simulation for some of your testing 
and formal for a subset of behaviors that are otherwise 
very difficult to test.  
 
As one example, the arbiter must communicate with 
blocks through request and grant signals and will need to 
store pending requests in a FIFO. A very important 
specification is that this FIFO should never overflow, 
because if it does, requests/grants will be lost. Testing for 
this possibility could be very challenging in simulation 
because you have to create heavy traffic/demand on the 
bus to overflow the FIFO. Even then you couldn’t be sure 
that there might not be a case which would create such a 
problem among the many other possible configurations of 
traffic and demand that you hadn’t tested. 
 
A formal check for FIFO overflows addresses this concern; 
you can prove this specific problem can never happen (or 
isolate a case where it could happen). This approach, 
working with specifications which target important 
requirements within a function, is used in industrial flows 
today and is known as model-checking or property-
checking. 
 
In certain cases, it is very possible to accumulate sets of 
property checks to provide a complete specification for a 
function, in which case formal verification can assume 
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complete responsibility for the verifying the correctness of 
that function – no simulation required. This method is 
known as end-to-end (E2E) checking and is generally 
considered to be a fairly advanced use of formal. 
 
Recapping, in common usage we abandoned hope of 
proving correctness against a complete specification and 
are now limiting ourselves to localized proofs of 
correctness, where correctness is expressed through 
properties, as we’ll see next. In practice this is not a 
significant compromise; a complete specification may be 
redundant if simulation already provides much of the 
necessary confidence in the correct working of the 
function. Formal verification then complements this 
testing with targeted confidence for some especially 
challenging cases. 
 

Properties: assertions and assumptions  
Now we know we are checking properties, what are these 
properties? We’ll start with assertions, which will lead us 
to properties. An assertion is just what it sounds like: “I 
assert that these two inputs can never be active at the 
same time”, a behavior on which you depend but which 
may or may not be true in practice and which you 
therefore need to check. 
 
The concept and practice of assertions was originally 
conceived33 as a way to check basic expectations in 
software through executable checks embedded in the 
code; these would trigger automatically if requirements 
expressed through assertions were not met. An obvious 

                                                      
33 As early as the 1940’s by Alan Turing 
http://www.turingarchive.org/viewer/?id=462&title=01 
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example before a division operation would be an assertion 
that the divisor is not equal to zero, since division by zero 
is not defined. The intent is to catch basic problems quickly 
before they lead to later and more complex bad behaviors 
which might be more difficult to debug.  
 
Assertions have been supported in hardware description 
languages for quite a long time, but widespread use of 
assertions as a part of hardware verification, known as 
assertion-based verification (ABV)34, became popular in 
the early 2000s after standards emerged. From there, 
these evolved through OVL and PSL to the leading SVA 
(SystemVerilog Assertions35) standard of today. ABV 
continues to be very useful and popular in simulation; 
most importantly, for our purposes, formal tools adapted 
to read this same standard format36. 
 
In hardware design today, assertions are predominantly 
expressed in the SVA format; these can be embedded in 
the RTL for a design or can be provided through separate 
files. A simple assertion would be assert A == B37 which 
checks that signal A is always equal to signal B. If a formal 
tool proves this assertion, then the statement is true in all 
cases; conversely, if the tool finds this assertion is not 
correct, even for a single case, then it will report a case it 

                                                      
34 http://www.ijmetmr.com/oljuly2015/NKarthik-
MGurunadhaBabu-MuniPraveenaRela-113.pdf 
35 SVA is a subset of the SystemVerilog standard 
36 Earlier, formal tools used languages like CTL, LTL and 
Sugar for property specification 
37 The actual SVA assertion is slightly more complex. We’ll 
stick to this simplified form here 
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has found where A is not equal to B (this is called a 
counter-example or CEX). 
 
OK, those are assertions but what are properties? A 
property is a formalized statement about the design with 
no attached expectations. For example, “my car drives 
forward” is a property I can associate with my car. It 
doesn’t imply I can drive forward; that requires an 
assertion on the property. If I assert that “my car moves 
forward”, now I am making a statement that it should 
move forward. If a property-checking tool could check this, 
it might report that “yes indeed, your car can move 
forward” or it might report that “no your car cannot move 
forward because it’s out of gas”. In the example in the 
previous paragraph, A == B is a property and assert A == B 
is an assertion. An assertion checks the property following 
the assert keyword. This division of terms isn’t nit-picking 
because properties can also be used in other contexts, as 
we’ll see next38. 
 

 
 

                                                      
38 In casual/common usage, property is often used as a 
synonym for assertion. Even the experts do this! 
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Sometimes it is necessary, as a part of proving an 
assertion, to constrain certain signals so that unreasonable 
or uninteresting possibilities are not considered. This can 
be done by defining constraints; which look very similar to 
an assertion except that the keyword is assume. Using the 
same property, A == B, in this case assume A == B is an 
example constraint39. But where the corresponding 
assertion checks for cases where A is not equal to B, the 
constraint limits checking to just those cases where A is 
always equal to B. 
 
In our car example, where the assertion is “does my car 
move forward?” a possible assumption could be “assume 
my car has gas”. Together, the problem could be 
expressed as “assuming that my car has gas, can it move 
forward?” With this constraint, the formal tool could come 
back with “yes, the car can move forward” or maybe “no, 
it cannot move forward because the gearshift is broken” 
(isolating a more serious problem). 
 
That’s what assertions and constraints do; what do they 
really look like? Our goal isn’t to help you write or even 
understand the detail behind properties, but it’s worth 
knowing how to recognize the real thing in the wild. They 
can look rather complicated, but only the hands-on 
experts need to understand this stuff in detail. And 
actually, they really aren’t as complicated as they first 
appear. Still, we don’t want to scare you off, so we 

                                                      
39 Yes, this is a little confusing; is it an assumption or a 
constraint? When speaking about them, you can use either 
term, but constraint is most common. But the standard 
uses assume. Sorry, that’s just the way it is. 
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promise this is the only place you’ll see these formats in 
this book.  
 

 
Examples of SVA assertions 

 
Now we know how to describe what to check (through 
assertions), we have to dive a little under the hood to 
understand how these properties/assertions are checked. 
We’ll promise not to get too technical here. 
 

Under the hood: the formal engines 
 
At the core of any formal verification tool, you’re going to 
find the model-checker.  Model-checker40 is just a fancy 
name for an engine that will take a circuit and a property 
(or rather an assertion) and will determine if that property 
will hold true in that circuit in all possible cases. If that 
doesn’t hold, it should report a failing case, appropriately 
called a counter-example (CEX). 
 

                                                      
40 Ed Clarke pioneered model checking especially while at 
CMU and has received multiple awards for his work in this 
area. 
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To help understanding, we’ll use a simple example – a 
familiar traffic light controller problem. In this case, we 
have two cross-streets with lights in both directions at the 
intersection. Lights in each direction can cycle through red, 
yellow and green states. The obvious safety property41 we 
want to check is that we can’t get green in both directions 
at the same time.  If this should fail to happen under any 
circumstance, the outcome could be catastrophic. 
Checking this requirement is an excellent application for 
formal.  
 

 
 

Think of a model for this controller based on two finite-
state machines (FSM), one for each direction, describing 
when and how the lights can change.  These FSMs need to 
negotiate to determine which set of lights is going to 
change to what state (red, yellow or green) next. Each FSM 
has to consider not only its own current state and next 
possible state given various inputs (e.g. is there a car 

                                                      
41 A safety property is a property which must always hold 
true, popularly summarized as “nothing bad happens”.  
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stopped at my light) but also the current state of the other 
FSM. You should see now that it is tricky to know for 
certain that the safety property will never be violated, 
especially when there may be yet more inputs like 
pedestrian crossing requests. This type of property-
checking is also very relevant in SoC bus design where only 
two devices can be allowed to communicate through a 
common bus at any time. 
 
Traffic lights also provide a good example for liveness 
checking42. A light might avoid violating safety checks by 
never turning green, but this is also not desirable behavior, 
at least for drivers stuck on red. We need to add a 
property check that each light will turn green eventually 
(within some acceptable limit in practice). Similar 
conditions apply in SoCs, again especially around bus 
communication. An IP wanting to communicate through 
the bus should not be stalled indefinitely (often associated 
with hangs or deadlocks)43. Each should get a chance to 
communicate no matter what other demands there might 
be on the bus. 
 

                                                      
42 A liveness property is a property which should 
eventually be true, popularly summarized as “eventually 
something good happens” 
43 There are very real problems SoC designers watch out 
for in these cases: deadlock where control is stuck in one 
state and nothing happens, starvation where one resource 
is blocked from access while others continue to have 
access and livelock where two or more resources are 
locked in a struggle for control and still nothing useful 
happens! 
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We don’t need to discuss here how the controller is 
designed, only how we are going to check those properties 
we specify. Remember that the simulation approach to 
exhaustively verify the design would be to cycle through all 
possible input and state combinations, and to check that 
no assertions fail.  In a formal approach, instead we will 
calculate with variables in place of those explicit values 
and we will use mathematical techniques to reach a 
conclusive proof. Here rather than simulating, we build 
equations expressed in Boolean logic form; these 
equations cover all possible values, so if we can prove our 
properties must be true given this set of equations, we 
have proved it in all possible cases. This approach, called 
Model Checking, was the first big step towards property 
checking in hardware verification. 
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An example finite-state machine (FSM) 
 

The details of how this is done are too technical for our 
purposes, so we’ll attempt a very simplified explanation. 
Any set of Boolean equations (and therefore any digital 
logic circuit) can be represented as one or more 
interacting FSMs, which can be graphed as a set of states 
(the bubbles in the picture above) and possible transitions 
between those states (the arrows). Our traffic-light 
controller can be graphed in this way. This graph can in 
turn be mapped different types of graph which are 
designed to be more efficient for proving properties. 
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The flow to accomplish all of this starts with the front-end 
of a logic synthesis flow, which maps your RTL into a 
control/dataflow graph, from which it builds and optimizes 
one of those specialized graphs. This correspondence 
between logic synthesis and formal verification shouldn’t 
be too surprising; the Berkeley ABC44 platform is a widely 
used and adapted platform of this type, expressly designed 
to serve the needs of both synthesis and verification. 
 
The optimized graphs come in different flavors, depending 
on the engine. One style is the binary decision diagram45 
(BDD). Model checking based on BDDs, called Symbolic 
Model Checking (SMC), became the forerunner of all 
modern model checkers and made possible property-
proving for designs with 100-200 flip-flops. Impressive 
progress, but hardly up to the needs of modern designs or 
even sub-functions. Naturally this triggered more research, 
to the point that BDD-based SMC methods can now handle 
designs up to thousands of flip-flops (if components like 
memories are abstracted out in some manner).  
 
 While SMC with BDD showed promise, capacity was still a 
major concern. BDD memory consumption grows 
exponentially with the number of states in the circuit, 
spectacularly shooting to sizes over 4GB in a matter of 
seconds, making the approach impractical for many real 
problems. Looking for a different approach that didn’t so 
quickly succumb to unusable growth led researchers to 

                                                      
44 http://people.eecs.berkeley.edu/~alanmi/abc/ 
45 https://www.cs.cmu.edu/~emc/15414-
f12/lecture/bdd.pdf 
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Bounded Model Checking (BMC), using a proof method 
called Boolean Satisfiability Solvers, or SAT Solvers46. 
  

 
An example of SAT on a simple logic design 

SAT tests if property p can ever be false; in this case it can 
 

Instead of building the complete problem representation 
required in BDDs, BMC+SAT switched to a breadth-first 
approach, looking for a violation of the property to be 
checked (a counter-example) within a pre-determined 
bound on clock-cycle depth. 
 
Bounding the depth to which the search extends can 
significantly reduce the size of the analysis problem, 
making proofs (and especially finding counter-examples) 
much more feasible both in memory requirements and in 
time. At the same time, BMC naturally handled sequential 
behavior by unrolling sequences. The next cycle in logic 
(for all possibilities beyond this cycle) is expanded as a new 

                                                      
46 SAT techniques have been around for a long time, 
getting their start in artificial intelligence for applications 
in planning / scheduling 
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set of logic, taking the previous cycle states as inputs. And 
so on for continuing cycles, out to whatever bound is set. 
Analysis can then just work with this sequence of logic 
stages without having to worry about clock cycles.  
 

 
An unrolling operation on a 2-bit counter 

 
The boundedness of BMC working together with the 
natural solution-finding power of SAT has proven very 
successful, so much so that now BMC+SAT is now one of 
the dominant approaches to model-checking. But it’s not 
perfect; while bounded methods will often satisfactorily 
conclude proof of a property, they can in some cases fail 
to prove that property or fail to find a counter-example 
within the bound that has been set. In this case, the result 
is inconclusive. We’ll talk about this more in the next 
chapter. Inconclusives (also known as bounded or 
undetermined proofs) are an unavoidable feature of all 
formal methods but, as we’ll see later, they don’t have to 
be dead-ends. 
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Tools and methods have continued to evolve at a rapid 
pace so now there is quite a range of engines, techniques 
and flows to formally attack a property-checking problem. 
Exploring all of these would take us too far from our goal 
of providing an introduction to the field. If you want to 
learn more about this rich set of possibilities, check out 
our suggested reading list at the end of this book. And 
remember that innovation in formal methods hasn’t 
stopped; you should expect to see yet more capabilities 
appearing in production tools47 48. 
 
Among this range of proving engines, each engine has 
strengths in addressing certain problems and weaknesses 
when facing others. For this reason, we need access to a 
toolkit of methods to attack the wide range of problems 
that will arise in real circuits. Managing our way through 
these options is a topic for our next chapter. 
  

                                                      
47 http://fmv.jku.at/papers/prasadbieregupta-sttt-7-2-
2005.pdf 
48 http://www.springer.com/us/book/9780387691664 
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What’s the catch? 
 

Property checking goes commercial 
Thanks to the promise of property checking and success in 
some high-profile design companies, several commercial 
products started to appear around the early 2000’s, some 
from the larger EDA vendors, others from new ventures, 
and were actively promoted as a new direction in 
verification. 
 
In each case, leading edge verification teams were 
enthusiastic, using these tools primarily to address the 
hardest problems that were proving intractable for 
conventional verification. Naturally, everyone assumed 
that over time more verification teams would become 
comfortable with formal methods and adoption would 
quickly spread. Some enthusiasts even hoped that formal 
verification might eventually replace simulation. But it 
didn’t work out that way. Why it didn’t might be attributed 
to several factors and is the subject of this chapter. 
 

A problem with assertions 
The idea of adding assertions to a design is simple; the 
practice of adding effective assertions is not always so 
simple. The easy cases (a queue should never overflow for 
example) represent a small fraction of the cases you really 
ought to check. And putting lots of easy assertions 
throughout the design isn’t generally very useful. More 
important usually is to check more complex bounding 
cases dependent on multiple states and tricky sequences, 
one common example being checking for correct interface 
behavior between blocks in the design. 
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In writing the associated assertions (and assumptions), you 
have to think hard about the theoretical operating bounds 
of the design in order to correctly draw the line between 
legal and illegal operation. Draw this line in the wrong 
place and you may report errors on operations which are 
legal, or you may fail to error on operations which are 
truly incorrect. Getting this right can be quite tricky since 
you have to imagine the limits of legal use cases, whereas 
in simulation you just run tests to see if any bugs appear49. 
 
Many verification teams found the investment they had to 
put into thinking of, creating and debugging high-value 
assertions for formal verification was sufficiently onerous50 
that they would build some, but overall assertion density 
(as a measure of how effectively you were using assertion-
based verification) was not very high. Highlighting this 
problem, checking the correct behavior of an interface IP 
(requiring assertions running to hundreds of lines) would 
have been far out of reach for a typical verification team. 
And where teams had already adopted assertion-based 
verification (ABV) for simulation methodology, they often 
reported that adding constraints (“assumes”) to correctly 
bound proofs took as much effort (or more) than 
developing the assertions. 
 

                                                      
49 OK – simulation teams work hard to find those cases 
too. But absolute proofs should be the central value of 
formal, so “best efforts” don’t really measure up 
50 The effort required per assertion (or group of related 
assertions) isn’t abnormally high. It is often on the same 
order as building UVM stimulus generators and 
monitors/checkers. But it’s added effort which must be 
traded off against other verification investments 
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Completeness is expensive 
Remember that formal methods work by analyzing a 
symbolic model of the logic, rather like solving algebraic 
equations generally. This has the great advantage that 
proofs (or bugs), when found, are certain; there’s no need 
to test additional cases. But you pay a price for this 
completeness. Problem complexity in formal methods 
grows exponentially with circuit size, even with the most 
powerful formal engines; in fact, there is no guarantee 
that any given problem can be solved in a finite run-time 
on any size machine51. 
 
This is not the only problem in design engineering which is 
theoretically unbounded. Place and route (particularly 
routing) is an instance of the travelling salesman 
problem52 which also theoretically may never complete in 
reasonable time/space bounds. Yet place and route is 
absolutely routine in digital design today. Formal methods 
have a similar limitation but still continue to be useful in 
finding difficult bugs beyond the reach of simulation-based 
methods. In both these applications, what could in 
principle be impossible has been wrestled into practical 
usefulness in most cases through significant advances in 
empirically-discovered best-practices. But we should 
remember that completion is not guaranteed; some cases 
may still require impractical or even unbounded run-times 
or memory. 
 

                                                      
51 Famously proved by Alan Turing in 1937: 
https://en.wikipedia.org/wiki/Turing%27s_proof 
52 
https://en.wikipedia.org/wiki/Travelling_salesman_proble
m 
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Since formal methods are bounded, if the problem space 
becomes too big you could just surrender. But sometimes 
it is worth switching to a different formal method because 
maybe that proof or bug you are looking for is just a little 
further out. Remember all those different engines and 
techniques we talked about in the last chapter? Tricks to 
see if it might be possible to complete a proof are to try a 
different engine or to try the same engine with different 
parameters. Or you might try decomposing the problem 
into smaller pieces which may be easier to solve 
separately. In fact, multiple techniques can be applied. 
Managing all of these options starts to require more 
expertise on the part of the verifier, which becomes more 
apparent in the next section. 
 

Inconclusives and debug 
If during proving the formal tool stops, it can report one of 
three possibilities for each property: that a property has 
been proven, or that a counter-example has been found 
(maybe a real bug or an artefact of insufficiently-
considered constraints), or in some cases that the run was 
unable to run to completion beyond an acceptable bound. 
Outcomes of the last type are known as inconclusive and 
happen when the tool exceeds a set bound in memory or 
time. Then you have to consider your options. A number of 
possibilities were mentioned above – use a different 
engine or change parameters for the engine. Another 
option is to manually guide the flow of proving, though 
various methods.  
 
A common way to reduce the size of proofs is to replace 
an embedded block of functionality with a simpler model 
covering only what you believe to be the most important 
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behaviors, a process known as abstraction53. This may be 
as simple as replacing a block with a black-box, if that 
functionality isn’t important to what you want to prove. 
Going back to our earlier car example, if we want to prove 
that a car can move forward, we don’t need to worry 
about the details of windows, windshield wipers, 
infotainment and so on. We can start with an abstracted 
model of the car with only the engine, wheels and 
drivetrain. We can’t model the transmission as a black-
box, but we might abstract to a simpler model, considering 
only the park and drive states and ignoring neutral, low 
and reverse options. 

 
Abstracted car 

 
In the design world, we might model a memory as a black-
box, effectively allowing for any possibilities and 
sequences in address and data behavior54. Conversely, 
counters can be challenging for provers because these 

                                                      
53 The Art of Abstraction 
54 Which might be an OK choice in some cases and not OK 
in other cases – depending on use-model 
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have also many possible states, but a black-box model may 
be too unrealistic. Instead, you’ll typically abstract the 
counter with a greatly-simplified model which maybe 
considers only values significant to downstream logic. For 
example, if a downstream FSM changes at counter values 
2, 5 and 10, only these three values may need be modeled 
in the counter; all other possibilities are collapsed into a 
default case. Proving then has a much smaller state space 
to handle and has a higher chance of completion. But 
doing this correctly isn’t trivial; you have to reduce the 
state space enough to enable completion but not so much 
that you may miss real problems. 
 

 
 
Another approach is to decompose the problem into 
smaller parts as shown here and use a technique called 
assume-guarantee at the interface between those blocks. 
Since each part is smaller than the original problem, 
property checking in those independent parts is more 
likely to complete successfully. The blocks are connected 
through properties which are used as constraints 
(assumptions) on the inputs to the downstream block. 
Those assumptions are in turn verified (guaranteed) to 
hold at the outputs of the upstream block. Careful use of 
this technique can reduce problems which are unsolvable, 
or which complete only in hours, to a set of sub-problems 
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each of which can be proven in minutes. But of course, 
you have to figure out how best to divide the problem and 
what invariant properties you will use at each interface. 
You also need to make sure the way you divide doesn’t 
generate false problems. All manageable, but this is not 
for beginners. 
 
There’s yet another approach to manage difficult proving 
problems, using constraints. These will limit the scope of a 
proof by forcing certain signals to take a limited range of 
values. For example, a USB IP may be configurable to run 
in 32-bit mode or 64-bit mode. Either mode is legal, but 
the IP may only be used (at any one time) in one of these 
modes. A formal tool won’t figure this out on its own; you 
have to specify a constraint. If you don’t, it is quite 
possible that you will get an inconclusive result or perhaps 
a meaningless counter-example reflecting unrealistic 
usage. This technique, systematically splitting a problem 
into separate use-cases is known as case-splitting. Often 
the cases are fairly obvious, but you have to be certain or 
somehow prove (perhaps using assume-guarantee 
methods) that there is no possible interaction between 
operation in different cases. 
 

Stuck at the chasm 
You might now have a sense of why formal verification 
didn’t instantly spread everywhere. Where it works, it 
works very well. But in many cases, getting it there can 
take quite a lot of expert supervision and effort. Those 
experts were able to figure out which proof engines to use 
with what parameters when something got stuck. And 
they knew how to apply appropriate guidance to the tool 
to confidently validate behavior without hiding problems. 
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Design teams and tool vendors quickly learned that the 
most successful way to deploy formal tools was to build an 
army of formal experts and farm out all the formal 
problems to them. Some of the tool companies followed 
suit, building teams of highly expert AEs, many with 
advanced degrees in formal verification, who would work 
closely with customers, in many cases running the tools for 
them. The need for help also prompted new companies 
who specialized in consulting for formal applications. 
 
This service-intensive approach worked but necessarily 
limited scaling use of the technology. Formal verification 
couldn’t expand to being used widely because there 
weren’t enough experts available, and even if more 
experts could be trained, that service-based use-model 
would be too expensive to scale in the long-term. In the 
terminology of Geoffrey Moore’s book Crossing the 
Chasm55, formal verification was stuck on the left side of 
the chasm. The experts on the left side (small teams in 
perhaps ten large companies) were happily using formal in 
expert use-models, but there was no way this kind of 
usage could cross over to the larger market and mass 
adoption. Something had to change. 
 

 
Crossing the Chasm 

                                                      
55 https://en.wikipedia.org/wiki/Crossing_the_Chasm 
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Crossing the chasm – fearless formal 
 

Pre-packaged solutions 
To recap, sometimes formal methods would find critical 
problems, but sometimes they wouldn’t, or couldn’t 
deliver a useful result without additional complex effort. 
The return on investment was uncertain for many 
verification managers, indeed even for the companies 
supplying these tools. 
 
Pre-packaged solutions seemed like an obvious answer – 
we have verification IP (VIP)56 for simulation, why not also 
for formal? Assertion IP (AIP) (also known as assertion-
based VIP or AB-VIP) are indeed a part of the answer and 
vendors offer solutions for a range of interfaces. The same 
concept is also scaled down to other simpler yet still 
widely-used design components such as FIFOs, linked-lists 
and special CDC synchronizers, where 
assertions/constraints can be packaged with that design 
IP. 
 
Over time, formal experts found a complementary 
approach in what is now often known as design or 

                                                      
56 A verification IP is a model used in place of a design IP 
(such as a USB function) to verify correct interaction of the 
rest of an SoC design with this IP. VIP are heavily tested 
against associated standards and are widely used for their 
reference quality. Simulation VIP also include verification 
support through assertions, debug support and cover 
properties 
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verification patterns. These aren’t associated with blocks 
in a design necessarily but rather with commonly-
occurring verification objectives and processes. Each time 
the formal team would address a certain type of 
verification objective, say checking clock connectivity at 
the SoC top-level, they found they were building similar 
scripts, similar assertions and constraints and applying 
similar abstractions, even following similar paths in 
decomposing large problems. 
 
Whenever patterns emerge, that’s a strong hint that it 
should be possible to provide value in a different type of 
automation – an Application or App. Pre-canned scripts, 
assertions, etc. aren’t sufficient to handle many possible 
SoCs with different architectures and objectives, but a 
combination of a greatly simplified user input along with 
application-specific code can, under the hood, construct 
and drive all the steps in a specific pattern. This includes 
not only problem setup but also running and managing 
run-time issues through all the methods we described 
earlier. You’ll even find app-specific debug in many cases. 
The app approach really caused formal adoption to take 
off, so much so that today you’ll find around 10 apps 
offered with each of the major formal platforms.  
 

 
Typical Formal Apps 

 
A possible misconception about apps is to view them as 
the beginner’s version of formal, to be abandoned as soon 
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as you have built enough expertise. That view is not 
correct. While apps simplify use of formal methods in their 
target objectives, they are not verification lightweights. 
Even advanced verification teams continue to address 
high-value problems through apps, much more effectively 
than they could through other verification flows. In fact, it 
is not unreasonable to expect that over time more 
standard patterns will emerge and be handled through yet 
more apps. It is arguably better to consider Apps (and AIP) 
as the backbone of formal application, with custom 
property verification reserved for those cases not yet 
covered by packaged solutions. 
 
Since most verification (and some design) teams get their 
start in formal through these apps, we’ll discuss a few of 
these in some detail. To avoid confusing generalizations 
across different products we’ll use VC Formal and a few of 
its associated apps, in rough order of required user 
involvement, to describe applications. You should 
remember that products and apps from other vendors 
may differ in some features and/or use models. 
 

Baby steps –  functional linting 
The simplest app goes by a number of names – auto-
extracted properties (AEP in VC Formal) or functional lint. 
This app looks at the RTL for a module or block, generating 
a number of assertions representing standard “best design 
practices” which are then checked automatically. You 
never have to be concerned with the internals of those 
properties. Some of these checks are often associated with 
linting, but the formal versions checked in the app are less 
“noisy” (report less false errors) than you would find in a 
pure lint check. Most important for those who want to get 
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started with formal, running these checks is almost57 as 
simple as running linting. As a bonus, when an issue is 
found, it is accompanied by a waveform, so it is easy to 
understand the problem. 
 

 
Apparent Lint problem 

which is not a real problem in this case 
 
Take for example an arithmetic overflow check. Suppose 
the RTL code adds two eight-bit (unsigned) numbers and 
puts the result into an eight-bit (unsigned) register. It is 
possible this value can overflow the result, which is what a 
lint-check would report. If you add 16 (decimal) to 240 
(decimal), the result is 256 which requires 9 bits and 
therefore overflows the 8-bit result. However, if the first 
number is in practice limited to never be bigger than 63 
and the second number is similarly limited to never be 
bigger than 127, no error should be reported. Proofs in 
this case require formal analysis to determine the 
functionally-possible bound on the total sum. Here, the 
formal check will be less noisy than the lint check, 
minimizing engineering effort to check false errors which 
makes this app popular in design teams. 
 

                                                      
57 You may need to add some constraints in some cases 
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There are other checks in the AEP app, for example 
checking that a high-impedance bus can never have more 
than one active driver and that it can never be floating, or 
that a finite-state machine (FSM) has no inaccessible 
states (states that cannot be reached through transitions 
from other states in the FSM). The main point about all of 
these checks is that they are really as simple to run as lint, 
and any counter-examples (violations) will be reported in 
the standard verification debug window. This starting step 
into formal is so easy that anyone who understand RTL can 
use it, without any understanding of formal verification. 

 

Coverage analysis – formal helping simulation 
The later stages of coverage-driven signoff are always 
painful. As you build and run test-cases, initially coverage 
rises steeply. But the more you progress, the harder it 
becomes to increase coverage. You keep adding more 
tests after carefully studying which parts of the design are 
not yet being hit in testing, yet each new test barely moves 
the coverage needle, if it moves at all. 
 

 
Progress and challenges in coverage closure 

 
An important part of this problem is that, usually, some 
parts of what seems should be covered simply cannot be 
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covered by any test – they are inaccessible or, in formal 
terms, unreachable. This might seem odd – if RTL code is 
not used, why not get rid of it? Because it might be inside 
a piece of logic which is used in some designs, but not in 
your design. Or it might be legacy code, lingering in the 
design because no-one is really sure if it can be removed 
safely. Remember the engineer’s maxim: if it ain’t broke, 
don’t fix it, because it’s quite likely you’ll break something 
else if you try! So you leave it in there, but you can’t ever 
get coverage on that code in your design and you don’t 
really know what is truly unreachable and what should be 
reachable if you (eventually) find the right test. Figuring 
this out is part of what takes so long to get to coverage 
closure. 
 
This is where a formal app can help – the Formal Coverage 
Analyzer (FCA) in the case of VC Formal. Formal coverage 
analysis works together with your simulation environment 
(with or without existing coverage results) to find logic 
that is provably unreachable. You exclude this logic from 
subsequent simulation coverage runs, giving your 
simulation team a better sense of how much testing they 
really have left to do. This app alone can have a huge 
impact on conventional verification effort and schedules. 
 
Formal coverage analysis requires little to no additional 
input beyond the source RTL. If you already have 
simulation data, you can use it to focus attention on what 
has not yet been reached. And you can make your analysis 
sensitive to all the standard coverage metrics when 
building unreachability lists: line, condition, toggle and 
FSM. The VC Formal App can be even turned on during 
simulation through VCS. Which means most verification 
engineers are not even aware that formal analysis is being 
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run; unreachable states are simply removed from 
coverage analysis. How cool is that? 

 

Having the right connections 
In modern SoCs, most of the clever functionality has 
moved to (reusable) IPs/blocks – CPUs, GPUs, peripherals, 
sensor management, DSPs and others. At the top 
integration level of the chip, design is now almost 
completely about connecting all of these functions, and 
this creates a new verification challenge. We mentioned 
earlier that reuse emphasizes extensive verification at the 
IP/block level so that functionality doesn’t need to be re-
verified at the SoC level. But then how do you verify all the 
top-level connectivity is correct? 
 

 
A block diagram of a typical complex SoC 

Each block may have thousands of connections at this level 
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There are massive levels of connectivity in SoC integration 
(tens to hundreds of thousands of connections) and, 
despite that goal of moving all the cleverness into IPs, still 
quite a lot of logic must be generated to fully manage 
integration. This includes bus management logic, power 
management logic, debug, test and IO control logic, and 
often security and safety management logic. Much of this 
is created quite late in the design schedule, simply because 
some of these features can’t be completely finalized until 
the rest of the design is finalized. That’s not good news for 
simulation-based checking which generally requires 
significant effort to build testbenches; if that effort can’t 
start until the rest of the design is complete, schedules 
stretch further out. 
 
Certain specialized simulation testbenches can be used to 
check connectivity (and often are for controls like clock 
and reset) but these approaches become increasingly 
difficult to manage as higher levels of configuration control 
are added. In structures like IO connectivity with many 
complex configurations, getting to satisfactory coverage 
can become even more challenging. 
 
A simpler approach is to specify and check this top-level 
connectivity through a connectivity check (CC) app. For 
point-to-point connections checks (is this output pin 
connected to these input pins?) – each connection can be 
represented as a single tool command.  Lot of connections 
at the top-level are like this and can be checked using 
these simple commands – often by extracting a list of 
connections from an early revision of the top-level RTL, 
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manually checking that list then using it to regress later 
revisions58. 
 
Some of connectivity required at SoC top-levels is more 
complex than point-to-point connections; one example is 
the input/output (IO) logic. Most SoCs have many more 
internal IOs than can be supported by the limited number 
of pins on a practical chip package. However, all functions 
in the SoC typically don’t have to be active at the same 
time so can be managed by multiplexing signals between 
different function blocks and the IO pads. Architects or 
application engineers build a complex spreadsheet 
defining which signals should be accessible at the same 
time and under what conditions so that all internal 
functions can be accessed under appropriate settings. 
From this spreadsheet, scripts automatically synthesize the 
muxing logic which will manage connectivity between the 
core and the IO pads. 
 

                                                      
58 A popular intermediate format for handling large 
numbers of connections is a file of comma-separated 
values (CSV), which can be viewed, checked and corrected 
in a spreadsheet tool. 
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Input path I/O logic - The mux controls determine whether 

the pad or another internal signal drives Model Y 
 
Checking this logic requires more than point-to-point 
verification, but these structures are still relatively simple, 
which makes them very easy to check in formal 
verification. IO muxing is completely combinational (if you 
don’t include the registers controlling mux selects) and is 
typically not very deep so you don’t have to worry about 
hitting verification bounds. Assertion generation can be 
scripted easily from the same spreadsheet, or through a 
different approach if you want complete independence 
between generation and verification. And a formal proof 
will check every possible variation of signal accesses 
between pads and core under all possible mux control 
settings, something which would require considerable 
effort in simulation setup. 
 
While in the IO example logic is (predominantly) 
combinational, this isn’t always the case for logic 
generated at the top-level. Reset trees in an SoC can be 
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quite complex and may include registers. Debug bus 
muxing may also include registers, either to hold snapshot 
values or to help in sequencing wide-debug snapshots 
onto a narrower debug bus. Even so, these structures still 
remain relatively simple and are well-suited to formal 
proving. 
 
Setup for connectivity checking is a bit more involved than 
for AEP, but still requires no formal expertise. You must 
create scripts or spreadsheets to define the connection 
checks, one-line checks for point-to-point connectivity and 
somewhat more complex specifications for structures like 
IO muxing or debug busses. In almost all cases, verification 
teams find ways to generate these scripts from existing 
files – from a top-level RTL or spreadsheet for point-to-
point connections, or from specification spreadsheets for 
structures like IO muxing. Naturally this implies need to 
verify the scripting and the first-pass spreadsheets are 
correct, but many teams still claim high value and total 
engineering effort saved in this checking, especially in 
regression, even for SoCs as small as 20M gates. 
 

Sequential equivalence – some assembly required 
Our next example takes us one step closer to hands-on 
formal while still limiting the complexity of analysis. In this 
case the app will create the required assertions for you 
(given some simple inputs), it will do the run and it will 
present you with results in the standard debugger, but you 
start to need to get a little more involved in the proving 
process, in part by adding mapping points which can help 
the prover identify points of correspondence between the 
two versions of the design. You may also need to get a bit 
more hands-on if proofs in some cases do not complete 
(are inconclusive). 
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First, what is sequential equivalence checking, why is it 
important and why isn’t it covered in standard equivalence 
checking? We talked about equivalence checking in 
chapter 2. That type of check is used to verify that the 
gate-level model generated though synthesis is 
functionally equivalent to the source RTL (that is, that 
synthesis didn’t break the functionality). Because of the 
way synthesis works, this only needs to check equivalence 
of combinational logic between registers59. 
 
However, some design changes require sequential 
modifications. One such case involves adding clock gating 
for power optimization. The ultimate functionality should 
remain the same in the enabled state, but cycle shifts 
(latency) may be added when enabling and disabling the 
clock since new register stages have been introduced. 
What must be compared between the “before” and 
“after” logic now includes logic which would confuse 
conventional equivalence checking60. 
 

                                                      
59 This isn’t strictly true. Synthesis engines may re-time 
logic across registers, so equivalence checkers have to 
understand these cases also. But allowed deviation from 
the basic principle is limited. 
60 The gated and ungated functionalities are logically 
different but in a well-controlled way 
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Clock gating optimization – before gating (above) and 

after (below) 
 

Since sequential equivalence checking is about comparing 
two designs, you need a source RTL (before you make 
changes) and an implementation RTL (with clock gating 
changes). Just as when you compare two versions of the 
same Word document, you’ll generally see these two RTLs 
side by side in the debugger window. The assertion 
generation part of SEQ is still hands-free – the app will 
generate these for you. 
 
The debug part of SEQ (looking at results) is based on 
Verdi and is going to look very familiar to anyone who uses 
that tool for simulation debug. You look at detected 
problems which leads you to waveforms, then you’ll cross-
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probe to RTL and trace back to root-causes. The only 
aspects that are a little different here are that you are 
looking at two sets of data (the specification/original 
version and the implemented version) and there are some 
extra debug features in Verdi, such as sequential trace-
back to a root cause. But all of this will still be very familiar 
to a verification engineer. 
 
The only part of the task that gets more (formally) hands-
on is the proving phase; you can think of this as a first 
introduction to the details of formal proving. In 
conventional equivalence checking, comparisons are quite 
bounded – tracing most typically stops at sequential 
elements like registers. But in sequential equivalence 
problems, as in clock-gating verification, tracing may have 
to go through multiple sequential elements. This makes 
the potential complexity of the problem very large, which 
in turn can result in proofs which do not complete in 
reasonable time or memory. Proofs terminations of this 
type are our earlier-mentioned inconclusives – no counter-
examples have been found as far as the proof was able to 
reach, but equivalence has not been conclusively proven. 
 
SEQ provides a nicely automated way to overcome this by 
automatically decomposing challenging problems into 
smaller sub-problems, then proving equivalence between 
these sub-problems. You can track this progress in Verdi. 
Where sub-problems converge, those sub-proofs are 
complete. Where they fail to converge or where an 
apparent mismatch (assertion fail) is found, that signals 
need for a new (and automatically triggered) 
decomposition. The app will continue to try to find new 
decompositions, so this part continues to be largely hands-
free (you can still watch progress/status in Verdi). In the 
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simpler cases, the sub-problems converge, leading to a 
proof (or counter-example) at the full problem level. 
 

 
The cone of influence (COI) of a property 

Light-colored logic is in the cone of influence, darker logic 
is not 

 
Where you may have to get involved is if it becomes clear 
that certain parts of the design are resisting convergence. 
This could be caused by memories or counters or other 
complex blocks in the cone of influence for a proof, since 
these typically lead to explosion in size in formal methods. 
At this point you may need to turn to the tools we 
mentioned earlier (abstraction, invariants, constraints). If 
you are planning to be a hands-on verification engineer, 
fear not; learning how to use these techniques doesn’t 
require an advanced degree; this is just more skills 
development to add to your arsenal of verification 
expertise 

 

Other apps 
The apps discussed above are representative of a range of 
usage, from easy to a little more involved. But they aren’t 
the only apps you are likely to use. We won’t go into as 
much detail on other apps, but we will give you a flavor of 
what is commonly available: 
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 Register verification – almost all CPU-based 
designs today are memory-mapped. Components 
in the design are controlled, written to and read 
through registers and that register logic can be 
quite complex – registers which are read/write or 
read-only or are cleared on read or many other 
possibilities. They come in different sizes, and 
different ranges (bitfields) in those registers have 
different functions, each with that wide variety of 
possible read/write properties. And there are more 
variations. Getting this right isn’t just important to 
hardware verification. Software communicates 
with the hardware through these registers, so 
absolute correctness in behavior is vital. Register 
verification apps automate this checking against an 
XML or similar specification. 

 

 Design exploration or navigation apps are useful in 
several contexts: 

o For an RTL designer in exploring aspects of 
the behavior of a design without needing to 
create a testbench or to have a detailed 
understanding of property checking 

o For a verification engineer in building 
assertions and constraints, to explore what 
properties flag as violations or as valid 

o In post-silicon debug to trace-back behavior 
found in the lab to likely root-causes. 

 

 X-propagation analysis apps: In simulation, ‘X’ is 
used to indicate an unknown state (rather than 0 
or 1). Registers which are not reset on design 
initialization will start in this unknown state. In 
some cases, this is not a problem; the state is set to 
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a known value before the value is needed. In other 
cases, if this state is not reset an unknown value 
can cascade through subsequent logic causing 
serious misbehavior. X-propagation analysis looks 
for and flags all potentially serious problems. 

 

 There are other apps, around security analysis and 
signoff, which we’ll talk about later in this book. 

 

Are we there yet? 
These apps provide valuable verification needing only 
limited learning, but they don’t represent all that can be 
accomplished with formal verification. Use for more 
complex or more unique problems requires you to write 
your own assertions and may require some level of 
involvement in getting to proof-convergence through 
abstractions, constraints and other methods. We’ll dip into 
this topic later in the book. 
 
Also, while we’ve said this before, we’ll repeat it again. A 
characteristic of the bounded model checking at the core 
of most formal methods is that while a proof (an assertion 
passes or fails) or a counter-example will often be found 
within the bound of proving, this is not guaranteed. We 
started to see this in our short introduction to the SEQ 
app. In these cases, to get to a proof, you can increase the 
bound, or do more abstraction, or add more constraints, 
or any combination of these. Or you can ask whether the 
depth to which you have checked, with the abstractions 
and constraints you already have, is sufficient to declare 
the proof acceptable. We’ll look a little more at this topic 
later in the book. 
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Now we’re caught up with the basics, it’s time to look at 
how your peers in the semiconductor industry are using 
formal verification today. 
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The role of formal in design today 
 

Adoption 
No matter how clever or easy to use a technology may be, 
the only measure of success that matters to both vendors 
and users is real-world effectiveness, as indicated by 
adoption and growth; how many people / organizations 
are using it and how quickly is that usage spreading? 
Multiple surveys in the industry indicate that both are 
robust and have moved beyond early expert adoption. 
 
For example, one survey61 shows about 20% of reporting 
projects using formal apps in verification and around 35% 
using custom property-checking. Among these, app-based 
verification contributed to significant growth in formal 
usage from 2012 onward, followed by notable pickup in 
custom checks from 2014 onward, indicating perhaps that 
growing familiarity with app-based approaches is making 
verification teams more comfortable in moving also to 
those custom applications. 
 
You might be surprised to hear that formal verification is 
picking up even in FPGA-based design62, at around 10-15% 
of projects in 2014, maybe reflecting the increasingly 
complex nature of FPGA SoCs and the need for 
development teams to check cannot-fail assertions as 
completely as in ASIC designs (especially in mil-aero 
applications where FPGAs are widely used, and now even 

                                                      
61 Verification Trends 2016  
62 2014 Wilson Research Group Functional Verification 
Study 
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in ADAS, where safety and reliability expectations are also 
very high). 
 
Regarding business growth, informal feedback supports a 
view that the top 20 companies (by revenue) designing 
complex SoCs are already investing $50M/year in their 
formal verification flows. Perhaps twice that much is being 
invested across the entire user-base. Also noteworthy is 
the range of applications; designers are applying formal 
methods across the spectrum, from processors and 
graphics, to wireless, networking and storage, image 
processing and recognition. Indeed, there is no obvious 
reason not to use formal in most areas of (reasonably 
complex) digital design today. That said, designs under 
~100k gates (e.g. sensor logic) are not reporting formal 
usage, which isn’t really a big surprise. 
 
Among organizations that have established teams 
dedicated to formal-proving, it is common to hear that 
these methods now address 20-30% of the total 
verification burden63. Formal is no longer a niche 
technology – it is now carrying a verification load similar to 
other verification methods. 
 
An important question is why these teams are using 
formal methods. A cynic might hold that “it’s hot so we 
better do some to keep management off our backs”. We 
doubt this accounts for any significant usage; most 
verification teams are under such intense pressure they 
don’t have time for “show” projects. A much more 

                                                      
63 See the foreword, also Simulation and Formal – Finding 
the Right Balance  
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common reason heard from verification leads is building 
concern that as design complexity continues to grow they 
already see or anticipate important verification problems 
moving beyond the reach of simulation-based methods. 
They are allocating budget, resource and schedule to 
ramping up in formal because they have no choice. Rare or 
intermittent problems which escape to the field are often 
out of reach of “just try harder in simulation” but can 
spiral into disproportionate costs and reputational 
damage. Design and verification teams are increasingly 
turning to formal methods64 65 66 67 as one way to shake 
out those difficult problems. 
 

Size constraints 
Whenever formal methods are discussed, you will hear 
some dismiss them as “only for small problems”. The 
exhaustive nature of formal proving certainly limits the 
size of the state-space that can be considered in a proof, 
but this should be offset against the potential for 
abstraction, automated in many high-value apps, and of 
course continuing improvements in proving technologies, 
especially around advances in heuristics. 
 
Given that, what are realistic size-limits? It depends. A full 
SoC state-space far exceeds the practical limits of any 
current formal method, but there are multiple useful SoC-
level problems which are routinely tackled, especially in 

                                                      
64 Adoption, Architecture and Origami  
65 System-Level Formal  
66 DVCon 2017 Making Formal Property Verification 
Mainstream: An Intel® Graphics Experience  
67 DVCon 2018 Architectural Formal Verification of System-
Level Deadlocks: Qualcomm and Oski 
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apps like connectivity checking where block abstraction is 
easily automated. Cache-coherency verification is an 
example of a system or large-subsystem-level problem 
also commonly reduced to a manageable level through 
abstraction; we’ll talk more about this later. 
 
Unquestionably custom property-checking is most 
commonly used at the IP level, since pre-tested constraints 
and heuristics may not be available and therefore a limited 
state space makes proving less challenging. Even at this 
level, abstraction is often needed to simplify memories 
and datapath elements. However, this need is really a 
feature of the formal approach rather than a limitation. 
You do this in order to enable formal proving on other 
parts of the logic, remembering that simulation may also 
be limited in exhaustively proving through such cases and 
often depends on abstractions such as behavioral models. 

 
Granting all these points, what is the real story on state-
space capacity in formal tools? This is a moving target and 
you’ll no doubt hear different ways to calculate from other 
sources, but one approach we like for its simplicity is this. 
First, size limits are a function of the property being 
tested. The size of the cone-of-influence (COI) of that 
property is much more important than the design size. 
 

 
Reminder: Cone of influence for a property 
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Given this, the problem size of the proof you are facing is 
determined by the number of inputs and state elements in 
that COI. Formal tools will often calculate these value for 
you. Within these bounds, one experienced user in the 
industry68 cites 40K state elements as a practical limit as of 
2017. 
 

Popular targets for property checking 
Clearly, most teams start and continue with apps. These 
add obvious value in covering important parts of the 
verification plan (connectivity, coverage, registers, etc.), 
they’re an easier place to start than custom property-
checking and they help you incrementally build expertise 
in using formal tools. Adding custom property checks 
comes later and is commonly viewed as an incremental 
extension to app-based checking to handle specialized and 
proprietary objectives. 
 

Good targets 
When looking at block-centric checks, whether app-based 
or custom, some objectives fit well with formal while 
others are better handled in simulation. In general, formal 
works well with control-intensive blocks which have lots of 
states and transitions, with complex conditions for 
transitions and possibilities. Think of very complex FSMs or 
multiple inter-operating FSMs. Common blocks in this class 
include arbiters, controllers of various types (memory 
controllers, power management controller, traffic 
controller, interrupt controller, etc.) and schedulers (round 
robin, fair etc.) for quality of service. 
 

                                                      
68 Erik Seligman in Formal Verification: An Essential Toolkit 
for Modern VLSI Design 
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A representative SoC – arrows indicate 
some areas formal will likely find a role 

 
Similarly, in networks, verification of bus bridge behavior 
(from master to bus, from slave to bus or from one bus 
protocol to another) is a good candidate, ensuring that 
data isn’t lost due to FIFO overflow in the bridge, or loss of 
request or acknowledge signals from/to the bridge. 
Equally proving correct operation of network traffic 
management techniques, such as token management, are 
excellent candidates for formal proving. Cache coherent 
networks are a very hot topic in modern multi-processor 
systems and pretty much depend on a significant level of 
formal validation (we’ll have more to say on this topic later 
in the book). 
 
Data transport systems are good candidates, where data is 
being moved from one place to another rather than being 
transformed in computation. Examples can be found in 
crossbar switches and networks-on-chip (NoCs). 
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An area of verification that is always of high interest for 
formal methods is interface checking, especially for 
protocol validation. This usage should be approached with 
some caution. Verifying simple interfaces is not too 
onerous; for example, coding assertions and constraints 
for the AMBA APB protocol can be completed in a matter 
of hours. However, checking for more sophisticated 
interfaces can become very complex very quickly; coding a 
correct and complete set of assertions and constraints for 
AXI3 (or higher) could take weeks. 
 
The best approach for interface-verification is to use pre-
packaged assertion IP whenever possible; these are 
already setup with assertions and constraints proven to 
work effectively in a wide variety of contexts. Supporting 
documentation will tell you what aspects of operation are 
covered and what (if any) you need to handle separately in 
simulation-based testing. 
 

Targets to avoid 
Datapath functions (adders, multipliers, filters, etc.) can be 
challenging for formal methods since they typically expand 
into gigantic state graphs, particularly thanks to the need 
to do bit-level analysis on word-level values. That said, this 
area continues to see advances in proving methods. 
Specialized provers are already known and even available 
in some cases – watch for these techniques appearing in 
commercial tools69, also see the “Looking forward” section 
in this book. 
 

                                                      
69 We touch later on induction methods as one way to 
address this class of designs. 
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Similarly, complex data transformation functions like JPEG, 
MPEG and encryption / decryption are simply beyond the 
capacity and performance of today’s formal engines, at 
least at the fully elaborated design level. However, 
intelligently abstracting the quite regular architectures of 
these designs could put aspects of their behavior within 
the reach of formal. This is another area to watch for 
improvements. 
 
Certain tests on interfaces which require proving over very 
long sequences (such as for PCIe, MIPI, SATA or HDMI) are 
not formal-friendly for an obvious reason. Standard formal 
methods depend on proving/disproving within relatively 
limited clock-cycle bounds; if a proof depends on analysis 
over sequences of many thousands of clock-cycles, the 
state-space can become unmanageable. Even here there 
are already bug-hunting methodologies for directed 
searching across many cycles. 
 
One more example. Formal methods are naturally 
designed to provide binary (pass/fail) responses rather 
than statistical responses. They are not well-suited to 
quality-of-service (QoS) verification, except at the fringes. 
If you want to know whether your system can ever 
deadlock, or will acknowledge a request within some time 
bound, formal can help. But if you want to know whether 
each requestor is handled fairly across different traffic 
profiles, that is a problem for simulation and statistical 
analysis, not a problem for formal. 
 

Product and service solution providers 
Apologies to any solution providers we may have missed; 
we believe this list is fairly exhaustive. 
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Synopsys (VC Formal) 
Synopsys have built their formal product lines 
entirely in-house, originally represented by their 
Magellan product, later adding the Hector high-
level equivalence-checking tool. They subsequently 
developed VC Formal as a completely new product, 
which now has largely superseded Magellan. 
Synopsys has a broad product and solutions 
offering. 
 

Cadence (Jasper Gold) 
Cadence started in this space with BlackTie from 
their Verplex acquisition, evolving into Incisive 
Formal Verifier. Later they acquired Jasper Design 
Automation. Jasper is generally credited with 
raising the profile of formal verification, in part 
through intensive customer support/services 
model and in part by popularizing the app concept. 
Cadence has a broad product and solutions 
offering. 
 

Mentor (Questa Formal) 
Mentor became prominent in formal through their 
acquisition of 0-In, which made them the leading 
player in formal in the early days. They added 
further formal capability in sequential equivalence 
checking and C to RTL equivalence checking 
through initial engagement with Calypto and later 
acquisition. Over time they have rebranded this 
solution as Questa Formal. Mentor has a broad 
product and solutions offering. 
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OneSpin (360 MV family) 
OneSpin was (appropriately) spun out of Infineon 
from an internal formal verification team. OneSpin 
has a broad product and solutions offering. 
 

Oski (services and verification IP) 
Oski is primarily a formal verification services 
company. They provide methodology setup 
services, training, joint development, verification 
kits and IP. 

 
Others 

Real Intent started with a strong focus in formal 
verification. Market presence is now primarily 
around their static verification product, while 
formal capabilities are centered in the Ascent 
family. 
Averant provides formal verification software for 
automatic design checks, sequential equivalency 
checking, property-checking and timing constraints 
checks 
Atrenta (prior to acquisition by Synopsys) used 
formal engines in SpyGlass in application-specific 
uses, for example in CDC analysis and in timing 
constraints checks. 

  

Registered Copy - Do Not Distribute

Reg
ist

ere
d e

Boo
k C

op
y



 91 

Adding formal to your flow 
 
This section is written primarily for verification managers 
and verification team leaders, to guide managing formal 
verification in your organization, without having to be a 
formal expert. We’re not going to spend any time on how 
to setup and run tools; we are going to spend a little time 
on how to plan for formal in the larger testplan, how to 
understand and guide formal team members and how to 
measure progress towards a signoff goal. That said, even 
though this isn’t about tools, methodologies may vary 
between vendors. Again, we’ll be guided by the Synopsys 
VC Formal flow. Many of these concepts will carry over in 
some manner to other flows but you should check with 
your vendor for possible differences. 
 

Organic skills growth 
Despite the obvious advantages in adding formal 
methodologies to a verification flow, simply jumping in as 
you might with any other new capability (buy the tool, 
train on the tool, start to apply on live designs) doesn’t 
always work out very well, in part because formal requires 
a mental switch from familiar simulation methods, also 
because it may be viewed with suspicion by the rest of the 
verification team. On the other hand, postponing adoption 
until you are able to hire formal experts (who we’ll call 
black-belts) generally becomes a decision not to make a 
decision, and that can be an expensive mistake if you 
already anticipate hard problems overwhelming 
simulation-based flows. 
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Formal black-belts are rare today and have little difficulty 
finding jobs with big-name companies. If you want to build 
formal capability in your team, you almost certainly need 
to grow it internally and/or recruit whatever brown-belts 
you can find. Experiences learned from companies who 
have done this successfully suggest some common steps 
towards adoption: 
 

 Encouragement: Verification team members are 
encouraged to learn more about formal verification 
successes, applications and case studies through 
conferences, EDA vendor meetings and personal 
learning. Make a little white-space in those 
crushing product schedules. 

 Find and grow a champion: When one of those 
people shows an interest in championing formal 
methods, encourage and support them with a 
small team, budget, schedule and supervision for 
planning, discussion and feedback. This shouldn’t 
be difficult - most engineers want to learn new 
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skills. Most important, even more than background 
in formal, is willingness to take risks. 

 Freedom to learn and develop a methodology: 
Managers should provide plenty of flexibility for 
learning and finding a path to demonstrate initial 
successes. No-one gets hung up on “we already 
showed that in simulation” or “we got there much 
faster using simulation”. The goal is to learn and 
develop a working flow, especially for the apps. 
Experienced verification teams have been quite 
open about this phase taking a year. 

 Pick the best targets: We’ll say it again – start with 
the Apps and AIPs. These are by far the easiest 
path to develop expertise and show value. Over 
time you can graduate to adding custom property-
checking, but there’s no need to rush to that point. 

 Develop metrics: It is always important to develop 
metrics for what is being proven, but early 
flexibility must be allowed in these metrics – teams 
need to grow into what they can prove and should 
be allowed to start with simple metrics like “no 
unresolved counter-examples”. Capture data on 
effort (engineering, CPU hours, etc.) to help 
develop ROI cases. Over time, push for harder 
limits, e.g. around coverage. 

 Hands-on big picture supervision: An important 
point here is that the verification supervisor (you 
perhaps) should not be completely hands-off. You 
don’t necessarily have to run the tools or 
understand the details, but you do need to keep 
connecting metrics and success back to the big 
picture – is this ultimately headed towards 
production usefulness? At the same time, you can 
become more familiar with the concepts of the 
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domain, so you can learn (at a high-level) how to 
question approaches and provide guidance. 

 Socializing in the design and verification teams: It 
is also very important to socialize progress within 
the larger verification team and to gather 
constructive feedback. Fostering a collaborative 
environment with the formal team ensures 
everyone understands goals and benefits and helps 
the formal folks optimize their focus. You definitely 
don’t want mainstream verifiers looking at this as 
low-value playtime. There is also real benefit in 
including designers in these discussions, first 
because formal verifiers may need their help in 
handling inconclusive proofs. If designers are not 
bought in, they will not provide adequate guidance 
to get to formal signoff. Second, there is value in 
promoting use of formal in RTL design; the formal 
team can help designers use the tools to explore 
behaviors in their RTL, ultimately helping them to 
hand-off higher quality IP to verification. 

 Socializing in the management chain: Successful 
adoption efforts have also been careful to socialize 
progress and goals further up the management 
chain. You might be surprised – even CEOs can be 
interested in what you are doing in formal, 
especially where it helps add to their product 
quality, safety or security pitches. 

 Review, refine, advance: As in any good 
engineering project management, the first round 
should be followed by careful review and analysis: 
what worked well, what didn’t, what should be 
attempted next and how metrics should be 
tightened to more effective levels. This review 
should definitely involve the larger verification 
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team; the expectation should be that in the next 
round the formal team will contribute materially to 
verification closure. That said, be patient. Getting 
to productivity may take a few false starts. Once 
you start getting successes, that success will be 
contagious. 

 

First-cut targets for formal verification 
The essential components of your verification process 
don’t change when you add formal methods to the mix. 
You build a verification plan, partitioned by blocks and 
behaviors to be verified. Within that plan, you will 
segregate the verification/coverage plan by appropriate 
verification technologies: 

 Goals that should be a good fit for formal 

 Goals that will work well with constrained-random 
(IPs, small subsystems) 

 Goals that will work well with emulation 
(regressions, SW/HW co-verification) 

 Goals that will work well with FPGA prototyping 
(regressions, SW/HW co-verification) 

 Goals that must use simulation for other reasons 
(eg AMS verification) 

 
When looking at candidates for formal, consider these 
cases: 

 Any verification task for which an app already 
exists, like top-level connectivity checking, register 
checking and sequential equivalence checks around 
clock gating. This is the easiest place to start; it 
should be much easier than simulation and it will 
be more complete. These cases should be no-
brainers. 
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 Verification plan line-items for which assertion IP 
are already available, for example the section(s) in 
the verification planning covering protocol 
compliance on interfaces such as the AMBA 
interfaces (ACE, AXI, AHB, etc.) and common IO 
standards (USB, aspects of PCIe, etc.) 

 Any case where you know control complexity is 
very high and difficult to cover solely in dynamic 
testing (interdependent FSMs are generally good 
candidates) 

 Blocks which have historically been problem-prone 
from release to release, exhibiting intermittent 
hangs, deadlocks or other issues 

 
And of course, remember good targets are often more 
about the test than the block. Any given block may be best 
served by leveraging multiple verification platforms, each 
targeting different tests. The “challenging blocks” case is a 
good example. Maybe these could benefit significantly 
from some carefully-crafted formal proving in addition to 
dynamic testing. 

 

Detailed planning 
Once targets are identified, then you start planning 
detailed tests. While there is a concept of testbenches in 
formal verification, this term is primarily associated with 
the end-to-end verification concept we mentioned earlier 
in the book. Since this is a fairly advanced usage, you 
probably won’t consider it in early stages of formal 
adoption. In app-based verification and your initial forays 
into custom property verification, this testbench concept 
is not so obviously relevant so we’ll stick to calling these 
tests. 
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Just as in detailed planning for simulation, you should have 
a planning stage per block (viewing top also as a block). In 
each case, you want to start with plain English descriptions 
of checks you want to perform, for example “verify this 
state machine always returns to IDLE after interrupt”. Get 
these descriptions right first, because they’ll be easier to 
understand and debate than the SVA translations they will 
eventually become. 
 
Once detailed planning for a test is complete, your formal 
experts can start building an executable test. This won’t 
look much like the UVM bundles you know (and maybe 
love), running to thousands of lines of code. You should 
expect a few Tcl files, SVA files and bind files, in total 
running to a few hundreds of lines (lines of code similar to 
targeted simulation setups). Again, you can get to 
testbench concepts in formal verification, but that is 
definitely for more advanced users. 
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Monitoring progress 
In simulation you ask team members to provide regular 
updates on how many bugs they found and what coverage 
they have reached. Metrics aren’t so very different in 
formal verification. The team will find counter-examples 
(CEXs/bugs), some in the design and some in their tests. 
They’ll find these quickly at first, then more slowly as bugs 
in the design and in tests are shaken out – this should 
sound very familiar. 
 
A nice surprise for verification managers is that formal 
verification will start finding bugs very quickly; you don’t 
have the typical simulation ramp-up phase of getting the 
testbench working. You may also discover that formal will 
uncover bugs in lots of unexpected places. While 
simulation testing works deliberately through a plan, 
formal races out to the fringes and can expose bugs before 
simulation test; a very real plus for accelerating 
verification closure. 
 
In other cases, the formal team will report completed 
proofs for some properties and inconclusive results for 
others. This is where progress monitoring diverges from 
simulation, getting into questions of whether a completed 
proof is valid (related to constraints that have been set for 
that proof) and what steps can be (or need to be) taken 
next with inconclusive proofs. 
 
The metrics you want to monitor, by verification plan line 
item, are: 

 How many properties have been developed 
(asserts, assumes, covers) 

 How many failures and covers have been found, 
and trends on these 
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 How many completed proofs and trend (but first 
read the next section) 

 How many inconclusive proofs and trend (but first 
read the section on bounded proofs) 

 
 

 
Tracking progress on developed assertion, 

constraint and cover properties 
 

 
Tracking progress on assertion proof-status 

 

Under-constraining and over-constraining 
There’s a Goldilocks aspect to constraints. You don’t want 
too few, you don’t want too many, you want just the right 
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constraints. Under-constraining can cause formal engines 
to explore parts of the state space which are not 
meaningful for any practical use of the DUT (or perhaps for 
the usage you intend). That can have bad consequences. 
Analysis may report spurious counter-examples (CEXs), 
which are failures in ways that are unrealistic. Or analysis 
may simply fail, running out of time or memory. Either way 
this takes engineer and machine time to analyze and to 
debug while not really advancing coverage. 
 

 
The smallest area is an over-constrained 

state space, missing some bugs 
The next larger area is the ideal – 

a reachable and legal space 
 

Good understanding of the modes of operation of the DUT 
or protocols or handshaking used by the blocks is the best 
way to avoid this problem. If you’re finding bogus CEXs or 
a run won’t converge, perhaps you need to add 
constraints – after discussion with the designer or 
architect. Where appropriate, one suggestion is to use pre-
built Assertion IP (AIP) which have built-in constraints. This 
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will help avoid spurious failures and get you up and 
running more quickly. 
 
On the other hand, you can over-constrain, creating 
conditions which prevent exercise of realistic behaviors. 
There are some legitimate reasons to over-constrain 
during the course of setup or bug-hunting, but not in 
signoff. In the VC Formal flow, you can check for this 
possibility by running over-constraint analysis for each 
property. You can also check using reachability analysis for 
cover properties you know you should be able to reach; if 
you can’t reach them, an over-constraint may be to blame. 
 

Bounded proofs (inconclusives) 
As we have (no doubt tediously) repeated again and again, 
inconclusive results are a fact of life in formal verification. 
Remember that verification is hard; there are no silver 
bullet methods to automatically verify everything. Formal 
methods provide a way to exhaustively verify properties 
out to some defined clock-cycle depth (proof-depth). 
Which means that it is possible for such a checker to hit 
that bound without finding a counter-example and 
without completing a proof that the check passes. 
 
In earlier times, inconclusives were considered a real 
barrier to formal adoption – if a result was inconclusive, 
surely that meant it wasn’t useful? Over time a more 
constructive and actionable viewpoint emerged70, starting 
with a view that these were bounded proofs rather than 

                                                      
70 See for example “Signoff with Bounded Formal 
verification proofs”, best paper award in DVCon 2014: 
http://events.dvcon.org/events/proceedings.aspx?id=163-
-2 
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inconclusives. It’s now much more common to view a 
bounded proof as fully acceptable for signoff, as long as 
the bound is well justified71 
 
This is understandable. The tool has exhaustively proved 
the absence of a counter-example out to the proof-depth; 
that is already valuable information. It is very likely that at 
some increased proof-depth, the proof would be 
conclusive. In some cases, it is quite possible that this 
proof at this depth is already sufficient or would certainly 
be sufficient if extended out to a slightly deeper search.  
 

 
Exploring limits on a bounded proof 

 
Of course, you can’t just hope this is true; you need to 
know if the proof you have is practically sufficient or if you 
have to work harder. A starting point is to look at a 
bounded coverage analysis, ideally also providing an 
incremental cover analysis. Coverage as a percentage of 
the property cone of influence is a good starting indicator. 
If this isn’t high, look at the delta in coverage over the last 

                                                      
71 Formal Verification: An Essential Toolkit for Modern VLSI 
Design 
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two steps. A significant increase suggests that it may be 
worth trying again with an increased proof depth. 
 
Another commonly-used technique is to create cover 
properties for “interesting” corner cases. Finding what 
proof-depth is required to hit these properties can be a 
good indicator of a minimum required depth72. 
 
Whenever you are exploring what depth may work, 
eventually you should have a discussion with the designer 
to agree on the “design/property radius” (the depth) they 
would consider acceptable. If the bound is not practical for 
formal proving, then you have to consider abstractions to 
reduce the complexity of the problem space; that’s the 
subject of the next section. 

 

Manually-guided proofs 
It is quite possible that in some cases, an attempt to prove 
a property on a design will fail to complete because a full 
proof would exceed time or memory limits. We talked 
earlier about various methods to manage these cases – 
abstractions, decomposing a problem with assume-
guarantee properties at interfaces between the sub-
problems, and case-splitting with constraints. 
 
You should expect that your team will need to resort to 
this kind of guidance in more than a few cases. But you’ll 

                                                      
72 If you want to test your skill, you can try estimating the 
maximum number of cycles required to prove an assertion 
- with knowledgeable design help, of course. You may find 
in this exercise that you are missing an important 
constraint or two – which might further help in bringing 
proofs to closure. 
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be happy to hear that formal tools now go a long way 
towards simplifying this task. For example, tools can often 
auto-detect candidates for abstraction, such as datapath 
elements (though replacing logic with an inferred 
abstraction typically requires engineer approval). 
Decomposition and managing the assume-guarantee flow 
is also commonly supported by extensive automation in 
apps, a major plus in managing problem size challenges. 
Still, even with these advances, closing on some proofs will 
continue to require hands-on effort and discussion with 
design and other verification teams. 
 

Getting to formal signoff73 
Ultimately you and your formal team should assume 
responsibility for signing-off meaningful components of 
the verification plan. To do that, you first need to measure 
progress against a set of goals. We suggest the following 
table as a starting point, though you can certainly adapt 
(and evolve) this to best suit your needs. These metrics 
range from simple but relatively low confidence to more 
complex with increasing degrees of confidence towards 
signoff quality. Formal tools should help your team gather 
these statistics. And of course, you will want to trend 
these statistics during the evolution of projects. 
 
 
 
 
 
 

                                                      
73 Here we are not talking about formally signing off a 
complete block or IP. That is another interesting topic, but 
beyond the scope of this book. 
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Metric Degree of 
confidence 
provided 

Current project status 

Example 
target 

Actual 

Property 
density 

Low 1 assertion / 
20 lines of 
code 

 

COI/Lines 
covered by 
assertions 

Medium 90%  

Logic/lines 
covered by 
formal core 

High 85%  

% (mutated) 
faults covered 
by assertions 

Highest 95%  

Metrics to use in assessing progress to signoff 
 

In common with simulation, formal tools typically support 
metrics based on (RTL) line, condition/branch, signal 
toggle and FSM state coverage. You can select any one of 
these metrics (in the table we use line-based metrics as an 
example) to give you a measure of completeness of 
coverage when performing analysis. The value of these 
metrics is to provide a much more detailed and functional 
assessment of assertion coverage than you got in early 
assertion-density analysis and is a much more concrete 
measure of verification progress than the simpler 
assertion-density metrics. 
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A formal core is usually smaller than the cone of influence 

 
A more precise measure of formal coverage is based on 
formal cores (also known as proof cores). A formal core is 
the portion of logic required to prove a property and is 
generally a subset of the cone of influence for that 
property. 
 
All of these coverage metrics provide a way to cross-check 
between what you (or the designer) believe should be 
touched in an adequate proof versus what you find the 
tool tells you was really touched. If these correspond, your 
confidence goes up. If not, perhaps the test needs to be 
further refined with more assertions or cover points, or 
perhaps some constraints need to be relaxed. 
 
Another very useful cross-check applies RTL mutations to 
insert bugs into the DUT (this is provided in the VC Formal 
FTA app). You would expect that, under a mutation, at 
least some assertions should fail. If they don’t, this 
suggests that assertion coverage should be improved, or 
perhaps that proofs are over-constrained. By running 
through a number of mutation runs and correcting any 
exposed coverage problems, signoff quality should 
become even more secure, delivering the confidence you 
ultimately want in those proofs. 
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How you ultimately choose to define signoff based on 
these metrics should not, conceptually, be very different 
from how you do this for dynamic signoff. We’re just more 
accustomed to the process for dynamic verification. First 
you need metrics – we’ve already discussed these. You 
want to know that all the assertions you are able to prove 
have been proven with no open counter-examples, and 
that cases which resist formal proving are passed back to 
the dynamic team for a different angle of attack. 
 
You want to know that for each of the proven cases you 
have good coverage, especially for the strictest levels of 
checking (formal core) and that no proofs were over-
constrained. You should have similar expectations for 
bounded proofs, with the added requirement that each 
bound is validated by the designer and/or reachability 
tests for appropriate cover points. And finally, you will 
trend metrics to determine where no further progress is 
being made in formal checking – that you have done 
enough within the bounds of the tasks you assigned to 
formal. 
 
Again, not so very different from how we approach signoff 
in dynamic verification. Of course, you will want to build 
experience and confidence, in order to decide where you 
want to set the bar. When you get there, formal signoff 
should be just as certain as dynamic signoff.  
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Looking forward 
Now you understand the basics of formal verification, 
where can this technology take you next? There are many 
ways of looking at what might come next in any 
technology, from logical next steps to deeply technical 
advances and even wildly-speculative potential. We 
decided to focus on areas that are probably more 
immediately useful to our audience, starting with 
applications that go beyond those discussed earlier to 
address very topical concerns for current SoC designs, and 
then to look at near-term technical advances aiming to 
further enhance the usability and reach of formal 
verification. 
 

Application domains 
Many of the following applications are already available in 
some form, though they continue to advance in 
capabilities. Each builds on an application-aware 
understanding of a problem to construct appropriate 
assertions, limit the scope of checking to increase the 
likelihood of closure and provide application-aware debug. 
We’ll start with a couple of widely-used applications then 
get into some emerging or more advanced use-models. 
 

Functional clock domain crossing analysis 
SoC design and CDC analysis go hand-in-hand. Any device 
supporting (at minimum) multiple peripheral interfaces 
must support multiple clock domains, implying lots of 
clock domain crossings and need for care in managing 
metastable states and lost data at those crossings. Many 
design or verification teams look only at structural analysis 
of these crossings; that analysis is very important but can 
be further enhanced with functionally-aware analysis. 
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When multiple paths between two clock domains converge 

they must be one-hot encoded to guarantee correct 
operation 

 
One example check considers the correctness of data 
transmission between domains. Conventional 
synchronization deals with metastability at crossings, 
ensuring that a register at a crossing doesn’t lockup under 
certain conditions. However, this alone doesn’t ensure 
that transitions may not be dropped or shifted in a 
crossing (for single bits) or may not become temporarily 
invalid (for vector signals). 
 
Handling cases like this requires careful design, using 
handshakes or grey-coding or one-hot coding for example; 
formal verification is a great way to fully check that this 
crossing-management logic has been implemented 
correctly. The more advanced CDC tools will offer these 
kinds of checks alongside structural checks. 
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Functional power intent verification 
Mobile and green technology demands, costs and 
reliability have all driven power to become a high-priority 
in delivering competitive designs. This led to creation of 
the UPF standard for defining power intent to drive 
power-aware implementation. We quickly discovered that 
these intent descriptions for SoC designs can be extremely 
complex, which in turn prompted new verification 
methodologies to validate the correctness of the intent. 
 
Some of this intent can be verified statically. When 
crossing from one voltage domain to another, power 
intent should require a level-shifter. Or an input to one 
block from another block in a power-switchable domain 
should have power intent specifying isolation logic. These 
needs are not use-case dependent so can be checked 
statically. 
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Formally verifying isolation controls based on power state 

 
But think a little more about the isolation case – under 
what circumstances should isolation be enabled? This does 
depend on the use-case, so cannot be verified statically. 
Commonly verification teams further enhance their 
simulation/emulation testbenches to check these cases, 
which provides some level of increased confidence in 
coverage. But there’s an obvious limitation in that 
approach which goes back to the reason formal methods 
first became popular. Creating, running and debugging a 
huge number of test cases to verify the correct behavior of 
the design without power considerations is already a huge 
task. Now imagine having to repeat that analysis across 
each of the possible power configurations for a design. 
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Talk about combinational explosion - this would be 
completely impractical. 
 
Formal verification apps can help here. These look at 
power-state switching expressions to determine if there 
may be conflicts, providing you with confidence that, at 
least to this extent, all possible behaviors have been 
proven correct. 
 

Architectural formal verification 
Some problems cry out for formal verification because the 
number of cases that have to be considered is so high. But 
the system is far too big to fit in a formal proof and there 
are no obvious candidates to abstract to reduce the proof 
size to a reasonable level. The next logical step in these 
cases is to abstract almost everything! One good example 
can be found in cache-coherence checking where proofs 
have to span between multiple compute cores and their 
respective caches. 
 
Multi-core architectures have become popular in SoCs for 
many reasons. These bring with them a well-known and 
still-challenging problem. To optimize performance, cores 
depend on local cache memories which provide faster 
local access to data than would be possible through main 
memory, while still syncing with main memory as needed.  
 
However, those cores still need to assume that they are 
dealing with one logical memory model – the main 
memory. Cache memories are a hardware trick to speed 
up access, but they cannot break that logical assumption. 
This gets tricky when two or more cores are working 
through their respective caches with the same memory 
address, say address X. If core A updates the value at 
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address X in its cache memory, then core B reads the value 
at address X in its cache memory, the value core B reads 
will be wrong. It ought to get the updated value but is 
unaware of the core A update so instead reads the 
outdated value in its own cache. 
 
Cache-coherent architectures have clever ways to deal 
with these cases, which essentially come down to 
snooping on or otherwise being aware of addresses that 
have been changed by other cores. Any attempt to read 
such an address forces an update either locally or through 
main memory to ensure that all cores continue to see a 
consistent (coherent) logical view of the memory. As you 
might imagine, making this work is not simple when still 
trying to preserve most of the performance advantages of 
local caches. Proving correctness of operation in all cases, 
considering all cores and caches, is a complex control 
problem which is perfect for formal except for the fact 
that the whole system is too big. 
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(Simplified) state diagram for cache coherence behavior 
 

In an architectural formal analysis, you replace each of the 
endpoint IPs with a manually constructed FSM, modeling 
just those control behaviors that you consider important 
to the proof. There are generally three steps to this 
process: build each FSM starting from the architectural 
specification of the associated block (because it is more 
rigorous to check against what the architect wanted, 
rather than what the RTL team built). Then you run the 
formal proof on the abstracted system. Finally, you will 
validate each abstracted FSM against the full RTL for the 
corresponding block. This is driven by the assertions and 
constraints you added to the abstracted model, now used 
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as input to the RTL model consistency check. This last step 
can be accomplished though simulation or formal 
verification methods. 
  

Security verification 
Security is a moving target; threats continue to evolve; 
therefore, defenses must also evolve. Unfortunately, 
security is an area where even 99% coverage isn’t good 
enough. Hacks rely especially on rare and obscure 
weaknesses, so verification has to be as close to perfect as 
possible. Which means that formal methods are the only 
acceptable way to signoff. 
 

 
Checking for data leakage or data integrity compromise 

between secure and non-secure domains 
 

The scope of what might possibly need to be checked can 
be rather large, including defenses against embedded 
hardware Trojans74 and side-channel attacks75. However, 
the great majority of commercial activity is centered on 
attacks where software in an insecure domain tries to get 
access to data in a secure domain, by exploiting design or 
architecture weaknesses. As we have seen recently with 
the Meltdown and Spectre bugs76, hardware is not 

                                                      
74 https://en.wikipedia.org/wiki/Hardware_Trojan 
75 https://en.wikipedia.org/wiki/Side-channel_attack 
76 https://googleprojectzero.blogspot.com/ 
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immune from security problems, despite all the advanced 
techniques that are already being used to limit attacks. 
 
Given the range of security techniques that can be applied, 
and the intentionally limited scope of secure areas in many 
cases (to reduce the attack surface), this domain is a 
natural for app support. An app in this area should, for 
example, provide point-to-point checks to verify that data 
cannot leak from critical secure domains (such as 
cryptographic key-stores) to non-secure domains. Apps 
along these lines are already available; you should expect 
to see continuing development and research77 in this area 
based on growing concern and awareness at all levels of 
society. 
 

Safety verification 
Safety verification, particularly functional safety 
verification, is another domain which is very hot, especially 
around automotive applications, but here the role of 
formal methods is a little different. A very important 
aspect of safety verification is in proving that static or 
transient faults in certain critical parts of the design will 
either not affect safe operation or will be appropriately 
mitigated by safety mechanisms designed to manage such 
failures. 
 

                                                      
77 https://people.csail.mit.edu/nickolai/papers/chong-nsf-
sfm.pdf 
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Using formal to filter fault that should be verified in safety 

checks 
 

A common technique to perform this testing is to use 
mechanisms to inject faults, then determine if they will be 
detected at critical outputs. This works very well but can 
become expensive in simulation when faulting every node 
that might be critical, even when using clever incremental 
analysis techniques. Formal methods can be used to filter 
faults before simulation or after simulation, finding cases 
that cannot be observed or controlled, which should 
greatly reduce analysis and debug time78 79. 
 

Datapath Validation 
We mentioned earlier that standard formal verification 
methods struggle with datapath components. A particular 

                                                      
78 Automotive Safety and Security in a Verification 
Continuum Context 
79 How Formal Reduces Fault Analysis for ISO 26262 
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problem in arithmetic functions is the need to do bit-level 
analysis on word-level values, which quickly leads to 
explosion in the corresponding state-graph80. But we use 
datapath functions everywhere – in CPUs, GPUs, DSPs, 
cryptography, neural nets, GPS location and many other 
places (commonly these functions are add, subtract, 
multiply, divide, square-root on integer or floating-point 
values). Since all of these functions have well-defined 
specifications, they should be a natural fit for formal. In 
fact, the bigger companies are already using advanced 
formal methods such as theorem-proving to verify these 
designs. 
 
Some of these methods are starting to appear in 
commercial tools, although they are not typically as well-
known as the more mainstream formal methods. One 
example is the Synopsys Hector81 product, optimized to 
validate high-level properties / equivalence for functions 
like datapath operators. You should expect solutions like 
this to play a more prominent role in formal verification 
platforms in the near future. 
 

                                                      
80 Formal Hardware Verification: Methods and Systems in 
Comparison 
81 Formal Verification and Validation of High-Level 
Optimizations of Arithmetic Datapath Blocks 
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Datapath verification 

  

Technology advances 

Formal tools are always advancing – improving 
performance and heuristics to extend the size of problems 
that can be handled, improving parallelism to more 
effectively leverage scalable analysis in the cloud (a 
popular advance these days in many EDA tools) and adding 
further improvements in usability. We’ll mention here a 
few examples of special interest. 
 

Machine learning 
A major area of development is in use of machine learning 
(ML) to simplify the use of formal methods. ML is hot in 
almost every domain today because it can capture and 
apply human skills not easily captured in algorithms (such 
as recognition, understanding and decision-making based 
on incomplete data) which are difficult or impractical for 
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humans to reasonably process. One example presented in 
a FMCAD Tutorial in 201682 simplifies debug through an 
intelligent interface. 
 

 
A machine-learning bot conversation during formal debug 

 

                                                      
82 
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD16/
slides/tutorial1.pdf 
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Modern debuggers for SoC verification are immensely 
capable but they depend on a wide range of modes and 
options to offer the features needed by specialists in each 
verification domain. Capabilities to support specific debug 
task are in the tool but learning how to use those features 
effectively can take a while. There is another option – in 
effect an expert chatbot supporting natural language 
processing (NLP). You can tell the bot in natural language 
what you want to do. It can then analyze/search and 
suggest a next step (again in natural language). 
 
This conversation can proceed through multiple steps 
through a debug cycle until you get to a desired goal; 
possibly from finding a counter-example, to finding the 
problem was over-constrained, to correcting that problem 
and re-running, to finding a different counter-example, to 
finding a root-cause problem. You can still look at 
waveforms, but you skip all the “set this mode, set this 
option, pick this menu, …” stuff. This doesn’t just make 
debugging easier, it also accelerates time to closure. 
 

Advances in tools and methods 
This is an area where vendors are naturally unwilling to 
share details, but we are free to speculate based on 
directions in academia and obvious needs around present 
methods. 
 

There are multiple directions that are being taken in proof 
engines. One particularly interesting example is in use of 
induction-based methods. Induction is a mathematical 
technique of great antiquity, used to prove, in a finite 
number of steps, statements which may run through an 
infinite range of possibilities. 
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What makes this kind of proof appealing is that, at least 
where applicable, it has the potential to provide 
unbounded proofs. One obvious application is in proving 
the correctness of implementations of datapath elements 
(a multiplier for example). 
 

 
Example of a simple induction 

Induction also has relevance to abstraction83, another area 
where tools continue to advance, particularly when it 
comes to automated abstraction. Ideally, you’d like a 
formal tool to figure out all the structures in your design 
which the tool knows will cause a proof to blow up, 
determine an appropriate abstraction for each of these 
functions and automatically (or in some guided manner) 
generate the command to replace those functions with the 
corresponding abstractions. 
 

                                                      
83 http://prod.sandia.gov/techlib/access-
control.cgi/2014/1420533.pdf 
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But designers have unbounded ingenuity in how they build 
functions, so automatic detection isn’t easy, nor is 
automatic generation of an abstraction which will 
faithfully model the behavior of that function. So tool 
developers continue to advance the bounds of what they 
can detect and replace automatically, or if needed with a 
little guidance from a verification engineer. 
 
What we discussed in this section has been only a sampler 
of R&D directions in formal verification. You may want to 
check out our suggested reading on Deeper Background 
for more on this topic. 
 

The outlook for formal verification 
There was a time when formal verification was looked on 
as a niche technology for specialized problems, but that 
view is now rare. Large systems and semiconductor 
companies now look on formal as a first-class component 
in any credible verification strategy, not as a way to 
replace other verification technologies but as an essential 
complement to those technologies. EDA companies have 
recognized this trend and are investing the same level of 
attention in their formal products that they invest in 
simulation-based methods. This is clearly signaled in the 
proliferation of easy-to-use apps and continuing expansion 
in problem sizes that can be addressed, along with very 
active research in directions like ML-assisted debug. 
 

Much of what drives these advances is making formal 
verification more accessible to users who are not expert in 
formal methods, people like you who are expert in many 
other domains, who have a job to do, and are quite willing 
to embrace formal as a tool, but not necessarily as a 
career choice. 
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At a company level, pressure to use formal methods will 
always increase. As designs become more complex, more 
multi-core and more security- and safety-sensitive, formal 
proofs are often the only way to get to satisfactory 
closure. Greatly improved usability has effectively 
eliminated the barriers to adoption, since you can now 
ramp up formal skills along a gentle slope if needed. 
 
And on a personal level, there is no question that adding 
proven skills in formal verification will greatly enhance 
your marketability84. Product teams are now looking for 
verification engineers well-versed in all or at least most 
verification techniques. Adding formal skills to your 
resume is a pretty obvious plus, especially since you no 
longer need an advanced degree to get there! 

  

                                                      
84 If you doubt this, check out searches for formal 
verification engineers at companies like Google, Facebook 
and Apple 
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If you want to go deeper 
There are many excellent and more detailed sources of 
information on formal verification. We have selected just a 
few we think you might want to follow, either based on 
continuing our theme of a high-level overview without 
getting too technical or, in the deeper background 
selection, information on the beginnings of this field, 
current state and where it is headed. 
 
More detail for beginners 

Erik Seligman: Formal Verification: An Essential 
Toolkit for Modern VLSI Design 
Douglas Perry and Harry Foster: Applied Formal 
Verification: For Digital Circuit Design 
Ashish Darbari and Iain Singleton: Industrial 
Strength Formal Using Abstractions 
And, of course, training from the vendors who 
supply (or may, if you buy) your formal tools 

 
Deeper background 

Ed Clarke: Model Checking (MIT Press) 
Rolf Dreschler: Formal System Verification: State-of 
the-Art and Future Trends 
Ken McMillan: Symbolic Model Checking 
Malay Ganai: SAT-Based Scalable Formal 
Verification Solutions  
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Glossary of formal terms 
Like all of us, formal experts love their jargon and don’t 
always understand that the rest of us may be confused by 
their specialized language. Fortunately, there aren’t too 
many of these special terms: 
 

Term Informal definition 

App A pre-packaged application to make 
user involvement in checking some 
specific characteristic of a design 
much simpler than would be required 
through custom property checking 

Assert A requirement on logical behavior 
which can be checked in verification 

Assume A SystemVerilog constraint – see 
Constraint 

Assume-
guarantee 

A way to simplify proof problems is to 
break the circuit into smaller pieces, 
say an upstream piece of logic and a 
downstream piece. You first constrain 
the inputs to the downstream piece 
(assume a certain behavior) and 
prove that piece functions as 
expected, then you use those 
assumptions as assertions on the 
outputs of the upstream piece and 
prove (guarantee) that those 
assumptions used in the downstream 
proof are valid. 

BDD Binary decision diagrams – a data-
structure used in certain proof-
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engines such as for Symbolic Model 
Checking.  

BMC Bounded model checking – a type of 
formal engine which checks a 
property against the circuit in a 
breadth-first approach until either a 
counter-example is found, or a 
specified depth is reached. 

Bounded proof A case where no proof or counter-
examples were found out to a 
specified proof depth, where 
checking stopped. The proof is 
bounded because there is no 
guarantee that counter-examples do 
not exist beyond that depth. 

CEX See counter-example 

Constraint A property which limits behavior of 
some set of signals in the circuit 
during proving. This could be as 
simple as fixing a signal value but can 
be as complex as a checking property. 
One example would be to define a 
one-hot constraint on a set of inputs. 

Counter-
example 

An example of an execution path 
(generally presented as waveforms) 
which demonstrates that the 
property that you want to prove is 
clearly false. 

Inconclusive The result of a formal proof is 
inconclusive, if the proof cannot be 
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completed or counter-example 
cannot be found within the specified 
time or memory bound by a given 
formal method, and therefore you 
can’t conclude the correctness or 
incorrectness of a property.  In the 
case of BMCs, the proof may 
terminate at a finite depth without 
finding a failure. 

Model-
checking 

A formal technique which determines 
if a defined property or specification 
holds true for a given design or 
model. 

Proof depth One definition is the cycle bound 
reached on an inconclusive property 
result.  

SAT A type of formal engine which looks 
for a set of variable assignments 
which will satisfy the disproof of an 
assertion. This approach can be very 
fast since it isn’t attempting to 
globally prove the truth of an 
assertion. It will stop as soon as a 
counter-example is found, if one 
exists (within the assigned proof 
depth). 

Sequential 
depth 

The number of clock-cycles required 
from the start of a proof to reach a 
certain goal – which might be testing 
an assertion or reaching a coverage 
property for example. 
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State space The graph of all possible states and 
transitions in a design. 

State space 
diameter (or 

radius) 

The minimum number of cycles 
required to reach the farthest 
reachable state from the starting 
state.  

SVA SystemVerilog Assertions – the 
standard format used to express 
properties, assertions and 
constraints. 

Vacuous proof When testing a proposition “X implies 
Y”, if X is false then, by a peculiarity of 
logic, the proposition is true. Of 
course, this is meaningless, which is 
why it is called vacuous. In formal 
verification this can happen with “if X 
then Y” assertions. If X is never 
exercised in proving (perhaps 
because of an over-constraint), the 
assertion will be reported as 
vacuously proved. 

Witness In the case of a property that holds 
true, a witness is one example of a 
path which demonstrates that the 
property is true. 
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