
HDL Compiler™ for Verilog User Guide

Version U-2022.12-SP3, April 2023

Copyright and Proprietary Information Notice
© 2023 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

2

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

Feedback

Contents
New in This Release .9

Related Products, Publications, and Trademarks .9

Conventions .10

Customer Support . 11

Statement on Inclusivity and Diversity . 11

1. Verilog for Synthesis . 13

Reading Verilog Designs .13
Specifying the Verilog Version . 14
Automated Process of Reading Designs With Dependencies 15

The -autoread Option . 16
File Dependencies . 16

Setting Library Search Order . 17
Ignoring Modules During the Read Process . 19

Elaboration Command Based Interface-Only Method (Recommended) . . . 19
Analyze Command Based Interface-Only Method .20

File Format Inference Based on File Extensions . 21

Coding for QoR . 21

Reading Designs Using the VCS Command-Line Options .22

Reporting HDL Compiler Settings .23

Customizing Elaboration Reports . 23

Reporting Elaboration Errors in the Hierarchy . 24
Example of Reporting Elaboration Errors .24

Querying Information about RTL Preprocessing .28

Netlist Reader . 30

Automatic Detection of Input Type . 30

Parameterized Designs . 31

Defining Macros . 34
Predefined Macros . 35
Global Macro Reset: `undefineall . 35
Persistent Macros . 36

3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Use of $display During RTL Elaboration . 36

Inputs and Outputs . 37
Input Descriptions . 38
Design Hierarchy . 39
Component Inference and Instantiation . 40
Naming Considerations .40
Generic Netlists .40
Inference Reports . 43
Error Messages .43

Language Construct Support . 44

Licenses .44

2. Coding Considerations . 45

General Verilog Coding Guidelines .45

Guidelines for Interacting With Other Flows . 46
Synthesis Flows . 46
Low-Power Flows . 46
Verification Flows . 49

3. Modeling Combinational Logic . 52

Synthetic Operators .52

Logic and Arithmetic Expressions .54
Basic Operators . 54
Addition Overflow . 55
Sign Conversions . 57

Selection and Multiplexing Logic .61
The SELECT_OP Cell . 61
The MUX_OP Cell . 63
Default SELECT_OP and MUX_OP Inference Behavior 65
Controlling Selection Statement Inference . 66

Controlling Selection Statement Inference Locally .66
Controlling Selection Statement Inference Globally68
MUX_OP Inference and Resource Sharing . 69

Controlling Array Read Inference . 69
Controlling Array Read Inference Globally .70
Controlling Array Read Inference Locally . 70

4

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Inferring One-Hot Multiplexer Logic . 71

Bit-Truncation Coding for DC Ultra Datapath Extraction .72

Latches in Combinational Logic . 75

4. Sequential Logic . 77

Generic Sequential Cell SEQGEN . 77

Inference Reports for Registers . 80

Register Inference Guidelines .81
Multiple Events in an always Block . 81
Minimizing Registers .82
Keeping Unloaded Registers . 84
Preventing Unwanted Latches . 86
Register Inference Limitations . 87

Register Inference Examples . 88
Inferring Latches . 88

Basic D Latch .88
D Latch With Asynchronous Set: Use async_set_reset89
D Latch With Asynchronous Reset: Use async_set_reset89
D Latch With Asynchronous Set and Reset: Use
hdlin_latch_always_async_set_reset . 90

Inferring Flip-Flops . 91
Basic D Flip-Flop . 92
D Flip-Flop With Asynchronous Reset Using ?: Construct93
D Flip-Flop With Asynchronous Reset .93
D Flip-Flop With Asynchronous Set and Reset . 94
D Flip-Flop With Synchronous Set: Use sync_set_reset 95
D Flip-Flop With Synchronous Reset: Use sync_set_reset 95
D Flip-Flop With Synchronous and Asynchronous Load 96
D Flip-Flops With Complex Set and Reset Signals 97
Multiple Flip-Flops With Asynchronous and Synchronous Controls98

5. Modeling Three-State Buffers . 100

Using z Values . 100

Three-State Driver Inference Report .101

Assigning a Single Three-State Driver to a Single Variable 101

Assigning Multiple Three-State Drivers to a Single Variable102

Registering Three-State Driver Data .103

5

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Instantiating Three-State Drivers . 104

Errors and Warnings . 105

6. HDL Compiler Synthesis Directives . 106

async_set_reset .107

async_set_reset_local . 107

async_set_reset_local_all . 107

dc_tcl_script_begin and dc_tcl_script_end . 108

enum . 110

full_case .111

infer_multibit and dont_infer_multibit . 113
Using the infer_multibit Directive . 114
Using the dont_infer_multibit Directive . 115
Reporting Multibit Components . 117

infer_mux . 118

infer_mux_override . 118

infer_onehot_mux . 119

keep_signal_name .119

one_cold . 119

one_hot . 119

parallel_case . 120

preserve_sequential . 121

sync_set_reset .121

sync_set_reset_local . 122

sync_set_reset_local_all . 123

template . 123

translate_off and translate_on (Deprecated) .124

Directive Support by Pragma Prefix . 124

A. Verilog Design Examples . 126

Coding for Late-Arriving Signals . 126
Duplicating Datapaths .126
Moving Late-Arriving Signals Close to Output . 128

6

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Overview .129
Late-Arriving Data Signal Example 1 .131
Late-Arriving Data Signal Example 2 .132
Late-Arriving Data Signal Example 3 .134
Late-Arriving Control Signal Example 1 .136
Late-Arriving Control Signal Example 2 .137

Master-Slave Latch Inferences . 139
Overview for Inferring Master-Slave Latches . 139
Master-Slave Latch With One Master-Slave Clock Pair139
Master-Slave Latch With Multiple Master-Slave Clock Pairs 140
Master-Slave Latch With Discrete Components .141

B. Verilog Language Support . 142

Syntax . 142
Comments . 142
Numbers . 143

Verilog Keywords .144

Unsupported Verilog Language Constructs . 145

Construct Restrictions and Comments . 146
always Blocks . 147
generate Statements .147

Generate Overview .147
Types of generate Blocks .147
Anonymous generate Blocks . 148
Loop Generate Blocks and Conditional Generate Blocks 151
Restrictions . 152

Real Math Functions .152
Restrictions . 153

Conditional Expressions (?:) Resource Sharing .153
Case . 154

casez and casex . 154
Full Case and Parallel Case . 154

defparam . 156
disable . 156
Blocking and Nonblocking Assignments .157
Macromodule .158
inout Port Declaration . 158
tri Data Type . 158
HDL Compiler Directives . 159

7

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

`define .159
`include . 160
`ifdef, `else, `endif, `ifndef, and `elsif . 161
`undef . 161

reg Types . 162
Types in Busing . 162
Combinational while Loops .162

Verilog 2001 and 2005 Supported Constructs . 166

Ignored Constructs . 167
Simulation Directives . 167
Verilog System Functions . 168

Verilog 2001 Feature Examples . 168
Multidimensional Arrays and Arrays of Nets . 168
Signed Quantities . 169
Comparisons With Signed Types . 171
Controlling Signs With Casting Operators . 172
Part-Select Addressing Operators ([+:] and [-:]) .173

Variable Part-Select Overview . 173
Example—Ascending Array and -: .174
Example—Ascending Array and +: . 175
Example—Descending Array and the -: Operator 175
Example—Descending Array and the +: Operator176

Power Operator (**) . 177
Arithmetic Shift Operators (<<< and >>>) . 177

Verilog 2005 Feature Example . 178
Zero Replication . 178

Glossary . 179

8

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

About This Manual
The HDL Compiler tool translates a Verilog hardware language description into a generic
technology (GTECH) netlist that is used by the Synopsys synthesis tools to create an
optimized netlist. This manual describes the following:

• Modeling combinational logic, synchronous logic, three-state buffers, and multibit cells
with the HDL Compiler tool for Verilog

• Sharing resources

• Using directives in the RTL

Audience

The HDL Compiler for Verilog User Guide is written for logic designers and electronic
engineers who are familiar with the Design Compiler™ tool. Knowledge of the Verilog
language is required, and knowledge of a high-level programming language is helpful.

This preface includes the following sections:

• New in This Release

• Related Products, Publications, and Trademarks

• Conventions

• Customer Support

• Statement on Inclusivity and Diversity

New in This Release
Information about new features, enhancements, and changes, known limitations, and
resolved Synopsys Technical Action Requests (STARs) is available in the HDL Compiler
Release Notes on the SolvNetPlus site.

Related Products, Publications, and Trademarks
For additional information about the HDL Compiler tool, see the documentation on the
Synopsys SolvNetPlus support site at the following address:

https://solvnetplus.synopsys.com

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

9

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

About This Manual
Conventions

Feedback

You might also want to see the documentation for the following related Synopsys products:

• DC Explorer

• Design Vision™

• Design Compiler®

• Fusion Compiler™

• DesignWare® components

• Library Compiler™

• Verilog Compiled Simulator® (VCS)

Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list

Courier bold Indicates user input—text you type verbatim—in examples, such
as
prompt> write_file top

Purple • Within an example, indicates information of special interest.
• Within a command-syntax section, indicates a default, such as

include_enclosing = true | false
[] Denotes optional arguments in syntax, such as

write_file [-format fmt]

... Indicates that arguments can be repeated as many times as
needed, such as
pin1 pin2 ... pinN.

| Indicates a choice among alternatives, such as
low | medium | high

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

About This Manual
Customer Support

Feedback

Convention Description

Bold Indicates a graphical user interface (GUI) element that has an
action associated with it.

Edit > Copy Indicates a path to a menu command, such as opening the Edit
menu and choosing Copy.

Ctrl+C Indicates a keyboard combination, such as holding down the Ctrl
key and pressing C.

Customer Support
Customer support is available through SolvNetPlus.

Accessing SolvNetPlus
The SolvNetPlus site includes a knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNetPlus site also gives you
access to a wide range of Synopsys online services including software downloads,
documentation, and technical support.

To access the SolvNetPlus site, go to the following address:

https://solvnetplus.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to sign up for an account.

If you need help using the SolvNetPlus site, click REGISTRATION HELP in the top-right
menu bar.

Contacting Customer Support
To contact Customer Support, go to https://solvnetplus.synopsys.com.

Statement on Inclusivity and Diversity
Synopsys is committed to creating an inclusive environment where every employee,
customer, and partner feels welcomed. We are reviewing and removing exclusionary
language from our products and supporting customer-facing collateral. Our effort also
includes internal initiatives to remove biased language from our engineering and working
environment, including terms that are embedded in our software and IPs. At the same
time, we are working to ensure that our web content and software applications are usable

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com
https://solvnetplus.synopsys.com

About This Manual
Statement on Inclusivity and Diversity

Feedback

to people of varying abilities. You may still find examples of non-inclusive language in our
software or documentation as our IPs implement industry-standard specifications that are
currently under review to remove exclusionary language.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

12

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

1
Verilog for Synthesis

These topics describe the Verilog constructs supported by the Synopsys synthesis tools:

• Reading Verilog Designs

• Coding for QoR

• Reading Designs Using the VCS Command-Line Options

• Reporting HDL Compiler Settings

• Customizing Elaboration Reports

• Reporting Elaboration Errors in the Hierarchy

• Querying Information about RTL Preprocessing

• Netlist Reader

• Automatic Detection of Input Type

• Parameterized Designs

• Defining Macros

• Use of $display During RTL Elaboration

• Inputs and Outputs

• Language Construct Support

• Licenses

Reading Verilog Designs
You can use either of these methods to read Verilog designs into the HDL Compiler tool.

• read_verilog or read_file -format verilog
For designs containing interfaces or parameterized designs, set the
hdlin_auto_save_templates variable to true.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

13

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reading Verilog Designs

Feedback

For example,

set_app_var hdlin_auto_save_templates true
read_verilog parameterized_interface.v
current_design top
link
compile
write -format verilog -hierarchy \
 -output gates.parameterized_interface_rd.v

• analyze -format verilog {files}
elaborate topdesign

For example,

analyze -format verilog parameterized_interface.v
elaborate top
compile
write -format verilog -hierarchy \
 -output gates.parameterized_interface_an_elab.v

This method is recommended because of the following reasons:

◦ Recursive elaboration is performed on the entire design, so you do not need an
explicit link command. The elaborate command includes the functions of the
link command.

◦ For designs containing interfaces or parameterized designs, you do not need to set
the hdlin_auto_save_templates variable to true.

Note:
The tool automatically supports designs that are encrypted according to the
IEEE 1735 standard.

Note:

See Also

• Parameterized Designs

• Automatic Detection of Input Type

Specifying the Verilog Version
To specify which Verilog language version to use during the read process, set the
hdlin_vrlg_std variable . The valid values for this variable are 1995, 2001, and 2005,
corresponding to the 1999, 2001, and 2005 Verilog LRM releases respectively. When
you set the hdlin_vrlg_std variable to a valid version, the Verilog LRM features of this
version are enabled when you read Verilog RTL into the tool. The default version is 2005.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

14

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reading Verilog Designs

Feedback

Automated Process of Reading Designs With Dependencies
You can enable the tool to automatically read designs with dependencies in correct order
by using the -autoread option of the read_file or analyze command.

• read_file -autoread
This command reads files with dependencies automatically, analyzes the files, and
elaborates the files starting at a specified top- level design. For example,

dc_shell> read_file -autoread file_list -top design_name
You must specify the file_list argument to list the files, directories, or both to be
analyzed. The -autoread option locates the source files by expanding each file or
directory in the file_list argument. You must specify the top design by using the -top
option.

• analyze -autoread
This command reads files with dependencies automatically and analyzes the files
without elaboration. For example,

dc_shell> analyze -autoread file_list -top design_name
You must specify the file_list argument to list the files, directories, or both to be
analyzed. The -autoread option locates the source files by expanding each file or
directory in the file_list argument. If you use the -top option, the tool analyzes only the
source files needed to elaborate the top-level design. If you do not specify the -top
option, the tool analyzes all the files in the file_list argument, grouping them in the order
according to the dependencies that the -autoread option infers.

Example

The following example specifies the current directory as the source directory. The
command reads the source files, analyzes them, and then elaborates the design starting
at the top- level design.

dc_shell> analyze {.} -autoread -recursive -top E1
The following example specifies the file extensions for Verilog files other than the default
(.v) and sets file source lists that exclude some directories.

dc_shell> set_app_var hdlin_autoread_verilog_extensions {.v .ver}
dc_shell> set my_sources {mod1/src mod2/src}
dc_shell> set my_excludes {mod1/src/incl_dir/ mod2/src/incl_dir/}
dc_shell> analyze $my_sources -recursive -exclude $my_excludes \
 -autoread -format verilog -top TOP

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

15

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reading Verilog Designs

Feedback

Excluding directories is useful when you do not want the tool to use those files that have
the same file extensions as the source files in the directories.

See Also

• The -autoread Option

• File Dependencies

The -autoread Option
When you use the -autoread file_list option with the read_file or analyze
command, the resulting GTECH representation is retained in memory. Dependencies
are determined by the files or directories specified in the file_list argument. If the file_list
argument changes between consecutive calls of the -autoread option, the tool uses the
latest set of files to determine the dependencies. You can use the -autoread option on
designs written in any VHDL, Verilog, or SystemVerilog language version. If you do not
specify this option, only the files specified in the file_list argument are processed and the
file list cannot include directories.

When you specify a directory as an argument, the command reads files from the directory.
If you specify both the -autoread and -recursive options, the command also reads files
in the subdirectories.

When the -autoread option is set, the command infers RTL source files based on the
file extensions set by the variables listed in the following table. If you specify the -format
option, only files with the specified file extensions are read.

Variable Description Default

hdlin_autoread_exclude_extensions Specifies the file extension to exclude files
from the analyze process.

" "

hdlin_autoread_verilog_extensions Specifies the file extension to analyze files
as Verilog files.

.v

hdlin_autoread_vhdl_extensions Specifies the file extension to analyze files
as VHDL files.

.vhd .vhdl

hdlin_autoread_sverilog_extensions Specifies the file extension to analyze files
as SystemVerilog files.

.sv .sveri
log

File Dependencies
A file dependency occurs when a file requires language constructs that are defined in
another file. When you specify the -autoread command, the tool analyzes the files (and

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reading Verilog Designs

Feedback

elaborates the files if you use the read_file command) with the following dependencies
in the correct order:

• Analyze dependency

If file B defines entity E in SystemVerilog and file A defines the architecture of entity
E, file A depends on file B and must be analyzed after file B. Language constructs
that can cause analyze dependencies include VHDL package declarations, entity
declarations, direct instantiations, and SystemVerilog package definitions and import.

• Link dependency

If module X instantiates module Y in Verilog, you must analyze both of them before
elaboration and linking to prevent the tool from inferring a black box for the missing
module. Language constructs that can cause link dependencies include VHDL
component instantiations and SystemVerilog interface instantiations.

• Include dependency

When file X includes file Y using the 'include directive, this is known as an include
dependency. The -autoread option analyzes the file that contains the `include
directive statement when any of the included files are changed between consecutive
calls of the -autoread option.

• Verilog and SystemVerilog compilation-unit dependency

The dependency occurs when the tool detects files that must be analyzed together
in one compilation unit. For example, Verilog or SystemVerilog macro usage and
definition are located in different files but not linked by the `include directive, such
as a macro defined several times in different files. The -autoread option cannot
determine which file to use. Language constructs that can cause compilation-unit
dependencies include SystemVerilog function types, local parameters, and enumerated
values defined by the $unit scope.

Setting Library Search Order
When multiple design libraries are available during elaboration, the tool searches for a
particular design in the libraries that are defined by the define_design_lib command.
The library defined last is searched first. This library search order is the default and applies
to the entire design, including the subdesigns. By default, the tool searches the library
of the parent design first for a subdesign. If the subdesign is not found, it searches other
libraries in this search order.

For example, the library search order is defined as lib3, lib2, and lib1in the following
define_design_lib command sequence:

dc_shell> define_design_lib lib1 ...
dc_shell> define_design_lib lib2 ...

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reading Verilog Designs

Feedback

dc_shell> define_design_lib lib3 ...
To change the library search order, list the libraries by using the -uses option with the
analyze command. When a design is analyzed with the analyze -uses design_libs
command, the tool searches for the subdesigns of this design in the library order specified
by the -uses option.

When you use the -uses option,

• The parent design library is searched first, followed by libraries in the order specified by
the -uses option.

• The specified library search order applies only to the specified design and its
subdesigns. Other designs use the default.

• The search is restricted to the libraries specified by the -uses option. Other libraries
are not searched even if no library is found.

• An empty list for the -uses option limits the search to the library of the parent design.

For example, in the following design, three different versions of the submod design are
analyzed in the lib1, lib2, and lib3 libraries respectively:

top.v

module top (...);
...
U0 submod (...);
...
endmodule

submod1.v

submod (...);
<implementation 1>
endmodule

submod2.v

submod (...);
<implementation 2>
endmodule

submod3.v

submod (...);
<implementation 3>
endmodule

When you use the following command to analyze the top-level top.v design, the module
analyzed using the lib2 library is chosen during elaboration and the modules using the lib1
and lib3 libraries are ignored.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reading Verilog Designs

Feedback

dc_shell> analyze ... -uses "lib2 lib1 lib3" top.v

Ignoring Modules During the Read Process
During early design stages, you can include incomplete or non-synthesizable designs
by using the SystemVerilog interface-only feature. This feature allows modules that
communicate with or instantiate an unfinished module to connect port signals correctly
even for an unfinished design. The unfinished module design can be empty or incomplete,
or it can contain unsupported constructs. The module body is eventually replaced by
synthesizable RTL.

To enable this feature, the following two methods are available:

• Elaboration Command Based Interface-Only Method (Recommended)

• Analyze Command Based Interface-Only Method

Elaboration Command Based Interface-Only Method
(Recommended)
During elaboration, the HDL Compiler tool creates a black box for the module body without
netlisting the subblocks and other logic blocks inside the interface-only blocks. To enable
this feature, set the following variables:

• hdlin_elaborate_black_box: Set the variable to ignore the module body listed
during elaboration.

• hdlin_elaborate_black_box_all_except: Set the variable to ignore the body of all
the modules except the modules that are listed during elaboration.

Note:
Use these options only if there are no syntax errors and non-synthesizable
designs constructs in the RTL.

For example,

dc_shell> set_app_var \
 -name hdlin_elaborate_black_box \
 -value {my_module1 my_module2}
 dc_shell> analyze -format sverilog top.sv
dc_shell> set_app_var \
 -name hdlin_elaborate_black_box_all_except \
 -value {my_mod1 my_mod2}
 dc_shell> analyze -format sverilog top.sv
For more information about a specific variable, see the hdlin_elaborate_black_box and
hdlin_elaborate_black_box_all_except man pages.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

19

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reading Verilog Designs

Feedback

Analyze Command Based Interface-Only Method
For interface-only, use the hdlin_sv_interface_only_modules variable to list the design
modules. The HDL Compiler tool parses only the module interfaces of the listed designs,
skips the module content, and creates a black box for each module. During elaboration,
the tool issues a warning message that says the module content is discarded and ignored,
as shown in the following example:

dc_shell> set_app_var hdlin_sv_interface_only_modules \
 {my_module1 my_module2}

dc_shell> analyze -format sverilog top.sv
Warning: ./rtl/top.sv:21: The body of module 'my_module1' is being
discarded, because the module name is in hdlin_sv_interface_only_modules.
(VER-747)

After elaboration of the top-level design, you can use the is_interface_only attribute to
list all the designs that were read as interface only. For example,

dc_shell> get_designs -filter "is_interface_only"
{my_module1_P2}

Limitations

The IEEE Std 1800-2017 (section 23.2.1) defines two module definition styles:

• ANSI header style: All port information within the module header

module_name #(parameter_port_list)
 (port_direction_and_type_list);

...design content...

• Non-ANSI header style: Non-name port information follows the module header

module_name #(port_name_list) ;

 parameter_declaration_list
 port_direction_and_size_declarations
 port_direction_and_type_list

...design content...

All modules with ANSI style module headers can be read in as interface-only.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

20

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Coding for QoR

Feedback

For modules with non-ANSI style module headers, the tool skips the module content after
the first occurrence of the design content that is not one of the following:

• Port declarations

• Data type definitions

• Parameter declarations

• Net or variable declarations

• Package imports

When using non-ANSI style module headers, keep all port-related declarations together at
the beginning of the module to prevent the tool from skipping interface information. Avoid
breaking up the port declarations with other statements that are not port declarations.

File Format Inference Based on File Extensions
You can specify a file format by using the -format option with the read_file command.
If you do not specify a format, the read_file command infers the format based on the
file extensions. If the file extension in unknown, the tool assumes the .ddc format. The file
extensions in the following table are supported for automatic inference:

Format File extensions

ddc .ddc

db .db, .sldb, .sdb, .db.gz, .sldb.gz, .sdb.gz

SystemVerilog .sv, .sverilog, .sv.gz, .sverilog.gz

The supported extensions are not case-sensitive. All formats except the .ddc format can
be compressed in gzip (.gz) format.

If you use a file extension that is not supported and you omit the -format option, the
synthesis tool generates an error message. For example, if you specify read_file
test.vlog, the tool issues the following DDC-2 error message:

Error: Unable to open file 'test.vlog' for reading. (DDC-2)

Coding for QoR
The HDL Compiler tool optimizes a design to provide the best QoR independent of the
coding style; however, the optimization of the design is limited by the design context

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

21

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reading Designs Using the VCS Command-Line Options

Feedback

information available. You can use the following techniques to provide the information for
the tool to produce optimal results:

• The tool cannot determine whether an input of a module is a constant even if the
upper-level module connects the input to a constant. Therefore, use a parametersparameter
instead of an input port to express an input as a constant.

• During compilation, constant propagation is the evaluation of expressions that contain
constants. The tool uses constant propagation to reduce the hardware required to
implement complex operators.

If you know that a variable is a constant, specify it as a constant. For example, a “+”
operator with a constant high as an argument causes an increment operator rather
than an addersadder. If both arguments of an operator are constants, no hardware is inferred
because the tool can calculate the expression and insert the result into the circuit.

The same technique applies to designing comparators and shifters. When you shift a
vector by a constant, the implementation requires only reordering (rewiring) the bits
without hardware implementation.

Reading Designs Using the VCS Command-Line Options
The analyze command with the VCS command-line options provides better compatibility
and makes reading large designs easier. When you use the VCS command-line options,
the tool automatically resolves references for instantiated designs by searching the
referenced designs in user-specified libraries and then loading these referenced designs.

Reading Large Designs

To read designs containing many HDL source files and libraries, specify the -vcs option
with the analyze command. You must enclose the VCS command-line options in double
quotation marks. For example,

dc_shell> analyze -vcs "-verilog -y mylibdir1 +libext+.v -v myfile1 \
 +incdir+myincludedir1 -f mycmdfile2" top.v
Reading Designs With Mixed Formats

To read SystemVerilog files with a specified file extension and Verilog files in one analyze
command, use the -vcs "+systemverilogext+ext" option. When you do so, the files
must not contain any Verilog 2001 styles.

For example, the following command analyzes SystemVerilog files with the .sv file
extension and Verilog files:

dc_shell> analyze -format verilog -vcs "-f F +systemverilogext+.sv"

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

22

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reporting HDL Compiler Settings

Feedback

Reporting HDL Compiler Settings
To get a list of variables that affect RTL reading, use the following command:

dc_shell> report_app_var hdlin*
Other variables that affect RTL reading include the ones prefixed with template and
bus*style. Use the following commands to report these variables:

dc_shell> report_app_var template*
dc_shell> report_app_var bus*style
For more information about a specific variable, see the man page. For example,

dc_shell> man hdlin_analyze_verbose_mode

Customizing Elaboration Reports
By default, the tool displays inferred sequential elements, MUX_OPs, and inferred three-
state elements in elaboration reports using the basic setting, as shown in Table 1.
You can customize the report by setting the hdlin_reporting_level variable to
none, comprehensive, or verbose. A true, false, or verbose setting indicates that the
corresponding information is included, excluded, or detailed respectively in the report.

Table 1 Basic Reporting Level Variable Settings

Information displayed
(information keyword)

basic
(default)

none comprehensive verbose

Floating net to ground connections
(floating_net_to_ground)

false false true true

Inferred state variables
(fsm)

false false true true

Inferred sequential elements
(inferred_modules)

true false true true

MUX_OPs
(mux_op)

true false true true

Synthetic cells
(syn_cell)

false false true true

Inferred three-state elements
(tri_state)

true false true true

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

23

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reporting Elaboration Errors in the Hierarchy

Feedback

In addition to the four settings, you can customize the report by specifying the add (+) or
subtract (-) option. For example, to report floating-net-to-ground connections, synthetic
cells, inferred state variables, and verbose information for inferred sequential elements,
but not MUX_OPs or inferred three-state elements, enter

dc_shell> set_app_var hdlin_reporting_level {verbose-mux_op-tri_state}

Setting the reporting level as follows is equivalent to setting a level of comprehensive.

dc_shell> set_app_var hdlin_reporting_level \
 {basic+floating_net_to_ground+syn_cell+fsm}

Reporting Elaboration Errors in the Hierarchy
The tool elaborates designs in a top-down order, and elaboration errors of a top-level
module prohibit the elaboration of all associated submodules. To continue the elaboration
regardless of the top-level errors, use the hdlin_elab_errors_deep variable.

By default, the tool reports only the top-level errors during elaboration. To report all errors
in the hierarchy, you must fix the top-level errors and then repeat the elaboration step.
However, if you set the hdlin_elab_errors_deep variable to true, the tool reports all
elaboration errors in the hierarchy in one elaboration step.

To report all elaboration errors in the hierarchy, follow these steps:

1. Identify and fix all syntax errors in the design.

2. Set the hdlin_elab_errors_deep variable to true.

The tool runs in the RTL debug mode.

3. Elaborate your design using the elaborate command.

4. Fix all errors, and fix warnings as needed.

5. Set the hdlin_elab_errors_deep variable to false.

6. Elaborate the design that contains no errors.

7. Proceed with the synthesis flow.

Example of Reporting Elaboration Errors
This SystemVerilog example uses the top design, as shown in Figure 1, to report all
elaboration errors in the hierarchy.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

24

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reporting Elaboration Errors in the Hierarchy

Feedback

Figure 1 Hierarchical Design

top

middle_1
ELAB-638

bottom_1

end_1
ELAB-366

middle_2

end_2

bottom_2
ELAB-366

Example 1 SystemVerilog RTL of the top Design
module top (input a, b, output o1, o2);
middle_1 M1 (a, b, o1);
middle_2 M2 (a, b, o2);
endmodule

module middle_1 (input a, b, output o);
logic w;
bottom_1 B1 (a, b, w);
logic bad;
assign bad = a&b&w;
assign bad = 1'b1;
assign o = bad; // ELAB-368 error
endmodule

module bottom_1 (input a, b, output c);
end_1 B1 (a, b, c);
endmodule

module end_1 (input a, b, output c);
logic bad;
assign bad = a;
assign bad = a|b;
assign c = bad; // ELAB-366 error
endmodule

module middle_2 (input a, b, output o);
bottom_2 B2 (a, b, o);
endmodule
module bottom_2 (input a, input b, output c);
logic w;
end_2 B2 (a, b, w);
logic bad;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

25

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reporting Elaboration Errors in the Hierarchy

Feedback

assign bad = w|a;
assign bad = w&b; // ELAB-366 error
assign c = bad;
endmodule // sub3

module end_2 (input a, b, output c);
assign c = a^b;
endmodule

Example 2 Elaboration Results of hdlin_elab_errors_deep Set to false
dc_shell> set_app_var hdlin_elab_errors_deep false
false
dc_shell> analyze -f sverilog rtl/test.sv
Running PRESTO HDLC
Searching for ./rtl/test.sv
Compiling source file ./rtl/test.sv
Presto compilation completed successfully.
1
dc_shell> elaborate top
Running PRESTO HDLC
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now 'top'.
Information: Building the design 'middle_1'. (HDL-193)
Error: ./rtl/test.sv:12: Net 'bad', or a directly connected net, is
driven by more than one source, and at least one source is a constant
net. (ELAB-368)
*** Presto compilation terminated with 1 errors. ***
Information: Building the design 'middle_2'. (HDL-193)
Presto compilation completed successfully.
Information: Building the design 'bottom_2'. (HDL-193)
Error: ./rtl/test.sv:36: Net 'bad' or a directly connected net is driven
by more than one source, and not all drivers are three-state. (ELAB-366)
*** Presto compilation terminated with 1 errors. ***
Warning: Design 'top' has '2' unresolved references. For more detailed
information, use the "link" command. (UID-341)
1
dc_shell> list_designs
middle_2 top (*)

Example 3 Elaboration Results of hdlin_elab_errors_deep Set to true
dc_shell> set hdlin_elab_errors_deep true
true
dc_shell> analyze -f sverilog rtl/test.sv
Running PRESTO HDLC
Searching for ./rtl/test.sv
Compiling source file ./rtl/test.sv
Presto compilation completed successfully.
1
dc_shell> elaborate top
Running PRESTO HDLC

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

26

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Reporting Elaboration Errors in the Hierarchy

Feedback

*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Elaborated 1 design.
Current design is now 'top'.
Information: Building the design 'middle_1'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Error: ./rtl/test.sv:12: Net 'bad', or a directly connected net, is
driven by more than one source, and at least one source is a constant
net. (ELAB-368)
Presto compilation completed successfully.
Information: Building the design 'middle_2'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Information: Building the design 'bottom_1'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Information: Building the design 'bottom_2'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Error: ./rtl/test.sv:36: Net 'bad' or a directly connected net is driven
by more than one source, and not all drivers are three-state. (ELAB-366)
Presto compilation completed successfully.
Information: Building the design 'end_1'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Error: ./rtl/test.sv:23: Net 'bad' or a directly connected net is driven
by more than one source, and not all drivers are three-state. (ELAB-366)
Presto compilation completed successfully.
Information: Building the design 'end_2'. (HDL-193)
*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
1
dc_shell> list_designs
Warning: No designs to list. (UID-275)
0

As shown in Example 2, the tool reports the following two errors at the top level by default:

• ELAB-368 error from the middle_1 module

• ELAB-366 error from the bottom_2 module

To find the ELAB-366 error in the end1 submodule as shown in Example 3, you must fix
the error in the middle_1 module. When you set the hdlin_elab_errors_deep variable to
true, the tool reports all errors in the hierarchy in one elaboration step:

• ELAB-368 error from the middle_1 module

• ELAB-366 error from the bottom_2 module

• ELAB-366 error from the end_1 module

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

27

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Querying Information about RTL Preprocessing

Feedback

The following restrictions apply when the hdlin_elab_errors_deep variable is set to
true:

• No designs are saved because the designs could be erroneous.

The tool does not create designs when this variable is set to true. If you run the
list_designs command, the tool reports the following warning:

Warning: No designs to list (UID-275)

• You should use the analyze command rather than the read_file command to read
the design because the read_file command has no linking functionality and does not
accept command-line parameter specifications.

• All syntax errors are reported when you run the analyze command. The tool is not a
linting tool, but you can use the check_design command in the HDL Compiler tool to
perform basic structural checks.

• The elaboration runtime might increase slightly.

Querying Information about RTL Preprocessing
You can query information about preprocessing of the RTL, including macro definitions,
macro expansions, and evaluations of the conditional statements. You use this information
to debug design issues, especially for designs with a large number of macros. To query
the preprocessing information, set the hdlin_analyze_verbose_mode variable to one
of the values listed in the following table for the type of information to be reported. The
default is 0.

Setting Information reported

0 No preprocessing information.

1 Macro definitions (described by the `define directive in the RTL and
specified by the -define option on the command line) and evaluations of
the conditional statements.

2 Macro expansions and the information reported when the variable is set to
1.

The following example shows how to report preprocessing information by using the
hdlin_analyze_verbose_mode variable :

• example.v file

`define MYMACRO 1'b0

module m (

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

28

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Querying Information about RTL Preprocessing

Feedback

 input in1,
 output out1
);

`ifdef MYRTL
 assign out1 = `MYMACRO;
`else
 assign out1 = in1;
`endif
endmodule

• Excerpt from the log file

dc_shell> set hdlin_analyze_verbose_mode 1

1

Generates messages that `ifdef being skipped and `else analyzed
dc_shell> analyze -format sverilog example.v
...
Information: ./example.v:6: Skipping `ifdef then clause because MYRTL
is not defined.(VER-7)
Information: ./example.v:8: Analyzing `else clause.(VER-7)
...

Generates messages that `ifdef is analyzed and `else skipped
dc_shell> analyze -format sverilog -define MYRTL example.v
...
Information: ./example.v:6: Analyzing `ifdef then clause because MYRTL
is defined.(VER-7)
Information: ./example.v:8: Skipping `else clause.(VER-7)
...
dc_shell> set hdlin_analyze_verbose_mode 2

2

Generates messages about evaluation of macro `MUMACRO to 1'b0
dc_shell> analyze -f sverilog -define MYRTL example.v
...
Information: ./example.v:6: Analyzing `ifdef then clause because MYRTL
is defined.(VER-7)
Information: ./example.v:7: Macro |`MYMACRO| expanded to |1'b0|.
(VER-7)
Information: ./example.v:8: Skipping `else clause.(VER-7)
...

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

29

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Netlist Reader

Feedback

Netlist Reader
The Design Compiler tool contains a specialized reader for gate-level Verilog netlists
that has higher capacity on designs that do not use RTL-level constructs, but it does not
support the entire Verilog language. The specialized netlist reader reads netlists faster and
uses less memory than the RTL reader.

If you have problems reading a netlist with the netlist reader, try reading it with Design
Compiler by using the read_verilog -rtl or read_file -format verilog -rtl
command.

The following table summarizes the recommended and alternative commands to read in
your designs.

Type of input Reading method

RTL For parameterized designs, reading designsanalyze -f verilog { files } elaborate <topdesign>

analyze -format verilog { files }
elaborate topdesign
is preferred because it does a recursive elaboration of the entire design
and lets you pass parametersparameter values to the elaboration. The read method
conditionally elaborates all designs with the default parameters.
To enable macro definition from the read, use
read_file -format verilog { files }
Alternative reading methods: reading designsread_verilog -rtl { files } (tcl)

read_verilog -rtl { files }
read_file -format verilog -rtl { files }
reading designs}

Gate-level netlists Recommended reading method:
read_verilog { files }
reading designsread -f verilog -netlist { files } (dcsh)reading designsread_verilog -netlist { files } (tcl)Alternative reading methods: reading designsread_file -f verilog -netlist { files } (tcl)reading designsread_verilog

read_verilog -netlist { files }
read_file -format verilog -netlist { files }

The tool automatically decrypts netlists that are encrypted according to the IEEE 1735
standard.

Automatic Detection of Input Type
By default, when you read in a Verilog gate-level netlist, HDL Compiler determines that
your design is a netlist and runs the specialized netlist reader.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

30

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Parameterized Designs

Feedback

Caution:
For reading designsparameterized designsnetlistsRTLautomatic structure detectorslow readsbest memory usage and runtime, do not mix RTL and netlist designs into
a single read. The automatic detector chooses one reader—netlist or RTL—to
read all files included in the command. Mixed files default to the RTL reader,
because it can read both types; the netlist reader can read-only netlists.

The following variables apply only to HDL Compiler and are not implemented by the netlist
reader:

• power_preserve_rtl_hier_names (default is false)

• hdlin_auto_save_templates (default is false)

If you set either of these variables to true, automatic netlist detection is disabled and you
must use the -netlist option to enable the netlist reader.

Parameterized Designs
Declaring Parameters Without a Default

Port list parameters can be declared with or without a default. If you declare a parameter
without a default, you must specify an override value in every instantiation to prevent a
compile error.

As per the IEEE Std 1364-2005, parameters without a default are not supported.

The following design declares the SIZE parameter with no default, and the INSIZE
parameter with a default of eight:

Example 4 Port List Parameter Without a Default
module sub #(parameter SIZE)(
 output [SIZE-1:0] out,
 input [SIZE-1:0] in
);

 assign out = ~in;
endmodule

module top (
 output [7:0] b,
 input [7:0] a
);

 sub #(.SIZE(8)) U1 (b,a); // override value (required)
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

31

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Parameterized Designs

Feedback

The following design declares the SIZE and INSIZE parameters with a default of eight:

Example 5 Declaring a Parameterized Design
module sub #(parameter SIZE=8, INSIZE=8) (
 output [SIZE-1:0] out,
 input [INSIZE-1:0] in
);
assign out = ~in;
endmodule

Instantiating a Parameterized Design

You must specify an override value for the SIZE parameter in every instantiation of
the design. The INSIZE parameter can be overridden, or the default can be used. The
following examples illustrate the different ways to instantiate a parameterized design.

Example 6 overrides both parameters and instantiates U1, a 4-bit wide inverter block.

Example 6 Instantiating a Parameterized Design With Override Values.
module top (
 output[3:0] b,
 input [3:0] a
);
sub #(.SIZE(4), .INSIZE(4)) U1(.out(b),.in(a));
endmodule

In Example 7 U2 instantiation, the SIZE parameter is overridden to 8, and the default is
used for INSIZE (also 8), creating an 8-bit wide inverter block.

Example 7 Instantiating a Parameterized Design With Defaults.
module top (
 output[7:0] b,
 input [7:0] a
);
sub #(.SIZE(8)) U2(.out(b),.in(a));
endmodule

Example 8 does not override either parameter. Parameter SIZE is undefined (no default or
override value) causing a compile error.

Example 8 Incorrect instantiation: No Override Value or Default for Parameter SIZE.
module top (
 output[7:0] b,
 input [7:0] a
);
sub U3(.out(b),.in(a));
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

32

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Parameterized Designs

Feedback

Specifying Parameter Values With the Elaborate Command

Another method to build a parameterized design is with the elaborate command. The
syntax of the command is:

elaborate template_name -parameters parameter_list

The syntax of the parameter specifications includes strings, integers, and constants using
the following formats `b,`h, b, and h.

You can store parameterized designs in user-specified design libraries. For example,

analyze -format sverilog n-register.v -library mylib

This command stores the analyzed results of the design contained in file n-register.v in a
user-specified design library, mylib.

To verify that a design is stored in memory, use the report_design_lib work command.
The report_design_lib command lists designs that reside in the indicated design library.

When a design is built from a template, only the parameters you indicate when you
instantiate the parameterized design are used in the template name. For example,
suppose the template ADD has parameters N, M, and Z. You can build a design where N
= 8, M = 6, and Z is left at its default. The name assigned to this design is ADD_N8_M6. If
no parameters are listed, the template is built with the default, and the name of the created
design is the same as the name of the template.

Designs which declare parameters without a default must have an override value at
instantiation or a compile error occurs. In the preceding ADD example, parameter Z must
have a default, but N and M do not.

The model in Example 9 uses a parameter to determine the register bit-width; the default
width is declared as 8.

Example 9 Register Model
module DFF (in1, clk, out1);
 parameter SIZE = 8;
 input [SIZE-1:0] in1;
 input clk;
 output [SIZE-1:0] out1;
 reg [SIZE-1:0] out1;
 reg [SIZE-1:0] tmp;
always @(clk)
 if (clk == 0)
 tmp = in1;
 else //(clk == 1)
 out1 <= tmp;
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

33

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Defining Macros

Feedback

If you want an instance of the register model to have a bit-width of 16, use the elaborate
command to specify this as follows:

elaborate DFF -param SIZE=16

The list_designs command shows the design, as follows:

DFF_SIZE16 (*)

Using the read_verilog command to build a design with parameters is not recommended
because you can build a design only with the default of the parameters.

You also need to either set the hdlin_auto_save_templates variable to true or insert
the template directive in the module, as follows:

module DFF (in1, clk, out1);
 parameter SIZE = 8;
 input [SIZE-1:0] in1;
 input clk;
 output [SIZE-1:0] out1;
 // synopsys template
...

The hdlin_template_naming_style, hdlin_template_parameter_style, and
hdlin_template_separator_style variables control the naming convention for
templates.

Defining Macros
You can use analyze -define to define macros on the command line.

Note:
When using the -define option with multiple analyze commands, you must
remove any designs in memory before analyzing the design again.remove_designremoving designs To remove
the designs, use the remove_design -all command. Because elaborated
designs in memory have no timestamps, the tool cannot determine whether
the analyzed file has been updated. The tool might assume that the previously
elaborated design is up-to-date and reuse it.

See Also

• `define

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

34

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Defining Macros

Feedback

Predefined Macros
You can also use the following predefined macros:

• SYNTHESIS—Used to specify simulation-only code, as shown in Example 10.

Example 10 Using SYNTHESIS and `ifndef ... `endif Constructs
module dff_async (RESET, SET, DATA, Q, CLK);
 input CLK;
 input RESET, SET, DATA;
 output Q;
 reg Q;
 // synopsys one_hot "RESET, SET"

 always @(posedge CLK or posedge RESET or posedge SET)
 if (RESET)
 Q <= 1'b0;
 else if (SET)
 Q <= 1'b1;
 else Q <= DATA;
 `ifndef SYNTHESIS
 always @ (RESET or SET)
 if (RESET + SET > 1)
 $write ("ONE-HOT violation for RESET and SET.");
 `endif
 endmodule

In this example, the SYNTHESIS macro and the `ifndef ... `endif constructs
determine whether or not to execute the simulation-only code that checks if the
RESET and SET signals are asserted at the same time. The main always block is both
simulated and synthesized; the block wrapped in the `ifndef ... `endif construct is
executed only during simulation.

• VERILOG_1995, VERILOG_2001, VERILOG_2005—Used for conditional inclusion of Verilog

2001 featuresdisabling featureshdlin_vrlg_std = 1995hdlin_vrlg_std = 2001Verilog 1995, Verilog 2001, or Verilog 2005 features respectively. When you set
the hdlin_vrlg_std variable to 1995, 2001, or 2005, the corresponding macro
VERILOG_1995, VERILOG_2001, or VERILOG_2005 is predefined. By default, the
hdlin_vrlg_std variable is set to 2005.

Global Macro Reset: `undefineall
The directives‘undefineall `undefineall directive is a resetsglobal reset‘undefineallmacrosglobal reset‘undefineall global reset for all macros that causes all the macros
defined earlier in the source file to be reset to undefined.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

35

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Use of $display During RTL Elaboration

Feedback

Persistent Macros
To save the Verilog text macros (`-define) definitions persistently across different
analyze commands, set the hdlin_enable_persistent_macros variable to true. The
default is false.

To change the default macro file name, use the hdlin_persistent_macros_filename
variable. The default macro file name is syn_auto_generated_macro_file.sv.

Note:
The generated persistent macro file is encrypted with the synenc encryption.

As shown in the following example, the tool saves the text macros defined in different
analyze commands:

dc_shell> set_app_var hdlin_enable_persistent_macros true
dc_shell> set_app_var hdlin_persistent_macros_filename my_macros.tmp
dc_shell> analyze -format sverilog package.sv
// The my_macros.tmp text definitions are saved in the first analyze
 command package.sv file.
// The following analyze command gets translated to include
 the my_macros.tmp automatically as follows:
dc_shell> analyze -format sverilog "my_macros.tmp file2.sv"
For more information about a specific variable, see the
hdlin_enable_persistent_macros and hdlin_persistent_macros_filename man
pages.

Use of $display During RTL Elaboration
The $display system taskstask is usually used to report simulation progress. In synthesis, HDL
Compiler executes $display calls as it sees them and executes all the display statements
on all the paths through the program as it elaborates the design. It usually cannot tell the
value of variables, except compile-time constants like loop iteration counters.

Note that because HDL Compiler executes all $display calls, errorserror messages from the
Verilog source can be executed and can look like unexpected messages.

Using $display is useful for printing out any compile-time computations on parametersparameters or
the number of times a loop executes, as shown in Example 11.

Example 11 $display Example
module F (in, out, clk);
 parameter SIZE = 1;
 input [SIZE-1: 0] in;
 output [SIZE-1: 0] out;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

36

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Inputs and Outputs

Feedback

 reg [SIZE-1: 0] out;
 input clk;
 // ...
 `ifdef SYNTHESIS
 always $display("Instantiating F, SIZE=%d", SIZE);
 `endif
endmodule

module TOP (in, out, clk);
 input [33:0] in;
 output [33:0] out;
 input clk;

 F #(2) F2 (in[1:0] ,out[1:0], clk);
 F #(32) F32 (in[33:2], out[33:2], clk);
endmodule

HDL Compiler produces output such as the following during elaboration:

dc_shell> elaborate TOP
Running HDLC
HDLC compilation completed successfully.
Elaborated 1 design.
Current design is now 'TOP'.
Information: Building the design 'F' instantiated from design 'TOP' with
 the parameters "2". (HDL-193)
$display output: Instantiating F, SIZE=2
HDLC compilation completed successfully.
Information: Building the design 'F' instantiated from design 'TOP' with
 the parameters "32". (HDL-193)
$display output: Instantiating F, SIZE=32
HDLC compilation completed successfully.

Inputs and Outputs
This section contains the following topics:

• Input Descriptions

• Design Hierarchy

• Component Inference and Instantiation

• Naming Considerations

• Generic Netlists

• Inference Reports

• Error Messages

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

37

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Inputs and Outputs

Feedback

Input Descriptions
Verilog code input to HDL Compiler can contain both structural and functional (RTL)
descriptions. A Verilog structural description can define a range ohierarchicalconstructsf hierarchical and gate-level

constructsgate-level constructs, including module definitions, module instantiationsinstantiations, and netlist
connections.

The functional elements of a Verilog description for synthesis includefunctional descriptionfunction declarations in

• always constructassignmentsalways constructalways constructassignmentsalways constructalways statements

• tasksTasks and functions

• Assignments

◦ Continuous—are outside always constructassignmentsalways constructalways blocks

◦ Procedural—are inside always blocks and can be either blocking or assignmentsnonblockingnonblocking assignmentsassignmentsnonblockingnonblocking assignmentsnonblocking

• Sequential blocks (statements between a begin and an end)

• Control statements

• Loops—for, while, forever

The forever loop is only supported if it has an associated disable condition, making the
exit condition deterministic.

• case and if statements

Functional and structural descriptions can be used in the same module, as shown in
Example 12.

In this example, the detect_logic function determines whether the input bit is a 0 or a 1.
After making this determination, detect_logic sets ns to the next state of the machine.
An always block infers flip-flops to hold the state information between clock cycles. These
statements use a functional description style. A structural description style is used to
instantiate the three-state buffer t1.

Example 12 Mixed Structural and Functional Descriptions
 // This finite state machine (Mealy type) reads one
 // bit per clock cycle and detects three or more
 // consecutive 1s.
module three_ones(signal, clock, detect, output_enable);
 input signal, clock, output_enable;
 output detect;
 // Declare current state and next state variables.
 reg [1:0] cs;
 reg [1:0] ns;
 wire ungated_detect;
 // Declare the symbolic names for states.
 parameter NO_ONES = 0, ONE_ONE = 1,

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

38

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Inputs and Outputs

Feedback

 TWO_ONES = 2, AT_LEAST_THREE_ONES = 3;
 // ************* STRUCTURAL DESCRIPTION ****************
 // Instance of a three-state gate that enables output
 three_state t1 (ungated_detect, output_enable, detect);

 // ************* FUNCTIONAL DESCRIPTION ****************
 // always block infers flip-flops to hold the state of
 // the FSM.
 always @ (posedge clock) begin
 cs = ns;
 end
 // Combinational function
 function detect_logic;
 input [1:0] cs;
 input signal;

 begin
 detect_logic = 0; //default
 if (signal == 0) //bit is zero
 ns = NO_ONES;
 else //bit is one, increment state
 case (cs)
 NO_ONES: ns = ONE_ONE;
 ONE_ONE: ns = TWO_ONES;
 TWO_ONES, AT_LEAST_THREE_ONES:
 begin
 ns = AT_LEAST_THREE_ONES;
 detect_logic = 1;
 end
 endcase
 end
 endfunction
 assign ungated_detect = detect_logic(cs, signal);
endmodule

Design Hierarchy
The HDL Compiler tool maintains the hierarchicalboundarieshierarchical boundaries you define when you use
structural Verilog. These boundaries have two major effects:

• Each module in HDL descriptions is synthesized separately and maintained as a
distinct design. The constraints for the design are maintained, and each module can be
optimized separately in the HDL Compiler tool.

• Module instantiationsinstantiations within HDL descriptions are maintained during input. The
instance names that you assign to user-defined components are propagated through
the gate-level implementation.

Note:
The HDL Compiler tool does not automatically create the hierarchy for
nonstructural Verilog constructs, such as blocks, loops, functionsfunctions, and taskstasks.
These elements of HDL descriptions are translated in the context of their
designs. To group the gates in a block, function, or task, you can use the group
-hdl_block command after reading in a Verilog design. The tool supports

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Inputs and Outputs

Feedback

only the top-level always blocks. Due to optimization, small blocks might not
be available for grouping. To report blocks available for grouping, use the
list_hdl_blocks command. For information about how to use the group
command with Verilog designs, see the man page.

Component Inference and Instantiation
There are two ways to define components in your Verilog description:

• You can directly instantiate registers into a Verilog description, selecting from any
element in your ASIC library, but the code is technology dependent and the description
is difficult to write.

• You can use Verilog constructs to direct the HDL Compiler tool to infer registers from
the description. The advantages are these:

◦ The Verilog description is easier to write and the code is technology independent.

◦ This method allows the HDL Compiler tool to select the type of component inferred,
based on constraints.

If a specific component is necessary, use instantiationsinstantiation.

Naming Considerations
The bus output instance names are controlled by the following variables:
bus_naming_stylebus_naming_style variable (controls names of elements of Verilog arrays) and
bus_inference_style (controls bus inference style). To reduce naming conflicts, use
caution when applying nondefault naming styles. For details, see the man pages.

Generic Netlists
After HDL Compiler reads a design, it creates a generic netlist consisting of generic
components, such as SEQGENs.

For example, after HDL Compiler reads the my_fsm design in Example 13, it creates the
generic netlist shown in Example 14.

Example 13 my_fsm Design
module my_fsm (clk, rst, y);
 input clk, rst;
 output y;
 reg y;
 reg [2:0] current_state;
 parameter
 red = 3'b001,

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

40

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Inputs and Outputs

Feedback

 green = 3'b010,
 yellow = 3'b100;
 always @ (posedge clk or posedge rst)
 if (rst)
 current_state = red;
 else
 case (current_state)
 red:
 current_state = green;
 green:
 current_state = yellow;
 yellow:
 current_state = red;
 default:
 current_state = red;
 endcase
 always @ (current_state)
 if (current_state == yellow)
 y = 1'b1;
 else
 y = 1'b0;
 endmodule

Example 14 Generic Netlist
module my_fsm (clk, rst, y);
 input clk, rst;
 output y;
 wire N0, N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14,
N15,
 N16, N17, N18;
 wire [2:0] current_state;

 GTECH_OR2 C10 (.A(current_state[2]), .B(current_state[1]), .Z(N1));
 GTECH_OR2 C11 (.A(N1), .B(N0), .Z(N2));
 GTECH_OR2 C14 (.A(current_state[2]), .B(N4), .Z(N5));
 GTECH_OR2 C15 (.A(N5), .B(current_state[0]), .Z(N6));
 GTECH_OR2 C18 (.A(N15), .B(current_state[1]), .Z(N8));
 GTECH_OR2 C19 (.A(N8), .B(current_state[0]), .Z(N9));
 SEQGEN \current_state_reg[2] (.clear(rst), .preset(1'b0),
 .next_state(N7), .clocked_on(clk), .data_in(1'b0), .enable(1'b0),
.Q(
 current_state[2]), .synch_clear(1'b0), .synch_preset(1'b0),
 .synch_toggle(1'b0), .synch_enable(1'b1));
 SEQGEN \current_state_reg[1] (.clear(rst), .preset(1'b0),
 .next_state(N3), .clocked_on(clk), .data_in(1'b0), .enable(1'b0),
.Q(
 current_state[1]), .synch_clear(1'b0), .synch_preset(1'b0),
 .synch_toggle(1'b0), .synch_enable(1'b1));
 SEQGEN \current_state_reg[0] (.clear(1'b0), .preset(rst),
 .next_state(N14), .clocked_on(clk), .data_in(1'b0),
.enable(1'b0), .Q(
 current_state[0]), .synch_clear(1'b0), .synch_preset(1'b0),

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

41

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Inputs and Outputs

Feedback

 .synch_toggle(1'b0), .synch_enable(1'b1));
 GTECH_NOT I_0 (.A(current_state[2]), .Z(N15));
 GTECH_OR2 C47 (.A(current_state[1]), .B(N15), .Z(N16));
 GTECH_OR2 C48 (.A(current_state[0]), .B(N16), .Z(N17));
 GTECH_NOT I_1 (.A(N17), .Z(N18));
 GTECH_OR2 C51 (.A(N10), .B(N13), .Z(N14));
 GTECH_NOT I_2 (.A(current_state[0]), .Z(N0));
 GTECH_NOT I_3 (.A(N2), .Z(N3));
 GTECH_NOT I_4 (.A(current_state[1]), .Z(N4));
 GTECH_NOT I_5 (.A(N6), .Z(N7));
 GTECH_NOT I_6 (.A(N9), .Z(N10));
 GTECH_OR2 C68 (.A(N7), .B(N3), .Z(N11));
 GTECH_OR2 C69 (.A(N10), .B(N11), .Z(N12));
 GTECH_NOT I_7 (.A(N12), .Z(N13));
 GTECH_BUF B_0 (.A(N18), .Z(y));
endmodule

The report_cell command lists the cells in a design. Example 15 shows the
report_cell output for my_fsm design.

Example 15 report_cell Output
dc_shell> report_cell
Information: Updating design information... (UID-85)

**
Report : cell
Design : my_fsm
Version: B-2008.09
Date : Tue Jul 15 07:11:02 2008
**

Attributes:
 b - black box (unknown)
 c - control logic
 h - hierarchical
 n - noncombinational
 r - removable
 u - contains unmapped logic

Cell Reference Library Area
Attributes

B_0 GTECH_BUF gtech 0.000000 u
C10 GTECH_OR2 gtech 0.000000 u
C11 GTECH_OR2 gtech 0.000000 c, u
C14 GTECH_OR2 gtech 0.000000 u
C15 GTECH_OR2 gtech 0.000000 c, u
C18 GTECH_OR2 gtech 0.000000 u
C19 GTECH_OR2 gtech 0.000000 c, u
C47 GTECH_OR2 gtech 0.000000 u
C48 GTECH_OR2 gtech 0.000000 u
C51 GTECH_OR2 gtech 0.000000 u

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

42

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Inputs and Outputs

Feedback

C68 GTECH_OR2 gtech 0.000000 c, u
C69 GTECH_OR2 gtech 0.000000 c, u
I_0 GTECH_NOT gtech 0.000000 u
I_1 GTECH_NOT gtech 0.000000 u
I_2 GTECH_NOT gtech 0.000000 u
I_3 GTECH_NOT gtech 0.000000 u
I_4 GTECH_NOT gtech 0.000000 u
I_5 GTECH_NOT gtech 0.000000 u
I_6 GTECH_NOT gtech 0.000000 u
I_7 GTECH_NOT gtech 0.000000 c, u
current_state_reg[0] **SEQGEN** 0.000000 n, u
current_state_reg[1] **SEQGEN** 0.000000 n, u
current_state_reg[2] **SEQGEN** 0.000000 n, u

Total 23 cells 0.000000
1

Inference Reports
The HDL Compiler tool generates inference reports for the following inferred components:

• Flip-flops and latches, described in Inference Reports for Registers on page 80.

• MUX_OP cells, described in Selection and Multiplexing Logic on page 61.

• Three-state devices, described in Three-State Driver Inference Report on page 101.

• Multibit devices, described in infer_multibit and dont_infer_multibit on page 113.

Error Messages
If the design contains syntax errors, these are typically reported as ver-type errors;
mapping errors, which occur when the design is translated to the target technology, are
reported as elab-type errors. An error causes the script you are currently running to
terminate; an error terminates your HDL Compiler session. Warnings are errors that do not
stop the read from completing, but the results might not be as expected.

You can use the suppress_message command to suppress particular warning messages
when reading SystemVerilog source files. By default, the tool does not suppress any
warnings. This command has no effect on error messages that stop the reading process.

To use it, specify the list of warning message ID codes that you want to suppress. For
example, to suppress the following message:

Warning: Assertion statements are not supported. They are
ignored near symbol "assert" on line 24 (HDL-193).

then issue the following command:

dc_shell> suppress_message {HDL-193}

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

43

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Verilog for Synthesis
Language Construct Support

Feedback

Language Construct Support
HDL Compiler supports only those constructs that can be synthesized, that is, realized
in logic. For example, you cannot use simulation time as a trigger, because time is an
element of the simulation process and cannot be realized in logic. See Appendix B, Verilog
Language Support.”

Licenses
Reading and writing license requirementslicense requirements are listed in the following table.

Reader Reading license required Writing license required

RTL Netlist RTL Netlist

HDL Compiler Yes Yes No No

UNTI-Verilog (netlist
reader)

Not applicable No Not applicable No

Automatic detection
(read_verilog)

Yes Yes Not applicable Not applicable

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

44

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

2
Coding Considerations

This chapter describes HDL Compiler synthesis coding considerations in the following
sections:

• General Verilog Coding Guidelines

• Guidelines for Interacting With Other Flows

General Verilog Coding Guidelines
This topic describes the general Verilog coding guidelines.

• Persistent Variable Values Across Functions and Tasks

• defparam

Persistent Variable Values Across Functions and Tasks

During Verilog simulation, a local variable in a function or task has a static lifetime by
default. The tool allocates memory for the variable only at the beginning of the simulation,
and the recent value written of the variable is preserved from one call to another. During
synthesis, the HDL Compiler tool assumes that functions and tasks do not depend on
the previous written values and reinitializes all static variables in functions and tasks to
unknowns at the beginning of each call.

Verilog code that does not conform to this synthesis assumption can cause a synthesis
and simulation mismatch. You should declare all functions and tasks by using the
automatic keyword, which instructs the simulator to allocate new memory for local
variables at the beginning of each function or task call.

defparam

You should not use the defparam statements in synthesis because of ambiguity problems.
Because of these problems, the defparam statements are not supported in the generate
blocks. For more information, see the Verilog Language Reference Manual.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

45

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Coding Considerations
Guidelines for Interacting With Other Flows

Feedback

Guidelines for Interacting With Other Flows
The design structure created by the HDL Compiler tool can affect commands applied to
the design during the downstream design flows. The following topics provide guidelines for
interacting with these flows during the analyze and elaborate steps:

• Synthesis Flows

• Low-Power Flows

• Verification Flows

Synthesis Flows
The HDL Compiler tool can infer multibit components. If your logic library supports multibit
components, they can offer several benefits, such as reduced area and power or a
more regular structure for place and route. For more information about inferring multibit
components, see infer_multibit and dont_infer_multibit.

Low-Power Flows
This topic provides guidelines to keep signal names in low-power flows:

• Keeping Signal Names

• Using Same Naming Convention Between Tools

Keeping Signal Names

During optimization, the Design Compiler tool removes nets defined in the RTL, such as
dead code and unconnected logic. If your downstream flow needs these nets, you can
direct the tool to keep the nets by using the hdlin_keep_signal_name variable and the
keep_signal_name directive. Table 2 shows the variable settings.

Table 2 Settings for Keeping Signal Names

Setting Description

all The tool preserves a signal if the signal is preserved during optimization. Both
dangling and driving nets are considered.
Note:

This setting might cause the check_design command to issue LINT-2 and
LINT-3 warning messages.

all_driving
(default)

The tool preserves a signal if the signal is preserved during optimization and is in
an output path. Only driving nets are considered.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

46

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Coding Considerations
Guidelines for Interacting With Other Flows

Feedback

Table 2 Settings for Keeping Signal Names (Continued)

Setting Description

user The tool preserves a signal if the signal is preserved during optimization and is
marked with the keep_signal_name directive. Both dangling and driving nets are
considered. This setting works with the keep_signal_name directive.

user_driving The tool preserves a signal if the signal is preserved during optimization, is in an
output path, and is marked with the keep_signal_name directive. Only driving nets
are considered.

none The tool does not preserve any signal. This setting overrides the
keep_signal_name directive.

Note:
When a signal has no driver, the tool assumes logic 0 (ground) for the driver.

When you set the hdlin_keep_signal_name variable variable to true, the tool preserves
the nets and issues a warning about the preserved nets during compilation. The tool sets
an implicit size_only attribute on the logic connected to the nets to be preserved. To mark
a net to preserve, label the net with the keep_signal_name directive in the RTL and set
the hdlin_keep_signal_name variable to user or user_driving. Preserving nets might
cause QoR degradation.

In Example 16, the tool preserves signals test1 and test2 because they are in the output
paths, but it does not preserve signal test3 because it is not in an output path. The tool
removes nets syn1 and syn2 during optimization.

Example 16 Original RTL
module test12 (
 input [3:0] in1,
 input [7:0] in2,
 input in3,
 input in4,
 output logic [7:0] out1, out2
);
wire test1,test2, test3, syn1, syn2;
//synopsys async_set_reset "in4"
assign test1 = (in1[3] & ~in1[2] & in1[1] & ~in1[0]);
//test1 signal is in an input and output path
assign test2 = syn1+ syn2;
//test2 signal is in an output path, but not in an input path
assign test3 = in1 + in2;
//test3 signal is in an input path, but not in an output path
always @(in3 or in2 or in4 or test1)
 out2 = test2 + out1;
always @(in3 or in2 or in4 or test1)
 if (in4) out1 = 8'h0;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

47

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Coding Considerations
Guidelines for Interacting With Other Flows

Feedback

 else
 if (in3 & test1) out1 = in2;
endmodule

To preserve signal test3,

1. Enable the tool to preserve nets by setting the enable_keep_signal variable to true.

2. Set the hdlin_keep_signal_name variable to user.

3. Place the keep_signal_name directive on signal test3 after the signal declaration in the
RTL. For example,

wire test1,test2, test3, syn1, syn2;
//synopsys keep_signal_name "test1 test2 test3"

Table 3 shows how the settings of the variable and directive affect the preservation of
signals test1, test2, and test3. An asterisk (*) indicates that the Design Compiler tool does
not attempt to preserve the signal.

Table 3 Variable and Directive Matrix for Signals test1, test2, and test3

keep_signal_name hdlin_keep_signal_name variable setting

set or not set all all_driving user user_driving none

not set on test1 attempts to
keep

attempts to
keep

* * *

set on test1 attempts to
keep

attempts to
keep

attempts to
keep

attempts to keep *

not set on test2 attempts to
keep

attempts to
keep

* * *

set on test2 attempts to
keep

attempts to
keep

attempts to
keep

attempts to keep *

not set on test3
(Example 16)

attempts to
keep

* * * *

set on test3 attempts to
keep

* attempts to
keep

* *

Using Same Naming Convention Between Tools

In some cases, switching activity annotation from a SAIF file might be rejected because
of naming differences across multiple tools. To ensure synthesis object names follow the

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

48

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Coding Considerations
Guidelines for Interacting With Other Flows

Feedback

same naming convention used by simulation tools, use the following setting to improve the
SAIF annotation:

dc_shell> set_app_var hdlin_enable_upf_compatible_naming true

Verification Flows
To prevent simulation and synthesis mismatches, follow the guidelines described in
this section. Table 4 shows the coding styles that can cause simulation and synthesis
mismatches and how to avoid the mismatches.

Table 4 Coding Styles Causing Synthesis and Simulation Mismatches

Synthesis and simulation mismatch Coding technique

Using the one_hot and one_cold directives in a Verilog design
that does not meet the requirements of the directives.

See one_hot and one_cold.

Using the full_case and parallel_case directives in a Verilog
design that does not meet the requirements of the directives.

See full_case and parallel_case.

Inferring D flip-flops with synchronous and asynchronous loads. See D Flip-Flop With Synchronous and
Asynchronous Load.

Selecting bits from an array that is not valid. See Part-Select Addressing Operators
([+:] and [-:]).

Masking the set or reset signal with an unknown during
initialization in simulation.

See sync_set_reset.

Using asynchronous design techniques. The tool does not issue any warning for
asynchronous designs. You must verify
the design.

Using unknowns and high impedance in comparison. See Unknowns and High Impedance in
Comparison.

Including timing control information in the design. See Timing Specifications.

Using incomplete sensitivity list. See Sensitivity Lists.

Using local reg variables in functions or tasks. See Initial States for Variables.

Unknowns and High Impedance in Comparison

A simulator evaluates an unknown (x) or high impedance (z) as a distinct value different
from 0 or 1; however, an x or z value becomes a 0 or 1 during synthesis. In HDL Compiler,
these values in comparison are always evaluated to false. This behavior difference can

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

49

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Coding Considerations
Guidelines for Interacting With Other Flows

Feedback

cause simulation and synthesis mismatches. To prevent such mismatches, do not use
don’t care values in comparison.

In the following example, simulators match 2'b1x to 2’b11 or 2’b10 and 2’b0x to 2’b01 or
2’b00, but both 2'b1x and 2’b0x are evaluated to false in the HDL Compiler tool. Because
of the simulation and synthesis mismatches, the HDL Compiler tool issues an ELAB-310
warning.

case (A)
 2'b1x:... // You want 2'b1x to match 11 and 10 but
 // HDL Compiler always evaluates this comparison to false
 2'b0x:... // you want 2'b0x to match 00 and 01 but
 // HDL Compiler always evaluates this comparison to false
 default: ...
endcase

In the following example, because if (A == 1'bx) is evaluated to false, the tool assigns
1 to reg B and issues an ELAB-310 warning.

module test (
 input A,
 output reg B
);
always
begin
 if (A == 1'bx) B = 0;
 else B = 1;
end
endmodule

SystemVerilog provides additional two constructs, casez and casex, to handle don’t care
conditions:

• The casez construct for z value

• The casex construct for z and x values or for branches that are treated as don’t care
conditions during comparison

Timing Specifications

The HDL Compiler tool ignores all timing controls because these signals cannot be
synthesized. You can include timing control information in the description if it does not
change the value clocked into a flip-flop. In other words, the delay must be less than the
clock period to avoid synthesis and simulation mismatches.

You can assign a delay to a wire or wand declaration, and you can use the scalared
and vectored Verilog keywords for simulation. The tool supports the syntax of these
constructs, but they are ignored during synthesis.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

50

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Coding Considerations
Guidelines for Interacting With Other Flows

Feedback

Sensitivity Lists

When you run the HDL Compiler tool, a module is affected by all the signals in the module
including those not listed in the sensitivity list. However, simulation relies only on the
signals listed in the sensitivity list. To prevent synthesis and simulation mismatches, follow
these guidelines to specify the sensitivity list:

• For sequential logic, include a clock signal and all asynchronous control signals in the
sensitivity list.synchronousprocessesprocessessynchronous

• For combinational logic, ensure that all inputs are listed in the sensitivity list or use the
always @* construct.

The tool ignores sensitivity lists that do not contain an always blockedge expressionsedge expression and builds the
logic as if all variables within the always block are listed in the sensitivity list. You cannot
mix edge expressions and ordinary variables in the sensitivity list. If you do so, the tool
issues an error message. When the sensitivity list does not contain an edge expression,
combinational logic is usually generated. Latches might be generated if the variable is not
fully specified; that is, the variable is not assigned to any path in the block.

Note:
The statements @(posedge clock) and @(negedge clock) are not supported
in functionsfunctions or taskstasks.

Initial States for Variables

For functionsfunctions and tasks, any local reg variable is initialized to logic 0 and output port
values are not preserved across function and task calls. However, values are typically
preserved during simulation. This behavior difference often causes synthesis and
simulation mismatches. For more information, see Persistent Variable Values Across
Functions and Tasks.

For more information, see IEEE Std 1364-2005.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

51

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

3
Modeling Combinational Logic

These topics describe how to model combinational logic using HDL operators, MUX_OP
cells, and other Verilog constructs.

• Synthetic Operators

• Logic and Arithmetic Expressions

• Selection and Multiplexing Logic

• Bit-Truncation Coding for DC Ultra Datapath Extraction

• Latches in Combinational Logic

Synthetic Operators
Synopsys provides the DesignWare Library, which is a collection of intellectual property
(IP), to support the synthesis products. Basic IP provides implementations of common
arithmetic functions that can be referenced by HDL operators in the RTL.

The DesignWare IP solutions are built on a hierarchy of abstractions. HDL operators
(either the built-in operators or HDL functions and procedures) are associated with
synthetic operators, which are bound to synthetic modules. Each synthetic module can
have multiple architectural realizations called implementations. When you use the HDL
addition operator in a design, the HDL Compiler tool infers an abstract representation
of the adder in the netlist. The same inference applies when you use a DesignWare
component. For example, a DW01_add instantiation is mapped to the synthetic operator
associated with it, as shown in Figure 2.

A synthetic library contains definitions for synthetic operators, synthetic modules,
and bindings. It also contains declarations that associate synthetic modules with their
implementations. To display information about the standard synthetic library that is
included with the HDL Compiler license, use the report_synlib command.

For example,

report_synlib standard.sldb

For more information about the DesignWare synthetic operators, modules, and libraries,
see the DesignWare documentation.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

52

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Synthetic Operators

Feedback

Figure 2 DesignWare Hierarchy

Implementations

Bindings

map_to_operator directive

HDL operator HDL operator definition

Synthetic operator

Synthetic modules

Implementation

declarations

ADD_UNS_OP

ProprietaryCarry-lookaheadRipple

ALUADDADD_SUB

Synthetic library

Design library

Z <= X + Y

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

53

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions

Feedback

Logic and Arithmetic Expressions
These topics discuss synthesis for logic and arithmetic expressions.

• Basic Operators

• Addition Overflow

• Sign Conversions

Basic Operators
When the HDL Compiler tool elaborates a design, it maps HDL operators to synthetic
(DesignWare) operators in the netlist. When the HDL Compiler tool optimizes the design,
it maps these operators to the DesignWare synthetic modules and chooses the best
implementation based on the constraints, option settings, and wire load models.

The HDL Compiler tool maps HDL operators, such as comparison (> or <), addition (+),
decrement (-), and multiplication (*), to synthetic operators from the Synopsys standard
synthetic library, standard.sldb. Table 5 shows the complete list of the standard synthetic
operators. For more information, see the DesignWare Library documentation.

Table 5 HDL Operators Mapped to Standard Synthetic Operators

HDL operator(s) Synthetic operator(s)

+ ADD_UNS_OP, ADD_UNS_CI_OP, ADD_TC_OP, ADD_TC_CI_OP

- SUB_UNS_OP, SUB_UNS_CI_OP, SUB_TC_OP, SUB_TC_CI_OP

* MULT_UNS_OP, MULT_TC_OP

< LT_UNS_OP, LT_TC_OP

> GT_UNS_OP, GT_TC_OP

<= LEQ_UNS_OP, LEQ_TC_OP

>= GEQ_UNS_OP, GEQ_TC_OP

if, case SELECT_OP

division (/) DIV_UNS_OP, MOD_UNS_OP, REM_UNS_OP, DIVREM_UNS_OP,
DIVMOD_UNS_OP,DIV_TC_OP, MOD_TC_OP, REM_TC_OP, DIVREM_TC_OP,
DIVMOD_TC_OP

=, != EQ_UNS_OP, NE_UNS_OP, EQ_TC_OP, NE_TC_OP

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

54

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions

Feedback

Table 5 HDL Operators Mapped to Standard Synthetic Operators (Continued)

HDL operator(s) Synthetic operator(s)

<<, >> (logic)<<<,
>>> (arith)

ASH_UNS_UNS_OP, ASH_UNS_TC_OP, ASH_TC_UNS_OP,
ASH_TC_TC_OPASHR_UNS_UNS_OP, ASHR_UNS_TC_OP,
ASHR_TC_UNS_OP, ASHR_TC_TC_OP

Barrel Shiftror, rol BSH_UNS_OP, BSH_TC_OP, BSHL_TC_OPBSHR_UNS_OP, BSHR_TC_OP

Shift and Addsrl, sll,
sra, sla

SLA_UNS_OP, SLA_TC_OPSRA_UNS_OP, SRA_TC_OP

Note:
Depending on the selected implementation, a DesignWare license might be
needed during optimization. To find out the implementation options and license
requirements, see the DesignWare Datapath and Building Block IP Quick
Reference.

Addition Overflow
When the HDL Compiler tool performs arithmetic optimization, it considers how to handle adderscarry

bit overflowaddition overflow caused by carry bits. The optimized structure is affected by the bit-widths
that you declare for storing the intermediate results.

4-Bit Temporary Variable

For example, an expression that adds two 4-bit numbers and stores the result in a 4-bit
register can overflow the 4-bit output and truncate the most significant bit. In Example 17,
three variables are added (a + b + c). The temporary variable, t, holds the intermediate
result of a + b. If t is declared as a 4-bit variable, the overflow bits from the addition of
a + b are truncated. Figure 3 shows how the HDL Compiler tool determines the default
structure.

Example 17 Adding Numbers of Different Bit-Widths
t <= a + b; // a and b are 4-bit numbers
z <= t + c; // c is a 6-bit number

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

55

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions

Feedback

Figure 3 Default Structure for a 4-Bit Temporary Variable

a[4] b[4]

c[6]

z[6]

t[4]

5-Bit Intermediate Result

To perform the previous addition (z = a + b + c) without a temporary variable, the HDL
Compiler tool determines that 5 bits are needed to store the intermediate result to avoid
overflow, as shown in Figure 4. This result might be different from the previous case,
where a 4-bit temporary variable truncates the intermediate result. Therefore, these two
structures do not always yield the same result.

Figure 4 Structure for a 5-Bit Intermediate Result

a[4] b[4]

c[6]

z[6]

a+b[5]

Optimization for Delay

If the expression treeoptimized for delaysame expression is optimized for the late-arriving signal, a, the tool restructures the
expression so that signals b and c are added first. Because signal c is declared as 6 bits,
the tool determines that the intermediate result must be stored in a 6-bit variable. Figure 5
shows the structure for this example.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

56

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions

Feedback

Figure 5 Structure for a Late-Arriving Signal

a[4]

b[4] c[6]

z[6]

b+c[6]

Sign Conversions
When reading a design that contains signed expressions and assignments, the tool issues
VER-318 warnings for sign assignment mismatches.

No warnings are issued for the following conditions:

• The conversion is necessary only for constants in the expression.

• The width of the constant does not change as a result of the conversion.

• The most significant bit of the constant is zero (not negative).

In the following example, though the tool implicitly converts the signed constant 1 to
unsigned, no warning is issued because the conversion meets the previously mentioned
three conditions. By default, integer constants are treated as signed types with signed
values.

module t (
 input [3:0] a, b,
 output [5:0] z
);
assign z = a + b + 1;
endmodule

A VER-318 warning indicates that the tool implicitly performs one of the following
operations:

• Conversion

◦ An unsigned expression to a signed expression

◦ A signed expression to an unsigned expression

• Assignment

◦ An unsigned right side to a signed left side

◦ A signed right side to an unsigned left side

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

57

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions

Feedback

In the following example, signed logic a is converted to an unsigned value and not sign-
extended, and the tool issues a VER-318warningssign conversionVER-318VER-318VER-318 warning. This behavior complies with the IEEE
Std 1364-2005.

module t (/*...*/);
logic signed [3:0] a;
logic [7:0] c;
assign a = 4'sb1010;
assign c = a+7'b0101011;
endmodule

When explicit type casting is used, no VER-318 warning is issued. For example, to force
logic a to be unsigned, assign logic c as follows:

c = unsigned'(a)+7'b0101011;

For Verilog designs, you can use the $signed and $unsigned system tasks to do the sign
conversion. For more information, see the IEEE Std 1364-2005.

In the following example, the left side is unsigned, but the right side is sign-extended;
that is, logic a contains the value of 4'b1010 after the assignment. A VER-318 warning is
issued.

module t (/*...*/)
logic unsigned [3:0] a;
assign a = 4'sb1010;
endmodule

If a line contains more than one implicit conversion, such as the expression that is
assigned to logic c in the following example, the tool issues only one warning. In this
example, logic a and b are converted to unsigned values and the right side is unsigned.
Assigning the right-side value to logic c results in a VER-318 warning.

module t (/*...*/)
logic signed [3:0] a;
logic signed [3:0] b;
logic signed [7:0] c;
assign c = a+4'b0101+(b*3'b101);
endmodule

The following examples show sign conversions and the cause of each VER-318 warning:

• In the m1 module, the signs are consistently applied and no warning is issued.

module m1 (
 input signed [0:3] a,
 output signed [0:4] z
);
assign z = a;
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

58

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions

Feedback

• In the m2 module, input a is signed and added to 3'sb111, which is a signed value of
-1. Output z is not signed, so the signed value of the expression on the right side is
converted to unsigned and assigned to output z.

module m2 (
 input signed [0:2] a,
 output [0:4] z
);
assign z = a + 3'sb111;
endmodule

Warning: ./test.sv:5: signed to unsigned assignment occurs. (VER-318)

• In the m3 module, input a is unsigned but becomes signed when it is assigned to
signed logic x, and the tool issues a VER-318 warning. In the z = x < 4'sd5 expression,
the comparison result of signed x to a signed 4'sd5 value is put into unsigned logic z.
This appears to be a sign mismatch; however, no VER-318 warning is issued because
comparison results are always considered unsigned for all relational operators.

module m3 (
 input [0:3] a,
 output logic z
);
logic signed [0:3] x;
always_comb
begin
 x = a;
 z = x < 4'sd5;
end
endmodule

Warning: ./test.sv:8: unsigned to signed assignment occurs. (VER-318)

• In the m4 module, the signs are consistently applied and no warning is issued.

module m4 (
 input signed [7:0] in1, in2,
 output signed [7:0] out
);
assign out = in1 * in2;
endmodule

• In the m5 module, inputs, a and b, are unsigned but they are assigned to signed
signals x and y respectively. Two VER-318 warnings are issued. In addition, logic y is
subtracted from logic x and assigned to unsigned output z; the expression results in a
VER-318 warning.

module m5 (
 input [1:0] a, b,
 output [2:0] z
);
logic signed [1:0] x, y;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

59

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Logic and Arithmetic Expressions

Feedback

assign x = a;
assign y = b;
assign z = x - y;
endmodule

Warning: ./test.sv:6: unsigned to signed assignment occurs. (VER-318)
Warning: ./test.sv:7: unsigned to signed assignment occurs. (VER-318)
Warning: ./test.sv:8: signed to unsigned assignment occurs. (VER-318)

• In the m6 module, input a is unsigned but put into signed register x.

module m6 (
 input [3:0] a,
 output z
);
logic signed [3:0] x;
always @(a) x = a;
assign z = x < -4'sd5;
endmodule

Warning: ./test.sv:6: unsigned to signed assignment occurs. (VER-318)

• In the m7 module, the tool issues no warning because all signs are properly applied.
Comparing a signed constant results in a signed comparison.

module m7 (
 input signed [7:0] in1, in2,
 output lt, in1_lt_64
);
assign lt = in1 < in2;
assign in1_lt_64 = in1 < 8'sd64;
endmodule

• In the m8 module, signed input in1 is compared with unsigned input in2. Because
comparison is unsigned, a VER-318 warning is issued. In addition, the unsigned 8‘d64
constant causes an unsigned comparison; a VER-318 warning is issued.

module m8 (
 input signed [7:0] in1,
 input [7:0] in2,
 output lt
);
wire uns_lt, uns_in1_lt_64;
assign uns_lt = in1 < in2;
assign uns_in1_lt_64 = in1 < 8'd64;
assign lt = uns_lt + uns_in1_lt_64;
endmodule

Warning: ./test.sv:7: signed to unsigned conversion occurs. (VER-318)
Warning: ./test.sv:8: signed to unsigned conversion occurs. (VER-318)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

60

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

• In the m9 module, even though inputs, in1 and in2, are mismatched in signs, the
casting operator converts input in2 to a signed signal. When a casting operator is used
and a sign conversion occurs, no warning is issued.

module m9 (
 input signed [7:0] in1;
 input [7:0] in2;
 output lt;
);
assign lt = in1 < signed'({1'b0, in2});
endmodule

Selection and Multiplexing Logic
The HDL Compiler tool infers SELECT_OP and MUX_OP cells for logic that selects data
signals based on control signals. SELECT_OP cells are mapped to combinational logic,
while MUX_OP cells are mapped to structured trees of multiplexer cells. By default, the
tool infers the cell that generally fits the needs of the RTL logic, but you can also control
the inference yourself.

The following topics describe SELECT_OP and MUX_OP inference:

• The SELECT_OP Cell

• The MUX_OP Cell

• Default SELECT_OP and MUX_OP Inference Behavior

• Controlling Selection Statement Inference

• Controlling Array Read Inference

• Inferring One-Hot Multiplexer Logic

The SELECT_OP Cell
A SELECT_OP cell is a generic unmapped cell that uses N selection signals to select from
N data signals. Because only one select signal can (and must) be asserted at a time, they
are called one-hot selection signals.

Figure 6 shows a SELECT_OP cell that selects one of four data input bits.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

61

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

Figure 6 Single-Bit-Wide SELECT_OP Cell With Four Selectable Data Inputs

SELECT_OP

DATA2_0
DATA3_0
DATA4_0

CONTROL4_0

CONTROL1_0
CONTROL2_0

Z_0

DATA1_0

CONTROL3_0

A SELECT_OP cell can have single-bit or multiple-bit data paths. The number of data
inputs can be any practical integer number. Figure 7 shows a SELECT_OP cell that can
select one of three two-bit-wide data inputs.

Figure 7 Two-Bit-Wide SELECT_OP Cell With Three Selectable Data Inputs

SELECT_OP

DATA2_1

DATA3_0
DATA3_1

CONTROL3_0

CONTROL1_0

Z_0
DATA2_0

CONTROL2_0

DATA1_1
DATA1_0

Z_1

2

2

2

2

During elaboration, the tool creates GTECH control logic to drive the selection inputs
according to the RTL functionality. (This logic, by construction, meets the one-hot signal
requirement.)

During compile, the tool maps SELECT_OP cells to the logic library using the available
combinational cells: simple Boolean gates, complex multiple-input gates, multiplexer cells,
or any mix of these types.

Example SELECT_OP: RTL, Inference, and Synthesis

Example 18 shows an example RTL statement that selects from three data signals using
an if/else statement.

Example 18 RTL Statement That Infers a SELECT_OP Cell
always_comb
 if (A && !B)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

62

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

 ZZ = D1;
 else if (!A && B)
 ZZ = D2;
 else
 ZZ = D3;

Figure 8 shows the elaborated result. The SELECT_OP selection signals are driven by
GTECH logic gates that implement the if/else conditions.

Figure 8 Elaborated GTECH Logic With Inferred SELECT_OP Cell
D1
D2
D3

A

B

Z

SELECT_OP

DATA2_0
DATA3_0

CONTROL1_0

CONTROL2_0

Z_0

DATA1_0

CONTROL3_0

Figure 9 shows the compiled, mapped logic for the previous example. The control logic
and the SELECT_OP cell are mapped together into an optimal gate structure.

Figure 9 SELECT_OP Cell and Selection Logic Mapped to Target Library

D1

D2

D3

A

B

Z

The MUX_OP Cell
A MUX_OP cell is a generic unmapped cell that uses log2(N) binary-encoded selection
signals (rounded up) to select from N data signals.

Figure 10 shows a MUX_OP that selects one of four data input bits.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

63

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

Figure 10 Single-Bit-Wide MUX_OP With Four Selectable Data Inputs

MUX_OP

D1_0
D2_0
D3_0

S0
S1

Z_0

D0_0

A MUX_OP cell can have single-bit or multiple-bit data paths. For S selection inputs, the
number of data inputs is 2S, although the number of selectable data inputs can be less
(with the excess tied to ground). Figure 11 shows a MUX_OP cell that can select one of
three two-bit-wide data inputs.

Figure 11 Two-Bit-Wide MUX_OP With Three Selectable Data Inputs

MUX_OP

D1_1

D2_0
D2_1

S0

Z_0
D1_0

S1

D0_1
D0_0

Z_1

2

2

2

2

D3_0
D3_1

2

During elaboration, the tool drives the MUX_OP selection inputs with the RTL selection
signals. (These signals, by construction, meet the binary-encoded requirement.)

During compile, the tool maps MUX_OP cells to the logic library, strongly preferring a tree
of multiplexer cells if possible.

Example MUX_OP: RTL, Inference, and Synthesis

Example 19 shows an example RTL statement that selects from seven data signals using
an array read operation.

Example 19 RTL Statement That Infers a MUX_OP Cell
wire [6:0] DAT; // 7 bits (not quite 2^3)
wire [2:0] SEL;
assign Z = DAT[SEL]; // synopsys infer_mux_override

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

64

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

Figure 12 shows the elaborated result. The MUX_OP selection signals are driven directly
by the array index signals, which are binary-encoded by construction. The eighth data
input of the MUX_OP cell is unused and thus tied to logic 0.

Figure 12 Elaborated Inferred MUX_OP Cell

Z

MUX_OP

Z_0

DAT[6:0] 7

DAT[6]
DAT[5]
DAT[4]
DAT[3]
DAT[2]
DAT[1]
DAT[0]

D1_0
D2_0
D3_0

D0_0

D5_0
D6_0
D7_0

D4_0

SEL[2:0]
SEL[1]
SEL[0]

SEL[2]

S0
S1
S2

3

Figure 13 shows the compiled, mapped logic for the previous example. The MUX_OP is
implemented using a compact inverting multiplexer tree structure, along with a logic gate
that results from optimizing the unused MUX_OP input data bit.

Figure 13 MUX_OP Cell and Selection Logic Mapped to Target Library
DAT[0]

DAT[1]
DAT[2]
DAT[3]
DAT[4]
DAT[5]

Z

DAT[6]

SEL[0]

SEL[1]
SEL[2]

Although MUX_OP cells are faster than SELECT_OP cells, they might increase
congestion because of their pin density.

Default SELECT_OP and MUX_OP Inference Behavior
By default, the HDL Compiler tool infers SELECT_OP and MUX_OP cells using heuristics
designed to fit most RTL use cases.

Table 6 shows the default inference behavior (when no RTL pragmas are applied).

Table 6 Default SELECT_OP and MUX_OP Inference Behavior

RTL Operator Default inference behavior

if statement SELECT_OP

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

65

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

Table 6 Default SELECT_OP and MUX_OP Inference Behavior (Continued)

RTL Operator Default inference behavior

case statement SELECT_OP

The conditional operator (?:) SELECT_OP

Array read
(such as DAT[ADR])

MUX_OP if hdlin_mux_for_array_read_sparseness_limit is
met,
SELECT_OP if not met

The if and case statements and the conditional operator (?:) follow the same inference
rules. Therefore, in this documentation they are collectively referred to as RTL selection
statements.

Controlling Selection Statement Inference
By default, the tool infers SELECT_OP cells to implement selection statements: case and
if statements and the selection operator (?:). However, you can configure the tool to infer
MUX_OP cells instead.

There are two methods to control the inference behavior for selection statements:

• Globally, using application variables

• Locally, using RTL pragmas

These methods are interdependent in that either can take precedence over the other,
depending on the settings used.

Controlling Selection Statement Inference Locally
You can locally infer MUX_OP cells for selection statements—if and case statements and
the conditional operator (?:)—by placing the following pragmas in your RTL:

• // synopsys infer_mux
Infer a MUX_OP for the selection statement, but only if permitted by global variable
settings.

• // synopsys infer_mux_override
Force a MUX_OP for the selection statement—regardless of any global variable
settings—and force the tool to map to a tree of multiplexer cells.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

66

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

The following sections describe the placement requirements for each RTL statement
type. The requirements apply equally to both the infer_mux and infer_mux_override
pragma. These requirements are for parsing order, with spaces and linefeeds ignored.

RTL Pragma Placement for if Statements

The inference pragma for an if statement must be placed directly after the closing
parenthesis of the first conditional expression:

always_comb
 if (SEL1 == 2'b00) // synopsys infer_mux_override
 Z = D1;
 else if (SEL1 == 2'b01)
 Z = D2;
 else
 Z = D3;

The pragma requirements and restrictions for if statements are:

• Each if expression must be an equality comparison of a simple variable to a constant
value. Implicit single-bit Boolean tests are supported, such as if (var).

• The if expressions cannot use any other operators, including negation (~) or array
indexing.

• All comparisons must be of the same variable, although the last else branch can omit
the if expression.

• All assignments must be to the same variable, although the values assigned can be
arbitrarily complex and unique.

RTL Pragma Placement for case Statements

The inference pragma for a case statement must be placed directly after the closing
parenthesis of the case selection expression:

always_comb
 case (SEL1) // synopsys infer_mux
 2'b00: PARITY = ^{DAT[7:0]};
 2'b01: PARITY = ^{DAT[15:8]};
 2'b10: PARITY = ^{DAT[23:16]};
 2'b11: PARITY = ^{DAT[31:24]};
 endcase

The pragma requirements and restrictions for case statements are:

• The conditional expression must be a simple variable; it cannot use any operators,
including negation (~).

• All assignments must be to the same variable, although the values assigned can be
arbitrarily complex and unique.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

67

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

RTL Pragma Placement for the :? Operator

The inference pragma for the conditional operator (?:) must be placed directly after the ?
(question mark) character:

assign ZCMP = SEL2 ? /* synopsys infer_mux */ (V1 < V2) : (V3 > V4);
The pragma requirements and restrictions for the conditional operator (?:) are:

• The selection expression before the ? (question mark) character must be an equality
comparison of a simple variable to a constant value. Implicit single-bit Boolean tests
are supported, such as (var) ?.

• The selection expression cannot use any other operators, including negation (~) or
array indexing.

• Multiple conditional operators in the same parent expression are not supported.

RTL Pragma Placement for Always Blocks

You can apply the infer_mux pragma to a named always or always_comb block to apply
to all inferenceable if and case statements inside it. The pragma must be placed before
the block and reference the block by name:

// synopsys infer_mux "this_block_name"
always_comb
begin: this_block_name
 ...
end

The pragma requirements and restrictions for always and always_comb blocks are:

• The infer_mux pragma supports block-based specification; the infer_mux_override
pragma does not.

• if and case statements in the block are considered; conditional operators (?:) are not.

• if and case statements must each meet their own particular pragma criteria.

Controlling Selection Statement Inference Globally
To globally control the default inference behavior for selection statements, use the
hdlin_infer_mux application variable.

Table 7 shows the valid values and resulting inference behaviors that apply.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

68

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

Table 7 hdlin_infer_mux Application Variable Inference Behaviors

hdlin_infer_mux
variable value

Default cell inference for
selection statement

RTL MUX inference pragmas
considered

default (default) SELECT_OP infer_mux
infer_mux_override

all MUX_OP

none SELECT_OP infer_mux_override

For a MUX_OP cell to be inferred, the following global application variable criteria must
also be met (unless the infer_mux_override pragma is applied):

• hdlin_mux_size_limit (default 32)

This variable sets the upper limit for MUX_OP data input width.

• hdlin_mux_size_min (default 2)

This variable sets the lower limit for MUX_OP data input width.

• hdlin_mux_oversize_ratio (default 100)

This variable sets a limit for how many duplicated data signals are allowed, specified as
the ratio of MUX_OP data inputs to unique data signals.

MUX_OP Inference and Resource Sharing
If you attempt to infer a MUX_OP cell for a selection statement that involves multiple
synthetic operators, resource sharing could be degraded.

To prevent this, the tool issues the following warning message and infers a SELECT_OP
cell instead:

Warning: /proj/rtl/case.sv:30: No MUX_OP inferred for the case because
it might lose the benefit of resource sharing. (ELAB-370)

In this case, you can still force a MUX_OP cell by adding the infer_mux_override
pragma to your RTL.

Controlling Array Read Inference
By default, the tool infers a MUX_OP cell when you access an array value (single bit or
word) using a nonconstant index value. For example,

assign Z = DAT[SEL];

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

69

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

There are two methods to control the inference behavior for array reads:

• Globally, using application variables

• Locally, using RTL pragmas

These methods are interdependent in that either can take precedence over the other,
depending on the settings used.

Controlling Array Read Inference Globally
To globally control the default inference behavior for selection statements, use the
hdlin_infer_mux application variable.

The following table shows the valid values and resulting inference behaviors that apply.

Table 8 hdlin_infer_mux Application Variable Inference Behaviors

hdlin_infer_mux
variable value

Default cell inference for array
read

RTL MUX inference pragmas
considered

default (default) MUX_OP infer_mux_override

all MUX_OP
(sparseness limit ignored)

none SELECT_OP infer_mux_override

For a MUX_OP cell to be inferred, the following global application variable criteria must
also be met (unless the hdlin_infer_mux application variable is set to all):

• hdlin_mux_for_array_read_sparseness_limit (default 90)

When the width of the array being indexed is not a power of two, this variable specifies
a percentage requirement for how many MUX_OP data inputs must be connected.

Controlling Array Read Inference Locally
You can unconditionally force a MUX_OP cell for an array read, regardless of the global
inference or sparseness variable settings, by placing the infer_mux_override pragma in
your RTL.

For example,

assign mask_bit = mask[idx]; // synopsys infer_mux_override
The infer_mux_override pragma also forces the tool to map to a tree of multiplexer
cells.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

70

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Selection and Multiplexing Logic

Feedback

Array reads do not use or support the infer_mux pragma, as they are already the default
when the hdlin_infer_mux variable is set to default.

RTL Pragma Placement for Array Reads

To apply the pragma to all array reads of an RTL statement, place it at the end of the line
after the semicolon:

assign selected_bit =
 mem1[addr1][idx1] ||
 mem2[addr2][idx2]; // synopsys infer_mux_override
To apply the pragma to specific array reads, place it directly before the closing bus bracket
as an inline comment:

assign selected_bit =
 mem1[addr1 /*synopsys infer_mux_override*/][idx1] ||
 mem2[addr2 /*synopsys infer_mux_override*/][idx2];
For nested array reads, an inline pragma applies to all reads nested within that level:

// inference applies to addr1 (directly applied) *and* X (nested inside)
assign selected_bit =
 mem1[addr1[X] /*synopsys infer_mux_override*/][idx1[Y]];

Inferring One-Hot Multiplexer Logic
Some technology libraries contain fast one-hot multiplexer cells. Logically, these cells are
similar to AND-OR or AND-OR-INVERT cells, but electrically they require the selection
inputs to be one-hot. Because of this requirement, synthesis cannot automatically
make use of them. However, you can use the infer_onehot_mux RTL pragma to take
advantage of them.

To do this, use the case Verilog statement together with the full_case and
parallel_case pragmas, which indicate that the branches are mutually exclusive. Then,
place the infer_onehot_mux pragma directly after the closing parenthesis of the case
selection expression.

The one-hot selection signals can be used together as the case selection expression
(Example 21) or individually as the case item expressions (Example 20).

Example 20 One-Hot Multiplexer Using One-Hot Case Selection Signals
module onehot_1 (in1, in2, in3, sel1, sel2, sel3, out);
input in1, in2, in3;
input sel1, sel2, sel3;
output reg out;

always @*
begin
 case({sel3, sel2, sel1}) //synopsys full_case parallel_case infer_onehot_mux
 3'b001: out = in1;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

71

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction

Feedback

 3'b010: out = in2;
 3'b100: out = in3;
 default: out = 1'bX;
 endcase
end
endmodule

Example 21 One-Hot Multiplexer Using One-Hot Case Item Signals
module onehot_2 (in1, in2, in3, sel1, sel2, sel3, out);
input in1, in2, in3;
input sel1, sel2, sel3;
output reg out;

);
always @*
begin
 case (1'b1) //synopsys full_case parallel_case infer_onehot_mux
 sel1: out = in1;
 sel2: out = in2;
 sel3: out = in3;
 default: out = 1'bX;
 endcase
end
endmodule

The infer_onehot_mux pragma infers a SELECT_OP cell with an internal attribute that
marks it for one-hot MUX cell mapping.

The number of selection signals is important: a one-hot MUX cell must exist in the
technology library that is as least as wide as the number of branches in the case
statement. The tool cannot compose wider one-hot MUX logic from smaller one-hot MUX
cells.

The infer_onehot_mux is independent of the infer_mux and infer_mux_override
pragmas and is not affected by any of the MUX inference application variables.

For details on one-hot MUX library requirements and logic synthesis, see the “Mapping to
One-Hot Multiplexers” topic in the Design Compiler User Guide.

Bit-Truncation Coding for DC Ultra Datapath Extraction
Datapaths are commonly used in applications that contain extensive data manipulation,
such as 3-D, multimedia, and digital signal processing (DSP) designs. Datapath extraction
transforms arithmetic operators into datapath blocks to be implemented by a datapath
generator.

The DC Ultra tool enables datapath extraction after timing-driven resource sharing and
explores various datapath and resource-sharing options during compile.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

72

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction

Feedback

Note:
This feature is not available in DC Expert. For more information about datapath
optimization, see the HDL Compiler documentation.

DC Ultra datapath optimization supports datapath extraction of expressions containing
truncated operands. To prevent extraction, both of the following conditions must exist:

• The operands have upper bits truncated. For example, if d is 16-bit, d[7:0] truncates the
upper eight bits.

• The width of the resulting expression is greater than the width of the truncated
operand. In the following example, if e is 9-bit, the width of e is greater than the width of
the truncated operand d[7:0]:

assign e = c + d[7:0];

For lower-bit truncations, the datapath is extracted in all cases. As described in the
following table, bit truncation can be either explicit or implicit.

Truncation type Description
Explicit bit-truncationbit-truncationexplicitcoding guidelines for DC Ultra datapath optimizationimplicitbit-truncationimplicit bit-truncationExplicit bit truncation An explicit upper-bit truncation occurs when you specify the bit range for

truncation.
The following code indicates explicit upper-bit truncation of operand A because
p is smaller than q:
wire [q:0] A;
out = A [p:0];

Implicit bit truncation An implicit upper-bit truncation occurs through assignment. Unlike explicit
upper-bit truncation, you do not explicitly define the range for truncation.
The following code indicates implicit upper-bit truncation of operand Y:
input [7:0] A, B;
output [14:0] Y;
assign Y = A*B;
Because A and B are 8-bit, their product is 16-bit. However, the 15-bit Y is
assigned to the 16-bit product and the most significant bit (MSB) of the product
is implicitly truncated. In this example, the MSB is the carryout bit.

Example 22 shows how bit truncation affects datapath extraction. When the a*b operation
is assigned to wire d, the upper bits are implicitly truncated and the width of output e is
less than the width of wire d. This code meets the first condition but not the second, so the
code is extracted.

Example 22 Design test1: Truncated Operand Is Extracted
module test1 (
 input [7:0] a, b, c,
 output [7:0] e

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

73

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction

Feedback

);

wire [14:0] d;
assign d = a * b; // Implicit upper-bit truncation
assign e = c + d; // Width of e is less than d
endmodule

Example 23 shows how bit truncation prevents extraction. When the a*b operation is
assigned to wire d, the upper bits are implicitly truncated and the width of output e is
greater than the width of wire d. This code meets both the first and second conditions, so
the code is not extracted.

Example 23 Design test2: Truncated Operand Is Not Extracted
module test2 (
 input [7:0] a, b, c,
 output [8:0] e
);

wire [7:0] d;
assign d = a * b; // Implicit upper-bit truncation
assign e = c + d; // Width of e is greater than d
endmodule

Example 24 shows how bit truncation prevents extraction. The upper bits of wire d are
explicitly truncated, and the width of output e is greater than the width of wire d. This code
meets both the first and second conditions, so the code is not extracted.

Example 24 Design test3: Truncated Operand Is Not Extracted
module test3 (
 input [7:0] a, b, c,
 output [8:0] e
);

wire [15:0] d;
assign d = a * b; // d is not truncated
assign e = c + d[7:0]; // Explicit upper-bit truncation of d
 // Width of e is greater than d[7:0]
endmodule

Example 25 shows how bit truncation does not prevent extraction. The lower bits of wire
d are explicitly truncated. For expressions involving lower-bit truncations, the truncated
operands are extracted regardless of the bit-width of the truncated operands and the
expression result. This code is extracted.

Example 25 Design test4: Truncated Operand Is Extracted
module test4 (
 input [7:0] a, b, c,
 output [9:0] e
);

wire [15:0] d;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

74

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Latches in Combinational Logic

Feedback

assign d = a * b; // No implicit upper-bit truncation
assign e = c + d[15:8]; // "explicit lower" bit truncation of d
endmodule

Latches in Combinational Logic
Sometimes your Verilog source can imply combinational feedback paths or latches in
synthesized logic. This happens when a signal or a variable in a combinational logic block
(an always block without a posedge or negedge clock statement) is not fully specified. A
variable or signal is fully specified when it is assigned under all possible conditions.
latchesavoiding unintended latchesWhen a variable is not assigned a value for all paths through an always constructassignmentsalways constructalways block, the variable
is conditionally assigned and a latch is inferred for the variable to store its previous
value. To avoid these latches, make sure that the variable is fully assigned in all paths.
In Example 26, the variable Q is not assigned if GATE equals 1’b0. Therefore, it is
conditionally assigned and Design Compiler creates a latch to hold its previous value.

Example 26 Latch Inference Using an if Statement
always @ (DATA or GATE) begin
 if (GATE) begin
 Q = DATA;
 end
end

Example 27 and Example 28 show Q fully assigned—Q is assigned 0 when GATE equals
1’b0. Note that Example 27 and Example 28 are not equivalent to Example 26, in which Q
holds its previous value when GATE equals 1’b0.

Example 27 Avoiding Latch Inference—Method 1
always @ (DATA, GATE) begin
 Q = 0;
 if (GATE)
 Q = DATA;
end

Example 28 Avoiding Latch Inference—Method 2
always @ (DATA, GATE) begin
 if (GATE)
 Q = DATA;
 else
 Q = 0;
end

The code in Example 29 results in a latch because the variable is not fully assigned. To
avoid the latch inference, add the following statement before the endcase statement:

default: decimal= 10'b0000000000;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

75

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Modeling Combinational Logic
Latches in Combinational Logic

Feedback

Example 29 Latch Inference Using a case Statement
always @(I) begin
 case(I)
 4'h0: decimal= 10'b0000000001;
 4'h1: decimal= 10'b0000000010;
 4'h2: decimal= 10'b0000000100;
 4'h3: decimal= 10'b0000001000;
 4'h4: decimal= 10'b0000010000;
 4'h5: decimal= 10'b0000100000;
 4'h6: decimal= 10'b0001000000;
 4'h7: decimal= 10'b0010000000;
 4'h8: decimal= 10'b0100000000;
 4'h9: decimal= 10'b1000000000;
 endcase
end

Latches are also synthesized whenever a for loop for loop statement does not assign a variable for
all possible executions of the for loop and when a variable assigned inside the for loop is
not assigned a value before entering the enclosing for loop for loop.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

76

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

4
Sequential Logic

The term register refers to a 1-bit memory device, either a flip-flop or latch. A flip-flop is
an edge-triggered memory device, while a latch is a level-sensitive memory device. The
following topics describe flip-flop and latch inference:

• Generic Sequential Cell SEQGEN

• Inference Reports for Registers

• Register Inference Guidelines

• Register Inference Examples

Generic Sequential Cell SEQGEN
When the HDL Compiler tool reads a design, it uses a latchesgeneric sequential cells (SEQGENs)generic sequential cell SEQGEN
shown in Figure 14 to represent an inferred flip-flopSEQGENsflip-flop or latch.

Figure 14 SEQGEN Cell and Pin Assignments

SEQGEN

clear

QN

preset

next_state

clocked_on

data_in

enable

synch_clear

synch_preset

synch_toggle

synch_enable

Q

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

77

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Generic Sequential Cell SEQGEN

Feedback

Example 30 shows how to direct the HDL Compiler tool to use a SEQGEN cell to
implement a D flip-flop with an asynchronous reset.

Example 30 D Flip-Flop With Asynchronous Reset
module dff_async_set (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;
 always @(posedge CLK or negedge RESET)
 if (~RESET)
 Q <= 1'b1;
 else
 Q <= DATA;
endmodule

Figure 15 shows the SEQGEN implementation.

Figure 15 SEQGEN Implementation

RESET

CLK

DATA

Logic 0

Logic 1

SEQGEN

clear

QN

preset

next_state

clocked_on

data_in

enable

synch_clear

synch_preset

synch_toggle

synch_enable

Q Q

Example 31 shows the report_cell output, where the inferred Q_reg flip-flop is mapped
to a SEQGEN cell.

Example 31 report_cell Output
**
Report : cell
Design : dff_async_set
Version: P-2019.03
Date : Tue May 14 14:42:54 2019
**

Attributes:
 b - black box (unknown)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

78

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Generic Sequential Cell SEQGEN

Feedback

 h - hierarchical
 n - noncombinational
 r - removable
 u - contains unmapped logic

Cell Reference Library Area Attributes

I_0 GTECH_NOT gtech 0.000000 u
Q_reg **SEQGEN** 0.000000 n, u

Total 2 cells 0.000000
1

Example 32 shows the GTECH netlist.

Example 32 GTECH Netlist
module dff_async_set (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 wire N0;

 SEQGEN Q_reg (.clear(N0), .preset(1'b0), .next_state(DATA),
 .clocked_on(CLK), .data_in(1'b0), .enable(1'b0), .Q(Q),
 .synch_clear(1'b0), .synch_preset(1'b0), .synch_toggle(1'b0),
 .synch_enable(1'b1)
);
 GTECH_NOT I_0 (.A(RESET), .Z(N0));
endmodule

After the HDL Compiler tool synthesizes the design, the SEQGEN is mapped to the
appropriate flip-flop in the logic library. Figure 16 shows an example of an implementation
after compile.

Figure 16 HDL Compiler Implementation

Q_reg

D

CP

Q

RESET

CLK

QDATA

Note:
If the logic library does not contain the inferred flip-flop or latch, the HDL
Compiler tool creates combinational logic for the missing function. For example,
if you describe a D flip-flip with a synchronous set but your target library

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

79

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Inference Reports for Registers

Feedback

does not contain this type of flip-flop, the tool creates combinational logic for
the synchronous set function. The tool cannot create logic to duplicate an
asynchronous preset or reset. Your library must contain the sequential cell with
the asynchronous control pins. For more information, see Register Inference
Limitations.

Inference Reports for Registers
HDL Compiler provides inference reports that describe each inferred flip-flop or
latch. You can enable or disable the generation of inference reports by using the
hdlin_reporting_level variable . By default, the level is set to basic. When the level is
set to basic or comprehensive, HDL Compiler generates a report similar to Example 33.
This basic inference report shows only which type of register was inferred.

Example 33 Inference Report for a D Flip-Flop With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |
===

In the report, the columns are abbreviated as follows:

• MB represents multibit cell

• AR represents asynchronous reset

• AS represents asynchronous set

• SR represents synchronous reset

• SS represents synchronous set

• ST represents synchronous toggle

A “Y” in a column indicates that the respective control pin was inferred for the register; an
“N” indicates that the respective control pin was not inferred for the register. For a D flip-
flop with an asynchronous reset, there should be a “Y” in the AR column. The report also
indicates the type of register inferred, latch or flip-flop, and the name of the inferred cell.

When the hdlin_reporting_level variable is set to verbose, the report indicates how
each pin of the SEQGEN cell is assigned, along with which type of register was inferred.
Example 34 shows a verbose inference report.

Example 34 Verbose Inference Report for a D Flip-Flop With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N |

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

80

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Guidelines

Feedback

===
Sequential Cell (Q_reg)
 Cell Type: Flip-Flop
 Multibit Attribute: N
 Clock: CLK
 Async Clear: RESET
 Async Set: 0
 Async Load: 0
 Sync Clear: 0
 Sync Set: 0
 Sync Toggle: 0
 Sync Load: 1

If you do not want the inference report, set the hdlin_reporting_level variable to none.

See Also

• Reporting Elaboration Errors in the Hierarchy

Register Inference Guidelines
When inferring registers, restrict each always block so that it infers a single type of
memory element and check the inference report to verify that HDL Compiler inferred the
correct device.

Register inference guidelines are described in the following sections:

• Multiple Events in an always Block

• Minimizing Registers

• Keeping Unloaded Registers

• Preventing Unwanted Latches

• Register Inference Limitations

Multiple Events in an always Block
HDL Compiler supports multiple events in a single always block, as shown in Example 35.

Example 35 Multiple Events in a Single always Block
module test (
 input [7:0]data,
 input clk,
 output reg [7:0]sum
);
always
begin
 @ (posedge clk)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

81

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Guidelines

Feedback

 sum <= data;
 @ (posedge clk)
 sum <= sum + data;
 @ (posedge clk)
 sum <= sum + data;
end
endmodule

Minimizing Registers
An always block that contains a clock edge in the sensitivity list causes a flip-flop
inference for each variable assigned a value in that block. It might not be necessary to
infer as flip-flops all variables in the always block. Make sure your HDL description builds
only as many flip-flops as the design requires.

Example 36 infers six flip-flops: three to hold the values of count and one each to hold
and_bits, or_bits, and xor_bits. However, the output values of the and_bits, or_bits, and
xor_bits depend solely on the value of count. Because count is registered, there is no
reason to register the three outputs.

Example 36 Inefficient Circuit Description With Six Inferred Registers
 input clock, reset,
 output reg and_bits, or_bits, xor_bits
);
reg [2:0] count;

always @(posedge clock) begin
 if (reset)
 count <= 0;
 else
 count <= count + 1;
 and_bits <= & count;
 or_bits <= | count;
 xor_bits <= ^ count;
 end
endmodule

Example 37 shows the inference report which contains the six inferred flip-flops.

Example 37 Inference Report
===
|Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
count_reg	Flip-flop	3	Y	N	N	N	Y	N	N
and_bits_reg	Flip-flop	1	N	N	N	N	N	N	N
or_bits_reg	Flip-flop	1	N	N	N	N	N	N	N
xor_bits_reg	Flip-flop	1	N	N	N	N	N	N	N
===

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

82

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Guidelines

Feedback

To avoid inferring extra registers, you can assign the outputs from within an asynchronous
always block. Example 38 shows the same function described with two always blocks,
one synchronous and one combinational, that separate registered or sequential logic from
combinational logic. This technique is useful for describing finite state machines. Signal
assignments in the synchronous always block are registered, but signal assignments in
the asynchronous always block are not. The code in Example 38 creates a more area-
efficient design.

Example 38 Circuit With Three Inferred Registers
module count (
 input clock, reset,
 output reg and_bits, or_bits, xor_bits
);
reg [2:0] count;

always @(posedge clock)
begin //synchronous block
 if (reset)
 count <= 0;
 else
 count <= count + 1;
end

always @(count)
begin //asynchronous block
 and_bits = & count;
 or_bits = | count;
 xor_bits = ^ count;
end
endmodule

Example 39 shows the inference report, which contains three inferred flip-flops.

Example 39 Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| count_reg | Flip-flop | 3 | Y | N | N | N | Y | N | N |
==

See Also

• D Flip-Flop With Synchronous Reset: Use sync_set_reset

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

83

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Guidelines

Feedback

Keeping Unloaded Registers
The tool does not keep unloaded or undriven flip-flops and latches in a design during
optimization. You can use the hdlin_preserve_sequential variable to control which
cells to preserve:

• To preserve unloaded/undriven flip-flops and latches in your GTECH netlist, set it to
all.

• To preserve all unloaded flip-flops only, set it to ff.

• To preserve all unloaded latches only, set it to latch.

• To preserve all unloaded sequential cells, including unloaded sequential cells that are
used solely as loop variables, set it to all+loop_variables.

• To preserve flip-flop cells only, including unloaded sequential cells that are used solely
as loop variables, set it to ff+loop_variables.

• To preserve unloaded latch cells only, including unloaded sequential cells that are used
solely as loop variables, set it to latch+loop_variables.

If you want to preserve specific registers, use the preserve_sequential directive as
shown in Example 40 and Example 41.

Caution:
To preserve unloaded cells through compile, you must set the
compile_delete_unloaded_sequential_cells variable to false. Otherwise,
the HDL Compiler tool removes them during optimization.

Example 40 uses the preserve_sequential directive to save the unloaded cell, sum2,
and the combinational logic preceding it; note that the combinational logic after it is not
saved. If you also want to save the combinational logic after sum2, you need to recode
design mydesign as shown in Example 41.

Example 40 Retains an Unloaded Cell (sum2) and Two Adders
module mydesign (in1, in2, in3, out, clk);
 input clk,
 input [0:1] in1, in2, in3,
 output [0:3] out
);
reg sum1, sum2 /* synopsys preserve_sequential */;
wire [0:4] save;
always @ (posedge clk)
begin
 sum1 <= in1 + in2;
 sum2 <= in1 + in2 + in3; // this combinational logic is saved
end
assign out = ~sum1;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

84

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Guidelines

Feedback

assign save = sum1 + sum2; // this combinational logic is not saved
 // because it is after the saved reg, sum2
endmodule

Example 41 preserves all combinational logic before reg save.

Example 41 Retains an Unloaded Cell and Three Adders
module mydesign (
 input clk,
 input [0:1] in1, in2, in3,
 output [0:3] out
);
reg sum1, sum2, save /* synopsys preserve_sequential */;
always @ (posedge clk)
begin
 sum1 <= in1 + in2;
 sum2 <= in1 + in2 + in3; // this combinational logic is saved
end
assign out = ~sum1;
always @ (posedge clk)
begin
 save <= sum1 + sum2; // this combinational logic is saved
end
endmodule

The preserve_sequential directive and the hdlin_preserve_sequential
variable enable you to preserve cells that are inferred but optimized away by HDL
Compiler. If a cell is never inferred, the preserve_sequential directive and the
hdlin_preserve_sequential variable have no effect because there is no inferred cell
to act on. In Example 42, sum2 is not inferred, so preserve_sequential does not save
sum2.

Example 42 preserve_sequential Has No Effect on Cells Not Inferred
module mydesign (
 input clk,
 input [0:1] in1, in2,
 output [0:3] out
);
reg sum1, sum2 /* synopsys preserve_sequential */;
wire [0:4] save;
always @ (posedge clk)
begin
 sum1 <= in1 + in2;
end
assign out = ~sum1;
assign save = sum2; // Although the preserve_sequential directive is on
 // sum2, it is not saved due to sum2 is not inferred
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

85

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Guidelines

Feedback

Note:
By default, the hdlin_preserve_sequential variable does not preserve
variables used in for loops as unloaded registers. To preserve such variables,
you must set hdlin_preserve_sequential to ff+loop_variables.

In addition to preserving sequential cells with the hdlin_preserve_sequential variable
and the preserve_sequential directive, you can also use the hdlin_keep_signal_name
variable and the keep_signal_name directive. For more information, see Keeping Signal
Names.

Note:
The tool does not distinguish between unloaded cells (those not connected to
any output ports) and feedthroughs. See Example 43 for a feedthrough.

Example 43 Feedthrough Example
module test (
 input clk,
 input in,
 output reg out
);
reg tmp1;
always@(posedge clk)
begin : storage
 tmp1 = in;
 out = tmp1;
end
endmodule

With the hdlin_preserve_sequential variable set to ff, the tool builds two registers;
one for the feedthrough cell (temp1) and the other for the loaded cell (temp2) as shown in
the following memory inference report:

Example 44 Feedthrough Register temp1
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| tmp1_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
| out_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===

Preventing Unwanted Latches
When you do not specify a signal or variable in all branches of a combinational logic block,
the tool infers latches (see Latches in Combinational Logic). If you do not want to infer
latches, set the hdlin_check_no_latch variable to true, which causes the tool to issue
ELAB-395 warning messages for latch inference.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

86

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Guidelines

Feedback

As shown in Example 45, one branch of the case statement is commented out, so output
DOUT is not fully specified and the tool infers a latch.

Example 45
module selector (SEL, DIN, DOUT);
input [1:0] SEL;
input [3:0] DIN;
output reg DOUT;

always @*
case (SEL)
 2'b00: DOUT = DIN[0];
 2'b01: DOUT = DIN[1];
 2'b10: DOUT = DIN[2];
// 2'b11: DOUT = DIN[3];
endcase
endmodule

Register Inference Limitations
Note the following limitations when inferring registers:

• The tool does not support more than one independent if-block when asynchronous
behavior is modeled within an always block. If the always block is purely synchronous,
multiple independent if-blocks are supported by the tool.

• The HDL Compiler tool cannot infer flip-flops and latches with three-state outputs. You
must instantiate these components in your Verilog description.

• The HDL Compiler tool cannot infer flip-flops with bidirectional pins. You must
instantiate these components in the RTL.

• The HDL Compiler tool cannot infer flip-flops with multiple clock inputs. You must
instantiate these components in the RTL.

• The HDL Compiler tool cannot infer multiport latches. You must instantiate these
components in the RTL.

• The HDL Compiler tool cannot infer register banks (register files). You must instantiate
these components in the RTL.

• Although you can instantiate flip-flops with bidirectional pins, the HDL Compiler tool
interprets these cells as black boxes.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

87

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

• If you use an if statement to infer D flip-flops, the if statement must occur at the top
level of the always block.

The following example is invalid because the if statement does not occur at the top
level:

 always @(posedge clk or posedge reset) begin
 temp = reset;
 if (reset)
 ...
 end

The tool issues the following message when the if statement does not occur at the top
level:

Error: .../test.sv:8: The statements in this 'always' block are
outside the scope of the synthesis policy. Only an 'if' statement is
allowed at the top level in this always block. (ELAB-302)

Register Inference Examples
The following sections describe register inference examples:

• Inferring Latches

• Inferring Flip-Flops

Inferring Latches
The tool infers latches when variables are conditionally assigned. A variablereadingvariableconditionally assignedvariable is
conditionally assigned if there is a path that does not explicitly assign a value to that
variable.

• Basic D Latch

• D Latch With Asynchronous Set: Use async_set_reset

• D Latch With Asynchronous Reset: Use async_set_reset

• D Latch With Asynchronous Set and Reset: Use hdlin_latch_always_async_set_reset

Basic D Latch
To direct the tool to infer a latchesD latchD latch, you need to control the gate and data signals from
the top-level ports or through combinational logic, so simulation can initialize the design.
Example 46 shows that a D latch is inferred for the always@ construct.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

88

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

Example 46 D Latch Code
module d_latch (
 input GATE, DATA,
 output reg Q
);
always @(GATE or DATA)
if (GATE)
 Q <= DATA;
endmodule

The HDL Compiler tool generates the inference report shown in Example 47.

Example 47 Inference Report
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | N | N | - | - | - |
===

D Latch With Asynchronous Set: Use async_set_reset
Example 48 shows the recommended coding style for an asynchronously set latch using
the async_set_reset directive.

Example 48 D Latch With Asynchronous Set: Uses async_set_reset
module d_latch_async_set (
 input GATE, DATA, SET,
 output reg Q
);

// synopsys async_set_reset "SET"
always @(GATE or DATA or SET)
if (~SET)
 Q = 1'b1;
else if (GATE)
 Q = DATA;
endmodule

The tool generates the inference report shown in Example 49.

Example 49 Inference Report for D Latch With Asynchronous Set
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | N | Y | - | - | - |
===

D Latch With Asynchronous Reset: Use async_set_reset
Example 50 shows the recommended coding style for an asynchronously reset latch using
the async_set_reset directive.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

89

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

Example 50 D Latch With Asynchronous Reset: Uses async_set_reset
module d_latch_async_reset (
 input RESET, GATE, DATA,
 output reg Q
);
//synopsys async_set_reset "RESET"
always @ (RESET or GATE or DATA)
 if (~RESET) Q <= 1'b0;
 else if (GATE) Q <= DATA;
endmodule

The tool generates the inference report shown in Example 51.

Example 51 Inference Report for D Latch With Asynchronous Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | Y | N | - | - | - |
===

D Latch With Asynchronous Set and Reset: Use
hdlin_latch_always_async_set_reset
To infer a latchesD latch with an active-low asynchronous set and resetD latch with an active-low asynchronous set and reset, set the
hdlin_latch_always_async_set_reset variable to true and use the coding style shown
in Example 52.

Note:
This example uses the one_cold directivedirectivesone_coldone_cold directive to prevent priority encoding of the
set and reset signals. Although this saves area, it might cause a simulation/
synthesis mismatch if both signals are low at the same time.

Example 52 D Latch With Asynchronous Set and Reset: Uses
hdlin_latch_always_async_set_reset

// Set hdlin_latch_always_async_set_reset to true.
module d_latch_async (
 input GATE, DATA, RESET, SET,
 output reg Q
);
// synopsys one_cold "RESET, SET"
always @ (GATE or DATA or RESET or SET)
begin : infer
 if (!SET) Q <= 1'b1;
 else if (!RESET) Q <= 1'b0;
 else if (GATE) Q <= DATA;
end
endmodule

Example 53 shows the inference report.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

90

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

Example 53 Inference Report D Latch With Asynchronous Set and Reset
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Latch | 1 | N | N | Y | Y | - | - | - |
===

Inferring Flip-Flops
Synthesis of sequential elements, such as various types of flip-flops, often involves signals
that set or reset the sequential device. Synthesis tools can create a sequential cell that
has built-in set and reset functionality. This is referred to as set/reset inference. For an
example using a flip-flop with reset functionality, consider the following RTL code:

module m (
 input clk, set, reset, d,
 output reg q
);
always @ (posedge clk)
 if (reset) q <= 1'b0;
 else q <= d;
endmodule

There are two ways to synthesize an electrical circuit with a reset signal based on the
previous code. You can either synthesize the circuit with a simple flip-flop with external
combinational logic to represent the reset functionality, as shown in Figure 17, or you can
synthesize a flip-flop with built-in reset functionality, as shown in Figure 18.

Figure 17 Flip-Flop With External Combinational Logic to Represent Reset

Q

Clock

0

D

MUX Flip-Flop

Reset

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

91

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

Figure 18 Flip-Flop With Built-In Reset Functionality

Q

Clock

D

Flip-Flop

Reset

The intended implementation is not apparent from the RTL code. You should specify HDL
Compiler synthesis directives or HDL Compiler variables to guide the tool to create the
proper synchronous set and reset signals.

The following sections provide examples of these flip-flops:

• Basic D Flip-Flop

• D Flip-Flop With Asynchronous Reset Using ?: Construct

• D Flip-Flop With Asynchronous Reset

• D Flip-Flop With Asynchronous Set and Reset

• D Flip-Flop With Synchronous Set: Use sync_set_reset

• D Flip-Flop With Synchronous Reset: Use sync_set_reset

• D Flip-Flop With Synchronous and Asynchronous Load

• D Flip-Flops With Complex Set and Reset Signals

• Multiple Flip-Flops With Asynchronous and Synchronous Controls

Basic D Flip-Flop
When you infer a D flip-flop, make sure you can control the clock and data signals from the
top-level design ports or through combinational logic. Controllable clock and data signals
ensure that simulation can initialize the design. If you cannot control the clock and data
signals, infer a D flip-flop with an asynchronous reset or set or with a synchronous reset or
set.

Example 54 infers a basic flip-floprising-edge-triggered D flip-flopD-flip-flopD flip-flop.

Example 54 Basic D Flip-Flop
module dff_pos (DATA, CLK, Q);
 input DATA, CLK;
 output Q;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

92

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

 reg Q;
 always @(posedge CLK)
 Q <= DATA;
endmodule

HDL Compiler generates the inference report shown in Example 55.

Example 55 Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N
 |
==

D Flip-Flop With Asynchronous Reset Using ?: Construct
Example 56 uses the ?: construct to infer a flip-flopD flip-flop with an asynchronous setD-flip-flopD flip-flop with an asynchronous reset. Note
that the tool does not support more than one ?: operator inside an always block.

Example 56 D Flip-Flop With Asynchronous Reset Using ?: Construct
module test(input clk, rst, din, output reg dout);
 always@(posedge clk or negedge rst)
 dout <= (!rst) ? 1'b0 : din;
endmodule

HDL Compiler generates the inference report shown in Example 57.

Example 57 D Flip-Flop With Asynchronous Reset Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N
 |
==

D Flip-Flop With Asynchronous Reset
Example 58 infers a flip-flopD flip-flop with an asynchronous resetD-flip-flopD flip-flop with an asynchronous reset.

Example 58 D Flip-Flop With Asynchronous Reset
module dff_async_reset (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;
 always @(posedge CLK or posedge RESET)
 if (RESET)
 Q <= 1'b0;
 else

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

93

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

 Q <= DATA;
endmodule

HDL Compiler generates the inference report shown in Example 59.

Example 59 D Flip-Flop With Asynchronous Reset Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
| Q_reg | Flip-flop | 1 | N | N | Y | N | N | N | N
 |
==

D Flip-Flop With Asynchronous Set and Reset
Example 60 infers a D flip-flop with asynchronous set and reset pins. The example
uses the one_hot directive to prevent priority encoding of the set and reset signals.
If signals SET and RESET are asserted at the same time, the synthesized hardware
is unpredictable. To check for this condition, use the SYNTHESIS macro and the
`ifndef ... `endif constructs (see Predefined Macros).

Example 60 D Flip-Flop With Asynchronous Set and Reset
module dff_async (RESET, SET, DATA, Q, CLK);
 input CLK;
 input RESET, SET, DATA;
 output Q;
 reg Q;
 // synopsys one_hot "RESET, SET"

 always @(posedge CLK or posedge RESET or posedge SET)
 if (RESET)
 Q <= 1'b0;
 else if (SET)
 Q <= 1'b1;
 else Q <= DATA;
 `ifndef SYNTHESIS
 always @ (RESET or SET)
 if (RESET + SET > 1)
 $write ("ONE-HOT violation for RESET and SET.");
 `endif
endmodule

Example 61 shows the inference report.

Example 61 D Flip-Flop With Asynchronous Set and Reset Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

94

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

| Q_reg | Flip-flop | 1 | N | N | Y | Y | N | N | N
 |
==

D Flip-Flop With Synchronous Set: Use sync_set_reset
This example shows a flip-flopD flip-flop with synchronous setD-flip-flopD flip-flop design with a synchronous set.

The sync_set_reset directive is applied to the SET signal. If the target library does not
have a D flip-flop with synchronous set, the HDL Compiler tool infers synchronous set
logic as the input to the D pin of the flip-flop. If the set logic is not directly in front of the
D pin of the flip-flop, initialization problems can occur during gate-level simulation of the
design. The sync_set_reset directive ensures that this logic is as close to the D pin as
possible.

Design of a D Flip-Flop With Synchronous Set
module dff_sync_set (
 input DATA, CLK, SET,
 output logic Q
);
//synopsys sync_set_reset "SET"
always @(posedge CLK)
if (SET) Q <= 1'b1;
else <= DATA;
endmodule

Inference Report
module dff_sync_set (
 input DATA, CLK, SET;
 output reg Q
);
//synopsys sync_set_reset "SET"
always @(posedge CLK)
 if (SET) Q <= 1'b1;
 else Q <= DATA;
endmodule

D Flip-Flop With Synchronous Reset: Use sync_set_reset
Example 62 infers a flip-flopD flip-flop with synchronous resetD-flip-flopD flip-flop with synchronous reset. The sync_set_reset directive is
applied to the RESET signal.

Example 62 D Flip-Flop With Synchronous Reset: Use sync_set_reset
module dff_sync_reset (
 input DATA, CLK, RESET,
 output reg Q
);
 //synopsys sync_set_reset "RESET"
 always @(posedge CLK)
 if (~RESET)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

95

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

 Q <= 1'b0;
 else
 Q <= DATA;
endmodule

HDL Compiler generates the inference report shown in Example 63.

Example 63 D Flip-Flop With Synchronous Reset Inference Report
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q_reg | Flip-flop | 1 | N | N | N | N | Y | N | N |
===

D Flip-Flop With Synchronous and Asynchronous Load
Use the coding style in Example 64 to infer a flip-flopD flip-flop with a synchronous load and an asynchronous loadD-flip-flopD flip-flop with both synchronous and
asynchronous load signals.

Example 64 Synchronous and Asynchronous Loads
module dff_a_s_load (ALOAD, SLOAD, ADATA, SDATA, CLK, Q);
 input ALOAD, ADATA, SLOAD, SDATA, CLK;
 output Q;
 reg Q;
 wire asyn_rst, asyn_set;

 assign asyn_rst = ALOAD && !ADATA;
 assign asyn_set = ALOAD && ADATA;

//synopsys one_cold "ALOAD, ADATA"

 always @ (posedge CLK or posedge asyn_rst or posedge asyn_set)
 begin
 if (asyn_set)
 Q <= 1'b1;
 else if (asyn_rst)
 Q <= 1'b0;
 else if (SLOAD)
 Q <= SDATA;
 end

HDL Compiler generates the inference report shown in Example 65.

Example 65 D Flip-Flop With Synchronous and Asynchronous Load Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
| Q_reg | Flip-flop | 1 | N | N | Y | Y | N | N | N
 |
==
Sequential Cell (Q_reg)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

96

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

 Cell Type: Flip-Flop
 Multibit Attribute: N
 Clock: CLK
 Async Clear: ADATA' ALOAD
 Async Set: ADATA ALOAD
 Async Load: 0
 Sync Clear: 0
 Sync Set: 0
 Sync Toggle: 0
 Sync Load: SLOAD

D Flip-Flops With Complex Set and Reset Signals
While many set and reset signals are simple signals, some include complex logic. To
enable HDL Compiler to generate a clean set/reset (that is, a set/reset signal attached
only to the appropriate set/reset pins), use the following coding guidelines:

• Apply the appropriate set/reset compiler directive (//synopsys sync_set_reset or
//synopsys async_set_reset) to the set/reset signal.

• Use no more than two operands in the set/reset logic expression conditional.

• Use the set/reset signal as the first operand in the set/reset logic expression
conditional.

This coding style supports usage of the negation operator on the set/reset signal and the
logic expression. The logic expression can be a simple expression or any expression
contained inside parentheses. However, any deviation from these coding guidelines is
not supported. For example, using a more complex expression other than the OR of two
expressions, or using a rst (or ~rst) that does not appear as the first argument in the
expression is not supported.

Examples
//synopsys sync_set_reset "rst"
always @(posedge clk)
if (rst | logic_expression)
 q <= 0;
else ...
else ...
...

//synopsys sync_set_reset "rst"
assign a = rst | ~(a | b & c);
always @(posedge clk)
if (a)
 q <= 0;
else ...;
else ...;
...

//synopsys sync_set_reset "rst"
always @(posedge clk)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

97

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

if (~ rst | ~ (a | b | c))
 q <= 0;
else ...
else ...
...

//synopsys sync_set_reset "rst"
assign a = ~ rst | ~ logic_expression;
always @(posedge clk)
if (a)
 q <= 0;
else ...;
else ...;
...

Multiple Flip-Flops With Asynchronous and Synchronous
Controls
In Example 66, the infer_sync block uses the reset signal as a synchronous reset and the
infer_async block uses the reset signal as an asynchronous reset.

Example 66 Multiple Flip-Flops With Asynchronous and Synchronous Controls
module multi_attr (DATA1, DATA2, CLK, RESET, SLOAD, Q1, Q2);
 input DATA1, DATA2, CLK, RESET, SLOAD;
 output Q1, Q2;
 reg Q1, Q2;

 //synopsys sync_set_reset "RESET"
 always @(posedge CLK)
 begin : infer_sync
 if (~RESET)
 Q1 <= 1'b0;
 else if (SLOAD)
 Q1 <= DATA1; // note: else hold Q1
 end
 always @(posedge CLK or negedge RESET)
 begin: infer_async
 if (~RESET)
 Q2 <= 1'b0;
 else if (SLOAD)
 Q2 <= DATA2;
 end
endmodule

Example 67 shows the inference report.

Example 67 Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

98

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Sequential Logic
Register Inference Examples

Feedback

| Q1_reg | Flip-flop | 1 | N | N | N | N | Y | N | N
 |
==

===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
===
| Q2_reg | Flip-flop | 1 | N | N | Y | N | N | N | N
 |
===

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

99

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

5
Modeling Three-State Buffers

HDL Compiler infers a three-state driver when you assign the value z (high impedance)
to a variable. HDL Compiler infers 1 three-state driver per variable per always constructassignmentsalways constructalways block. You
can assign high-impedance values to single-bit or bused variables. A three-state driver
is represented as a TSGEN cell in the generic netlist. Three-state driver inference and
instantiation multibit componentsbenefitsmultibit componentsdescribed are described in the following sections:

• Using z Values

• Three-State Driver Inference Report

• Assigning a Single Three-State Driver to a Single Variable

• Assigning Multiple Three-State Drivers to a Single Variable

• Registering Three-State Driver Data

• Instantiating Three-State Drivers

• Errors and Warnings

Using z Values
You can use the z value in the following ways:

• Variable assignment

• functionsFunction call argument

• Return value

You can use the z value only in a comparison expression, such as in

if (IN_VAL == 1'bz) y=0;

This statement is permissible because IN_VAL == 1'bz is a comparison. However, it
always evaluates to false, so it is also a simulation/synthesis mismatchz valuesimulator/synthesismismatchmismatchz value comparisonmismatch. See Unknowns
and High Impedance in Comparison.

This code,

OUT_VAL = (1'bz && IN_VAL);

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Modeling Three-State Buffers
Three-State Driver Inference Report

Feedback

is not a comparison expression. HDL Compiler generates an errorserror for this expression.

Three-State Driver Inference Report
The hdlin_reporting_level variable determines whether HDL Compiler generates a
three-state inference reportdescriptionhdlin_reporting_level variableinference report. If you do not want inference reports, set the level to none. The
default is basic, which indicates to generate a report. Example 68 shows a three-state
inference report:

Example 68 Three-State Inference Report
==
| Register Name | Type | Width |
==
| T_tri | Tri-State Buffer | 1 |
==

The first column of the report indicates the name of the inferred three-state device.
The second column indicates the type of inferred device. The third column indicates
the width of the inferred device. HDL Compiler generates the same report for the
default and verbose reports for three-state inference. For more information about the
hdlin_reporting_level variable to basic+fsm, see Customizing Elaboration Reports.

Assigning a Single Three-State Driver to a Single Variable
Example 69 infers a single three-state driver and shows the associated inference report.

Example 69 Single Three-State Driver
module three_state (ENABLE, IN1, OUT1);
 input IN1, ENABLE;
 output OUT1;
 reg OUT1;
always @(ENABLE or IN1) begin
 if (ENABLE)
 OUT1 = IN1;
 else
 OUT1 = 1'bz; //assigns high-impedance state
end
endmodule

Example 70 Inference Report
==
| Register Name | Type | Width |
==
| OUT1_tri | Tri-State Buffer | 1 |
==

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Modeling Three-State Buffers
Assigning Multiple Three-State Drivers to a Single Variable

Feedback

Example 71 infers a single three-state driver with MUXed inputs and shows the associated
inference report.

Example 71 Single Three-State Driver With MUXed Inputs
module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 reg T;
 always @(SELA or SELB or A or B) begin
 T = 1'bz;
 if (SELA)
 T = A;
 if (SELB)
 T = B;
 end
endmodule

Inference Report
==
| Register Name | Type | Width |
==
| T_tri | Tri-State Buffer | 1 |
==

Assigning Multiple Three-State Drivers to a Single Variable
When assigning multiple three-state drivers to a single variable, as shown in Figure 19,
always use assign statements, as shown in Example 72.

Figure 19 Two Three-State Drivers Assigned to a Single Variable

T

SELB

B

SELA

A

Example 72 Correct Method
module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Modeling Three-State Buffers
Registering Three-State Driver Data

Feedback

 assign T = (SELA) ? A : 1'bz;
 assign T = (SELB) ? B : 1'bz;
endmodule

Do not use multiple always constructassignmentsalways constructalways blocks (shown in Example 73). Multiple always blocks cause
a simulation/synthesis mismatchthree-statesmismatch because the reg data type is not resolved. Note that the
tool does not display a warning for this mismatch.

Example 73 Incorrect Method
module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 reg T;
 always @(SELA or A)
 if (SELA)
 T = A;
 else
 T = 1'bz;
 always @(SELB or B)
 if (SELB)
 T = B;
 else
 T = 1'bz;
endmodule

Registering Three-State Driver Data
When a variable is registered in the same block in which it is defined as a three-state
driver, HDL Compiler also registers the driver’s enable signal, as shown in Example 74.
Figure 20 shows the compiled gates and the associated inference report.

Example 74 Three-State Driver With Enable and Data Registered
module ff_3state (DATA, CLK, THREE_STATE, OUT1);
 input DATA, CLK, THREE_STATE;
 output OUT1;
 reg OUT1;
always @ (posedge CLK) begin
 if (THREE_STATE)
 OUT1 <= 1'bz;
 else
 OUT1 <= DATA;
end
endmodule

Example 75 Inference Reports
===
|Register Name | Type | Width | Bus | AR | AS | SR | SS | ST |
===

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Modeling Three-State Buffers
Instantiating Three-State Drivers

Feedback

|OUT1_reg |Flip-flop | 1 | N | N | N | N | N | N |
|OUT1_tri_enable_reg |Flip-flop | 1 | N | N | N | N | N | N |
===

==
| Register Name | Type | Width |
==
| OUT1_tri | Tri-State Buffer | 1 |
==

Figure 20 Three-State Driver With Enable and Data Registered

Instantiating Three-State Drivers
The following gate types are supported:

• bufif0 (active-low enable line)

• bufif1 (active-high enable line)

• notif0 (active-low enable line, output inverted)

• notif1 (active-high enable line, output inverted)

Connection lists for bufif and notif gates use positional notation. Specify the order of the
terminals as follows:

• The first terminal connects to the output of the gate.

• The second terminal connects to the input of the gate.

• The third terminal connects to the control line.

Example 76 shows a three-state gate instantiationsinstantiation with an active-high enable and no
inverted output.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Modeling Three-State Buffers
Errors and Warnings

Feedback

Example 76 Three-State Gate Instantiation
module three_state (in1,out1,cntrl1);
 input in1,cntrl1;
 output out1;

 bufif1 (out1,in1,cntrl1);
endmodule

Errors and Warnings
When you use the coding styles recommended in this chapter, you do not need
to declare variables that drive multiply driven nets as tri data objects. But if you
don’t use these coding styles, or you don’t declare the variable as a tri data object,
HDL Compiler issues an errorsELAB-366ELAB-366ELAB-366ELAB-366 error message and terminates. To force HDL
Compiler to warn for this condition (ELAB-365) but continue to create a netlist, set the
hdlin_prohibit_nontri_multiple_drivers variable to false (the default is true). With
this variable false, HDL Compiler builds the generic netlist for all legal designs. If a design
is illegal, such as when one of the drivers is a constant, HDL Compiler issues an error
message.

The following code generates an ELAB-366 error message (OUT1 is a reg being driven by
two always@ blocks):

 module three_state (ENABLE, IN1, RESET, OUT1);

 input IN1, ENABLE, RESET;
 output OUT1;
 reg OUT1;

always @(IN1 or ENABLE)
 if (ENABLE)
 OUT1 = IN1;

always@ (RESET)
 if (RESET)
 OUT1 = 1'b0;
endmodule

The ELAB-366 error message is
errorsError: Net '/...v:14: OUT1' or a directly connected net is
driven by more than one source, and not all drivers are
three-state. (ELAB-366ELAB-366)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

6
HDL Compiler Synthesis Directives

HDL Compiler synthesis directives are special comments that affect how synthesis
processes the RTL. These comments are ignored by other tools.

These synthesis directives begin as a Verilog comment (// or /*) followed by a pragma
prefix (pragma, synopsys, or synthesis) and then the directive. The //$s or //$S
prefix can be used as a shortcut for //synopsys. The simulator ignores these directives.
Whitespace is permitted (but not required) before and after the Verilog comment prefix.

Note:
Not all directives support all pragma prefixes; see Directive Support by Pragma
Prefix on page 124 for details.

The following sections describe the HDL Compiler synthesis directives:

• async_set_reset

• async_set_reset_local

• async_set_reset_local_all

• dc_tcl_script_begin and dc_tcl_script_end

• enum

• full_case

• infer_multibit and dont_infer_multibit

• infer_mux

• infer_mux_override

• infer_onehot_mux

• keep_signal_name

• one_cold

• one_hot

• parallel_case

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
async_set_reset

Feedback

• preserve_sequential

• sync_set_reset

• sync_set_reset_local

• sync_set_reset_local_all

• template

• translate_off and translate_on (Deprecated)

• Directive Support by Pragma Prefix

async_set_reset
When you set the async_set_reset directive on a single-bit signal, HDL Compiler
searches for a branch that uses the signal as a condition and then checks whether
the branch contains an assignment to a constant value. If the branch does, the signal
becomes an asynchronous reset or set. Use this directive on single-bit signals.

The syntax is

// synopsys async_set_reset "signal_name_list"

See Also

• Inferring Latches

async_set_reset_local
When you set the async_set_reset_local directive, HDL Compiler treats listed signals
in the specified block as if they have the async_set_reset directive set. Attach the
async_set_reset_local directive to a block label using the following syntax:

// synopsys async_set_reset_local block_label "signal_name_list"

async_set_reset_local_all
When you set the async_set_reset_local_all directive, HDL Compiler treats all listed
signals in the specified blocks as if they have the async_set_reset directive set. Attach
the async_set_reset_local_all directive to a block label using the following syntax:

// synopsys async_set_reset_local_all "block_label_list"

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
dc_tcl_script_begin and dc_tcl_script_end

Feedback

To enable the async_set_reset_local_all behavior, you must set
hdlin_ff_always_async_set_reset to false and use the coding style shown in
Example 77.

Example 77 Coding Style
// To enable the async_set_reset_local_all behavior, you must set
// hdlin_ff_always_async_set_reset to false in addition to coding per the
following template.

module m1 (input rst,set,d,d1,clk,clk1, output reg q,q1);

// synopsys async_set_reset_local_all "sync_rst"
 always @(posedge clk or posedge rst or posedge set) begin :sync_rst
 if (rst)
 q <= 1'b0;
 else if (set)
 q <= 1'b1;
 else q <= d;
end

 always @(posedge clk1 or posedge rst or posedge set) begin :
default_rst
 if (rst)
 q1 <= 1'b0;
 else if (set)
 q1 <= 1'b1;
 else
 q1 <= d1;
end
endmodule

dc_tcl_script_begin and dc_tcl_script_end
You can embed Tcl commands that set design constraints and attributes within the RTL
by using the directivesdc_script_beginembedding constraints and attributesdc_script_begindc_tcl_script_begin and directivesdc_script_endembedding constraints and attributesdc_script_enddc_tcl_script_end directives, as shown in
Example 78 and Example 79.

Example 78 Embedding Constraints With // Delimiters
...
// synopsys dc_tcl_script_begin
// set_max_area 0.0
// set_max_delay 0.0 -to port_z
// synopsys dc_tcl_script_end
...

Example 79 Embedding Constraints With /* and */ Delimiters
/* synopsys dc_tcl_script_begin
 set_max_area 10.0

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
dc_tcl_script_begin and dc_tcl_script_end

Feedback

 set_max_delay 5.0 port_z
 # no end needed for this form
*/

The HDL Compiler tool interprets the statements embedded between the
dc_tcl_script_begin and the dc_script_end directivedc_tcl_script_end directives. If you want to comment
out part of your script, use the Tcl # comment character within the RTL comments.

The following items are not supported in embedded Tcl scripts:

• Hierarchical constraints

• Wildcards

• List commands

• Multiple line commands

Observe the following guidelines when using embedded Tcl scripts:dc_script_end directive

• Constraints and attributes declared outside a module apply to all subsequent modules
declared in the file.

• Constraints and attributes declared inside a module apply only to the enclosing
module.

• Any dc_shell scripts embedded in functionsfunctionsfunctions apply to the whole module.

• Include only commands that set constraints and attributes. Do not use action
commands such as compile, gen, and report. The tool ignores these commands and
issues a warning or error message.

• The constraints or attributes set in the embedded script go into effect after the read
command is executed. Therefore, variables that affect the read process itself are not in
effect before the read.

• errorsError checking is done after the read command completes. Syntactic and semantic
errors in dc_shell strings are reported at this time.

• You can have more than one dc_tcl_script_begin / dc_tcl_script_end pair per file or
module. The compiler does not issue an error or warning when it sees more than one
pair. Each pair is evaluated and set on the applicable code.

• An embedded dc_shell script does not produce any information or status messages
unless there is an error in the script.

• Usage of built-in Tcl commands is not recommended.

• Usage of output redirection commands is not recommended.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
enum

Feedback

enum
Use the enum directiveenum directive with the Verilog parametersparameter definition statement to specify state
machine encodings.

The syntax of the enum directive is

// synopsys enum enum_name

Example 80 shows the declaration of an enumeration of type colors that is 3 bits wide and
has the enumeration literals red, green, blue, and cyan with the values shown.

Example 80 Enumeration of Type Colors
parameter [2:0] // synopsys enum colors
red = 3'b000, green = 3'b001, blue = 3'b010, cyan = 3'b011;

The enumeration must include a size (bit-width) specification. Example 81 shows an
invalid enum declaration.

Example 81 Invalid enum Declaration
parameter /* synopsys enum colors */
red = 3'b000, green = 1;
// [2:0] required

Example 82 shows a register, a wire, and an input port with the declared type of colors. In
each of the following declarations, the array bounds must match those of the enumeration
declaration. If you use different bounds, synthesis might not agree with simulation
behavior.

Example 82 enum Type Declarations
reg [2:0] /* synopsys enum colors */ counter;
wire [2:0] /* synopsys enum colors */ peri_bus;
input [2:0] /* synopsys enum colors */ input_port;

Even though you declare a variable to be of type enum, it can still be assigned a bit
value that is not one of the enumeration values in the definition. Example 83 relates to
Example 82 and shows an invalid encoding for colors.

Example 83 Invalid Bit Value Encoding for Colors
counter = 3'b111;

Because 111 is not in the definition for colors, it is not a valid encoding. HDL Compiler
accepts this encoding, but issues a warningsencodingswarning for this assignment.

You can use enumeration literals just like constants, as shown in Example 84.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
full_case

Feedback

Example 84 Enumeration Literals Used as Constants
if (input_port == blue)
 counter = red;

If you declare a port as a reg and as an enumerated type, you must declare the
enumeration when you declare the port. Example 85 shows the declaration of the
enumeration.

Example 85 Enumerated Type Declaration for a Port
module good_example (a,b);
 parameter [1:0] /* synopsys enum colors */
 green = 2'b00, white = 2'b11;
 input a;
 output [1:0] /* synopsys enum colors */ b;
 reg [1:0] b;
...
endmodule

Example 86 declares a port as an enumerated type incorrectly because the enumerated
type declaration appears with the reg declaration instead of with the output declaration.

Example 86 Incorrect Enumerated Type Declaration for a Port
module bad_example (a,b);
 parameter [1:0] /* synopsys enum colors */
 green = 2'b00, white = 2'b11;
 input a;
 output [1:0] b;
 reg [1:0] /* synopsys enum colors */ b;
...
endmodule

full_case
This directive prevents HDL Compiler from generating logic to test for any value that is not
covered by the case branches and creating an implicit default branch. Set the directivesfull_casefull_casesimulator/synthesis mismatchfull_case usagemismatchfull_case usageparallel_case full_case
directive on a case statement when you know that all possible branches of the case
statement are listed within the case statement. When a variable is assigned in a case
statement that is not full, the variable is conditionally assigned and requires a latch.

Caution:
Marking a case statement as full when it actually is not full can cause the
simulation to behave differently from the logic HDL Compiler synthesizes
because HDL Compiler does not generate a latch to handle the implicit default
condition.

The syntax for the full_case directive is

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
full_case

Feedback

// synopsys full_case

In Example 87, full_case is set on the first case statement and directivesparallel_case used with full_caseparallel_case and
full_case directives are set on the second case statement.

Example 87 // synopsys full_case Directives
module test (in, out, current_state, next_state);
 input [1:0] in;
 output reg [1:0] out;
 input [3:0] current_state;
 output reg [3:0] next_state;

 parameter state1 = 4'b0001, state2 = 4'b0010,state3 = 4'b0100, state4 =
 4'b1000;
always @* begin
case (in) // synopsys full_case
0: out = 2;
1: out = 3;
2: out = 0;
endcase
case (1) // synopsys parallel_case full_case
current_state[0] : next_state = state2;
current_state[1] : next_state = state3;
current_state[2] : next_state = state4;
current_state[3] : next_state = state1;
endcase
end
endmodule

In the first case statement, the condition in == 3 is not covered. However, the designer
knows that in == 3 never occurs and therefore sets the full_case directive on the case
statement.

In the second case statement, not all 16 possible branch conditions are covered; for
example, current_state == 4’b0101 is not covered. However,

• The designer knows that these states never occur and therefore sets the full_case
directive on the case statement.

• The designer also knows that only one branch is true at a time and therefore sets the
parallel_case directive on the case statement.

In the following example, at least one branch is taken because all possible values of sel
are covered, that is, 00, 01, 10, and 11:

module mux(a, b,c,d,sel,y);
 input a,b,c,d;
 input [1:0] sel;
 output y;
 reg y;
 always @ (a or b or c or d or sel)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit

Feedback

 begin
 case (sel)
 2'b00 : y=a;
 2'b01 : y=b;
 2'b10 : y=c;
 2'b11 : y=d;
 endcase
 end
endmodule

In the following example, the case statement is not full:

module mux(a, b,c,d,sel,y);
 input a,b,c,d;
 input [1:0] sel;
 output y;
 reg y;
 always @ (a or b or c or d or sel)
 begin
 case (sel)
 2'b00 : y=a;
 2'b11 : y=d;
 endcase
 end
endmodule

It is unknown what happens when sel equals 01 and 10. In this case, HDL Compiler
generates logic to test for any value that is not covered by the case branches and creates
an implicit “default” branch that contains no actions. When a variable is assigned in a case
statement that is not full, the variable is conditionally assigned and requires a latch.

infer_multibit and dont_infer_multibit
The HDL Compiler tool can infer registers that have identical structures as multibit
components.

The following sections describe how to use the multibit inference directives:

• Using the infer_multibit Directive

• Using the dont_infer_multibit Directive

• Reporting Multibit Components

Multibit sequential mapping does not pull in as many levels of logic as single-bit sequential
mapping. Therefore, HDL Compiler might not infer complex multibit sequential cells, such
as a JK flip-flop.

For more information, see the HDL Compiler documentation.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit

Feedback

Note:
The term multibit component refers, for example, to the x-bit register in your
HDL description. The term multibit library cell refers to a library macro cell, such
as a flip-flop cell.

Using the infer_multibit Directive
By default, the hdlin_infer_multibit variable is set to the default_none value and
no multibit cells are inferred unless you set the infer_multibitinfer_multibit directive on specific
components in the Verilog code. This directive gives you control over individual wire and
register signals directivesinfer_multibit. Example 88 shows usage.

Example 88 Inferring a Multibit Flip-Flop With the infer_multibit Directive
module test (d0, d1, d2, rst, clk, q0, q1, q2);
 parameter d_width = 8;

 input [d_width-1:0] d0, d1, d2;
 input clk, rst;
 output [d_width-1:0] q0, q1, q2;
 reg [d_width-1:0] q0, q1, q2;

 //synopsys infer_multibit "q0"
 always @(posedge clk)begin
 if (!rst) q0 <= 0;
 else q0 <= d0;
 end

 always @(posedge clk or negedge rst)begin
 if (!rst) q1 <= 0;
 else q1 <= d1;
 end

 always @(posedge clk or negedge rst)begin
 if (!rst) q2 <= 0;
 else q2 <= d2;
 end

endmodule

Example 89 shows the inference report.

Example 89 Multibit Inference Report
Inferred memory devices in process
 in routine test line 10 in file
 '/.../test.v'.
==
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit

Feedback

==
===
| q0_reg | Flip-flop | 8 | Y | Y | N | N | N | N | N
 |
==
===

Inferred memory devices in process
 in routine test line 16 in file
 '/.../test.v'.
==
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
===
| q1_reg | Flip-flop | 8 | Y | N | Y | N | N | N | N
 |
==
===
Inferred memory devices in process
 in routine test line 21 in file
 '/.../test.v'.
==
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
===
| q2_reg | Flip-flop | 8 | Y | N | Y | N | N | N | N
 |
==
===
Compilation completed successfully.

The MB column of the inference report indicates if a component is inferred as a multibit
component. This report shows the q0_reg register is inferred as a multibit component. The
q1_reg and q2_reg registers are not inferred as multibit components.

Using the dont_infer_multibit Directive
If you set the hdlin_infer_multibit variable to the default_all value, all bused
registers are inferred as multibit components. Use the dont_infer_multibit directive to
prevent multibit inference.

Example 90 Using the dont_infer_multibit Directive
// the hdlin_infer_multibit variable is set to the default_all value
module test (d0, d1, d2, rst, clk, q0, q1, q2);
 parameter d_width = 8;

 input [d_width-1:0] d0, d1, d2;
 input clk, rst;
 output [d_width-1:0] q0, q1, q2;
 reg [d_width-1:0] q0, q1, q2;

 always @(posedge clk)begin

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

115

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit

Feedback

 if (!rst) q0 <= 0;
 else q0 <= d0;
 end

 //synopsys dont_infer_multibit "q1"
 always @(posedge clk or negedge rst)begin
 if (!rst) q1 <= 0;
 else q1 <= d1;
 end

 always @(posedge clk or negedge rst)begin
 if (!rst) q2 <= 0;
 else q2 <= d2;
 end

endmodule

Example 91 shows the multibit componentsmultibit inference reportinference reportsmultibit componentsmultibit inference report.

Example 91 Multibit Inference Report
Inferred memory devices in process
 in routine test line 10 in file
 '/.../test.v'.
==
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
===
| q0_reg | Flip-flop | 8 | Y | Y | N | N | N | N | N
 |
==
===

Inferred memory devices in process
 in routine test line 16 in file
 '/.../test.v'.
==
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
===
| q1_reg | Flip-flop | 8 | Y | N | Y | N | N | N | N
 |
==
===

Inferred memory devices in process
 in routine test line 21 in file
 '/.../test.v'.
==
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
 |
==
===
| q2_reg | Flip-flop | 8 | Y | Y | Y | N | N | N | N
 |

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

116

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
infer_multibit and dont_infer_multibit

Feedback

==
===
Presto compilation completed successfully.

Reporting Multibit Components
The report_multibit command reports all multibit components in the current design.
The report, viewable before and after compile, shows the multibit group name and what
cells implement each bit.

Example 92 shows a multibit component report.

Example 92 Multibit Component Report
**
Report : multibit
Design : test
Version: F-2011.09
Date : Thu Aug 4 21:42:30 2011
**

Attributes:
 b - black box (unknown)
 h - hierarchical
 n - noncombinational
 r - removable
 u - contains unmapped logic

Multibit Component : q0_reg
Cell Reference Library Area Width
 Attributes

q0_reg[7] **SEQGEN** 0.00 1 n, u
q0_reg[6] **SEQGEN** 0.00 1 n, u
q0_reg[5] **SEQGEN** 0.00 1 n, u
q0_reg[4] **SEQGEN** 0.00 1 n, u
q0_reg[3] **SEQGEN** 0.00 1 n, u
q0_reg[2] **SEQGEN** 0.00 1 n, u
q0_reg[1] **SEQGEN** 0.00 1 n, u
q0_reg[0] **SEQGEN** 0.00 1 n, u

Total 8 cells 0.00 8

The multibit group name for registers is set to the name of the bus. In the cell names of the
multibit registers with consecutive bits, a colon separates the outlying bits.

If the colon conflicts with the naming requirements of your place-and-route tool, you can
change the colon to another delimiter by using the multibit componentsbus_range_separator_stylebus_range_separator_stylebus_range_separator_style variable.

For multibit library cells with nonconsecutive bits, a comma separates the nonconsecutive
bits. This delimiter is controlled by the multibit componentsbus_multiple_separator_stylebus_multiple_separator_stylebus_multiple_separator_style variable. For
example, a 4-bit banked register that implements bits 0, 1, 2, and 5 of bus data_reg is
named data_reg [0:2,5].

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

117

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
infer_mux

Feedback

infer_mux
Use the infer_mux directive to infer MUX_OP cells for a specific case or if statement, as
shown in the following RTL code:

always@(SEL) begin
case (SEL) // synopsys infer_mux
 2'b00: DOUT <= DIN[0];
 2'b01: DOUT <= DIN[1];
 2'b10: DOUT <= DIN[2];
 2'b11: DOUT <= DIN[3];
endcase

You must use a simple variable as the control expression; for example, you can use
the input "A" but not the negation of input "A". If statements have special coding
considerations. For more information, see Controlling Selection Statement Inference on
page 66.

infer_mux_override
Use the infer_mux_override directive to infer MUX_OP cells for a specific case or if
statement regardless of the settings of the following variables:

• hdlin_infer_mux

• hdlin_mux_oversize_ratio

• hdlin_mux_size_limit

• hdlin_mux_size_min
The tool marks the MUX_OP cells inferred by this directive with the size_only attribute to
prevent logic decomposition during optimization. This directive infers MUX_OP cells even
if the cells cause loss of resource sharing.

For example,

module test (input [1:0] SEL,
 input [3:0] DIN,
 output logic DOUT);
always@(SEL or DIN) begin
case (SEL) // synopsys infer_mux_override
 2'b00: DOUT <= DIN[0];
 2'b01: DOUT <= DIN[1];
 2'b10: DOUT <= DIN[2];
 2'b11: DOUT <= DIN[3];
endcase
end
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

118

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
infer_onehot_mux

Feedback

infer_onehot_mux
Use the infer_onehot_mux directive to map combinational logic to one-hot multiplexers in
the logic library. For details, see Inferring One-Hot Multiplexer Logic on page 71.

keep_signal_name
Use the keep_signal_name directive to provide HDL Compiler with guidelines for
preserving signal names.

The syntax is

// synopsys keep_signal_name "signal_name_list"

Set the keep_signal_name directive on a signal before any reference is made to
that signal; for example, one methodology is to put the directive immediately after the
declaration of the signal.

See Also

• Keeping Signal Names

one_cold
A one-cold implementation indicates that all signals in a group are active-low and that only
one signal can be active at a given time. Synthesis implements the one_cold directive
by omitting a priority circuit in front of the flip-flop. Simulation ignores the directive. The
one_cold directive prevents the HDL Compiler tool from implementing priority-encoding
logic for the set and reset signals. Attach this directive to set or reset signals on sequential
devices, using the following syntax:

// synopsys one_cold signal_name_list

See D Latch With Asynchronous Set and Reset: Use
hdlin_latch_always_async_set_reset.

one_hot
A directivesone_hotone_hot directiveone-hot implementation indicates that all signals in a group are active-high and that only
one signal can be active at a given time. Synthesis implements the one_hot directive by
omitting a priority circuit in front of a flip-flop. Simulation ignores the directive. The one_hot
directive prevents the HDL Compiler tool from implementing priority-encoding logic for the

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

119

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
parallel_case

Feedback

set and reset signals. Attach this directive to set or reset signals on sequential devices,
using the following syntax:

// synopsys one_hot signal_name_list

See D Flip-Flop With Asynchronous Set and Reset.

parallel_case
Set the directivesparallel_caseparallel_casesimulator/synthesis mismatchparallel_case usagemismatchparallel_case usageparallel_case parallel_case directive on a case statement when you know that only one
branch of the case statement is true at a time. This directive prevents HDL Compiler from
building additional logic to ensure the first occurrence of a true branch is executed if more
than one branch were true at one time.

Caution:
Marking a case statement as parallel when it actually is not parallel can cause
the simulation to behave differently from the logic HDL Compiler synthesizes
because HDL Compiler does not generate priority encoding logic to make sure
that the branch listed first in the case statement takes effect.

The syntax for the parallel_case directive is

// synopsys parallel_case

Use the parallel_case directive immediately after the case expression. In Example 93,
the states of a state machine are encoded as a one-hot signal; the designer knows
that only one branch is true at a time and therefore sets the synopsys parallel_case
directive on the case statement.

Example 93 parallel_case Directives
reg [3:0] current_state, next_state;
parameter state1 = 4'b0001, state2 = 4'b0010,
 state3 = 4'b0100, state4 = 4'b1000;
case (1) //synopsys parallel_case
 current_state[0] : next_state = state2;
 current_state[1] : next_state = state3;
 current_state[2] : next_state = state4;
 current_state[3] : next_state = state1;
endcase

When a case statement is not parallel (more than one branch evaluates to true), priority
encoding is needed to ensure that the branch listed first in the case statement takes effect.

The following table summarizes the types of case statements.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
preserve_sequential

Feedback

Case statement description Additional logic

Full and parallel No additional logic is generated.

Full but not parallel Priority-encoded logic: HDL Compiler generates logic to
ensure that the branch listed first in the case statement
takes effect.

Parallel but not full Latches created: HDL Compiler generates logic to test for
any value that is not covered by the case branches and
creates an implicit “default” branch that requires a latch.

Not parallel and not full Priority-encoded logic: HDL Compiler generates logic to
make sure that the branch listed first in the case statement
takes effect.Latches created: HDL Compiler generates
logic to test for any value that is not covered by the case
branches and creates an implicit “default” branch that
requires a latch.

preserve_sequential
The preserve_sequential directive allows you to preserve specific cells that would
otherwise be optimized away by HDL Compiler. See Keeping Unloaded Registers on
page 84.

sync_set_reset
Use the sync_set_reset directive to infer a D flip-flop with a synchronous set/reset.
When you compile your design, the SEQGEN inferred by HDL Compiler is mapped to
a flip-flop in the logic library with a synchronous set/reset pin, or HDL Compiler uses a
regular D flip-flop and build synchronous set/reset logic in front of the D pin. The choice
depends on which method provides a better optimization result. It is important to use the
sync_set_reset directive to label the set/reset signal because it tells HDL Compiler that
the signal should be kept as close to the register as possible during mapping, preventing
a simulation/synthesis mismatch which can occur if the set/reset signal is masked by the
X during initialization in simulation. When a single-bit signal has this directive set to true,
HDL Compiler checks the signal to determine whether it synchronously sets or resets a
register in the design. Attach this directive to single-bit signals. Use the following syntax:

//synopsys sync_set_reset "signal_name_list"

For an example of a D flip-flop with a synchronous set signal that uses the
sync_set_reset directive, see D Flip-Flop With Synchronous Set: Use sync_set_reset on
page 95.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

121

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
sync_set_reset_local

Feedback

For an example of a D flip-flop with a synchronous reset signal that uses the
sync_set_reset directive, see D Flip-Flop With Synchronous Reset: Use sync_set_reset.

For an example of multiple flip-flops with asynchronous and synchronous controls, see
Multiple Flip-Flops With Asynchronous and Synchronous Controls.

sync_set_reset_local
The sync_set_reset_local directive instructs HDL Compiler to treat signals listed in
a specified block as if they have the sync_set_reset directive set to true. Attach this
directive to a block label, using the following syntax:

 //synopsys sync_set_reset_local block_label "signal_name_list"

Example 94 shows the usage.

Example 94 sync_set_reset_local Usage
module m1 (input d1,d2,clk, set1, set2, rst1, rst2, output reg q1,q2);

// synopsys sync_set_reset_local sync_rst "rst1"
//always@(posedge clk or negedge rst1)
 always@(posedge clk)
 begin: sync_rst
 if(~rst1)
 q1 <= 1'b0;
 else if (set1)
 q1 <= 1'b1;
 else
 q1 <= d1;
 end

 always@(posedge clk)
 begin: default_rst
 if(~rst2)
 q2 <= 1'b0;
 else if (set2)
 q2 <= 1'b1;
 else
 q2 <= d2;
 end

endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

122

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
sync_set_reset_local_all

Feedback

sync_set_reset_local_all
The sync_set_reset_local_all directive instructs HDL Compiler to treat all signals
listed in the specified blocks as if they have the sync_set_reset directive set to true.
Attach this directive to a block label, using the following syntax:

// synopsys sync_set_reset_local_all "block_label_list"

Example 95 shows usage.

Example 95 sync_set_reset_local_all Usage
module m2 (input d1,d2,clk, set1, set2, rst1, rst2, output reg q1,q2);

// synopsys sync_set_reset_local_all sync_rst
//always@(posedge clk or negedge rst1)
 always@(posedge clk)
 begin: sync_rst
 if(~rst1)
 q1 <= 1'b0;
 else if (set1)
 q1 <= 1'b1;
 else
 q1 <= d1;
 end

 always@(posedge clk)
 begin: default_rst
 if(~rst2)
 q2 <= 1'b0;
 else if (set2)
 q2 <= 1'b1;
 else
 q2 <= d2;
 end

endmodule

template
The templatedirectivetemplate directive saves an analyzed file and does not elaborate it. Without this
directive, the analyzed file is saved and elaborated. If you use this directive and your
design contains parametersparameters, the design is saved as a template. Example 96 shows usage.

Example 96 template Directive
module template (a, b, c);
 input a, b, c;
 // synopsys template
 parameter width = 8;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

123

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
translate_off and translate_on (Deprecated)

Feedback

.

.

.
endmodule

For more information, see Parameterized Designs on page 31.

translate_off and translate_on (Deprecated)
The translate_off and translate_on directives are deprecated. To suspend translation
of the source code for synthesis, use the SYNTHESIS macro and the appropriate
conditional directives (`ifdef, `ifndef, `else, `endif) rather than translate_off and
translate_on.

The SYNTHESIS macro replaces the DC macro (DC is still supported for backward
compatibility). See Predefined Macros on page 35.

Directive Support by Pragma Prefix
Not all pragma prefixes support all directives:

• The synopsys prefix is intended for directives specific to HDL Compiler. The tool
issues an error message if an unknown directive is encountered.

• The pragma and synthesis prefixes are intended for industry-standard directives. The
tool ignores any unsupported directives to allow for directives intended for other tools.
Directives specific to HDL Compiler are not supported.

Table 9 shows how each directive is handled by each pragma prefix.

Table 9 Directive Support by Pragma Prefix

Directive // synopsys, //
$s

// pragma // synthesis

translate_off / translate_on Used Used Used

dc_tcl_script_begin / dc_tcl_script_end
dc_script_begin / dc_script_end

Used Ignored Ignored

async_set_reset
async_set_reset_local
async_set_reset_local_all

Used Ignored Ignored

enum Used Ignored Ignored

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

124

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: HDL Compiler Synthesis Directives
Directive Support by Pragma Prefix

Feedback

Table 9 Directive Support by Pragma Prefix (Continued)

Directive // synopsys, //
$s

// pragma // synthesis

full_case
parallel_case

Used Ignored Ignored

infer_multibit
dont_infer_multibit

Used Ignored Ignored

infer_mux
infer_mux_override

Used Ignored Ignored

infer_onehot_mux Used Ignored Ignored

keep_signal_name Used Ignored Ignored

one_cold
one_hot

Used Ignored Ignored

preserve_sequential Used Ignored Ignored

sync_set_reset
sync_set_reset_local
sync_set_reset_local_all

Used Ignored Ignored

template Used Ignored Ignored

Any unknown directive Error Ignored Ignored

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

125

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

A
Verilog Design Examples

These Verilog examples describe the coding techniques for late-arriving signals and
master-slave latch inferences.

• Coding for Late-Arriving Signals

• Master-Slave Latch Inferences

You can find more examples in the $DC_HOME_DIR/doc/syn/examples/verilog directory. The
$DC_HOME_DIR variable defines the Design Compiler installation location.

Coding for Late-Arriving Signals
late-arriving signalsmoving late-arriving signal close to output solutiondatapath duplication solutionThe following topics describe coding techniques for late-arriving signals:

• Duplicating Datapaths

• Moving Late-Arriving Signals Close to Output

Note:
These techniques apply to the HDL Compiler output. When this output is
constrained and optimized by the HDL Compiler tool, the structure might be
changed depending on the design constraints and option settings. For more
information, see the HDL Compiler documentation.

Duplicating Datapaths
To improve the timing of late-arriving signals, you can duplicate datapaths, but at the
expense of more area and increased input loads.

Original RTL

In Example 97, the late-arriving CONTROL signal selects either the PTR1 or PTR2
input, and then the selected input drives a chain of arithmetic operations ending at
output COUNT. As shown in Figure 21, a SELECT_OP is next to a subtractor. When
you see a SELECT_OP next to an operator, you should duplicate the conditional logic
of the SELECT_OP and move the SELECT_OP to the end of the operation, as shown in
Example 98.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

126

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

Example 97 Original RTL
module BEFORE #(parameter [7:0] BASE = 8'b10000000)(
 input [7:0] PTR1,PTR2,
 input [15:0] ADDRESS, B,
 input CONTROL, //CONTROL is late arriving
 output [15:0] COUNT
);
 wire [7:0] PTR, OFFSET;
 wire [15:0] ADDR;
assign PTR = (CONTROL == 1'b1) ? PTR1 : PTR2;
assign OFFSET = BASE - PTR; // Could be any function of f(BASE,PTR)
assign ADDR = ADDRESS - {8'h00, OFFSET};
assign COUNT = ADDR + B;
endmodule

Figure 21 Schematic of the Original RTL

SELECT_OP

PTR1

PTR2

CONTROL

SUBTRACTOR

SUBTRACTOR

ADDER

BASE

00000000
COUNT

B

ADDRESS

8

8

2

16

16

16

16

8

Modified RTL With the Duplicate Datapath

In the modified RTL, the entire datapath is duplicated because signal CONTROL arrives
late. The resulting output COUNT becomes a conditional selection between two parallel
datapaths based on input PTR1 or PTR2 and controlled by signal CONTROL. The
path from signal CONTROL to output COUNT is no longer a critical path. The timing is
improved, but at the expense of more area and more loads on the input pins. In general,
the amount of datapath duplication is proportional to the number of conditional statements
of the SELECT_OP. For example, if you have four input signals to the SELECT_OP, you
duplicate three datapaths. To minimize the area of duplicate logic, you can design signal
CONTROL to arrive early.

Example 98 Modified RTL With the Duplicate Datapath
module PRECOMPUTED #(parameter [7:0] BASE = 8'b10000000)(
 input [7:0] PTR1, PTR2,
 input [15:0] ADDRESS, B,

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

127

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

 input CONTROL,
 output [15:0] COUNT
);
 wire [7:0] OFFSET1,OFFSET2;
 wire [15:0] ADDR1,ADDR2,COUNT1,COUNT2;
assign OFFSET1 = BASE - PTR1; // Could be f(BASE,PTR)
assign OFFSET2 = BASE - PTR2; // Could be f(BASE,PTR)
assign ADDR1 = ADDRESS - {8'h00 , OFFSET1};
assign ADDR2 = ADDRESS - {8'h00 , OFFSET2};
assign COUNT1 = ADDR1 + B;
assign COUNT2 = ADDR2 + B;
assign COUNT = (CONTROL == 1'b1) ? COUNT1 : COUNT2;
endmodule

Figure 22 Schematic of the Modified RTL

SELECT_OP

CONTROL

SUBTRACTOR
SUBTRACTOR

ADDER

BASE
00000000

COUNT

B

ADDRESS

8

2

16

16

16
PTR1

ADDER

BASE
00000000

B

ADDRESS

8

16

16

16
PTR2

SUBTRACTORSUBTRACTOR

Duplicate datapath

See Also

• Selection and Multiplexing Logic

Moving Late-Arriving Signals Close to Output
If you know which signals in your design are late-arriving, you can structure the code so
that the late-arriving signals are close to the output.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

128

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

The following examples show the coding techniques of using the if and case statements
for late-arriving signals:

• Overview

• Late-Arriving Data Signal Example 1

• Late-Arriving Data Signal Example 2

• Late-Arriving Data Signal Example 3

• Late-Arriving Control Signal Example 1

• Late-Arriving Control Signal Example 2

Overview
multiplexing logicsequential if statementsTo better handle late-arriving signals, use sequential if statements to create a priority-
encoded implementation. You assign priority in descending order; that is, the last if
statement corresponds to the data signal of the last SELECT_OP cell in the chain.

RTL With Sequential if Statements

The a and sel[0] signals have the longest delays to the z output, while the d and sel[3]
signals have the shortest delays to the z output.

Example 99 RTL With Sequential if Statements
module mult_if (
 input a, b, c, d,
 input [3:0] sel,
 output logic z
);
always_comb
begin
 z = 0;
 if (sel[0]) z = a;
 if (sel[1]) z = b;
 if (sel[2]) z = c;
 if (sel[3]) z = d;
end
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

129

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

Figure 23 Schematic of the RTL

SELECT_OP

a

0

sel[0]

SELECT_OP

sel[1]

SELECT_OP

c

sel[2]

b

SELECT_OP

d

sel[3]

z

Modified RTL With Named begin-end Blocks

If you use the multiplexing logicif-else-begin-if constructsif-elseconditional assignmentsif-elseif-else construct with the begin-end blocks to build a priority encoded
MUX, you must use the named begin-end blocks.

Example 100 Modified RTL With Named begin-end Blocks
module m1 (
 input p, q, r, s,
 input [0:4] a,
 output logic x
);
always_comb
if (p)
 x = a[0];
else begin :b1
 if (q)
 x = a[1];
 else begin :b2
 if (r)
 x = a[2];
 else begin :b3
 if (s)
 x = a[3];
 else
 x = a[4];
 end :b3
 end :b2
end :b1
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

130

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

Figure 24 Schematic of the Modified RTL

a[0:4]

SELECT_OP

s

SELECT_OP

q

SELECT_OP

SELECT_OP

x

p

r

Late-Arriving Data Signal Example 1
This example shows how to place the late-arriving b_late signal close to the z output.

Example 101 RTL Containing a Late-Arriving Data Signal
module mult_if_improved(
 input a, b_late, c, d,
 input [3:0] sel,
 output logic z
);
logic z1;
always_comb
begin
 z1 = 0;
 if (sel[0]) z1 = a;
 if (sel[2]) z1 = c;
 if (sel[3]) z1 = d;
 if (sel[1] & ~(sel[2]|sel[3])) z = b_late;
 else z = z1;
end
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

131

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

Figure 25 Schematic of the RTL

SELECT_OP

a

0

sel[0]

SELECT_OP

sel[2]

SELECT_OP

d

sel[3]

c

SELECT_OP

b_late

z

Control
logic

sel[1]

sel[2]

sel[3]
2

2

2

2

Late-Arriving Data Signal Example 2
This example contains operators in the conditional expression of an if statement. The A
signal in the conditional expression is a late-arriving signal, so you should move the signal
close to the output.

Original RTL Containing the Late-Arriving Input A

The original RTL contains input A that is late arriving.

Example 102 Original RTL
module cond_oper #(parameter N = 8)(
 input [N-1:0] A, B, C, D, // A is late arriving
 output logic [N-1:0] Z
);
always_comb
begin
 if (A + B < 24) Z = C;
 else Z = D;
end
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

132

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

Figure 26 Schematic of the Original RTL

COMPARATOR

ADDER

B

SELECT_OP

C

D

Z

2

24

A

Modified RTL

The following RTL restructures the code to move signal A closer to the output.

Example 103 Modified RTL
module cond_oper_improved #(parameter N = 8)(
 input [N-1:0] A, B, C, D, // A is late arriving
 output logic [N-1:0] Z
);
always_comb
begin
 if (B < 24 && A < 24 - B) Z = C;
 else Z = D;
end

Figure 27 Schematic of the Modified RTL

COMPARATOR

SUBTRACTOR

B

SELECT_OP

C

D

Z

2

24

A

AND

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

133

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

Late-Arriving Data Signal Example 3
This example shows a case statement nested in an if statement. The Data_late data
signal is late-arriving.

Original RTL Containing a Late-Arriving Input Data_late

The original RTL contains input Data_late that is late arriving.

Example 104 Original RTL
module case_in_if_01 (
 input [8:1] A,
 input Data_late,
 input [2:0] sel,
 input [5:1] C,
 output logic Z
);
always_comb
begin
if (C[1])
 Z = A[5];
else if (C[2] == 1'b0)
 Z = A[4];
else if (C[3])
 Z = A[1];
else if (C[4])
 case (sel)
 3'b010: Z = A[8];
 3'b011: Z = Data_late;
 3'b101: Z = A[7];
 3'b110: Z = A[6];
 default:Z = A[2];
 endcase
else if (C[5] == 1'b0)
 Z = A[2];
else
 Z = A[3];
end
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

134

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

Figure 28 Schematic of the Original RTL

SELECT_OP

Z

Control
logic C

A[2]

5 6

A[6]

Data_late

A[7]

A[8]

sel

SELECT_OP

Control
logic

A[3]

A[2]

A[1]

A[4]

A[5]

Modified RTL for the Late-Arriving Signal

The late-arriving signal, Data_late, is an input to the first SELECT_OP in the path. You
can improve the startpoint for synthesis by moving signal Data_late close to output Z. To
do this, move the Data_late assignment from the nested case statement to a separate if
statement. As a result, signal Data_late is an input to the SELECT_OP that is closer to
output Z.

Example 105 Modified RTL
module case_in_if_01_improved (
 input [8:1] A,
 input Data_late,
 input [2:0] sel,
 input [5:1] C,
 output logic Z
);
logic Z1, FIRST_IF;

always_comb
begin
 if (C[1])
 Z1 = A[5];
 else if (C[2] == 1'b0)
 Z1= A[4];
 else if (C[3])
 Z1 = A[1];
 else if (C[4])
 case (sel)
 3'b010: Z1 = A[8];
 //3'b011: Z1 = Data_late;
 3'b101: Z1 = A[7];
 3'b110: Z1 = A[6];
 default: Z1 = A[2];
 endcase
 else if (C[5] == 1'b0)
 Z1 = A[2];
 else
 Z1 = A[3];

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

135

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

FIRST_IF = (C[1] == 1'b1) || (C[2] == 1'b0) || (C[3] == 1'b1);

if (!FIRST_IF && C[4] && (sel == 3'b011))
 Z = Data_late;
else
 Z = Z1;
end
endmodule

Figure 29 Schematic of the Modified RTL

SELECT_OP

Control
logic C

A[2]

4 6

A[6]

A[7]

A[8]

sel[2:0]

SELECT_OP

A[3]

A[2]

A[1]

A[4]

A[5]

Data_late

2

Z

SELECT_OP

sel[2:0]

C[4:1]

Control
logic

Control
logic

Late-Arriving Control Signal Example 1
If you have a late-arriving control signal in the design, you should place it close to the
output.

In this example, input Ctrl_late is a late-arriving control signal and is placed close to output
Z.

Example 106 RTL With a Late-Arriving Control Signal
module single_if_improved (
 input [6:1] A,
 input [5:1] C,
 input Ctrl_late,
 output logic Z
);
logic Z1;
wire Z2, prev_cond;
always_comb
begin
 // remove the branch with the late-arriving control signal
 if (C[1] == 1'b1) Z1 = A[1];
 else if (C[2] == 1'b0) Z1 = A[2];
 else if (C[3] == 1'b1) Z1 = A[3];
 else if (C[5] == 1'b0) Z1 = A[5];
 else Z1 = A[6];

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

136

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

end

assign Z2 = A[4];
assign prev_cond = (C[1] == 1'b1) || (C[2] == 1'b0) || (C[3] == 1'b1);
always_comb
begin
 if (C[4] == 1'b1 && Ctrl_late == 1'b0)
 if (prev_cond) Z = Z1;
 else Z = Z2;
 else
 Z = Z1;
end
endmodule

Figure 30 Schematic of the RTL

Control
logic

A[5]

5

A[3]

A[2]

A[1]

C[1:3,5]

SELECT_OP

A[6]

Control
logic

2

A[4]

C[1:3]

SELECT_OP

Control
logic 2

SELECT_OP

Ctrl_late

C[4]

Z

Late-Arriving Control Signal Example 2
If you know your design has a late-arriving control signal, you should place the signal
close to the output.

Original RTL

This example shows an if statement nested in a case statement and contains a late-
arriving control signal, sel[1].

Example 107 Original RTL
module if_in_case (
 input [2:0] sel, // sel[1] is late arriving
 input X, A, B, C, D,
 output logic Z
);

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

137

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Coding for Late-Arriving Signals

Feedback

always_comb
begin
 case (sel)
 3'b000: Z = A;
 3'b001: Z = B;
 3'b010: if (X) Z = C;
 else Z = D;
 3'b100: Z = A ^ B;
 3'b101: Z = !(A && B);
 3'b111: Z = !A;
 default: Z = !B;
 endcase
end
endmodule

Modified RTL

Because signal sel[1] is a late-arriving input, you should restructure the code to get the
best startpoint for synthesis. As shown in the modified RTL, the nested if statement is
placed outside the case statement so that signal sel[1] is closer to output Z. Output Z
takes either value Z1 or Z2 depending on whether signal sel[1] is 0 or 1. When signal
sel[1] is late arriving, placing it closer to output Z improves the timing.

Example 108 Modified RTL
module if_in_case_improved (
 input [2:0] sel, // sel[1] is late arriving
 input X, A, B, C, D,
 output logic Z
);
logic Z1, Z2;
logic [1:0] i_sel;
always_comb
begin
 i_sel = {sel[2],sel[0]};
 case (i_sel) // For sel[1]=0
 2'b00: Z1 = A;
 2'b01: Z1 = B;
 2'b10: Z1 = A ^ B;
 2'b11: Z1 = !(A && B);
 default: Z1 = !B;
 endcase

 case (i_sel) // For sel[1]=1
 2'b00: if (X) Z2 = C;
 else Z2 = D;
 2'b11: Z2 = !A;
 default: Z2 = !B;
 endcase

 if (sel[1]) Z = Z2;
 else Z = Z1;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

138

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Master-Slave Latch Inferences

Feedback

end
endmodule

Master-Slave Latch Inferences
These topics provide information about how to direct the tool to infer various types of
master-slave latches.

• Overview for Inferring Master-Slave Latches

• Master-Slave Latch With One Master-Slave Clock Pair

• Master-Slave Latch With Multiple Master-Slave Clock Pairs

• Master-Slave Latch With Discrete Components

Overview for Inferring Master-Slave Latches
The HDL Compiler tool infers flip-flopmaster-slave latcheslatchesmaster-slave latchesmaster-slave latches through the flip-flopclocked_on_also attributelatchesclocked_on_alsoclocked_on_also
attribute. You attach this signal-type attribute to the clocks using an embedded dc_shell
script.

Follow these coding guidelines to describe a master-slave latch:

• Specify the master-slave latch as a flip-flop by using only the slave clock.

• Specify the master clock as an input port, but do not connect it.

• Attach the clocked_on_also attribute to the master clock port.

This coding style requires that cells in the target library contain slave clocks marked with
the clocked_on_also attribute. The clocked_on_also attribute defines the slave clocks
in the cell state declaration. For more information about defining slave clocks in the target
library, see the Library Compiler User Guide.

The HDL Compiler tool does not use D flip-flops to implement the equivalent functionality
of a master-slave latch.

Note:
Although the vendor’s component behaves as a master-slave latch, the Library
Compiler tool supports only the description of a master-slave flip-flop.

Master-Slave Latch With One Master-Slave Clock Pair
This example shows a basic master-slave latch with one master-slave clock pair using the
dc_tcl_script_begin and dc_tcl_script_end compiler directives.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

139

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Master-Slave Latch Inferences

Feedback

Example 109 Master-Slave Latch
module mslatch (
 input SCK, MCK, DATA,
 output logic Q
);
// synopsys dc_tcl_script_begin
// set_attribute -type string MCK signal_type clocked_on_also
// set_attribute -type boolean MCK level_sensitive true
// synopsys dc_tcl_script_end

always @ (posedge SCK) Q <= DATA;
endmodule

Example 110 Inference Report
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
==

See Also

• dc_tcl_script_begin and dc_tcl_script_end

Master-Slave Latch With Multiple Master-Slave Clock Pairs
If the design requires more than one master-slave clock pair, you must specify the
associated slave clock in addition to the clocked_on_also attribute. This example shows
how to use the clocked_on_also attribute with the associated_clock option.

Example 111 RTL for Inferring Master-Slave Latches With Two Pairs of Clocks
module mslatch2 (
 input SCK1, SCK2, MCK1, MCK2, D1, D2,
 output logic Q1, Q2,
);
// synopsys dc_tcl_script_begin
// set_attribute -type string MCK1 signal_type clocked_on_also
// set_attribute -type boolean MCK1 level_sensitive true
// set_attribute -type string MCK1 associated_clock SCK1
// set_attribute -type string MCK2 signal_type clocked_on_also
// set_attribute -type boolean MCK2 level_sensitive true
// set_attribute -type string MCK2 associated_clock SCK2
// synopsys dc_tcl_script_end
always @ (posedge SCK1) Q1 <= D1;
always @ (posedge SCK2) Q2 <= D2;
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

140

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Verilog Design Examples
Master-Slave Latch Inferences

Feedback

Example 112 Inference reports
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q1_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===

===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| Q2_reg | Flip-flop | 1 | N | N | N | N | N | N | N |
===

Master-Slave Latch With Discrete Components
If your target library does not contain master-slave latch components, you can direct the
tool to infer two-phase systems by using D latches.

This example shows a simple two-phase designtwo-phase system with clocks MCK and SCK.

Example 113 RTL for Two-Phase Clocks
module latch_verilog (
 input DATA, MCK, SCK,
 output reg Q
);
reg TEMP;

always @(DATA or MCK)
 if (MCK) TEMP <= DATA;

always @(TEMP or SCK)
 if (SCK) Q <= TEMP;

endmodule

Example 114 Inference Reports
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| TEMP_reg | Latch | 1 | N | N | N | N | - | - | - |
==

==
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
==
| Q_reg | Latch | 1 | N | N | N | N | - | - | - |
==

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

141

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

B
Verilog Language Support

The following sections describe the Verilog language as supported by HDL Compiler:

• Syntax

• Verilog Keywords

• Unsupported Verilog Language Constructs

• Construct Restrictions and Comments

• Verilog 2001 and 2005 Supported Constructs

• Ignored Constructs

• Verilog 2001 Feature Examples

• Verilog 2005 Feature Example

Syntax
Synopsys supports the Verilog syntax as described in the IEEE Std 1364-2005.

The lexical conventionslexical conventions HDL Compiler uses are described in the following sections:

• Comments

• Numbers

Comments
You can enter comments anywhere in a Verilog description, in two forms:

• Beginning with two slashes //

HDL Compiler ignores all text between these characters and the end of the current line.

• Beginning with the two characters /* and ending with */

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

142

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Syntax

Feedback

HDL Compiler ignores all text between these characters, so you can continue
comments over more than one line.

Note:
You cannot nest comments.

Numbers
You can declare numbers in several different radicesradices and bit-widths. A radix is the base
number on which a numbering system is built. For example, the binary numbersnumberbinarybinary numbering system
has a radix of 2, octal numbersnumberoctaloctal has a radix of 8, and decimal numbersnumberdecimaldecimal has a radix of 10.hexadecimal numbersnumberhexadecimal

You can use these three number formats:

• A simple decimal number that is a sequence of digits in the range of 0 to 9. All
constants declared this way are assumed to be 32-bit numbers.

• A number that specifies the bit-widthspecifying in numbersnumberspecifying bit-widthbit-width as well as the radix. These numbers are the same
as those in the previous format, except that they are preceded by a decimal number
that specifies the bit-widthprefix for numbersbit-width.

• A number followed by a two-character sequence prefix that specifies the number’s
size and radix. The radix determines which symbols you can include in the number.
Constants declared this way are assumed to be 32-bit numbers. Any of these numbers
can include underscores (_), which improve readability and do not affect the value of
the number. Table 10 summarizes the available radices and valid characters for the
number.

Table 10 Verilog Radices

Name Character prefix Valid characters

Binary ’b 0 1 x X z Z _ ?

Octal ’o 0–7 x X z Z _ ?

Decimal ’d 0–9 _

Hexadecimal ’h 0–9 a–f A–F x X z Z _ ?

Example 115 shows some valid number declarations.

Example 115 Valid Verilog Number Declarations
391 // 32-bit decimal number
'h3a13 // 32-bit hexadecimal number
10'o1567 // 10-bit octal number

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

143

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog Keywords

Feedback

3'b010 // 3-bit binary number
4'd9 // 4-bit decimal number
40'hFF_FFFF_FFFF // 40-bit hexadecimal number
2'bxx // 2-bits don't care
3'bzzz // 3-bits high-impedance

Verilog Keywords
Table 11 lists the Verilog keywords. You cannot use these words as user variable names
unless you use an escape identifier.

Caution:
Configuration-related keywords are not treated as keywords outside of
configurations. HDL Compiler does not support configurations at this time.

Table 11 Verilog Keywords

always and assign automatic begin buf

bufif0 bufif1 case casex casez cell

cmos config deassign default defparam design

disable edge else end endcase endconfig

end functionsfunction endgenerate endmodule endprimitive endspecify endtable

end taskstask event for force forever fork

function generate genvar highz0 highz1 if

ifnone incdir include initial assignmentassignmentsinitialinitial inout input

instance integer join large liblist library

localparam macromodule medium module nand negedge

nmos nor noshowcancel
led

not notif0 notif1

or output parametersparameter pmos posedge primitive

pull0 pull1 pulldown pullup pulsestyle_
onevent

pulsestyle_on
detect

rcmos real realtime reg release repeat

rnmos rpmos rtran rtranif0 rtranif1 scalared

showcancelled signed small specify specparam strong0

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

144

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Unsupported Verilog Language Constructs

Feedback

Table 11 Verilog Keywords (Continued)

strong1 supply0 supply1 table taskstask time

tran tranif0 tranif1 tri tri0 tri1

triand trior trireg unsigned use vectored

wait wand weak0 weak1 while wire

wor xnor xor

Unsupported Verilog Language Constructs
HDL Compiler does not support the following constructs:

• Configurations

• Unsupported definitions and declarations

◦ primitive definition

◦ time declaration

◦ event declaration

◦ triand, trior, tri1, tri0, and trireg net types

◦ Ranges for integers

• Unsupported state initial assignmentassignmentsinitialments

◦ initial statement

◦ repeat statement

◦ delay control

◦ event control

◦ forever statement (The forever loop is only supported if it has an associated disable
condition, making the exit condition deterministic.)

◦ fork statement

◦ deassign statement

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

145

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

◦ force statement

◦ release statement

• Unsupported operators

◦ Case equality and inequality operators (=== and !==)

• Unsupported gate-level constructs

◦ nmos, pmos, cmos, rnmos, rpmos, rcmos

◦ pullup, pulldown, tranif0, tranif1, rtran, rtrainf0, and rtrainf1 gate types

• Unsupported miscellaneous constructs

◦ hierarchical names within a module

If you use an unsupported construct, HDL Compiler issues a syntax errorserror such as

event is not supported

Construct Restrictions and Comments
Construct restrictions and guidelines are described in the following sections:

• always Blocks

• generate Statements

• Real Math Functions

• Conditional Expressions (?:) Resource Sharing

• Case

• defparam

• disable

• Blocking and Nonblocking Assignments

• Macromodule

• inout Port Declaration

• tri Data Type

• HDL Compiler Directives

• reg Types

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

146

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

• Types in Busing

• Combinational while Loops

always Blocks
The tool does not support more than one independent if block when asynchronous
behavior is modeled within an always block. If the always block is purely synchronous,
the tool supports multiple independent if blocks. In addition, the tool does not support
more than one conditional operator (?:) inside an always block.

Note:
If an always block is very small, the tool might move the logic inside the block
during synthesis.

generate Statements
Synopsys support of the generate statement is described in the following sections:

• Generate Overview

• Types of generate Blocks

• Anonymous generate Blocks

• Loop Generate Blocks and Conditional Generate Blocks

• Restrictions

Generate Overview
HDL Compiler supports both the 2001 and the 2005 standards for the generate
statement. The default is the 2005 standard; to enable the 2001 standard, set the
hdlin_vrlg_std variable to 2001. The following subsections describe the naming-style
differences between these two standards.

Types of generate Blocks
Standalone generate Blocks
Standalone generate blocks are blocks using the begin statement that are not associated
with a conditional generate or loop generate block. These are legal under the 2001
standard, but are illegal according to the Verilog 2005 LRM, as illustrated in the following
example.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

147

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

Example 116 Standalone generate Block
module top (input in1, output out1);
 generate
begin : b1
 mod1 U1(in1, out1);
end
endgenerate
endmodule

module mod1(input in1, output out1);
endmodule

When you use the 2001 standard, HDL Compiler creates the name b1.U1 for mod 1:

Cell Reference Library Area Attributes

b1.U1 mod1 0.000000 b

Total 1 cells 0.000000

When you use the 2005 standard, HDL Compiler issues a VER-946 error message:

Compiling source file RTL/t1.v
Error: RTL/t1.v:3: Syntax error on an obsolete Verilog 2001 construct
 standalone generate block 'b1'. (VER-946)
*** Presto compilation terminated with 1 errors. ***

Anonymous generate Blocks
Anonymous generate blocks are generate blocks that do not have a user-defined label.
They are also referred to as unnamed blocks.

According to the 2001 Verilog LRM, anonymous blocks do not create their own scope,
but the 2005 standard has an implicit naming convention that allows scope creation.
The Verilog 2005 standard assigns a number to every generate construct in a given
scope. The number is 1 for the first construct and is incremented by 1 for each subsequent
generate construct in the scope. All unnamed generate blocks are given the name
genblkn, where n is the number assigned to the enclosing generate construct. If the name
conflicts with an explicitly declared name, leading zeros are added in front of the number
until the conflict is resolved.

The following example shows the difference between the two standards.

Example 117 Anonymous generate Block
module top(input [0:3] in1, output [0:3] out1);
genvar I;
generate
for(I = 0; I < 3; I = I+1) begin: b1
 if(1) begin : b2
 if(1)
 if(1)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

148

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

 if(1)
 mod1 U1(in1[I], out1[I]);
 end
end
endgenerate
endmodule

module mod1(input in1, output out1);
endmodule

When you use the Verilog 2001 standard, HDL Compiler creates the names b1[0].b2.U1,
b1[1].b2.U1, and b1[2].b2.U1 for the instantiated subblocks:

Cell Reference Library Area Attributes

b1[0].b2.U1 mod1 0.000000 b
b1[1].b2.U1 mod1 0.000000 b
b1[2].b2.U1 mod1 0.000000 b

Total 3 cells 0.000000

When you use the Verilog 2005 standard, HDL Compiler creates the names
b1[0].b2.genblk1.U1, b1[1].b2.genblk1.U1, and b1[2].b2.genblk1.U1. Note that there are
no multiple genblk1's for the nested anonymous if blocks:

Cell Reference Library Area Attributes

b1[0].b2.genblk1.U1 mod1 0.000000 b
b1[1].b2.genblk1.U1 mod1 0.000000 b
b1[2].b2.genblk1.U1 mod1 0.000000 b

Total 3 cells 0.000000

Another type of anonymous generate block is created when the block does not have a
label, but each block has a begin ...end statement:

Example 118 Anonymous generate Block With begin...end
module top(input [0:3] in1, output [0:3] out1);
genvar I;
generate
for(I = 0; I < 3; I = I+1) begin: b1
 if(1) begin : b2
 if(1) begin
 if(1) begin
 if(1) begin
 mod1 U1(in1[I], out1[I]);
 end
 end
 end
 end
end
endgenerate

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

149

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

endmodule

module mod1(input in1, output out1);
endmodule

When you use the 2001 standard, HDL Compiler creates the names b1[0].b2.U1,
b1[1].b2.U1, and b1[2].b2.U1 for the instantiated subblocks:

Cell Reference Library Area Attributes

b1[0].b2.U1 mod1 0.000000 b
b1[1].b2.U1 mod1 0.000000 b
b1[2].b2.U1 mod1 0.000000 b

Total 3 cells 0.000000

When you use the 2005 standard, the tool creates the names
b1[0].b2.genblk1.genblk1.genblk1.U1, b1[1].b2.genblk1.genblk1.genblk1.U1,
b1[2].b2.genblk1.genblk1.genblk1.U1:

Cell Reference Library Area Attributes

b1[0].b2.genblk1.genblk1.genblk1.U1
 mod1 0.000000 b
b1[1].b2.genblk1.genblk1.genblk1.U1
 mod1 0.000000 b
b1[2].b2.genblk1.genblk1.genblk1.U1
 mod1 0.000000 b

Total 3 cells 0.000000

Note that there is a genblk1 for each of the nested begin...end if blocks that creates a
new scope.

The following example illustrates how scope creation can produce an error under the
Verilog 2005 standard from code that compiles cleanly under the Verilog 2001 standard:

Example 119 Scope Creation
module top(input in, output out);
generate if(1) begin
 wire w = in;
end endgenerate
assign out = w;
endmodule

Under the Verilog 2001 standard, w is visible in the assign statement, but under the
Verilog 2005 standard, scope creation makes w invisible outside the generate block, and
HDL Compiler issues an error message:

Error: RTL/t5.v:5: The symbol 'w' is not defined. (VER-956)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

150

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

Loop Generate Blocks and Conditional Generate Blocks
Loop generate blocks are generate blocks that contain a for loop. Conditional generate
blocks are generate blocks that contain an if statement. Loop generate blocks and
conditional generate blocks can be nested, as shown in the following example.

Example 120 Loop and Conditional generates
module top(input D1, input clk, output Q1);
genvar i, j;
parameter param1 = 0;
parameter param2 = 1;

generate
for (i=0; i < 3; i=i+1) begin : loop1
 for (j=0; j < 2; j=j+1) begin : loop2
 if (j == param1) begin : if1_label
 memory U_00 (D1,clk,Q1);
 end
 if (j == param2) begin : if2_label
 memory U_00 (D1,clk,Q1);
 end
 end //loop2
end //loop1
endgenerate
endmodule

module memory(input D1, input clk, output Q1);
endmodule

In this case, the instance name is the same under both standards:

Cell Reference Library Area Attributes

loop1[0].loop2[0].if1_label.U_00
 memory 0.000000 b
loop1[0].loop2[1].if2_label.U_00
 memory 0.000000 b
loop1[1].loop2[0].if1_label.U_00
 memory 0.000000 b
loop1[1].loop2[1].if2_label.U_00
 memory 0.000000 b
loop1[2].loop2[0].if1_label.U_00
 memory 0.000000 b
loop1[2].loop2[1].if2_label.U_00
 memory 0.000000 b

Total 6 cells

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

151

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

Restrictions
• Hierarchical Names (Cross Module Reference)

HDL Compiler supports hierarchical names or cross-module references, if the
hierarchical name remains inside the module that contains the name and each item on
the hierarchical path is part of the module containing the reference.

In the following code, the item is not part of the module and is not supported.

 module top ();
 wire x;
 down d ();
 endmodule

 module down ();
 wire y, z;
 assign t = top.d.z;
// not supported:
// hier. ref. starts outside current module
 endmodule

• Parameter Override (defparam)

The use of defparam is highly discouraged in synthesis because of ambiguity
problems. Because of these problems, defparam is not supported inside generate
blocks. For details, see the Verilog 1800 LRM.

Real Math Functions
In the declarations of local parameters, the tool supports all the standard unary system
functions that have equivalent C language real math library functions as listed in Table 12.

Table 12 Unary System Functions to C Language Real Math Functions Cross-Listing

Unary System Function Equivalent C Language
Function

Description

$ln (x) log (x) Natural logarithm

$log10 (x) log10 (x) Decimal logarithm

$exp (x) exp (x) Exponential

$sqrt (x) sqrt (x) Square root

$floor (x) floor (x) Floor

$ceil (x) ceil (x) Ceiling

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

152

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

Table 12 Unary System Functions to C Language Real Math Functions Cross-Listing
(Continued)

Unary System Function Equivalent C Language
Function

Description

$sin (x) sin (x) Sine

$cos (x) cos (x) Cosine

$tan (x) tan (x) Tangent

$asin (x) asin (x) Arc-sine

$acos (x) acos (x) Arc-cosine

$atan (x) atan (x) Arc-tangent

$sinh (x) sinh (x) Hyperbolic sine

$cosh (x) cosh (x) Hyperbolic cosine

$tanh (x) tanh (x) Hyperbolic tangent

$asinh (x) asinh (x) Arc-hyperbolic sine

$acosh (x) acosh (x) Arc-hyperbolic cosine

$atanh (x) atanh (x) Arc-hyperbolic tangent

Restrictions
HDL Compiler does not support the following binary system functions:

• $pow

• $atan2

• $hypot

Conditional Expressions (?:) Resource Sharing
HDL Compiler supports resource sharing in conditional expressions such as

 dout = sel ? (a + b) : (a + c);

In such cases, HDL Compiler marks the adders as sharable; HDL Compiler determines
the final implementation during timing-drive resource sharing.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

153

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

The tool does not support more than one ?: operator inside an always block. For more
information, see always Blocks on page 147.

Case
The case construct is discussed in the following sections:

• casez and casex

• Full Case and Parallel Case

casez and casex
HDL Compiler allows ? and z bits in casez items but not in expressions; that is, the z bits
are allowed in the branches of the case statement but not in the expression immediately
following the casez keyword.

casez (y) // y is referred to as the case expression

2'b1z: //2'b1z is referred to as the item

Example 121 shows an invalid expression in a casez statement.

Example 121 Invalid casez Expression
casez (1'bz) //illegal testing of an expression
 ...
endcase

The same holds true for casex statements using x, ?, and z. The code

casex (a)
2'b1x : // matches 2'b10 and 2'b11
endcase

does not equal the following code:

b = 2'b1x;
casex (a)
b: // in this case, 2'b1x only matches 2'b10
endcase

When x is assigned to a variable and the variable is used in a casex item, the x does not
match both 0 and 1 as it would for a literal x listed in the case item.

Full Case and Parallel Case
Case statements can be full or parallel. HDL Compiler can usually determine automatically
whether a case statement is full or parallel. Example 122 shows a case statement that is
both full and parallel.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

154

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

Example 122 A case Statement That Is Both Full and Parallel
input [1:0] a;
always @(a or w or x or y or z) begin
 case (a)
 2'b11:
 b = w ;
 2'b10:
 b = x ;
 2'b01:
 b = y ;
 2'b00:
 b = z ;
 endcase
end

In Example 123, the case statement is not parallel or full, because the values of inputs w
and x cannot be determined.

Example 123 A case Statement That Is Not Full and Not Parallel
always @(w or x) begin
 case (2'b11)
 w:
 b = 10 ;
 x:
 b = 01 ;
 endcase
end

However, if you know that only one of the inputs equals 2’b11 at a given time, you can use
the parallel_case directive to avoid synthesizing an unnecessary priority encoder.

If you know that either w or x always equals 2’b11 (a situation known as a one-branch
tree), you can use the full_case directive to avoid synthesizing an unnecessary latch.
A latch is necessary whenever a variable is conditionally assigned. Marking a case as
full tells the compiler that some branch is taken, so there is no need for an implicit default
branch. If a variable is assigned in all branches of the case, HDL Compiler then knows that
the variable is not conditionally assigned in that case, and, therefore, that particular case
statement does not result in a latch for that variable.

However, if the variable is assigned in only some branches of the case statement, a latch
is still required as shown in Example 124. In addition, other case statements might cause
a latch to be inferred for the same variable.

Example 124 Latch Result When Variable Is Not Fully Assigned
reg a, b;
reg [1:0] c;
case (c) // synopsys full_case
 0: begin a = 1; b = 0; end
 1: begin a = 0; b = 0; end

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

155

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

 2: begin a = 1; b = 1; end
 3: b = 1; // a is not assigned here
endcase

For more information, see parallel_case and full_case.

defparam
Use of defparam is highly discouraged in synthesis because of ambiguity problems.
Because of these problems, defparam is not supported inside generate blocks. For details,
see the Verilog LRM.

disable
HDL Compiler supports the disable statement when you use it in named blocks and when
it is used to disable an enclosing block. When a disable statement is executed, it causes
the named block to terminate. You cannot disable a block that is not in the same always constructassignmentsalways constructalways
block or taskstask as the disable statement. A comparator description that uses disable is
shown in Example 125.

Example 125 Comparator Using disable
begin : compare
 for (i = 7; i >= 0; i = i - 1) begin
 if (a[i] != b[i]) begin
 greater_than = a[i];
 less_than = ~a[i];
 equal_to = 0;
 //comparison is done so stop looping
 disable compare;
 end
 end

// If you get here a == b
// If the disable statement is executed, the next three
// lines will not be executed
 greater_than = 0;
 less_than = 0;
 equal_to = 1;
end

You can also use a disable statement to implement a synchronous reset, as shown in
Example 126.

Example 126 Synchronous Reset of State Register Using disable in a forever Loop
always
 begin: test
 @ (posedge clk)

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

156

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

 if (Reset)
 begin
 z <= 1'b0;
 disable test;
 end
 z <= a;
 end

The disable statement in Example 126 causes the test block to terminate immediately and
return to the beginning of the block.

Blocking and Nonblocking Assignments
HDL Compiler does not allow both blocking and nonblocking assignments to the same
variable within an always block.

The following code applies both blocking and nonblocking assignments to the same
variable in one always constructassignmentsalways constructalways block.

always @(posedge clk or negedge reset) begin
 if (~ reset)
 q = 1'b0;
 else
 q <= d;
end

HDL Compiler does not permit this and generates an error message.

During simulation, race conditions can result from blocking assignments, as shown in
Example 127. In this example, the value of x is indeterminate, because multiple procedural
blocks run concurrently, causing y to be loaded into x at the same time z is loading into
y. The value of x after the first @ (posedge clk) is indeterminate. Use of nonblocking
assignments solves this race condition, as shown in Example 128.

In Example 127 and Example 128, HDL Compiler creates the gates shown in Figure 31.

Example 127 Race Condition Using Blocking Assignments
always @(posedge clk)
 x = y;
always @(posedge clk)
 y = z;

Example 128 Race Solved With Nonblocking Assignments
always @(posedge clk)
 x <= y;
always @(posedge clk)
 y <= x;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

157

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

Figure 31 Simulator Race Condition—Synthesis Gates

If you want to switch register values, use assignmentsnonblockingnonblocking assignmentsnonblocking assignments, because assignmentsblockingblocking assignmentsblocking
assignments do not accomplish the switch. For example, in Example 129, the required
outcome is a swap of the x and y register values. However, after the positive clock
edge, y does not end up with the value of x; y ends up with the original value of y. This
happens because blocking statements are order dependent and each statement within
the procedural block is executed before the next statement is evaluated and executed. In
Example 130, the swap is accomplished with nonblocking assignments.

Example 129 Swap Problem Using Blocking Assignments
always @(posedge clk)
begin
 x = y;
 y = x;
end

Example 130 Swap Accomplished With Nonblocking Assignments
always @(posedge clk)
 x <= y;
 y <= z;

Macromodule
HDL Compiler treats the macromodulemacromodule construct as a module construct. Whether you use
module or macromodule, the synthesis results are the same.

inout Port Declaration
HDL Compiler allows you to connect inout ports only to moduleconnecting to inoutportsinout port requirementsinoutconnecting to modulemodule or inoutconnecting to gategate instantiationsinstantiations. You
must declare an inout before you use it.

tri Data Type
The tri data type allows multiple three-state buffertri data typethree-state devices to drive a wire. When inferring three-
state devices, you need to ensure that all the drivers are inferred as three-state devices

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

158

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

and that all inputs to a device are z, except the one variable driving the three-state device
which have a 1.

HDL Compiler Directives
HDL Compiler directives are discussed in the following sections:

• `define

• `include

• `ifdef, `else, `endif, `ifndef, and `elsif

• `undef

`define
The directives‘define`define directive can specify macros that take arguments. For example,

`define BYTE_TO_BITS(arg) ((arg) << 3)

The `define directive can do more than simple text substitution. It can also take
arguments and substitute their values in its replacement text.

macro substitutionMacro substitution assigns a string of text to a macro variable. The string of text is inserted
into the code where the macro is encountered. The definition begins with the back
quotation mark (`), followed by the keyword define, followed by the name of the macro
variable. All text from the macro variable until the end of the line is assigned to the macro
variable.

You can declare and use macro variables anywhere in the description. The definitions can
carry across several files that are read into HDL Compiler at the same time. To make a
macro substitution, type a back quotation mark (`) followed by the macro variable name.

Some example macro variable declarations are shown in Example 131.

Example 131 Macro Variable Declarations
`define highbits 31:29
`define bitlist {first, second, third}
wire [31:0] bus;
`bitlist = bus['highbits];
standard macrosmacro definition on the command linemacrosmacro definition on the command lineThe analyze -define command allows macro definition on the command line. Only one
-define per analyze command is allowed but the argument can be a list of macros, as
shown in Example 132.

Note:
When using the -define option with multiple analyze commands, you must
remove any designs in memory before analyzing the design again. To remove

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

159

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

the designs, use remove_design -all. Because elaborated designs in
memory have no timestamps, the tool cannot determine whether the analyzed
file has been updated or not. The tool might assume that the previously
elaborated design is up-to-date and reuse it.

Curly brackets are not required to enclose one macro, as shown in Example 133.
However, if the argument is a list of macros, curly brackets are required.

Example 132 analyze Command With List of Defines
analyze -format verilog -define { RIPPLE, SIMPLE } mydesign.v

Example 133 analyze Command With One Define
analyze -format verilog -define ONLY_ONE mydesign.v

See Also

• Predefined Macros

`include
The ‘includedirectives‘includeinclude`include construct in Verilog is similar to the #include directive in the C language.
You can use this construct to include Verilog code, such as type declarations and

functionsfunctions, from one module in another module. Example 134 shows an application of the
`include construct.

Example 134 Including a File Within a File
Contents of file1.v
`define WORDSIZE 8

function [`WORDSIZE-1:0] fastadder;
 input [`WORDSIZE-1:0] fin1, fin2;
 fastadder = fin1 + fin2;
endfunction

Contents of file2.v
module secondfile (clk, in1, in2, out);

`include "file1.v"
. . .
wire [`WORDSIZE-1:0] temp;
assign temp = fastadder (in1,in2);
. . .
endmodule

Included files can include other files, with up to 24 levels of nesting. You cannot use the
`include construct recursively.

When your design contains multiple files for multiple subblocks and include files for
subblocks, in their respective sub directories, you can elaborate the top-level design

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

160

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

without making any changes to the search path. The tool automatically finds the include
files. For example, if your structure is as follows:

Rtl/top.v
Rtl/sub_module1/sub_module1.v
Rtl/sub_module2/sub_module2.v
Rtl/sub_module1/sub_module1_inc.v
Rtl/sub_module2/sub_module2_inc.v

You do not need to add Rtl/sub_module1/ and Rtl/sub_module2/ to your search path to
enable the tool to find the include files sub_module1_inc.v and sub_module2_inc.v when
you elaborate top.v.

`ifdef, `else, `endif, `ifndef, and `elsif
These directives allow the conditional inclusion of code‘ifdef, ‘else, ‘endif, ‘ifndef, and ‘elsif Directives conditional inclusion of code.

• The `ifdef directive executes the statements following it if the indicated macro is
defined; if the macro is not defined, the statements after `else are executed.

• The`ifndef directive executes the statements following it if the indicated macro is not
defined; if the macro is defined, the statements after `else are executed.

• The `elsif directive allows one level of nesting and is equivalent to the `else
`ifdef ... `endif directive sequence.

Example 135 illustrates usage. Use the `define directive to define the macrosmacros that are
arguments to the `ifdef directive; see `define.

Example 135 Design Using `ifdef...`else...`endif Directives
`ifdef SELECT_XOR_DESIGN
module selective_design(a,b,c);
 input a, b;
 output c;
 assign c = a ^ b;
endmodule

`else

module selective_design(a,b,c);
 input a, b;
 output c;
 assign c = a | b;
endmodule
`endif

`undef
The directives‘undefresetslocal reset‘undefmacroslocal reset‘undefineall `undef directive resets the macro immediately following it.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

161

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

reg Types
The Verilog language requires that any value assigned inside an always statement must
be declared as a reg type. HDL Compiler returns an errorserror if any value assigned inside an
always block is not declared as a reg type.

Types in Busing
HDL Compiler maintains types throughout a design, including types for buses (bit-blastingvectors).
Example 136 shows a Verilog design read into HDL Compiler containing a bit vector that is
NOTed into another bit vector.

Example 136 Bit Vector in Verilog
module test_busing_1 (a, b);
 input [3:0] a;
 output [3:0] b;

 assign b = ~a;
endmodule

Example 137 shows the same description written out by HDL Compiler. The description
contains the original Verilog types of ports. Internal nets do not maintain their original bus
types. Also, the NOT operation is instantiated as single bits.

Example 137 Bit Blasting
module test_busing_2 (a, b);
 input [3:0] a;
 output [3:0] b;
 assign b[0] = ~a[0];
 assign b[1] = ~a[1];
 assign b[2] = ~a[2];
 assign b[3] = ~a[3];
endmodule

Combinational while Loops
To create a combinational while loop, write the code so that an upper bound on the
number of loop iterations can be determined. The loop iterative bound must be statically
determinable; otherwise an errorsELAB-900error is reported.

HDL Compiler needs to be able to determine an upper bound on the number of trips
through the loop at compile time. In HDL Compiler, there are no syntax restrictions on the
loops; while loops that have no events within them, such as in the following example, are
supported.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

162

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

input [9:0] a;
//
i = 0;
while (i < 10 && !a[i]) begin
 i = i + 1;
 // loop body
end

To support this loop, HDL Compiler interprets it like a simulator. The tool stops when the
loop termination condition is known to be false. Because HDL Compiler can’t determine
when a loop is infinite, it stops and reports an errorserror after an arbitrary (but user-defined)
number of iterations (the default is 1024).

To exit the loop, HDL Compiler allows additional conditions in the loop condition that
permit more concise descriptions.

for (i = 0; i < 10 && a[i]; i = i+1) begin
 // loop body
end

A loop must unconditionally make progress toward termination in each trip through the
loop, or it cannot be compiled. The following example makes progress (that is, increments
i) only when !done is true and does not terminate.

while (i < 10) begin
 if (! done)
 done = a[i];
 // loop body
 i = i + 1;
 end
end

The following modified version, which unconditionally increments i, terminates. This code
creates the required logic.

while (i < 10) begin
 if (! done) begin
 done = a[i];
 end// loop body
 i = i + 1;
end

In the next example, loop termination depends on reading values stored in x. If the value is
unknown (as in the first and third iterations), HDL Compiler assumes it might be true and
generates logic to test it.

x[0] = v; // Value unknown: implies "if(v)"
x[1] = 1; // Known TRUE: no guard on 2nd trip
x[2] = w; // Not known: implies "if(w)"
x[3] = 0; // Known FALSE: stop the loop

i = 0;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

163

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

while(x[i]) begin
 // loop body
 i = i + 1;
end

This code terminates after three iterations when the loop tests x[3], which contains 0.

In Example 138, a supported combinational while loopwhile loop, the code produces gates, and an
event control signal is not necessary.

Example 138 Supported while Loop Code
module modified_s2 (a, b, z);
parameter N = 3;
input [N:0] a, b;
output [N:1] z;
reg [N:1] z;
integer i;
always @(a or b or z)
 begin
 i = N;
 while (i)
 begin
 z[i] = b[i] + a[i-1];
 i = i - 1;
 end
 end
endmodule

In Example 139, a supported combinational while loopwhile loop, no matter what x is, the loop runs
for 16 iterations at most because HDL Compiler can keep track of which bits of x are
constant. Even though it doesn't know the initial value of x, it does know that x >> 1 has a
zero in the most significant bit (MSB). The next time x is shifted right, it knows that x has
two zeros in the MSB, and so on. HDL Compiler can determine when x becomes all zeros.

Example 139 Supported Combinational while Loop
module while_loop_comb1(x, count);
 input [7:0] x;
 output [2:0] count;
 reg [7:0] temp;
 reg [2:0] count;
 always @ (x)
 begin
 temp = x;
 count = 0;
 while (temp != 0)
 begin
 count = count + 1;
 temp = temp >> 1;
 end

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

164

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Construct Restrictions and Comments

Feedback

 end
endmodule

In Example 140, a supported combinational while loop, HDL Compiler knows the initial
value of x and can determine x+1 and all subsequent values of x.

Example 140 Supported Combinational while Loop
module while_loop_comb2(y, count1, z);
 input [3:0] y, count1;output [3:0] z;
 reg [3:0] x, z, count;
 always @ (y, count1)
 begin
 x = 2;
 count = count1;
 while (x < 15)
 begin
 count = count + 1;
 x = x + 1;
 end
 z = count;
 end
endmodule

In Example 141, HDL Compiler cannot detect the initial value of i and so cannot support
this while loopwhile loopwhile loop. Example 142 is supported because i is determinable.

Example 141 Unsupported Combinational while Loop
module my_loop1 #(parameter N=4) (input [N:0] in, output reg [2*N:0] out);
 reg [N:0] i;
 always @* begin
 i = in;
 out = 0 ;
 while (i>0) begin
 out = out + i;
 i = i - 1;
 end
end
endmodule

Example 142 Supported Combinational while Loop
module my_loop2 #(parameter N=4) (input [N:0] in, output reg [2*N:0] out);
 reg [N:0] i;
 reg [N+1:0] j;
 always @*
 for (j = 0 ; j < (2<<N) ; j = j+1)
 if (j==in) begin
 i = j;
 out = 0 ;
 while (i>0) begin
 out = out + i;
 i = i - 1;
 end
 end
endmodule

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

165

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 and 2005 Supported Constructs

Feedback

Verilog 2001 and 2005 Supported Constructs
Table 13 lists the Verilog 2001 featuresVerilog 2001 and 2005 features implemented by HDL Compiler. For
additional information about these features, see the IEEE Std 1364-2001.

Table 13 Supported Verilog 2001 and 2005 Constructs

Feature Description

Automatic tasks and functions Fully supported
Verilog 2001 featuresSYNTHESIS macroSYNTHESIS macroConstant functions Fully supported
Verilog 2001 featuresSYNTHESIS macroSYNTHESIS macroLocal parameter Fully supported

generate statement See generate Statements.

Real math functions See Real Math Functions.
Verilog 2001 featuresSYNTHESIS macroSYNTHESIS macroSYNTHESIS macro Fully supported

Implicit net declarations for continuous assignmentsassignmentscontinuous continuous
assignments

Fully supported

`line directive Fully supported

ANSI-C-style port declarations Fully supported
Verilog 2001 featurescasting operatorsCasting operators Fully supported
Verilog 2001 featuresparameter passing by nameParameter passing by name (IEEE
12.2.2.2)

Fully supported

Verilog 2001 featuresimplicit event expression listImplicit event expression list (IEEE 9.7.5) Fully supported
Verilog 2001 featuresANSI-C-style port declarationANSI-C-style port declaration (IEEE
12.3.3)

Fully supported

Verilog 2001 featuressigned/unsigned parametersSigned/unsigned parametersparameters (IEEE 3.11) Fully supported
Verilog 2001 featuressigned/unsigned nets and registersSigned/unsigned nets and registers (IEEE
3.2, 4.3)

Fully supported

Verilog 2001 featuressigned/unsigned sized and based constantsSigned/unsigned sized and based
constants (IEEE 3.2)

Fully supported

Verilog 2001 featuresmultidimensional arraysMultidimensional arrays and Arrays of netsarrays of nets
(IEEE 3.10)

Fully supported

Part select addressing ([+:] and [-:]
operators) (IEEE 4.2.1)

Fully supported

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

166

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Ignored Constructs

Feedback

Table 13 Supported Verilog 2001 and 2005 Constructs (Continued)

Feature Description
Verilog 2001 featurespower operator (**)Power operator (**) (IEEE 4.1.5) Fully supported
Verilog 2001 featuresarithmetic shift operatorsArithmetic shift operators (<<< and >>>)
(IEEE 4.1.12)

Fully supported

Verilog 2001 featuressized parametersSized parameters (IEEE 3.11.1) Fully supported
Verilog 2001 features‘ifndef, ‘elsif, ‘undef`ifndef, `elsif, `undef (IEEE 19.4,19.3.2) Fully supported
‘ifdef VERILOG_2000` ifdef VERILOG_2001ifdef VERILOG_2001 and ‘ifdef VERILOG_1995 `ifdef VERILOG_1995ifdef
VERILOG_1995

Fully supported

Comma-separated sensitivity listsVerilog 2001 featurescomma-separated sensitivity listsComma-separated sensitivity lists (IEEE
4.1.15 and 9.7.4)

Fully supported

Ignored Constructs
The following sections include directives that HDL Compiler accepts but ignores.

Simulation Directives
simulationdirectivesdirectivessimulationThe following directives are special commands that affect the operation of the Verilog HDL
simulator:

'accelerate
'celldefine
'default_nettype
'endcelldefine
'endprotect
'expand_vectornets
'noaccelerate
'noexpand_vectornets
'noremove_netnames
'nounconnected_drive
'protect
'remove_netnames
'resetall
'timescale
'unconnected_drive

You can include these directives in your design description; HDL Compiler accepts but
ignores them.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

167

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

Verilog System Functions
Verilogsystem functionVerilog system functions are special functions that Verilog HDL simulators implement.
Their names start with a dollar sign ($). All of these functions are accepted but ignored functionsignored
by HDL Compiler with the exception of $display, which can be useful during synthesis
elaboration. See Use of $display During RTL Elaboration.

Verilog 2001 Feature Examples
This section provides examples for Verilog 2001 features in the following sections:

• Multidimensional Arrays and Arrays of Nets

• Signed Quantities

• Comparisons With Signed Types

• Controlling Signs With Casting Operators

• Part-Select Addressing Operators ([+:] and [-:])

• Power Operator (**)

• Arithmetic Shift Operators (<<< and >>>)

Multidimensional Arrays and Arrays of Nets
HDL Compiler supports multidimensional arraysmultidimensional arrays of any variable or net data type. This
added functionality is shown in the following examples.

Example 143 Multidimensional Arrays
module m (a, z);
 input [7:0] a;
 output z;
 reg t [0:3][0:7];
 integer i, j;
 integer k;
 always @(a)
 begin
 for (j = 0; j < 8; j = j + 1)
 begin
 t[0][j] = a[j];
 end
 for (i = 1; i < 4; i = i + 1)
 begin
 k = 1 << (3-i);
 for (j = 0; j < k; j = j + 1)
 begin

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

168

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

 t[i][j] = t[i-1][2*j] ^ t[i-1][2*j+1];
 end
 end
 end
 assign z = t[3][0];
endmodule

Example 144 Arrays of Nets
module m (a, z);
 input [0:3] a;
 output z;
 wire x [0:2] ;
 assign x[0] = a[0] ^ a[1];
 assign x[1] = a[2] ^ a[3];
 assign x[2] = x[0] ^ x[1];
 assign z = x[2];
endmodule

Example 145 Multidimensional Array Variable Subscripting
reg [7:0] X [0:7][0:7][0:7];

assign out = X[a][b][c][d+:4];

Verilog 2001 allows more than one level of subscripting on a variable, without use of a
temporary variable.

Example 146 Multidimensional Array
module test(in, en, out, addr_in, addr_out_reg, addr_out_bit, clk);

 input [7:0] in;
 input en, clk;
 input [2:0] addr_in, addr_out_reg, addr_out_bit;
 reg [7:0] MEM [0:7];
 output out;

 assign out = MEM[addr_out_reg][addr_out_bit];

 always @(posedge clk) if (en) MEM[addr_in] = in;
endmodule

Signed Quantities
HDL Compiler supports signed arithmetic extensionssigned arithmetic extensions. functionsFunction returns and reg and net
data types can be declared as signed. This added functionality is shown in the following
examples.

Example 147 results in a sign extension, that is, z[0] connects to a[0].Signed I/O Ports

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

169

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

Example 147 Signed I/O Ports
module m1 (a, z);
 input signed [0:3] a;
 output signed [0:4] z;
 assign z = a;
endmodule

In Example 148, because 3’sb111 is signed, the tool infers a signed adder. In the generic
netlist, the ADD_TC_OP cell denotes a 2’s complement adder and z[0] is not logic 0.Signed Constants

Example 148 Signed Constants: Code and GTECH Gates
module m2 (a, z);
 input signed [0:2] a;
 output [0:4] z;
 assign z = a + 3'sb111;
endmodule

In Example 149, because 4’sd5 is signed, a signed comparator (LT_TC_OP) is inferred.Signed Registers

Example 149 Signed Registers: Code and GTECH Gates
 module m3 (a, z);
 input [0:3] a;
 output z;
 reg signed [0:3] x;
 reg z;
 always begin
 x = a;
 z = x < 4'sd5;
 end
endmodule

In Example 150, because in1, in2, and out are signed, a signed multiplier
(MULT_TC_OP_8_8_8) is inferred.Signed Types

Example 150 Signed Types: Code and Gates
module m4 (in1, in2, out);
 input signed [7:0] in1, in2;
 output signed [7:0] out;
 assign out = in1 * in2;
endmodule

The code in Example 151 results in a signed subtractor (SUB_TC_OP).

Example 151 Signed Nets: Code and Gates
module m5 (a, b, z);
 input [1:0] a, b;
 output [2:0] z;
 wire signed [1:0] x = a;
 wire signed [1:0] y = b;

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

170

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

 assign z = x - y;
endmodule

In Example 152, because 4’sd5 is signed, a signed comparator (LT_TC_OP) is inferred.

Example 152 Signed Values
module m6 (a, z);
 input [3:0] a;
 output z;
 reg signed [3:0] x;
 wire z;
 always @(a) begin
 x = a;
 end
 assign z = x < -4'sd5;
endmodule

Verilog 2001 adds the signed keywordsigned keyword in declarations: reg signed [7:0] x;
It also adds support for signed, sized constants. For example, 8'sb11111111 is an 8-bit
signed quantity representing -1. If you are assigning it to a variable that is 8 bits or less,
8'sb11111111 is the same as the unsigned 8'b11111111. A behavior difference arises when
the variable being assigned to is larger than the constant. This difference occurs because
signed quantities are extended with the high-order bit of the constant, whereas unsigned
quantities are extended with 0s. When used in expressions, the sign of the constant helps
determine whether the operation is performed as signed or unsigned.

HDL Compiler enables signed types by default.

Note:
If you use the signed keyword, any signed constant in your code, or explicit
type casting between signed and unsigned types, HDL Compiler issues a

warningshdlin_unsigned_integerswarning.

Comparisons With Signed Types
Verilog sign rulessign rules are tricky. All inputs to an expression must be signed to obtain a signed
operator. If one is signed and one unsigned, both are treated as unsigned. Any unsigned
quantity in an expression makes the whole expression unsigned; the result doesn’t depend
on the sign of the left side. Some expressions always produce an unsigned result; these
include bit and part-select and concatenation. See IEEE P1364/P5 Section 4.5.1.You need
to control the sign of the inputs yourself if you want to compare a signed quantity against
an unsigned one. The same is true for other kinds of expressions. See Example 153 and
Example 154.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

171

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

Example 153 Unsigned Comparison Results When Signs Are Mismatched
module m8 (in1, in2, lt);
// in1 is signed but in2 is unsigned
 input signed [7:0] in1;
 input [7:0] in2;
 output lt;
 wire uns_lt, uns_in1_lt_64;
/* comparison is unsigned because of the sign mismatch, in1
is signed but in2 is unsigned */
 assign uns_lt = in1 < in2;
/* Unsigned constant causes unsigned comparison; so negative
values of in1 would compare as larger than 8'd64 */
 assign uns_in1_lt_64 = in1 < 8'd64;
 assign lt = uns_lt + uns_in1_lt_64;
endmodule

Example 154 Signed Values
module m7 (in1, in2, lt, in1_lt_64);
 input signed [7:0] in1, in2; // two signed inputs
 output lt, in1_lt_64;
 assign lt = in1 < in2; // comparison is signed
 // using a signed constant results in a signed comparison
 assign in1_lt_64 = in1 < 8'sd64;
endmodule

Controlling Signs With Casting Operators
Use the Verilog 2001 casting operators, $signed() and $unsigned(), to convert an
unsigned expression to a signed expression. In Example 155, the casting operator is
used to obtain a signed comparator. Note that simply marking an expression as signed
might give undesirable results because the unsigned value might be interpreted as a
negative number. To avoid this problem, zero-extend unsigned quantities, as shown in
Example 155.

Example 155 Casting Operators
module m9 (in1, in2, lt);
 input signed [7:0] in1;
 input [7:0] in2;
 output lt;
 assign lt = in1 < $signed ({1'b0, in2});
 //Cast to get signed comparator.
 //Zero-extend to preserve interpretation of unsigned value as positive
number.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

172

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

Part-Select Addressing Operators ([+:] and [-:])
Verilog 2001 introduced variable part-select operatorsoperatorsvariable part-selectvariable part-select operators. These operators allow you to use
variables to select a group of bits from a vector. In some designs, coding with part-select
operators improves elaboration time and memory usage.

Variable part-select operators are discussed in the following sections:

• Variable Part-Select Overview

• Example—Ascending Array and -:

• Example—Ascending Array and +:

• Example—Descending Array and the -: Operator

• Example—Descending Array and the +: Operator

Variable Part-Select Overview
A Verilog 1995 part-select operator requires that both upper and lower indexes be
constant: a[2:3] or a[value1:value2].

The variable part-select operator permits selection of a fixed-width group of bits at a
variable base address and takes the following form:

• [base_expr +: width_expr] for a positive offset

• [base_expr -: width_expr] for a negative offset

The syntax specifies a variable base address and a known constant number of bits to
be extracted. The base address is always written on the left, regardless of the declared
direction of the array. The language allows variable part-select on the left side and the right
side of an expression. All of the following expressions are allowed:

• data_out = array_expn[index_var +: 3]

(part select is on the right side)

• data_out = array_expn[index_var -: 3]

(part select is on the right side)

• array_expn[index_var +: 3] = data_in

(part select is on the left side)

• array_expn[index_var -: 3] = data_in

(part select is on the left side)

This table shows examples of Verilog 2001 syntax and the equivalent Verilog 1995 syntax.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

173

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

Verilog 2001 syntax Equivalent Verilog 1995 syntax

a[x +: 3] for a descending
array

{ a[x+2], a[x+1], a[x] } a[x+2 : x]

a[x -: 3] for a descending
array

{ a[x], a[x-1], a[x-2] } a[x : x-2]

a[x +: 3] for an ascending
array

{ a[x], a[x+1], a[x+2] } a[x : x+2]

a[x -: 3] for an ascending
array

{ a[x-2], a[x-1], a[x] } a[x-2 : x]

The original HDL Compiler tool allows nonconstant part-selects if the width is constant;
HDL Compiler permits only the new syntax.

Example—Ascending Array and -:
The following Verilog code uses the -: operator to select bits from Ascending_Array.

reg [0:7] Ascending_Array;
...
 Data_Out = Ascending_Array[Index_Var -: 3];

The value of Index_Var determines the starting point for the bits selected. In the following
table, the bits selected are shown as a function of Index_Var.

Ascending_Array [0 1 2 3 4 5 6 7]

Index_Var = 0 not valid, synthesis/simulation mismatch

Index_Var = 1 not valid, synthesis/simulation mismatch

Index_Var = 2 • • • • • • • •

Index_Var = 3 • • • • • • • •

Index_Var = 4 • • • • • • • •

Index_Var = 5 • • • • • • • •

Index_Var = 6 • • • • • • • •

Index_Var = 7 • • • • • • • •

Ascending_Array[Index_Var -: 3] is functionally equivalent to the following part-select that
is not computable:Ascending_Array[Index_Var - 2 : Index_Var]

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

174

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

Example—Ascending Array and +:
The following Verilog code uses the +: operator to select bits from Ascending_Array.

reg [0:7] Ascending_Array;
...
 Data_Out = Ascending_Array[Index_Var +: 3];

The value of Index_Var determines the starting point for the bits selected. In the following
table, the bits selected are shown as a function of Index_Var.

Ascending_Array [0 1 2 3 4 5 6 7]

Index_Var = 0 • • • • • • • •

Index_Var = 1 • • • • • • • •

Index_Var = 2 • • • • • • • •

Index_Var = 3 • • • • • • • •

Index_Var = 4 • • • • • • • •

Index_Var = 5 • • • • • • • •

Index_Var = 6 not valid, synthesis/simulation mismatch; see the following note.

Index_Var = 7 not valid, synthesis/simulation mismatch; see the following note.

Note:

• Ascending_Array[Index_Var +: 3] is functionally equivalent to the following part-select
that is not computable: Ascending_Array[Index_Var : Index_Var + 2]

• Noncomputable part-selects are not supported by the Verilog language.
Ascending_Array[7 +:3] corresponds to elements Ascending_Array[7 : 9] but elements
Ascending_Array[8] and Ascending_Array[9] do not exist. A variable part-select must
always compute to a valid index; otherwise, a synthesis elaborate error and a runtime
simulation error results.

Example—Descending Array and the -: Operator
The following code uses the -: operator to select bits from Descending_Array.

reg [7:0] Descending_Array;
...
 Data_Out = Descending_Array[Index_Var -: 3];

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

175

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

The value of Index_Var determines the starting point for the bits selected. In the following
table, the bits selected are shown as a function of Index_Var.

Descending_Array [7 6 5 4 3 2 1 0]

Index_Var = 0 not valid, synthesis/simulation mismatch

Index_Var = 1 not valid, synthesis/simulation mismatch

Index_Var = 2 • • • • • • • •

Index_Var = 3 • • • • • • • •

Index_Var = 4 • • • • • • • •

Index_Var = 5 • • • • • • • •

Index_Var = 6 • • • • • • • •

Index_Var = 7 • • • • • • • •

Descending_Array[Index_Var -: 3] is functionally equivalent to the following
noncomputable part-select: Descending_Array[Index_Var : Index_Var - 2]

Example—Descending Array and the +: Operator
The following Verilog code uses the +: operator to select bits from Descending_Array.

reg [7:0] Descending_Array;
...
 Data_Out = Descending_Array[Index_Var +: 3];

The value of Index_Var determines the starting point for the bits selected. In the following
table, the bits selected are shown as a function of Index_Var.

Descending_Array [7 6 5 4 3 2 1 0]

Index_Var = 0 • • • • • • • •

Index_Var = 1 • • • • • • • •

Index_Var = 2 • • • • • • • •

Index_Var = 3 • • • • • • • •

Index_Var = 4 • • • • • • • •

Index_Var = 5 • • • • • • • •

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

176

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2001 Feature Examples

Feedback

Descending_Array [7 6 5 4 3 2 1 0]

Index_Var = 6 not valid, synthesis/simulation mismatch

Index_Var = 7 not valid, synthesis/simulation mismatch

Descending_Array[Index_Var +: 3] is functionally equivalent to the following
noncomputable part-select: Descending_Array[Index_Var + 2 : Index_Var]

Noncomputable part-selects are not supported by the Verilog language.
Descending_Array[7 +:3] corresponds to elements Descending_Array[9 : 7] but elements
Descending_Array[9] and Descending_Array[8] do not exist. A variable part-select must
always compute to a valid index; otherwise, a synthesis elaborate error and a runtime
simulation error results.

Power Operator (**)
This operator performs yx, as shown in Example 156.

Example 156 Power Operators
module m #(parameter b=2, c=4) (a, x, y, z);
 input [3:0] a;
 output [7:0] x, y, z;

 assign z = 2 ** a;
 assign x = a ** 2;
 assign y = b ** c; // where b and c are constants

endmodule

Arithmetic Shift Operators (<<< and >>>)
The arithmetic shift operators allow you to shift an expression and still maintain the sign
of a value, as shown in Example 157. When the type of the result is signed, the arithmetic
shift operator (>>>) shifts in the sign bit; otherwise it shifts in zeros.

Example 157 Shift Operator Code and Gates
module s1 (A, S, Q);
 input signed [3:0] A;
 input [1:0] S;
 output [3:0] Q;
 reg [3:0] Q;
 always @(A or S)
 begin

// arithmetic shift right,

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

177

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Verilog Language Support
Verilog 2005 Feature Example

Feedback

// shifts in sign-bit from left

 Q = A >>> S;
 end
endmodule

Verilog 2005 Feature Example

Zero Replication
According to the Verilog 2005 LRM, a replication operation with a zero replication constant
is considered to have a size of zero and is ignored. Such an operation can appear only
within a concatenation in which at least one of the operands of the concatenation has a
positive size.

Zero replication can be useful for parameterized designs. In the following example, the
valid values for parameter P are 1 to 32.

module top #(parameter P = 32) (input [32-1:0]a, output [32-1:0] b);
assign b = {{32-P{1'b1}}, a[P-1:0]};
endmodule

When the hdlin_vrlg_std variable is set to 2005, and you analyze replication operations
whose elaboration-time constant is zero or negative, the repeated expressions elaborate
once (for their side-effects). But they do not contribute result values to a surrounding
concatenation or assignment pattern. The Verilog 2005 standard permits such empty
replication results only within an otherwise nonempty concatenation

Note:
Nonstandard replication operations that are analyzed when the Verilog version
is set to 1995 or 2001 return 1'b0. This is compatible with an extension made by
Synopsys Verilog products of that era.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

178

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Glossary
anonymous type

A predefined or underlying type with no name, such as universal integers.
ASIC

Application-specific integrated circuit.
behavioral view

The set of Verilog statements that describe the behavior of a design by using
sequential statements. These statements are similar in expressive capability to those
found in many other programming languages. See also the data flow view, sequential
statement, and structural view definitions.

bit-width
The width of a variable, signal, or expression in bits. For example, the bit-width of the
constant 5 is 3 bits.

character literal
Any value of type CHARACTER, in single quotation marks.

computable
Any expression whose (constant) value HDL Compiler can determine during
translation.

constraints
The designer’s specification of design performance goals. HDL Compiler uses
constraints to direct the optimization of a design to meet area and timing goals.

convert
To change one type to another. Only integer types and subtypes are convertible, along
with same-size arrays of convertible element types.

data flow view
The set of Verilog statements that describe the behavior of a design by using
concurrent statements. These descriptions are usually at the level of Boolean
equations combined with other operators and functionsfunction calls. See also the behavioral
view and structural view.

design constraints
See constraints.

flip-flop
An edge-sensitive memory device.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Glossary

Feedback

HDL
Hardware Description Language.

HDL Compiler
The Synopsys Verilog synthesis product.

identifier
A sequence of letters, underscores, and numbers. An identifier cannot be a Verilog
reserved word, such as type or loop. An identifier must begin with a letter or an
underscore.

latch
A level-sensitive memory device.

netlist
A network of connected components that together define a design.

optimization
The modification of a design in an attempt to improve some performance aspect. HDL
Compiler optimizes designs and tries to meet specified design constraints for area and
speed.

port
A signal declared in the interface list of an entity.

reduction operator
An operator that takes an array of bits and produces a single-bit result, namely the
result of the operator applied to each successive pair of array elements.

register
A memory device containing one or more flip-flops or latches used to hold a value.

resource sharing
The assignment of a similar Verilog operation (for example, +) to a common netlist cell.
Netlist cells are the resources—they are equivalent to built hardware.

RTL
Register transfer level, a set of structural and data flow statements.

sequential statement
A set of Verilog statements that execute in sequence.

signal
An electrical quantity that can be used to transmit information. A signal is declared with
a type and receives its value from one or more drivers. Signals are created in Verilog
through either wire or reg declarations.

signed value
A value that can be positive, zero, or negative.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

180

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Glossary

Feedback

structural view
The set of Verilog statements used to instantiate primitive and hierarchical components
in a design. A Verilog design at the structural level is also called a netlist. See also
behavioral view and data flow view.

subtype
A type declared as a constrained version of another type.

synthesis
The creation of optimized circuits from a high-level description. When Verilog is used,
synthesis is a two-step process: translation from Verilog to gates by HDL Compiler and
optimization of those gates for a specific ASIC library with HDL Compiler.

translation
The mapping of high-level language constructs onto a lower-level form. HDL Compiler
translates RTL Verilog descriptions to gates.

type
In Verilog, the mechanism by which objects are restricted in the values they are
assigned and the operations that can be applied to them.

unsigned
A value that can be only positive or zero.

HDL Compiler™ for Verilog User Guide
U-2022.12-SP3

181

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20Verilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	About This Manual
	New in This Release
	Related Products, Publications, and Trademarks
	Conventions
	Customer Support
	Accessing SolvNetPlus
	Contacting Customer Support

	Statement on Inclusivity and Diversity

	1 Verilog for Synthesis
	Reading Verilog Designs
	Specifying the Verilog Version
	Automated Process of Reading Designs With Dependencies
	The -autoread Option
	File Dependencies

	Setting Library Search Order
	Ignoring Modules During the Read Process
	Elaboration Command Based Interface-Only Method (Recommended)
	Analyze Command Based Interface-Only Method

	File Format Inference Based on File Extensions

	Coding for QoR
	Reading Designs Using the VCS Command-Line Options
	Reporting HDL Compiler Settings
	Customizing Elaboration Reports
	Reporting Elaboration Errors in the Hierarchy
	Example of Reporting Elaboration Errors

	Querying Information about RTL Preprocessing
	Netlist Reader
	Automatic Detection of Input Type
	Parameterized Designs
	Defining Macros
	Predefined Macros
	Global Macro Reset: `undefineall
	Persistent Macros

	Use of $display During RTL Elaboration
	Inputs and Outputs
	Input Descriptions
	Design Hierarchy
	Component Inference and Instantiation
	Naming Considerations
	Generic Netlists
	Inference Reports
	Error Messages

	Language Construct Support
	Licenses

	2 Coding Considerations
	General Verilog Coding Guidelines
	Guidelines for Interacting With Other Flows
	Synthesis Flows
	Low-Power Flows
	Verification Flows

	3 Modeling Combinational Logic
	Synthetic Operators
	Logic and Arithmetic Expressions
	Basic Operators
	Addition Overflow
	Sign Conversions

	Selection and Multiplexing Logic
	The SELECT_OP Cell
	The MUX_OP Cell
	Default SELECT_OP and MUX_OP Inference Behavior
	Controlling Selection Statement Inference
	Controlling Selection Statement Inference Locally
	Controlling Selection Statement Inference Globally
	MUX_OP Inference and Resource Sharing

	Controlling Array Read Inference
	Controlling Array Read Inference Globally
	Controlling Array Read Inference Locally

	Inferring One-Hot Multiplexer Logic

	Bit-Truncation Coding for DC Ultra Datapath Extraction
	Latches in Combinational Logic

	4 Sequential Logic
	Generic Sequential Cell SEQGEN
	Inference Reports for Registers
	Register Inference Guidelines
	Multiple Events in an always Block
	Minimizing Registers
	Keeping Unloaded Registers
	Preventing Unwanted Latches
	Register Inference Limitations

	Register Inference Examples
	Inferring Latches
	Basic D Latch
	D Latch With Asynchronous Set: Use async_set_reset
	D Latch With Asynchronous Reset: Use async_set_reset
	D Latch With Asynchronous Set and Reset: Use hdlin_latch_always_async_set_reset

	Inferring Flip-Flops
	Basic D Flip-Flop
	D Flip-Flop With Asynchronous Reset Using ?: Construct
	D Flip-Flop With Asynchronous Reset
	D Flip-Flop With Asynchronous Set and Reset
	D Flip-Flop With Synchronous Set: Use sync_set_reset
	D Flip-Flop With Synchronous Reset: Use sync_set_reset
	D Flip-Flop With Synchronous and Asynchronous Load
	D Flip-Flops With Complex Set and Reset Signals
	Multiple Flip-Flops With Asynchronous and Synchronous Controls

	5 Modeling Three-State Buffers
	Using z Values
	Three-State Driver Inference Report
	Assigning a Single Three-State Driver to a Single Variable
	Assigning Multiple Three-State Drivers to a Single Variable
	Registering Three-State Driver Data
	Instantiating Three-State Drivers
	Errors and Warnings

	6 HDL Compiler Synthesis Directives
	async_set_reset
	async_set_reset_local
	async_set_reset_local_all
	dc_tcl_script_begin and dc_tcl_script_end
	enum
	full_case
	infer_multibit and dont_infer_multibit
	Using the infer_multibit Directive
	Using the dont_infer_multibit Directive
	Reporting Multibit Components

	infer_mux
	infer_mux_override
	infer_onehot_mux
	keep_signal_name
	one_cold
	one_hot
	parallel_case
	preserve_sequential
	sync_set_reset
	sync_set_reset_local
	sync_set_reset_local_all
	template
	translate_off and translate_on (Deprecated)
	Directive Support by Pragma Prefix

	A Verilog Design Examples
	Coding for Late-Arriving Signals
	Duplicating Datapaths
	Moving Late-Arriving Signals Close to Output
	Overview
	Late-Arriving Data Signal Example 1
	Late-Arriving Data Signal Example 2
	Late-Arriving Data Signal Example 3
	Late-Arriving Control Signal Example 1
	Late-Arriving Control Signal Example 2

	Master-Slave Latch Inferences
	Overview for Inferring Master-Slave Latches
	Master-Slave Latch With One Master-Slave Clock Pair
	Master-Slave Latch With Multiple Master-Slave Clock Pairs
	Master-Slave Latch With Discrete Components

	B Verilog Language Support
	Syntax
	Comments
	Numbers

	Verilog Keywords
	Unsupported Verilog Language Constructs
	Construct Restrictions and Comments
	always Blocks
	generate Statements
	Generate Overview
	Types of generate Blocks
	Standalone generate Blocks

	Anonymous generate Blocks
	Loop Generate Blocks and Conditional Generate Blocks
	Restrictions

	Real Math Functions
	Restrictions

	Conditional Expressions (?:) Resource Sharing
	Case
	casez and casex
	Full Case and Parallel Case

	defparam
	disable
	Blocking and Nonblocking Assignments
	Macromodule
	inout Port Declaration
	tri Data Type
	HDL Compiler Directives
	`define
	`include
	`ifdef, `else, `endif, `ifndef, and `elsif
	`undef

	reg Types
	Types in Busing
	Combinational while Loops

	Verilog 2001 and 2005 Supported Constructs
	Ignored Constructs
	Simulation Directives
	Verilog System Functions

	Verilog 2001 Feature Examples
	Multidimensional Arrays and Arrays of Nets
	Signed Quantities
	Comparisons With Signed Types
	Controlling Signs With Casting Operators
	Part-Select Addressing Operators ([+:] and [-:])
	Variable Part-Select Overview
	Example—Ascending Array and -:
	Example—Ascending Array and +:
	Example—Descending Array and the -: Operator
	Example—Descending Array and the +: Operator

	Power Operator (**)
	Arithmetic Shift Operators (<<< and >>>)

	Verilog 2005 Feature Example
	Zero Replication

	Glossary

