
 4.02a
July 2018

DesignWare DW_apb_uart Databook

DW_apb_uart – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://www.synopsys.com/company/legal/trademarks-brands.html
www.synopsys.com
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 3

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

Contents

Revision History . 7

Preface .11
Organization .11
Related Documentation .12
Web Resources .12
Customer Support .12
Product Code .13

Chapter 1
Product Overview .15

1.1 DesignWare System Overview .15
1.2 General Product Description .17

1.2.1 DW_apb_uart Block Diagram .19
1.3 Features .21
1.4 Standards Compliance .22
1.5 Speed and Clock Requirements .22
1.6 Verification Environment Overview .22
1.7 Licenses .23
1.8 Where To Go From Here .23

Chapter 2
Functional Description .25

2.1 UART (RS232) Serial Protocol .25
2.2 9-bit Data Transfer .27

2.2.1 Transmit Mode .28
2.2.2 Receive Mode .30

2.3 RS485 Serial Protocol .31
2.3.1 DE Assertion and De-assertion Timing .32
2.3.2 RS485 Modes .32
2.3.3 Sample Scenarios .36

2.4 Fractional Baud Rate Support .38
2.4.1 Fractional Division Used to Generate Baud Clock .40
2.4.2 Calculating the Fractional Value Error .40

2.5 IrDA 1.0 SIR Protocol .42
2.6 FIFO Support .44
2.7 Clock Support .45
2.8 Back-to-Back Character Stream Transmission .48

2.8.1 Dual Clock Mode .48
2.8.2 Single Clock Mode .50

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Contents DesignWare DW_apb_uart Databook

2.9 Interrupts .50
2.10 Auto Flow Control .52
2.11 Programmable THRE Interrupt .56
2.12 Clock Gate Enable .58
2.13 DMA Support .60

2.13.1 DMA Modes .61
2.13.2 Transmit Watermark Level and Transmit FIFO Underflow .64
2.13.3 Choosing Transmit Watermark Level .65
2.13.4 Selecting DEST_MSIZE and Transmit FIFO Overflow .66
2.13.5 Receive Watermark Level and Receive FIFO Overflow .67
2.13.6 Choosing the Receive Watermark Level .67
2.13.7 Selecting SRC_MSIZE and Receive FIFO Underflow .67
2.13.8 Handshaking Interface Operation .68
2.13.9 Potential Deadlock Conditions in DW_apb_uart/DW_ahb_dmac Systems71

2.14 Reset Signals .74
2.15 APB Interface .75

2.15.1 APB 3.0 Support .76
2.15.2 APB 4.0 Support .77

Chapter 3
Parameter Descriptions .79

3.1 Parameters .80

Chapter 4
Signal Descriptions .91

4.1 APB Slave Interface Signals .93
4.2 Application Interface Signals .96
4.3 FIFO Interface Signals .97
4.4 Modem Interface Signals . 100
4.5 DMA Interface Signals . 102
4.6 Serial Interface Signals . 106
4.7 Infrared Interface Signals . 107
4.8 Clock Control Interface Signals . 108
4.9 Debug Interface Signals . 109
4.10 RS485 Interface Signals . 110
4.11 Interrupt Interface Signals . 112

Chapter 5
Register Descriptions . 113

5.1 uart_memory_map/uart_address_block Registers . 116
5.1.1 RBR . 119
5.1.2 DLL . 121
5.1.3 THR . 123
5.1.4 DLH . 125
5.1.5 IER . 126
5.1.6 FCR . 129
5.1.7 IIR . 132
5.1.8 LCR . 134
5.1.9 MCR . 138
5.1.10 LSR . 142

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Contents

5.1.11 MSR . 149
5.1.12 SCR . 154
5.1.13 LPDLL . 155
5.1.14 LPDLH . 157
5.1.15 SRBRn (for n = 0; n <= 15) . 159
5.1.16 STHRn (for n = 0; n <= 15) . 161
5.1.17 FAR . 163
5.1.18 TFR . 165
5.1.19 RFW . 166
5.1.20 USR . 168
5.1.21 TFL . 171
5.1.22 RFL . 172
5.1.23 SRR . 173
5.1.24 SRTS . 175
5.1.25 SBCR . 177
5.1.26 SDMAM . 179
5.1.27 SFE . 181
5.1.28 SRT . 182
5.1.29 STET . 184
5.1.30 HTX . 186
5.1.31 DMASA . 187
5.1.32 TCR . 188
5.1.33 DE_EN . 191
5.1.34 RE_EN . 192
5.1.35 DET . 193
5.1.36 TAT . 195
5.1.37 DLF . 197
5.1.38 RAR . 198
5.1.39 TAR . 200
5.1.40 LCR_EXT . 201
5.1.41 UART_PROT_LEVEL . 205
5.1.42 REG_TIMEOUT_RST . 206
5.1.43 CPR . 208
5.1.44 UCV . 212
5.1.45 CTR . 213

Chapter 6
Programming the DW_apb_uart . 215

6.1 Programing Examples . 215
6.2 Programming Flow in RS485 Mode . 217

6.2.1 Full Duplex Mode (XFER_MODE=0) . 217
6.2.2 Software-Enabled Half Duplex Mode (XFER_MODE=1) . 218
6.2.3 Hardware enabled Half Duplex mode (XFER_MODE=2) . 218

6.3 Programming Flow in 9-bit Data Mode . 220
6.3.1 Transmit Mode 0 . 220
6.3.2 Transmit Mode 1 . 221
6.3.3 Hardware Address Match Receive mode . 222
6.3.4 Software Address Match Receive mode . 223

6.4 Programming Flow for Fractional Baud Rate . 223

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Contents DesignWare DW_apb_uart Databook

6.5 Software Drivers . 224

Chapter 7
Verification . 225

7.1 Overview of DW_apb_uart Testbench . 226

Chapter 8
Integration Considerations . 229

8.1 Accessing Top-level Constraints . 229
8.2 Coherency . 229

8.2.1 Writing Coherently . 230
8.2.2 Reading Coherently . 236

8.3 Performance . 240
8.3.1 Power Consumption, Frequency, and Area Results . 240

Appendix A
Synchronizer Methods . 243

A.1 Synchronizers Used in DW_apb_uart . 244
A.2 Synchronizer 1: Simple Double Register Synchronizer . 245
A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset 245
A.4 Synchronizer 3: Simple Double Register Synchronizer with Acknowledge .246

Chapter B
Internal Parameter Descriptions . 247

Appendix C
Application Notes . 249

Appendix D
Glossary . 253

Index . 257

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

Revision History

This table shows the revision history for the databook from release to release. This is being tracked from
version 3.06b onward.

Version Date Description

4.02a July 2018 Added:
■ “APB Interface” on page 75

■ Added support for configurable Synchronization Depth through parameter
SYNC_DEPTH

Updated:
■ Version number changed for 2018.07a release

■ “Performance” on page 240

■ “Parameter Descriptions” on page 79, “Signal Descriptions” on page 91,
“Register Descriptions” on page 113, and “Internal Parameter Descriptions” on
page 247 are auto extracted with change bars from the RTL.

Removed:

■ Chapter 2, “Building and Verifying a Component or Subsystem” and added the
contents in the newly created user guide.

4.01a October 2016 ■ Version number changed for 2016.10a release

■ “Parameter Descriptions” on page 79 and “Register Descriptions” on page 113
auto-extracted from the RTL

■ Added the DMA_HS_REQ_ON_RESET and LSR_STATUS_CLEAR
parameters in “Parameter Descriptions” on page 79

■ Added xprop directory in Table 2-1 and Table 2-4

■ Added “Running VCS XPROP Analyzer”

■ Added a note in “DMA Support” on page 60

■ Deleted the “Running Leda on Generated Code with coreConsultant”, and
reference to Leda directory in Table 2-1

■ Deleted the “Running Leda on Generated Code with coreAssembler” section,
and reference to Leda directory in Table 2-4

■ Moved Internal Parameter Descriptions to Appendix

■ Moved Table 2-1 to “Fractional Baud Rate Support” on page 38

■ Moved Table 2-3 to “Interrupts” on page 50 and modified the Interrupt Reset
Control field for Interrupt ID 0110.

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Revision History DesignWare DW_apb_uart Databook

4.00a June 2015 ■ Added following section in “Functional Description”:

- 9-bit Data Transfer
- RS485 Serial Protocol
- Fractional Baud Rate Support

■ Updated Register Descriptions, Signal Descriptions, Parameter Descriptions,
and Programming the DW_apb_uart chapters

■ Added “Running SpyGlass® Lint and SpyGlass® CDC”

■ Added “Running Spyglass on Generated Code with coreAssembler”

■ Added Chapter B, “Internal Parameter Descriptions”

■ “Signal Descriptions” on page 91 auto-extracted from the RTL

■ Added Appendix A, “Synchronizer Methods”

■ Updated area and performance number in sections “Area” and “Power
Consumption”

3.15a June 2014 ■ Version change for 2014.06a release

■ Added “Performance” section in the “Integration Considerations” chapter

■ Corrected Default Input/Output Delay in Signals chapter

3.14c May 2013 ■ Corrected the de-assert sequence in “Reset Signals” on page 67

■ Corrected the label of the UART_ADD_ENCODED_PARAMS parameter

■ Updated the template

3.14b Sep 2012 Added the product code on the cover and in Table 1-1.

3.14b Jun 2012 Added new RTC_FCT coreConsultant parameter.

3.13a Mar 2012 ■ Enhanced timing information for serial clock modules

■ Corrected reset values for MSR[3:0] bits

■ Added note to write MCR before LCR for SIR mode

■ Updated CPR register description

3.12c Nov 2011 Version change for 2011.11a release.

3.12b Oct 2011 ■ Updated DLAB bit description of the LCR register

■ Added flow charts in programming chapter

■ Edited “Product Overview” material and “Functional Description” material for
better flow in reading

■ Enhanced SIRE bit description of MCR register

3.12a Jun 2011 ■ Updated material for Stick Parity bit of Line Control Register

■ Updated system diagram in Figure 1-1

■ Enhanced “Related Documents” section in Preface

■ Corrected address offset and R/W for LPDLL, LPDLH, and DMASA registers

3.11a 12 Apr 2011 Added note for break condition in BI bit of LSR register.

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Revision History

3.11a Apr 2011 ■ Corrected description of APB_DATA_WIDTH parameter
■ Added sections for “Potential Deadlock Conditions in

DW_apb_uart/DW_ahb_dmac Systems” and “Reset Signals”
■ Edited descriptions for Parity Error and Framing Error bits in LSR register
■ Corrected dma* signals in Figure 3-25
■ Added register in acknowledge page in “RTL Diagram of Data Synchronization

Module” diagram

3.10a 25 Jan 2011 Corrected description of reset operation in Answer 7 of “Application Notes”

3.10a Jan 2011 Corrected “DW_apb_uart Testbench” illustration

3.10a Nov 2010 ■ Corrected DW_ahb_dmac response in “Receive Watermark Level and Receive
FIFO Overflow” section

■ Modified values to which APB_DATA_WIDTH parameter can be set

3.10a 9 Sep 2010 Corrected LCR link to LSR link in RBR register description.

3.10a Sep 2010 ■ Enhanced USR[0] busy description to explain non-busy conditions
■ Corrected names of include files and vcs command used for simulation
■ Added information regarding false start bit detection
■ Updated the ADDITIONAL_PARAMETERS description

3.08a Jun 2010 ■ Corrected synchronous description from “pclk” to “N/A” for cts_n, dsr_n, dcd_n
and ri_n signals

■ Added:

- Syntax for include files in database tables
- +v2k option in vcs command syntax
- Information for back-to-back character stream transmission

3.08a Jan 2010 Revised FCR register description for condition in which FIFOs are not
implemented

3.08a Dec 2009 Updated databook to new template for consistency with other IIP/VIP/PHY
databooks

3.08a Jul 2009 Corrected equations for avoiding underflow when programming a source burst
transaction

3.08a May 2009 Removed references to QuickStarts, as they are no longer supported

3.08a Apr 2009 Enhanced “Clock Support” section

3.08a Oct 2008 Version change for 2008.10a release

3.07b Jun 2008 Version change for 2008.06a release

3.07a Jan 2008 ■ Updated for revised installation guide and consolidated release notes titles

■ Changed references of “Designware AMBA” to simply “DesignWare”

■ Performance information temporarily removed

■ Corrections made to Figures 7 and 8

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Revision History DesignWare DW_apb_uart Databook

3.07a Dec 2007 ■ Correction of Figure 8

■ Removed area tables pending more current data

3.06b Jun 2007 Version change for 2007.06a release.

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

Preface

This databook provides information that you need to interface the DW_apb_uart component to the
Advanced Peripheral Bus (APB). This component conforms to the AMBA Specification, Revision 2.0 from
Arm®.

The information in this databook includes a functional description, pin and parameter descriptions, and a
memory map. Also provided are an overview of the component testbench, a description of the tests that are
run to verify the component, and synthesis information.

Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Functional Description” describes the functional operation of the DW_apb_uart.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_apb_uart.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_apb_uart signals.

■ Chapter 5, “Register Descriptions” describes the programmable registers of the DW_apb_uart.

■ Chapter 6, “Programming the DW_apb_uart” provides information needed to program the
configured DW_apb_uart.

■ Chapter 7, “Verification” provides information on verifying the configured DW_apb_uart.

■ Chapter 8, “Integration Considerations” includes information you need to integrate the configured
DW_apb_uart into your design.

■ Appendix A, “Synchronizer Methods” documents the synchronizer methods (blocks of synchronizer
functionality) used in DW_abp_uart to cross clock boundaries.

■ Appendix B, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals, Parameters, or Registers chapters.

■ Appendix C, “Application Notes” includes information you need to integrate the configured
DW_apb_uart into your design.

■ Appendix D, “Glossary” provides a glossary of general terms.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Preface DesignWare DW_apb_uart Databook

Related Documentation
■ DW_apb_uart Driver Kit User Guide – Contains information on the Driver Kit for the DW_apb_uart;

requires source code license (DWC-APB-Periph-Source)

■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using
DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA 2,
see the DesignWare Synthesizable Components for AMBA 2, AMBA 3 AXI, and AMBA 4 AXI Installation Guide.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

NoteNoteNoteNote Information on the DW_apb_uart component in this databook assumes that the reader is fully
familiar with the National Semiconductor 16550 (UART) component specification.
Information provided on IrDA SIR mode assumes that the reader is fully familiar with the IrDa
Serial Infrared Physical Layer Specification. This specification can be obtained from the
following website:
 http://www.irda.org

https://www.synopsys.com/dw/doc.php/drivers/DW_apb_uart/latest/doc/dw_apb_uart_driver.pdf
http://www.irda.org
http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Preface

■ Then, contact Support Center, with a description of your question and supplying the requested
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained, your
issue is automatically routed to a support engineer who is experienced with your product. The
Sub Product entry is critical for correct routing.

Go to http://solvnet.synopsys.com/EnterACall and click Open A Support Case to enter a call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: <product version number>
■ Problem Type:
■ Priority:
■ Title: DW_apb_uart
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified earlier) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
https://www.synopsys.com/support/global-support-centers.html

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare APB Advanced
Peripherals.

Table 1-1 DesignWare APB Advanced Peripherals – Product Code: 3772-0

Component Name Description

DW_apb_i2c A highly configurable, programmable master or slave i2c device with an APB slave interface

DW_apb_i2s A configurable master or slave device for the three-wire interface (I2S) for streaming stereo
audio between devices

DW_apb_ssi A configurable, programmable, full-duplex, master or slave synchronous serial interface

http://solvnet.synopsys.com/EnterACall
mailto:support_center@synopsys.com
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Preface DesignWare DW_apb_uart Databook

DW_apb_uart A programmable and configurable Universal Asynchronous Receiver/Transmitter (UART)
for the AMBA 2 APB bus

Component Name Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

1
Product Overview

The DW_apb_uart is a programmable Universal Asynchronous Receiver/Transmitter (UART). This
component is an AMBA 2.0-compliant Advanced Peripheral Bus (APB) slave device and is part of the family
of DesignWare Synthesizable Components.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Product Overview DesignWare DW_apb_uart Databook

Figure 1-1 Example of DW_apb_uart in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/DW_apb_i2s_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://solvnet.synopsys.com
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/DW_axi_rs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
www.designware.com

Synopsys, Inc. 17SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Product Overview

You can connect, configure, synthesize, and verify the DW_apb_uart within a DesignWare subsystem using
coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_apb_uart component,
you might prefer use coreConsultant, documentation for which is available in the coreConsultant User Guide.

1.2 General Product Description
The DW_apb_uart is modeled after the industry-standard 16550. However, the register address space is
relocated to 32-bit data boundaries for APB bus implementation. The DW_apb_uart can be configured,
synthesized, and verified using the Synopsys coreConsultant GUI.

The DW_apb_uart is used for serial communication with:

■ Peripherals

■ Modems (data carrier equipment, DCE)

■ Data sets

Data is written from a master (CPU) over the APB bus to the UART, and it is converted to serial form and
transmitted to the destination device. Serial data is also received by the UART and stored for the master
(CPU) to read back.

The DW_apb_uart contains registers that control:

■ Character length

■ Baud rate

■ Parity generation/checking

■ Interrupt generation

Although there is only one interrupt output signal (intr) from the DW_apb_uart, there are several
prioritized interrupt types that can be responsible for its assertion. Each of the interrupt types can be
separately enabled or disabled by the control registers.

The following describe various functionalities that you can configure into the DW_apb_uart:

■ Transmit and receive data FIFOs – To reduce the time demand placed on the master by the
DW_apb_uart, optional FIFOs are available to buffer transmit and receive data. The master does not
have to access the DW_apb_uart each time a single byte of data is received. The optional FIFOs can be
selected at configuration time.

The FIFOs can be configured as external customer-supplied FIFO RAMs or as internal DesignWare
D-flip-flop-based RAMs (DW_ram_r_w_s_dff).

❑ When external RAM support is chosen, both synchronous or asynchronous read-port memories
are supported.

❑ When FIFO support is selected, an optional test/debug mode is available to allow the receive
FIFO to be written by the master and the transmit FIFO to be read by the master.

■ DMA controller interface – The DW_apb_uart can interface with a DMA controller through external
signals (dma_tx_req_n and dma_rx_req_n) in order to indicate when data is ready to be read or when
the transmit FIFO is empty. Additional optional DMA signals are available for compatibility with a
DesignWare DMA controller interface, such as the DW_ahb_dmac.

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Product Overview DesignWare DW_apb_uart Databook

■ Asynchronous clock support – To solve problems surrounding CPU data synchronization in relation
to the required serial baud clock requirements, an optional separate serial data clock can be selected.
Full handshaking and level-synchronization guarantees all data crossing between the two clock
domains.

■ Auto flow control – The DW_apb_uart uses a 16750-compatible Auto Flow Control Mode to increase
system efficiency and decrease software load. When FIFOs and the Auto Flow Control are selected
and enabled, the request-to-send (rts_n) output and clear-to-send (cts_n) input automatically control
serial data flow.

■ RS485 interface Support - For integration into systems for which an RS485 interface is required, the
DW_apb_uart can be configured for a software-programmable RS485 mode. If this mode is not
selected, only the UART (RS232 standard) serial data format is available.

■ Programmable Transmit Holding Register Empty (THRE) interrupt – The DW_apb_uart uses a
Programmable Transmitter Holding Register Empty (THRE) Interrupt Mode to increase system
performance. When FIFOs and the THRE Mode are selected and enabled, THRE Interrupts are active
at or below a programmed TX FIFO threshold level. Additionally, the Line Status THRE switches
from indicating TX FIFO empty to TX FIFO full, which allows software to set a threshold that keeps
the transmitter FIFO from running empty whenever there is data to transmit.

■ Serial infrared support – For integration in systems where Infrared SIR serial data format is required,
the DW_apb_uart can be configured for a software-programmable IrDA SIR Mode. If this mode is
not selected, only the UART (RS232 standard) serial data format is available.

■ Increase built-in diagnostic capabilities – To increase the built-in diagnostic capabilities of the
DW_apb_uart, the Modem Control Loopback Mode has been extended. Modem Status bits actually
reflect Modem Control Register deltas, as well as the bits themselves. Additionally, when FIFOs and
Auto Flow Control Mode are selected and enabled, the Modem Control RTS is internally looped back
to the CTS in order to control the transmitter, which allows local testing of the Auto CTS mode.
Furthermore, the controllability of rts_n through the receiver FIFO threshold can be observed using
the RTS Modem Status bit, which allows local verification of the Auto RTS mode.

■ Level 1 and Level 2 debug support – To help with debug issues, optional debug signals are available
on the DW_apb_uart. To comply with level 1 and level 2 debug support requirements, many internal
points of interest to the debugger are available as outputs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Product Overview

1.2.1 DW_apb_uart Block Diagram

Figure 1-2 illustrates the DW_apb_uart block diagram.

Figure 1-2 DW_apb_uart Functional Block Diagram

sclk

intr

out2_n

soutsin

rts_n

cts_n

dtr_n

dsr_n

ri_n

dcd_n

out1_n

baudout_n

tx_ram_out

rx_ram_out

scan_mode

DW_apb_uart

sir_in sir_out_n

s_rst_n

uart_lp_req_sclk

dma_rx_singlea

dma_tx_singlea

dma_tx_reqa

dma_rx_reqa

 dma_rx_acka

debug

 dma_tx_acka

a Can either be low-active or high-active

FIFO
Block

(Optional)

tx_ram_we_n

tx_ram_in

tx_ram_rd_addr

tx_ram_wr_addr

rx_ram_in

rx_ram_rd_addr

rx_ram_re_n

rx_ram_wr_addr

rx_ram_we_n

tx_ram_re_n

 APB
Interfacepwdata

pwrite

penable

paddr

pclk

presetn

prdata

psel

Register
Block

Sync
Block

(Optional)
Timeout
Detector
(Optional)

Baud Clock
Generator

Serial Serial

Optional signals denoted with dashed lines

uart_lp_req_pclk

Modem
Sync
Block

Reset
Block

tx_ram_rd_ce_n

rx_ram_rd_ce_n

TransmitterReceiver

RS485
Block

de

rs485_en

re

https://solvnet.synopsys.com
www.designware.com

20 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Product Overview DesignWare DW_apb_uart Databook

The following list describes each of the major blocks shown in Figure 1-2:

■ Reset block – resets clock domains.

■ APB slave interface – connects to APB bus.

■ Register block – responsible for the main UART functionality including control, status and interrupt
generation.

■ Modem Synchronization block – synchronizes the modem input signal.

■ FIFO block (optional) – responsible for FIFO control and storage—when using internal RAM—or
optionally signaling to control external RAM.

■ Synchronization block (optional) – implemented when the peripheral is configured to have a
separate serial data clock (i.e. two clock implementation).

■ Timeout Detector block (optional) – indicates the absence of character data movement in the receiver
FIFO within a given time period; this is used to generate character timeout interrupts when enabled.

This block can also have optional clock gate enable outputs—uart_lp_req_pclk for single clock
implementations or uart_lp_req_pclk and uart_lp_req_sclk for two clock implementations—in order
to indicate:

❑ TX and RX pipeline is clear; that is, there is no data

❑ No activity has occurred

❑ Modem control input signals have not changed within a given time period

■ Baud Clock Generator – produces the transmitter and receiver baud clock along with the output
reference clock signal (baudout_n).

■ Serial Transmitter – converts the parallel data—written to the UART—into serial form and adds all
additional bits, as specified by the control register, for transmission. These serial data, referred to as a
character, can exit the block in two formats:

❑ Serial UART

❑ IrDA 1.0 SIR

■ Serial Receiver – converts the serial data character—specified by the control register—received in
either the UART or IrDA 1.0 SIR format to parallel form. This block controls:

❑ Parity error detection

❑ Framing error detection

❑ Line break detection

■ RS485 block (optional) – implemented when the peripheral is configured to have an RS485 interface,
responsible for the generation of driver enable (de) and receiver enable (re) signals required by the
RS485 Transceiver.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 21SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Product Overview

1.3 Features
■ AMBA APB interface allows integration into AMBA SoC implementations

■ 9-bit serial data support

■ False start bit detection

■ Programmable fractional baud rate support

■ Multi-drop RS485 interface support

■ Configurable parameters for the following:

❑ APB data bus widths of 8, 16 and 32

❑ Additional DMA interface signals for compatibility with DesignWare DMA interface

❑ DMA interface signal polarity

❑ Transmit and receive FIFO depths of 0, 16, 32, 64, 128, 256, 512, 1024, 2048

❑ Internal or external FIFO (RAM) selection

❑ Use of two clocks—pclk and sclk—instead of just pclk

❑ IrDA 1.0 SIR mode support with up to 115.2 Kbaud data rate and a pulse duration (width) as
specified in the IrDA physical layer specification:

width = 3/16 × bit period

❑ IrDA 1.0 SIR low-power reception capabilities

❑ Baud clock reference output signal

❑ Clock gate enable outputs used to indicate that the TX and RX pipeline is clear (no data) and no
activity has occurred for more than one character time, so that clocks can be gated

❑ FIFO access mode—for FIFO testing—enabling the master to write to the receive FIFO and read
from the transmit FIFO

❑ Additional FIFO status registers

❑ Shadow registers to reduce software overhead and also include a software programmable reset

❑ Auto Flow Control mode, as specified in the 16750 standard

❑ Loopback mode that enables greater testing of Modem Control and Auto Flow Control features
(Loopback support in IrDA SIR mode is available)

❑ Transmitter Holding Register Empty (THRE) interrupt mode

❑ Busy functionality

■ Ability to set some configuration parameters during instantiation

■ Configuration identification registers present

https://solvnet.synopsys.com
www.designware.com

22 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Product Overview DesignWare DW_apb_uart Databook

■ Functionality based on the 16550 industry standard

❑ Programmable character properties, such as:

■ Number of data bits per character (5-8)
■ Optional parity bit (with odd, even select or Stick Parity)
■ Number of stop bits (1, 1.5 or 2)

❑ Line break generation and detection

❑ DMA signaling with two programmable modes

❑ Prioritized interrupt identification

■ Programmable FIFO enable/disable

■ Programmable serial data baud rate as calculated by the following:

baud rate = (serial clock frequency)/(16×divisor)

■ External read enable signal for RAM wake-up when using external RAMs

■ Modem and status lines are independently controlled

■ Separate system resets for each clock domain to prevent metastability

■ Complete RTL version

1.4 Standards Compliance
The DW_apb_uart component conforms to the AMBA Specification, Revision 2.0 from Arm®. Readers are
assumed to be familiar with this specification.

1.5 Speed and Clock Requirements
The DW_apb_uart has been synthesized and simulated with a pclk of 166 Mhz in 28nm technology. It meets
timing requirements at these speeds. The sclk signal is set to 25 MHz with a baud divisor of 1 to give a max
baud rate of just over 1.5 M. This is the baud rate referred to in the National 16550 specification.

1.6 Verification Environment Overview
The DW_apb_uart is put through a verification process which utilizes constrained randomized testing (or
CRT). This process is divided into several “groups” – for testing of the DW_apb_uart’s hardware associated
with the transmit, receive, loopback and debug. Under normal verification runs, the test group selected is
randomly chosen for a given DW_apb_uart hardware configuration, although some amount of user-
controlled selection is possible.

NoteNoteNoteNote Information on the DW_apb_uart component in this databook assumes that the reader is fully
familiar with the National Semiconductor 16550 (UART) component specification.
Information provided on IrDA SIR mode assumes that the reader is fully familiar with the IrDa
Serial Infrared Physical Layer Specification. This specification can be obtained from the
following website:
http://www.irda.org

http://www.irda.org
https://solvnet.synopsys.com
http://www.arm.com/products/solutions/AMBA_Spec.html
www.designware.com

Synopsys, Inc. 23SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Product Overview

Under each group of tests, two more levels of randomization of the test stimulus are applied – one at the
higher “system” level associated with nature of the test chosen, and one at the “parametric” level associated
with the DW_apb_uart’s registers. In doing so, control and/or intervention of/in the verification process
and scope by the user is reduced to a minimum.

The “system” level of randomization ensures that the DW_apb_uart is, for example, injected with a varying
number of characters of arbitrary contents, as well as the type and number of character corruptions applied.

The “parametric” level of randomization applied to the DW_apb_uart ensures that the DW_apb_uart’s
hardware is programmed as arbitrarily as possible; for example, the line settings for the characters
exchanged during simulations, the varying patterns for the interrupt enables, as well as the various
transmit/receive trigger thresholds.

Once the required set of randomized “system” and “parametric” variables are obtained, three separate
groups of testcode are kicked off concurrently – one for the generating of the stimulus for the DW_apb_uart
and supporting models; one for the overall environment support, such as scoreboarding, messaging, signal
transition detections, and so on; and lastly, one for the checkers.

To support the serial exchanges of characters, in both the IrDA and normal transfer modes, VERA models in
the SIO VIP are used. Two instances of both the SIOTxrx and the SIOMonitor models assist in verifying that
the DW_apb_uart’s hardware functionalities.

To support DMA-controlled transfers to and from the DW_apb_uart, an instance of a AHB DMA BFM is
also included. This acts as an independent AHB master issuing AHB transfer commands separately from
the AHB master model used to control the DW_apb_uart.

1.7 Licenses
Before you begin using the DW_apb_uart, you must have a valid license. For more information, see
“Licenses” in the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI Installation Guide.

1.8 Where To Go From Here
At this point, you may want to get started working with the DW_apb_uart component within a subsystem
or by itself. Synopsys provides several tools within its coreTools suite of products for the purposes of
configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

For more information about configuring, synthesizing, and verifying just your DW_apb_uart component,
see section “Overview of the coreConsultant Configuration and Integration Process” in DesignWare
Synthesizable Components for AMBA 2 User Guide.

For more information about implementing your DW_apb_uart component within a DesignWare subsystem
using coreAssembler, see section “Overview of the coreAssembler Configuration and Integration Process”
in DesignWare Synthesizable Components for AMBA 2 User Guide.

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Product Overview DesignWare DW_apb_uart Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

2
Functional Description

This chapter describes the functional operation of the DW_apb_uart. This chapter includes the following
topics:

■ “UART (RS232) Serial Protocol” on page 25

■ “9-bit Data Transfer” on page 27

■ “RS485 Serial Protocol” on page 31

■ “Fractional Baud Rate Support” on page 38

■ “IrDA 1.0 SIR Protocol” on page 42

■ “FIFO Support” on page 44

■ “Clock Support” on page 45

■ “Back-to-Back Character Stream Transmission” on page 48

■ “Interrupts” on page 50

■ “Auto Flow Control” on page 52

■ “Programmable THRE Interrupt” on page 56

■ “Clock Gate Enable” on page 58

■ “DMA Support” on page 60

■ “Reset Signals” on page 74

■ “APB Interface” on page 75

2.1 UART (RS232) Serial Protocol
Because the serial communication between the DW_apb_uart and a selected device is asynchronous,
additional bits (start and stop) are added to the serial data to indicate the beginning and end. Utilizing these

https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

bits allows two devices to be synchronized. This structure of serial data—accompanied by start and stop
bits—is referred to as a character, as shown in Figure 2-1.

Figure 2-1 Serial Data Format

An additional parity bit can be added to the serial character. This bit appears after the last data bit and
before the stop bits in the character structure in order to provide the DW_apb_uart with the ability to
perform simple error checking on the received data.

The DW_apb_uart Line Control Register (section “LCR” in “Register Descriptions” on page 113) is used to
control the serial character characteristics. The individual bits of the data word are sent after the start bit,
starting with the least-significant bit (LSB). These are followed by the optional parity bit, followed by the
stop bits, which can be 1, 1.5, or 2.

All the bits in the transmission are transmitted for exactly the same time duration; the exception to this is the
half-stop bit when 1.5 stop bits are used. This duration is referred to as a Bit Period or Bit Time; one Bit Time
equals sixteen baud clocks.

To ensure stability on the line, the receiver samples the serial input data at approximately the midpoint of
the Bit Time once the start bit has been detected. Because the exact number of baud clocks is known for
which each bit is transmitted, calculating the midpoint for sampling is not difficult; that is, every sixteen
baud clocks after the midpoint sample of the start bit.

Together with serial input debouncing, this sampling helps to avoid the detection of false start bits. Short
glitches are filtered out by debouncing, and no transition is detected on the line. If a glitch is wide enough to
avoid filtering by debouncing, a falling edge is detected. However, a start bit is detected only if the line is
again sampled low after half a bit time has elapsed.

NoteNoteNoteNote The STOP bit duration implemented by DW_apb_uart can appear longer due to:

■ Idle time inserted between characters for some configurations

■ Baud clock divisor values in the transmit direction

For details on idle time between transmitted transfers, see “Back-to-Back Character Stream
Transmission” on page 48.

Serial Data Start

One Character

Stop

Bit Time

Data bits 5 - 8 Parity 1, 1.5, 2

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Figure 2-2 shows the sampling points of the first two bits in a serial character.

Figure 2-2 Receiver Serial Data Sample Points

As part of the 16550 standard, an optional baud clock reference output signal (baudout_n) provides timing
information to receiving devices that require it. The baud rate of the DW_apb_uart is controlled by the serial
clock—sclk or pclk in a single clock implementation—and the Divisor Latch Register (DLH and DLL).

Figure 2-3 shows the timing diagram for the baudout_n output for different divisor values.

Figure 2-3 Baud Clock Reference Timing Diagram

2.2 9-bit Data Transfer
The DW_apb_uart can be configured to have 9-bit data transfer in both transmit and receive mode. The 9th
bit in the character appears after the 8th bit and before the parity bit in the character. Figure 2-4 shows the
serial transmission for a character in which D8 represents the 9th bit and also shows general serial
transmission in the 9-bit mode.

Serial Data In Start

8

Data Bit 0 (LSB) Data Bit 1

16 16

sclk

baudout_n (divisor of 1)

baudout_n (divisor of 2)

baudout_n (divisor of 3)

baudout_n (divisor > 3)

2 clock cycles (N−2) clock cycles

N (divisor)

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

Figure 2-4 9-Bit Character

By enabling 9-bit data transfer mode, DW_apb_uart can be used in multi-drop systems where one master is
connected to multiple slaves in a system. The master communicates with one of the slaves. When the master
wants to transfer a block of data to a slave, it first sends an address byte to identify the target slave.

The differentiation between the address/data byte is done based on the 9th bit in the incoming character. If
the 9th bit is set to 0, then the character represents a data byte. If the 9th bit is set to 1, then the character
represents address byte. All the slave systems compare the address byte with their own address and only
the target slave (in which the address has matched) is enabled to receive data from the master. The master
then starts transmitting data bytes to the target slave. The non-addressed slave systems ignore the incoming
data until a new address byte is received.

In Figure 2-4, note that one address is followed by 2 data bytes. The address byte goes out with the 9th bit
(D8) set to 1 and the data bytes go out with 9th bit (D8) set to 0. The parity bit is an optional field.

Configuration of the DW_apb_uart for 9-bit data transfer does the following:

■ LCR_EXT[0] bit is used to enable or disable the 9-bit data transfer.

■ LCR_EXT[1] bit is used to choose between hardware and software based address match in the case of
receive.

■ LCR_EXT[2] bit is used to enable to send the address in the case of transmit.

■ LCR_EXT[3] bit is used to choose between hardware and software based address transmission.

■ TAR and RAR registers are used to transmit address and to match the received address, respectively.

■ THR, RBR, STHR and SRBR registers are of 9-bit which is used to do the data transfers in 9-bit mode.

■ LSR[8] bit is used to indicate the address received interrupt.

2.2.1 Transmit Mode

DW_apb_uart supports two types of transmit modes:

■ Transmit Mode 0 (when (LCR_EXT[3]) is set to 0)

NoteNoteNoteNote The 9-bit data mode is supported only when the DWC-APB-Advanced-Source
source license exists.

D0 to D7 D8START Parity STOP

sout/sin

D0 to
D7 D8STAR

T
Parit

y
STO

P
D0 to

D7 D8STAR
T

Parit
y

STO
PIDLE D0 to

D7 D8STAR
T

Parit
y

STO
PIDLE

=1 =0 =0

Address Byte with 9-th bit set to
1 Data Byte with 9-th bit set to 0 Data Byte with 9-th bit set to 0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

■ Transmit Mode 1 (when (LCR_EXT[3]) is set to 1)

2.2.1.1 Transmit Mode 0

In transmit mode 0, the address is programmed in the Transmit Address Register (TAR) register and data is
written into the Transmit Holding Register (THR) or the Shadow Transmit Holding Register (STHR). The
9th bit of the THR and STHR register is not applicable in this mode.

Figure 2-5 illustrates the transmission of address and data based on SEND_ADDR (LCR_EXT[2]), Halt Tx,
and TxFIFO/THR empty conditions.

Figure 2-5 Auto Address Transmit Flow Chart

The address of the target slave to which the data is to be transmitted is programmed in the TAR register.
You must enable the SEND_ADDR (LCR_EXT[2]) bit to transmit the target slave address present in the TAR
register on the serial UART line with 9th data bit set to 1 to indicate that the address is being sent to the
slave. The DW_apb_uart clears the SEND_ADDR bit after the address character starts transmitting on the
UART line.

The data required to transmit to the target slave is programmed through Transmit Holding Register (THR).
The data is transmitted on the UART line with 9th data bit set to 0 to indicate data is being sent to the slave.

If the application is required to fill the data bytes in the TxFIFO before sending the address on the UART
line (before setting LCR_EXT[2]=1), then it is recommended to set the “Halt Tx” to 1 such that DW_apb_uart
does not start sending out the data in the TxFIFO as data byte. Once the TxFIFO is filled, then program
SEND_ADDR (LCR_EXT[2]) to 1 and then set "Halt Tx" to 0.

2.2.1.2 Transmit Mode 1

In transmit mode 1, THR and STHR registers are of 9-bit wide and both address and data are programmed
through the THR and STHR registers. The DW_apb_uart does not differentiate between address and data,
and both are taken from the TxFIFO. The SEND_ADDR (LCR_EXT[2]) bit and Transmit address register

SEND_ADDR=1
Yes

No

TxFIFO/THR

Halt Tx=1

No

empty=1

Yes

Yes

No

Transmit 8-bit data from
TxFIFO/THR with 9th bit

set to 0

Transmit 8-bit address
from TAR register with 9th

bit set to 1

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

(TAR) are not applicable in this mode. The software must pack the 9th bit with 1/0 depending on whether
address/data has to be sent.

2.2.2 Receive Mode

The DW_apb_uart supports two receive modes:

■ Hardware Address Match Receive Mode (when ADDR_MATCH (LCR_EXT[1]) is set to 1)

■ Software Address Match Receive Mode (when ADDR_MATCH (LCR_EXT[1]) is set to 0)

2.2.2.1 Hardware Address Match Receive Mode

In the hardware address match receive mode, the DW_apb_uart matches the received character with the
address programmed in the Receive Address register (RAR), if the 9th bit of the received character is set to 1.
If the received address is matched with the programmed address in RAR register, then subsequent data
bytes (with 9th bit set to 0) are pushed into the RxFIFO. If the address matching fails, then DW_apb_uart
controller discards further data characters until a matching address is received.

Figure 2-6 illustrates the flow chart for the reception of data bytes based on the address matching feature.

Figure 2-6 Hardware Address Match Receive Mode

DW_apb_uart receives the character irrespective of whether the 9th bit data is set to 1. If 9th bit of the
received character is set to 1, then it clears internal address match flag and then compares the received 8-bit
character information with the address programmed in the RAR register.

Receive character on
the UART line

Is 9th bit data

Yes

No

Clear Address
Match Flag

Is received
data[7:0]

Yes

No

PE/FE occurred?
Yes

Yes

No

Yes

Set address match
flag

Push the received
character into RxFIFO

set to 1?

= RAR?

Break character
detected?

Is address
matching flag
set to 1?

No

No

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

If the received address character matches with the address programmed in the RAR register, then the
address match flag is set to 1 and the received character is pushed to the RxFIFO in FIFO-mode or to RBR
register in non-FIFO mode and the ADDR_RCVD bit in LSR register is set to indicate that the address has
been received.

In case of parity or if a framing error is found in the received address character and if the address is not
matched with the RAR register, then the received address character is still pushed to RxFIFO or RBR
register with ADDR_RCVD and PE/FE error bit set to 1.

The subsequent data bytes (9th bit of received character is set to 0) are pushed to the Rx_FIFO in FIFO mode
or to the RBR register in non-FIFO mode until the new address character is received.

If any break character is received, DW_apb_uart treats it as a special character and pushes to the RxFIFO or
RBR register based on the FIFO_MODE irrespective of address match flag.

2.2.2.2 Software Address Match Receive Mode

In this mode of operation, the DW_apb_uart does not perform the address matching for the received
address character (9th bit data set to 1) with the RAR register. The DW_apb_uart always receives the 9-bit
data and pushes in to RxFIFO in FIFO mode or to the RBR register in non-FIFO mode. The user must
compare the address whenever address byte is received and indicated through ADDR_RCVD bit in the Line
Status register. The user can flush/reset the RxFIFO in case of address not matched through 'RCVR FIFO
Reset' bit in FIFO control register (FCR).

2.3 RS485 Serial Protocol
The RS485 standard supports serial communication over a twisted pair configuration, such as RS232. The
difference between the RS232 and RS485 standards is its use of a balanced line for transmission. This usage
is also known as the differential format that sends the same signal on two separate lines with phase delay
and then compares the signals at the end, subtracts any noise, and adds them to regain signal strength. This
process allows the RS485 standard to be viable over significantly longer distances than its short range RS232
counterpart.

DW_apb_uart supports the RS485 serial protocol that enables transfer of serial data using the RS485
interface. The driver enable (DE) and receiver enable (RE) signals are generated for enabling the RS485
interface support. The de and re signals are hardware generated and the assertion/de-assertion times for
these signals are programmable. The active level of these signals are configurable.

Configuration of the DW_apb_uart for RS485 interface does the following:

1. Bit 0 of the Transceiver Control Register (TCR) enables or disables the RS485 mode.

2. Bit 1 and bit 2 of TCR are used to select the polarity of RE and DE signals.

3. Bit [4:3] of the TCR selects the type of transfer in RS485 mode.

4. Driver output enable (DE_EN) and Receiver output enable (RE_EN) registers are used for software
control of DE and RE signals.

NoteNoteNoteNote The break character can be used to alert the complete system in case all slaves are in
sleep mode (entered in to the low power mode). Therefore, the break character is
treated as special character.

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

5. Driver output Enable Timing (DET) register is used to program the assertion and deassertion timings
of DE signal.

6. TurnAround Timing (TAT) register is used to program the turnaround time from DE to RE and RE to
DE.

2.3.1 DE Assertion and De-assertion Timing

The assertion and deassertion timings of the DE signal are controlled through the DET register:

■ DE assertion time (DET[7:0]): The assertion time is the time between the activation of the DE signal
and the beginning of the START bit. The value represented is in terms of serial clock cycles.

■ DE de-assertion time (DET[15:8]): The de-assertion time is the time between the end of the last stop
bit, in a transmitted character, and the de-activation of the DE signal. The value represented is in
terms of serial clock cycles.

Hardware ensures that these values are met for DE assertion and DE deassertion before/after active data
transmission.

In Figure 2-7, t1 represents DE assertion time and t2 represents DE de-assertion time. Note that for
simplicity only one data is illustrated in Figure 2-7; however, DE does not get de-asserted if there are more
data characters in transmit FIFO. DE gets de-asserted only after all the data characters are transmitted.

Figure 2-7 DE Assertion and De-Assertion

2.3.2 RS485 Modes

DW_apb_uart consists of the following RS485 modes based on the XFER_MODE field in the Transceiver
Control Register (TCR) register:

■ Full Duplex Mode – In this mode, XFER_MODE of TCR is set to 0.

■ Software-Controlled Half Duplex Mode – In this mode, XFER_MODE of TCR is set to 1.

■ Hardware-Controlled Half Duplex Mode – In this mode, XFER_MODE of TCR is set to 2

2.3.2.1 Full Duplex Mode

The full duplex mode supports both transmit and receive transfers simultaneously.

NoteNoteNoteNote RS485 interface mode is supported only when the source license DWC-APB-Advanced-
Source exists.

Serial Data (sout)

Driver Output Enable (de)

Data bits 5-8 Parity Stop
t2t1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

In Full Duplex mode, the de signal:

■ Goes active if both these conditions are satisfied:

❑ When the DE Enable (DE_EN[0]) field of Driver Output Enable Register is set to 1.

❑ Transmitter Holding Register is not empty in non-FIFO mode or transmitter FIFO is not empty in
FIFO mode.

■ Goes inactive if both these conditions are satisfied

❑ When the current ongoing transmitting serial transfer is completed.

❑ Either DE Enable (DE_EN[0]) of Driver Output Enable Register is set to 0, transmitter FIFO is
empty in FIFO mode or Transmitter Holding Register is empty in non-FIFO mode.

In Full Duplex mode, the re signal:

■ Goes active when RE Enable (RE_EN[0]) of Receiver Output Enable Register is set to 1.

■ Goes inactive when RE Enable (RE_EN[0]) of Receiver Output Enable Register is set to 0.

The user can choose when to transmit or when to receive. Both 're' and 'de' can be simultaneously asserted
or de-asserted at any time. DW_apb_uart does not impose any turnaround time between transmit and
receive ('de to re') or receive to transmit ('re to de') in this mode. This mode can directly be used in full
duplex operation where separate differential pair of wires is present for transmit and receive.

2.3.2.2 Software-Controlled Half Duplex Mode

The software-controlled half duplex mode supports either transmit or receive transfers at a time but not
both simultaneously. The switching between transmit to receive or receive to transmit is through
programming the Driver output enable (DE_EN) and Receiver output enable (RE_EN) registers.

In software-controlled Half Duplex mode, the de signal:

■ Goes active if the following conditions are satisfied:

❑ The DE Enable (DE_EN[0]) field of the Driver Output Enable Register is set to 1.

❑ Transmitter Holding Register is not empty in non-FIFO mode or transmitter FIFO is not empty in
FIFO mode.

❑ If any receive transfer is ongoing, then the signal waits until receive has finished, and after the
turnaround time counter ('re to de') has elapsed.

■ Goes inactive if the following conditions are satisfied:

❑ The current ongoing transmitting serial transfer is completed.

❑ The DE Enable (DE_EN[0]) field of Driver Output Enable Register is set to 0.

❑ Either transmitter FIFO is empty in FIFO mode or Transmitter Holding Register is empty in non-
FIFO mode.

In software-controlled half duplex mode, the re signal:

■ Goes active if the following conditions are satisfied:

❑ When RE Enable (RE_EN[0]) field of Receiver Output Enable Register is set to 1.

https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

❑ If any transmit transfer is ongoing, then the signal waits until transmit has finished and after the
turnaround time counter ('de to re') has elapsed.

■ Goes in-active under the following conditions:

❑ The current ongoing receive serial transfer is completed.

❑ When RE Enable (RE_EN[0]) of Receiver Output Enable Register is set to 0.

The user must enable either DE or RE but not both at any point of time. As 're' and 'de' signals are mutually
exclusive, the user must ensure that both of them are not programmed to be active at any point of time.

In this mode, the hardware ensures that a proper turnaround time is maintained while switching from 're' to
'de' or from 'de' to 're' (value of turnaround is obtained from the TAT register, in terms of serial clock cycles)
as shown in Figure 2-8 and Figure 2-9.

2.3.2.2.1 RE to DE Turnaround Time

DW_apb_uart inserts the wait state (as programmed in TAT[31:16] times serial clock) before switching to
transmit mode from receive mode as shown in the Figure 2-8 (applicable only when TCR[4:3] =1 or 2
(XFER_MODE).)

Figure 2-8 RE to DE Turnaround Time

2.3.2.3 DE to RE Turnaround Time

DW_apb_uart inserts the wait state (as programmed in TAT[15:0] times serial clock) before switching to
receive mode from transmit mode as shown in the Figure 2-9 (applicable only when TCR[4:3] =1 or 2
(XFER_MODE).)

DE_EN

RE_EN

de

sout

re

sin

DATA TX

DATA RX

RE to DE turnaround time

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Figure 2-9 DE to RE Turnaround Time

2.3.2.4 Hardware-Controlled Half Duplex Mode

The hardware-controlled half duplex mode supports either transmit or receive transfers at a time but not
both simultaneously. If both 'DE Enable' and 'RE Enable' bits of Driver output enable (DE_EN) and Receiver
output enable (RE_EN) registers are enabled, the switching between transmit to receive or receive to
transmit is automatically done by the hardware based on the empty condition of Tx-FIFO.

In hardware-controlled half duplex mode, the de signal:

■ Goes active if the following conditions are satisfied:

❑ The DE Enable (DE_EN[0]) field of Driver Output Enable Register is set to 1.

❑ Transmitter Holding Register is not empty in non-FIFO mode or transmitter FIFO is not empty in
FIFO mode.

❑ If any receive transfer is ongoing, then the signal waits until receive is finished and after the
turnaround time counter ('re to de') has elapsed.

■ Goes inactive if the following conditions are satisfied

❑ The current ongoing transmitting serial transfer is completed.

❑ Either transmitter FIFO is empty in FIFO mode or Transmitter Holding Register is empty in non-
FIFO mode or the DE Enable (DE_EN[0]) of Driver output Enable Register is set to 0.

In hardware-controlled half duplex mode, the re signal:

■ Goes active if the following conditions are satisfied:

❑ When RE Enable (RE_EN[0]) field of Receiver Output Enable Register is set to 1.

❑ Either transmitter FIFO is empty in FIFO mode or Transmitter Holding Register is empty in non-
FIFO mode.

❑ If any transmit transfer is ongoing, then the signal waits until transmit is finished and after the
turnaround time counter ('de to re') has elapsed.

■ Goes inactive under the following conditions:

DE_EN

RE_EN

de

sout

re

sin

DATA TX 1

DATA RX

DE to RE turnaround time

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

❑ The current ongoing receive serial transfer has completed.

❑ Either transmitter FIFO is non-empty in FIFO mode or Transmitter Holding Register is non
empty in non-FIFO mode or the RE Enable (RE_EN[0]) of Receiver output Enable Register is set to
0.

In this mode, the hardware ensures that a proper turnaround time is maintained while switching from 're' to
'de' or from 'de' to 're' (value of turnaround is obtained from the TAT register, in terms of serial clock cycles)
as shown in Figure 2-8 and Figure 2-9.

2.3.3 Sample Scenarios

Consider a scenario in which the DW_apb_uart controller is receiving 3 characters and another UART
device is sending those characters. While the 1st character is being received by the DW_apb_uart controller,
if the software writes into the TX FIFO of the DW_apb_uart controller, then at the end of the first character
DW_apb_uart controller switches the mode from receive to transmit. DW_apb_uart de-asserts 're' and assert
'de' signal. This makes the DW_apb_uart controller not to receive the subsequent characters. Hence, in
hardware switching half duplex mode, the user has to ensure that complete receive data has been received
before writing in to the Tx-FIFO to avoid missing of receive characters.

Following sections explain the behavior of DW_apb_uart in XFER_MODE=2 for different scenarios.

2.3.3.1 Normal Scenario of Transmission

Figure 2-10 is a sample scenario for normal transmission.

Figure 2-10 Scenario When XFER_MODE=2

Figure 2-10 shows the following activities at various points in this scenario:

1. At this point, reset is removed, and de and re signals are driven to their configured reset values
(UART_DE_POL/UART_RE_POL).

2. At this point, the software programs DE_EN and RE_EN register to 1. At this point in time,
tx_fifo_empty * is 1 indicating that there is no data in TX FIFO. Hence, the 'de' signal remains de-
asserted and 're' gets asserted.

* tx_fifo_empty is internal signal of DW_apb_uart

s_rst_n

de

sout

re

sin

tx_fifo_empty

sclk

1

2

3 4

5

re_to_de TAT
de assertion time de de-assertion time

de_to_re TAT

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

3. At this point, the software fills the TX FIFO and there is no ongoing Receive transfer. Therefore, the
‘re' signal goes low. However, the DW_apb_uart controller waits until 're_to_de' TAT value before
asserting 'de' signal. After the 'de' gets asserted, the transmission of character starts considering the
'de-asserting timing'.

4. At this point, TX FIFO becomes empty. After transmitting the current character, DW_apb_uart de-
asserts the 'de' signal (after de de-assertion time). DW_apb_uart controller waits until 'de_to_re' TAT
values before asserting 're' signal back.

5. At this point, DW_apb_uart controller starts receiving the character.

2.3.3.2 Scenario When Receive is in Progress While TX FIFO is Being Filled

In this scenario, TX FIFO is filled when a character is being received. In this case, DW_apb_uart is expected
to wait till the current character is finished before changing the role and start transmitting.

Figure 2-11 Receive in Progress, When TX FIFO is Filled

Figure 2-11 shows the following activities at various points in this scenario:

1. The software programs DE_EN and RE_EN to 1, thereby asserting the 're' signal. After this, the
DW_apb_uart controller starts receiving the character.

2. The software programs TX FIFO thereby making 'tx_fifo_empty' to go low. However, the
DW_apb_uart controller waits until the current character is received before asserting the 'de' signal.

3. The incoming character is fully received.

4. The 're' signal gets de-asserted, after the STOP bit is fully received.

5. After the 're_to_de' TAT, the 'de' signal gets asserted and the DW_apb_uart controller starts
transmitting after DET timings.

2.3.3.3 TX FIFO Filled Before Enabling DE_EN and RE_EN Registers

In this case, TX FIFO is filled prior to enabling DE_EN or RE_EN. The DW_apb_uart controller enables the
'de' instead of 're' in this case because TX FIFO already has the data to transmit.

de

sout

re

sin

tx_fifo_empty

sclk

1

2

3

4

5

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

Figure 2-12 TX FIFO is Filled Before Enabling DE/RE

Figure 2-12 shows the following activities at various points in this scenario:

1. The software programs the TX FIFO thereby making 'tx_fifo_empty' signal to go low.

2. The software programs 'DE_EN' and 'RE_EN' to 1. As the data is already present in the TX FIFO,
DW_apb_uart controller asserts the 'de' signal. DW_apb_uart stars sending the character after the
DET timings.

3. TX FIFO becomes empty.

4. The 'de' signal gets de-asserted after the DET timing. After 'de_to_re' TAT, 're' signal gets asserted.

5. DW_apb_uart controller starts receiving the incoming character.

2.4 Fractional Baud Rate Support
DW_apb_uart supports fractional baud rate that enables a user to program the fractional part of the divisor
value to generate fractional baud rate that results in reduced frequency error. The UART interface usage has
been evolving to include ever increasing baud rate speeds. The DW_apb_uart needs to be software
configurable to handle the baud rates within 2% frequency error.

The Baud rate of DW_apb_uart is controlled by sclk in asynchronous serial clock (CLOCK_MODE=2)
implementation or pclk in single clock implementation (CLOCK_MODE=1) and the Divisor Latch Register
(DLH and DLL).

The baud rate is determined by the following factors:

■ Serial clock operating frequency (sclk in Asynchronous serial clock implementation or pclk in single
clock implementation)

■ The desired baud rate.

■ The baud rate generator divisor value, DIVISOR (composed of DLH & DLL registers).

■ The acceptable Baud-rate error, %ERROR

The equation to calculate the baud rate is as follows:

de

sout

re

sin

tx_fifo_empty

sclk

1

2

3

4

5

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Where,

DIVISOR – Number (in hexadecimal) to program the DLL and DLH.

Serial clock frequency – Frequency at sclk or pclk pin of DW_apb_uart.

From Equation (1), DIVISOR can be calculated as:

Also from Equation (1), it can also be shown that:

The Error between the Baud rate and Baud rate (selected) is given as:

Configuration of the DW_apb_uart for Fractional Baud Rate does the following:

■ The configurable parameter DLF_SIZE is used to choose the width of the register that stores
fractional part of the divisor.

■ The fractional value of the divisor is programmed in the Divisor Latch Fraction Register (DLF)
register. The fractional value is computed by using the (Divisor Fraction value)/(2^DLF_SIZE)
formula. Table 2-1 shows fractional values when the DLF_SIZE=4.

Table 2-1 Divisor Latch Fractional Values

NoteNoteNoteNote Fractional Baud rate is supported only when the source license DWC-APB-Advanced-Source
exists.

DLF Value Fraction Fractional Value

0000 0/16 0.0000

0001 1/16 0.0625

0010 2/16 0.125

0011 3/16 0.1875

0100 4/16 0.25

0101 5/16 0.3125

0110 6/16 0.375

Baud Rate = Serial Clock Operating Frequency(16 × DIVISOR) (1)

DIVISOR = Serial Clock Operating Frequency(16 × Baud Rate) (2)
Serial clock frequency = Baud Rate × 16 × DIVISOR (3)
Percentage ERROR = |Baud Rate - Baud Rate (selected)|Baud Rate × 100 (4)

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

The programmable fractional baud rate divisor enables a finer resolution of baud clock than the
conventional integer divider. The programmable fractional baud clock divider allows for the
programmability of both an integer divisor as well as fractional component. The average frequency of the
baud clock from the fractional baud rate divisor is dependent upon both the integer divisor and the
fractional component, thereby providing a finer resolution to the average frequency of the baud clock.

Where,

BRDI - Integer part of the divisor.

BRDF - Fractional part of the divisor.

2.4.1 Fractional Division Used to Generate Baud Clock

Fractional division of clock is used by the N/N+1 divider, where N is the integer part of the divisor. N/N+1
division works on the basis of achieving the required average timing over a long period by alternating the
division between two numbers. If N=1 and ratio of N/N+1 is same, which means equal number of divide by
1 and divide by 2 over a period of time, average time period would come out to be divided by 1.5. Varying
the ratio of N/N+1 any value can be achieved above 1 and below 2.

2.4.2 Calculating the Fractional Value Error

Following is a sample for calculating the fractional value error.

Consider the following values:

■ Required Baud Rate (RBR) = 4454400

■ Serial Clock (SCLK) = 133MHz

■ DLF_SIZE = 4

0111 7/16 0.4375

1000 8/16 0.5

1001 9/16 0.5625

1010 10/16 0.625

1011 11/16 0.6875

1100 12/16 0.75

1101 13/16 0.8125

1110 14/16 0.875

1111 15/16 0.9375

DLF Value Fraction Fractional Value

Baud Rate Divisor = Serial Clock Frequency(16 × Required Baud Rate) = BRDI + BRDF (5)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Then, as per equation (5), Baud Rate Divisor (BRD) is as follows:

In (6), the integer and fractional parts are as follows:

■ Integer part (BRDI) = 1

■ Fractional part (BRDF) = 0.866132364

Therefore, Baud Rate Divisor Latch Fractional Value (DLF) is as follows:

The Generated Baud Rate Divider (GD) is as follows:

Therefore, the Generated Baud Rate (GBR) is as follows:

Now the error is calculated as follows:

The error percentage is as follows:

2.4.2.1 Timing Waveforms

If serial clock is 25 MHz and Baud rate required = 892857, divisor comes out to be 1.75. Without a fractional
division a value of 1 or 2 results in baud rate of 1562500 or 781250 which is more than 2% frequency error.
However, if you divide 12 clocks by 2 and then 4 clocks by 1, over an average period of 16 clocks you
achieve division by 1.75. Using this divisor baud rate of 892857 can be achieved.

As shown in the Figure 2-13, the fractional baud clock is generated between N(1) and N+1(2) values to
generate the fractional baud rate of 1.75 to achieve the divisor baud rate of 892857 with 0% frequency error
compared to 12.49% frequency error in integer baud clock generator.

BRD = 13316 × 4454400 = 1.866132364 (6)

DLF = BRDF × 2DLF _SIZE = 0.866132364 × 16 = 13.858117824 = 14 (roundoff value) (7)
GD = BRDI + DLF2DLF _SIZE = 1 + 1416 = 1.875 (8)
GBR = Serial Clock(16 × GD) = 13316 × 1.875 = 4433333.333 (9)

Error = GBR - RBRRBR = 0.004729 (11)
Error % = 0.004729 × 100 = 0.473 (12)

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

Figure 2-13 Example of Integer and Fractional Division Over 16 Clock Periods

2.5 IrDA 1.0 SIR Protocol
The Infrared Data Association (IrDA) 1.0 Serial Infrared (SIR) mode supports bi-directional data
communications with remote devices using infrared radiation as the transmission medium. IrDA 1.0 SIR
mode specifies a maximum baud rate of 115.2 Kbaud.

The data format is similar to the standard serial—sout and sin—data format. Each data character is sent
serially in this order:

1. Begins with a start bit

2. Followed by 8 data bits

3. Ends with at least one stop bit

Thus, the number of data bits that can be sent is fixed. No parity information can be supplied, and only one
stop bit is used in this mode. Trying to adjust the number of data bits sent or enable parity with the Line
Control Register (LCR) has no effect.

Configuration of the DW_apb_uart for IrDA 1.0 SIR does the following:

■ Bit 6 of the Mode Control Register (MCR) enables or disables the IrDA 1.0 SIR mode.

■ Disabling IrDA SIR mode causes the logic to not be implemented; the mode cannot be activated,
which reduces total gate counts.

■ When IrDA SIR mode is enabled and active, serial data is transmitted and received on the sir_out_n
and sir_in ports, respectively.

Attention
Information provided on IrDA SIR mode in this section assumes that the reader is fully
familiar with the IrDa Serial Infrared Physical Layer Specifications. This specification can
be obtained from the following website:
http://www.irda.org

baudout_n

Divisor value

baudout_n

sclk
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Divisor value

1

Integer Divisor 2

12 Fractional Divisor 1

Average over 16 baud clock is sclk divided by 2
32/16=2

Average over 16 baud clock is sclk divided by 1.75
28/16=1.75

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

http://www.irda.org
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Transmission or non-transmission of a single infrared pulse indicates the following:

■ Transmitting a single infrared pulse indicates logic 0

■ Non-transmission of a pulse indicates logic 1

The width of each pulse is 3/16ths of a normal serial bit time. Thus, each new character begins with an
infrared pulse for the start bit. However, received data is inverted from transmitted data due to infrared
pulses energizing the photo transistor base of the IrDA receiver, which pulls its output low. This inverted
transistor output is then fed to the DW_apb_uart sir_in port, which gives it the correct UART polarity.

Figure 2-14 shows the timing diagram for the IrDA SIR data format in comparison to standard serial format.

Figure 2-14 IrDA SIR Data Format

As previously mentioned, the DW_apb_uart can be configured to support a low-power reception mode.
When the DW_apb_uart is configured in this mode, it is possible to receive SIR pulses of 1.41 microseconds
(minimum pulse duration), as well as nominal 3/16 of a normal serial bit time. In order to use this low-
power reception mode, you must program the Low Power Divisor Latch (LPDLL/LPDLH) registers.

For all sclk frequencies greater than or equal to 7.37MHz, pulses of 1.41uS are detectable; these pulses
comply with the requirements of the Low Power Divisor Latch registers. However, there are several values
of sclk that do not allow detection of such a narrow pulse, as indicated in Table 2-2.

Table 2-2 Narrow Pulse Exceptions

NoteNoteNoteNote To enable SIR mode, write the appropriate value to the MCR register before writing to the LCR
register. For details of the recommended programming sequence, see “Programing
Examples” on page 215.

SCLK Low Power Divisor Latch Register Value Min Pulse Width for Detection *

1.84MHz 1 3.77uS

3.69MHz 2 2.086uS

5.53MHz 3 1.584uS

* 10% has been added to the internal pulse width signal to cushion the effect of pulse reduction due to the
synchronization and data integrity logic so that a pulse slightly narrower than these may be detectable.

sout start

data bits

stop

bit period

bit
3/16

sir_out_n

sir_in

sin start stop

period

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

When IrDA SIR mode is enabled, the DW_apb_uart operates in a manner similar to when the mode is
disabled, with one exception: data transfers can only occur in half-duplex fashion when IrDA SIR mode is
enabled. This is because the IrDA SIR physical layer specifies a minimum of 10ms delay between
transmission and reception; this 10ms delay must be generated by software.

2.6 FIFO Support
You can configure the DW_apb_uart to implement FIFOs that buffer transmit and receive data; this is
illustrated in Figure 1-2. If FIFO support is not selected, then no FIFOs are implemented and only a single
receive data byte and transmit data byte can be stored at a time in the RBR and THR registers; this implies a
16450-compatible mode of operation. However, in this mode of operation, most of the enhanced features are
unavailable.

In FIFO mode, the FIFOs can be selected to be either of the following:

■ External customer-supplied FIFO RAMs

■ Internal DesignWare D-flip-flop-based RAMs (DW_ram_r_w_s_dff)

If the configured FIFO depth is greater than 256, the FIFO memory selection is restricted to be external.
Additionally, selecting internal memory restricts the Memory Read Port Type to D-flip-flop-based
Synchronous read port RAMs.

When external RAM support is chosen, either synchronous or asynchronous RAMs can be used.
Asynchronous RAM provides read data during the clock cycle that has the memory address and read
signals active, for sampling on the next rising clock edge. Synchronous single stage RAM registers the data
at the current address out and is not available until the next clock cycle; that is, the second rising clock edge.

Figure 2-15 shows the timing diagram for both asynchronous and synchronous RAMs.

Figure 2-15 Timing for RAM Reads

NoteNoteNoteNote This timing diagram illustrated in Figure 2-15 assumes the RAM has a chip select port that is
tied to an active value; therefore, the chip is always enabled. This is why the second
synchronous read data appears at the same cycle as the asynchronous read data; that is, the
address for the second read has been sampled along with the chip select on an earlier edge.
Once the tx_ram_re_n output enable asserts the data, the value on the register output is seen
on that same cycle.

A0 A1

D0 D1

D0 D1

 pclk

tx_ram_rd_addr

tx_ram_re_n

tx_ram_out (Async Read Port)

tx_ram_out (Sync Read Port)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Similarly, you can use synchronous RAM for writes, which registers the data at the current address out.
Figure 2-16 shows the timing diagram for RAM writes.

Figure 2-16 Timing for RAM Writes

When FIFO support is selected, an optional programmable FIFO Access mode is available for test purposes,
which allows:

■ Receive FIFO to be written by master

■ Transmit FIFO to be read by master

When FIFO Access mode is not selected, none of the corresponding logic is implemented and the mode
cannot be enabled, reducing overall gate counts.

When FIFO Access mode has been selected it can be enabled with the FIFO Access Register (FAR[0]). Once
enabled, the control portions of the transmit and receive FIFOs are reset and the FIFOs are treated as empty.

Data can be written to the transmit FIFO as normal; however no serial transmission occurs in this mode—
normal operation halted—and thus no data leave the FIFO. The data that has been written to the transmit
FIFO can be read back with the Transmit FIFO Read (TFR) register, which when read gives the current data
at the top of the transmit FIFO.

Similarly, data can be read from the receive FIFO as normal. Since the normal operation of the
DW_apb_uart is halted in this mode, data must be written to the receive FIFO so the data can be read back.

Data is written to the receive FIFO using the Receive FIFO Write (RFW) register. The upper two bits of the
10-bit register are used to write framing error and parity error detection information to the receive FIFO, as
follows:

■ RFW[9] indicates framing error

■ RFW[8] indicates parity error

Although these bits cannot be read back through the Receive Buffer Register, they can be checked by
reading the Line Status Register and checking the corresponding bits when the data in question is at the top
of the receive FIFO.

2.7 Clock Support
The DW_apb_uart can be configured to have either one system clock (pclk) or two system clocks (pclk and
sclk). The second asynchronous serial clock (sclk) accommodates accurate serial baud rate settings, as well
as APB bus interface requirements. When using a single-system clock, available system clock settings for
accurate baud rates are greatly restricted.

pclk

tx_ram_wr_addr

tx_ram_we_n

tx_ram_in Data

Addr0

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

When a two-clock design is chosen, a synchronization module is implemented for synchronization of all
control and data across the two-system clock boundaries; this is illustrated in Figure 1-1.

The RTL diagram for the data synchronization module is shown in Figure 2-17; this module can have
pending data capability.

Figure 2-17 RTL Diagram of Data Synchronization Module

The timing diagram shown in Figure 2-18 shows the data synchronization process.

Figure 2-18 Timing Diagram for Data Synchronization Module

Pending
Data

Register

Delay
Register

data_in

Data
Available
Toggle

Register

Data
Register

data_out

Busy
Register

Pending
Register

Edge
Detection

Sync
Reg.

2
Level Sync.

Edge
Detection

1
0

start

Logic

finish

Data
Register

Sync
Reg.

1

Sync
Reg.

1
Level Sync.

Sync
Reg.

2

data_rdy

Acknowledge

Data Available
Toggle

Destination ClockSource Clock

Stores the
request for
new writes
while busy
so that
pending data
can be
sync’ed once
current data
sync’ing is
complete.

Delay
Register

start

busy

pending

data_avail_togg

finish

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

The arrival of new source domain data is indicated by the assertion of start. Since data is now available for
synchronization, the process is started and busy status is set. If start is asserted while busy and pending data
capability has been selected, the new data is stored.

When no longer busy, the synchronization process starts on the stored pending data. Otherwise the busy
status is removed when the current data has been synchronized to the destination domain and the process
continues. If only one clock is implemented, all synchronization logic is absent and signals are simply
passed through this module.

There are two types of signal synchronization:

■ Data-synchronized signals – full synchronization handshake takes place on signals

■ Level-synchronized signals – signals are passed through two destination clock registers

Both synchronization types incur additional data path latencies. However, this additional latency has no
negative affect on received or transmitted data, other than to limit how much faster sclk can be in relation to
pclk for back-to-back serial communications with no idle assertion.

A serial clock that exceeds this limit does not leave enough time for a complete incoming character to be
received and pushed into the receiver FIFO. To ensure that you do not exceed the limit, the following
equation must hold true:

((2 * pclk_cycles) + 4) < (39 * (Baud Divisor))

Where:

pclk_cycles is expressed in sclk cycles

For example, if the Baud Divisor is programmed to 1 and a serial clock is 18 times faster than the pclk signal,
the equation becomes:

((2 * 18) + 4) < (39 * 1) ≥ 40 < 39

Thus the equation does not hold true, and the ratio 18:1 (sclk:pclk) exceeds the limit at this Baud rate.

Here are a few things to keep in mind:

■ A divisor greater than 1 at a clock ratio of 18:1 (sclk:pclk) does not cause data corruption issues due to
synchronization, as the synchronization process has more time to transfer the received data to the
peripheral clock domain before the next character bit is received.

In most cases, however, the pclk signal is faster than sclk, so this should never be an issue.

■ There is slightly more time required after initial serial control register programming before serial
data can be transmitted or received.

■ The serial clock modules must have time to see new register values and reset their respective state
machines. This total time is guaranteed to be no more than eight clock cycles of the slower of the two
system clocks. Therefore, no data should be transmitted or received before this maximum time
expires, after initial configuration.

Each NOP usually takes one bus cycle to retire. However, the actual number of NOPs that need to be
inserted in the assembly code is dependent on the maximum number of instructions that can be
retired in a single cycle. So for example, if the processor uses a 4-dispatch pipe, then four NOPs could
potentially retire in one bus cycle. Assuming that the next opcode (NOP) is fetched as per the slower

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

clock—with eight clock cycles of the slower clock as the reference—a minimum of thirty-two NOPs
need to be included in the assembly code after a software reset.

In systems where only one clock is implemented, there are no additional latencies.

2.8 Back-to-Back Character Stream Transmission
This section describes:

■ Scenarios under which the DW_apb_uart is capable of transmitting back-to-back characters on the
serial interface, with no idle time between them

■ Worst-case idle time that exists between back-to-back characters

When the Transmit FIFO contains multiple data entries, the DW_apb_uart transmits the characters in the
FIFO back-to-back on the serial bus. However, if the CLOCK_MODE configuration parameter equals 2,
synchronization delays in the DW_apb_uart can cause an IDLE period between the end of the current STOP
bit and the beginning of the next START bit; this appears as an extended STOP bit duration on the serial bus.

2.8.1 Dual Clock Mode

When the CLOCK_MODE parameter equals 2—indicating an asynchronous relationship between pclk and
sclk—the DW_apb_uart has a synchronization delay between the transmitter in the sclk domain and the TX
FIFO in the pclk domain when querying if another character is ready for transmission. The transmitter
begins the handshake one baud clock cycle before the end of the current STOP bit. The duration of the
synchronization delay is given by the following equations:

sync_delay = (1sclk + 3pclk) + 1pclk + (1pclk + 3sclk)

sync_delay = 4sclk + 5pclk

If the sync_delay duration is longer than one baud clock period, an IDLE period is inserted between the end
of a STOP bit and the beginning of the next START bit.

To prevent insertion of the IDLE period, the following condition must be true:

sync_delay ≤ bclk_period

The baud clock period is given by the following equation:

bclk_period = {DLH,DLL} * sclk

The worst case timing of the inserted IDLE period is given by:

worst_case_idle_duration = sync_delay + (15 * bclk_period)

The worst_case_idle_duration can be added to the programmed STOP bit duration to give the overall STOP
bit period.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Figure 2-19 illustrates an example of character finish to character start delay.

Figure 2-19 Character Finish to Character Start Delay

1. The baud divisor is set to 1 ({DLH, DLL} = 1), so every sclk is a baud clock cycle. The transmit state
machine changes state every sixteen baud clocks—eight in the case of a half STOP bit. At this point in
Figure 2-19, after 16 baud clock cycles of the STOP1 state, the state machine enters the IDLE state on
the next cycle because start_tx is not yet asserted.

2. One baud clock before the end of the STOP state, the transmit state machine decodes that the current
character is complete and asserts tx_finish, which is synchronized to the pclk domain to become
sync_tx_finish; this synchronization accounts for the “1sclk + 3pclk” term in sync_delay.

3. In the pclk domain, there is a one-pclk cycle delay—”1pclk” term in sync_delay—before the signal
tx_start is asserted from the assertion of sync_tx_finish. Tx_start must then be synchronized to the
sclk domain—”1pclk + 3sclk” term in sync_delay—to instruct the state machine to commence the
START bit of the next character.

4. Start_tx asserts in the sclk domain, and causes the baud clock counter (tx_bclk_cnt) to go to 0.

5. Once sixteen baud clocks have been counted, the state machine can transition into the START state,
and one cycle later sout is de-asserted.

1

2

3

4
5

sclk

pclk

sout

c_state

tx_bclk_cnt

start_tx

cnt16

sync_tx_start

tx_start

sync_tx_fnish

tx_finish

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

STOP1(0Xb) IDLE(0X0) START

0xc 0xd 0xe 0xf 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x0 0xF 0x0 0x1

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

2.8.2 Single Clock Mode

If CLOCK_MODE equals 1, there is no idle time between back-to-back characters if data is ready in the
transmit FIFO. In this case, because sync_delay equals one pclk as described in “Dual Clock Mode”, the
requirement to avoid idle time between consecutive characters is met for all {DLH,DLL} values.

sync_delay ≤ {DLH,DLL}*sclk

For example, when {DLH, DLL} equals 1 (bearing in mind that when CLOCK_MODE = 1 : pclk = sclk), then

1 pclk ≤ 1*pclk

2.9 Interrupts
Assertion of the DW_apb_uart interrupt output signal (intr)—a positive-level interrupt—occurs whenever
one of the several prioritized interrupt types are enabled and active.

When an interrupt occurs, the master accesses the IIR register.

The following interrupt types can be enabled with the IER register:

■ Receiver Error

■ Receiver Data Available

■ Character Timeout (in FIFO mode only)

■ Transmitter Holding Register Empty at/below threshold (in Programmable THRE interrupt mode)

■ Modem Status

■ Busy Detect Indication

These interrupt types are explained in detail in Table 2-3. Also, see Appendix 4, “Signal Descriptions” for
more information on interrupts.

Table 2-3 Interrupt Control Functions

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Table 1:

Interrupt ID Interrupt Set and Reset Functions

Bit 3 Bit 2 Bit 1 Bit 0
Priority
Level

Interrupt
Type Interrupt Source Interrupt Reset Control

0 0 0 1 – None None –

0 1 1 0 Highest Receiver
line status

Overrun/parity/ framing
errors, break interrupt, or
address received interrupt

For
Overrun/parity/framing/break
interrupt reset control, the
behavior is as follows:

■ If LSR_STATUS_CLEAR=0
(RBR Read or LSR Read),
then the status is cleared
on:

- Reading the line status
register
Or

- In addition to an LSR
read, the Receiver line
status is also cleared
when RX_FIFO is read.

■ If LSR_STATUS_CLEAR=1
(LSR Read), the status is
cleared only on:

- Reading the line status
register.

■ For address received
interrupt, the status is
cleared on:

- Reading the line status
register

0 1 0 0 Second Received
data
available

Receiver data available (non-
FIFO mode or FIFOs
disabled) or RCVR FIFO
trigger level reached (FIFO
mode and FIFOs enabled)

Reading the receiver buffer
register (non-FIFO mode or
FIFOs disabled) or the FIFO
drops below the trigger level
(FIFO mode and FIFOs
enabled)

1 1 0 0 Second Character
timeout
indication

No characters in or out of the
RCVR FIFO during the last 4
character times and there is
at least 1 character in it
during this time

Reading the receiver buffer
register

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

2.10 Auto Flow Control
The DW_apb_uart can be configured to have a 16750-compatible Auto RTS and Auto CTS serial data flow
control mode available; if FIFOs are not implemented, this mode cannot be selected. When Auto Flow
Control is not selected, none of the corresponding logic is implemented and the mode cannot be enabled,
reducing overall gate counts. When Auto Flow Control mode is selected, it can be enabled with the Modem
Control Register (MCR[5]).

0 0 1 0 Third Transmit
holding
register
empty

Transmitter holding register
empty (Prog. THRE Mode
disabled) or XMIT FIFO at or
below threshold (Prog. THRE
Mode enabled)

Reading the IIR register (if
source of interrupt); or, writing
into THR (FIFOs or THRE
Mode not selected or disabled)
or XMIT FIFO above threshold
(FIFOs and THRE Mode
selected and enabled).

0 0 0 0 Fourth Modem
status

Clear to send or data set
ready or ring indicator or data
carrier detect. Note that if
auto flow control mode is
enabled, a change in CTS
(that is, DCTS set) does not
cause an interrupt.

Reading the Modem status
register

0 1 1 1 Fifth Busy detect
indication

UART_16550_COMPATIBLE
= NO and master has tried to
write to the Line Control
Register while the
DW_apb_uart is busy
(USR[0] is set to 1).

Reading the UART status
register

Table 1:

Interrupt ID Interrupt Set and Reset Functions

Bit 3 Bit 2 Bit 1 Bit 0
Priority
Level

Interrupt
Type Interrupt Source Interrupt Reset Control

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Figure 2-20 shows a block diagram of the Auto Flow Control functionality.

Figure 2-20 Auto Flow Control Block Diagram

Auto RTS and Auto CTS are described as follows:

■ Auto RTS – Becomes active when the following occurs:

❑ Auto Flow Control is selected during configuration

❑ FIFOs are implemented

❑ RTS (MCR[1] bit and MCR[5]bit are both set)

❑ FIFOs are enabled (FCR[0]) bit is set)

❑ SIR mode is disabled (MCR[6] bit is not set)

When Auto RTS is enabled, the rts_n output is forced inactive (high) when the receiver FIFO level
reaches the threshold set by FCR[7:6], but only if the RTC flow-control trigger is disabled. Otherwise,
the rts_n output is forced inactive (high) when the FIFO is almost full, where “almost full” refers to
two available slots in the FIFO. When rts_n is connected to the cts_n input of another UART device,

Receiver
FIFO

Receiver
(Serial

-to-
Parallel)

Threshold
Detection Auto RTS

Flow
Control

Transmit
FIFO

Transmitter
(Parallel

-to-
Serial)

Auto CTS
Flow

Control

Auto CTS
Flow

Control

Receiver
(Serial

-to-
Parallel)

Auto RTS
Flow

Control

Receiver
FIFO

enable

Transmitter
(Parallel

-to-
Serial)

enable

soutsin

cts_nrts_n

sinsout

rts_ncts_n

cts

rts

DW_apb_uart 2

rts cts

DW_apb_uart 1

Transmit
FIFO

Threshold
Detection

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

the other UART stops sending serial data until the receiver FIFO has available space; that is, until it is
completely empty.

The selectable receiver FIFO threshold values are:

❑ 1

❑ ¼

❑ ½

❑ 2 less than full

Since one additional character can be transmitted to the DW_apb_uart after rts_n has become
inactive—due to data already having entered the transmitter block in the other UART—setting the
threshold to “2 less than full” allows maximum use of the FIFO with a safety zone of one character.

Once the receiver FIFO becomes completely empty by reading the Receiver Buffer Register (RBR),
rts_n again becomes active (low), signaling the other UART to continue sending data.

Figure 2-21 shows a timing diagram of the Auto RTS operation.

Figure 2-21 Auto RTS Timing

■ Auto CTS – becomes active when the following occurs:

❑ Auto Flow Control is selected during configuration

❑ FIFOs are implemented

❑ AFCE (MCR[5] bit = 1)

❑ FIFOs are enabled through FIFO Control Register FCR[0] bit

❑ SIR mode is disabled (MCR[6] bit = 0)

NoteNoteNoteNote Even if everything else is selected and the correct MCR bits are set, if the FIFOs are disabled
through FCR[0] or the UART is in SIR mode (MCR[6] is set to 1), Auto Flow Control is also
disabled. When Auto RTS is not implemented or disabled, rts_n is controlled solely by
MCR[1].

sin start Character T stop start Character T+1 stop

rts_n

RX FIFO Read 1 2 3 T T+1

T = Receiver FIFO Threshold Value

iis received because rts_n is not detected before next
character entered the sending-UART’s transmitter

This character

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

When Auto CTS is enabled (active), the DW_apb_uart transmitter is disabled whenever the cts_n
input becomes inactive (high); this prevents overflowing the FIFO of the receiving UART.

If the cts_n input is not inactivated before the middle of the last stop bit, another character is
transmitted before the transmitter is disabled. While the transmitter is disabled, the transmitter FIFO
can still be written to, and even overflowed.

Therefore, when using this mode, the following happens:

■ UART status register can be read to check if transmit FIFO is full (USR[1] set to 0)

■ Current FIFO level can be read using TFL register

■ Programmable THRE Interrupt mode must be enabled to access “FIFO full” status using Line Status
Register (LSR)

When using the “FIFO full” status, software can poll this before each write to the Transmitter FIFO; for
details, see “Programmable THRE Interrupt” on page 56. When the cts_n input becomes active (low) again,
transmission resumes.

Figure 2-22 illustrates a timing diagram that shows the Auto CTS operation.

Figure 2-22 Auto CTS Timing

NoteNoteNoteNote When everything else is selected, if the FIFOs are disabled using FCR[0], Auto Flow Control is
also disabled. When Auto CTS is not implemented or disabled, the transmitter is unaffected by
cts_n.

sout start Data Bits stop

cts_n

start Data Bits stop start Data Bits stop

Disabled

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

2.11 Programmable THRE Interrupt
The DW_apb_uart can be configured for a Programmable THRE Interrupt mode in order to increase system
performance; if FIFOs are not implemented, then this mode cannot be selected.

■ When Programmable THRE Interrupt mode is not selected, none of the logic is implemented and the
mode cannot be enabled, reducing the overall gate counts.

■ When Programmable THRE Interrupt mode is selected, it can be enabled using the Interrupt Enable
Register (IER[7]).

When FIFOs and THRE mode are implemented and enabled, the THRE Interrupts and dma_tx_req_n are
active at, and below, a programmed transmitter FIFO empty threshold level, as opposed to empty, as shown
in the flowchart in Figure 2-23.

Figure 2-23 Flowchart of Interrupt Generation for Programmable THRE Interrupt Mode

The threshold level is programmed into FCR[5:4]. Available empty thresholds are:

■ empty

■ 2

■ ¼

■ ½

CLEAR INTR

FIFO LEVEL > TX
Empty Trigger?

THRE Interrupt
Enabled?

SET INTR

FIFO LEVEL > TX
Empty Trigger?

N

N

N

Y

Y

Y

Under the condition that
there are no other pending
interrupts, the interrupt
signal (intr) is asserted

For the THRE interrupt to be
controlled as shown here, the
following must be true:
- FIFO_MODE != NONE
- THRE_MODE = Enabled
- FIFOs enabled (FCR[0] = 1)
- THRE mode enabled (IER[7] = 1)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Selection of the best threshold value depends on the system's ability to begin a new transmission sequence
in a timely manner. However, one of these thresholds should be optimal for increasing system performance
by preventing the transmitter FIFO from running empty. For threshold setting details, see section “FCR” in
“Register Descriptions” on page 113.

In addition to the interrupt change, the Line Status Register (LSR[5]) also switches from indicating that the
transmitter FIFO is empty to the FIFO being full. This allows software to fill the FIFO for each transmit
sequence by polling LSR[5] before writing another character. The flow then allows the transmitter FIFO to
be filled whenever an interrupt occurs and there is data to transmit, rather than waiting until the FIFO is
completely empty. Waiting until the FIFO is empty causes a reduction in performance whenever the system
is too busy to respond immediately. Further system efficiency is achieved when this mode is enabled in
combination with Auto Flow Control.

Even if everything else is selected and enabled, if the FIFOs are disabled using the FCR[0] bit, the
Programmable THRE Interrupt mode is also disabled. When not selected or disabled, THRE interrupts and
the LSR[5] bit function normally, signifying an empty THR or FIFO. Figure 2-24 illustrates the flowchart of
THRE interrupt generation when not in programmable THRE interrupt mode.

Figure 2-24 Flowchart of Interrupt generation when not in Programmable THRE Interrupt Mode

CLEAR INTR

TX FIFO EMPTY?

THRE Interrupt
Enabled?

SET INTR

TX FIFO Not Empty
or IIR Read?

Y

N

N

Y

Y

N

Under the condition that
there are no other pending
interrupts, the interrupt
signal (intr) is asserted

For the THRE interrupt to be
controlled as shown here, one or
more of the following must be true:
- FIFO_MODE = NONE
- THRE_MODE = Disabled
- FIFOs disabled (FCR[0] = 0)
- THRE mode disabled (IER[7] = 0)

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

2.12 Clock Gate Enable
The DW_apb_uart can be configured to have a clock gate enable output.

■ When the clock gate enable option is not selected, no logic is implemented, which reduces the overall
gate count.

■ When the clock gate enable option is selected, the clock gate enable signals—uart_lp_req_pclk for
single clock implementations or uart_lp_req_pclk and uart_lp_req_sclk for two clock
implementations—is used to indicate the following:

❑ Transmit and receive pipeline is clear (no data).

❑ No activity has occurred.

❑ Modem control input signals have not changed in more than one character time—the time taken
to TX/RX a character—so that clocks can be gated.

A character is made up of:

start_bit + data_bits + parity (optional) + stop_bits)

The assertion of clock gate enable signals is an indication that the UART is inactive, so clocks may be gated
in order to put the device in a low-power mode. Therefore, the following must be true for at least one
character time for the assertion of the clock gate enable signals to occur:

■ No data in the RBR (in non-FIFO mode) or the RX FIFO is empty (in FIFO mode)

■ No data in the THR (in non-FIFO mode) or the TX FIFO is empty (in FIFO mode)

■ sin/sir_in and sout/sir_out_n are inactive (sin/sir_in are kept high and sout is high or sir_out_n is
low) indicating no activity

■ No change on the modem control input signals

Note, the clock gate enable assertion does not occur in the following modes of operation:

■ Loopback mode

■ FIFO access mode

■ When transmitting a break

For example, assume a DW_apb_uart that is configured to have a single clock (pclk) and is programmed to
transmit and receive characters of 7 bits (1 start bit, 5 data bits and 1 stop bit) and the baud clock divisor is
set to 1. Therefore, the uart_lp_req_pclk signal is asserted if the transmit and receive pipeline is clear, no
activity has occurred and the modem control input signals have not changed for 112 (7 × 16) pclk cycles.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Figure 2-25 illustrates this example.

Figure 2-25 Clock Gate Enable Timing
.

When the assertion criteria are no longer met, the clock gate enable signals are de-asserted and the clocks is
resumed under any of these conditions:

■ Either sin signal or sir_in signal goes low

■ Write to any of registers is performed

■ Modem control input signals have changed when DW_apb_uart is in low-power (sleep) mode

The clock gate enable signals are de-asserted asynchronously on arrival of earlier mentioned events because
a clock is not available to synchronize the events. Therefore, user can decide to include 2-flop syncs
externally before the clock gate cell to avoid metastability issues for clock-gate latch.

The time taken for the clocks to resume is important in preventing receive data synchronization problems,
due to the DW_apb_uart RX block sampling:

1. At mid-point of each bit period—after approximately 8 baud clocks—in UART (RS323) mode.

2. After that, every 16 baud clocks for a baud divisor of 1 that is 16 sclks; for a single clock
implementation, this is 16 pclks.

Thus, if eight or more sclk periods pass before the serial clock starts up again, the DW_apb_uart can get out
of synchronization with the serial data it is receiving; that is, the receiver can sample into the second bit
period, and if it is still 0, the receiver uses this as the start bit, and so on.

In order to avoid this problem, the clock should be resumed within five clock periods of the baud clock,
which is the same as sclk if the baud divisor is set to 1; this is worst-case. If the divisor is greater, it gives a
greater number of sclk cycles available before the clock must resume. This means a sample point at the 13
baud clock (at the latest) out of the 16 that are transmitted for each bit period of the character in non-SIR
mode.

NoteNoteNoteNote A read to any register does not de-assert the clock gate enable signals. The pclk clock needs
to be enabled to read any of the registers in low-power mode.

pclk

sin

baud_clk_cnt

uart_lp_req

1 2

sout

16
cycles

busy (FSR[0])

Internal 110 111 0 10

Stop

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

Figure 2-26 shows the timing diagram that illustrates the previous scenario.

Figure 2-26 Resuming Clocks After Low Power Mode Timing
.

This synchronization problem is magnified in SIR mode because the pulse width is only 3/16 of a bit
period—three baud clocks, which for a divisor of 1 is three sclks; thus, the pulse can be missed completely.
The clocks must resume before three baud clock periods elapse. However, if the first character received
while in sleep mode is used only for wake-up reasons and the actual character value is unimportant, this
may not become a problem.

When the DW_apb_uart is configured to have two clocks, if the timing of the received signal is not affected
by the synchronization problem, then the minimum time to receive a character—if the baud divisor is 1—is
112 sclks:

1 start_bit + 5 data_bits + 1 stop_bit = 7 × 16 =112

Therefore, the pclk must be available before 112 sclk cycles pass in order for the received character to be
synchronized to the pclk domain and stored in the RBR (in non-FIFO mode) or the RX FIFO (in FIFO mode).

2.13 DMA Support
The DW_apb_uart supports DMA signalling with the use of the dma_tx_req_n and dma_rx_req_n output
signals to indicate:

■ When data can be read

■ When transmit FIFO is empty

For more information on the dma_tx_req_n and dma_rx_req_n signals, see “Handshaking Interface
Operation” on page 68.

NoteNoteNoteNote The reset value the of dma_tx_req_n signal is based on the
DMA_HS_REQ_ON_RESET parameter value.
■ If DMA_HS_REQ_ON_RESET=1, dma_tx_req_n is asserted after a reset.
■ If DMA_HS_REQ_ON_RESET=0, dma_tx_req_n is not asserted upon reset. It is

asserted only after the LCR register is written.
■ The reset under consideration is both a hardware reset (presetn) and a soft reset

(by writing to the SRR register).

bclk (= sclk

sin

uart_lp_req

clocks resume after

when div. = 1)

midpoint
actual sample

point
latest sample

point2 bclk periods

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

2.13.1 DMA Modes

The DW_apb_uart uses two DMA channels—one for transmit data and one for receive data. There are two
DMA modes:

■ mode 0 – bit 3 of FIFO Control Register set to 0

■ mode 1 – bit 3 of FIFO Control Register set to 1

2.13.1.1 DMA Mode 0

DMA mode 0 supports single DMA data transfers at a time.

In mode 0, the dma_tx_req_n signal:

■ Goes active-low under the following conditions:

❑ When Transmitter Holding Register is empty in non-FIFO mode

❑ When transmitter FIFO is empty in FIFO mode with Programmable THRE interrupt mode
disabled

❑ When transmitter FIFO is at or below programmed threshold with Programmable THRE
interrupt mode enabled

■ Goes inactive when:

❑ Single character has been written into Transmitter Holding Register or transmitter FIFO with
Programmable THRE interrupt mode disabled

❑ Transmitter FIFO is above threshold with Programmable THRE interrupt mode enabled

In mode 0, the dma_rx_req_n signal:

❑ Goes active-low when single character is available in Receiver FIFO or Receive Buffer Register

❑ Goes inactive when Receive Buffer Register or Receiver FIFO are empty, depending on FIFO
mode

2.13.1.2 DMA Mode 1

DMA mode 1 supports multi-DMA data transfers, where multiple transfers are made continuously until the
receiver FIFO has been emptied or the transmit FIFO has been filled.

In mode 1, the dma_tx_req_n signal is asserted:

■ When transmitter FIFO is empty with Programmable THRE interrupt mode disabled

■ When transmitter FIFO is at or below programmed threshold with Programmable THRE interrupt
mode enabled

In mode 1, the dma_tx_req_n signal is de-asserted when the transmitter FIFO is completely full.

In mode 1, the dma_rx_req_n signal is asserted:

NoteNoteNoteNote Only DMA mode 0 is available when FIFOs are not implemented or disabled.

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

■ When Receiver FIFO is at or above programmed trigger level

■ When character timeout has occurred; ERBFI does not need to be set

In mode 1, the dma_rx_req_n signal is de-asserted when the receiver FIFO becomes empty.

2.13.1.3 Additional DMA Interface

If required for a DMA controller—such as the DW_ahb_dmac—you can use the DMA_EXTRA parameter to
configure he DW_apb_uart for additional DMA interface signals. In this case, asserting the fixed DMA
signals—dma_tx_req_n and dma_rx_req_n—is similar to what is detailed in DMA Mode 0 and DMA Mode
1.

When configured for additional DMA signals, the dma_tx_req_n signal is asserted under the following
conditions:

■ When the Transmitter Holding Register is empty in non-FIFO mode

■ When the transmitter FIFO is empty in FIFO mode with Programmable THRE interrupt mode
disabled

■ When the transmitter FIFO is at, or below the programmed threshold with Programmable THRE
interrupt mode enabled.

When configured for additional DMA signals, the dma_rx_req_n signal is asserted under the following
conditions:

■ When a single character is available in Receive Buffer Register in non-FIFO mode

■ When Receiver FIFO is at or above programmed trigger level in FIFO mode

With the presence of the additional handshaking signals, the UART does not have to rely on internal status
and level values to recognize the completion of a request and hence remove the request. Instead, the de-
assertion of the DMA transmit and receive request is controlled by the assertion of the DMA transmit and
receive acknowledge respectively.

When the UART is configured for additional DMA signals, responsibility of the data flow (transfer lengths)
falls on the DMA (DW_ahb_dmac) and is controlled by the programmed burst transaction lengths. Thus,
there is no need for DMA modes, and programming the FCR[3] has no effect.

2.13.1.4 Example DMA Flow

The extra handshaking signals are explained in the following DMA flow for a DW_apb_uart that is
configured with FIFOs and Programmable THRE interrupt mode.

As a block flow control device, the DMA Controller is programmed by the processor with the number of
data items (block size) that are to be transmitted or received by the DW_apb_uart; this is programmed into
the BLOCK_TS field of the CTLx register.

The block is broken into a number of transactions, each initiated by a request from the DW_apb_uart. The
DMA Controller must also be programmed with the number of data items (in this case, DW_apb_uart FIFO
entries) to be transferred for each DMA request. This is also known as the burst transaction length, and is
programmed into the SRC_MSIZE/DEST_MSIZE fields of the DW_ahb_dmac CTLx register for source and
destination, respectively.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Figure 2-27 shows a single block transfer, where the block size programmed into the DMA Controller is 12
and the burst transaction length is set to 4.

Figure 2-27 Breakdown of DMA Transfer into Burst Transactions

In this case, the block size is a multiple of the burst transaction length. Therefore, the DMA block transfer
consists of a series of burst transactions. If the DW_apb_uart makes a transmit request to this channel, four
data items are written to the DW_apb_uart transmit FIFO. Similarly, if the DW_apb_uart makes a receive
request to this channel, four data items are read from the DW_apb_uart receive FIFO. Three separate
requests must be made to this DMA channel before all twelve data items are written or read.

NoteNoteNoteNote The source and destination transfer width settings in the DW_ahb_dmac –
DMA.CTLx.SRC_TR_WIDTH and DMA.CTLx.DEST_TR_WIDTH – should be set to 3’b000
because the DW_apb_uart FIFOs are 8 bits wide.

DMA Burst DMA Burst DMA Burst

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

Transaction 1 Transaction 2 Transaction 3

12 Data Items

DMA
Multi-block Transfer

Level

12 Data Items

Block Size: DMA.CTLx.BLOCK_TS=12
Number of data items per source burst transaction: DMA.CTLx.SRC_MSIZE = 4
For a FIFO depth of 16: UART.FCR[7:6] = 01 = FIFO 1/4 full = DMA.CTLx.SRC_MSIZE
 (for more information, see discussion on page 67)

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

When the block size programmed into the DMA Controller is not a multiple of the burst transaction length,
as shown in Figure 2-28, a series of burst transactions followed by single transactions are needed to
complete the block transfer.

Figure 2-28 Breakdown of DMA Transfer into Single and Burst Transactions

2.13.2 Transmit Watermark Level and Transmit FIFO Underflow

During DW_apb_uart serial transfers, transmit FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the transmit FIFO is less than or equal to the decoded level of the Transmit Empty
Trigger (TET) of the FCR register (bits 5:4); this is known as the watermark level. The DW_ahb_dmac
responds by writing a burst of data to the transmit FIFO buffer, of length CTLx.DEST_MSIZE.

Data should be fetched from the DMA often enough for the transmit FIFO to perform serial transfers
continuously; that is, when the FIFO begins to empty, another DMA request should be triggered. Otherwise
the FIFO runs out of data (underflow). To prevent this condition, you must set the watermark level
correctly.

15 Data Items

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

DMA Burst DMA SingleDMA SingleDMA Single
Transaction 1

DMA Burst
Transaction2

DMA Burst
Transaction 3

1 Data Item 1 Data Item 1 Data Item

Transaction 1 Transaction 2 Transaction 3

15 Data Items

DMA
Multi-Block Transfer

Level

Block Size: DMA.CTLx.BLOCK_TS=15
Number of data items per burst transaction: DMA.CTLx.DEST_MSIZE = 4
For a FIFO depth of 16: UART.FCR[5:4] = 10 =FIFO 1/4 full = 4 = DMA.CTLx.DEST_MSIZE
 (for more information, see discussion on page 66)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

2.13.3 Choosing Transmit Watermark Level

Consider the example where the following assumption is made:

DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - UART.FCR[5:4]

The number of data items to be transferred in a DMA burst is equal to the empty space in the Transmit
FIFO. Consider two different watermark level settings.

2.13.3.1 Case 1: FCR[5:4] = 01 — decodes to 2

Figure 2-29 Case 1 Watermark Levels

■ Transmit FIFO watermark level = decoded level of UART.FCR[5:4] = 2

■ DMA.CTLx.DEST_MSIZE = FIFO_MODE − UART.FCR[5:4] = 14

■ UART transmit FIFO_MODE = 16

■ DMA.CTLx.BLOCK_TS = 56

Therefore, the number of burst transactions needed equals the block size divided by the number of data
items per burst:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 56/14 = 4

The number of burst transactions in the DMA block transfer is 4., but the watermark level—decoded level of
UART.FCR[5:4]—is quite low. Therefore, the probability of a UART underflow is high where the UART
serial transmit line needs to transmit data, but where there is no data left in the transmit FIFO. This occurs
because the DMA has not had time to service the DMA request before the transmit FIFO becomes empty.

2.13.3.2 Case 2: FCR[5:4] = 11 — FIFO 1/2 full (decodes to 8)

Figure 2-30 Case 2 Watermark Levels

FIFO_MODE = 16

UART.FCR[5:4] = 01

FIFO_MODE − decoded level

FULL

EMPTY

UART Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

of UART.FCR[5:4] = 14

FIFO_MODE = 16 UART.FCR[5:4] = 8

FIFO_MODE − decoded level

FULL

EMPTY

UART Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

of UART.FCR[5:4] = 8

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

■ Transmit FIFO watermark level = decoded level of UART.FCR[5:4] = 8

■ DMA.CTLx.DEST_MSIZE = FIFO_MODE - UART.FCR[5:4] = 8

■ UART transmit FIFO_MODE = 16

■ DMA.CTLx.BLOCK_TS = 56

Number of burst transactions in Block:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 56/8 = 7

In this block transfer, there are seven destination burst transactions in a DMA block transfer, but the
watermark level—decoded level of UART.FCR[5:4]—is high. Therefore, the probability of a UART
underflow is low because the DMA controller has enough time to service the destination burst transaction
request before the UART transmit FIFO becomes empty.

Thus, the second case has a lower probability of underflow at the expense of more burst transactions per
block. This provides a potentially greater amount of AMBA bursts per block and worse bus utilization than
Case 1.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while
at the same time keeping the probability of an underflow condition to an acceptable level. In practice, this is
a function of the ratio of:

rate of UART data transmission: rate of DMA response to destination burst requests

For example, both of the following increases the rate at which the DMA controller can respond to burst
transaction requests:

■ Promoting channel to highest priority channel in DMA

■ Promoting DMA master interface to highest priority master in AMBA layer

This in turn enables the user to decrease the watermark level, which improves bus utilization without
compromising the probability of an underflow occurring.

2.13.4 Selecting DEST_MSIZE and Transmit FIFO Overflow

As can be seen from Figure 2-30, programming DMA.CTLx.DEST_MSIZE to a value greater than the
watermark level that triggers the DMA request can cause overflow when there is not enough space in the
UART transmit FIFO to service the destination burst request. Therefore, use the following in order to avoid
overflow:

DMA.CTLx.DEST_MSIZE <= UART.FIFO_DEPTH − decoded level of UART.FCR[5:4] (1)

In Case 2: FCR[5:4] = 11 — FIFO 1/2 full (decodes to 8), the amount of space in the transmit FIFO at the
time the burst request is made is equal to the destination burst length, DMA.CTLx.DEST_MSIZE. Thus, the
transmit FIFO can be full, but not overflowed, at the completion of the burst transaction.

Therefore, for optimal operation, DMA.CTLx.DEST_MSIZE should be set at the FIFO level that triggers a
transmit DMA request; that is:

DMA.CTLx.DEST_MSIZE = UART.FIFO_DEPTH − decoded level of UART.FCR[5:4] (2)

This is the setting used in Figure 2-28.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Adhering to equation (2) reduces the number of DMA bursts needed for a block transfer, which in turn
improves AMBA bus utilization.

2.13.5 Receive Watermark Level and Receive FIFO Overflow

During DW_apb_uart serial transfers, receive FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the receive FIFO is at or above the decoded level of Receiver Trigger (RT) of the
FCR[7:6]. This is known as the watermark level. The DW_ahb_dmac responds by fetching a burst of data
from the receive FIFO buffer of length CTLx.SRC_MSIZE.

Data should be fetched by the DMA often enough for the receive FIFO to accept serial transfers
continuously; that is, when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the FIFO
fills with data (overflow). To prevent this condition, you must correctly set the watermark level.

2.13.6 Choosing the Receive Watermark Level

Similar to choosing the transmit watermark level described earlier, the receive watermark level—decoded
level of FCR[7:6]—should be set to minimize the probability of overflow. It is a trade-off between the
number of DMA burst transactions required per block versus the probability of an overflow occurring.

2.13.7 Selecting SRC_MSIZE and Receive FIFO Underflow

As can be seen in Figure 2-31, programming a source burst transaction length greater than the watermark
level can cause underflow when there is not enough data to service the source burst request. Therefore,
equation (3) below must be adhered to in order to avoid underflow.

Figure 2-31 UART Receive FIFO

If the number of data items in the receive FIFO is equal to the source burst length at the time the burst
request is made – DMA.CTLx.SRC_MSIZE – the receive FIFO can be emptied, but not underflowed, at the
completion of the burst transaction. For optimal operation, DMA.CTLx.SRC_MSIZE should be set at the
watermark level; that is:

DMA.CTLx.SRC_MSIZE = decoded level of FCR[7:6] (3)

Adhering to equation (3) reduces the number of DMA bursts in a block transfer, and this in turn can
improve AMBA bus utilization.

NoteNoteNoteNote The transmit FIFO is not full at the end of a DMA burst transfer if the UART has successfully
transmitted one data item or more on the UART serial transmit line during the transfer.

UART.decoded level FULL

EMPTY

UART Receive FIFO

DMA
Controller

Data In

Data Out

Receive FIFO
Watermark level

of FCR[7:6]

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

2.13.8 Handshaking Interface Operation

■ dma_tx_req_n, dma_rx_req_n – The request signals for source and destination—dma_tx_req_n and
dma_rx_req_n—are activated when their corresponding FIFOs reach the watermark levels.

The DW_ahb_dmac uses edge detection of the dma_tx_req_n signal/dma_rx_req_n to identify a
request on the channel. Upon reception of the dma_tx_ack_n/dma_rx_ack_n signal from the
DW_ahb_dmac to indicate the burst transaction is complete, the DW_apb_uart de-asserts the burst
request signals—dma_tx_req_n/dma_rx_req_n—until dma_tx_ack_n/dma_rx_ack_n is de-asserted
by the DW_ahb_dmac.

When the DW_apb_uart samples that dma_tx_ack_n/dma_rx_ack_n is de-asserted, it can re-assert
the dma_tx_req_n/dma_rx_req_n of the request line if their corresponding FIFOs exceed their
watermark levels—back-to-back burst transaction. If this is not the case, the DMA request lines
remain de-asserted.

Figure 2-32 shows a timing diagram of a burst transaction where pclk = hclk.

Figure 2-32 Burst Transaction – pclk = hclk

Figure 2-33 shows two back-to-back burst transactions where the hclk frequency is twice the pclk frequency.

Figure 2-33 Back-to-Back Burst Transactions – hclk = 2*pclk

NoteNoteNoteNote The receive FIFO is not empty at the end of the source burst transaction if the UART has
successfully received one data item or more on the UART serial receive line during the burst.

burst transaction request

burst transaction complete

pclk

hclk

dma_tx_req_n

dma_tx_ack_n

dma_tx_single_n not sampled by the DW_ahb_dmac for burst transactions

burst transaction request

burst transaction complete

burst transaction request

burst transaction complete

hclk

pclk

dma_rx_req_n

dma_rx_ack_n

dma_rx_single_n not sampled by the DW_ahb_dmac for burst transactions

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

The handshaking loop is as follows:

a. dma_tx_req_n/dma_rx_req_n asserted by DW_apb_uart

b. dma_tx_ack_n/dma_rx_ack_n asserted by DW_ahb_dmac

c. dma_tx_req_n/dma_rx_req_n de-asserted by DW_apb_uart

d. dma_tx_ack_n/dma_rx_ack_n de-asserted by DW_ahb_dmac

e. dma_tx_req_n/dma_rx_req_n re-asserted by DW_apb_uart, if back-to-back transaction is
required

❑ Note the following:

■ Once asserted, the burst request lines—dma_tx_req_n/dma_rx_req_n—remain asserted until
their corresponding dma_tx_ack_n/dma_rx_ack_n signal is received, even if the respective
FIFOs drop below their watermark levels during the burst transaction.

■ The dma_tx_req_n/dma_rx_req_n signals are de-asserted when their corresponding
dma_tx_ack_n/dma_rx_ack_n signals are asserted, even if the respective FIFOs exceed their
watermark levels.

■ dma_tx_single_n, dma_rx_single_n

❑ dma_tx_single_n – status signal that is asserted when there is at least one free entry in the
transmit FIFO; it is cleared when the transmit FIFO is full.

❑ dma_rx_single_n – status signal that is asserted when there is at least one valid data entry in the
receive FIFO; it is cleared when the receive FIFO is empty.

These signals are needed by only the DW_ahb_dmac for the case where the block size—
CTLx.BLOCK_TS—that is programmed into the DW_ahb_dmac is not a multiple of the burst
transaction length—CTLx.SRC_MSIZE, CTLx.DEST_MSIZE—shown in Figure 2-28. In this case, the
DMA single outputs inform the DW_ahb_dmac that it is still possible to perform single data item
transfers, so it can access all data items in the transmit/receive FIFO and complete the DMA block
transfer. Otherwise, the DMA single outputs from the DW_apb_uart are not sampled by the
DW_ahb_dmac.

This is illustrated in the following example.

Receive FIFO Channel of the DW_apb_uart:

DMA.CTLx.SRC_MSIZE = decoded level of UART.FCR[7:6] = 4

DMA.CTLx.BLOCK_TS = 12

NoteNoteNoteNote The burst transaction request signals, dma_tx_req_n and dma_rx_req_n, are generated in the
DW_apb_uart off pclk and sampled in the DW_ahb_dmac by hclk. The acknowledge signals,
dma_tx_ack_n and dma_rx_ack_n, are generated in the DW_ahb_dmac off hclk and sampled
in the DW_apb_uart of pclk. The handshaking mechanism between the DW_ahb_dmac and
the DW_apb_uart supports quasi-synchronous clocks; that is, hclk and pclk must be phase-
aligned, and the hclk frequency must be a multiple of the pclk frequency.

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

Block transfer:

DMA.CTLx.SRC_MSIZE = decoded level of UART.FCR[7:6] = 4

DMA.CTLx.BLOCK_TS = 15

For the example in Figure 2-27, with the block size set to 12, the dma_rx_req_n signal is asserted
when four data items are present in the receive FIFO. The dma_rx_req_n signal is asserted three
times during the DW_apb_uart serial transfer, ensuring that all 12 data items are read by the
DW_ahb_dmac. All DMA requests read a block of data items and no single DMA transactions are
required. The block transfer is made up of three burst transactions.

The first 12 data items are transferred using three burst transactions. But when the last three data
frames enter the receive FIFO, the dma_rx_req_n signal is not activated because the FIFO level is
below the watermark level. The DW_ahb_dmac samples dma_rx_single_n and completes the DMA
block transfer using three single transactions. The block transfer is made up of three burst
transactions, followed by three single transactions.

Figure 2-34 shows a single transaction. The handshaking loop is as follows:

a. dma_tx_single_n/dma_rx_single_n asserted by DW_apb_uart

b. dma_tx_ack_n/dma_rx_ack_n asserted by DW_ahb_dmac

c. dma_tx_single_n/dma_rx_single_n de-asserted by DW_apb_uart

d. dma_tx_ack_n/dma_rx_ack_n de-asserted by DW_ahb_dmac

Figure 2-34 Single Transaction

m0 m1 m2 n0 n1 n2 n3 n4

single transaction complete

pclk

hclk

dma_rx_req_n

dma_rx_ack_n

dma_rx_single_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

Figure 2-35 shows a burst transaction, followed by three back-to-back single transactions, where the hclk
frequency is twice the pclk frequency.

Figure 2-35 Burst Transaction + 3 Back-to-Back Singles – hclk = 2*pclk

2.13.9 Potential Deadlock Conditions in DW_apb_uart/DW_ahb_dmac Systems

There is a risk of a deadlock occurring if both of the following are true:

■ DW_ahb_dmac is used to access UART FIFOs

■ DMA burst transaction length is set to value smaller than or equal to DW_apb_uart Rx FIFO
threshold

■ When DW_apb_uart is used in DMA mode 1 with auto-flow control mode enabled

2.13.9.1 Deadlock When DMA Burst Transaction Length Smaller Than Rx FIFO Threshold

When operating in autoflow control mode with the RTC flow trigger threshold is disabled, the
DW_apb_uart de-asserts rts_n when the Rx FIFO threshold is reached, and it asserts it again when the Rx
FIFO is empty. At the same time, the DW_apb_uart asserts dma_rx_req_n, requesting a burst transaction
from the DW_ahb_dmac.

If the DMA burst transaction length is equal to or greater than the Rx FIFO threshold, the DW_ahb_dmac
reads from the Rx FIFO until it is empty, causing rts_n to be re-asserted. This in turn allows more data to be
received by the DW_apb_uart and the Rx FIFO to fill again.

However, if the DW_ahb_dmac burst transaction length is smaller than the DW_apb_uart Rx FIFO
threshold, some data is left in the DW_apb_uart Rx FIFO after completion of the burst transaction. This
prevents the rts_n signal from being asserted.

Because the amount of data in the Rx FIFO is below the threshold, the DW_apb_uart asserts the
dma_rx_single_n signal—instead of dma_rx_req_n—requesting a DMA single transaction from the

NoteNoteNoteNote The single transaction request signals, dma_tx_single_n and dma_rx_single_n, are generated
in the DW_apb_uart on the pclk edge and sampled in DW_ahb_dmac on hclk. The
acknowledge signals, dma_tx_ack_n and dma_rx_ack_n, are generated in the
DW_ahb_dmac on the hclk edge hclk and sampled in the DW_apb_uart on pclk. The
handshaking mechanism between the DW_ahb_dmac and the DW_apb_uart supports quasi-
synchronous clocks; that is, hclk and pclk must be phase aligned and the hclk frequency must
be a multiple of pclk frequency.

hclk

pclk

dma_tx_req_n

dma_tx_ack_n

ma_tx_single_n

burst transaction complete

Single transaction complete Single transaction complete
burst transaction request

Single transaction complete

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

DW_ahb_dmac. However, unless it is operating in the single transaction region, the DW_ahb_dmac ignores
single transaction requests.

A deadlock condition is then reached:

■ DW_apb_uart does not receive any extra characters because the rts_n signal is de-asserted; no data
can be pushed into the Rx FIFO to fill it up to the threshold level again and generate a new burst
transaction request from the DW_ahb_dmac; only single transaction requests can be generated.

■ Unless it has reached the single transaction region, the DW_ahb_dmac ignores single transaction
requests and does not read from the Rx FIFO; the Rx FIFO cannot be emptied, which prevents the
rts_n signal from being asserted again

Table 2-4 illustrates this condition.

The timing diagram in Figure 2-36 illustrates the sequence of events that lead to this deadlock condition.

Figure 2-36 Example of DW_apb_uart and DW_ahb_dmac Deadlock Occurrence

Table 2-4 DW_apb_uart/DW_ahb_dmac Settings for Deadlock When Transaction Less Than Rx FIFO Threshold

DW_apb_uart Settings DW_ahb_dmac Settings

■ Component configured for 32 byte deep Rx FIFO

■ Autoflow mode enabled (AFCE=1)

■ Rx FIFO threshold set to “2 less than full”; that is, 30
bytes (RCVR=11)

■ Block size set to 100 bytes (BLOCK_TS=100)

■ Source transaction width set to 1 byte
(SRC_TR_WIDTH=1)

■ Source burst transaction length set to 16
(SRC_MSIZE=16)

NoteNoteNoteNote For the sake of simplicity, pclk, hclk and sclk are shown to be identical; however, this is not a
constraint for the occurrence of deadlock. Additionally, in the interest of simplicity, some events
are represented as taking place simultaneously; however, in reality this might not be strictly
the case and these events can be separated by a small number of clock cycles.

T0 T1 T2 T3 T4 T5 T6

pclk

hclk

dma_rx_req_n

dma_rx_single_n

dma_rx_ack_n

sclk

rts_n

Rx FIFO Level 0 0 0 0 1 1 29 30 30 14 14 14 14 14 14

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

In Figure 2-36, the following events are shown:

■ T1 – The DW_apb_uart is programmed and enabled; rts_n is asserted to initiate the reception of
characters.

■ T2 – The first character is received by the DW_apb_uart and pushed into the RxFIFO;
dma_rx_single_n is asserted as a consequence, but because DW_ahb_dmac is not in the single
transfer region, this request is ignored.

■ T3 – The 30th character is received and pushed into the Rx FIFO. As a consequence:

❑ rts_n is de-asserted, stopping any further characters from being received

❑ dma_rx_req_n signal is asserted

❑ DW_ahb_dmac attends this request and starts reading data from Rx FIFO

■ T4 – The 16th character popped from the Rx FIFO is received by the DW_ahb_dma, which asserts
dma_rx_ack_n to signal the completion of the DMA burst transaction. Since the DMA burst
transaction size is set to 16 and the Rx FIFO threshold is set to 30, there are fourteen characters left in
the Rx FIFO after the DMA burst transaction completes.

■ T5 – One cycle after dma_rx_ack_n is asserted, the DW_apb_uart de-asserts dma_rx_req_n and
dma_rx_single_n as part of the DMA handshaking protocol.

■ T6 – One cycle after dma_rx_req_n is de-asserted, the DW_ahb_dmac de-asserts dma_rx_ack_n to
complete the DMA handshaking protocol. At the same time, the DW_apb_uart re-asserts
dma_req_single_n because there are fourteen characters in the Rx FIFO. For the same reason, rts_n is
kept de-asserted; since the DW_ahb_dmac is not in the single transfer region, it ignores the single
transaction request and a deadlock is created.

This deadlock condition can be avoided if:

■ The Rx FIFO threshold level is set to a value equal to or smaller than the DMA burst transaction size.
This ensures the Rx FIFO is always empty after a DMA burst transaction completes and rts_n is
asserted accordingly.

■ The DMA block size is set to a value smaller than twice the DMA burst transaction length. This
guarantees the DW_ahb_dmac enters the single transaction region after the DMA burst transaction
completes. It then accepts single transaction requests from the DW_apb_uart, allowing the Rx FIFO
to be emptied. In this case, the DMA burst size can be configured to be smaller than the Rx FIFO
threshold level.

2.13.9.2 Deadlock When DMA Burst Transaction Length Equal To Rx FIFO Threshold

If the DMA burst transaction length is identical to the DW_apb_uart Rx FIFO threshold, there is risk of a
deadlock condition occurring when a character is received after rts_n is de-asserted.

The DW_apb_uart de-asserts rts_n when the Rx FIFO threshold is reached. However, it is possible the
component at the other end of the line starts transmitting a new character before it detects the de-assertion
of its cts_n input. When this happens, the character transmission completes normally, which means an extra
character is received and pushed into the Rx FIFO (unless it is already full).

At the same time that rts_n is de-asserted, the DW_apb_uart asserts dma_rx_req, requesting a DMA burst
transaction from the DW_ahb_dmac. After the DW_ahb_dmac completes this burst transaction—with

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

length equal to the Rx FIFO threshold—there is one character left in the Rx FIFO, preventing rts_n from
being asserted again.

The DW_apb_uart asserts the dma_rx_single_n signal—instead of dma_rx_req_n—requesting a DMA
single transaction from the DW_ahb_dmac. However, unless it is operating in the single-transaction region,
the DW_ahb_dmac ignores single-transaction requests.

A deadlock condition is then reached:

■ The DW_apb_uart does not receive any extra characters because the rts_n signal is de-asserted. No
data can be pushed into the Rx FIFO to fill it up to the threshold level again and generate a new burst
transaction request from the DW_ahb_dma; only single-transaction requests can be generated.

■ Unless it has reached the single-transaction region, the DW_ahb_dmac ignores single-transaction
requests and does not read from the Rx FIFO. The Rx FIFO cannot be emptied, which prevents the
rts_n signal from being asserted again.

This deadlock condition can be avoided if:

■ The Rx FIFO threshold level is set to a value smaller than the DMA burst transaction size. This
ensures that the Rx FIFO is always empty after a DMA burst transaction completes, regardless of
whether or not one extra character is received and rts_n is asserted accordingly.

■ The DMA block size is set to a value smaller than twice the DMA burst transaction length. This
guarantees that the DW_ahb_dmac enters the single transaction region after the DMA burst
transaction completes. It then accepts single transaction requests from the DW_apb_uart, allowing
the Rx FIFO to be emptied.

2.14 Reset Signals
When configured for asynchronous serial clock operation, the DW_apb_uart includes two separate reset
signals, each dedicated to its own clock domain:

■ presetn resets logic in pclk clock domain

■ s_rst_n resets logic in sclk clock domain

In order to avoid serious operational failures, both clock domains of the DW_apb_uart must be reset before
any attempt is made to send or receive data on the serial line; that is, it is an illegal operation to reset just one
clock domain of the DW_apb_uart without resetting the other clock domain.

Each reset signal must be de-asserted synchronously with the corresponding clock signal.

When asserting the reset signals, the s_rst_n signal should be asserted before or at the same time as presetn;
this prevents any unexpected activity on the serial line that might result from resetting the programming
registers without resetting the serial logic.

Similarly, when de-asserting the reset signals, s_rst_n should be de-asserted before presetn is de-asserted.
The safest procedure for resetting DW_apb_uart is as follows:

NoteNoteNoteNote This deadlock condition is not expected to occur frequently under normal operating conditions.
A timeout interrupt would be generated in this case, which can be used to detect the
occurrence of this deadlock condition.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

1. Assert s_rst_n and presetn; the sequence of asserting these two signals and their timing relationship
with sclk and pclk are not important

2. De-assert s_rst_n synchronously with sclk

3. De-assert presetn synchronously with pclk

Both reset signals should be active for at least three cycles of the respective clock signal.

2.15 APB Interface
The DW_apb_uart peripheral has a standard AMBA 2.0 APB interface for reading and writing the internal
registers. The host processor accesses data, control, and status information on the DW_apb_uart peripheral
through the AMBA APB 2.0/3.0/4.0 interface. This peripheral supports APB data bus widths of 8, 16, or 32
bits, which is set with the APB_DATA_WIDTH parameter.

Figure 2-37 shows the read/write buses between the DW_apb and the APB slave.

Figure 2-37 Read/Write Buses Between the DW_apb and an APB Slave

The data, control and status registers within the DW_apb_uart are byte-addressable. The maximum width
of the control or status register (except for registers mentioned in Table 2-5) in the DW_apb_uart is 8 bits.
Therefore, if the APB data bus is 8, 16, or 32 bits wide, all read and write operations to the DW_apb_uart
control and status registers require only one APB access.

The maximum width (excluding reserved bits) of registers mentioned in Table 2-5 can vary from 8 bits to 32
bits. Depending on these registers width and the APB data bus width (that is, the APB_DATA_WIDTH
parameter), the APB interface may need to perform single or multiple accesses to registers mentioned in
Table 2-5.

Table 2-5 Lists of Registers with Width (Excluding Reserved Bits) Greater than 8 Bits

Register Name

RBR Receive Buffer Register

THR Transmit Holding Register

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

Chapter “Integration Considerations” on page 229 provides information about reading to and writing from
the APB interface.

The APB3 and APB4 register accesses to the DW_apb_uart peripheral are discussed in the following
sections:

■ “APB 3.0 Support” on page 76

■ “APB 4.0 Support” on page 77

2.15.1 APB 3.0 Support

The register interface of DW_apb_uart is compliant to APB 2.0, APB 3.0, and APB 4.0 specifications. To
comply with the AMBA 3 APB Protocol Specification (v1.0) - APB3, DW_apb_uart supports the following
signals:

■ PREADY - The ready signal is used to extend the APB transfer and it is also used to indicate the end
of the transaction when there is a high in the access phase of a transaction. The PREADY signal is
always kept to its default value, that is high for all APB accesses except for the RBR and THR register
access in FIFO mode (FIFO_MODE != NONE) when FIFOs are enabled (FCR[0] set to 1). During the
RBR and THR access in FIFO mode, the PREADY signal is de-asserted to stall the APB transaction
under following conditions:

❑ Receiver FIFO is empty: The APB transaction completes and PREADY is asserted if the data is
received in the Rx FIFO before the register read/write timeout happens. For more information on
timeout, see Slave Error Response, PSLVERR on page 77.

LSR Line Status Register

SRBRn (for n=0; n<=15) Shadow Receive Buffer Register

STHRn (for n=0; n<=15) Shadow Transmit Holding Register

RFW Receive FIFO Write Register

TFL Transmit FIFO Level Register

RFL Receive FIFO Level Register

DET Driver output Enable Timing Register

TAT Turn Around Timing Register

DLF Divisor Latch Fraction Register

CPR Component Parameter Register

UCV UART Component Version Register

CTR Component Type Register

Register Name

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Functional Description

❑ Transmitter FIFO is full: The APB transaction completes and PREADY is asserted if the data is
read out of the Tx FIFO before the register read/write timeout happens For more information on
timeout, see Slave Error Response, PSLVERR on page 77.

■ PSLVERR - The PSLVERR signal is enabled when the PSLVERR_RESP_EN parameter is set to 1, so
that DW_apb_uart provides any slave error response from register interface (if required). The
DW_apb_uart generates an error response under the following conditions:

❑ Registers protected through PPROT (see Table 2-6) are accessed without relevant authorization
levels. For more information, see “APB 4.0 Support” on page 77.

❑ The DW_apb_uart stalls the APB transaction by pulling PREADY low, as the Receiver FIFO is
empty or Transmitter FIFO is full. To avoid locking of the bus for large number of clock cycle, a
timeout option is provided through configuration parameter REG_TIMEOUT_VALUE. The
timeout is triggered under following conditions:

■ Receiver FIFO remains empty or
■ Transmitter FIFO remains full

If the duration is equal to the timeout period that is REG_TIMEOUT_VALUE, then APB interface
asserts PSLVERR signal to indicate the register read/write timeout.

2.15.2 APB 4.0 Support

The DW_apb_uart register interface is compliant to the APB 4.0 specification and to comply with the AMBA
APB Protocol Specification (v2.0) - APB4, DW_apb_uart supports the following signals:

■ PSTRB - This signal specifies the APB4 write strobe bus. In a write transaction, the PSTRB signal
indicates validity of PWDATA bytes. DW_apb_uart component selectively writes to the bytes of the
addressed register whose corresponding bit in the PSTRB signal is high. Bytes strobed low by the
corresponding PSTRB bits are not modified. The incoming strobe bits for a read transaction is always
zero as per the APB 4.0 protocol.

Below figure shows the byte lane mapping of the PSTRB signal.

■ PPROT - This signal supports the protection feature of the APB 4.0 protocol. The APB 4.0 protection
feature is supported on the registers listed in Table 2-6. The protection level register
(UART_PROT_LEVEL) defines the APB4 protection level, that is the protected registers are updated
only if the PPROT privilege is more than the protection privilege programmed in the protection level

NoteNoteNoteNote
■ When FIFO access mode is enabled the data that is written to the RFWD filed of RFW

register is pushed into the RBR register.

■ When APB_DATA_WIDTH=8, two APB writes are required to write the RFW register, since
its width is 9 bits. In this scenario, RBR register is updated after the second APB write (with
PSTRB[1]=1) into the RFW register.

PSTRB[3] PSTRB[2] PSTRB[1] PSTRB[0]

31 24 23 16 15 8 7 0

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_uart Databook

register. Otherwise, PSLVERR is asserted and the protected register is not updated, provided that
PSLVERR_RESP_EN is set as high. If the PSLVERR_RESP_EN is low, then protection feature and
PSLVERR generation logic is not implemented.

Table 2-6 List of Registers Protected Through PPROT

Table 2-7 PPROT Level, Protection Level Programmed in UART_PROT_LEVEL, and Slave Error Response

Register Name

RBR Receive Buffer Register

THR Transmit Holding Register

FCR FIFO Control Register

LCR Line Control Register

MCR Modem Control Register

PPROT UART_PROT_LEVEL PSLVERR

[2] [1] [0] [2] [1] [0]

X X 0 X X 1 HIGH

X 1 X X 0 X HIGH

0 X 1 1 X X HIGH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_uart Databook

3.1 Parameters

Table 3-1 Parameters

Label Description

Register Interface Type Selects Register Interface type as APB2, APB3 or APB4. By default, DW_apb_uart
supports APB2 interface.
Values:

■ APB2 (0)

■ APB3 (1)

■ APB4 (2)

Default Value: APB2
Enabled: DWC-APB-Advanced-Source source license exists.
Parameter Name: SLAVE_INTERFACE_TYPE

UART FIFO depth Receiver and Transmitter FIFO depth in bytes. A setting of NONE means no FIFOs,
which implies the 16450-compatible mode of operation. Most enhanced features are
unavailable in the 16450 mode such as the Auto Flow Control and Programmable
THRE interrupt modes. Setting a FIFO depth greater than 256 restricts the FIFO
Memory to External only. For more details, refer to the "FIFO Support" section of the
databook.
Values: 0, 16, 32, 64, 128, 256, 512, 1024, 2048
Default Value: 16
Enabled: Always
Parameter Name: FIFO_MODE

Slave Error Response Enable Enable Slave Error response signaling. The component will refrain From signaling
an error response if this parameter is disabled. This will result in disabling all
features that require SLVERR functionality to be implemented.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: SLAVE_INTERFACE_TYPE>0
Parameter Name: PSLVERR_RESP_EN

UART Protection Level Reset Value of UART_PROT_LEVEL register. A high on any bit of UART protection
level requires a high on the corresponding pprot input bit to gain access to the
protected registers. Else, SLVERR response is triggered. A zero on the protection
bit will provide access to the register if other protection levels are satisfied.
Values: 0x0, ..., 0x7
Default Value: 0x2
Enabled: SLAVE_INTERFACE_TYPE>1 && PSLVERR_RESP_EN==1
Parameter Name: PROT_LEVEL_RST

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Parameter Descriptions

Hard-Code Protection Level? Setting this parameter to 1 makes UART_PROT_LEVEL a read-only register. The
register can be programmed at run-time by a user if this hard-code option is set to 0.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: SLAVE_INTERFACE_TYPE>1 && PSLVERR_RESP_EN==1
Parameter Name: HC_PROT_LEVEL

Width of Register timeout
counter

Defines the width of Register timeout counter. If set to zero, the timeout counter
register is disabled, and timeout is triggered as soon as the transaction tries to read
an empty RX FIFO or write to a full TX FIFO. These are the only cases where
PREADY signal goes low, in all other cases PREADY is tied high. Setting values
from 4 to 8 for this parameter configures the timeout period from 2^4 to 2^8 pclk
cycles.
Values: 0, 4, 5, 6, 7, 8
Default Value: (SLAVE_INTERFACE_TYPE > 0 && PSLVERR_RESP_EN==1 &&
FIFO_MODE!=0) ? 4 : 0
Enabled: SLAVE_INTERFACE_TYPE>0 && PSLVERR_RESP_EN==1 &&
FIFO_MODE!=0
Parameter Name: REG_TIMEOUT_WIDTH

Hardcode Register timeout
counter value

Checking this parameter makes Register timeout counter a read-only register. The
register can be programmed by user if the hardcode option is turned off.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: SLAVE_INTERFACE_TYPE>0 && PSLVERR_RESP_EN==1 &&
REG_TIMEOUT_WIDTH>0 && FIFO_MODE!=0
Parameter Name: HC_REG_TIMEOUT_VALUE

Register timeout counter
default start value

Defines the reset value of Register timeout counter.
Values: 0, ..., POW_2_REG_TIMEOUT_WIDTH
Default Value: 8
Enabled: SLAVE_INTERFACE_TYPE>0 && PSLVERR_RESP_EN==1 &&
REG_TIMEOUT_WIDTH>0 && FIFO_MODE!=0
Parameter Name: REG_TIMEOUT_VALUE

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_uart Databook

RS485 Interface Support Configures the peripheral for RS485 Interface support. If enabled, new signals 'de',
're' and 'rs485_en' are included in the interface to support RS485 transceiver.
Values:
■ Disabled (0)

■ Enabled (1)

Default Value: Disabled
Enabled: This parameter is enabled if DWC-APB-Advanced-Source license is
detected.
Parameter Name: UART_RS485_INTERFACE_EN

Active High RS485 Driver
Enable Signal?

Selects the polarity of the RS485 Driver Enable (de) signal.
Values:
■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: UART_RS485_INTERFACE_EN==1
Parameter Name: UART_DE_POL

Active High RS485 Receiver
Enable Signal?

Selects the polarity of the RS485 Receiver Enable (re) signal.
Values:
■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: UART_RS485_INTERFACE_EN==1
Parameter Name: UART_RE_POL

Enable 9-bit Mode Support? Configures the peripheral to have 9-bits of data per character. The 9th-bit of the
data byte sent from the master is set to 1 to indicate the address byte while cleared
to 0 to indicate the data byte.
Values:

■ Disabled (0)

■ Enabled (1)

Default Value: Disabled
Enabled: This parameter is enabled if DWC-APB-Advanced-Source license is
detected.
Parameter Name: UART_9BIT_DATA_EN

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Parameter Descriptions

APB Data Bus Width Width of APB data bus to which this component is attached. The data width can be
set to 8, 16 or 32. Register access is on 32-bit boundaries, unused bits are held at
static 0.
Values: 8, 16, 32
Default Value: 32
Enabled: Always
Parameter Name: APB_DATA_WIDTH

FIFO Memory Type Selects between external, user-supplied memory or internal DesignWare memory
(DW_ram_r_w_s_dff) for the receiver and transmitter FIFOs. FIFO depths greater
than 256 restrict FIFO Memory selection to external. In addition, selection of internal
memory restricts the Memory Read Port Type to Dflip-flop-based, synchronous read
port RAMs.
Values:

■ External (0)

■ Internal (1)

Default Value: External
Enabled: FIFO_MODE!=0 && FIFO_MODE<=256
Parameter Name: MEM_SELECT_USER

IrDA SIR Mode Support Configures the peripheral to have IrDA 1.0 SIR infrared mode. For more details,
refer to the "IrDA 1.0 SIR Protocol" section of data book.
Values:

■ Disabled (0x0)

■ Enabled (0x1)

Default Value: Disabled
Enabled: Always
Parameter Name: SIR_MODE

Low Power IrDA SIR Mode
Support

Configures the peripheral to operate in a low-power IrDA SIR mode. As the
DW_apb_uart does not support a low-power mode with a counter system to
maintain a 1.63us infrared pulse, Asynchronous Serial Clock Support will be
automatically enabled, and the sclk must be fixed to 1.8432Mhz. This provides a
1.63us sir_out_n pulse at 115.2kbaud.
Values:

■ Disabled (0x0)

■ Enabled (0x1)

Default Value: Disabled
Enabled: SIR_MODE==1
Parameter Name: SIR_LP_MODE

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_uart Databook

Support for IrDA SIR Low
Power Reception Capabilities

Configures the peripheral to to have SIR low power pulse reception capabalities.
Two additional Low power Divisor Registers are implemented and must be written
with a divisor that will give a baud rate of 115.2k for the low power pulse detection
functionality to operate correctly. Asynchronous Serial Clock support is
automatically enabled in this mode.
Values:
■ Disabled (0)

■ Enabled (1)

Default Value: Disabled
Enabled: SIR_MODE==1
Parameter Name: SIR_LP_RX

Asychronous Serial Clock
Support

When set to Disabled, the DW_apb_uart is implemented with one system clock
(pclk). When set to Enabled, two system clocks (pclk and sclk) are implemented in
order to accommodate accurate serial baud rate settings, as well as APB bus
interface requirements. Selecting Disabled, or a one-system clock, greatly restricts
system clock settings available for accurate baud rates. For more details, refer to
"Clock Support" section of the data book.
Values:
■ Disabled (1)

■ Enabled (2)

Default Value: Disabled
Enabled: SIR_LP_MODE!=1 && SIR_LP_RX!=1
Parameter Name: CLOCK_MODE

Clock Domain Crossing
Synchronization Depth?

Sets the number of synchronization stages to be placed on clock domain crossing
signals.

■ 2: 2-stage synchronization with positive-edge capturing at both the stages

■ 3: 3-stage synchronization with positive-edge capturing at all stages

■ 4: 4-stage synchronization with positive-edge capturing at all stages

Values: 2, 3, 4
Default Value: 2
Enabled: Always
Parameter Name: SYNC_DEPTH

Auto Flow Control Configures the peripheral to have the 16750-compatible auto flow control mode. For
more details, refer to "Auto Flow Control" section of the data book.
Values:
■ Disabled (0x0)

■ Enabled (0x1)

Default Value: Disabled
Enabled: FIFO_MODE!=0
Parameter Name: AFCE_MODE

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Parameter Descriptions

RTC Flow Control Trigger When set to 0, the DW_apb_uart uses the same receiver trigger level described in
FCR.RCVR register both for generating a DMA request and a handshake signal
(rts_n). When set to 1, the DW_apb_uart uses two separate trigger levels for a
DMA request and handshake signal (rts_n) in order to maximize throughput on the
interface. NOTE: Almost-Full Trigger refers to two available slots in the FIFO.
Values:
■ RX FIFO Threshold Trigger (0x0)

■ RX FIFO Almost-Full Trigger (0x1)

Default Value: RX FIFO Threshold Trigger
Enabled: AFCE_MODE!=0
Parameter Name: RTC_FCT

Programmable THRE Interrupt
Mode

Configures the peripheral to have a programmable Transmitter Hold Register Empty
(THRE) interrupt mode. For more information, refer to "Programmable THRE
Interrupt" section of the data book.
Values:
■ Disabled (0x0)

■ Enabled (0x1)

Default Value: Disabled
Enabled: FIFO_MODE!=0
Parameter Name: THRE_MODE_USER

Include Clock Gate Enable
Output on I/F?

Configures the peripheral to have a clock gate enable output signal on the interface
that indicates that the device is inactive, so clocks may be gated.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: CLK_GATE_EN

Include FIFO Access Mode? Configures the peripheral to have a programmable FIFO access mode. This is used
for test purposes to allow the receiver FIFO to be written and the transmit FIFO to
be read when FIFO's are implemented and enabled. When FIFO's are not
implemented or not enabled it allows the RBR to be written and the THR to be read.
For more details, refer to "FIFO Support" section in the data book.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: FIFO_ACCESS

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_uart Databook

Include Additional DMA
Signals on I/F?

Configures the peripheral to have four additional DMA signals on the interface so
that the device is compatible with the DesignWare DMA controller interface
requirements.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: DMA_EXTRA

Active Low DMA Signals? Selects the polarity of the DMA interface signals.
Values:
■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: DMA_POL

Assert Tx Req On Reset? Selects the DMA Tx Request assertion logic. When set to 1, DMA Tx Request will
be asserted upon reset. When set to 0, DMA Tx Request will not be asserted upon
reset. It will be asserted only after LCR register is written.
Values:
■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: DMA_HS_REQ_ON_RESET

Include On-chip Debug Output
Signals on I/F?

Configures the peripheral to have on-chip debug pins on the interface.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: DEBUG

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Parameter Descriptions

Include Baud Clock Reference
Output Signal (baudout_n) on
I/F?

Configures the peripheral to have a baud clock reference output (baudout_n) pin on
the interface.
Values:
■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: BAUD_CLK

Add Version and ID Registers,
Enable FIFO Status, Shadow
and Encoded Parameters
Register Options ?

Configures the peripheral to have the option to include the FIFO status registers,
shadow registers and encoded parameter register. Also configures the peripheral to
have the UART component version and the peripheral ID registers.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: ADDITIONAL_FEATURES

Include Software Accessible
FIFO Status Registers?

Configures the peripheral to have three additional FIFO status registers.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: FIFO_MODE!=0 && ADDITIONAL_FEATURES==1
Parameter Name: FIFO_STAT

Include Additional Shadow
Registers for Reducing
Software Overhead?

Configures the peripheral to have nine additional registers that shadow some of the
existing register bits that are regularly modified by software. These can be used to
reduce the software overhead that is introduced by having to perform read-modify
writes.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: ADDITIONAL_FEATURES==1
Parameter Name: SHADOW

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_uart Databook

Include Configuration
Parameter Register?

Configures the peripheral to have a component parameter register.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: ADDITIONAL_FEATURES==1
Parameter Name: UART_ADD_ENCODED_PARAMS

Remove Busy Functionality? Configures the peripheral to be fully 16550 compatible. This is achieved by not
having the busy functionality implemented.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: UART_16550_COMPATIBLE

Fractional Baud Rate Divisor
Support

Configures the peripheral to have Fractional Baud Rate Divisor. If enabled, new
Fractional divisor latch register (DLF) is included to program the fractional divisor
values. For more information about this feature, see "Fractional Baud Rate Support"
section in the data book.
Values:
■ Disabled (0)

■ Enabled (1)

Default Value: Disabled
Enabled: This parameter is enabled if DWC-APB-Advanced-Source license is
detected.
Parameter Name: FRACTIONAL_BAUD_DIVISOR_EN

Fractional Divisor Width Specifies the width of the fractional divisor. A high value means more precision but
long averaging period. For more information about this feature, see "Fractional Baud
Rate Support" section in the data book.
Values: 4, ..., 6
Default Value: 4
Enabled: FRACTIONAL_BAUD_DIVISOR_EN==1
Parameter Name: DLF_SIZE

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Parameter Descriptions

LSR clear Trigger? Selects the method for clearing the status in the LSR register. This is applicable only
for Overrun Error, Parity Error, Framing Error, and Break Interrupt status bits. When
set to 0, LSR status bits are cleared either on reading Rx FIFO (RBR Read) or On
reading LSR register. When set to 1, LSR status bits are cleared only on reading
LSR register.
Values:
■ RBR Read or LSR Read (0)

■ LSR Read (1)

Default Value: RBR Read or LSR Read
Enabled: FIFO_MODE!=0
Parameter Name: LSR_STATUS_CLEAR

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_uart Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the controller. For configurable IP titles, your actual
configuration might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
controller. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the inactive state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ APB Slave Interface on page 93

■ Application Interface on page 96

■ FIFO Interface on page 97

■ Modem Interface on page 100

■ DMA Interface on page 102

■ Serial Interface on page 106

■ Infrared Interface on page 107

■ Clock Control Interface on page 108

■ Debug Interface on page 109

■ RS485 Interface on page 110

■ Interrupt Interface on page 112

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

4.1 APB Slave Interface Signals

pclk - - prdata
presetn - - pready
penable - - pslverr

pwrite -
pwdata -

paddr -
psel -

pprot -
pstrb -

Table 4-1 APB Slave Interface Signals

Port Name I/O Description

pclk I APB clock used in the APB interface to program registers.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

presetn I APB clock-domain reset. Asynchronous assertion, synchronous de-
assertion. The reset must be synchronously de-asserted after the
rising edge of pclk. DW_apb_uart does not contain logic to perform
this synchronization, so it must be provided externally.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

penable I APB enable control used for timing read/write operations.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pwrite I APB Write control.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

pwdata[(APB_DATA_WIDTH-1):0] I APB write data bus.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

paddr[(UART_ADDR_SLICE_LHS-1):0] I APB address bus. Uses the lower bits of the APB address bus for
register decode.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

psel I APB peripheral select.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pprot[2:0] I APB4 Protection type. The input bits should match the corresponding
protection activated level bit of the accessed register to gain access
to the protected registers. Else the DW_apb_uart generates an error.
If protection level is turned off, any value on the corresponding bit is
acceptable. This Signal is ignored if PSLVERR_RESP_EN==0.
Exists: SLAVE_INTERFACE_TYPE>1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

pstrb[((APB_DATA_WIDTH/8)-1):0] I APB4 Write strobe bus. A high on individual bits in the pstrb bus
indicate that the corresponding incoming write data byte on APB bus
is to be updated in the addressed register.
Exists: SLAVE_INTERFACE_TYPE>1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-1 APB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

prdata[(APB_DATA_WIDTH-1):0] O APB read data bus.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

pready O The ready signal, used to extend the APB transfer and it is also used
to indicate the end of a transaction when there is a high in the access
phase of a transaction.
Exists: SLAVE_INTERFACE_TYPE>0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

pslverr O APB3 slave error response signal. The signal issues an error when
some error condition occurs, as specified in Slave error response
section.
Exists: SLAVE_INTERFACE_TYPE>0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-1 APB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

4.2 Application Interface Signals

sclk -
s_rst_n -

scan_mode -

Table 4-2 Application Interface Signals

Port Name I/O Description

sclk I Serial Interface Clock.
Exists: CLOCK_MODE==2
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

s_rst_n I Serial Interface Reset.
Exists: CLOCK_MODE==2
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

scan_mode I Scan mode. Used to ensure that test automation tools can control all
asynchronous flop signals. During scan this signal must be set high
all the time. In normal operation you must tie this signal low.
Exists: Always
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

4.3 FIFO Interface Signals

tx_ram_out - - tx_ram_in
rx_ram_out - - tx_ram_rd_addr

- tx_ram_wr_addr
- tx_ram_we_n
- tx_ram_re_n
- tx_ram_rd_ce_n
- rx_ram_in
- rx_ram_rd_addr
- rx_ram_wr_addr
- rx_ram_we_n
- rx_ram_re_n
- rx_ram_rd_ce_n

Table 4-3 FIFO Interface Signals

Port Name I/O Description

tx_ram_out[(TX_RAM_DATA_WIDTH-
1):0]

I Data to the transmit FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

rx_ram_out[(RX_RAM_DATA_WIDTH-
1):0]

I Data to the receive FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

tx_ram_in[(TX_RAM_DATA_WIDTH-
1):0]

O Data from the transmit FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

tx_ram_rd_addr[(FIFO_ADDR_WIDTH-
1):0]

O Read address pointer for the transmit FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

tx_ram_wr_addr[(FIFO_ADDR_WIDTH-
1):0]

O Write address pointer for the transmit FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

tx_ram_we_n O Write enable for the transmit FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

tx_ram_re_n O Read enable for the transmit FIFO RAM wake-up.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

tx_ram_rd_ce_n O Read port chip enable for the transmit FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

rx_ram_in[(RX_RAM_DATA_WIDTH-
1):0]

O Data from the receive FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

rx_ram_rd_addr[(FIFO_ADDR_WIDTH-
1):0]

O Read address pointer for the receive FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-3 FIFO Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

rx_ram_wr_addr[(FIFO_ADDR_WIDTH-
1):0]

O Write address pointer for the receive FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

rx_ram_we_n O Write enable for the receive FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

rx_ram_re_n O Read enable for the receive FIFO RAM wake-up.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

rx_ram_rd_ce_n O Read port chip enable for receive FIFO RAM.
Exists: FIFO_MODE!=0 && MEM_SELECT==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-3 FIFO Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

4.4 Modem Interface Signals

cts_n - - dtr_n
dsr_n - - rts_n
dcd_n - - out2_n

ri_n - - out1_n

Table 4-4 Modem Interface Signals

Port Name I/O Description

cts_n I Clear To Send Modem Status.
Exists: Always
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

dsr_n I Data Set Ready Modem Status input.
Exists: Always
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

dcd_n I Data Carrier Detect Modem Status input.
Exists: Always
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

ri_n I Ring Indicator Status input.
Exists: Always
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

dtr_n O Modem Control Data Terminal Ready Output.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

rts_n O Modem Control Request To Send output.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

out2_n O Modem Control Programmable output 2.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

out1_n O Modem Control Programmable output 1.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-4 Modem Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

102 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

4.5 DMA Interface Signals

dma_tx_ack - - dma_tx_req
dma_tx_ack_n - - dma_tx_req_n

dma_rx_ack - - dma_tx_single
dma_rx_ack_n - - dma_tx_single_n

- dma_rx_req
- dma_rx_req_n
- dma_rx_single
- dma_rx_single_n
- txrdy_n
- rxrdy_n

Table 4-5 DMA Interface Signals

Port Name I/O Description

dma_tx_ack I DMA Transmit Acknowledge (Active High) indicates that the DMA
Controller has transmitted the block of data to the DW_apb_uart for
transmission.
Exists: DMA_EXTRA==1 && DMA_POL==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

dma_tx_ack_n I DMA Transmit Acknowledge (Active Low) indicates that the DMA
Controller has transmitted the block of data to the DW_apb_uart for
transmission.
Exists: DMA_EXTRA==1 && DMA_POL==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

dma_rx_ack I DMA Receive Acknowledge (Active High) indicates that the DMA
Controller has transmitted the block of data from the DW_apb_uart.
Exists: DMA_EXTRA==1 && DMA_POL==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 103SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

dma_rx_ack_n I DMA Receive Acknowledge (Active Low) indicates that the DMA
Controller has transmitted the block of data from the DW_apb_uart.
Exists: DMA_EXTRA==1 && DMA_POL==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

dma_tx_req O Transmit Buffer Ready (Active High) indicates that the Transmit buffer
requires service from the DMA controller.
Exists: DMA_POL==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

dma_tx_req_n O Transmit Buffer Ready (Active Low) indicates that the Transmit buffer
requires service from the DMA controller.
Exists: DMA_POL==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

dma_tx_single O DMA Transmit FIFO Single (Active High) informs the DMA Controller
that there is at least one free entry in the Transmit buffer/FIFO. This
output does not request a DMA transfer.
Exists: DMA_EXTRA==1 && DMA_POL==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

dma_tx_single_n O DMA Transmit FIFO Single (Active Low) informs the DMA Controller
that there is at least one free entry in the Transmit buffer/FIFO. This
output does not request a DMA transfer.
Exists: DMA_EXTRA==1 && DMA_POL==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-5 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

104 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

dma_rx_req O Receive Buffer Ready (Active High) indicates that the Receive buffer
requires service from the DMA controller.
Exists: DMA_POL==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

dma_rx_req_n O Receive Buffer Ready (Active Low) indicates that the Receive buffer
requires service from the DMA controller.
Exists: DMA_POL==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

dma_rx_single O DMA Receive FIFO Single (Active High) informs the DMA controller
that there is at least one free entry in the Receive buffer/FIFO. This
output does not request a DMA transfer.
Exists: DMA_EXTRA==1 && DMA_POL==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

dma_rx_single_n O DMA Receive FIFO Single (Active Low) informs the DMA controller
that there is at least one free entry in the Receive buffer/FIFO. This
output does not request a DMA transfer.
Exists: DMA_EXTRA==1 && DMA_POL==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

txrdy_n O This transmit buffer read signal is used for backward compatibility of
older DW_apb_uart components to indicate that the Transmit buffer
requires service from the DMA controller.
Exists: DMA_EXTRA==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-5 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 105SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

rxrdy_n O This receive buffer read signal is used for backward compatibility of
older DW_apb_uart components to indicate that the Receive buffer
requires service from the DMA controller.
Exists: DMA_EXTRA==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-5 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

106 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

4.6 Serial Interface Signals

sin - - sout

Table 4-6 Serial Interface Signals

Port Name I/O Description

sin I Serial Input.
Exists: Always
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

sout O Serial Output.
Exists: Always
Synchronous To: CLOCK_MODE==2 ? "sclk" : "pclk"
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 107SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

4.7 Infrared Interface Signals

sir_in - - sir_out_n

Table 4-7 Infrared Interface Signals

Port Name I/O Description

sir_in I IrDA SIR Input.
Exists: SIR_MODE==1
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

sir_out_n O IrDA SIR Output.
Exists: SIR_MODE==1
Synchronous To: CLOCK_MODE==2 ? "sclk" : "pclk"
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

https://solvnet.synopsys.com
www.designware.com

108 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

4.8 Clock Control Interface Signals

- uart_lp_req_pclk
- uart_lp_req_sclk
- baudout_n

Table 4-8 Clock Control Interface Signals

Port Name I/O Description

uart_lp_req_pclk O pclk domain clock gate signal indicates that the UART is inactive, so
clocks may be gated to put the device in a low-power (lp) mode.
Exists: CLK_GATE_EN==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

uart_lp_req_sclk O sclk domain clock gate signal indicates that the UART is inactive, so
clocks may be gated to put the device in a low-power (lp) mode.
Exists: CLK_GATE_EN==1 && CLOCK_MODE==2
Synchronous To: sclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

baudout_n O Transmit clock output.
Exists: BAUD_CLK==1
Synchronous To: CLOCK_MODE==2 ? "sclk" : "pclk"
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 109SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

4.9 Debug Interface Signals

- debug

Table 4-9 Debug Interface Signals

Port Name I/O Description

debug[31:0] O On-chip debug signals are as follows:

■ debug[31:14] = RAZ

■ debug[13] = RX push indication (RBR or RX FIFO)

■ debug[12] = TX pop indication (THR or TX FIFO)

■ debug[11:10] = Receive Trigger (FCR[7:6])

■ debug[9:8] = TX Empty Trigger (FCR[5:4])

■ debug[7] = DMA Mode (FCR[3])

■ debug[6:1] = Individual interrupt sources:

■ debug[6] = Line status Interrupt

■ debug[5] = Data available Interrupt

■ debug[4] = character Timeout Interrupt

■ debug[3] = THRE interrupt

■ debug[2] = modem status interrupt

■ debug[1] = busy detect interrupt

■ debug[0] = FIFO enable (FCR[0])

Note: The debug[1] signal (busy detect interrupt) is never asserted if
UART_16550_COMPATIBLE = YES in coreConsultant.
Exists: DEBUG==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

110 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

4.10 RS485 Interface Signals

- re
- de
- rs485_en

Table 4-10 RS485 Interface Signals

Port Name I/O Description

re O Receiver Enable Signal.
This signal is used to activate and de-activate the Receiver driver.
This signal is asserted before the start of receiving serial transfer
from DW_apb_uart.
This signal is controlled through:

■ Writing into the RE_EN register; this serves as software override
option.

■ If RE_EN is programmed to 1, then based on the data available in
the TX FIFO DW_apb_uart controller automatically controls the
're' signal.

Polarity of this signal is set by RE_POL bit in TCR register.
Exists: (UART_RS485_INTERFACE_EN==1)
Synchronous To: CLOCK_MODE==2 ? "sclk" : "pclk"
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High, if TCR[1]=1; Low, if TCR[1]=0

de O Driver Enable Signal.
This signal is used to activate and de-activate the transmitter driver.
This signal is asserted before the start of transmitting serial transfer
from DW_apb_uart.
This signal is controlled through:

■ Writing into the DE_EN register; this serves as software override
option

■ If DE_EN is programmed to 1, then based on the data available in
the TX FIFO DW_apb_uart controller automatically controls the
'de' signal.

Polarity of this signal is set by DE_POL bit in TCR register.
Exists: (UART_RS485_INTERFACE_EN==1)
Synchronous To: CLOCK_MODE==2 ? "sclk" : "pclk"
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High, if TCR[2]=1; Low, if TCR[2]=0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 111SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Signal Descriptions

rs485_en O RS485 Enable Signal.
This signal indicates whether the DW_apb_uart is enabled for RS485
Mode or RS232 Mode.

■ 0 - RS232 Mode.

■ 1 - RS485 Mode.

Exists: (UART_RS485_INTERFACE_EN==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-10 RS485 Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

112 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_uart Databook

4.11 Interrupt Interface Signals

- intr

Table 4-11 Interrupt Interface Signals

Port Name I/O Description

intr O Interrupt.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 113

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

5
Register Descriptions

This chapter details all possible registers in the controller. They are arranged hierarchically into maps and
blocks (banks). For configurable IP titles, your actual configuration might not contain all of these registers.

Attention: For configurable IP titles, do not use this document to determine the exact attributes of your
register map. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the register attributes for your actual
configuration at workspace/report/ComponentRegisters.html or
workspace/report/ComponentRegisters.xml after you have completed the report creation activity. That
report comes from the exact same source as this chapter but removes all the registers that are not in your
actual configuration. This does not apply to non-configurable IP titles. In addition, all parameter
expressions are evaluated to actual values. Therefore, the Offset and Memory Access values might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

Exists Expressions

These expressions indicate the combination of configuration parameters required for a register, field, or
block to exist in the memory map. The expression is only valid in the local context and does not indicate the
conditions for existence of the parent. For example, the expression for a bit field in a register assumes that
the register exists and does not include the conditions for existence of the register.

Offset

The term Offset is synonymous with Address.

Memory Access Attributes

The Memory Access attribute is defined as <ReadBehavior>/<WriteBehavior> which are defined in the
following table.

https://solvnet.synopsys.com
www.designware.com

114 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

Special Optional Attributes

Some register fields might use the following optional attributes.

Table 5-1 Possible Read and Write Behaviors

Read (or Write) Behavior Description

RC A read clears this register field.

RS A read sets this register field.

RM A read modifies the contents of this register field.

Wo You can only write to this register once field.

W1C A write of 1 clears this register field.

W1S A write of 1 sets this register field.

W1T A write of 1 toggles this register field.

W0C A write of 0 clears this register field.

W0S A write of 0 sets this register field.

W0T A write of 0 toggles this register field.

WC Any write clears this register field.

WS Any write sets this register field.

WM Any write toggles this register field.

no Read Behavior attribute You cannot read this register. It is Write-Only.

no Write Behavior attribute You cannot write to this register. It is Read-Only.

Table 5-2 Memory Access Examples

Memory Access Description

R Read-only register field.

W Write-only register field.

R/W Read/write register field.

R/W1C You can read this register field. Writing 1 clears it.

RC/W1C Reading this register field clears it. Writing 1 clears it.

R/Wo You can read this register field. You can only write to it once.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 115SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

Component Banks/Blocks

The following table shows the address blocks for each memory map. Follow the link for an address block to
see a table of its registers.

Table 5-3 Optional Attributes

Attribute Description

Volatile As defined by the IP-XACT specification. If true, indicates in the
case of a write followed by read, or in the case of two consecutive
reads, there is no guarantee as to what is returned by the read on
the second transaction or that this return value is consistent with the
write or read of the first transaction. The element implies there is
some additional mechanism by which this field can acquire new
values other than by reads/writes/resets and other access methods
known to IP-XACT. For example, when the core updates the register
field contents.

Testable As defined by the IP-XACT specification. Possible values are
unconstrained, untestable, readOnly, writeAsRead, restore.
Untestable means that this field is untestable by a simple automated
register test. For example, the read-write access of the register is
controlled by a pin or another register. readOnly means that you
should not write to this register; only read from it. This might apply
for a register that modifies the contents of another register.

Reset Mask As defined by the IP-XACT specification. Indicates that this register
field has an unknown reset value. For example, the reset value is set
by another register or an input pin; or the register is implemented
using RAM.

* Varies Indicates that the memory access (or reset) attribute (read, write
behavior) is not fixed. For example, the read-write access of the
register is controlled by a pin or another register. Or when the
access depends on some configuration parameter; in this case the
post-configuration report in coreConsultant gives the actual access
value.

Table 5-4 Address Banks/Blocks for Memory Map: uart_memory_map

Address Block Description

uart_address_block on page 116 Exists: Always

https://solvnet.synopsys.com
www.designware.com

116 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1 uart_memory_map/uart_address_block Registers
uart_address_block. Follow the link for the register to see a detailed description of the register.

Table 5-5 Registers for Address Block: uart_memory_map/uart_address_block

Register Offset Description

RBR on page 119 0x0 Receive Buffer Register. This register can be accessed only
when the DLAB bit (LCR[7]) is...

DLL on page 121 0x0 Divisor Latch (Low). If UART_16550_COMPATIBLE = No,
then this register can be accessed only when...

THR on page 123 0x0 Transmit Holding Register. This register can be accessed
only when the DLAB bit (LCR[7]) is...

DLH on page 125 0x4 Divisor Latch High (DLH) Register. If
UART_16550_COMPATIBLE = No, then this register can be
accessed...

IER on page 126 0x4 Interrupt Enable Register. This register can be accessed
only when the DLAB bit (LCR[7]) is...

FCR on page 129 0x8 This register is only valid when the DW_apb_uart is
configured to have FIFO's implemented (FIFO_MODE...

IIR on page 132 0x8 Interrupt Identification Register

LCR on page 134 0xc Line Control Register

MCR on page 138 0x10 Modem Control Register

LSR on page 142 0x14 Line Status Register

MSR on page 149 0x18 Whenever bits 0, 1, 2 or 3 is set to logic one, to indicate a
change on the modem control inputs,...

SCR on page 154 0x1c Scratchpad Register

LPDLL on page 155 0x20 Low Power Divisor Latch Low Register. This register is only
valid when the DW_apb_uart is configured...

LPDLH on page 157 0x24 Low Power Divisor Latch High Register . This register is valid
only when the DW_apb_uart is configured...

SRBRn
(for n = 0; n <= 15) on page 159

0x30 +
n*0x4

This register is valid only when the DW_apb_uart is
configured to have additional shadow registers
implemented...

STHRn
(for n = 0; n <= 15) on page 161

0x30 +
n*0x4

Shadow Transmit Holding Register. This register is valid only
when the DW_apb_uart is configured...

FAR on page 163 0x70 FIFO Access Register

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 117SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

TFR on page 165 0x74 This register is valid only when the DW_apb_uart is
configured to have the FIFO access test mode...

RFW on page 166 0x78 This register is valid only when the DW_apb_uart is
configured to have the FIFO access test mode...

USR on page 168 0x7c UART Status register.

TFL on page 171 0x80 TFL register is valid only when the DW_apb_uart is
configured to have additional FIFO status registers
implemented...

RFL on page 172 0x84 RFL register is valid only when the DW_apb_uart is
configured to have additional FIFO status registers
implemented...

SRR on page 173 0x88 This register is valid only when the DW_apb_uart is
configured to have additional shadow registers
implemented...

SRTS on page 175 0x8c SRTS register is valid only when the DW_apb_uart is
configured to have additional shadow registers
implemented...

SBCR on page 177 0x90 SBCR register is valid only when the DW_apb_uart is
configured to have additional shadow registers
implemented...

SDMAM on page 179 0x94 This register is valid only when the DW_apb_uart is
configured to have additional FIFO registers...

SFE on page 181 0x98 SFE register is valid only when the DW_apb_uart is
configured to have additional FIFO registers implemented...

SRT on page 182 0x9c SRT register is valid only when the DW_apb_uart is
configured to have additional FIFO registers implemented...

STET on page 184 0xa0 This register is valid only when the DW_apb_uart is
configured to have FIFOs implemented (FIFO_MODE...

HTX on page 186 0xa4 Halt TX

DMASA on page 187 0xa8 DMA Software Acknowledge Register

TCR on page 188 0xac This register is used to enable or disable RS485 mode and
also control the polarity values for Driven...

DE_EN on page 191 0xb0 The Driver Output Enable Register (DE_EN) is used to
control the assertion and de-assertion of the...

RE_EN on page 192 0xb4 The Receiver Output Enable Register (RE_EN) is used to
control the assertion and de-assertion of...

Table 5-5 Registers for Address Block: uart_memory_map/uart_address_block (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

118 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

DET on page 193 0xb8 The Driver Output Enable Timing Register (DET) is used to
control the DE assertion and de-assertion...

TAT on page 195 0xbc The TurnAround Timing Register (TAT) is used to hold the
turnaround time between switching of 're'...

DLF on page 197 0xc0 This register is only valid when the DW_apb_uart is
configured to have Fractional Baud rate Divisor...

RAR on page 198 0xc4 Receive Address Register

TAR on page 200 0xc8 Transmit Address Register

LCR_EXT on page 201 0xcc Line Extended Control Register

UART_PROT_LEVEL on page 205 0xd0 UART Protection level register

REG_TIMEOUT_RST on page 206 0xd4 Name: Register timeout counter reset register This register
keeps the reset value of reg_timer counter...

CPR on page 208 0xf4 Component Parameter Register.This register is valid only
when UART_ADD_ENCODED_PARAMS = 1. If the...

UCV on page 212 0xf8 UCV register is valid only when the DW_apb_uart is
configured to have additional features implemented...

CTR on page 213 0xfc CTR is register is valid only when the DW_apb_uart is
configured to have additional features implemented...

Table 5-5 Registers for Address Block: uart_memory_map/uart_address_block (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 119SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.1 RBR

■ Name: Receive Buffer Register

■ Description: Receive Buffer Register.

 This register can be accessed only when the DLAB bit (LCR[7]) is cleared.

■ Size: 32 bits

■ Offset: 0x0

■ Exists: Always

x:
y

x:
0

R
S

V
D

_R
B

R

R
B

R

Table 5-6 Fields for Register: RBR

Bits Name
Memory
Access Description

x:y RSVD_RBR R RBR 31to9or8 Reserved bits and read as zero (0).
Value After Reset: 0x0
Exists: Always
Range Variable[x]: "(UART_9BIT_DATA_EN==1) ? \"23\" :
\"24\"" + "(UART_9BIT_DATA_EN==1) ? \"0x9\" : \"0x8\"" - 1
Range Variable[y]: "(UART_9BIT_DATA_EN==1) ? \"0x9\" :
\"0x8\""

https://solvnet.synopsys.com
www.designware.com

120 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

x:0 RBR R Receive Buffer Register.
 This register contains the data byte received on the serial
input port (sin) in UART mode or the serial infrared input
(sir_in) in infrared mode. The data in this register is valid only
if the Data Ready (DR) bit in the Line status Register (LSR)
is set.
 If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are
disabled (FCR[0] set to 0), the data in the RBR must be read
before the next data arrives, otherwise it will be overwritten,
resulting in an over-run error.
 If in FIFO mode (FIFO_MODE != NONE) and FIFOs are
enabled (FCR[0] set to 1), this register accesses the head of
the receive FIFO. If the receive FIFO is full and this register
is not read before the next data character arrives, then the
data already in the FIFO will be preserved but any incoming
data will be lost and an over-run error occurs.
Note:
 When UART_9BIT_DATA_EN=0, this field width is 8.
 When UART_9BIT_DATA_EN=1, this field width is 9.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: "(UART_9BIT_DATA_EN==1) ? \"9\" :
\"8\"" - 1

Table 5-6 Fields for Register: RBR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 121SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.2 DLL

■ Name: Divisor Latch (Low)

■ Description: Divisor Latch (Low).

 If UART_16550_COMPATIBLE = No, then this register can be accessed only when the DLAB bit
(LCR[7]) is set and the UART is not busy - that is, USR[0] is 0; otherwise this register can be accessed
only when the DLAB bit (LCR[7]) is set.

■ Size: 32 bits

■ Offset: 0x0

■ Exists: Always

31
:8

7:
0

R
S

V
D

_D
LL

_3
1t

o8

D
LL

Table 5-7 Fields for Register: DLL

Bits Name
Memory
Access Description

31:8 RSVD_DLL_31to8 R DLL 31to8 Reserved bits and read as zero (0).
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

122 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

7:0 DLL R/W Divisor Latch (Low).
 This register makes up the lower 8-bits of a 16-bit,
read/write, Divisor Latch register that contains the baud rate
divisor for the UART.
 The output baud rate is equal to the serial clock (pclk if one
clock design, sclk if two clock design (CLOCK_MODE ==
Enabled)) frequency divided by sixteen times the value of the
baud rate divisor, as follows: baud rate = (serial clock freq) /
(16 * divisor).
 Note that with the Divisor Latch Registers (DLL and DLH)
set to zero, the baud clock is disabled and no serial
communications will occur. Also, once the DLL is set, at least
8 clock cycles of the slowest DW_apb_uart clock should be
allowed to pass before transmitting or receiving data.
Value After Reset: 0x0
Exists: Always

Table 5-7 Fields for Register: DLL (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 123SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.3 THR

■ Name: Transmit Holding Register

■ Description: Transmit Holding Register.

 This register can be accessed only when the DLAB bit (LCR[7]) is cleared.

■ Size: 32 bits

■ Offset: 0x0

■ Exists: Always

x:
y

x:
0

R
S

V
D

_T
H

R

T
H

R

Table 5-8 Fields for Register: THR

Bits Name
Memory
Access Description

x:y RSVD_THR R THR 31to9or8 Reserved bits and read as zero (0).
Value After Reset: 0x0
Exists: Always
Range Variable[x]: "(UART_9BIT_DATA_EN==1) ? \"23\" :
\"24\"" + "(UART_9BIT_DATA_EN==1) ? \"0x9\" : \"0x8\"" - 1
Range Variable[y]: "(UART_9BIT_DATA_EN==1) ? \"0x9\" :
\"0x8\""

https://solvnet.synopsys.com
www.designware.com

124 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

x:0 THR W Transmit Holding Register.
 This register contains data to be transmitted on the serial
output port (sout) in UART mode or the serial infrared output
(sir_out_n) in infrared mode. Data should only be written to
the THR when the THR Empty (THRE) bit (LSR[5]) is set.
 If in non-FIFO mode or FIFO's are disabled (FCR[0] set to
zero) and THRE is set, writing a single character to the THR
clears the THRE. Any additional writes to the THR before the
THRE is set again causes the THR data to be overwritten.
 If in FIFO mode and FIFO's are enabled (FCR[0] set to one)
and THRE is set, x number of characters of data may be
written to the THR before the FIFO is full. The number x
(default=16) is determined by the value of FIFO Depth that is
set during configuration. Any attempt to write data when the
FIFO is full results in the write data being lost.
Note:
 When UART_9BIT_DATA_EN=0, this field width is 8.
 When UART_9BIT_DATA_EN=1, this field width is 9.
The 9th bit is applicable only when LCR_EXT[3]=1.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: "(UART_9BIT_DATA_EN==1) ? \"9\" :
\"8\"" - 1

Table 5-8 Fields for Register: THR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 125SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.4 DLH

■ Name: Divisor Latch High

■ Description: Divisor Latch High (DLH) Register.

 If UART_16550_COMPATIBLE = No, then this register can be accessed only when the DLAB bit
(LCR[7]) is set and the UART is not busy, that is, USR[0] is 0; otherwise this register can be accessed
only when the DLAB bit (LCR[7]) is set.

■ Size: 32 bits

■ Offset: 0x4

■ Exists: Always

31
:8

7:
0

R
S

V
D

_D
LH

dl
h

Table 5-9 Fields for Register: DLH

Bits Name
Memory
Access Description

31:8 RSVD_DLH R DLH 31to8 Reserved bits and read as zero (0).
Value After Reset: 0x0
Exists: Always

7:0 dlh R/W Upper 8-bits of a 16-bit, read/write, Divisor Latch register that
contains the baud rate divisor for the UART.
 The output baud rate is equal to the serial clock (pclk if one
clock design, sclk if two clock design (CLOCK_MODE ==
Enabled)) frequency divided by sixteen times the value of the
baud rate divisor, as follows: baud rate = (serial clock freq) /
(16 * divisor).
 Note that with the Divisor Latch Registers (DLL and DLH)
set to zero, the baud clock is disabled and no serial
communications will occur. Also, once the DLH is set, at
least 8 clock cycles of the slowest DW_apb_uart clock
should be allowed to pass before transmitting or receiving
data.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

126 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.5 IER

■ Name: Interrupt Enable Register

■ Description: Interrupt Enable Register.

 This register can be accessed only when the DLAB bit (LCR[7]) is cleared.

■ Size: 32 bits

■ Offset: 0x4

■ Exists: Always

31
:8

7 6:
5

4 3 2 1 0

R
S

V
D

_I
E

R
_3

1t
o8

P
T

IM
E

R
S

V
D

_I
E

R
_6

to
5

E
LC

O
LR

E
D

S
S

I

E
LS

I

E
T

B
E

I

E
R

B
F

I

Table 5-10 Fields for Register: IER

Bits Name
Memory
Access Description

31:8 RSVD_IER_31to8 R IER 31to8 Reserved bits and read as zero (0).
Value After Reset: 0x0
Exists: Always

7 PTIME * Varies Programmable THRE Interrupt Mode Enable. Writeable
only when THRE_MODE_USER == Enabled, always
readable. This is used to enable/disable the generation of
THRE Interrupt.
Values:
■ 0x0 (DISABLED): Disable Programmable THRE Interrupt

Mode

■ 0x1 (ENABLED): Enable Programmable THRE Interrupt
Mode

Value After Reset: 0x0
Exists: Always
Memory Access: "(THRE_MODE_USER==1 &&
FIFO_MODE!=0) ? \"read-write\" : \"read-only\""

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 127SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

6:5 RSVD_IER_6to5 R IER 6to5 Reserved bits read as zero (0).
Value After Reset: 0x0
Exists: Always

4 ELCOLR * Varies Interrupt Enable Register: ELCOLR, this bit controls the
method for clearing the status in the LSR register. This is
applicable only for Overrun Error, Parity Error, Framing Error,
and Break Interrupt status bits. 0 = LSR status bits are
cleared either on reading Rx FIFO (RBR Read) or On
reading LSR register. 1 = LSR status bits are cleared only on
reading LSR register. Writeable only when
LSR_STATUS_CLEAR == Enabled, always readable.
Values:

■ 0x0 (DISABLED): Disable ALC

■ 0x1 (ENABLED): Enable ALC

Value After Reset: 0x0
Exists: Always
Memory Access: "(LSR_STATUS_CLEAR==1) ? \"read-
write\" : \"read-only\""

3 EDSSI R/W Enable Modem Status Interrupt. This is used to
enable/disable the generation of Modem Status Interrupt.
This is the fourth highest priority interrupt.
Values:

■ 0x0 (DISABLED): Disable Modem Status Interrupt

■ 0x1 (ENABLED): Enable Modem Status Interrupt

Value After Reset: 0x0
Exists: Always

2 ELSI R/W Enable Receiver Line Status Interrupt. This is used to
enable/disable the generation of Receiver Line Status
Interrupt. This is the highest priority interrupt.
Values:

■ 0x0 (DISABLED): Disable Receiver Line Status Interrupt

■ 0x1 (ENABLED): Enable Receiver Line Status Interrupt

Value After Reset: 0x0
Exists: Always

Table 5-10 Fields for Register: IER (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

128 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

1 ETBEI R/W Enable Transmit Holding Register Empty Interrupt. This
is used to enable/disable the generation of Transmitter
Holding Register Empty Interrupt. This is the third highest
priority interrupt.
Values:

■ 0x0 (DISABLED): Disable Transmit empty interrupt

■ 0x1 (ENABLED): Enable Transmit empty interrupt

Value After Reset: 0x0
Exists: Always

0 ERBFI R/W Enable Received Data Available Interrupt. This is used to
enable/disable the generation of Received Data Available
Interrupt and the Character Timeout Interrupt (if in FIFO
mode and FIFO's enabled). These are the second highest
priority interrupts.
Values:

■ 0x0 (DISABLED): Disable Receive data Interrupt

■ 0x1 (ENABLED): Enable Receive data Interrupt

Value After Reset: 0x0
Exists: Always

Table 5-10 Fields for Register: IER (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 129SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.6 FCR

■ Name: FIFO Control Register

■ Description: This register is only valid when the DW_apb_uart is configured to have FIFO's
implemented (FIFO_MODE != NONE). If FIFO's are not implemented, this register does not exist
and writing to this register address will have no effect.

■ Size: 32 bits

■ Offset: 0x8

■ Exists: FIFO_MODE != 0

31
:8

7:
6

5:
4

3 2 1 0

R
S

V
D

_F
C

R
_3

1t
o8

R
T

T
E

T

D
M

A
M

X
F

IF
O

R

R
F

IF
O

R

F
IF

O
E

Table 5-11 Fields for Register: FCR

Bits Name
Memory
Access Description

31:8 RSVD_FCR_31to8 R FCR 31to8 Reserved bits and read as 0.
Value After Reset: 0x0
Exists: Always

7:6 RT W RCVR Trigger (or RT). This is used to select the trigger level
in the receiver FIFO at which the Received Data Available
Interrupt will be generated. In auto flow control mode, it is
used to determine when the rts_n signal will be de-asserted
only when RTC_FCT is disabled. It also determines when
the dma_rx_req_n signal will be asserted when in certain
modes of operation. For details on DMA support, refer to
'DMA Support' section of data book.
Values:

■ 0x0 (FIFO_CHAR_1): 1 character in FIFO

■ 0x1 (FIFO_QUARTER_FULL): FIFO 1/4 full

■ 0x2 (FIFO_HALF_FULL): FIFO 1/2 full

■ 0x3 (FIFO_FULL_2): FIFO 2 less than full

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

130 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5:4 TET * Varies TX Empty Trigger (or TET). Writes will have no effect when
THRE_MODE_USER == Disabled. This is used to select the
empty threshold level at which the THRE Interrupts will be
generated when the mode is active. It also determines when
the dma_tx_req_n signal will be asserted when in certain
modes of operation. For details on DMA support, refer to
'DMA Support' section of data book.
Values:

■ 0x0 (FIFO_EMPTY): FIFO Empty

■ 0x1 (FIFO_CHAR_2): 2 characters in FIFO

■ 0x2 (FIFO_QUARTER_FULL): FIFO 1/4 full

■ 0x3 (FIFO_HALF_FULL): FIFO 1/2 full

Value After Reset: 0x0
Exists: Always
Memory Access: "(THRE_MODE_USER==1) ? \"write-
only\" : \"read-only\""

3 DMAM W DMA Mode (or DMAM). This determines the DMA signalling
mode used for the dma_tx_req_n and dma_rx_req_n output
signals when additional DMA handshaking signals are not
selected (DMA_EXTRA == NO). For details on DMA
support, refer to 'DMA Support' section of data book.
Values:
■ 0x0 (MODE0): Mode 0

■ 0x1 (MODE1): Mode 1

Value After Reset: 0x0
Exists: Always

2 XFIFOR W XMIT FIFO Reset (or XFIFOR). This resets the control
portion of the transmit FIFO and treats the FIFO as empty.
This will also de-assert the DMA TX request and single
signals when additional DMA handshaking signals are
selected (DMA_EXTRA == YES). Note that this bit is 'self-
clearing' and it is not necessary to clear this bit.
Values:
■ 0x1 (RESET): Transmit FIFO reset

Value After Reset: 0x0
Exists: Always

Table 5-11 Fields for Register: FCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 131SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

1 RFIFOR W RCVR FIFO Reset (or RFIFOR). This resets the control
portion of the receive FIFO and treats the FIFO as empty.
This will also de-assert the DMA RX request and single
signals when additional DMA handshaking signals are
selected (DMA_EXTRA == YES). Note that this bit is 'self-
clearing' and it is not necessary to clear this bit.
Values:

■ 0x1 (RESET): Receive FIFO reset

Value After Reset: 0x0
Exists: Always

0 FIFOE W FIFO Enable (or FIFOE). This enables/disables the transmit
(XMIT) and receive (RCVR) FIFOs. Whenever the value of
this bit is changed both the XMIT and RCVR controller
portion of FIFOs is reset.
Values:

■ 0x0 (DISABLED): FIFO disabled

■ 0x1 (ENABLED): FIFO enabled

Value After Reset: 0x0
Exists: Always

Table 5-11 Fields for Register: FCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

132 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.7 IIR

■ Name: Interrupt Identification Register

■ Description: Interrupt Identification Register

■ Size: 32 bits

■ Offset: 0x8

■ Exists: Always

31
:8

7:
6

5:
4

3:
0

R
S

V
D

_I
IR

_3
1t

o8

F
IF

O
S

E

R
S

V
D

_I
IR

_5
to

4

IID

Table 5-12 Fields for Register: IIR

Bits Name
Memory
Access Description

31:8 RSVD_IIR_31to8 R IIR 31to8 Reserved bits and read as 0.
Value After Reset: 0x0
Exists: Always

7:6 FIFOSE R FIFOs Enabled (or FIFOSE). This is used to indicate
whether the FIFOs are enabled or disabled.
Values:
■ 0x0 (DISABLED): FIFOs are disabled

■ 0x3 (ENABLED): FIFOs are enabled

Value After Reset: 0x0
Exists: Always

5:4 RSVD_IIR_5to4 R IIR 5to4 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 133SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

3:0 IID R Interrupt ID (or IID). This indicates the highest priority
pending interrupt which can be one of the following types
specified in Values. For information on several levels into
which the interrupt priorities are split into, see the 'Interrupts'
section in the DW_apb_uart Databook.
Note: an interrupt of type 0111 (busy detect) will never get
indicated if UART_16550_COMPATIBLE == YES in
coreConsultant.
Bit 3 indicates an interrupt can only occur when the FIFOs
are enabled and used to distinguish a Character Timeout
condition interrupt.
Values:

■ 0x0 (MODEM_STATUS): modem status

■ 0x1 (NO_INTERRUPT_PENDING): no interrupt pending

■ 0x2 (THR_EMPTY): THR empty

■ 0x4 (RECEIVED_DATA_AVAILABLE): received data
available

■ 0x6 (RECEIVER_LINE_STATUS): receiver line status

■ 0x7 (BUSY_DETECT): busy detect

■ 0xc (CHARACTER_TIMEOUT): character timeout

Value After Reset: 0x1
Exists: Always

Table 5-12 Fields for Register: IIR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

134 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.8 LCR

■ Name: Line Control Register

■ Description: Line Control Register

■ Size: 32 bits

■ Offset: 0xc

■ Exists: Always

31
:8

7 6 5 4 3 2 1:
0

R
S

V
D

_L
C

R
_3

1t
o8

D
LA

B

B
C

S
P

E
P

S

P
E

N

S
T

O
P

D
LS

Table 5-13 Fields for Register: LCR

Bits Name
Memory
Access Description

31:8 RSVD_LCR_31to8 R LCR 31to8 Reserved bits and read as 0.
Value After Reset: 0x0
Exists: Always

7 DLAB R/W Divisor Latch Access Bit.
If UART_16550_COMPATIBLE == NO then, writeable only
when UART is not busy (USR[0] is zero), otherwise always
writable and always readable. This bit is used to enable
reading and writing of the Divisor Latch register (DLL and
DLH/LPDLL and LPDLH) to set the baud rate of the UART.
This bit must be cleared after initial baud rate setup in order
to access other registers.
Values:
■ 0x0 (DISABLED): Divisor Latch register is writable only

when UART Not BUSY

■ 0x1 (ENABLED): Divisor Latch register is always
readable and writable

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 135SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

6 BC R/W Break Control Bit.
This is used to cause a break condition to be transmitted to
the receiving device. If set to one the serial output is forced
to the spacing (logic 0) state. When not in Loopback Mode,
as determined by MCR[4], the sout line is forced low until the
Break bit is cleared. If SIR_MODE == Enabled and active
(MCR[6] set to one) the sir_out_n line is continuously pulsed.
When in Loopback Mode, the break condition is internally
looped back to the receiver and the sir_out_n line is forced
low.
Values:
■ 0x0 (DISABLED): Serial output is released for data

transmission

■ 0x1 (ENABLED): Serial output is forced to spacing state

Value After Reset: 0x0
Exists: Always

5 SP R/W Stick Parity.
 If UART_16550_COMPATIBLE = NO, then writeable only
when UART is not busy (USR[0] is 0); otherwise always
writable and always readable. This bit is used to force parity
value. When PEN, EPS and Stick Parity are set to 1, the
parity bit is transmitted and checked as logic 0. If PEN and
Stick Parity are set to 1 and EPS is a logic 0, then parity bit
is transmitted and checked as a logic 1. If this bit is set to 0,
Stick Parity is disabled.
Values:
■ 0x0 (DISABLED): Stick parity disabled

■ 0x1 (ENABLED): Stick parity enabled

Value After Reset: 0x0
Exists: Always

Table 5-13 Fields for Register: LCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

136 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

4 EPS R/W Even Parity Select.
If UART_16550_COMPATIBLE == NO then, writeable only
when UART is not busy (USR[0] is zero), otherwise always
writable and always readable. This is used to select between
even and odd parity, when parity is enabled (PEN set to
one). If set to one, an even number of logic '1's is transmitted
or checked. If set to zero, an odd number of logic '1's is
transmitted or checked.
Values:
■ 0x0 (ODD_PARITY): an odd parity is transmitted or

checked

■ 0x1 (EVEN_PARITY): an even parity is transmitted or
checked

Value After Reset: 0x0
Exists: Always

3 PEN R/W Parity Enable
. If UART_16550_COMPATIBLE == NO then, writeable only
when UART is not busy (USR[0] is zero), otherwise always
writable and always readable. This bit is used to enable and
disable parity generation and detection in transmitted and
received serial character respectively.
Values:
■ 0x0 (DISABLED): disable parity

■ 0x1 (ENABLED): enable parity

Value After Reset: 0x0
Exists: Always

Table 5-13 Fields for Register: LCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 137SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

2 STOP R/W Number of stop bits.
If UART_16550_COMPATIBLE == NO then, writeable only
when UART is not busy (USR[0] is zero), otherwise always
writable and always readable. This is used to select the
number of stop bits per character that the peripheral will
transmit and receive. If set to zero, one stop bit is transmitted
in the serial data.
 If set to one and the data bits are set to 5 (LCR[1:0] set to
zero) one and a half stop bits is transmitted. Otherwise, two
stop bits are transmitted. Note that regardless of the number
of stop bits selected the receiver will only check the first stop
bit.
Note: NOTE: The STOP bit duration implemented by
DW_apb_uart may appear longer due to idle time inserted
between characters for some configurations and baud clock
divisor values in the transmit direction; for details on idle time
between transmitted transfers, refer to 'Back-to-Back
Character Stream Transmission' section in data book.
Values:

■ 0x0 (STOP_1BIT): 1 stop bit

■ 0x1 (STOP_1_5BIT_OR_2BIT): 1.5 stop bits when DLS
(LCR[1:0]) is zero, else 2 stop bit

Value After Reset: 0x0
Exists: Always

1:0 DLS R/W Data Length Select (or CLS as used in legacy).
 If UART_16550_COMPATIBLE == NO then, writeable only
when UART is not busy (USR[0] is zero), otherwise always
writable and always readable. When DLS_E in LCR_EXT is
set to 0, this register is used to select the number of data bits
per character that the peripheral will transmit and receive.
Values:
■ 0x0 (CHAR_5BITS): 5 data bits per character

■ 0x1 (CHAR_6BITS): 6 data bits per character

■ 0x2 (CHAR_7BITS): 7 data bits per character

■ 0x3 (CHAR_8BITS): 8 data bits per character

Value After Reset: 0x0
Exists: Always

Table 5-13 Fields for Register: LCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

138 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.9 MCR

■ Name: Modem Control Register

■ Description: Modem Control Register

■ Size: 32 bits

■ Offset: 0x10

■ Exists: Always

31
:7

6 5 4 3 2 1 0

R
S

V
D

_M
C

R
_3

1t
o7

S
IR

E

A
F

C
E

Lo
op

B
ac

k

O
U

T
2

O
U

T
1

R
T

S

D
T

R
Table 5-14 Fields for Register: MCR

Bits Name
Memory
Access Description

31:7 RSVD_MCR_31to7 R MCR 31to7 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

6 SIRE * Varies SIR Mode Enable
. Writeable only when SIR_MODE == Enabled, always
readable. This is used to enable/ disable the IrDA SIR Mode
features as described in section 'IrDA 1.0 SIR Protocol' in the
databook.
Note: To enable SIR mode, write the appropriate value to the
MCR register before writing to the LCR register. For details
of the recommended programming sequence, refer to
'Programing Examples' section of data book.
Values:

■ 0x0 (DISABLED): IrDA SIR Mode disabled

■ 0x1 (ENABLED): IrDA SIR Mode enabled

Value After Reset: 0x0
Exists: Always
Memory Access: "(SIR_MODE==1) ? \"read-write\" : \"read-
only\""

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 139SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5 AFCE * Varies Auto Flow Control Enable
. Writeable only when AFCE_MODE == Enabled, always
readable. When FIFOs are enabled and the Auto Flow
Control Enable (AFCE) bit is set, Auto Flow Control features
are enabled as described in section 'Auto Flow Control' in
data book.
Values:
■ 0x0 (DISABLED): Auto Flow Control Mode disabled

■ 0x1 (ENABLED): Auto Flow Control Mode enabled

Value After Reset: 0x0
Exists: Always
Memory Access: "(AFCE_MODE==1) ? \"read-write\" :
\"read-only\""

4 LoopBack R/W LoopBack Bit
. This is used to put the UART into a diagnostic mode for test
purposes. If operating in UART mode (SIR_MODE !=
Enabled OR NOT active, MCR[6] set to zero), data on the
sout line is held high, while serial data output is looped back
to the sin line, internally. In this mode all the interrupts are
fully functional. Also, in loopback mode, the modem control
inputs (dsr_n, cts_n, ri_n, dcd_n) are disconnected and the
modem control outputs (dtr_n, rts_n, out1_n, out2_n) are
looped back to the inputs, internally.
If operating in infrared mode (SIR_MODE == Enabled AND
active, MCR[6] set to one), data on the sir_out_n line is held
low, while serial data output is inverted and looped back to
the sir_in line.
Values:
■ 0x0 (DISABLED): Loopback mode disabled

■ 0x1 (ENABLED): Loopback mode enabled

Value After Reset: 0x0
Exists: Always

Table 5-14 Fields for Register: MCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

140 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

3 OUT2 R/W OUT2
. This is used to directly control the user-designated Output2
(out2_n) output. The value written to this location is inverted
and driven out on out2_n. Note that in Loopback mode
(MCR[4] set to one), the out2_n output is held inactive high
while the value of this location is internally looped back to an
input.
Values:
■ 0x0 (OUT2_0): out2_n de-asserted (logic 1)

■ 0x1 (OUT2_1): out2_n asserted (logic 0)

Value After Reset: 0x0
Exists: Always

2 OUT1 R/W OUT1
. This is used to directly control the user-designated Output1
(out1_n) output. The value written to this location is inverted
and driven out on out1_n. Note that in Loopback mode
(MCR[4] set to one), the out1_n output is held inactive high
while the value of this location is internally looped back to an
input.
Values:
■ 0x0 (OUT1_0): out1_n de-asserted (logic 1)

■ 0x1 (OUT1_1): out1_n asserted (logic 0)

Value After Reset: 0x0
Exists: Always

Table 5-14 Fields for Register: MCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 141SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

1 RTS R/W Request to Send.
This is used to directly control the Request to Send (rts_n)
output. The Request To Send (rts_n) output is used to inform
the modem or data set that the UART is ready to exchange
data.
When Auto RTS Flow Control is not enabled (MCR[5] set to
zero), the rts_n signal is set low by programming MCR[1]
(RTS) to a high. In Auto Flow Control, AFCE_MODE ==
Enabled and active (MCR[5] set to one) and FIFO's enable
(FCR[0] set to one), the rts_n output is controlled in the
same way, but is also gated with the receiver FIFO threshold
trigger (rts_n is inactive high when above the threshold). The
rts_n signal will be de-asserted when MCR[1] is set low.
Note that in Loopback mode (MCR[4] set to one), the rts_n
output is held inactive high while the value of this location is
internally looped back to an input.
Values:

■ 0x0 (INACTIVE): Request to Send rts_n de-asserted
(logic 1)

■ 0x1 (ACTIVE): Request to Send rts_n asserted (logic 0)

Value After Reset: 0x0
Exists: Always

0 DTR R/W Data Terminal Ready.
This is used to directly control the Data Terminal Ready
(dtr_n) output. The value written to this location is inverted
and driven out on dtr_n.
The Data Terminal Ready output is used to inform the
modem or data set that the UART is ready to establish
communications. Note that in Loopback mode (MCR[4] set to
one), the dtr_n output is held inactive high while the value of
this location is internally looped back to an input.
Values:
■ 0x0 (INACTIVE): dtr_n de-asserted (logic1)

■ 0x1 (ACTIVE): dtr_n asserted (logic 0)

Value After Reset: 0x0
Exists: Always

Table 5-14 Fields for Register: MCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

142 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.10 LSR

■ Name: Line Status Register

■ Description: Line Status Register

■ Size: 32 bits

■ Offset: 0x14

■ Exists: Always

31
:9

8 7 6 5 4 3 2 1 0

R
S

V
D

_L
S

R
_3

1t
o9

A
D

D
R

_R
C

V
D

R
F

E

T
E

M
T

T
H

R
E

B
I

F
E

P
E

O
E

D
R

Table 5-15 Fields for Register: LSR

Bits Name
Memory
Access Description

31:9 RSVD_LSR_31to9 R LSR 31to9 Reserved bits read as zero.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 143SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

8 ADDR_RCVD R Address Received Bit.
 If 9Bit data mode (LCR_EXT[0]=1) is enabled, this bit is
used to indicate the 9th bit of the receive data is set to 1.
This bit can also be used to indicate whether the incoming
character is address or data.

■ 1 = Indicates the character is address.

■ 0 = Indicates the character is data.

 In the FIFO mode, since the 9th bit is associated with a
character received, it is revealed when the character with
the 9th bit set to 1 is at the top of the FIFO.
Reading the LSR clears the 9BIT.

Note: User needs to ensure that interrupt gets cleared
(reading LSR register) before the next address byte arrives.
If there is a delay in clearing the interrupt, then Software will
not be able to distinguish between multiple address
related interrupt.
Value After Reset: 0x0
Exists: UART_9BIT_DATA_EN == 1

7 RFE R Receiver FIFO Error bit.
This bit is only relevant when FIFO_MODE != NONE AND
FIFO's are enabled (FCR[0] set to one). This is used to
indicate if there is at least one parity error, framing error, or
break indication in the FIFO.
This bit is cleared when the LSR is read and the character
with the error is at the top of the receiver FIFO and there are
no subsequent errors in the FIFO.
Values:
■ 0x0 (NO_RX_FIFO_ERROR): No error in RX FIFO

■ 0x1 (RX_FIFO_ERROR): Error in RX FIFO

Value After Reset: 0x0
Exists: FIFO_MODE != 0

Table 5-15 Fields for Register: LSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

144 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

6 TEMT R Transmitter Empty bit.
If in FIFO mode (FIFO_MODE != NONE) and FIFO's
enabled (FCR[0] set to one), this bit is set whenever the
Transmitter Shift Register and the FIFO are both empty. If in
the non-FIFO mode or FIFO's are disabled, this bit is set
whenever the Transmitter Holding Register and the
Transmitter Shift Register are both empty.
Values:
■ 0x0 (DISABLED): Transmitter not empty

■ 0x1 (ENABLED): Transmitter empty

Value After Reset: 0x1
Exists: Always

5 THRE R Transmit Holding Register Empty bit.
If THRE_MODE_USER = Disabled or THRE mode is
disabled (IER[7] set to zero) and regardless of FIFO's being
implemented/enabled or not, this bit indicates that the THR
or TX FIFO is empty.
 This bit is set whenever data is transferred from the THR or
TX FIFO to the transmitter shift register and no new data has
been written to the THR or TX FIFO. This also causes a
THRE Interrupt to occur, if the THRE Interrupt is enabled. If
THRE_MODE_USER == Enabled AND FIFO_MODE !=
NONE and both modes are active (IER[7] set to one and
FCR[0] set to one respectively), the functionality is switched
to indicate the transmitter FIFO is full, and no longer controls
THRE interrupts, which are then controlled by the FCR[5:4]
threshold setting. Programmable THRE interrupt mode
operation is described in detail in section 'Programmable
THRE Interrupt' in data book.
Values:

■ 0x0 (DISABLED): THRE interrupt control is disabled

■ 0x1 (ENABLED): THRE interrupt control is enabled

Value After Reset: 0x1
Exists: Always

Table 5-15 Fields for Register: LSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 145SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

4 BI R Break Interrupt bit.
This is used to indicate the detection of a break sequence on
the serial input data.
If in UART mode it is set whenever the serial input, sin, is
held in a logic '0' state for longer than the sum of start time +
data bits + parity + stop bits.
If in infrared mode it is set whenever the serial input, sir_in,
is continuously pulsed to logic '0' for longer than the sum of
start time + data bits + parity + stop bits. A break condition
on serial input causes one and only one character, consisting
of all zeros, to be received by the UART.
 In the FIFO mode, the character associated with the break
condition is carried through the FIFO and is revealed when
the character is at the top of the FIFO.

Reading the LSR clears the BI bit (if
LSR_STATUS_CLEAR==1) Or Reading the LSR or RBR
clears the BI bit (if LSR_STATUS_CLEAR==0).
In the non-FIFO mode, the BI indication occurs immediately
and persists until the LSR is read.
Note: If a FIFO is full when a break condition is received, a
FIFO overrun occurs. The break condition and all the
information associated with it-parity and framing errors-is
discarded; any information that a break character was
received is lost.
Values:

■ 0x0 (NO_BREAK): No break sequence detected

■ 0x1 (BREAK): Break sequence detected

Value After Reset: 0x0
Exists: Always

Table 5-15 Fields for Register: LSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

146 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

3 FE R Framing Error bit.
This is used to indicate the occurrence of a framing error in
the receiver. A framing error occurs when the receiver does
not detect a valid STOP bit in the received data.
In the FIFO mode, since the framing error is associated with
a character received, it is revealed when the character with
the framing error is at the top of the FIFO. When a framing
error occurs the UART will try resynchronize. It does this by
assuming that the error was due to the start bit of the next
character and then continues receiving the other bit i.e. data,
and/or parity and stop.
It should be noted that the Framing Error (FE) bit (LSR[3])
will be set if a break interrupt has occurred, as indicated by
Break Interrupt (BI) bit (LSR[4]). This happens because the
break character implicitly generates a framing error by
holding the sin input to logic 0 for longer than the duration of
a character.
Reading the LSR clears the FE bit (if
LSR_STATUS_CLEAR==1) Or Reading the LSR or RBR
clears the FE bit (if LSR_STATUS_CLEAR==0).
Values:
■ 0x0 (NO_FRAMING_ERROR): no framing error

■ 0x1 (FRAMING_ERROR): framing error

Value After Reset: 0x0
Exists: Always

Table 5-15 Fields for Register: LSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 147SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

2 PE R Parity Error bit.
This is used to indicate the occurrence of a parity error in the
receiver if the Parity Enable (PEN) bit (LCR[3]) is set.
 In the FIFO mode, since the parity error is associated with a
character received, it is revealed when the character with the
parity error arrives at the top of the FIFO.
It should be noted that the Parity Error (PE) bit (LSR[2]) will
be set if a break interrupt has occurred, as indicated by
Break Interrupt (BI) bit (LSR[4]). In this situation, the Parity
Error bit is set if parity generation and detection is enabled
(LCR[3]=1) and the parity is set to odd (LCR[4]=0).
Reading the LSR clears the PE bit (if
LSR_STATUS_CLEAR==1) Or Reading the LSR or RBR
clears the PE bit (if LSR_STATUS_CLEAR==0).
Values:
■ 0x0 (NO_PARITY_ERROR): no parity error

■ 0x1 (PARITY_ERROR): parity error

Value After Reset: 0x0
Exists: Always

1 OE R Overrun error bit.
This is used to indicate the occurrence of an overrun error.
This occurs if a new data character was received before the
previous data was read.
 In the non-FIFO mode, the OE bit is set when a new
character arrives in the receiver before the previous
character was read from the RBR. When this happens, the
data in the RBR is overwritten. In the FIFO mode, an overrun
error occurs when the FIFO is full and a new character
arrives at the receiver. The data in the FIFO is retained and
the data in the receive shift register is lost.
Reading the LSR clears the OE bit (if
LSR_STATUS_CLEAR==1) Or Reading the LSR or RBR
clears the OE bit (if LSR_STATUS_CLEAR==0).
Values:
■ 0x0 (NO_OVER_RUN_ERROR): no overrun error

■ 0x1 (OVER_RUN_ERROR): overrun error

Value After Reset: 0x0
Exists: Always

Table 5-15 Fields for Register: LSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

148 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

0 DR R Data Ready bit.
This is used to indicate that the receiver contains at least one
character in the RBR or the receiver FIFO. This bit is cleared
when the RBR is read in the non-FIFO mode, or when the
receiver FIFO is empty, in the FIFO mode.
Values:
■ 0x0 (NOT_READY): data not ready

■ 0x1 (READY): data ready

Value After Reset: 0x0
Exists: Always

Table 5-15 Fields for Register: LSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 149SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.11 MSR

■ Name: Modem Status Register

■ Description: Whenever bits 0, 1, 2 or 3 is set to logic one, to indicate a change on the modem control
inputs, a modem status interrupt will be generated if enabled via the IER regardless of when the
change occurred. The bits (bits 0, 1, 3) can be set after a reset-even though their respective modem
signals are inactive-because the synchronized version of the modem signals have a reset value of 0
and change to value 1 after reset. To prevent unwanted interrupts due to this change, a read of the
MSR register can be performed after reset.

■ Size: 32 bits

■ Offset: 0x18

■ Exists: Always
31

:8

7 6 5 4 3 2 1 0

R
S

V
D

_M
S

R
_3

1t
o8

D
C

D

R
I

D
S

R

C
T

S

D
D

C
D

T
E

R
I

D
D

S
R

D
C

T
S

Table 5-16 Fields for Register: MSR

Bits Name
Memory
Access Description

31:8 RSVD_MSR_31to8 R MSR 31to8 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

150 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

7 DCD R Data Carrier Detect.
This is used to indicate the current state of the modem
control line dcd_n. That is this bit is the complement dcd_n.
When the Data Carrier Detect input (dcd_n) is asserted it is
an indication that the carrier has been detected by the
modem or data set.
In Loopback Mode (MCR[4] set to one), DCD is the same as
MCR[3] (Out2).
Values:

■ 0x0 (DEASSERTED): dcd_n input is de-asserted (logic 1)

■ 0x1 (ASSERTED): dcd_n input is asserted (logic 0)

Value After Reset: 0x0
Exists: Always

6 RI R Ring Indicator.
This is used to indicate the current state of the modem
control line ri_n. That is this bit is the complement ri_n. When
the Ring Indicator input (ri_n) is asserted it is an indication
that a telephone ringing signal has been received by the
modem or data set.
In Loopback Mode (MCR[4] set to one), RI is the same as
MCR[2] (Out1).
Values:

■ 0x0 (DEASSERTED): ri_n input is de-asserted (logic 1)

■ 0x1 (ASSERTED): ri_n input is asserted (logic 0)

Value After Reset: 0x0
Exists: Always

5 DSR R Data Set Ready.
This is used to indicate the current state of the modem
control line dsr_n. That is this bit is the complement dsr_n.
When the Data Set Ready input (dsr_n) is asserted it is an
indication that the modem or data set is ready to establish
communications with the DW_apb_uart.
In Loopback Mode (MCR[4] set to one), DSR is the same as
MCR[0] (DTR).
Values:

■ 0x0 (DEASSERTED): dsr_n input is de-asserted (logic 1)

■ 0x1 (ASSERTED): dsr_n input is asserted (logic 0)

Value After Reset: 0x0
Exists: Always

Table 5-16 Fields for Register: MSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 151SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

4 CTS R Clear to Send.
This is used to indicate the current state of the modem
control line cts_n. That is, this bit is the complement cts_n.
When the Clear to Send input (cts_n) is asserted it is an
indication that the modem or data set is ready to exchange
data with the DW_apb_uart.
In Loopback Mode (MCR[4] set to one), CTS is the same as
MCR[1] (RTS).
Values:

■ 0x0 (DEASSERTED): cts_n input is de-asserted (logic 1)

■ 0x1 (ASSERTED): cts_n input is asserted (logic 0)

Value After Reset: 0x0
Exists: Always

3 DDCD R Delta Data Carrier Detect.
This is used to indicate that the modem control line dcd_n
has changed since the last time the MSR was read.
Reading the MSR clears the DDCD bit. In Loopback Mode
(MCR[4] set to one), DDCD reflects changes on MCR[3]
(Out2).
Note, if the DDCD bit is not set and the dcd_n signal is
asserted (low) and a reset occurs (software or otherwise),
then the DDCD bit will get set when the reset is removed if
the dcd_n signal remains asserted.
Values:
■ 0x0 (NO_CHANGE): No change on dcd_n since last read

of MSR

■ 0x1 (CHANGE): change on dcd_n since last read of MSR

Value After Reset: 0x0
Exists: Always

Table 5-16 Fields for Register: MSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

152 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

2 TERI R Trailing Edge of Ring Indicator.
This is used to indicate that a change on the input ri_n (from
an active low, to an inactive high state) has occurred since
the last time the MSR was read.
Reading the MSR clears the TERI bit. In Loopback Mode
(MCR[4] set to one), TERI reflects when MCR[2] (Out1) has
changed state from a high to a low.
Values:

■ 0x0 (NO_CHANGE): no change on ri_n since last read of
MSR

■ 0x1 (CHANGE): change on ri_n since last read of MSR

Value After Reset: 0x0
Exists: Always

1 DDSR R Delta Data Set Ready.
This is used to indicate that the modem control line dsr_n
has changed since the last time the MSR was read.
Reading the MSR clears the DDSR bit. In Loopback Mode
(MCR[4] set to one), DDSR reflects changes on MCR[0]
(DTR).
Note, if the DDSR bit is not set and the dsr_n signal is
asserted (low) and a reset occurs (software or otherwise),
then the DDSR bit will get set when the reset is removed if
the dsr_n signal remains asserted.
Values:
■ 0x0 (NO_CHANGE): no change on dsr_n since last read

of MSR

■ 0x1 (CHANGE): change on dsr_n since last read of MSR

Value After Reset: 0x0
Exists: Always

Table 5-16 Fields for Register: MSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 153SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

0 DCTS R Delta Clear to Send.
This is used to indicate that the modem control line cts_n has
changed since the last time the MSR was read.
Reading the MSR clears the DCTS bit. In Loopback Mode
(MCR[4] set to one), DCTS reflects changes on MCR[1]
(RTS).
Note, if the DCTS bit is not set and the cts_n signal is
asserted (low) and a reset occurs (software or otherwise),
then the DCTS bit will get set when the reset is removed if
the cts_n signal remains asserted.
Values:

■ 0x0 (NO_CHANGE): no change on cts_n since last read
of MSR

■ 0x1 (CHANGE): change on cts_n since last read of MSR

Value After Reset: 0x0
Exists: Always

Table 5-16 Fields for Register: MSR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

154 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.12 SCR

■ Name: Scratchpad Register

■ Description: Scratchpad Register

■ Size: 32 bits

■ Offset: 0x1c

■ Exists: Always

31
:8

7:
0

R
S

V
D

_S
C

R
_3

1t
o8

S
C

R

Table 5-17 Fields for Register: SCR

Bits Name
Memory
Access Description

31:8 RSVD_SCR_31to8 R SCR 31to8 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

7:0 SCR R/W This register is for programmers to use as a temporary
storage space. It has no defined purpose in the
DW_apb_uart.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 155SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.13 LPDLL

■ Name: Low Power Divisor Latch Low

■ Description: Low Power Divisor Latch Low Register.

This register is only valid when the DW_apb_uart is configured to have SIR low-power reception
capabilities implemented (SIR_LP_RX = Yes). If SIR low-power reception capabilities are not
implemented, this register does not exist and reading from this register address returns 0.

If UART_16550_COMPATIBLE = No, then this register can be accessed only when the DLAB bit
(LCR[7]) is set and the UART is not busy, that is, USR[0] is 0; otherwise this register can be accessed
only when the DLAB bit (LCR[7]) is set.

■ Size: 32 bits

■ Offset: 0x20

■ Exists: (SIR_LP_RX == 1) && (SIR_MODE == 1)

31
:8

7:
0

R
S

V
D

_L
P

D
LL

_3
1t

o8

LP
D

LL

Table 5-18 Fields for Register: LPDLL

Bits Name
Memory
Access Description

31:8 RSVD_LPDLL_31to8 R LPDLL 31to8 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

156 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

7:0 LPDLL R/W This register makes up the lower 8-bits of a 16-bit,
read/write, Low Power Divisor Latch register that contains
the baud rate divisor for the UART which must give a baud
rate of 115.2K. This is required for SIR Low Power (minimum
pulse width) detection at the receiver.
 The output low power baud rate is equal to the serial clock
(sclk) frequency divided by sixteen times the value of the
baud rate divisor, as follows:
Low power baud rate = (serial clock freq) / (16 * divisor)
Therefore a divisor must be selected to give a baud rate of
115.2K.
Note: When the Low Power Divisor Latch Registers (LPDLL
and LPDLH) are set to zero, the low power baud clock is
disabled and no low power pulse detection (or any pulse
detection for that matter) will occur at the receiver. Also, once
the LPDLL is set at least 8 clock cycles of the slowest
DW_apb_uart clock should be allowed to pass before
transmitting or receiving data.
Value After Reset: 0x0
Exists: Always

Table 5-18 Fields for Register: LPDLL (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 157SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.14 LPDLH

■ Name: Low Power Divisor Latch High

■ Description: Low Power Divisor Latch High Register

. This register is valid only when the DW_apb_uart is configured to have SIR low-power reception
capabilities implemented (SIR_LP_RX = Yes). If SIR low-power reception capabilities are not
implemented, this register does not exist and reading from this register address returns 0.

If UART_16550_COMPATIBLE = No, then this register can be accessed only when the DLAB bit
(LCR[7]) is set and the UART is not busy that is, USR[0] is 0; otherwise this register can be accessed
only when the DLAB bit (LCR[7]) is set.

■ Size: 32 bits

■ Offset: 0x24

■ Exists: (SIR_LP_RX == 1) && (SIR_MODE == 1)

31
:8

7:
0

R
S

V
D

_L
P

D
LH

_3
1t

o8

LP
D

LH

Table 5-19 Fields for Register: LPDLH

Bits Name
Memory
Access Description

31:8 RSVD_LPDLH_31to8 R LPDLH 31to8 Reserved and read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

158 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

7:0 LPDLH R/W This register makes up the upper 8-bits of a 16-bit,
read/write, Low Power Divisor Latch register that contains
the baud rate divisor for the UART which must give a baud
rate of 115.2K. This is required for SIR Low Power (minimum
pulse width) detection at the receiver.
 The output low power baud rate is equal to the serial clock
(sclk) frequency divided by sixteen times the value of the
baud rate divisor, as follows:
Low power baud rate = (serial clock freq) / (16 * divisor)
Therefore a divisor must be selected to give a baud rate of
115.2K.
Note: When the Low Power Divisor Latch Registers (LPDLL
and LPDLH) are set to zero, the low power baud clock is
disabled and no low power pulse detection (or any pulse
detection for that matter) will occur at the receiver. Also, once
the LPDLH is set, at least 8 clock cycles of the slowest
DW_apb_uart clock should be allowed to pass before
transmitting or receiving data.
Value After Reset: 0x0
Exists: Always

Table 5-19 Fields for Register: LPDLH (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 159SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.15 SRBRn (for n = 0; n <= 15)

■ Name: Shadow Receive Buffer Register

■ Description: This register is valid only when the DW_apb_uart is configured to have additional
shadow registers implemented (SHADOW = YES). If shadow registers are not implemented, this
register does not exist and reading from this register address returns 0.

This register can be accessed only when the DLAB bit (LCR[7]) is cleared.

■ Size: 32 bits

■ Offset: 0x30 + n*0x4

■ Exists: SHADOW == 1

31
:y

x:
0

R
S

V
D

_S
R

B
R

n

S
R

B
R

n

Table 5-20 Fields for Register: SRBRn (for n = 0; n <= 15)

Bits Name
Memory
Access Description

31:y RSVD_SRBRn R SRBR0 31 to SRBRN_REG_SIZE Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: SRBRN_REG_SIZE

https://solvnet.synopsys.com
www.designware.com

160 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

x:0 SRBRn R Shadow Receive Buffer Register n. This is a shadow register
for the RBR and has been allocated sixteen 32-bit locations
so as to accommodate burst accesses from the master. This
register contains the data byte received on the serial input
port (sin) in UART mode or the serial infrared input (sir_in) in
infrared mode. The data in this register is valid only if the
Data Ready (DR) bit in the Line status Register (LSR) is set.
If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are
disabled (FCR[0] set to zero), the data in the RBR must be
read before the next data arrives, otherwise it will be
overwritten, resulting in an overrun error.
If in FIFO mode (FIFO_MODE != NONE) and FIFOs are
enabled (FCR[0] set to one), this register accesses the head
of the receive FIFO. If the receive FIFO is full and this
register is not read before the next data character arrives,
then the data already in the FIFO will be preserved but any
incoming data will be lost. An overrun error will also occur.
Note:

■ When UART_9BIT_DATA_EN=0, this field width is 8.

■ When UART_9BIT_DATA_EN=1, this field width is 9.

Value After Reset: 0x0
Exists: Always
Range Variable[x]: SRBRN_REG_SIZE - 1

Table 5-20 Fields for Register: SRBRn (for n = 0; n <= 15) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 161SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.16 STHRn (for n = 0; n <= 15)

■ Name: Shadow Transmit Holding Register

■ Description: Shadow Transmit Holding Register. This register is valid only when the DW_apb_uart
is configured to have additional shadow registers implemented (SHADOW = YES). If shadow
registers are not implemented, this register does not exist, and reading from this register address
returns 0.

This register can be accessed only when the DLAB bit (LCR[7]) is cleared.

■ Size: 32 bits

■ Offset: 0x30 + n*0x4

■ Exists: SHADOW == 1

31
:y

x:
0

R
S

V
D

_S
T

H
R

n

S
T

H
R

n

Table 5-21 Fields for Register: STHRn (for n = 0; n <= 15)

Bits Name
Memory
Access Description

31:y RSVD_STHRn R STHRn 31 to STHRN_REG_SIZE Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: STHRN_REG_SIZE

https://solvnet.synopsys.com
www.designware.com

162 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

x:0 STHRn W Shadow Transmit Holding Register n. This is a shadow
register for the THR and has been allocated sixteen 32-bit
locations so as to accommodate burst accesses from the
master. This register contains data to be transmitted on the
serial output port (sout) in UART mode or the serial infrared
output (sir_out_n) in infrared mode. Data should only be
written to the THR when the THR Empty (THRE) bit (LSR[5])
is set.
If in non-FIFO mode or FIFO's are disabled (FCR[0] set to
zero) and THRE is set, writing a single character to the THR
clears the THRE. Any additional writes to the THR before the
THRE is set again causes the THR data to be overwritten.
If in FIFO mode and FIFO's are enabled (FCR[0] set to one)
and THRE is set, x number of characters of data may be
written to the THR before the FIFO is full. The number x
(default=16) is determined by the value of FIFO Depth that
you set during configuration. Any attempt to write data when
the FIFO is full results in the write data being lost.
Note:

■ When UART_9BIT_DATA_EN=0, this field width is 8.

■ When UART_9BIT_DATA_EN=1, this field width is 9. The
9th bit is applicable only when LCR_EXT[3]=1.

Value After Reset: 0x0
Exists: Always
Range Variable[x]: STHRN_REG_SIZE - 1

Table 5-21 Fields for Register: STHRn (for n = 0; n <= 15) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 163SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.17 FAR

■ Name: FIFO Access Register

■ Description: FIFO Access Register

■ Size: 32 bits

■ Offset: 0x70

■ Exists: Always

31
:1

0

R
S

V
D

_F
A

R
_3

1t
o1

F
A

R

Table 5-22 Fields for Register: FAR

Bits Name
Memory
Access Description

31:1 RSVD_FAR_31to1 R FAR 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

164 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

0 FAR * Varies Writes will have no effect when FIFO_ACCESS == No,
always readable. This register is use to enable a FIFO
access mode for testing, so that the receive FIFO can be
written by the master and the transmit FIFO can be read by
the master when FIFO's are implemented and enabled.
When FIFOs are not implemented or not enabled it allows
the RBR to be written by the master and the THR to be read
by the master.
Note, that when the FIFO access mode is enabled/disabled,
the control portion of the receive FIFO and transmit FIFO is
reset and the FIFO's are treated as empty.
Values:
■ 0x0 (DISABLED): FIFO access mode disabled

■ 0x1 (ENABLED): FIFO access mode enabled

Value After Reset: 0x0
Exists: Always
Memory Access: "(FIFO_ACCESS==1) ? \"read-write\" :
\"read-only\""

Table 5-22 Fields for Register: FAR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 165SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.18 TFR

■ Name: Transmit FIFO Read

■ Description: This register is valid only when the DW_apb_uart is configured to have the FIFO access
test mode available (FIFO_ACCESS = YES). If not configured, this register does not exist and reading
from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x74

■ Exists: FIFO_ACCESS == 1

31
:8

7:
0

R
S

V
D

_T
F

R
_3

1t
o8

T
F

R

Table 5-23 Fields for Register: TFR

Bits Name
Memory
Access Description

31:8 RSVD_TFR_31to8 R TFR 31to8 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

7:0 TFR R Transmit FIFO Read.
These bits are only valid when FIFO access mode is enabled
(FAR[0] is set to one).
When FIFO's are implemented and enabled, reading this
register gives the data at the top of the transmit FIFO. Each
consecutive read pops the transmit FIFO and gives the next
data value that is currently at the top of the FIFO.
When FIFO's are not implemented or not enabled, reading
this register gives the data in the THR.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

166 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.19 RFW

■ Name: Receive FIFO Write

■ Description: This register is valid only when the DW_apb_uart is configured to have the FIFO access
test mode available (FIFO_ACCESS = YES). If not configured, this register does not exist and reading
from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x78

■ Exists: FIFO_ACCESS == 1

31
:1

0

9 8 7:
0

R
S

V
D

_R
F

W
_3

1t
o1

0

R
F

F
E

R
F

P
E

R
F

W
D

Table 5-24 Fields for Register: RFW

Bits Name
Memory
Access Description

31:10 RSVD_RFW_31to10 R RFW 31to10 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

9 RFFE W Receive FIFO Framing Error.
These bits are only valid when FIFO access mode is enabled
(FAR[0] is set to one). When FIFO's are implemented and
enabled, this bit is used to write framing error detection
information to the receive FIFO. When FIFO's are not
implemented or not enabled, this bit is used to write framing
error detection information to the RBR.
Values:

■ 0x0 (DISABLED): Frame error disabled

■ 0x1 (ENABLED): Frame error enabled

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 167SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

8 RFPE W Receive FIFO Parity Error.
These bits are only valid when FIFO access mode is enabled
(FAR[0] is set to one). When FIFO's are implemented and
enabled, this bit is used to write parity error detection
information to the receive FIFO. When FIFO's are not
implemented or not enabled, this bit is used to write parity
error detection information to the RBR.
Values:
■ 0x0 (DISABLED): Parity error disabled

■ 0x1 (ENABLED): Parity error enabled

Value After Reset: 0x0
Exists: Always

7:0 RFWD W Receive FIFO Write Data.
These bits are only valid when FIFO access mode is enabled
(FAR[0] is set to one). When FIFO's are implemented and
enabled, the data that is written to the RFWD is pushed into
the receive FIFO. Each consecutive write pushes the new
data to the next write location in the receive FIFO. When
FIFO's are not implemented or not enabled, the data that is
written to the RFWD is pushed into the RBR.
Value After Reset: 0x0
Exists: Always

Table 5-24 Fields for Register: RFW (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

168 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.20 USR

■ Name: UART Status register

■ Description: UART Status register.

■ Size: 32 bits

■ Offset: 0x7c

■ Exists: Always

31
:5

4 3 2 1 0

R
S

V
D

_U
S

R
_3

1t
o5

R
F

F

R
F

N
E

T
F

E

T
F

N
F

B
U

S
Y

Table 5-25 Fields for Register: USR

Bits Name
Memory
Access Description

31:5 RSVD_USR_31to5 R USR 31to5 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always
Volatile: true

4 RFF R Receive FIFO Full.
This bit is only valid when FIFO_STAT == YES. This is used
to indicate that the receive FIFO is completely full. That is:
This bit is cleared when the RX FIFO is no longer full.
Values:
■ 0x0 (NOT_FULL): Receive FIFO not full

■ 0x1 (FULL): Receive FIFO full

Value After Reset: 0x0
Exists: (FIFO_STAT == 1) && (FIFO_MODE != 0) &&
(ADDITIONAL_FEATURES == 1)
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 169SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

3 RFNE R Receive FIFO Not Empty.
This bit is only valid when FIFO_STAT == YES. This is used
to indicate that the receive FIFO contains one or more
entries. This bit is cleared when the RX FIFO is empty.
Values:
■ 0x0 (EMPTY): Receive FIFO is empty

■ 0x1 (NOT_EMPTY): Receive FIFO is not empty

Value After Reset: 0x0
Exists: (FIFO_STAT == 1) && (FIFO_MODE != 0) &&
(ADDITIONAL_FEATURES == 1)
Volatile: true

2 TFE R Transmit FIFO Empty.
This bit is only valid when FIFO_STAT == YES. This is used
to indicate that the transmit FIFO is completely empty. This
bit is cleared when the TX FIFO is no longer empty.
Values:

■ 0x0 (NOT_EMPTY): Transmit FIFO is not empty

■ 0x1 (EMPTY): Transmit FIFO is empty

Value After Reset: "((FIFO_STAT == 1) && (FIFO_MODE !=
0) && (ADDITIONAL_FEATURES == 1)) ? 0x1 : 0x0"
Exists: (FIFO_STAT == 1) && (FIFO_MODE != 0) &&
(ADDITIONAL_FEATURES == 1)
Volatile: true

1 TFNF R Transmit FIFO Not Full.
This bit is only valid when FIFO_STAT == YES. This is used
to indicate that the transmit FIFO is not full. This bit is
cleared when the TX FIFO is full.
Values:
■ 0x0 (FULL): Transmit FIFO is full

■ 0x1 (NOT_FULL): Transmit FIFO is not full

Value After Reset: "((FIFO_STAT == 1) && (FIFO_MODE !=
0) && (ADDITIONAL_FEATURES == 1)) ? 0x1 : 0x0"
Exists: (FIFO_STAT == 1) && (FIFO_MODE != 0) &&
(ADDITIONAL_FEATURES == 1)
Volatile: true

Table 5-25 Fields for Register: USR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

170 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

0 BUSY R UART Busy.
This bit is only valid when UART_16550_COMPATIBLE ==
NO. This indicates that a serial transfer is in progress, when
cleared indicates that the DW_apb_uart is idle or inactive.
This bit will be set to 1 (busy) under any of the following
conditions:
- Transmission in progress on serial interface
- Transmit data present in THR, when FIFO access mode is
not being used (FAR = 0) and the baud divisor is non-zero
({DLH,DLL} does not equal 0) when the divisor latch access
bit is 0 (LCR.DLAB = 0)
- Reception in progress on the interface
- Receive data present in RBR, when FIFO access mode is
not being used (FAR = 0)

Note: It is possible for the UART Busy bit to be cleared even
though a new character may have been sent from another
device. That is, if the DW_apb_uart has no data in the THR
and RBR and there is no transmission in progress and a
start bit of a new character has just reached the
DW_apb_uart. This is due to the fact that a valid start is not
seen until the middle of the bit period and this duration is
dependent on the baud divisor that has been programmed. If
a second system clock has been implemented
(CLOCK_MODE == Enabled), the assertion of this bit will
also be delayed by several cycles of the slower clock.
Values:

■ 0x0 (IDLE): DW_apb_uart is idle or inactive

■ 0x1 (BUSY): DW_apb_uart is busy (actively transferring
data)

Value After Reset: 0x0
Exists: UART_16550_COMPATIBLE == 0
Volatile: true

Table 5-25 Fields for Register: USR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 171SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.21 TFL

■ Name: Transmit FIFO Level

■ Description: TFL register is valid only when the DW_apb_uart is configured to have additional FIFO
status registers implemented (FIFO_STAT = YES). If status registers are not implemented, this
register does not exist and reading from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x80

■ Exists: (FIFO_STAT == 1) && (FIFO_MODE != 0) && (ADDITIONAL_FEATURES == 1)

31
:y

x:
0

R
S

V
D

_T
F

L_
31

to
A

D
D

R
_W

ID
T

H

tfl

Table 5-26 Fields for Register: TFL

Bits Name
Memory
Access Description

31:y RSVD_TFL_31toADDR_WIDTH R TFL 31 to ADDR_WIDTH Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: FIFO_ADDR_WIDTH + 1

x:0 tfl R Transmit FIFO Level.
This indicates the number of data entries in the transmit
FIFO.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: FIFO_ADDR_WIDTH

https://solvnet.synopsys.com
www.designware.com

172 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.22 RFL

■ Name: Receive FIFO Level

■ Description: RFL register is valid only when the DW_apb_uart is configured to have additional FIFO
status registers implemented (FIFO_STAT = YES). If status registers are not implemented, this
register does not exist and reading from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x84

■ Exists: (FIFO_STAT == 1) && (FIFO_MODE != 0) && (ADDITIONAL_FEATURES == 1)

31
:y

x:
0

R
S

V
D

_R
F

L_
31

to
A

D
D

R
_W

ID
T

H

rf
l

Table 5-27 Fields for Register: RFL

Bits Name
Memory
Access Description

31:y RSVD_RFL_31toADDR_WIDTH R RFL 31 to ADDR_WIDTH Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: FIFO_ADDR_WIDTH + 1

x:0 rfl R Receive FIFO Level.
This indicates the number of data entries in the receive
FIFO.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: FIFO_ADDR_WIDTH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 173SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.23 SRR

■ Name: Software Reset Register

■ Description: This register is valid only when the DW_apb_uart is configured to have additional
shadow registers implemented (SHADOW = YES). If shadow registers are not implemented, this
register does not exist and reading from this register address returns 0.

For more information on the amount of time that serial clock modules need in order to see new
register values and reset their respective state machines, refer to the 'Clock Support' subsection in the
data book.

■ Size: 32 bits

■ Offset: 0x88

■ Exists: SHADOW == 1

31
:3

2 1 0

R
S

V
D

_S
R

R
_3

1t
o3

X
F

R

R
F

R

U
R

Table 5-28 Fields for Register: SRR

Bits Name
Memory
Access Description

31:3 RSVD_SRR_31to3 R SRR 31to3 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

174 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

2 XFR * Varies XMIT FIFO Reset
. Writes will have no effect when FIFO_MODE == NONE.
This is a shadow register for the XMIT FIFO Reset bit
(FCR[2]). This can be used to remove the burden on
software having to store previously written FCR values
(which are pretty static) just to reset the transmit FIFO. This
resets the control portion of the transmit FIFO and treats the
FIFO as empty. This will also de-assert the DMA TX request
and single signals when additional DMA handshaking
signals are selected (DMA_EXTRA = YES). Note that this bit
is 'self-clearing'. It is not necessary to clear this bit.
Value After Reset: 0x0
Exists: Always
Memory Access: "(FIFO_MODE !=0) ? \"write-only\" :
\"read-only\""

1 RFR * Varies RCVR FIFO Reset.
Writes will have no effect when FIFO_MODE == NONE. This
is a shadow register for the RCVR FIFO Reset bit (FCR[1]).
This can be used to remove the burden on software having
to store previously written FCR values (which are pretty
static) just to reset the reeive FIFO. This resets the control
portion of the receive FIFO and treats the FIFO as empty.
This will also de-assert the DMA RX request and single
signals when additional DMA handshaking signals are
selected (DMA_EXTRA == YES). Note that this bit is 'self-
clearing' and it is not necessary to clear this bit.
Value After Reset: 0x0
Exists: Always
Memory Access: "(FIFO_MODE !=0) ? \"write-only\" :
\"read-only\""

0 UR W UART Reset.
This asynchronously resets the DW_apb_uart and
synchronously removes the reset assertion. For a two clock
implementation both pclk and sclk domains will be reset.
Values:
■ 0x0 (NO_RESET): No Uart Reset

■ 0x1 (RESET): Uart reset

Value After Reset: 0x0
Exists: Always

Table 5-28 Fields for Register: SRR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 175SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.24 SRTS

■ Name: Shadow Request to Send

■ Description: SRTS register is valid only when the DW_apb_uart is configured to have additional
shadow registers implemented (SHADOW = YES). If shadow registers are not implemented, this
register does not exist and reading from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x8c

■ Exists: SHADOW == 1

31
:1

0

R
S

V
D

_S
R

T
S

_3
1t

o1

S
R

T
S

Table 5-29 Fields for Register: SRTS

Bits Name
Memory
Access Description

31:1 RSVD_SRTS_31to1 R SRTS 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

176 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

0 SRTS R/W Shadow Request to Send.
This is a shadow register for the RTS bit (MCR[1]), this can
be used to remove the burden of having to performing a read
modify write on the MCR. This is used to directly control the
Request to Send (rts_n) output. The Request To Send
(rts_n) output is used to inform the modem or data set that
the UART is ready to exchange data.
When Auto RTS Flow Control is not enabled (MCR[5] set to
zero), the rts_n signal is set low by programming MCR[1]
(RTS) to a high.
In Auto Flow Control, AFCE_MODE == Enabled and active
(MCR[5] set to one) and FIFO's enable (FCR[0] set to one),
the rts_n output is controlled in the same way, but is also
gated with the receiver FIFO threshold trigger (rts_n is
inactive high when above the threshold) only when RTC Flow
Trigger is disabled; otherwise it is gated by the receiver FIFO
almost-full trigger, where 'almost full' refers to two available
slots in the FIFO (rts_n is inactive high when above the
threshold).
Note that in Loopback mode (MCR[4] set to one), the rts_n
output is held inactive high while the value of this location is
internally looped back to an input.
Values:
■ 0x0 (DEASSERTED): Shadow Request to Send

uart_rts_n logic1

■ 0x1 (ASSERTED): Shadow Request to Send uart_rts_n
logic0

Value After Reset: 0x0
Exists: Always

Table 5-29 Fields for Register: SRTS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 177SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.25 SBCR

■ Name: Shadow Break Control Register

■ Description: SBCR register is valid only when the DW_apb_uart is configured to have additional
shadow registers implemented (SHADOW = YES). If shadow registers are not implemented, this
register does not exist and reading from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x90

■ Exists: SHADOW == 1

31
:1

0

R
S

V
D

_S
B

C
R

_3
1t

o1

S
B

C
B

Table 5-30 Fields for Register: SBCR

Bits Name
Memory
Access Description

31:1 RSVD_SBCR_31to1 R SBCR 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

178 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

0 SBCB R/W Shadow Break Control Bit.
This is a shadow register for the Break bit (LCR[6]), this can
be used to remove the burden of having to performing a read
modify write on the LCR. This is used to cause a break
condition to be transmitted to the receiving device. If set to
one the serial output is forced to the spacing (logic 0) state.
When not in Loopback Mode, as determined by MCR[4], the
sout line is forced low until the Break bit is cleared.
 If SIR_MODE == Enabled and active (MCR[6] set to one)
the sir_out_n line is continuously pulsed. When in Loopback
Mode, the break condition is internally looped back to the
receiver.
Values:

■ 0x0 (NO_BREAK): No spacing on serial output

■ 0x1 (BREAK): Serial output forced to the spacing

Value After Reset: 0x0
Exists: Always

Table 5-30 Fields for Register: SBCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 179SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.26 SDMAM

■ Name: Shadow DMA Mode Register

■ Description: This register is valid only when the DW_apb_uart is configured to have additional FIFO
registers implemented (FIFO_MODE != None) and additional shadow registers implemented
(SHADOW = YES). If these registers are not implemented, this register does not exist and reading
from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x94

■ Exists: (FIFO_MODE != 0) && (SHADOW == 1)

31
:1

0

R
S

V
D

_S
D

M
A

M
_3

1t
o1

S
D

M
A

M

Table 5-31 Fields for Register: SDMAM

Bits Name
Memory
Access Description

31:1 RSVD_SDMAM_31to1 R SDMAM 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

180 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

0 SDMAM R/W Shadow DMA Mode.
This is a shadow register for the DMA mode bit (FCR[3]).
This can be used to remove the burden of having to store the
previously written value to the FCR in memory and having to
mask this value so that only the DMA Mode bit gets updated.
This determines the DMA signalling mode used for the
dma_tx_req_n and dma_rx_req_n output signals when
additional DMA handshaking signals are not selected
(DMA_EXTRA == NO). See section 5.9 on page 54 for
details on DMA support.
Values:
■ 0x0 (MODE_0): Mode 0

■ 0x1 (MODE_1): Mode 1

Value After Reset: 0x0
Exists: Always

Table 5-31 Fields for Register: SDMAM (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 181SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.27 SFE

■ Name: Shadow FIFO Enable Register

■ Description: SFE register is valid only when the DW_apb_uart is configured to have additional FIFO
registers implemented (FIFO_MODE != None) and additional shadow registers implemented
(SHADOW = YES). If these registers are not implemented, this register does not exist and reading
from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x98

■ Exists: (FIFO_MODE != 0) && (SHADOW == 1)

31
:1

0

R
S

V
D

_S
F

E
_3

1t
o1

S
F

E

Table 5-32 Fields for Register: SFE

Bits Name
Memory
Access Description

31:1 RSVD_SFE_31to1 R SFE 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

0 SFE R/W Shadow FIFO Enable.
This is a shadow register for the FIFO enable bit (FCR[0]).
This can be used to remove the burden of having to store the
previously written value to the FCR in memory and having to
mask this value so that only the FIFO enable bit gets
updated. This enables/disables the transmit (XMIT) and
receive (RCVR) FIFO's. If this bit is set to zero (disabled)
after being enabled then both the XMIT and RCVR controller
portion of FIFO's will be reset.
Values:
■ 0x0 (DISABLED): FIFOs are disabled

■ 0x1 (ENABLED): FIFOs are enabled

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

182 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.28 SRT

■ Name: Shadow RCVR Trigger Register

■ Description: SRT register is valid only when the DW_apb_uart is configured to have additional FIFO
registers implemented (FIFO_MODE != None) and additional shadow registers implemented
(SHADOW = YES). If these registers are not implemented, this register does not exist and reading
from this register address returns 0.

■ Size: 32 bits

■ Offset: 0x9c

■ Exists: (FIFO_MODE != 0) && (SHADOW == 1)

31
:2

1:
0

R
S

V
D

_S
R

T
_3

1t
o2

S
R

T

Table 5-33 Fields for Register: SRT

Bits Name
Memory
Access Description

31:2 RSVD_SRT_31to2 R SRT 31to2 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 183SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

1:0 SRT R/W Shadow RCVR Trigger.
This is a shadow register for the RCVR trigger bits
(FCR[7:6]). This can be used to remove the burden of having
to store the previously written value to the FCR in memory
and having to mask this value so that only the RCVR trigger
bit gets updated.
This is used to select the trigger level in the receiver FIFO at
which the Received Data Available Interrupt will be
generated. It also determines when the dma_rx_req_n signal
will be asserted when DMA Mode (FCR[3]) is set to one.
Values:

■ 0x0 (FIFO_CHAR_1): 1 character in FIFO

■ 0x1 (FIFO_QUARTER_FULL): FIFO 1/4 full

■ 0x2 (FIFO_HALF_FULL): FIFO 1/2 full

■ 0x3 (FIFO_FULL_2): FIFO 2 less than full

Value After Reset: 0x0
Exists: Always

Table 5-33 Fields for Register: SRT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

184 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.29 STET

■ Name: Shadow TX Empty Trigger Register

■ Description: This register is valid only when the DW_apb_uart is configured to have FIFOs
implemented (FIFO_MODE != NONE) and THRE interrupt support implemented
(THRE_MODE_USER = Enabled) and additional shadow registers implemented (SHADOW = YES).
If FIFOs are not implemented or THRE interrupt support is not implemented or shadow registers are
not implemented, this register does not exist and reading from this register address returns 0.

■ Size: 32 bits

■ Offset: 0xa0

■ Exists: (FIFO_MODE != 0) && (THRE_MODE_USER == 1) && (SHADOW == 1)

31
:2

1:
0

R
S

V
D

_S
T

E
T

_3
1t

o2

S
T

E
T

Table 5-34 Fields for Register: STET

Bits Name
Memory
Access Description

31:2 RSVD_STET_31to2 R STET 31to2 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 185SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

1:0 STET R/W Shadow TX Empty Trigger.
This is a shadow register for the TX empty trigger bits
(FCR[5:4]). This can be used to remove the burden of having
to store the previously written value to the FCR in memory
and having to mask this value so that only the TX empty
trigger bit gets updated. Writes will have no effect when
THRE_MODE_USER == Disabled. This is used to select the
empty threshold level at which the THRE Interrupts will be
generated when the mode is active.
Values:
■ 0x0 (FIFO_EMPTY): FIFO empty

■ 0x1 (FIFO_CHAR_2): 2 characters in FIFO

■ 0x2 (FIFO_QUARTER_FULL): FIFO 1/4 full

■ 0x3 (FIFO_HALF_FULL): FIFO 1/2 full

Value After Reset: 0x0
Exists: Always

Table 5-34 Fields for Register: STET (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

186 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.30 HTX

■ Name: Halt TX

■ Description: Halt TX

■ Size: 32 bits

■ Offset: 0xa4

■ Exists: Always

31
:1

0

R
S

V
D

_H
T

X
_3

1t
o1

H
T

X

Table 5-35 Fields for Register: HTX

Bits Name
Memory
Access Description

31:1 RSVD_HTX_31to1 R HTX 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

0 HTX * Varies Halt TX.
Writes will have no effect when FIFO_MODE == NONE,
always readable. This register is use to halt transmissions
for testing, so that the transmit FIFO can be filled by the
master when FIFO's are implemented and enabled.
Note, if FIFO's are implemented and not enabled the setting
of the halt TX register will have no effect on operation.
Values:

■ 0x0 (DISABLED): Halt Transmission disabled

■ 0x1 (ENABLED): Halt Transmission enabled

Value After Reset: 0x0
Exists: Always
Memory Access: "(FIFO_MODE==0) ? \"read-only\" :
\"read-write\""

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 187SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.31 DMASA

■ Name: DMA Software Acknowledge Register

■ Description: DMA Software Acknowledge Register

■ Size: 32 bits

■ Offset: 0xa8

■ Exists: Always

31
:1

0

R
S

V
D

_D
M

A
S

A
_3

1t
o1

D
M

A
S

A

Table 5-36 Fields for Register: DMASA

Bits Name
Memory
Access Description

31:1 RSVD_DMASA_31to1 R DMASA 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

0 DMASA * Varies DMA Software Acknowledge.
Writes will have no effect when DMA_EXTRA == No. This
register is use to perform DMA software acknowledge if a
transfer needs to be terminated due to an error condition. For
example, if the DMA disables the channel, then the
DW_apb_uart should clear its request. This will cause the TX
request, TX single, RX request and RX single signals to de-
assert. Note that this bit is 'self-clearing' and it is not
necessary to clear this bit.
Values:

■ 0x1 (SOFT_ACK): DMA software acknowledge

Value After Reset: 0x0
Exists: Always
Memory Access: "(DMA_EXTRA==1) ? \"write-only\" :
\"read-only\""

https://solvnet.synopsys.com
www.designware.com

188 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.32 TCR

■ Name: Transceiver Control Register

■ Description: This register is used to enable or disable RS485 mode and also control the polarity
values for Driven enable (de) and Receiver Enable (re) signals.

This register is only valid when the DW_apb_uart is configured to have RS485 interface implemented
(UART_RS485_INTERFACE_EN = ENABLED). If RS485 interface is not implemented, this register
does not exist and reading from this register address returns zero.

■ Size: 32 bits

■ Offset: 0xac

■ Exists: UART_RS485_INTERFACE_EN == 1

31
:5

4:
3

2 1 0

R
S

V
D

_T
C

R
_3

1t
o5

X
F

E
R

_M
O

D
E

D
E

_P
O

L

R
E

_P
O

L

R
S

48
5_

E
N

Table 5-37 Fields for Register: TCR

Bits Name
Memory
Access Description

31:5 RSVD_TCR_31to5 R TCR 31to5 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 189SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

4:3 XFER_MODE * Varies Transfer Mode.

■ 0: In this mode, transmit and receive can happen
simultaneously. The user can enable DE_EN, RE_EN at
any point of time. Turn around timing as programmed
in the TAT register is not applicable in this mode.

■ 1: In this mode, DE and RE are mutually exclusive. Either
DE or RE only one of them is expected to be enabled
through programming.

 Hardware will consider the Turn Around timings which
are programmed in the TAT register while switching from
RE to DE or DE to RE. For transmission Hardware
will wait if it is in middle of receiving any transfer, before it
starts transmitting.

■ 2: In this mode, DE and RE are mutually exclusive. Once
DE_EN/RE_EN is programed - by default 're' will be
enabled and DW_apb_uart controller will be ready to
receive. If the user programs the TX FIFO with the data
then DW_apb_uart, after ensuring no receive is in
progress, disable 're' and enable 'de' signal.

 Once the TX FIFO becomes empty, 're' signal gets
enabled and 'de' signal will be disabled. In this mode
of operation hardware will consider the Turn Around
timings which are programmed in the TAT register while
switching from RE to DE or DE to RE. In this mode, 'de'
and 're' signals are strictly complementary to each other.

Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

2 DE_POL * Varies Driver Enable Polarity.

■ 1: DE signal is active high

■ 0: DE signal is active low

Value After Reset: UART_DE_POL
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

Table 5-37 Fields for Register: TCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

190 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

1 RE_POL * Varies Receiver Enable Polarity.

■ 1: RE signal is active high

■ 0: RE signal is active low

Value After Reset: UART_RE_POL
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

0 RS485_EN * Varies RS485 Transfer Enable.

■ 0 : In this mode, the transfers are still in the RS232 mode.
All other fields in this register are reserved and register
DE_EN/RE_EN/TAT are also reserved.

■ 1 : In this mode, the transfers will happen in RS485 mode.
All other fields of this register are applicable.

Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

Table 5-37 Fields for Register: TCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 191SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.33 DE_EN

■ Name: Driver Output Enable Register

■ Description: The Driver Output Enable Register (DE_EN) is used to control the assertion and de-
assertion of the DE signal.

This register is only valid when the DW_apb_uart is configured to have RS485 interface implemented
(UART_RS485_INTERFACE_EN = ENABLED). If RS485 interface is not implemented, this register
does not exist and reading from this register address will return zero.

■ Size: 32 bits

■ Offset: 0xb0

■ Exists: UART_RS485_INTERFACE_EN == 1

31
:1

0

R
S

V
D

_D
E

_E
N

_3
1t

o1

D
E

_E
na

bl
e

Table 5-38 Fields for Register: DE_EN

Bits Name
Memory
Access Description

31:1 RSVD_DE_EN_31to1 R DE_EN 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

0 DE_Enable * Varies DE Enable control.
The 'DE Enable' register bit is used to control assertion and
de-assertion of 'de' signal.
- 0: De-assert 'de' signal - 1: Assert 'de' signal
Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

https://solvnet.synopsys.com
www.designware.com

192 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.34 RE_EN

■ Name: Receiver Output Enable Register

■ Description: The Receiver Output Enable Register (RE_EN) is used to control the assertion and de-
assertion of the RE signal.

This register is only valid when the DW_apb_uart is configured to have RS485 interface implemented
(UART_RS485_INTERFACE_EN = ENABLED). If the RS485 interface is not implemented, this
register does not exist and reading from this register address will return zero.

■ Size: 32 bits

■ Offset: 0xb4

■ Exists: UART_RS485_INTERFACE_EN == 1

31
:1

0

R
S

V
D

_R
E

_E
N

_3
1t

o1

R
E

_E
na

bl
e

Table 5-39 Fields for Register: RE_EN

Bits Name
Memory
Access Description

31:1 RSVD_RE_EN_31to1 R RE_EN 31to1 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

0 RE_Enable * Varies RE Enable control.
 The 'RE Enable' register bit is used to control assertion and
de-assertion of 're' signal.

■ 0: De-assert 're' signal

■ 1: Assert 're' signal

Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 193SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.35 DET

■ Name: Driver Output Enable Timing Register

■ Description: The Driver Output Enable Timing Register (DET) is used to control the DE assertion
and de-assertion timings of 'de' signal.

 This register is only valid when the DW_apb_uart is configured to have RS485 interface
implemented (UART_RS485_INTERFACE = ENABLED). If RS485 interface is not implemented, this
register does not exist and reading from this register address will return zero.

■ Size: 32 bits

■ Offset: 0xb8

■ Exists: UART_RS485_INTERFACE_EN == 1

31
:2

4

23
:1

6

15
:8

7:
0

R
S

V
D

_D
E

_D
E

A
T

_3
1t

o2
4

D
E

_D
e-

as
se

rt
io

n_
T

im
e

R
S

V
D

_D
E

_A
T

_1
5t

o8

D
E

_A
ss

er
tio

n_
T

im
e

Table 5-40 Fields for Register: DET

Bits Name
Memory
Access Description

31:24 RSVD_DE_DEAT_31to24 R DET 31to24 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

23:16 DE_De-assertion_Time * Varies Driver Enable de-assertion time.
 This field controls the amount of time (in terms of number of
serial clock periods) between the end of stop bit on the sout
to the falling edge of Driver output enable signal.
Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

https://solvnet.synopsys.com
www.designware.com

194 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

15:8 RSVD_DE_AT_15to8 R DET 15to8 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

7:0 DE_Assertion_Time * Varies Driver Enable assertion time.
 This field controls the amount of time (in terms of number of
serial clock periods) between the assertion of rising edge of
Driver output enable signal to serial transmit enable. Any
data in transmit buffer, will start on serial output (sout) after
the transmit enable.
Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

Table 5-40 Fields for Register: DET (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 195SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.36 TAT

■ Name: TurnAround Timing Register

■ Description: The TurnAround Timing Register (TAT) is used to hold the turnaround time between
switching of 're' and 'de' signals.

This register is only valid when the DW_apb_uart is configured to have the RS485 interface
implemented (UART_RS485_INTERFACE_EN = ENABLED). If RS485 interface is not implemented,
this register does not exist and reading from this register address will return zero.

■ Size: 32 bits

■ Offset: 0xbc

■ Exists: UART_RS485_INTERFACE_EN == 1

31
:1

6

15
:0

R
E

_t
o_

D
E

D
E

_t
o_

R
E

Table 5-41 Fields for Register: TAT

Bits Name
Memory
Access Description

31:16 RE_to_DE * Varies Receiver Enable to Driver Enable TurnAround time.
 Turnaround time (in terms of serial clock) for RE De-
assertion to DE assertion.
Note:
- If the DE assertion time in the DET register is 0, then the
actual value is the programmed value + 3. - If the DE
assertion time in the DET register is 1, then the actual value
is the programmed value + 2. - If the DE assertion time in the
DET register is greater than 1, then the actual value is the
programmed value + 1.
Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

https://solvnet.synopsys.com
www.designware.com

196 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

15:0 DE_to_RE * Varies Driver Enable to Receiver Enable TurnAround time.
 Turnaround time (in terms of serial clock) for DE De-
assertion to RE assertion.
Note: The actual time is the programmed value + 1.
Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_RS485_INTERFACE_EN==1) ?
\"read-write\" : \"read-only\""

Table 5-41 Fields for Register: TAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 197SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.37 DLF

■ Name: Divisor Latch Fraction Register

■ Description: This register is only valid when the DW_apb_uart is configured to have Fractional Baud
rate Divisor implemented (FRACTIONAL_BAUD_DIVISOR_EN = ENABLED). If Fractional Baud
rate divisor is not implemented, this register does not exist and reading from this register address
will return zero.

■ Size: 32 bits

■ Offset: 0xc0

■ Exists: FRACTIONAL_BAUD_DIVISOR_EN == 1

31
:y

x:
0

R
S

V
D

_D
LF

D
LF

Table 5-42 Fields for Register: DLF

Bits Name
Memory
Access Description

31:y RSVD_DLF R DLF 31 to DLF_SIZE Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DLF_SIZE

x:0 DLF * Varies Fractional part of divisor.
 The fractional value is added to integer value set by DLH,
DLL. Fractional value is determined by (Divisor Fraction
value)/(2^DLF_SIZE). For information on DLF values to be
programmed for DLF_SIZE=4, see the 'Fractional Baud Rate
Support' section in the DW_apb_uart Databook.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: DLF_SIZE - 1
Memory Access:
"(FRACTIONAL_BAUD_DIVISOR_EN==1) ? \"read-write\" :
\"read-only\""

https://solvnet.synopsys.com
www.designware.com

198 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.38 RAR

■ Name: Receive Address Register

■ Description: Receive Address Register

■ Size: 32 bits

■ Offset: 0xc4

■ Exists: UART_9BIT_DATA_EN == 1

31
:8

7:
0

R
S

V
D

_R
A

R
_3

1t
o8

R
A

R

Table 5-43 Fields for Register: RAR

Bits Name
Memory
Access Description

31:8 RSVD_RAR_31to8 R RAR 31to8 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 199SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

7:0 RAR * Varies This is an address matching register during receive mode. If
the 9-th bit is set in the incoming character then the
remaining 8-bits will be checked against this register value.
If the match happens then sub-sequent characters with 9-th
bit set to 0 will be treated as data byte until the next address
byte is received.
Note:
- This register is applicable only when
'ADDR_MATCH'(LCR_EXT[1] and 'DLS_E' (LCR_EXT[0])
bits are set to 1.
- If UART_16550_COMPATIBLE is configured to 0, then RAR
should be programmed only when UART is not busy.
- If UART_16550_COMPATIBLE is configured to 0, then RAR
can be programmed at any point of the time. However, user
must not change this register value when any receive is in
progress.
Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_9BIT_DATA_EN==1) ? \"read-
write\" : \"read-only\""

Table 5-43 Fields for Register: RAR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

200 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.39 TAR

■ Name: Transmit Address Register

■ Description: Transmit Address Register

■ Size: 32 bits

■ Offset: 0xc8

■ Exists: UART_9BIT_DATA_EN == 1

31
:8

7:
0

R
S

V
D

_T
A

R
_3

1t
o8

T
A

R

Table 5-44 Fields for Register: TAR

Bits Name
Memory
Access Description

31:8 RSVD_TAR_31to8 R TAR 31to8 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

7:0 TAR * Varies This is an address matching register during transmit mode. If
DLS_E (LCR_EXT[0]) bit is enabled, then DW_apb_uart will
send the 9-bit character with 9-th bit set to 1 and remaining
8-bit address will be sent from this register provided
'SEND_ADDR' (LCR_EXT[2]) bit is set to 1.
Note:
- This register is used only to send the address. The normal
data should be sent by programming THR register.
- Once the address is started to send on the DW_apb_uart
serial lane, then 'SEND_ADDR' bit will be auto-cleared by
the hardware.
Value After Reset: 0x0
Exists: Always
Memory Access: "(UART_9BIT_DATA_EN==1) ? \"read-
write\" : \"read-only\""

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 201SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.40 LCR_EXT

■ Name: Line Extended Control Register

■ Description: Line Extended Control Register

■ Size: 32 bits

■ Offset: 0xcc

■ Exists: UART_9BIT_DATA_EN == 1

31
:4

3 2 1 0

R
S

V
D

_L
C

R
_E

X
T

T
R

A
N

S
M

IT
_M

O
D

E

S
E

N
D

_A
D

D
R

A
D

D
R

_M
A

T
C

H

D
LS

_E

Table 5-45 Fields for Register: LCR_EXT

Bits Name
Memory
Access Description

31:4 RSVD_LCR_EXT R LCR_EXT 31to4 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

202 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

3 TRANSMIT_MODE R/W Transmit mode control bit. This bit is used to control the type
of transmit mode during 9-bit data transfers.

■ 1: In this mode of operation, Transmit Holding Register
(THR) and Shadow Transmit Holding Register (STHR)
are 9-bit wide. The user needs to ensure that the
THR/STHR register is written correctly for address/data.

 Address: 9th bit is set to 1,
 Data : 9th bit is set to 0.
Note: Transmit address register (TAR) is not applicable
in this mode of operation.

■ 0: In this mode of operation, Transmit Holding Register
(THR) and Shadow Transmit Holding register (STHR) are
8-bit wide. The user needs to program the address into
Transmit Address Register (TAR) and data into the
THR/STHR register. SEND_ADDR bit is used as a
control knob to indicate the DW_apb_uart on when to
send the address.

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-45 Fields for Register: LCR_EXT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 203SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

2 SEND_ADDR R/W Send address control bit. This bit is used as a control knob
for the user to determine when to send the address during
transmit mode.

■ 1 = 9-bit character will be transmitted with 9-th bit set to 1
and the remaining 8-bits will match to what is being
programmed in 'Transmit Address Register'.

■ 0 = 9-bit character will be transmitted with 9-th bit set to 0
and the remaining 8-bits will be taken from the TXFIFO
which is programmed through 8-bit wide THR/STHR
register.

Note:

■ 1. This bit is auto-cleared by the hardware, after sending
out the address character. User is not expected to
program this bit to 0.

■ 2. This field is applicable only when DLS_E bit is set to 1
and TRANSMIT_MODE is set to 0.

Value After Reset: 0x0
Exists: UART_9BIT_DATA_EN == 1
Volatile: true

1 ADDR_MATCH R/W Address Match Mode.This bit is used to enable the address
match feature during receive.

■ 1 = Address match mode; DW_apb_uart will wait until the
incoming character with 9-th bit set to 1. And further
checks to see if the address matches with what is
programmed in 'Receive Address Match Register'. If
match is found, then sub-sequent characters will be
treated as valid data and DW_apb_uart starts receiving
data.

■ 0 = Normal mode; DW_apb_uart will start to receive the
data and 9-bit character will be formed and written into
the receive RXFIFO. User is responsible to read the
data and differentiate b/n address and data.

Note: This field is applicable only when DLS_E is set to 1.
Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-45 Fields for Register: LCR_EXT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

204 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

0 DLS_E R/W Extension for DLS. This bit is used to enable 9-bit data for
transmit and receive transfers.
Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-45 Fields for Register: LCR_EXT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 205SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.41 UART_PROT_LEVEL

■ Name: UART Protection level

■ Description: UART Protection level register

■ Size: 32 bits

■ Offset: 0xd0

■ Exists: (SLAVE_INTERFACE_TYPE > 1 && PSLVERR_RESP_EN==1 && HC_PROT_LEVEL==0) ? 1
: 0

31
:3

2:
0

R
S

V
D

_U
A

R
T

_P
R

O
T

_L
E

V
E

L

U
A

R
T

_P
R

O
T

_L
E

V
E

L

Table 5-46 Fields for Register: UART_PROT_LEVEL

Bits Name
Memory
Access Description

31:3 RSVD_UART_PROT_LEVEL R UART_PROT_LEVEL[31:29] Reserved field-read-only
Value After Reset: 0x0
Exists: Always

2:0 UART_PROT_LEVEL * Varies Protection level register.
 Enabling protection on any of its three bits would require a
privilege greater than or equal to PPROT signal to gain
access to protected registers.
Value After Reset: PROT_LEVEL_RST
Exists: Always
Memory Access: {(HC_PROT_LEVEL==0) ? "read-write" :
"read-only"}

https://solvnet.synopsys.com
www.designware.com

206 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.42 REG_TIMEOUT_RST

■ Name: Register timeout counter reset value

■ Description: Name: Register timeout counter reset register This register keeps the reset value of
reg_timer counter register. The reset value of the register is REG_TIMEOUT_DEFAULT The default
reset value can be further modified if HC_REG_TIMEOUT_VALUE = 0. The final programmed value
(or the default reset value if not programmed) determines what value the reg_timeout counter
register starts counting down from. A zero on the counter will break the hung transaction with
PSLVERR high

■ Size: 32 bits

■ Offset: 0xd4

■ Exists: (((SLAVE_INTERFACE_TYPE>0 && PSLVERR_RESP_EN==1 &&
REG_TIMEOUT_WIDTH>0) ? 1 : 0)==1) ? 1 : 0

31
:y

x:
0

R
S

V
D

_R
E

G
_T

IM
E

O
U

T
_R

S
T

R
E

G
_T

IM
E

O
U

T
_R

S
T

Table 5-47 Fields for Register: REG_TIMEOUT_RST

Bits Name
Memory
Access Description

31:y RSVD_REG_TIMEOUT_RST R Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: REG_TIMEOUT_WIDTH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 207SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

x:0 REG_TIMEOUT_RST R/W This field holds reset value of REG_TIMEOUT counter
register.
Value After Reset: REG_TIMEOUT_VALUE
Exists: [<functionof> "(HC_REG_TIMEOUT_VALUE==0) ?
1 : 0"]
Volatile: true
Range Variable[x]: REG_TIMEOUT_WIDTH - 1

Table 5-47 Fields for Register: REG_TIMEOUT_RST (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

208 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.43 CPR

■ Name: Component Parameter Register

■ Description: Component Parameter Register.This register is valid only when
UART_ADD_ENCODED_PARAMS = 1. If the UART_ADD_ENCODED_PARAMS parameter is not
set, this register does not exist and reading from this register address returns 0.

■ Size: 32 bits

■ Offset: 0xf4

■ Exists: UART_ADD_ENCODED_PARAMS == 1

31
:2

4

23
:1

6

15
:1

4

13 12 11 10 9 8 7 6 5 4 3:
2

1:
0

R
S

V
D

_C
P

R
_3

1t
o2

4

F
IF

O
_M

O
D

E

R
S

V
D

_C
P

R
_1

5t
o1

4

D
M

A
_E

X
T

R
A

U
A

R
T

_A
D

D
_E

N
C

O
D

E
D

_P
A

R
A

M
S

S
H

A
D

O
W

F
IF

O
_S

T
A

T

F
IF

O
_A

C
C

E
S

S

A
D

D
IT

IO
N

A
L_

F
E

A
T

S
IR

_L
P

_M
O

D
E

S
IR

_M
O

D
E

T
H

R
E

_M
O

D
E

A
F

C
E

_M
O

D
E

R
S

V
D

_C
P

R
_3

to
2

A
P

B
_D

A
T

A
_W

ID
T

H

Table 5-48 Fields for Register: CPR

Bits Name
Memory
Access Description

31:24 RSVD_CPR_31to24 R CPR 31to24 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 209SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

23:16 FIFO_MODE R Encoding of FIFO_MODE configuration parameter value.
Values:

■ 0x0 (FIFO_MODE_0): FIFO mode is 0

■ 0x1 (FIFO_MODE_16): FIFO mode is 16

■ 0x2 (FIFO_MODE_32): FIFO mode is 32

■ 0x4 (FIFO_MODE_64): FIFO mode is 64

■ 0x8 (FIFO_MODE_128): FIFO mode is 128

■ 0x10 (FIFO_MODE_256): FIFO mode is 256

■ 0x20 (FIFO_MODE_512): FIFO mode is 512

■ 0x40 (FIFO_MODE_1024): FIFO mode is 1024

■ 0x80 (FIFO_MODE_2048): FIFO mode is 2048

Value After Reset: UART_ENCODED_FIFO_MODE
Exists: Always

15:14 RSVD_CPR_15to14 R CPR 15to14 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

13 DMA_EXTRA R Encoding of DMA_EXTRA configuration parameter value.
Values:

■ 0x0 (DISABLED): DMA_EXTRA disabled

■ 0x1 (ENABLED): DMA_EXTRA enabled

Value After Reset: DMA_EXTRA
Exists: Always

12 UART_ADD_ENCODED_PARAM
S

R Encoding of UART_ADD_ENCODED_PARAMS
configuration parameter value.
Values:

■ 0x0 (DISABLED): UART_ADD_ENCODED_PARAMS
disabled

■ 0x1 (ENABLED): UART_ADD_ENCODED_PARAMS
enabled

Value After Reset: UART_ADD_ENCODED_PARAMS
Exists: Always

11 SHADOW R Encoding of SHADOW configuration parameter value.
Values:

■ 0x0 (DISABLED): SHADOW disabled

■ 0x1 (ENABLED): SHADOW enabled

Value After Reset: SHADOW
Exists: Always

Table 5-48 Fields for Register: CPR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

210 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

10 FIFO_STAT R Encoding of FIFO_STAT configuration parameter value.
Values:

■ 0x0 (DISABLED): FIFO_STAT disabled

■ 0x1 (ENABLED): FIFO_STAT enabled

Value After Reset: FIFO_STAT
Exists: Always

9 FIFO_ACCESS R Encoding of FIFO_ACCESS configuration parameter value.
Values:

■ 0x0 (DISABLED): FIFO_ACCESS disabled

■ 0x1 (ENABLED): FIFO ACCESS enabled

Value After Reset: FIFO_ACCESS
Exists: Always

8 ADDITIONAL_FEAT R Encoding of ADDITIONAL_FEATURES configuration
parameter value.
Values:
■ 0x0 (DISABLED): Additional features disabled

■ 0x1 (ENABLED): Additional features enabled

Value After Reset: ADDITIONAL_FEATURES
Exists: Always

7 SIR_LP_MODE R Encoding of SIR_LP_MODE configuration parameter value.
Values:

■ 0x0 (DISABLED): SIR_LP mode disabled

■ 0x1 (ENABLED): SIR_LP mode enabled

Value After Reset: SIR_LP_MODE
Exists: Always

6 SIR_MODE R Encoding of SIR_MODE configuration parameter value.
Values:

■ 0x0 (DISABLED): SIR mode disabled

■ 0x1 (ENABLED): SIR mode enabled

Value After Reset: SIR_MODE
Exists: Always

Table 5-48 Fields for Register: CPR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 211SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5 THRE_MODE R Encoding of THRE_MODE configuration parameter value.
Values:

■ 0x0 (DISABLED): THRE mode disabled

■ 0x1 (ENABLED): THRE mode enabled

Value After Reset: THRE_MODE_RST
Exists: Always

4 AFCE_MODE R Encoding of AFCE_MODE configuration parameter value.
Values:

■ 0x0 (DISABLED): AFCE mode disabled

■ 0x1 (ENABLED): AFCE mode enabled

Value After Reset: AFCE_MODE
Exists: Always

3:2 RSVD_CPR_3to2 R CPR 3to2 Reserved bits read as 0.
Value After Reset: 0x0
Exists: Always

1:0 APB_DATA_WIDTH R Encoding of APB_DATA_WIDTH configuration parameter
value.
Values:

■ 0x0 (APB_8BITS): APB data width is 8 bits

■ 0x1 (APB_16BITS): APB data width is 16 bits

■ 0x2 (APB_32BITS): APB data width is 32 bits

Value After Reset: UART_ENCODED_APB_WIDTH
Exists: Always

Table 5-48 Fields for Register: CPR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

212 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

5.1.44 UCV

■ Name: UART Component Version

■ Description: UCV register is valid only when the DW_apb_uart is configured to have additional
features implemented (ADDITIONAL_FEATURES = YES). If additional features are not
implemented, this register does not exist and reading from this register address returns 0.

■ Size: 32 bits

■ Offset: 0xf8

■ Exists: ADDITIONAL_FEATURES == 1

31
:0

U
A

R
T

_C
om

po
ne

nt
_V

er
si

on

Table 5-49 Fields for Register: UCV

Bits Name
Memory
Access Description

31:0 UART_Component_Version R ASCII value for each number in the version, followed by *.
For example 32_30_31_2A represents the version 2.01*
Value After Reset: UART_COMP_VERSION
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 213SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Register Descriptions

5.1.45 CTR

■ Name: Component Type Register

■ Description: CTR is register is valid only when the DW_apb_uart is configured to have additional
features implemented (ADDITIONAL_FEATURES = YES). If additional features are not
implemented, this register does not exist and reading from this register address returns 0.

■ Size: 32 bits

■ Offset: 0xfc

■ Exists: ADDITIONAL_FEATURES == 1

31
:0

P
er

ip
he

ra
l_

ID

Table 5-50 Fields for Register: CTR

Bits Name
Memory
Access Description

31:0 Peripheral_ID R This register contains the peripherals identification code.
Value After Reset: UART_COMP_TYPE
Exists: Always

https://solvnet.synopsys.com
www.designware.com

214 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_uart Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 215

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

6
Programming the DW_apb_uart

The following topics provide information necessary to program the DW_apb_uart.

6.1 Programing Examples
The flow diagram in Figure 6-1 shows the programming sequence for setting up the DW_apb_uart for
transmission.

https://solvnet.synopsys.com
www.designware.com

216 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Programming the DW_apb_uart DesignWare DW_apb_uart Databook

Figure 6-1 Flowchart for DW_apb_uart Transmit Programming Example

Write to Modem Control
Register (MCR) to

program SIR mode, auto
flow, loopback, modem

control outputs

Write “1” to LCR[7]
(DLAB) bit

Write to DLL, DLH to
set up divisor for

required baud rate

Write “0” to LCR[7]
(DLAB) bit

Write to LCR to set up
transfer characteristics

such as data length,
number of stop bits,
parity bits, and so on

If FIFO_MODE != NONE
(FIFO mode enabled),
write to FCR to enable

FIFOs and set Transmit
FIFO threshold level

Write to IER to enable
required interrupts

Write characters to be
transmitted to transmit
FIFO by writing to THR

Wait for Transmit Holding
Register empty interrupt

(IIR[3:0] = 4’b0010)

More
data to

transmit?

Clear THR empty
interrupt by reading

IIR register

Yes

No

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 217SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Programming the DW_apb_uart

The flow diagram in Figure 6-2 shows the programming sequence for setting up the DW_apb_uart for
reception.

Figure 6-2 Flowchart for DW_apb_uart Receive Programming Example

6.2 Programming Flow in RS485 Mode

6.2.1 Full Duplex Mode (XFER_MODE=0)

■ Program the TCR register to set the XFER_MODE(0), DE_POL (polarity of 'de'signal) and RE_POL
(polarity of 're' signals).

■ Program the DE assertion and de-assertion timing in the DET register.

■ Program RE_EN and DE_EN register to assert 're' signal and 'de' signal, respectively.

■ Perform the data transmission and reception.

■ Program RE_EN to de-assert 're' signal.

■ 'The de' signal gets de-asserted based on TxFIFO empty. Program DE_EN to '0' if you do not want to
transmit further.

Write to Modem Control
Register (MCR) to

program SIR mode, auto
flow, loopback, modem

control outputs

Write “1” to LCR[7]
(DLAB) bit

Write to DLL, DLH to
set up divisor for

required baud rate

Write “0” to LCR[7]
(DLAB) bit

Write to LCR to set up
transfer characteristics

such as data length,
number of stop bits,
parity bits, and so on

If FIFO_MODE != NONE
(FIFO mode enabled),
write to FCR to enable
FIFOs and set Receive

FIFO threshold level

Write to IER to enable
required interrupts

Reception begins when
start bit is received on

s_in input pin

Wait for Received Data
Available interrupt

(IIR[3:0] = 4’b0100)

To clear interrupt:

■ Read RBR (if FIFO
mode disabled)

■ Read data from FIFO
until FIFO level drops
below Receive
Trigger Level (if FIFO
mode enabled)

https://solvnet.synopsys.com
www.designware.com

218 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Programming the DW_apb_uart DesignWare DW_apb_uart Databook

6.2.2 Software-Enabled Half Duplex Mode (XFER_MODE=1)

■ Program the TCR register to set the XFER_MODE (1), DE_POL (polarity of 'de' signal) and RE_POL
(polarity of 're' signals).

■ Program the DE assertion and de-assertion timing in the DET register.

■ Program the turnaround times in TAT register.

■ Program RE_EN and DE_EN registers to assert 're' signal and 'de' signal, respectively.

■ Perform the data transmission/receive.

■ Program the RE_EN register to de-assert 're' signal.

■ Program the DE_EN register to '0', before programming RE_EN to '1'.

❑ 'de' signal de-assertion is based on TxFIFO empty condition and is taken care by the Hardware.
You need to program DE_EN to '0' only in the situation where you want to change the mode.

6.2.3 Hardware enabled Half Duplex mode (XFER_MODE=2)

■ Program the TCR register to set the XFER_MODE (2), DE_POL (polarity of 'de' signal) and RE_POL
(polarity of 're' signals).

■ Program the DE assertion and de-assertion timing in the DET register.

■ Program the turnaround times in TAT register.

■ Program RE_EN and DE_EN register to enable the transmit and receive paths.

■ Perform the Data transmission / receive.

■ Once the 'RE_EN' and 'DE_EN' is programmed to '1', then by default 're' signal is asserted and 'de' is
de-asserted. When the software pushes the data into the TX FIFO and if there is no ongoing receive
transfer, then the 're' signal is de-asserted and then the 'de' signal gets asserted until the TX FIFO has
data to be transmitted.

■ RE_EN and DE_EN still serves as the software overrides to decide when to shutdown transmit and
receive paths.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 219SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Programming the DW_apb_uart

NoteNoteNoteNote ■ Irrespective of other configurations (parameters enabled), RS485 mode is
not applicable when loopback mode is enabled. However, external signal
rs485_en is still asserted when TCR[0] (RS485 EN) bit is asserted even in
loopback mode.

■ When Clock Gating is enabled (CLK_GATE_EN=1), the clock gate enable
signals uart_lp_req_pclk for single clock implementations or
uart_lp_req_pclk and uart_lp_req_sclk for two clock implementations is
used to indicate the following:

❑ Transmit and receive pipelines are clear (no data).

❑ No activity has occurred.

❑ Modem control input signals have not changed in more than one
character time—the time taken to TX/RX a character—so that clocks
can be gated.

A character is made up of:

start_bit + data_bits + parity (optional) + stop_bits

If UART_RS485_INTERFCAE_EN=1 and rs485_en (TCR[0]) =1, then
DW_apb_uart also ensures that counters related to DET/TAT are also
taken care of before entering into low power mode.

https://solvnet.synopsys.com
www.designware.com

220 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Programming the DW_apb_uart DesignWare DW_apb_uart Databook

6.3 Programming Flow in 9-bit Data Mode

6.3.1 Transmit Mode 0

Figure 6-3 Auto Address Transmit Mode

Set LCR_EXT[0] (DLS_E) to 1 to indicate the 9th bit
Set LCR_EXT[3] (TRANSMIT_MODE) to 0 to indicate

the transmit mode

Program the Transmit Address Register with
the required address byte

Set the LCR_EXT[2] (SEND_ADDR) bit to 1

Hardware clears this bit after sending the
address byte on the serial lane.

Data from THR register is sent as data byte with the 9th bit set to 0

Remaining program flow remains the same as the flow discussed in
Figure 6-1

Send nextYes No

address? Exit

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 221SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Programming the DW_apb_uart

6.3.2 Transmit Mode 1

Figure 6-4 Normal Transmit Mode Programming Flow

Set LCR_EXT[0] (DLS_E) to 1 to indicate the 9th bit
Set LCR_EXT[11] (TRANSMIT_MODE) to 0 to

indicate the transmit mode

Program the data/address into the
TxFIFO by writing into the THR register

For address, software must ensure that the 9th bit is set to 1.
For data, software must ensure that the 9th bit is set to 0.

Remaining program flow remains the same
as the flow discussed in Figure 6-1

Send nextYes No

address? Exit

https://solvnet.synopsys.com
www.designware.com

222 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Programming the DW_apb_uart DesignWare DW_apb_uart Databook

6.3.3 Hardware Address Match Receive mode

For setting up DW_apb_uart in hardware address match receive mode, follow the programming sequence
mentioned in Figure 6-2 and additional steps as mentioned in Figure 6-5.

Figure 6-5 Hardware Address Match Receive Programming Flow

Set LCR_EXT[0] (DLS_E) to 1 to indicate the 9th bit

Is 9th bit set YesNo

Program the Receive Address Register (RAR)

Software needs to re-program this register only when USR
register indicates that DW_apb_uart is not busy

Set the LCR_EXT[1] (ADDR_MATCH) bit to 1, to enable
address match mode

Wait for the incoming character

Address is
pushed into the

RxFIFO and
RBR with the 9
bit information

Wait for
incoming
character

Is 9th bit
set to 0? to 1?

byte equal to
Is received

RAR?

No

Yes

Data byte is pushed
into the RxFIFO and

RBR with 9 bit
information

Yes

No

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 223SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Programming the DW_apb_uart

6.3.4 Software Address Match Receive mode

Figure 6-6 Software Address Match Receive Programming Mode

6.4 Programming Flow for Fractional Baud Rate
The programming flow for fractional baud rate is the same as explained in “Programing Examples” on
page 215 except that you must configure the DLF register before programming the DLH and DLL registers
if the FRACTIONAL_BAUD_DIVISOR_EN parameter is enabled.

NoteNoteNoteNote In the FIFO mode, if UART_9BIT_DATA_EN=1, the character timeout also considers the 9th
bit.

Set LCR_EXT[0] (DLS_E) to 1 to indicate the 9th bit

Is 9th bit set

Yes

Set LCR_EXT[1] (ADDR_MATCH) bit to 0 to indicate normal mode

Wait for the incoming character

 to 1?

No

- Update RxFIFO with the received 9-bit data information
- LSR[8] is not updated
- Interrupt not generated

Software must read the RBR register

Update RxFIFO with the received
9-bit address information

- When this 9-bit address information reaches the top of RxFIFO, LSR[9] is
 set to 1 and corresponding interrupt gets generated. - DW_apb_uart
 updates IIR[3:0] to 0110 indicating Receiver Line Status interrupt.
- Software must wait for the interrupt and read LSR register to know the cause
 of the interrupt.
- Software performs address matching after noticing that LSR[8] is set to 1.
- Software performs address matching.
- Software, irrespective of address match, needs to read the subsequent data
 bytes from RBR register. If address match fails, then software has to discard
 the data.

https://solvnet.synopsys.com
www.designware.com

224 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Programming the DW_apb_uart DesignWare DW_apb_uart Databook

6.5 Software Drivers
The family of DesignWare Synthesizable Components includes a Driver Kit for the DW_apb_uart
component. This low-level driver allows you to program a DW_apb_uart component and integrate your
code into a larger software system. The Driver Kit provides the following benefits to IP designers:

■ Proven method of access to DW_apb_uart minimizing usage errors

■ Rapid software development with minimum overhead

■ Detailed knowledge of DW_apb_uart register bit fields not required

■ Easy integration of DW_apb_uart into existing software system

■ Programming at register level eliminated

You must purchase a source code license (DWC-APB-Periph-Source) to use the DW_apb_uart Driver Kit.
However, you can access some Driver Kit files and documentation in
$DESIGNWARE_HOME/drivers/DW_apb_uart/latest. For more information about the Driver Kit, see the
DW_apb_uart Driver Kit User Guide. For more information about purchasing the source code license and
obtaining a download of the Driver Kit, contact Synopsys at designware@synopsys.com for details.

https://www.synopsys.com/dw/doc.php/drivers/DW_apb_uart/latest/doc/dw_apb_uart_driver.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 225

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

7
Verification

This chapter provides an overview of the testbench and tests available for DW_apb_uart verification. (Also
see “Verification Environment Overview” on page 22). Once the DW_apb_uart has been configured and the
verification environment set up, simulations can be automatically ran.

NoteNoteNoteNote The DW_apb_uart verification testbench is built with DesignWare Verification IP (VIP). Make
sure you have the supported version of the VIP components for this release, otherwise, you
may experience some tool compatibility problems. For more information about supported tools
in this release, see the following web page:
 DesignWare Synthesizable Components for AMBA 2, AMBA 3 AXI, and AMBA 4 AXI
Installation Guide

https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

226 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Verification DesignWare DW_apb_uart Databook

7.1 Overview of DW_apb_uart Testbench
As illustrated in Figure 7-1, the DW_apb_uart Verilog testbench includes an instantiation of the design
under test (DUT), AHB and APB bus models, and a Vera shell.

Figure 7-1 DW_apb_uart Testbench

The DW_apb_uart testbench consists of the following:

■ Vera Test – Responsible for enumerating the test conditions under which the DUT (UART) is verified.
These conditions steer the simulations in various aspects, such as the register settings of the UART,
the transfer direction (UART to SIO_TxRx, SIO_TxRx to UART, loopback) and length (number of
characters serially exchanged), number of iterations for a single test scenario, simulation controls,
and so on. All this information is randomly created and encapsulated in several classes with
associated Vera randomization and constraint constructs. This information is also relayed to the other
Vera components.

■ Testbench API – Takes in the randomized test conditions and uses the relevant portions for
appropriate directing of the simulation controls, such as the number of iterations executed. It is also
responsible for ensuring that all test monitors are alerted and set up for the indicated test type, as
well as relaying information (in the form of class objects) to the two drivers (UartLocalClass,
UartRemoteClass) in order to execute the desired simulation behavior to effect; for example, transfers
to and from the DUT.

■ DUT Driver, or UartLocalClass – Responsible for translating the information provided by the
Testbench API into the desired simulation behaviors. This Vera component ensures that
corresponding command and/or sequence of commands are issued to the AHB BFM to effect the

AHB
BFM

SIO

DUT
DW_apb_uart.v
(APB Slave 0)

Vera Tests
(test stimuli and results)

Scoreboard

Checkers

UartRemote
(VIP driver)

UartLocal
(DUT driver)

APB
BFM

DMA
BFM

SIO Txrx
models

Monitors

test_DW_apb_uart.v

= Vera shell

AHB
Bus

APB
Bridge

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 227SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Verification

desired register settings, transferring of data, toggling of the modem interface signals, loopback
mode, interrupts, and so on in the DUT(UART). Since the information directing the required
simulations are shielded by UartLocalClass away from AHB BFM, revised versions of the latter Vera
component can be easily accommodated by updating UartLocalClass.

■ VIP Driver, or UartRemoteClass – Performs a similar role to that of UartLocalClass, translating the
information provided by Testbench API into corresponding SIO_TxRx BFM commands in order to
effect the desired simulation behaviors. Note that controls complementary to that of the
UartLocalClass are performed in the UartRemoteClass, such that if the DUT performs transmits, then
the SIO_TxRx BFM attempts receptions. UartRemoteClass also serves to shield the rest of the
verification environment from revised versions of this VIP component.

■ AHB BFM – VIP harness BFM required to imitate as an AHB master. All actual register accesses
(reads and writes) required by a current test are performed using AHB BFM commands. Existing
class definitions for this BFM are re-used.

■ DMA BFM – Exercises the DMA interface of the DUT/UARTv3.0. It behaves as another AHB master,
issuing commands to perform reads and writes from/to the UART. These activities are coordinated
within the UartLocalClass.

■ Checkers – Examine the behavior of the DUT through the DUT signal interfaces, and evaluate the
outcome of the prescribed tests targeted at the DUT. The verification tests determine the degree to
which the DUT is verified, and is therefore linked to one (or more) test monitors in the test
environment. These Checkers operate independently of the main flow in the test code. This form of
messaging uses two classes, TestmonAlertClass and TestmonExecuteClass.

■ SIOMonitor – Serial monitor VIP from the SIO VIP package. When appropriately parameterized, the
SIO_Mon examines the serial bit patterns exchanged between the DUT and the SIO_TxRx.

■ SIOTxRx BFM – Vera model of a UART capable of serial data exchanges with any other UART.

■ APB Slave BFM – Used to ensure that violations in the APB accesses are appropriately captured and
logged.

■ Scoreboard – Tracks the data that are exchanged between the UART and the SIOTxrx models. This
allows verification of the actual contents transmitted and/or received on either side in either
direction.

https://solvnet.synopsys.com
www.designware.com

228 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Verification DesignWare DW_apb_uart Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 229

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

8
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment.

8.1 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

8.2 Coherency
Coherency is where bits within a register are logically connected. For instance, part of a register is read at
time 1 and another part is read at time 2. Being coherent means that the part read at time 2 is at the same
value it was when the register was read at time 1. The unread part is stored into a shadow register and this
is read at time 2. When there is no coherency, no shadow registers are involved.

A bus master may need to be able to read the contents of a register, regardless of the data bus width, and be
guaranteed of the coherency of the value read. A bus master may need to be able to write a register
coherently regardless of the data bus width and use that register only when it has been fully programmed.
This may need to be the case regardless of the relationship between the clocks.

Coherency enables a value to be read that is an accurate reflection of the state of the counter, independent of
the data bus width, the counter width, and even the relationship between the clocks. Additionally, a value
written in one domain is transferred to another domain in a seamless and coherent fashion.

https://solvnet.synopsys.com
www.designware.com

230 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_uart Databook

Throughout this appendix the following terms are used:

■ Writing. A bus master programs a configuration register. An example is programming the load value
of a counter into a register.

■ Transferring. The programmed register is in a different clock domain to where it is used, therefore, it
needs to be transferred to the other clock domain.

■ Loading. Once the programmed register is transferred into the correct clock domain, it needs to be
loaded or used to perform its function. For example, once the load value is transferred into the
counter domain, it gets loaded into the counter.

8.2.1 Writing Coherently

Writing coherently means that all the bits of a register can be written at the same time. A peripheral may
have programmable registers that are wider than the width of the connected APB data bus, which prevents
all the bits being programmed at the same time unless additional coherency circuitry is provided.

The programmable register could be the load value for a counter that may exist in a different clock domain.
Not only does the value to be programmed need to be coherent, it also needs to be transferred to a different
clock domain and then loaded into the counter. Depending on the function of the programmable register, a
qualifier may need to be generated with the data so that it knows when the new value is currently
transferred and when it should be loaded into the counter.

Depending on the system and on the register being programmed, there may be no need for any special
coherency circuitry. One example that requires coherency circuitry is a 32-bit timer within an 8-bit APB
system. The value is entirely programmed only after four 8-bit wide write transfers. It is safe to transfer or
use the register when the last byte is currently written. An example where no coherency is required is a
16-bit wide timer within a 16-bit APB system. The value is entirely programmed after a single 16-bit wide
write transfer.

Coherency circuitry enables the value to be loaded into the counter only when fully programmed and
crossed over clock domains if the peripheral clock is not synchronous to the processor clock. While the load
register is being programmed, the counter has access to the previous load value in case it needs to reload the
counter.

Coherency circuitry is only added in cores where it is needed. The coherency circuitry incorporates an
upper byte method that requires users to program the load register in LSB to MSB order when the
peripheral width is smaller than the register width. When the upper byte is programmed, the value can be
transferred and loaded into the load register. When the lower bytes are being programmed, they need to be
stored in shadow registers so that the previous load register is available to the counter if it needs to reload.
When the upper byte is programmed, the contents of the shadow registers and the upper byte are loaded
into the load register.

The upper byte is the top byte of a register. A register can be transferred and loaded into the counter only
when it has been fully programmed. A new value is available to the counter once this upper byte is written
into the register. The following table shows the relationship between the register width and the peripheral
bus width for the generation of the correct upper byte. The numbers in the table represent bytes, Byte 0 is
the LSB and Byte 3 is the MSB. NCR means that no coherency circuitry is required, as the entire register is
written with one access.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 231SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Integration Considerations

There are three relationship cases to be considered for the processor and peripheral clocks:

■ Identical

■ Synchronous (phase coherent but of an integer fraction)

■ Asynchronous

8.2.1.1 Identical Clocks

The following figure illustrates an RTL diagram for the circuitry required to implement the coherent write
transaction when the APB bus clock and peripheral clocks are identical.

Figure 8-1 Coherent Loading – Identical Synchronous Clocks

Table 8-1 Upper Byte Generation

Upper Byte
Bus Width

Load Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 1 NCR NCR

17 - 24 2 2 NCR

25 - 32 3 2 (or 3) NCR

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

https://solvnet.synopsys.com
www.designware.com

232 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_uart Databook

The following figure shows a 32-bit register that is written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal lasts
for one cycle and is used to load the counter with CntLoadValue.

Figure 8-2 Coherent Loading – Identical Synchronous Clocks

Each of the bytes that make up the load register are stored into shadow registers until the final byte is
written. The shadow register is up to three bytes wide. The contents of the shadow registers and the final
byte are transferred into the CntLoadValue register when the final byte is written. The counter uses this
register to load/initialize itself. If the counter is operating in a periodic mode, it reloads from this register
each time the count expires.

By using the shadow registers, the CntLoadValue is kept stable until it can be changed in one cycle. This
allows the counter to be loaded in one access and the state of the counter is not affected by the latency in
programming it. When there is a new value to be loaded into the counter initially, this is signaled by
LoadCnt = 1. After the upper byte is written, the LoadCnt goes to zero.

8.2.1.2 Synchronous Clocks

When the clocks are synchronous but do not have identical periods, the circuitry needs to be extended so
that the LoadCnt signal is kept high until a rising edge of the counter clock occurs. This extension is
necessary so that the value can be loaded, using LoadCnt, into the counter on the first counter clock edge. At
the rising edge of the counter clock if LoadCnt is high, then a register clocked with the counter clock toggles,
otherwise it keeps its current value. A circuit detecting the toggling is used to clear the original LoadCnt by
looking for edge changes. The value is loaded into the counter when a toggle has been detected. Once it is
loaded, the counter should be free to increment or decrement by normal rules.

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

pclk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

LoadValue[31:0]

UpperByteWen

LoadCnt

Counter[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 233SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Integration Considerations

The following figure shows an RTL diagram for the circuitry required to implement the coherent write
when the bus and peripheral clocks are synchronous.

Figure 8-3 Coherent Loading – Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

OR

AND
ToggleToggle

1

1

Shaded Registers are all
connected to the Bus clock.
Others are connected to the
Peripheral clock.

https://solvnet.synopsys.com
www.designware.com

234 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_uart Databook

The following figure shows a 32-bit register being written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal is
extended until a change in the toggle is detected and is used to load the counter.

Figure 8-4 Coherent Loading – Synchronous Clocks

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

counter_clk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

CntLoadValue[31:0]

LoadCnt

toggle_edge_detect

Counter[31:0]

toggle

pclk

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 235SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Integration Considerations

8.2.1.3 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three-times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock. The following figure shows an RTL diagram for the circuitry
required to implement the coherent write when the bus and peripheral clocks are asynchronous.

Figure 8-5 Coherent Loading – Asynchronous Clocks

When the clocks are asynchronous, you need to transfer the contents of the register from one clock domain
to another. It is not desirable to transfer the entire register through meta-stability registers, as coherency is
not guaranteed with this method. The circuitry needed requires the processor clock to be used to re-time the
peripheral clock. Upon a rising edge of the re-timed clock, the new value signal, NewValue, is transferred
into a safe new value signal, SafeNewValue, which happens after the edge of the peripheral clock has
occurred.

Every time there is a rising edge of the peripheral clock detected, the CntLoadValue is transferred into a
SafeCntLoadValue. This value is used to transfer the load value across the clock domains. The
SafeCntLoadValue only changes a number of bus clock cycles after the peripheral clock edge changes. A

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0]

Counter
[31:0]

Shadow

Toggle 1

1

Shaded and edge detect registers are all
connected to the Bus clock. Others are
connected to the Peripheral clock.

(or ByteWen[3])

ClrNewValue
Reset

EN

32

NewValue

red_counter_clk

SafeCountLoadValue

&

Reset

EN

ClrNewValue

red_counter_clk

Edge
Detect

ClrNewValue

pclk

Rising

Detect
counter_clk

pclk

Edge red_counter_clk

SafeNewValue

https://solvnet.synopsys.com
www.designware.com

236 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_uart Databook

counter running on the peripheral clock is able to use this value safely. It could be up to two peripheral
clock periods before the value is loaded into the counter. Along with this loaded value, there also is a single
bit transferred that is used to qualify the loading of the value into the counter.

The timing diagram depicted in the following figure does not show the shadow registers being loaded. This
is identical to the loading for the other clock modes.

Figure 8-6 Coherent Loading – Asynchronous Clocks

The NewValue signal is extended until a change in the toggle is detected and is used to update the safe
value. The SafeNewValue is used to load the counter at the rising edge of the peripheral clock. Each time a
new value is written the toggle bit is flipped and the edge detection of the toggle is used to remove both the
NewValue and the SafeNewValue.

8.2.2 Reading Coherently

For writing to registers, an upper-byte concept is proposed for solving coherency issues. For read
transactions, a lower-byte concept is required. The following table provides the relationship between the
register width and the bus width for the generation of the correct lower byte.

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

Counter Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 0 NCR NCR

0D0C0B0A

0D0C0B0A

0D0C0B0A

A3

counter_clk

paddr

penable

pwdata[7:0]

NewValue

ntLoadValue[31:0]

red_counter_clk

ntLoadValue[31:0]

SafeNewValue

ClrNewValue

Counter[31:0]

toggle

pclk

0D

UpperByteWen

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 237SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Integration Considerations

Depending on the bus width and the register width, there may be no need to save the upper bits because the
entire register is read in one access, in which case there is no problem with coherency. When the lower byte
is read, the remaining upper bytes within the counter register are transferred into a holding register. The
holding register is the source for the remaining upper bytes. Users must read LSB to MSB for this solution to
operate correctly. NCR means that no coherency circuitry is required, as the entire register is read with one
access.

There are two cases regarding the relationship between the processor and peripheral clocks to be considered
as follows:

■ Identical and/or synchronous

■ Asynchronous

8.2.2.1 Synchronous Clocks

When the clocks are identical and/or synchronous, the remaining unread bits (if any) need to be saved into
a holding register once a read is started. The first read byte must be the lower byte provided in the previous
table, which causes the other bits to be moved into the holding register, SafeCntVal, provided that the
register cannot be read in one access. The upper bytes of the register are read from the holding register
rather than the actual register so that the value read is coherent. This is illustrated in the following figure
and in the timing diagram after it.

Figure 8-7 Coherent Registering – Synchronous Clocks

17 - 24 0 0 NCR

25 - 32 0 0 NCR

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

CntVal[31:8]

CntVal[31:8]

EN

LowerByteRen

SafeCntVal

ReadCntVal[31:0]

ByteRen[3:0]

Counter
Block

Shaded registers are clocked
with the processor clock.

https://solvnet.synopsys.com
www.designware.com

238 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_uart Databook

Figure 8-8 Coherent Registering – Synchronous Clocks

8.2.2.2 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock.

To safely transfer a counter value from the counter clock domain to the bus clock domain, the counter clock
signal should be transferred to the bus clock domain. When the rising edge detect of this re-timed counter
clock signal is detected, it is safe to use the counter value to update a shadow register that holds the current
value of the counter.

While reading the counter contents it may take multiple APB transfers to read the value.

Once a read transaction has started, the value of the upper register bits need to be stored into a shadow
register so that they can be read with subsequent read accesses. Storing these upper bits preserves the
coherency of the value that is being read. When the processor reads the current value it actually reads the
contents of the shadow register instead of the actual counter value. The holding register is read when the
bus width is narrower than the counter width. When the LSB is read, the value comes from the shadow
register; when the remaining bytes are read they come from the holding register. If the data bus width is
wide enough to read the counter in one access, then the holding registers do not exist.

The counter clock is registered and successively pipelined to sense a rising edge on the counter clock.
Having detected the rising edge, the value from the counter is known to be stable and can be transferred
into the shadow register. The coherency of the counter value is maintained before it is transferred, because
the value is stable.

NoteNoteNoteNote You must read LSB to MSB when the bus width is narrower than the counter width.

A0 A1 A2 A3

00010203 0A0B0C0D 0E0F0G0H

clk1

CntVal[31:0]

paddr

penable

prdata[7:0]

SafeCntVal[31:8]

LowerByteRen

pclk

A0 A1 A2

03 02 01 00 0H 0G

000102 0E0F0G

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 239SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Integration Considerations

The following figure illustrates the synchronization of the counter clock and the update of the shadow
register.

Figure 8-9 Coherency and Shadow Registering – Asynchronous Clocks

CntVal

EN

LowerByteRen

SafeCntVal

ReadCntVal

Sync and shaded registers are
clocked with the processor clock.

ShdwCntVal

EN

Sync & Rising
Edge Detect

Safe To Update

https://solvnet.synopsys.com
www.designware.com

240 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_uart Databook

8.3 Performance
This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_apb_uart.

8.3.1 Power Consumption, Frequency, and Area Results

Table 8-3 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_apb_uart using the industry standard 28nm technology library and how it affects performance.

Table 8-3 Power Consumption, Frequency, and Area Results for DW_apb_uart Using 28nm Technology Library

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration pclk: 200 MHz 2916 gates 46.2 nW 87.727 uW

Maximum Configuration 1:
APB_DATA_WIDTH 8
FIFO_MODE 2048
CLOCK_MODE 2
AFCE_MODE 1
THRE_MODE_USER 1
SIR_MODE 1
CLK_GATE_EN 1
FIFO_ACCESS 1
DMA_EXTRA 1
DEBUG 1

pclk: 200 MHz
sclk: 35 MHz

6752 gates 110 nW 201.562 uW

Maximum Configuration 2:
AFCE_MODE 1
APB_DATA_WIDTH 8
CLK_GATE_EN 1
CLOCK_MODE 2
DEBUG 1
DMA_EXTRA 1
FIFO_ACCESS 1
FIFO_MODE 2048
FIFO_STAT 1
SHADOW 1
SIR_MODE 1
THRE_MODE_USER 1

pclk:200MHz
sclk: 35 MHz

6752 gates 110 nW 201.562 uW

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 241SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Integration Considerations

Maximum Configuration 1 with
APB4:
APB_DATA_WIDTH 8
FIFO_MODE 2048
CLOCK_MODE 2
AFCE_MODE 1
THRE_MODE_USER 1
SIR_MODE 1
CLK_GATE_EN 1
FIFO_ACCESS 1
DMA_EXTRA 1
DEBUG 1
SLAVE_INTERFACE_TYPE 2

pclk: 200 MHz
sclk: 35 MHz

7075 gates 117 nW 200.558 uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

242 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_uart Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 243

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

A
Synchronizer Methods

This appendix describes the synchronizer methods (blocks of synchronizer functionality) that are used in
the DW_apb_uart to cross clock boundaries.

This appendix contains the following sections:

■ “Synchronizers Used in DW_apb_uart” on page 244

■ “Synchronizer 1: Simple Double Register Synchronizer” on page 245

■ “Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset” on
page 245

■ “Synchronizer 3: Simple Double Register Synchronizer with Acknowledge” on page 246

NoteNoteNoteNote The DesignWare Building Blocks (DWBB) contains several synchronizer components with
functionality similar to methods documented in this appendix. For more information about the
DWBB synchronizer components go to:
https://www.synopsys.com/dw/buildingblock.php

https://www.synopsys.com/dw/buildingblock.php
https://solvnet.synopsys.com
www.designware.com

244 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Synchronizer Methods DesignWare DW_apb_uart Databook

A.1 Synchronizers Used in DW_apb_uart
Each of the synchronizers and synchronizer sub-modules are comprised of verified DesignWare Basic Core
(BCM) RTL designs. The BCM synchronizer designs are identified by the synchronizer type. The
corresponding RTL files comprising the BCM synchronizers used in the DW_apb_uart are listed and cross
referenced to the synchronizer type in Table A-1. Note that certain BCM modules are contained in other
BCM modules, as they are used in a building block fashion.

Table A-1 Synchronizers Used in DW_apb_uart

Synchronizer Module
File Sub Module File Synchronizer Type and Number

DW_apb_uart_bcm21.v Synchronizer 1: Simple Multiple Register Synchronizer

DW_apb_uart_bcm41.v DW_apb_uart_bcm21.v Synchronizer 2: Simple Multiple Register Synchronizer with
Configurable Polarity Reset

DW_apb_uart_bcm25.v DW_apb_uart_bcm21.v
DW_apb_uart_bcm23.v

Synchronizer 3: Simple Multiple register Synchronizer with
Acknowledge

NoteNoteNoteNote The BCM21 is a basic multiple register based synchronizer module used in the design. It can be
replaced with equivalent technology specific synchronizer cell.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 245SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Synchronizer Methods

A.2 Synchronizer 1: Simple Double Register Synchronizer
This is a single clock data bus synchronizer for synchronizing data that crosses asynchronous clock
boundaries. This synchronization scheme is always present for synchronizing the Modem control signals. If
pclk and sclk are asynchronous (CLOCK_MODE =Enabled) then DW_apb_uart_bcm21 is instantiated
inside the core for synchronization. This uses two stage synchronization process () both using positive edge
of clock.

Figure A-1 Block Diagram of Synchronizer 1 With Two Stage Synchronization (Both Positive Edge)

A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable
Polarity Reset

This is a single clock data bus synchronizer for synchronizing data that crosses asynchronous clock
boundaries with configurable polarity reset. The synchronization scheme (DW_apb_uart_bcm41.v) is
always present in core for synchronization of sin input signal. This DW_apb_uart_bcm41 synchronizer is
similar to the DW_apb_uart_bcm21 synchronizer and the polarity of the output of this synchronizer can be
configured. Figure A-2 shows the block diagram of Synchronizer 2.

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

246 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Synchronizer Methods DesignWare DW_apb_uart Databook

Figure A-2 Block Diagram of Synchronizer 2 With Two Stage Synchronization (Both Positive Edge)

A.4 Synchronizer 3: Simple Double Register Synchronizer with Acknowledge
This synchronizer (DW_apb_uart_bcm25.v) passes data values from the source domain to the destination
domain through a hand-shake protocol which includes an acknowledge back to the source domain. This
module uses clock-domain-crossing techniques to safely transfer pulses between logic operating on
different clocks and acknowledge guaranteeing the pulse has arrived in the destination domain. This
synchronizer is present based on the core configuration. If pclk and sclk are synchronous
(CLOCK_MODE=Enabled), then DW_apb_uart_bcm25.v is used to synchronize the data signals from one
domain to the other domain.

This synchronizer uses the same DW_apb_uart_bcm21.v module to synchronize the data from source clock
domain to destination clock domain.

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 247

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

B
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table B-1 Internal Parameters

Parameter Name Equals To

FIFO_ADDR_WIDTH {[function_of: FIFO_MODE]}

MEM_SELECT (((FIFO_MODE ! = 0) && (FIFO_MODE <= 256)) ?
MEM_SELECT_USER : 0)

POW_2_REG_TIMEOUT_WIDTH {[function_of: REG_TIMEOUT_WIDTH]}

RXFIFO_RW (UART_9BIT_DATA_EN == 1) ? 11 : 10

RX_RAM_DATA_WIDTH RXFIFO_RW

SRBRN_REG_SIZE (UART_9BIT_DATA_EN == 1) ? 9 : 8

STHRN_REG_SIZE (UART_9BIT_DATA_EN == 1) ? 9 : 8

THRE_MODE {((FIFO_MODE ! = 0) ? ((THRE_MODE_USER == 1) ? 1
: 0) : 0)}

THRE_MODE_RST {(FIFO_MODE ! = 0 && THRE_MODE_USER ==1) ? 1 :
0}

TXFIFO_RW (UART_9BIT_DATA_EN == 1) ? 9 : 8

TX_RAM_DATA_WIDTH TXFIFO_RW

UART_ADDR_SLICE_LHS 8

https://solvnet.synopsys.com
www.designware.com

248 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Internal Parameter Descriptions DesignWare DW_apb_uart Databook

UART_COMP_TYPE 32'h44570110

UART_COMP_VERSION 32'h3430322a

UART_ENCODED_APB_WIDTH {[function_of: APB_DATA_WIDTH]}

UART_ENCODED_FIFO_MODE {[function_of: FIFO_MODE]}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 249

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

C
Application Notes

This appendix provides application notes for DW_apb_uart.

Q. The DesignWare DW_apb_uart Databook states that the timeout detection hardware block is optional, but I do
not see any configuration parameter available for this feature. How do I set this option?

A. If FIFO_MODE!=NONE or CLK_GATE_EN=1, you get this timeout detector block instantiated at
the top level. If CLK_GATE_EN=1, clock gating circuitry is also included in the Timeout Detector
block.

Q. If I have a DesignWare license, can I use the DW_apb_uart driver kit?

A. No, you cannot use the DW_apb_uart driver kit with a DesignWare license. The DW_apb_uart
driver kit requires the DWC-APB-Advanced-Source license.

Q. I am using the DW_apb_uart driver example. The driver includes a header file called inttypes.h but it is not
supplied with the example driver files. What should I do?

A. The inttypes.h, stdarg.h and stddef.h are all standard C header files that come with the Arm® C
compiler and are present in $ARMHOME/common/include directory.

To find out how to obtain and configure an ARM-946 CPU model, see the DW_apb_uart Driver Kit
Databook at:

https://www.synopsys.com/dw/doc.php/drivers/DW_apb_uart/latest/doc/dw_apb_uart_dr
iver.pdf

Q. What is the difference between bits PTIME (bit 7) and ETBEI (bit 1) of the IER register?

A. PTIME is used to enable the Programmable THRE Interrupt Mode, when DW_apb_uart is
configured to support this mode (THRE_MODE_USER = Enabled). The PTIME bit field is writable
only when the Programmable THRE Interrupt Mode Enable configuration parameter
(THRE_MODE_USER) is set to True. It is always readable. This is used to enable or disable the
generation of THRE Interrupt.

ETBEI is used to enable the interrupt regardless of the setting of the Programmable THRE Interrupt
Mode. The interrupt provides the following information depending on whether the Programmable
THRE Interrupt Mode is enabled or disabled. The interrupt indicates either the transmitter holding
register empty (THRE_MODE_USER is disabled) or the transmit FIFO at or below threshold
(THRE_MODE_USER is enabled).

Thus, DW_apb_uart has been configured to have Programmable THRE Interrupt Mode, the PTIME
bit is used to switch between the two modes of operation.

https://www.synopsys.com/dw/doc.php/drivers/DW_apb_uart/latest/doc/dw_apb_uart_driver.pdf
https://www.synopsys.com/dw/doc.php/drivers/DW_apb_uart/latest/doc/dw_apb_uart_driver.pdf
https://www.synopsys.com/dw/doc.php/drivers/DW_apb_uart/latest/doc/dw_apb_uart_driver.pdf
https://www.synopsys.com/dw/doc.php/drivers/DW_apb_uart/latest/doc/dw_apb_uart_driver.pdf
https://solvnet.synopsys.com
www.designware.com

250 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Application Notes DesignWare DW_apb_uart Databook

Q. When I read the Component Parameter register (CPR), it always returns a value of 0. Why does this occur?

A. The CPR is only valid when DW_apb_uart is configured to have the Component Parameter register
implemented (UART_ADD_ENCODED_PARAMS is set to Yes). If the Component Parameter
register is not implemented, this register does not exist and reading from this register address
returns 0.

Q. Why is there IIR[3:0]=0x7, an additional busy detect interrupt in comparison to the 16550 National
specification?

A. Busy functionality helps to safe guard against errors if the LCR, DLL, and/or DLH registers are
changed during a transaction even though they should only be set during initialization (as stated in
the National specification for DLL/DLH, section 8.3 p.16).

Q. Why are there two resets in DW_apb_uart?

A. When operating in asynchronous serial clock mode, dedicated reset signals for the different clock
domains are required. All the logic operating on pclk is reset by presetn, while the logic operating on
sclk is reset by s_rst_n.

The software reset (when this feature is enabled) resets both pclk and sclk logic; although this signal
is generated in the pclk domain, internal synchronization ensures it can be safely used in the sclk
domain without the risk of metastability.

When operating in synchronous serial clock mode all logic is reset by the presetn signal.

Q. Is it possible to do burst (back-to-back) FIFO reads/writes? For example, can the write and enable lines be held
for two consecutive clocks to do back-to-back transfers?

A. DW_apb_uart does accommodate burst FIFO reads and writes using the SRBR (Shadow Receive
Buffer Register) and STHR (Shadow Transmit Holding Register).

Q. What activity occurs on the sout and sir_out_n signals in UART and IR mode?

A. The serial data out signal sout is driven high if DW_apb_uart is in loopback mode or serial infrared
mode. Otherwise, it is assigned to the current bit of the character that is being transmitted.

Q. Is there a way to find out whether DW_apb_uart is operating in either normal serial data mode or in Infrared
mode?

A. The only way to find out whether DW_apb_uart is operating in either normal serial data mode or in
Infrared mode is to check the Modem Control Register (MCR) bit 6. If MCR[6]=0, IrDA SIR Mode
disabled. If MCR[6]=1, IrDA SIR Mode is enabled. This bit is writable only when SIR_MODE is
enabled.

Q. Is DW_apb_uart completely compliant with the 16750 specification from Texas Instruments?

A. No, DW_apb_uart is not completely compliant with the 16750 TI specification. DW_apb_uart does
not support features such as sleep mode (has an enable bit in the IER) and low-power mode (has an
enable bit in the IER), which seem to be for a uart/clock oscillator control within their chip.

NoteNoteNoteNote
■ The presetn and s_rst_n signals must be synchronous to the pclk and sclk clock signals,

respectively.

■ For correct operation, the logic on both clock domains should be reset simultaneously;
resetting only one clock domain results in undetermined behavior. When de-asserting the
reset signals, s_rst_n should be de-asserted first.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 251SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Application Notes

Q. What is the safest way to hold DW_apb_uart in reset or non-response state when it is being initialized so that
no characters during this time period are received/transmitted?

A. When you are in the initialization stage, there are two ways to ensure that no characters during this
time period are received/transmitted:

a. Set DLL and DLH to 0; configure the control registers for transfer, for instance, set LCR register
(data size, stop bits, and so on); set the MCR register; set the FCR register to enable FIFOs; and set
IER register to enable interrupts. Once this is completed, write to the divisor registers DLL and
DLH to set the bit rate and then write the data to be transmitted into the THR register.

b. There is a loopback mode (MCR[4]) that provides a local loopback feature. When this bit is set to
logic 1, the transmitter Serial Output (SOUT) is set to a logic 1 state, the receiver Serial Input (SIN)
is disconnected, and the output of the Transmitter Shift Register is “looped back” into the
Receiver Shift Register input. So DW_apb_uart does not receive anything because the sin signal is
disconnected.

Put DW_apb_uart in loopback mode; setup the control registers for transfer (for instance, write
the divisor registers to set the bit rate); set LCR register (data size, stop bits, and so on); set MCR
register; set FCR register to enable FIFOs; and set IER register to enable interrupts. Once this is
completed, write 0 in MCR[4] (no loopback mode) and then write the data to be transmitted into
the THR register.

Q. After initialization of DW_apb_uart, if you want to program the baud rate, how can you make sure you do not
receive/send any characters during this configuration time?

A. After initialization of DW_apb_uart, once TX/RX has started, if you want to reprogram the baud
rate, make sure that the serial transfer has been completed. The safest way to accomplish this is to
poll USR[0] (Busy) bit, and when DW_apb_uart is not busy, change the register values.

Q. What is the functionality of the SIR_MODE and SIR_LP_MODE configuration parameters?

A. IrDA 1.0 SIR mode specifies a maximum baud rate of 115.2 Kbaud. But if you want to operate using
the low-power pulse duration (SIR_LP_MODE=1) of 1.63us, you must run at 115.2K baud.
DW_apb_uart automatically handles this by being configured with asynchronous clock support.

If SIR_MODE is set to 1, you can have a baud rate anywhere from 9.6K to 115.2K with 3/16 nominal
pulse width support. However, if SIR_LP_MODE is set to 1, you must run at 115.2K.

If you set CLOCK_MODE to 2, SIR_MODE to 1, and run at 115.2K, you are getting functionality for
SIR_LP_MODE set to 1. If you set a baud rate higher or lower then 115.2K in SIR_LP_MODE, it still
generates 3/16 pulse width but does not work properly because it violates the requirement of 1.63us
for low-power IrDA SIR mode.

https://solvnet.synopsys.com
www.designware.com

252 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Application Notes DesignWare DW_apb_uart Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 253

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

D
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in a
word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable block
that can be instantiated as a single entity (VHDL) or module (Verilog) in a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used in
the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

https://solvnet.synopsys.com
www.designware.com

254 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Glossary DesignWare DW_apb_uart Databook

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a big
piece of IIP. Anything that requires coreConsultant for configuration, as well as
anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in the
DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable cores
into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design views
and synthesis views you need to integrate the core into your design. Can also
synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format back
to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is authorized
by a single DesignWare license. Products include SmartModels, VMT model
suites, DesignWare Memory Models, Building Block IP, and the DesignWare
Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code by
non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 255SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_uart Databook Glossary

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

RTL Register Transfer Level. A higher level of abstraction that implies a certain gate-
level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as synthesizable
IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

https://solvnet.synopsys.com
www.designware.com

256 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Glossary DesignWare DW_apb_uart Databook

synthesizable IP A type of Implementation IP that can be mapped to a target technology through
synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component. The
files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in any
form, including a Design View.

workspace A network location that contains a personal copy of a component or subsystem.
After you configure the component or subsystem (using coreConsultant or
coreAssembler), the workspace contains the configured component/subsystem
and generated views needed for integration of the component/subsystem at the
top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing easier
interfacing. Usually requires an extra, sometimes automated, step to create the
wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 257

DesignWare DW_apb_uart Databook

SolvNet
DesignWare.com

4.02a
July 2018

Index

A
active command queue

definition 253
activity

definition 253
application design

definition 253
Auto CTS, timing of 55
Auto flow control 52
Auto RTS, timing of 54
B
BFM

definition 253
big-endian

definition 253
Block descriptions 20
Block diagram

DW_apb_uart functional 19
blocked command stream

definition 253
blocking command

definition 253
C
Coherency

about 229
read 236
write 230

command channel
definition 253

command stream
definition 253

component
definition 253

configuration
definition 253

configuration intent

definition 253
core

definition 254
core developer

definition 254
core integrator

definition 254
coreAssembler

definition 254
coreConsultant

definition 254
coreKit

definition 254
Customer Support 12
cycle command

definition 254
D
decoder

definition 254
design context

definition 254
design creation

definition 254
Design View

definition 254
DesignWare cores

definition 254
DesignWare Library

definition 254
dual role device

definition 254
DW_apb_uart

description 25
features 21
overview 15
testbench

overview of 226

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_uart Databook

258 Synopsys, Inc.SolvNet
DesignWare.com

4.02a
July 2018

E
endian

definition 254
Environment, licenses 23
F
Full-Functional Mode

definition 254
Functional description 25
G
GPIO

definition 254
GTECH

definition 254
H
hard IP

definition 254
HDL

definition 255
I
IIP

definition 255
implementation view

definition 255
instantiate

definition 255
Integrating, DW AMBA components 249
interface

definition 255
Interrupts 50
IP

definition 255
IrDA 1.0 SIR protocol 42
IrDA SIR data format, timing of 43
L
Licenses 23
little-endian

definition 255
M
MacroCell

definition 255
master

definition 255
model

definition 255
monitor

definition 255
N
non-blocking command

definition 255
O
Overview 15
P
peripheral

definition 255
Programmable THRE interrupt 56
Protocol

IrDA 1.0 SIR 42
RS232 25

R
Read coherency

about 236
and asynchronous clocks 238
and synchronous clocks 237

RS232, serial protocol 25
RTL

definition 255
S
SDRAM

definition 255
SDRAM controller

definition 255
Simple double register synchronizer 245
Simulation

of DW_apb_uart coreKit 226
slave

definition 255
SoC

definition 255
SoC Platform

AHB contained in 15
APB, contained in 15
defined 15

soft IP
definition 255

static controller
definition 255

subsystem

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb_uart Databook Index

Synopsys, Inc. 2594.02a
July 2018

SolvNet
DesignWare.com

definition 255
Synchronizer

simple double register 245
synthesis intent

definition 255
synthesizable IP

definition 256
T
technology-independent

definition 256
Testsuite Regression Environment (TRE)

definition 256
THRE (Transmitter Holding Register Empty) 18
THRE interrupt 56
Timing

auto CTS 55
auto RTS 54
IrDA SIR data format 43

TRE
definition 256

V
Verification

of DW_apb_uart coreKit 226
VIP

definition 256
W
workspace

definition 256
wrap

definition 256
wrapper

definition 256
Write coherency

about 230
and asynchronous clocks 235
and identical clocks 231
and synchronous clocks 232

Z
zero-cycle command

definition 256

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_uart Databook

260 Synopsys, Inc.SolvNet
DesignWare.com

4.02a
July 2018

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_apb_uart Block Diagram

	1.3 Features
	1.4 Standards Compliance
	1.5 Speed and Clock Requirements
	1.6 Verification Environment Overview
	1.7 Licenses
	1.8 Where To Go From Here

	2 Functional Description
	2.1 UART (RS232) Serial Protocol
	2.2 9-bit Data Transfer
	2.2.1 Transmit Mode
	2.2.1.1 Transmit Mode 0
	2.2.1.2 Transmit Mode 1

	2.2.2 Receive Mode
	2.2.2.1 Hardware Address Match Receive Mode
	2.2.2.2 Software Address Match Receive Mode

	2.3 RS485 Serial Protocol
	2.3.1 DE Assertion and De-assertion Timing
	2.3.2 RS485 Modes
	2.3.2.1 Full Duplex Mode
	2.3.2.2 Software-Controlled Half Duplex Mode
	2.3.2.3 DE to RE Turnaround Time
	2.3.2.4 Hardware-Controlled Half Duplex Mode

	2.3.3 Sample Scenarios
	2.3.3.1 Normal Scenario of Transmission
	2.3.3.2 Scenario When Receive is in Progress While TX FIFO is Being Filled
	2.3.3.3 TX FIFO Filled Before Enabling DE_EN and RE_EN Registers

	2.4 Fractional Baud Rate Support
	2.4.1 Fractional Division Used to Generate Baud Clock
	2.4.2 Calculating the Fractional Value Error
	2.4.2.1 Timing Waveforms

	2.5 IrDA 1.0 SIR Protocol
	2.6 FIFO Support
	2.7 Clock Support
	2.8 Back-to-Back Character Stream Transmission
	2.8.1 Dual Clock Mode
	2.8.2 Single Clock Mode

	2.9 Interrupts
	2.10 Auto Flow Control
	2.11 Programmable THRE Interrupt
	2.12 Clock Gate Enable
	2.13 DMA Support
	2.13.1 DMA Modes
	2.13.1.1 DMA Mode 0
	2.13.1.2 DMA Mode 1
	2.13.1.3 Additional DMA Interface
	2.13.1.4 Example DMA Flow

	2.13.2 Transmit Watermark Level and Transmit FIFO Underflow
	2.13.3 Choosing Transmit Watermark Level
	2.13.3.1 Case 1: FCR[5:4] = 01 — decodes to 2
	2.13.3.2 Case 2: FCR[5:4] = 11 — FIFO 1/2 full (decodes to 8)

	2.13.4 Selecting DEST_MSIZE and Transmit FIFO Overflow
	2.13.5 Receive Watermark Level and Receive FIFO Overflow
	2.13.6 Choosing the Receive Watermark Level
	2.13.7 Selecting SRC_MSIZE and Receive FIFO Underflow
	2.13.8 Handshaking Interface Operation
	2.13.9 Potential Deadlock Conditions in DW_apb_uart/DW_ahb_dmac Systems
	2.13.9.1 Deadlock When DMA Burst Transaction Length Smaller Than Rx FIFO Threshold
	2.13.9.2 Deadlock When DMA Burst Transaction Length Equal To Rx FIFO Threshold

	2.14 Reset Signals
	2.15 APB Interface
	2.15.1 APB 3.0 Support
	2.15.2 APB 4.0 Support

	3 Parameter Descriptions
	3.1 Parameters

	4 Signal Descriptions
	4.1 APB Slave Interface Signals
	4.2 Application Interface Signals
	4.3 FIFO Interface Signals
	4.4 Modem Interface Signals
	4.5 DMA Interface Signals
	4.6 Serial Interface Signals
	4.7 Infrared Interface Signals
	4.8 Clock Control Interface Signals
	4.9 Debug Interface Signals
	4.10 RS485 Interface Signals
	4.11 Interrupt Interface Signals

	5 Register Descriptions
	5.1 uart_memory_map/uart_address_block Registers
	5.1.1 RBR
	5.1.2 DLL
	5.1.3 THR
	5.1.4 DLH
	5.1.5 IER
	5.1.6 FCR
	5.1.7 IIR
	5.1.8 LCR
	5.1.9 MCR
	5.1.10 LSR
	5.1.11 MSR
	5.1.12 SCR
	5.1.13 LPDLL
	5.1.14 LPDLH
	5.1.15 SRBRn (for n = 0; n <= 15)
	5.1.16 STHRn (for n = 0; n <= 15)
	5.1.17 FAR
	5.1.18 TFR
	5.1.19 RFW
	5.1.20 USR
	5.1.21 TFL
	5.1.22 RFL
	5.1.23 SRR
	5.1.24 SRTS
	5.1.25 SBCR
	5.1.26 SDMAM
	5.1.27 SFE
	5.1.28 SRT
	5.1.29 STET
	5.1.30 HTX
	5.1.31 DMASA
	5.1.32 TCR
	5.1.33 DE_EN
	5.1.34 RE_EN
	5.1.35 DET
	5.1.36 TAT
	5.1.37 DLF
	5.1.38 RAR
	5.1.39 TAR
	5.1.40 LCR_EXT
	5.1.41 UART_PROT_LEVEL
	5.1.42 REG_TIMEOUT_RST
	5.1.43 CPR
	5.1.44 UCV
	5.1.45 CTR

	6 Programming the DW_apb_uart
	6.1 Programing Examples
	6.2 Programming Flow in RS485 Mode
	6.2.1 Full Duplex Mode (XFER_MODE=0)
	6.2.2 Software-Enabled Half Duplex Mode (XFER_MODE=1)
	6.2.3 Hardware enabled Half Duplex mode (XFER_MODE=2)

	6.3 Programming Flow in 9-bit Data Mode
	6.3.1 Transmit Mode 0
	6.3.2 Transmit Mode 1
	6.3.3 Hardware Address Match Receive mode
	6.3.4 Software Address Match Receive mode

	6.4 Programming Flow for Fractional Baud Rate
	6.5 Software Drivers

	7 Verification
	7.1 Overview of DW_apb_uart Testbench

	8 Integration Considerations
	8.1 Accessing Top-level Constraints
	8.2 Coherency
	8.2.1 Writing Coherently
	8.2.1.1 Identical Clocks
	8.2.1.2 Synchronous Clocks
	8.2.1.3 Asynchronous Clocks

	8.2.2 Reading Coherently
	8.2.2.1 Synchronous Clocks
	8.2.2.2 Asynchronous Clocks

	8.3 Performance
	8.3.1 Power Consumption, Frequency, and Area Results

	A Synchronizer Methods
	A.1 Synchronizers Used in DW_apb_uart
	A.2 Synchronizer 1: Simple Double Register Synchronizer
	A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset
	A.4 Synchronizer 3: Simple Double Register Synchronizer with Acknowledge

	B Internal Parameter Descriptions
	C Application Notes
	D Glossary
	Index

