
 2.12a
July 2018

DesignWare DW_apb_timers Databook

DW_apb_timers – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://www.synopsys.com/company/legal/trademarks-brands.html
www.synopsys.com
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 3

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

Contents

Revision History . 7

Preface .11
 Organization .11
Related Documentation .12
Web Resources .12
Customer Support .12
Product Code .13

Chapter 1
Product Overview .15

1.1 DesignWare System Overview .15
1.2 General Product Description .17

1.2.1 DW_apb_timers Block Diagram .17
1.3 Features .17
1.4 Standards Compliance .18
1.5 Verification Environment Overview .18
1.6 Licenses .18
1.7 Where To Go From Here .18

Chapter 2
Functional Description .19

2.1 Timer Operation .19
2.2 DW_apb_timers Usage Flow .19
2.3 DW_apb_timers Configuration .20

2.3.1 Choosing the Number of Timers .20
2.3.2 Enabling and Disabling a Timer .21
2.3.3 Configuring the Width of a Timer .21
2.3.4 Loading a Timer Countdown Value .21
2.3.5 Working with Interrupts .22
2.3.6 Controlling Clock Boundaries and Metastability .24
2.3.7 Generating Toggled Outputs .28
2.3.8 Timer Pause Mode .31

2.4 APB Interface .31
2.4.1 APB 3.0 Support .32
2.4.2 APB 4.0 Support .33

2.5 Design For Test .33

Chapter 3
Parameter Descriptions .35

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Contents DesignWare DW_apb_timers Databook

3.1 Top Level Parameters .36
3.2 Timer N Configuration Parameters .40

Chapter 4
Signal Descriptions .43

4.1 APB Interface Signals .45
4.2 Timer Signals .48

Chapter 5
Register Descriptions .51

5.1 DW_apb_timers_mem_map/DW_apb_timers_addr_block Registers .54
5.1.1 TimerNLoadCount (for N = 1; N <= NUM_TIMERS) .55
5.1.2 TimerNCurrentValue (for N = 1; N <= NUM_TIMERS) .56
5.1.3 TimerNControlReg (for N = 1; N <= NUM_TIMERS) .57
5.1.4 TimerNEOI (for N = 1; N <= NUM_TIMERS) .60
5.1.5 TimerNIntStatus (for N = 1; N <= NUM_TIMERS) .61
5.1.6 TimersIntStatus .62
5.1.7 TimersEOI .64
5.1.8 TimersRawIntStatus .65
5.1.9 TIMERS_COMP_VERSION .66
5.1.10 TimerNLoadCount2 (for N = 1; N <= NUM_TIMERS) .67
5.1.11 TIMER_N_PROT_LEVEL (for N = 1; N <= NUM_TIMERS) .68

Chapter 6
Programming Considerations .69

6.1 Programming the 0% and 100% Duty Cycle Mode .70

Chapter 7
Verification .71

7.1 Overview of Vera Tests .71
7.2 Overview of DW_apb_timers Testbench .73

Chapter 8
Integration Considerations .75

8.1 Reading and Writing from an APB Slave .75
8.1.1 Reading From Unused Locations .75
8.1.2 32-bit Bus System .76
8.1.3 16-bit Bus System .77
8.1.4 8-bit Bus System .77

8.2 Write Timing Operation .78
8.3 Read Timing Operation .79
8.4 Accessing Top-level Constraints .79
8.5 Coherency .80

8.5.1 Writing Coherently .80
8.5.2 Reading Coherently .86

8.6 Performance .89
8.6.1 Power Consumption, Frequency, and Area Results .89

Appendix A
Synchronizer Methods .91

A.1 Synchronizers Used in DW_apb_timers .92

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Contents

A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_timers) .93

Chapter B
Internal Parameter Descriptions .95

Appendix C
Glossary .97

Index . 101

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Contents DesignWare DW_apb_timers Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

Revision History

This table shows the revision history for the databook from release to release. This is being tracked from
version 2.02d onward.

.

Version Date Description

2.12a July 2018 Added:

■ Added support for configurable Synchronization Depth through the following
parameters: TIM_SYNC_DEPTH_1, TIM_SYNC_DEPTH_2,
TIM_SYNC_DEPTH_3, TIM_SYNC_DEPTH_4, TIM_SYNC_DEPTH_5,
TIM_SYNC_DEPTH_6, TIM_SYNC_DEPTH_7 and TIM_SYNC_DEPTH_8

Updated:

■ Version number changed for 2018.07a release

■ “Performance” on page 89

■ “Parameter Descriptions” on page 35, “Register Descriptions” on page 51, “Signal
Descriptions”, and “Internal Parameter Descriptions” are auto extracted with
change bars from the RTL

Removed:

■ Chapter 2, “Building and Verifying a Component or Subsystem” and added the
contents in the newly created user guide.

2.11a October 2016 ■ Version number change to 2016.10a

■ “Parameter Descriptions” on page 35 and “Register Descriptions” on page 51
autoextracted from the RTL

■ Removed the Running Leda on Generated Code with coreConsultant section,
and reference to Leda directory in Table 2-1.

■ Removed the Running Leda on Generated Code with coreAssembler section, and
reference to Leda directory in Table 2-4

■ Replaced Figure 2-2 and Figure 2-3 to remove references to Leda

■ Added “Running VCS XPROP Analyzer”

■ Moved Appendix B, “Internal Parameter Descriptions” to Appendix

■ Added an entry for the xprop directory in Table 2-1 and Table 2-4.

■ Added “Pulse Width Modulation with 0% and 100% Duty Cycle”

■ Added “APB Interface”

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Revision History DesignWare DW_apb_timers Databook

2.10a June 2015 ■ Modified default value for TimerNCurrentValue field of the Timer N register

■ Included section “Running SpyGlass® Lint and SpyGlass® CDC”

■ Included section “Running SpyGlass on Generated Code with coreAssembler”

■ Chapter 4, “Signal Descriptions” auto-extracted from the RTL

■ Added Chapter B, “Internal Parameter Descriptions”

■ Added Appendix A, “Synchronizer Methods”

2.09a June 2014 ■ Version change for 2014.06a release

■ Updated the section 3.3.6 Controlling Clock Boundaries and Metastability

■ Added:

- A new parameter INTR_SYNC2PCLK for interrupt synchronization
- “Performance” section in the “Integration Considerations” chapter

■ Corrected External Input/Output Delay in Signals chapter

2.08b May 2013 ■ Version change for 2013.05a release

■ Updated the template

2.08a Sep 2012 Added the product code on the cover and in Table 1-1

2.08a Jun 2012 Version change for 2012.06a release

2.06c Mar 2012 Version change for 2012.03a release

2.06b Nov 2011 Version change for 2011.11a release

2.06a Oct 2011 Version change for 2011.10a release

2.05a Jun 2011 ■ Updated system diagram in Figure 1-1

■ Enhanced “Related Documents” section in Preface

2.05a Sept 2010 Corrected names of include files and vcs command used for simulation

2.03a Dec 2009 Updated databook to new template for consistency with other IIP/VIP/PHY
databooks.

2.03a July 2009 ■ Corrected and enhanced free-running and user-defined modes

■ Corrected values for setting interrupt mask as either masked or not masked in
“DW_apb_timers Usage Flow” section

2.03a May 2009 Removed references to QuickStarts, as they are no longer supported

2.03a Mar 2009 Corrected TimersIntStatus register illustration

2.03a Oct 2008 Version change for 2008.10a release

2.02e Jun 2008 Version change for 2008.06a release

2.02d Jan 2008 ■ Updated to revised installation guide and consolidated release notes

■ Changed references of “Designware AMBA” to simply “DesignWare”

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Revision History

2.02d Sept 2007 Corrected red circles in Figure 1

2.02d June 2007 Version change for 2007.06a release

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Revision History DesignWare DW_apb_timers Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

Preface

This databook provides information that you need to interface the DesignWare APB Timers peripheral,
referred to as the DW_apb_timers throughout the remainder of this databook. It is a component of the
DesignWare Advanced Peripheral Bus (DW_apb) and conforms to the AMBA Specification, Revision 2.0 from
Arm®.

The information in this databook includes a functional description, signal and parameter descriptions,
programmable register descriptions and a memory map. The databook also provides step-by-step
information about using the DW_apb_timers in the coreConsultant flow. It also includes an overview of the
component testbench and a description of the tests that are run to verify the coreKit. The databook also
contains several appendices that provide additional information to help you integrate the component into
your higher-level design.

 Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Functional Description” describes the functional operation of the DW_apb_timers.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_apb_timers.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_apb_timers signals.

■ Chapter 5, “Register Descriptions” describes the programmable registers of the DW_apb_timers.

■ Chapter 6, “Programming Considerations” provides information needed to program the configured
DW_apb_timers.

■ Chapter 7, “Verification” provides information on verifying the configured DW_apb_timers.

■ Chapter 8, “Integration Considerations” includes information you need to integrate the configured
DW_apb_timers into your design.

■ Appendix A, “Synchronizer Methods” documents the synchronizer methods (blocks of synchronizer
functionality) used in DW_apb_timers to cross clock boundaries.

■ Chapter B, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals chapter.

■ Appendix C, “Glossary” provides a glossary of general terms.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Preface DesignWare DW_apb_timers Databook

Related Documentation
■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using

DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA 2,
see the Guide to Documentation for DesignWare Synthesizable Components for AMBA 2 and AMBA 3 AXI.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the above
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained below,
your issue is automatically routed to a support engineer who is experienced with your product.
The Sub Product entry is critical for correct routing.

Go to http://solvnet.synopsys.com/EnterACall and click Open A Support Case to enter a call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: product version number
■ Problem Type:

http://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
http://solvnet.synopsys.com/EnterACall
http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Preface

■ Priority:
■ Title: DW_apb_timers
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified above) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
https://www.synopsys.com/support/global-support-centers.html

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare APB Peripherals.

Table 1-1 DesignWare APB Peripherals – Product Code: 3771-0

Component Name Description

DW_apb_gpio General Purpose I/O pad control peripheral for the AMBA 2 APB bus

DW_apb_rap Programmable controller for the remap and pause features of the DW_ahb
interconnect

DW_apb_rtc A configurable high range counter with an AMBA 2 APB slave interface

DW_apb_timers Configurable system counters, controlled through an AMBA 2 APB interface

DW_apb_wdt A programmable watchdog timer peripheral for the AMBA 2 APB bus

mailto:support_center@synopsys.com
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Preface DesignWare DW_apb_timers Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

1
Product Overview

The DW_apb_timers is a programmable timers peripheral. This component is an AMBA 2.0-compliant
Advanced Peripheral Bus (APB) slave device and is part of the family of DesignWare Synthesizable
Components.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Product Overview DesignWare DW_apb_timers Databook

Figure 1-1 Example of DW_apb_timers in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/DW_apb_i2s_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/DW_axi_rs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 17SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Product Overview

You can connect, configure, synthesize, and verify the DW_apb_timers within a DesignWare subsystem
using coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_apb_timers component,
you might prefer to use coreConsultant, documentation for which is available in the coreConsultant User
Guide.

1.2 General Product Description
The Synopsys DW_apb_timers is a component of the DesignWare Advanced Peripheral Bus (DW_apb).

1.2.1 DW_apb_timers Block Diagram

Figure 1-2 shows the block diagram of the DW_apb_timers.

Figure 1-2 DW_apb_timers Block Diagram

1.3 Features
DW_apb_timers has the following features:

■ APB interface supports APB2, APB3, and APB4.

■ Up to eight programmable timers

■ Configurable timer width: 8 to 32 bits

■ Support for two operation modes: free-running and user-defined count

■ Support for independent clocking of timers

■ Configurable polarity for each individual interrupt

■ Configurable option for a single or combined interrupt output flag

DW_apb_timers

Timer1

TimerN*

Timer2

* N <= 8

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Product Overview DesignWare DW_apb_timers Databook

■ Configurable option to have read/write coherency registers for each timer

■ Configurable option to include timer toggle output, which toggles whenever timer counter reloads

■ Configurable option to enable programmable pulse-width modulation of timer toggle outputs

■ Configurable option to include pulse width modulation of timer toggle output with 0% and 100%
duty cycle.

Source code for this component is available on a per-project basis as a DesignWare Core. Contact your local
sales office for the details.

1.4 Standards Compliance
The DW_apb_timers component conforms to the AMBA Specification, Revision 2.0 from Arm®. Readers are
assumed to be familiar with this specification.

1.5 Verification Environment Overview
The DW_apb_timers includes an extensive verification environment, detailed in “Verification” on page 71.

1.6 Licenses
Before you begin using the DW_apb_timers, you must have a valid license. For more information, see
“Licenses” in the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI Installation Guide.

1.7 Where To Go From Here
At this point, you may want to get started working with the DW_apb_timers component within a
subsystem or by itself. Synopsys provides several tools within its coreTools suite of products for the
purposes of configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

For more information about configuring, synthesizing, and verifying just your DW_apb_timers component,
see “Overview of the coreConsultant Configuration and Integration Process” in DesignWare Synthesizable
Components for AMBA 2 User Guide.

For more information about implementing your DW_apb_timers component within a DesignWare
subsystem using coreAssembler, see “Overview of the coreAssembler Configuration and Integration
Process” DesignWare Synthesizable Components for AMBA 2 User Guide.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

2
Functional Description

This chapter describes in the following sections how you can use the DW_apb_timers.

2.1 Timer Operation
The DW_apb_timers component implements up to eight identical but separately-programmable timers,
which are accessed through a single AMBA APB interface.

Timers count down from a programmed value and generate an interrupt when the count reaches zero. You
can use the TIM_INTR_IO parameter (Single Combined Interrupt) to create a single combined interrupt,
which is active whenever any of the individual timer interrupts is active.

Each timer has an independent clock input, timer_N_clk (where N is in the range 1 to 8), that you can
connect to pclk (also known as the system clock or the APB clock) or to an external clock source. You can
configure the width of a timer from 8 to 32 bits using the TIMER_WIDTH_N parameter (Width of Timer N),
where N is in the range 1 to NUM_TIMERS, the number of instantiated timers.

The initial value for each timer – that is, the value from which it counts down – is loaded into the timer
using the appropriate load count register (TimerNLoadCount). Two events can cause a timer to load the
initial count from its TimerNLoadCount register:

■ Timer is enabled after being reset or disabled

■ Timer counts down to 0

All interrupt status registers and end-of-interrupt registers can be accessed at any time.

2.2 DW_apb_timers Usage Flow
The procedure illustrated in Figure 2-1 is a basic flow to follow when programming the DW_apb_timers.
More advanced functions are discussed later in this chapter.

1. Initialize the timer through the TimerNControlReg register (where N is in the range 1 to 8):

a. Disable the timer by writing a “0” to the timer enable bit (bit 0); accordingly, the timer_en output
signal is de-asserted.

NoteNoteNoteNote Before writing to a TimerNLoadCount register, you must disable the timer by writing a “0” to
the timer enable bit of TimerNControlReg in order to avoid potential synchronization problems.

https://solvnet.synopsys.com
www.designware.com

20 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Functional Description DesignWare DW_apb_timers Databook

b. Program the timer mode—user-defined or free-running—by writing a “1” or “0,” respectively, to
the timer mode bit (bit 1).

c. Set the interrupt mask as either masked or not masked by writing a “1” or “0,” respectively, to the
timer interrupt mask bit (bit 2).

2. Load the timer counter value into the TimerNLoadCount register (where N is in the range 1 to 8).

3. Enable the timer by writing a “1” to bit 0 of TimerNControlReg.

Figure 2-1 DW_apb_timers Usage Flow

As an example, suppose you have only timer1, and the timer_1_clk signal is asynchronous to pclk. When
you disable the timer enable bit (bit 0 of Timer1ControlReg), the timer_en output signal is de-asserted and,
accordingly, timer_1_clk should stop. Then when you enable the timer, the timer_en signal is asserted and
timer_1_clk should start running. This is not necessary, however, as long as the timer_1_clk is synchronous
to pclk; in this case, you can choose to directly tie timer_1_clk to pclk.

It is also not necessary to stop the timer_1_clk if the TIM_NEWMODE parameter is set to 1 (True). For more
information on this parameter and on synchronization and metastability issues, see “Controlling Clock
Boundaries and Metastability” on page 24.

2.3 DW_apb_timers Configuration
The following sections tell you how to set up the DW_apb_timers.

2.3.1 Choosing the Number of Timers

You can have up to eight timers in your design. There are several registers with names specific to the
number of timers that you choose (where N is from 1 to 8):

■ TimerNLoadCount – TimerN load count register

■ TimerNLoadCount2 (optional) – TimerN load count register for programming width of HIGH period
of timer_N_toggle output

■ TimerNCurrentValue – TimerN current value register

■ TimerNControlReg – TimerN control register

■ TimerNEOI – TimerN end-of-interrupt register

■ TimerNIntStatus – TimerN interrupt status register

Initialize DW_apb_timers

Load Counter Value

Enable Timer

Write to TimerNLoadCount register

Write “1” in bit 0 of TimerNControlReg

Write “0” in bit 0 of TimerNControlReg; set appropriate values
for timer mode and interrupt mask

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 21SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Functional Description

Thus you have five individual registers for each of the timers in your design. All other registers control their
respective functions for all active timers, rather than for individual timers.

2.3.2 Enabling and Disabling a Timer

You use bit 0 of the TimerNControlReg, where N is in the range 1 to 8, to either enable or disable a timer.

2.3.2.1 Enabling a Timer

If you want to enable a timer, you write a “1” to bit 0 of its TimerNControlReg register.

2.3.2.2 Disabling a Timer

To disable a timer, write a “0” to bit 0 of its TimerNControlReg register.

When a timer is enabled and running, its counter decrements on each rising edge of its clock signal,
timer_N_clk. When a timer transitions from disabled to enabled, the current value of its TimerNLoadCount
register is loaded into the timer counter on the next rising edge of timer_N_clk.

When the timer enable bit is de-asserted and the timer stops running, the timer counter and any associated
registers in the timer clock domain, such as the toggle register, are asynchronously reset.

When the timer enable bit is asserted, then a rising edge on the timer_en signal is used to load the initial
value into the timer counter. A “0” is always read back when the timer is not enabled; otherwise, the current
value of the timer (TimerNCurrentValue register) is read back.

2.3.3 Configuring the Width of a Timer

You configure the width of a timer through the TIMER_WIDTH_N parameter; each timer can be from 8 bits
to 32 bits. You do this for each timer through the Timer N Configuration section of the Specify
Configuration activity in coreConsultant. You should bear in mind that, if the width of the APB bus is
smaller than the width of a timer—the APB data bus can be 8, 16, or 32 bits wide—there has to be multiple
APB write accesses to load the counter.

2.3.4 Loading a Timer Countdown Value

When a timer counter is enabled after being reset or disabled, the count value is loaded from the
TimerNLoadCount register; this occurs in both free-running and user-defined count modes.

When a timer counts down to 0, it loads one of two values, depending on the timer operating mode:

■ User-defined count mode – Timer loads the current value of the TimerNLoadCount register. Use this
mode if you want a fixed, timed interrupt. Designate this mode by writing a “1” to bit 1 of
TimerNControlReg.

NoteNoteNoteNote If you set the TIM_NEWMODE parameter to 1, the value that is loaded to the timer—when it
counts down to 0—alternates between the value of the TimerNLoadCount register and the
TimerNLoadCount2 register. For more details, see “Pulse Width Modulation of Toggle
Outputs” on page 28.

https://solvnet.synopsys.com
www.designware.com

22 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Functional Description DesignWare DW_apb_timers Databook

■ Free-running mode – Timer loads the maximum value, which is dependent on the timer width; that
is, the TimerNLoadCount register is comprised of 2TIMER_WIDTH_N – 1 bits, all of which are loaded
with 1s. The timer counter wrapping to its maximum value allows time to reprogram or disable the
timer before another interrupt occurs. Use this mode if you want a single timed interrupt. Designate
this mode by writing a “0” to bit 1 of TimerNControlReg.

2.3.5 Working with Interrupts

The TimerNIntStatus and TimerNEOI registers handle interrupts in order to ensure safe operation of the
interrupt clearing. Because of the hclk/pclk ratio, if pclk can perform a write to clear an interrupt, it could
continue with another transfer on the bus without knowing whether the write has occurred. Therefore, it is
much safer to clear the interrupt by a read operation.

To detect and service an interrupt, the system clock must be active if the TIM_NEWMODE parameter is set
to 0 (False). The timer_en output bus from this block is used to activate the necessary timer clocks and to
ensure that the component is supplied with an active system clock while timers are running.

In both the free-running and user-defined count modes of operation, a timer generates an internal interrupt
signal when its count changes from 0 to its maximum count value, as shown in Figure 2-2.

Figure 2-2 Timer Interrupt Set – No Metastability Registers and TIM_NEWMODE = 0

The setting of the internal interrupt signal occurs synchronously to the timer clock domain. This internal
interrupt signal is transferred to the pclk domain in order to set the timer interrupt. The internal interrupt
signal and the timer interrupt are not generated if the timer is disabled; if the timer interrupt is set, then it is
cleared when the timer is disabled.

When the TIM_NEWMODE = 1 and INTR_SYNC2PCLK = 0, interrupt detection can occur even when the
system clock is disabled. The timer_intr interrupt output signal is asserted when the interrupt is detected in
the timer clock domain.

0x1 0x0 0xff

timer_N_clk

timerN_current_value

pclk

pclk_timer_intr

interrupt*

timer_intr

* internal signal

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Functional Description

As shown in Figure 2-3, the timer_intr signal remains asserted until pclk is re-started and the TimerNEOI or
TimerEOI registers are read to clear the interrupt, or the timer is disabled.

Figure 2-3 Timer Interrupt Set - No Metastability Registers and TIM_NEWMODE = 1

If the system bus (AHB) can perform a write to clear a timer interrupt, it could continue with another
transfer on the bus without knowing whether the write has occurred because of the hclk/pclk ratio.
Therefore, it is much safer to clear the timer interrupt by a read operation.

2.3.5.1 Clearing Interrupts

Provided the timer is enabled, its interrupt remains asserted until it is cleared by reading one of two
end-of-interrupt registers (TimerNEOI or TimersEOI, the individual and global end-of-interrupt registers,
respectively). When the timer is disabled, the timer interrupt is cleared. You can clear an individual timer
interrupt by reading its TimerNEOI register. You can clear all active timer interrupts at once by reading the
global TimersEOI register or by disabling the timer.

When reading the TimersEOI register, timer interrupts are cleared at the rising edge of pclk and when
penable is low. If an end-of-interrupt register is read during the time when the internal interrupt signal is
high, the timer interrupt is set. This occurs because setting timer interrupts takes precedence over clearing
them.

0x1 0x0 0xff

timer_N_clk

timerN_current_value

pclk

pclk_timer_intr**

interrupt*

timer_intr

*interrupt – internal interrupt generated in timer clock domain
**pclk_timer_inter – edge-detected interrupt in pclk domain

https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Functional Description DesignWare DW_apb_timers Databook

Figure 2-4 shows the timer interrupt timing when cleared by the TimersEOI register.

Figure 2-4 Clearing an Interrupt From DW_apb_timers

2.3.5.2 Checking Interrupt Status

You can query the interrupt status of an individual timer without clearing its interrupt by reading the
TimerNIntStatus register. You can query the interrupt status of all timers without clearing the interrupts by
reading the global TimersIntStatus register.

2.3.5.3 Masking Interrupts

Each individual timer interrupt can be masked using its TimerNControlReg register. To mask an interrupt,
you write a “1” to bit 2 of TimerNControlReg.

If all individual timer interrupts are masked, then the combined interrupt is also masked.

2.3.5.4 Setting Interrupt Polarity

The polarity of the generated timer interrupts can be configured to be either active-high or active-low using
the TIM_INTRPT_PLRITY parameter (Interrupt Polarity). In addition to an interrupt output signal for each
timer, there is also a single, global interrupt flag, timer_intr_flag, that is asserted if any timer asserts its
interrupt. This global interrupt flag shares the same polarity characteristic with the other generated
interrupts; thus, multiple interrupt service schemes can be supported.

2.3.6 Controlling Clock Boundaries and Metastability

All registers in the APB interface are synchronous to pclk. Each of the timers has a separate clock input
signal, timer_N_clk, that can be asynchronous or synchronous to pclk. It is possible to connect timer_N_clk
to a clock other than pclk, but if you do that, you must take into account the possibility of synchronization
and metastability issues.

If a timer clock is asynchronous to pclk, you must ensure that the clocks are stopped whenever the timer is
disabled. This restriction does not apply when the TIM_NEWMODE parameter is set to 1. If
TIM_NEWMODE is enabled, the timer_en signal is synchronized from the pclk domain to the timer clock
domain, which eliminates any risk of metastability if the timer_N_clk is kept running while the timer is
disabled. Therefore, with TIM_NEWMODE set, the timer_N_clk can be free-running and does not have to
be stopped whenever the timer is to be disabled.

Timer1EOI

pclk

paddr

pwrite

psel

penable

timer_intr

pclk_timer_intr

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Functional Description

The timer_N_resetn signal resets all of the registers in the timer_N_clk domain, including the timer counter.
For each timer, there are several factors that internally affect the boundaries between the pclk and timer
clock domains.

Each timer generates an internal interrupt signal that is synchronized to the pclk domain. Figure 2-5 shows
an internal interrupt signal affecting the clock boundaries between the two clock domains.

Figure 2-5 Boundary Between Clock Domains

The internal interrupt signal is generated in the timer clock domain when the timer counter rolls over to its
maximum value.

The timer interrupt (timer_intr) is asserted based on the value of the TIM_NEWMODE and
INTR_SYNC2PCLK parameters as follows:

■ When TIM_NEWMODE is set to 0 (False), the timer interrupt is asserted when the internal interrupt
signal is edge-detected in the pclk domain.

■ When TIM_NEWMODE is set to 1 (True) and INTR_SYNC2PCLK is set to 1 (True), the timer
interrupt is asserted when the internal interrupt signal is edge-detected in the pclk domain.

■ When TIM_NEWMODE is set to 1 (True) and INTR_SYNC2PCLK is set to 0 (False), the timer
interrupt is asserted along with the internal interrupt signal generated in the timer clock domain
when the timer counter rolls over to its maximum value.

When TIM_NEWMODE is set to 1 (True) and INTR_SYNC2PCLK is set to 0 (False), the internal
interrupt remains set until it is transferred to the pclk domain and edge detected there. Then it is
cleared automatically, leaving the pclk interrupt set. The pclk domain interrupt is cleared when
software reads the TimerNEOI registers. This mode allows the timer interrupt to be detected, even
when pclk is disabled.

In the case when pclk is stopped and INTR_SYNC2PCLK is set to 0 (False), the timer interrupt
remains asserted until pclk is restarted and the interrupt is serviced, or the timer is disabled or reset.

timerN_counter

==

Zero

RAW
STATUS &

timer_intrmask

timer_intr_rawstatus

INTR
STATUS

pclk_intr_status

TIM_NEWMODE

TIM_METASTABLE=1

Edge
Detection

0

0

1

1

Timer Clock domain
(timer_clk) APB Clock domain

(pclk)

INTR_SYNC2PCLK

0

1 Timer_interrupt

https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Functional Description DesignWare DW_apb_timers Databook

The internal interrupt signal is edge-detected in the pclk domain in order to set the timer interrupt,
illustrated in Figure 2-6.

Figure 2-6 Timer Interrupt Set – Metastability Registers Included and TIM_NEWMODE = 0

A timer_en signal is edge-detected in the timer clock domain. When it transitions from 0 to 1, the timer
counter is loaded with the value of the TimerNLoadCount register. This guarantees that the timer is in a
known state when enabled. If you disable a timer counter by writing a “0” to bit 0 of its TimerNControlReg
register, it also synchronously disables interrupts for that timer counter in the pclk domain. This prevents
spurious interrupts because of mis-sampling in the timer clock domain.

Neither the timer mode bit of TimerNControlReg nor the TimerNLoadCount register are synchronized
between the pclk domain and the timer clock domain. Because of this, it is important that you disable a
timer before programming its mode or load count value so that any information on these signals is always
communicated to the timer while it is inactive. Thus you must ensure that these signals are stable whenever
a timer is enabled. In practice, this means that you must follow at least this basic procedure:

1. First use the TimerNControlReg to disable the timer, program its timer mode, and then set the
interrupt mask.

2. Next, load the timer counter value into the TimerNLoadCount register.

3. Finally, enable the timer through TimerNControlReg.

For more details on this procedure, see “DW_apb_timers Usage Flow” on page 19.

When you connect a timer_N_clk input to a clock source that is independent of pclk, metastability registers
must be instantiated by setting the TIM_METASTABLE_N parameter (Metastability support for interrupt
from Timer N) to “Present” (where N is in the range 1 to 8). By instantiating the metastability registers, an
extra two pclk periods of latency occurs between when a timer maximum count is reached and when its
interrupt goes active. To see the difference, compare the timing in Figure 2-2 (no metastability registers) to
that in Figure 2-6 (metastability registers included).

The DW_apb_timers component supports timer clocks that are up to four times the frequency of pclk. If you
connect a timer_N_clk to a clock source that is faster than pclk, you must extend the width of the internal
interrupt signal to allow adequate time for it to be sampled in the pclk domain.

0x1 0x0 0xff

timer_N_clk

timerN_current_value

pclk

pclk_timer_intr

interrupt*

timer_intr
* internal signal

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Functional Description

You extend the width of the interrupt signal up to three timer_N_clk clock periods by setting the
TIM_PULSE_EXTD_N parameter (Number of clock cycles by which to extend interrupt, where N is in the
range 1 to 8) to a non-zero value.

Figure 2-7 illustrates an example of related pclk and timer_N_clk, where the frequency of timer_N_clk is
two times that of pclk. To accommodate this, the TIM_PULSE_EXTD_N parameter is set to 1 in order to
extend the internal interrupt signal by one timer_N_clk clock period.

Figure 2-7 Timer Interrupt Set – Pulse Extend One Cycle, No Metastability

Figure 2-8 illustrates an example where metastability registers are required because pclk is independent of
timer_N_clk, and 1 < frequency of timer_N_clk < 2 times that of pclk. To accommodate this, the
TIM_PULSE_EXTD_N parameter is set to 1 in order to extend the internal interrupt signal by one
timer_N_clk clock period.

Figure 2-8 Timer Interrupt Set – Pulse Extend One Cycle, With Metastability

NoteNoteNoteNote When the TIM_NEWMODE parameter is set to 1, it is not required to extend the width of the
internal interrupt signal, since it remains asserted until the interrupt is detected in the pclk
domain. Therefore, when TIM_NEWMODE is set to 1, the TIM_PULSE_EXTD_N parameter
is disabled.

0x1 0x0 0xff

timer_N_clk

timerN_current_value

pclk

pclk_timer_intr

0xfe 0xfd

interrupt*

timer_intr

* internal signal

0x1 0x0 0xff

timer_N_clk

timerN_current_value

pclk

pclk_timer_intr

0xfe 0xfd 0xfc 0xfb

interrupt*

timer_intr

* internal signal

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Functional Description DesignWare DW_apb_timers Databook

Figure 2-9 illustrates an example where metastability registers are included when TIM_NEWMODE = 1.

Figure 2-9 Timer Interrupt Set – Metastability Registers Included and TIM_NEWMODE=1

2.3.7 Generating Toggled Outputs

You can configure a timer through the TIMER_HAS_TOGGLE_N parameter (Include toggle output for
timer # on I/F, see “Parameter Descriptions” on page 35) in order to generate an output that toggles
whenever the timer counter reaches 0. You do this for each timer through the Timer N Configuration section
of the Specify Configuration activity in coreConsultant.

2.3.7.1 Pulse Width Modulation of Toggle Outputs

The TIM_NEWMODE parameter allows the toggle output from each of the timers—that is, timer_N_toggle
—to be pulse-width modulated. If TIM_NEWMODE is set to 1 and register bit TimerNControlReg[4]
(TIMER_PWM bit) is set to 1, the HIGH and LOW periods of the toggle outputs can be controlled
separately by programming the TimerNLoadCount2 and TimerNLoadCount registers.

The pulse widths of the toggle outputs are controlled as follows:

■ Width of timer_N_toggle HIGH period = (TimerNLoadCount2 + 1) * timer_N_clk clock period

■ Width of timer_N_toggle LOW period = (TimerNLoadCount + 1) * timer_N_clk clock period

If TIM_NEWMODE is set to 0 or the TimerNControlReg[4] (TIMER_PWM bit) is set to 0, the HIGH and
LOW periods of the timer_N_toggle outputs are the same and equal to (TimerNLoadCount
 + 1) * timer_N_clk clock period.

2.3.7.2 Pulse Width Modulation with 0% and 100% Duty Cycle

DW_apb_timers supports the programming for 0% and 100% duty cycle pulse width modulation of toggle
outputs (timer_N_toggle) through the TimerNLoadCount and TimerNLoadCount2 registers, when 0% and
100% duty cycle mode is enabled. You can enable the duty cycle mode either by setting the
TimerNControlReg [4] register or by configuring the TIMER_0N100_PWM_HC_EN parameter.

NoteNoteNoteNote TIM_NEWMODE is enabled only when APB Data Bus Width = 32.

0x01 0x00 0xff

timer_N_clk

timerN_current_value

pclk

pclk_timer_intr

0xfe

interrupt*

timer_intr

* internal signal

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Functional Description

The definition of the duty cycles (with TimerNLoadCount and TimerNLoadCount2) is as follows (note that
the high period signifies the duty cycle number):

■ 0% duty cycle – Continuous Low and no high

❑ TimerNLoadCount = Do not care

❑ TimerNLoadCount2 = 0

■ 100% duty cycle – No low period and continuous high

❑ TimerNLoadCount = 0

❑ TimerNLoadCount2 = Do not care

■ Other duty cycle – When 0% and 100% duty cycle mode is enabled (with timer PWM mode and the
user-defined count mode is enabled), the definition of the toggle high and low period changes as
follows for a duty cycle other than 0% or 100%:

❑ Width of timer_N_toggle HIGH period = TimerNLoadCount2 * timer_N_clk clock period

❑ Width of timer_N_toggle LOW period = TimerNLoadCount * timer_N_clk clock period

Table 2-1 provides information on the relation between Duty cycle, TimerNLoadCount, and
TimerNLoadCount2 values, considering that the maximum value is 100.

Table 2-1 Duty Cycle, TimerNLoadCount, TimerNLoadCount2 Relationship Table

NoteNoteNoteNote The TimerNLoadCount register defines the LOW period and the
TimerNLoadCount2 register defines the HIGH period values.

NoteNoteNoteNote The above definition is applicable only if the 0% and 100% duty cycle mode is enabled along
with the timer Pulse Width Modulation (PWM) mode and the user-defined count mode. If any
of the these modes are not enabled, that is , if the PWM mode or user-defined mode is not
enabled, then the new definition of the High and Low period is not applicable. The previous
definition of the High and Low period is applicable.

Duty Cycle (%) TimerNLoadCount TimerNLoadCount2

0 X 0

1 99 1

2 98 2

3 97 3

4 96 4

....

96 4 96

97 3 97

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Functional Description DesignWare DW_apb_timers Databook

Table 2-2 provides an example of the programming TimerNLoadCount and TimerNLoadCount2 registers
for a timer, with timer width set to 8 bits.

Following are some points that you must consider while configuring the pulse width modulation with 0%
and 100% duty cycle feature:

■ The 0% and 100% duty cycle mode is enabled when DW_apb_timers is configured or programmed
with the following:

❑ Configured with TIM_NEWMODE = 1 and TIMER_0N100_PWM_HC_EN = 0

■ Enable TimerNControlReg [4] – 0% and 100% duty cycle mode enable bit.
■ Enable TimerNControlReg [3] – PWM enable bit.
■ Timer mode is configured as user-defined count mode, that is by setting the

TimerNControlReg [1] bit.

98 2 98

99 1 99

100 0 100

Table 2-2 Duty Cycle, TimerNLoadCount, TimerNLoadCount2 Relationship Table (8-Bit Timer)

Duty Cycle (%) TimerNLoadCount TimerNLoadCount2

0 X 0

1 FC 02

2 F9 05

3 F7 07

4 F4 0A

.... …. ….

96 0A F4

97 07 F7

98 05 F9

99 02 FC

100 0 X

NoteNoteNoteNote When TimerNLoadCount=0 and TimerNLoadCount2=0, DW_apb_timer considers this as
100% by providing higher priority to the TimerNLoadCount register.

Duty Cycle (%) TimerNLoadCount TimerNLoadCount2

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Functional Description

❑ Configured with TIM_NEWMODE = 1 and TIMER_0N100_PWM_HC_EN = 1

■ Enable TimerNControlReg [3] – PWM enable bit.
■ Timer mode is configured as user-defined count mode that is by setting the

TimerNControlReg [1] bit.

■ The 0% and 100% duty cycle mode is enabled (TIMER_0N100_PWM_MODE=1) only when any of the
timer has TIMER_HAS_TOGGLE_N=1 and TIM_NEWMODE=1. Otherwise, this mode is not
enabled.

■ When TIMER_0N100_PWM_MODE=1 and toggle output is in 0% and 100% duty cycle mode, the
timer interrupts are generated.

■ The 0% and 100% duty cycle mode can be enabled only if the following bits are set:

❑ TimerNControlReg [3] (PWM enable bit)

❑ TimerNControlReg [1] (Timer mode bit)

❑ TimerNControlReg [4] (0% and 100% duty cycle mode bit)

If any of these modes are not enabled, that is if PWM mode or user-defined mode is not enabled, then
the timer operates in the normal PWM mode or free running mode.

■ The 0% and 100% duty cycle mode can be enabled by programming 0x0 into the TimerNLoadCount
or TimerNLoadCount2 register as described in “Pulse Width Modulation with 0% and 100% Duty
Cycle” on page 28. If any other combination of values is programmed, then it operates in the normal
PWM mode.

■ The TimerNControlReg [4] bit enables the “0% and 100% duty cycle mode". You must not set any
random value to this bit.

2.3.8 Timer Pause Mode

The operation of a timer can be paused by asserting the respective timer_N_pause input signal, which is
synchronized to the timer_N_clk domain.

2.4 APB Interface
The host processor accesses internal registers on the DW_apb_timers peripheral through the AMBA APB
2.0/3.0/4.0 interface. This peripheral supports APB data bus widths of 8, 16, or 32 bits, which is set with the
APB_DATA_WIDTH parameter. The SLAVE_INTERFACE_TYPE parameter is used to select the register
interface type as APB2, APB3 or APB4. By default, DW_apb_timers supports the APB2 interface.

Figure 2-10 shows the read/write buses between the DW_apb and the APB slave.

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Functional Description DesignWare DW_apb_timers Databook

Figure 2-10 Read/Write Buses Between the DW_apb and an APB Slave

The data, control and status registers within the DW_apb_timers are byte-addressable. The maximum
width of the control or status register (except for the TIMERS_COMP_VERSION register) in the
DW_apb_timers is 8 bits. Therefore, if the APB data bus is 8, 16, or 32 bits wide, all read and write
operations to the DW_apb_timers control and status registers require only one APB access.

The timer load count and current value register width depends on the TIMER_WIDTH_N parameter, which
can vary from 8 to 32. Depending on the previously mentioned width of the timer and the APB data bus
width (that is, the APB_DATA_WIDTH parameter), the APB interface may need to perform single or
multiple accesses to the timer load count and current value register.

“Integration Considerations” on page 75 provides information about reading to and writing from the APB
interface.

The APB 3 and APB4 register accesses to the DW_apb_timers peripheral are discussed in the following
sections:

■ “APB 3.0 Support” on page 32

■ “APB 4.0 Support” on page 33

2.4.1 APB 3.0 Support

The DW_apb_timers register interface is compliant with the AMBA APB 2.0, APB 3.0 and APB 4.0
specifications. To comply with the AMBA APB 3.0 specification, DW_apb_timers supports the following
signals:

■ PREADY – This signal specifies the end of a transaction when there is a high in the access phase of a
transaction. This signal is always set to its default value that is high for all APB processes.

■ PSLVERR – This signal issues an error when protected registers are accessed without relevant
authorization levels. The PSLVERR signal is enabled when the SLVERR_RESP_EN parameter is set to
1, so that DW_apb_timers provides any slave error response from register interface. For more
information on this signal, see “APB 4.0 Support” on page 33.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Functional Description

2.4.2 APB 4.0 Support

The DW_apb_timers register interface is compliant with the AMBA APB 2.0, APB 3.0 and APB 4.0
specifications. To comply with the AMBA APB 4.0 specification, DW_apb_timers supports the following
signals:

■ PSTRB – This signal specifies the APB4 write strobe. In a write transaction, the PSTRB signal indicates
validity of PWDATA bytes. DW_apb_timers selectively writes to the bytes of the addressed register
whose corresponding bit in the PSTRB signal is high. Bytes strobed low by the corresponding PSTRB
bits are not modified. The incoming strobe bits for a read transaction is always zero as per the AMBA
APB 4.0 protocol.

Figure 2-11 shows the byte lane mapping of the PSTRB signal.

Figure 2-11 PSTRB Signal Byte-Lane Mapping

■ PPROT – This signal supports the protection feature of the APB4 protocol. The APB4 protection
feature is supported only on the TimerNLoadCount and TimerNLoadCount2 registers. The
protection level register (TIMER_N_PROT_LEVEL) defines the APB4 protection level, that is the
protected registers (TimerNLoadCount and TimerNLoadCount2) are updated only if the PPROT
privilege is more than the protection privilege programmed in the protection level register (see
Table 2-3). Otherwise, PSLVERR is asserted and the protected register is not updated, provided that
PSLVERR_RESP_EN is set as high. If the PSLVERR_RESP_EN is low, then protection feature and
PSLVERR generation logic is not implemented

Table 2-3 PPROT Level, Protection Level Programmed in TIMER_N_PROT_LEVEL, and Slave Error Response

2.5 Design For Test
A scan_mode signal controls the asynchronous clear signal of some of the flip-flops during scan testing; the
operation of this is shown in Figure 2-12. In normal operation, in order to load a new value into a timer, the
timer must be disabled. The new value is loaded into the timer on the first rising edge of the clock when the
timer is re-enabled. To implement this, an asynchronous end-of-interrupt signal is supplied to some internal

NoteNoteNoteNote DW_apb_timers does not use the PREADY signal and it used only for interface
consistency.

PPROT TIMER_N_PROT_LEVEL
PSLVERR

[2] [1] [0] [2] [1] [0]

X X 0 X X 1 HIGH

X 1 X X 0 X HIGH

0 X X 1 X X HIGH

PSTRB[3] PSTRB[2] PSTRB[1] PSTRB[0]
31 24 23 16 15 8 7 0

https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Functional Description DesignWare DW_apb_timers Databook

flip-flops. If scan_mode is asserted, this asynchronous signal is controlled by the timer reset signal. The
scan_mode signal must be asserted during scan testing in order to ensure that all flip-flops in the design can
be controlled and observed during scan testing; at all other times, this signal must be de-asserted.

Figure 2-12 Design For Test – Use of Scan Mode Signal

S
D Q

timer_en

timer_resetn

scan_mode
C

Q

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

■ Top Level Parameters on page 36

■ Timer N Configuration on page 40

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Parameter Descriptions DesignWare DW_apb_timers Databook

3.1 Top Level Parameters

Table 3-1 Top Level Parameters

Label Description

 Top Level Parameters

Register Interface Type Selects Register Interface type as APB2, APB3 or APB4. By default,
DW_apb_timers supports APB2 interface.
Values:

■ APB2 (0)

■ APB3 (1)

■ APB4 (2)

Default Value: APB2
Enabled: Always
Parameter Name: SLAVE_INTERFACE_TYPE

Slave Error Response Enable Enables Slave Error response signaling. The component will refrain From signaling
an error response if this parameter is disabled.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: SLAVE_INTERFACE_TYPE>1
Parameter Name: SLVERR_RESP_EN

TIMERS Protection Level Reset Value of TIMER_N_PROT_LEVEL register. A high on any bit of timer
protection level requires a high on the corresponding pprot input bit to gain access
to the load count registers. Else, SLVERR response is triggered. A zero on the
protection bit will provide access to the register if other protection levels are
satisfied.
Values: 0x0, ..., 0x7
Default Value: 0x2
Enabled: SLAVE_INTERFACE_TYPE>1 && SLVERR_RESP_EN==1
Parameter Name: PROT_LEVEL_RST

Hard-Code Protection Level? Checking this parameter makes TIMERS_N_PROT_LEVEL a read-only register,
reflecting default PROT_LEVEL_RST when read. The register can be programmed
at run-time by a user if this hard-code option is turned off.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: SLAVE_INTERFACE_TYPE>1 && SLVERR_RESP_EN==1
Parameter Name: HC_PROT_LEVEL

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Parameter Descriptions

APB Data Bus Width Width of the APB data bus to which this component is attached.
Values: 8, 16, 32
Default Value: 32
Enabled: Always
Parameter Name: APB_DATA_WIDTH

Enable Timer New Mode ? When set to True (1), this parameter enables the following features in all the timers:

■ If TimerNControlReg[4] is set to 1, the width of LOW and HIGH periods of timer
toggle outputs can be separately programmed through TimerNLoadCount and
TimerNLoadCount2 registers, respectively.

■ Timer_N_clk can be free-running; that is, timer_n_clk does not have to be
stopped when timer is disabled.

■ Timer interrupt can be detected, even when pclk is stopped.

■ Timer can be paused using timer_N_pause inputs.

Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: APB_DATA_WIDTH==32
Parameter Name: TIM_NEWMODE

Interrupt Synchronized to
System clock(pclk)/Timer
clock(timer_clk) ?

When TIM_NEWMODE is enabled, the timer interrupt can be generated either in
the system clock (pclk) or in the Timer clock (timer_clk) domain. When set to 0, the
timer interrupt is generated in the Timer clock domain; when set to 1, the timer
interrupt is generated in the system clock domain.
Values:

■ Timer clock (timer_clk) (0)

■ system clock (pclk) (1)

Default Value: Timer clock (timer_clk)
Enabled: TIM_NEWMODE==1
Parameter Name: INTR_SYNC2PCLK

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Parameter Descriptions DesignWare DW_apb_timers Databook

Enable Timer 0% and 100%
PWM Mode ?

When set to True (1), this parameter enables the 0% and 100% PWM mode on the
toggle output. This feature adds 1-bit to the TimerNControlReg as follows:
TimerNControlReg[4] - Timer 0% and 100% duty cycle Mode Enable
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: ((TIMER_HAS_TOGGLE_1 == 1) || (TIMER_HAS_TOGGLE_2 == 1) ||
(TIMER_HAS_TOGGLE_3 == 1) || (TIMER_HAS_TOGGLE_4 == 1) ||
(TIMER_HAS_TOGGLE_5 == 1) || (TIMER_HAS_TOGGLE_6 == 1) ||
(TIMER_HAS_TOGGLE_7 == 1) || (TIMER_HAS_TOGGLE_8 == 1)) &&
(TIM_NEWMODE_VAL == 1)
Parameter Name: TIM_0N100_PWM_MODE

Hardcode Timer 0% and 100%
PWM Mode enable bit?

When set to True (1), this parameter hardcodes the 0% and 100% PWM mode
enable bit in the TimerNControlReg in the register. This is provided to reduce the
software overhead.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: TIM_0N100_PWM_MODE == 1
Parameter Name: TIMER_0N100_PWM_HC_EN

Number of Timers to
instantiate

Number of timers to instantiate in DW_apb_timers. Up to eight timers can be
instantiated.
Values: 1, 2, 3, 4, 5, 6, 7, 8
Default Value: 2
Enabled: Always
Parameter Name: NUM_TIMERS

Interrupt Polarity Polarity of interrupt signals generated by DW_apb_timers.
Values:

■ Active Low (0)

■ Active High (1)

Default Value: Active High
Enabled: TIM_NEWMODE==0
Parameter Name: TIM_INTRPT_PLRITY

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Parameter Descriptions

Single Combined Interrupt? When set to True (1), the component generates a single interrupt combining all
timer interrupts. If set to False (0), the component generates an interrupt output for
each timer.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: TIM_NEWMODE==0
Parameter Name: TIM_INTR_IO

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Parameter Descriptions DesignWare DW_apb_timers Databook

3.2 Timer N Configuration Parameters

Table 3-2 Timer N Configuration Parameters

Label Description

 Timer N Configuration

Width of Timer #N
(for N = 1; N <=
NUM_TIMERS)

Width of each Timer.
Values: 8, ..., 32
Default Value: 32
Enabled: NUM_TIMERS >= N
Parameter Name: TIMER_WIDTH_(N)

Include toggle output for timer
#N on I/F?
(for N = 1; N <=
NUM_TIMERS)

When set to True (1), the interface includes an output (timer_N_toggle) that toggles
each time the timer counter reloads. The output is disabled to 0 each time the timer
is disabled.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: NUM_TIMERS >= N
Parameter Name: TIMER_HAS_TOGGLE_(N)

Metastability support for
interrupt from Timer #N
(for N = 1; N <=
NUM_TIMERS)

This option instantiates metastability registers to synchronize timer interrupt signals
to the pclk domain. Set this to Present (1) if timer_N_clk is independent of pclk. If
this parameter is set to Absent (0), then timer_N_clk is considered to be connected
to or synchronous with pclk.
Values:
■ Absent (0)

■ Present (1)

Default Value: TIM_NEWMODE
Enabled: (TIM_NEWMODE == 0) AND (NUM_TIMERS >= N)
Parameter Name: TIM_METASTABLE_(N)

Timer N Clock Domain
Crossing Synchronization
Depth
(for N = 1; N <=
NUM_TIMERS)

Sets the number of synchronization stages to be placed on clock domain crossing
signals for timer N.

■ 2: 2-stage synchronization with positive-edge capturing at both the stages

■ 3: 3-stage synchronization with positive-edge capturing at all stages

■ 4: 4-stage synchronization with positive-edge capturing at all stages

Values: 2, 3, 4
Default Value: 2
Enabled: TIM_METASTABLE_(N)==1
Parameter Name: TIM_SYNC_DEPTH_(N)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Parameter Descriptions

Number of clock cycles by
which to extend interrupt for
Timer #N
(for N = 1; N <=
NUM_TIMERS)

If this timer clock is faster than the system bus clock, you can extend the internal
interrupt by up to three timer clock cycles to guarantee that it is seen in the bus clock
domain. A 0 value in this field means that no pulse extension is performed. Also
refer to the "Controlling Clock Boundaries and Metastability" section in the
DW_apb_timers databook.
Set this parameter to the following values, depending on the timer_N_clk/pclk
frequency ratio R:

timer_N_clk/pclk frequency RPULSE_EXTEND_N
 R<=1 --------------------------------- 0
 1<R<=2 ------------------------------ 1
 2<R<=3 ------------------------------ 2
 3<R<=4 ------------------------------ 3
 4<R --------------------------------- Not Valid

Values: 0, 1, 2, 3
Default Value: 0
Enabled: (TIM_NEWMODE == 0) AND (NUM_TIMERS >= N)
Parameter Name: TIM_PULSE_EXTD_(N)

Include Coherency Registers
for this Timer?
(for N = 1; N <=
NUM_TIMERS)

When set to True (1), a bank of registers is added between this timer and the APB
interface of DW_apb_timers to guarantee that the timer value read back from this
block is coherent. It does not reflect ongoing changes in the timer value that takes
place while the read operation is in progress.
Note: Including coherency can dramatically increase the register count of the
design.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: (TIMER_WIDTH_N > APB_DATA_WIDTH) AND (NUM_TIMERS >= N)
Parameter Name: TIM_COHERENCY_(N)

Table 3-2 Timer N Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Parameter Descriptions DesignWare DW_apb_timers Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the controller. For configurable IP titles, your actual
configuration might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
controller. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the inactive state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Signal Descriptions DesignWare DW_apb_timers Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ APB Interface on page 45

■ Timer Signals on page 48

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Signal Descriptions

4.1 APB Interface Signals

pclk - - pready
presetn - - pslverr
penable - - prdata

psel -
pwrite -
paddr -

pwdata -
pprot -
pstrb -

Table 4-1 APB Interface Signals

Port Name I/O Description

pclk I APB clock; also known as the system clock. This clock times all bus
transfers. All signal timings are related to the rising edge of pclk.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

presetn I APB reset. The bus reset signal is used to reset the system and the
bus on the DesignWare interface. Asynchronous APB interface
domain reset. This signal resets only the bus interface. The signal is
asserted asynchronously, but is deasserted synchronously after the
rising edge of pclk. DW_apb_timers does not contain logic to perform
this synchronization, so it must be provided externally.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

penable I APB enable control that indicates the second cycle of the APB frame.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Signal Descriptions DesignWare DW_apb_timers Databook

psel I APB peripheral select.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pwrite I APB write control.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

paddr[TIM_ADDR_SLICE_LHS:0] I APB address bus.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

pwdata[(APB_DATA_WIDTH-1):0] I APB write data bus.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

pprot[2:0] I APB4 Protection type. The input bits should match the corresponding
protection activated level bit of the accessed register to gain access
to the timer load-count registers. Else the DW_apb_timers generates
an error. If protection level is turned off, any value on the
corresponding bit is acceptable. Signal is ignored if
SLVERR_RESP_EN==0.
Exists: SLAVE_INTERFACE_TYPE>1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-1 APB Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Signal Descriptions

pstrb[((APB_DATA_WIDTH/8)-1):0] I APB4 Write strobe bus. A high on individual bits in the pstrb bus
indicate that the corresponding incoming write data byte on APB bus
is to be updated in the addressed register.
Exists: SLAVE_INTERFACE_TYPE>1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pready O This APB3 protocol signal indicates the end of a transaction when
high in the access phase of a transaction. PREADY never goes low in
DW_apb_timers and is tied to one.
Exists: SLAVE_INTERFACE_TYPE>0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pslverr O APB3 slave error response signal. The signal issues an error when
an incoming transaction does not have necessary authorisation. This
signal is tied to low in case SLVERR_RESP_EN parameter is
switched off.
Exists: SLAVE_INTERFACE_TYPE>0
Synchronous To: pclk
Registered: (SLAVE_INTERFACE_TYPE > 1 &&
SLVERR_RESP_EN==1) ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: High

prdata[(APB_DATA_WIDTH-1):0] O APB readback data.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-1 APB Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Signal Descriptions DesignWare DW_apb_timers Databook

4.2 Timer Signals

scan_mode - - timer_en
timer_N_clk (for N = 1; N <= NUM_TIMERS) - - timer_intr

timer_N_resetn (for N = 1; N <= NUM_TIMERS) - - timer_intr_n
timer_N_pause (for N = 1; N <= NUM_TIMERS) - - timer_intr_flag

- timer_intr_flag_n
- timer_N_toggle (for N = 1; N <= NUM_TIMERS)

Table 4-2 Timer Signals

Port Name I/O Description

scan_mode I Active-high scan mode used to ensure that test automation tools can
control all asynchronous flip-flop signals. This signal should be
asserted that is, driven to logic 1 during scan testing, and should be
deasserted (tied to logic 0) at all other times.
Exists: Always
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

timer_N_clk
(for N = 1; N <= NUM_TIMERS)

I Each timer is supplied with its own clock from this bus. The number
of these signals is set by NUM_TIMERS parameter. This signal can
be asynchronous or synchronous to pclk. If a timer clock is
asynchronous to pclk, you must ensure that the clocks are stopped
whenever the timer is disabled.
Exists: NUM_TIMERS >= N
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

timer_N_resetn
(for N = 1; N <= NUM_TIMERS)

I Asynchronous reset for each timer. The number of these signals are
set by NUM_TIMERS parameter. Asynchronous assertion,
synchronous de-assertion. Must be synchronously de-asserted after
the rising edge of timer_1_clk.
Exists: NUM_TIMERS >= N
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Signal Descriptions

timer_N_pause
(for N = 1; N <= NUM_TIMERS)

I Optional. Input signal; when asserted, causes the timer to
pause/freeze.
Exists: (NUM_TIMERS >= N) && (TIM_NEWMODE==1)
Synchronous To: timer_N_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

timer_en[(NUM_TIMERS-1):0] O When asserted, activates the necessary timer clocks and ensures
the component is supplied with an active pclk while timers are
running.
You can tie a timer clock to pclk, but if pclk is asynchronous to a timer
clock, then you must stop the timer clock before programming it.
Timer clock should start and stop depending on assertion and de-
assertion of the timer_en output signal when the timer clock is
asynchronous to pclk.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

timer_intr[(NUM_TIMERS-1):0] O Optional. Timer interrupt active high signals. It's assertion is
synchronous to timer_N_clk and de-assertion is synchronous to pclk.
Exists: (TIM_INTRPT_PLRITY==1) &&
(TIM_INTR_IO==TIM_INDIVIDUAL)
Synchronous To: None
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

timer_intr_n[(NUM_TIMERS-1):0] O Optional. Timer interrupt active low signals. It's assertion is
synchronous to timer_N_clk and de-assertion is synchronous to pclk.
Exists: (TIM_INTRPT_PLRITY==0) &&
(TIM_INTR_IO==TIM_INDIVIDUAL)
Synchronous To: None
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-2 Timer Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Signal Descriptions DesignWare DW_apb_timers Databook

timer_intr_flag O Optional. Active High Interrupt flag that is set if any timer interrupt is
set.
Exists: (TIM_INTRPT_PLRITY==1) &&
(TIM_INTR_IO==TIM_COMBINED)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

timer_intr_flag_n O Optional. Active Low Interrupt flag that is set if any timer interrupt is
set.
Exists: (TIM_INTRPT_PLRITY==0) &&
(TIM_INTR_IO==TIM_COMBINED)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

timer_N_toggle
(for N = 1; N <= NUM_TIMERS)

O Optional. Signal that toggles each time the timer counter reloads.
The output is disabled to 0 each time the timer is disabled.
Exists: (NUM_TIMERS >= N) && (TIMER_HAS_TOGGLE_N==1)
Synchronous To: timer_N_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-2 Timer Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

5
Register Descriptions

This chapter details all possible registers in the controller. They are arranged hierarchically into maps and
blocks (banks). For configurable IP titles, your actual configuration might not contain all of these registers.

Attention: For configurable IP titles, do not use this document to determine the exact attributes of your
register map. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the register attributes for your actual
configuration at workspace/report/ComponentRegisters.html or
workspace/report/ComponentRegisters.xml after you have completed the report creation activity. That
report comes from the exact same source as this chapter but removes all the registers that are not in your
actual configuration. This does not apply to non-configurable IP titles. In addition, all parameter
expressions are evaluated to actual values. Therefore, the Offset and Memory Access values might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

Exists Expressions

These expressions indicate the combination of configuration parameters required for a register, field, or
block to exist in the memory map. The expression is only valid in the local context and does not indicate the
conditions for existence of the parent. For example, the expression for a bit field in a register assumes that
the register exists and does not include the conditions for existence of the register.

Offset

The term Offset is synonymous with Address.

Memory Access Attributes

The Memory Access attribute is defined as <ReadBehavior>/<WriteBehavior> which are defined in the
following table.

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

Special Optional Attributes

Some register fields might use the following optional attributes.

Table 5-1 Possible Read and Write Behaviors

Read (or Write) Behavior Description

RC A read clears this register field.

RS A read sets this register field.

RM A read modifies the contents of this register field.

Wo You can only write to this register once field.

W1C A write of 1 clears this register field.

W1S A write of 1 sets this register field.

W1T A write of 1 toggles this register field.

W0C A write of 0 clears this register field.

W0S A write of 0 sets this register field.

W0T A write of 0 toggles this register field.

WC Any write clears this register field.

WS Any write sets this register field.

WM Any write toggles this register field.

no Read Behavior attribute You cannot read this register. It is Write-Only.

no Write Behavior attribute You cannot write to this register. It is Read-Only.

Table 5-2 Memory Access Examples

Memory Access Description

R Read-only register field.

W Write-only register field.

R/W Read/write register field.

R/W1C You can read this register field. Writing 1 clears it.

RC/W1C Reading this register field clears it. Writing 1 clears it.

R/Wo You can read this register field. You can only write to it once.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Register Descriptions

Component Banks/Blocks

The following table shows the address blocks for each memory map. Follow the link for an address block to
see a table of its registers.

Table 5-3 Optional Attributes

Attribute Description

Volatile As defined by the IP-XACT specification. If true, indicates in the
case of a write followed by read, or in the case of two consecutive
reads, there is no guarantee as to what is returned by the read on
the second transaction or that this return value is consistent with the
write or read of the first transaction. The element implies there is
some additional mechanism by which this field can acquire new
values other than by reads/writes/resets and other access methods
known to IP-XACT. For example, when the core updates the register
field contents.

Testable As defined by the IP-XACT specification. Possible values are
unconstrained, untestable, readOnly, writeAsRead, restore.
Untestable means that this field is untestable by a simple automated
register test. For example, the read-write access of the register is
controlled by a pin or another register. readOnly means that you
should not write to this register; only read from it. This might apply
for a register that modifies the contents of another register.

Reset Mask As defined by the IP-XACT specification. Indicates that this register
field has an unknown reset value. For example, the reset value is set
by another register or an input pin; or the register is implemented
using RAM.

* Varies Indicates that the memory access (or reset) attribute (read, write
behavior) is not fixed. For example, the read-write access of the
register is controlled by a pin or another register. Or when the
access depends on some configuration parameter; in this case the
post-configuration report in coreConsultant gives the actual access
value.

Table 5-4 Address Banks/Blocks for Memory Map: DW_apb_timers_mem_map

Address Block Description

DW_apb_timers_addr_block on page 54 DW_apb_timers address block
Exists: Always

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

5.1 DW_apb_timers_mem_map/DW_apb_timers_addr_block Registers
DW_apb_timers address block. Follow the link for the register to see a detailed description of the register.

Table 5-5 Registers for Address Block: DW_apb_timers_mem_map/DW_apb_timers_addr_block

Register Offset Description

TimerNLoadCount
(for N = 1; N <= NUM_TIMERS) on
page 55

0x00 +
(N-
1)*0x14

Value to be loaded into Timer N

TimerNCurrentValue
(for N = 1; N <= NUM_TIMERS) on
page 56

0x04 +
(N-
1)*0x14

Current value of Timer N

TimerNControlReg
(for N = 1; N <= NUM_TIMERS) on
page 57

0x08 +
(N-
1)*0x14

Control Register for Timer N. This register controls enabling,
operating mode (free-running or defined-count),...

TimerNEOI
(for N = 1; N <= NUM_TIMERS) on
page 60

0x0C +
(N-
1)*0x14

Clears the interrupt from Timer N

TimerNIntStatus
(for N = 1; N <= NUM_TIMERS) on
page 61

0x10 +
(N-
1)*0x14

Contains the interrupt status for Timer N

TimersIntStatus on page 62 0xa0 Contains the interrupt status of all timers in the component.

TimersEOI on page 64 0xa4 Returns all zeroes (0) and clears all active interrupts.

TimersRawIntStatus on page 65 0xa8 Contains the unmasked interrupt status of all timers in the
component.

TIMERS_COMP_VERSION on page 66 0xac Current revision number of the DW_apb_timers component.

TimerNLoadCount2
(for N = 1; N <= NUM_TIMERS) on
page 67

0xb0 +
(N-
1)*0x04

Value to be loaded into Timer N when toggle output changes
from 0 to 1

TIMER_N_PROT_LEVEL
(for N = 1; N <= NUM_TIMERS) on
page 68

0xd0 +
(N-
1)*0x04

Timer_N Protection level register Read/Write Access: -
R/W if HC_PROT_LEVEL=0, else R Enabling...

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Register Descriptions

5.1.1 TimerNLoadCount (for N = 1; N <= NUM_TIMERS)

■ Name: Timer N Load Count Register

■ Description: Value to be loaded into Timer N

■ Size: 32 bits

■ Offset: 0x00 + (N-1)*0x14

■ Exists: NUM_TIMERS >= N

31
:y

x:
0

R
S

V
D

_T
im

er
N

Lo
ad

C
ou

nt

T
im

er
N

Lo
ad

C
ou

nt

Table 5-6 Fields for Register: TimerNLoadCount (for N = 1; N <= NUM_TIMERS)

Bits Name
Memory
Access Description

31:y RSVD_TimerNLoadCount R TimerNLoadCount 31toTIMER_WIDTH_N Reserved field
Value After Reset: 0x0
Exists: Always
Range Variable[y]: TIMER_WIDTH_N

x:0 TimerNLoadCount R/W Value to be loaded into Timer N. This is the value from which
counting commences. Any value written to this register is
loaded into the associated timer.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: TIMER_WIDTH_N - 1

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

5.1.2 TimerNCurrentValue (for N = 1; N <= NUM_TIMERS)

■ Description: Current value of Timer N

■ Size: 32 bits

■ Offset: 0x04 + (N-1)*0x14

■ Exists: NUM_TIMERS >= N

31
:y

x:
0

R
S

V
D

_T
im

er
N

C
ur

re
nt

V
al

ue

T
im

er
N

C
ur

re
nt

V
al

ue

Table 5-7 Fields for Register: TimerNCurrentValue (for N = 1; N <= NUM_TIMERS)

Bits Name
Memory
Access Description

31:y RSVD_TimerNCurrentValue R TimerNCurrentValue 31toTIMER_WIDTH_N Reserved field
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: TIMER_WIDTH_N

x:0 TimerNCurrentValue R Current Value of Timer N. When TIM_NEWMODE=0, This
register is supported only when timer_N_clk is synchronous
to pclk. Reading this register when using independent clocks
results in an undefined value. When TIM_NEWMODE=1, no
restrictions apply.
Value After Reset: TIM_RST_CURRENTVAL_[N]
Exists: Always
Volatile: true
Range Variable[x]: TIMER_WIDTH_N- 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Register Descriptions

5.1.3 TimerNControlReg (for N = 1; N <= NUM_TIMERS)

■ Name: Timer N Control Register

■ Description: Control Register for Timer N. This register controls enabling, operating mode (free-
running or defined-count), and interrupt mask of Timer N. You can program each Timer1ControlReg
to enable or disable a specific timer and to control its mode of operation.

■ Size: 32 bits

■ Offset: 0x08 + (N-1)*0x14

■ Exists: NUM_TIMERS >= N

31
:5

4 3 2 1 0

R
S

V
D

_T
im

er
N

C
on

tr
ol

R
eg

T
IM

E
R

_0
N

10
0P

W
M

_E
N

T
IM

E
R

_P
W

M

T
IM

E
R

_I
N

T
E

R
R

U
P

T
_M

A
S

K

T
IM

E
R

_M
O

D
E

T
IM

E
R

_E
N

A
B

LE

Table 5-8 Fields for Register: TimerNControlReg (for N = 1; N <= NUM_TIMERS)

Bits Name
Memory
Access Description

31:5 RSVD_TimerNControlReg R TimerNControlReg 31to5 Reserved field
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

4 TIMER_0N100PWM_EN ((TIM_0N
100_PW
M_MODE
==1) AND
(TIMER_
HAS_TO
GGLE_N
==1) AND
(TIMER_
0N100_P
WM_HC_
EN==0))
? read-
write :
read-only

Optional. Allows user to enable or disable the usage of Timer
0% and 100% mode feature. This bit is present only when
(TIM_0N100_PWM_MODE=1 and
TIMER_HAS_TOGGLE_N=1). Otherwise reserved.
Values:

■ 0x1 (ENABLED): Timer 0% and 100% PWM duty cycle
mode is enabled

■ 0x0 (DISABLE): Timer 0% and 100% PWM duty cycle
mode is disabled

Value After Reset: {((TIM_0N100_PWM_MODE==1) &&
(TIMER_HAS_TOGGLE_N==1) &&
(TIMER_0N100_PWM_HC_EN==1)) ? 0x1 : 0x0}
Exists: TIM_0N100_PWM_MODE &&
TIMER_HAS_TOGGLE_N

3 TIMER_PWM R/W Pulse Width Modulation of timer_N_toggle output. This field
is only present when TIM_NEWMODE is enabled
Values:

■ 0x1 (ENABLED): PWM for timer_N_toggle o/p is enabled

■ 0x0 (DISABLE): PWM for timer_N_toggle o/p is disabled

Value After Reset: 0x0
Exists: TIM_NEWMODE==1

2 TIMER_INTERRUPT_MASK R/W Timer interrupt mask for Timer N.
Values:
■ 0x1 (MASKED): Timer N interrupt is masked

■ 0x0 (UNMASKED): Timer N interrupt is unmasked

Value After Reset: 0x0
Exists: Always

1 TIMER_MODE R/W Timer mode for Timer N.
Note: You must set the Timer1LoadCount register to all 1s
before enabling the timer in free-running mode.
Values:

■ 0x1 (USER_DEFINED): User-Defined mode of operation

■ 0x0 (FREE_RUNNING): Free Running mode of operation

Value After Reset: 0x0
Exists: Always

Table 5-8 Fields for Register: TimerNControlReg (for N = 1; N <= NUM_TIMERS) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Register Descriptions

0 TIMER_ENABLE R/W Timer enable bit for Timer N.
Values:

■ 0x1 (ENABLED): Timer N is enabled

■ 0x0 (DISABLE): Timer N is disabled

Value After Reset: 0x0
Exists: Always

Table 5-8 Fields for Register: TimerNControlReg (for N = 1; N <= NUM_TIMERS) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

5.1.4 TimerNEOI (for N = 1; N <= NUM_TIMERS)

■ Name: Timer N End-of-Interrupt Register

■ Description: Clears the interrupt from Timer N

■ Size: 32 bits

■ Offset: 0x0C + (N-1)*0x14

■ Exists: NUM_TIMERS >= N

31
:1

0

R
S

V
D

_T
im

er
N

E
O

I

T
im

er
N

E
O

I

Table 5-9 Fields for Register: TimerNEOI (for N = 1; N <= NUM_TIMERS)

Bits Name
Memory
Access Description

31:1 RSVD_TimerNEOI R TimerNEOI 31to1 Reserved field
Value After Reset: 0x0
Exists: Always

0 TimerNEOI R Reading from this register returns all zeroes (0) and clears
the interrupt from Timer N.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Register Descriptions

5.1.5 TimerNIntStatus (for N = 1; N <= NUM_TIMERS)

■ Name: Timer N Interrupt Status Register

■ Description: Contains the interrupt status for Timer N

■ Size: 32 bits

■ Offset: 0x10 + (N-1)*0x14

■ Exists: NUM_TIMERS >= N

31
:1

0

R
S

V
D

_T
im

er
N

In
tS

ta
tu

s

T
im

er
N

In
tS

ta
tu

s

Table 5-10 Fields for Register: TimerNIntStatus (for N = 1; N <= NUM_TIMERS)

Bits Name
Memory
Access Description

31:1 RSVD_TimerNIntStatus R TimerNIntStatus 31to1 Reserved field
Value After Reset: 0x0
Exists: Always
Volatile: true

0 TimerNIntStatus R Contains the interrupt status for Timer N.
Values:

■ 0x1 (ACTIVE): Timer N Interrupt is active

■ 0x0 (INACTIVE): Timer N Interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

5.1.6 TimersIntStatus

■ Name: Timers Interrupt Status Register

■ Description: Contains the interrupt status of all timers in the component.

■ Size: 32 bits

■ Offset: 0xa0

■ Exists: Always

31
:y

x:
0

R
S

V
D

_T
im

er
sI

nt
S

ta
tu

s

T
im

er
sI

nt
S

ta
tu

s

Table 5-11 Fields for Register: TimersIntStatus

Bits Name
Memory
Access Description

31:y RSVD_TimersIntStatus R TimersIntStatus 31toNUM_TIMERS Reserved field
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: NUM_TIMERS

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Register Descriptions

x:0 TimersIntStatus R Contains the interrupt status of all timers in the component. If
a bit of this register is 0, then the corresponding timer
interrupt is not active and the corresponding interrupt could
be on either the timer_intr bus or the timer_intr_n bus,
depending on the interrupt polarity you have chosen.
Similarly, if a bit of this register is 1, then the corresponding
interrupt bit has been set in the relevant interrupt bus. In both
cases, the status reported is the status after the interrupt
mask has been applied. Reading from this register does not
clear any active interrupts.
Values:

■ 0x1 (ACTIVE): Timer_intr(_n) is active

■ 0x0 (INACTIVE): Timer_intr(_n) is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: NUM_TIMERS - 1

Table 5-11 Fields for Register: TimersIntStatus (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

5.1.7 TimersEOI

■ Name: Timers End-of-Interrupt Register

■ Description: Returns all zeroes (0) and clears all active interrupts.

■ Size: 32 bits

■ Offset: 0xa4

■ Exists: Always

31
:y

x:
0

R
S

V
D

_T
IM

E
R

S
E

O
I

T
IM

E
R

S
E

O
I

Table 5-12 Fields for Register: TimersEOI

Bits Name
Memory
Access Description

31:y RSVD_TIMERSEOI R TimersEOI 31toNUM_TIMERS Reserved field
Value After Reset: 0x0
Exists: Always
Range Variable[y]: NUM_TIMERS

x:0 TIMERSEOI R Reading this register returns all zeroes (0) and clears all
active interrupts.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: NUM_TIMERS - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Register Descriptions

5.1.8 TimersRawIntStatus

■ Name: Timers Raw Interrupt Status Register

■ Description: Contains the unmasked interrupt status of all timers in the component.

■ Size: 32 bits

■ Offset: 0xa8

■ Exists: Always

31
:y

x:
0

R
S

V
D

_T
IM

E
R

S
R

A
W

IN
T

S
T

A
T

T
IM

E
R

S
R

A
W

IN
T

S
T

A
T

Table 5-13 Fields for Register: TimersRawIntStatus

Bits Name
Memory
Access Description

31:y RSVD_TIMERSRAWINTSTAT R TimersRawIntStatus 31toNUM_TIMERS Reserved field
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: NUM_TIMERS

x:0 TIMERSRAWINTSTAT R The register contains the unmasked interrupt status of all
timers in the component.
Values:
■ 0x1 (ACTIVE): Raw Timer_intr(_n) is active

■ 0x0 (INACTIVE): Raw Timer_intr(_n) is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: NUM_TIMERS - 1

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

5.1.9 TIMERS_COMP_VERSION

■ Name: Timers Component Version

■ Description: Current revision number of the DW_apb_timers component.

■ Size: 32 bits

■ Offset: 0xac

■ Exists: Always

31
:0

T
IM

E
R

S
C

O
M

P
V

E
R

S
IO

N

Table 5-14 Fields for Register: TIMERS_COMP_VERSION

Bits Name
Memory
Access Description

31:0 TIMERSCOMPVERSION R Current revision number of the DW_apb_timers
component.For the value, see the releases table in the
AMBA 2 release notes
Value After Reset: TIM_VERSION_ID
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Register Descriptions

5.1.10 TimerNLoadCount2 (for N = 1; N <= NUM_TIMERS)

■ Name: Timer N Load Count2 Register

■ Description: Value to be loaded into Timer N when toggle output changes from 0 to 1

■ Size: 32 bits

■ Offset: 0xb0 + (N-1)*0x04

■ Exists: TIM_NEWMODE==1 AND NUM_TIMERS >= N

31
:y

x:
0

R
S

V
D

_T
IM

E
R

N
LO

A
D

C
O

U
N

T
2

T
IM

E
R

N
LO

A
D

C
O

U
N

T
2

Table 5-15 Fields for Register: TimerNLoadCount2 (for N = 1; N <= NUM_TIMERS)

Bits Name
Memory
Access Description

31:y RSVD_TIMERNLOADCOUNT2 R TimerNLoadCount2 31toTIMER_WIDTH_N Reserved field
Value After Reset: 0x0
Exists: Always
Range Variable[y]: TIMER_WIDTH_N

x:0 TIMERNLOADCOUNT2 R/W Value to be loaded into Timer N when timer_N_toggle output
changes from 0 to 1. This value determines the width of the
HIGH period of the timer_N_toggle output.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: TIMER_WIDTH_N - 1

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Register Descriptions DesignWare DW_apb_timers Databook

5.1.11 TIMER_N_PROT_LEVEL (for N = 1; N <= NUM_TIMERS)

■ Name: Timer_N Protection level

■ Description: Timer_N Protection level register

Read/Write Access:

❑ R/W if HC_PROT_LEVEL=0, else R

Enabling protection on any of its three bits would require a match on the input PPROT signal to gain
access to protected registers of the timer.

■ Size: 32 bits

■ Offset: 0xd0 + (N-1)*0x04

■ Exists: (SLAVE_INTERFACE_TYPE > 1 AND SLVERR_RESP_EN==1 AND HC_PROT_LEVEL==0
AND NUM_TIMERS >= N) ? 1 : 0

31
:3

2:
0

R
sv

dT
im

er
_N

_P
ro

tL
ev

el

T
im

er
_N

_P
ro

tL
ev

el
F

ie
ld

Table 5-16 Fields for Register: TIMER_N_PROT_LEVEL (for N = 1; N <= NUM_TIMERS)

Bits Name
Memory
Access Description

31:3 RsvdTimer_N_ProtLevel R TIMER_N_PROT_LEVEL 31to3 Reserved field- read-only
Value After Reset: 0x0
Exists: Always

2:0 Timer_N_ProtLevelField R/W This field holds protection value of TIMER_N_PROT_LEVEL
register.
Value After Reset: PROT_LEVEL_RST
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Programming Considerations

6
Programming Considerations

This chapter describes the programmable features of the DW_apb_timers.

In order to avoid potential synchronization problems when initializing, loading, and enabling a timer, you
should follow the basic procedure outline in “DW_apb_timers Usage Flow” on page 19.

The DW_apb_timers module is little-endian. All timers are disabled on reset and are enabled by writing “1”
to the timer enable bit of the TimerNControlReg. The TimerNLoadCount register value is loaded into a
corresponding TimerN after the timer is enabled—either after a disable or a reset. DW_apb_timers contains
both timer-specific and system registers.

If a timer is wider than the read data bus to which the slave is attached, more than one access must be
performed to read the TimerNCurrentValue register. If more than one access is performed to read a timer
value, the coherency of the value read cannot be guaranteed unless you configure read/write coherency for
the specific timer. Read/write coherency is meaningful only if the TIMER_WIDTH is greater than the
APB_DATA_WIDTH, under which circumstances the coherency registers are never instantiated in the
design.

If there is no coherency set for a specific timer, software should read the registers more than once. For
example, the software should read least-significant bits (LSBs), then most-significant bits (MSBs), and then
LSBs again.

When the upper byte is programmed, the value can be transferred and loaded into the load register. When
the lower bytes are programmed, they need to be stored in shadow registers so that the previous load
register is available to the timer counter if it needs to reload. When the upper byte is programmed, the
contents of the shadow registers and the upper byte are loaded into the load register.

NoteNoteNoteNote The coherency circuitry incorporates an upper byte method that requires you to program the
load register in LSB-to-MSB order when the peripheral width is smaller than the register width.
Additionally, you must read LSB-to-MSB for the coherency circuitry solution to operate
correctly.

NoteNoteNoteNote Reading the TimerNCurrentValue register is not supported if timer_N_clk is asynchronous to
pclk. Any attempt to read this register when the clocks are independent may result in an
undefined value.

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Programming Considerations DesignWare DW_apb_timers Databook

6.1 Programming the 0% and 100% Duty Cycle Mode
You can use the following programming flow to enable the 0% and 100% duty cycle mode:

1. Disable the timer enable bit in the TimerNControlReg register.

2. Program the TimerNLoadCount and TimerNLoadCount2 registers with appropriate values as
described in “Pulse Width Modulation with 0% and 100% Duty Cycle” on page 28.

3. Enable the 0% and 100% duty cycle mode bit, the Pulse width modulation bit and set the Timer mode
to user-defined count mode in the TimerNControlReg register.

4. Set the timer enable bit in the TimerNControlReg register such that the toggle output is 100% (high)
or 0% (low).

When the 0% and 100% duty cycle mode is enabled, internal timer is disabled. The internal timers can
be enabled again by switching to Normal toggle output mode or to Pulse width modulation toggle
output mode.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Verification

7
Verification

This chapter provides an overview of the testbench available for DW_apb_timers verification. Once you
have configured the DW_apb_timers in either coreAssembler or coreConsultant and have set up the
verification environment, you can run simulations automatically.

7.1 Overview of Vera Tests
The DW_apb_timers verification testbench performs tests that have been written to verify three types of
functionalities:

■ test_readwrite_regs – Tests read/write functionalities of each timer register.

■ test_reset – Tests functions related to resetting all timers.

■ test_timer – Tests general functions of each timer.

The tests are performed on the following:

■ APB Slave Interface – DW_apb_timers consists of an APB slave interface and a separate timer block
for each timer instantiated. These tests verify that the APB Slave interface implements the memory
map for DW_apb_timers and also contain metastability flip-flops to synchronize interrupt flags
coming from the timer clock domains to the bus system clock domain. The tests are run for an 8-bit,
16-bit, and 32-bit APB system.

■ Timer blocks – Each timer instantiated in the DW_apb_timers has a block clocked by its own
timer_N_clk. These tests verify that the block flags interrupts to the APB slave interface and carries
out pulse extension of signals going to the slave interface block to handle scenarios where the
timer_N_clk runs at a higher frequency than pclk.

NoteNoteNoteNote The DW_apb_timers verification testbench is built with DesignWare Verification IP (VIP). Make
sure you have the supported version of the VIP components for this release, otherwise, you
may experience some tool compatibility problems. For more information about supported tools
in this release, see the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI
Installation Guide.

https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Verification DesignWare DW_apb_timers Databook

The tests perform the following tasks:

❑ Disables a timer, programs the load value, and re-enables it.

❑ Verifies that in free-running mode the timer counts from the load value down to zero before
wrapping to its maximum value and proceeding with its count.

❑ Verifies that in user-defined mode, the timer wraps back to the load value after passing 0.

❑ Verifies that pulse extension, when configured, behaves so that the interrupt and current value
are correctly extended for one, two, or three timer clock cycles as required.

NoteNoteNoteNote All tests have achieved maximum RTL code coverage and use the APB Interface to
dynamically program memory-mapped registers during tests.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Verification

7.2 Overview of DW_apb_timers Testbench
As illustrated in Figure 7-1, the DW_apb_timers Verilog testbench includes an instantiation of the design
under test (DUT), AHB and APB Bridge bus models, and a Vera shell.

Figure 7-1 DW_apb_timers Testbench

The Vera shell consists of an AHB master bus functional model (BFM), two AHB slave BFMs, an AHB
monitor, APB slave BFMs, an APB monitor, test stimuli, BFM configuration, and test results. The AHB
monitor tracks activity from the AHB master and slave BFMs; the APB monitor oversees activity from the
APB slave BFMs.

The testbench checks for all possible user configurations selected in the Configure Component activity of
coreConsultant. The testbench also determines if the component is AMBA-compliant.

AHB Slave2
BFM

AHB Master
BFM

APB Slave1
BFM

AHB Bus ModelAHB Monitor

APB Monitor

APB Bridge Model

DUT
DW_apb_timers.v

(APB Slave 0)

Vera Tests
(test stimuli and results)

Timer interrupt
signals

AHB Slave1

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Verification DesignWare DW_apb_timers Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

8
Integration Considerations

After you have configured, tested, and synthesized your component in either coreAssembler or
coreConsultant, you can integrate the subsystem or component into your own design environment. The
following sections discuss general integration considerations for the slave interface of APB peripherals:

8.1 Reading and Writing from an APB Slave
When writing to and reading from DesignWare APB slaves, you should consider the following:

■ The size of the APB peripheral should always be set equal to the size of the APB data bus, if possible.

■ The APB bus has no concept of a transfer size or a byte lane, unlike the DW_ahb.

■ The APB slave subsystem is little endian; the DW_apb performs the conversion from a big-endian
AHB to the little-endian APB.

■ All APB slave programming registers are aligned on 32-bit boundaries, irrespective of the APB bus
size.

■ The maximum APB_DATA_WIDTH is 32 bits. Registers larger than this occupies more than one
location in the memory map.

■ The DW_apb does not return any ERROR, SPLIT, or RETRY responses; it always returns an OKAY
response to the AHB.

■ For all bus widths:

❑ In the case of a read transaction, registers less than the full bus width returns zeros in the unused
upper bits.

❑ Writing to bit locations larger than the register width does not have any effect. Only the pertinent
bits are written to the register.

■ The APB slaves do not need the full 32-bit address bus, paddr. The slaves include the lower bits even
though they are not actually used in a 32- or 16-bit system.

8.1.1 Reading From Unused Locations

Reading from an unused location or unused bits in a particular register always returns zeros. Unlike an
AHB slave interface, which would return an error, there is no error mechanism in an APB slave and,
therefore, in the DW_apb.

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Integration Considerations DesignWare DW_apb_timers Databook

The following sections show the relationship between the register map and the read/write operations for
the three possible APB_DATA_WIDTH values: 8-, 16-, and 32-bit APB buses.

Figure 8-1 Read/Write Locations for Different APB Bus Data Widths

8.1.2 32-bit Bus System

For 32-bit bus systems, all programming registers can be read or written with one operation, as illustrated in
the previous figure.

Because all registers are on 32-bit boundaries, paddr[1:0] is not actually needed in the 32-bit bus case. But
these bits still exist in the configured code for usability purposes.

NoteNoteNoteNote If you write to an address location not on a 32-bit boundary, the bottom bits are ignored/not
used.

31 0715 APB Address
nn00

nn04

nn08
nn09Register 3 [15:8] Register 3 [7:0]

Register 2 [15:8] Register 2 [7:0]

Register 1 [7:0]

Register 3 [31:24]
Register 3 [23:16]

nn05

nn0A
nn0B

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:16] Register 3 [15:0]

Register 2 [15:0]

Register 1 [7:0]

nn0A

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:0]

Register 2 [15:0]

Register 1 [7:0]

32-bit APB

16-bit APB

8-bit APB

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Integration Considerations

8.1.3 16-bit Bus System

For 16-bit bus systems, two scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 16 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 16 bits wide returns zeros in the un-used bits. Writing to bit locations larger than
the register width causes nothing to happen, i.e. only the pertinent bits are written to the register.

2. The register to be written to or read from is >16 and <= 32 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower two bytes (half-word) and the
second transaction the upper half-word.

Because the bus is reading a half-word at a time, paddr[0] is not actually needed in the 16-bit bus case. But
these bits still exist in the configured code for connectivity purposes.

8.1.4 8-bit Bus System

For 8-bit bus systems, three scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 8 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 8 bits wide returns zeros in the unused bits. Writing to bit locations larger than the
register width causes nothing to happen, that is, only the pertinent bits are written to the register.

2. The register to be written to or read from is >8 and <=16 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the upper byte.

3. The register to be written to or read from is >16 and <=32 bits

In this case, four AHB transactions are required, which in turn creates four APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the second byte, and so on.

Because the bus is reading a byte at a time, all lower bits of paddr are decoded in the 8-bit bus case.

NoteNoteNoteNote If you write to an address location not on a 16-bit boundary, the bottom bits are ignored/not
used.

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Integration Considerations DesignWare DW_apb_timers Databook

8.2 Write Timing Operation
A timing diagram of an APB write transaction for an APB peripheral register (an earlier version of the
DW_apb_ictl) is shown in the following figure. Data, address, and control signals are aligned. The APB
frame lasts for two cycles when psel is high.

Figure 8-2 APB Write Transaction

A write can occur after the first phase with penable low, or after the second phase when penable is high. The
second phase is preferred and is used in all APB slave components. The timing diagram is shown with the
write occurring after the second phase. Whenever the address on paddr matches a corresponding address
from the memory map and provided psel, pwrite, and penable are high, then the corresponding register
write enable is generated.

A write from the AHB to the APB does not require the AHB system bus to stall until the transfer on the APB
has completed. A write to the APB can be followed by a read transaction from another AHB peripheral (not
the DW_apb).

The timing example is a 33-bit register and a 32-bit APB data bus. To write this, 5 byte enables would be
generated internally. The example shows writing to the first 32 bits with one write transaction.

Register

pclk

psel

penable

pwrite

paddr[7:2]

pwdata[31:0]

irq_inten[32:0]

wen_inten[4:0] 0x0f

0x100000000 0x100001234

0x00001234

IrqIntEnL

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Integration Considerations

8.3 Read Timing Operation
A timing diagram of an APB read transaction for an APB peripheral (an earlier version of the DW_apb_ictl)
is shown in the following figure. The APB frame lasts for two cycles, when psel is high.

Figure 8-3 APB Read Transaction

Whenever the address on paddr matches the corresponding address from the memory map—psel is high,
pwrite and penable are low—then the corresponding read enable is generated. The read data is registered
within the peripheral before passing back to the master through the DW_apb and DW_ahb.

The qualification of the read-back data with hready from the bridge is shown in the timing diagram, but this
does not form part of the APB interface. The read happens in the first APB cycle and is passed straight back
to the AHB master in the same cycles as it passes through the bridge. By returning the data immediately to
the AHB bus, the bridge can release control of the AHB data bus faster. This is important for systems where
the APB clock is slower than the AHB clock.

Once a read transaction is started, it is completed and the AHB bus is held until the data is returned from
the slave

8.4 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

NoteNoteNoteNote If a read enable is not active, then the previously read data is maintained on the read-back
data bus.

Register

pclk

psel

penable

pwrite

paddr[7:2]

prdata[31:0]

irq_inten[32:0]

ren_irq_inten[4:0]

0x100001234

0x1234

IrqIntEnL

0x1234hrdata[31:0]

hready

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Integration Considerations DesignWare DW_apb_timers Databook

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

8.5 Coherency
Coherency is where bits within a register are logically connected. For instance, part of a register is read at
time 1 and another part is read at time 2. Being coherent means that the part read at time 2 is at the same
value it was when the register was read at time 1. The unread part is stored into a shadow register and this
is read at time 2. When there is no coherency, no shadow registers are involved.

A bus master may need to be able to read the contents of a register, regardless of the data bus width, and be
guaranteed of the coherency of the value read. A bus master may need to be able to write a register
coherently regardless of the data bus width and use that register only when it has been fully programmed.
This may need to be the case regardless of the relationship between the clocks.

Coherency enables a value to be read that is an accurate reflection of the state of the counter, independent of
the data bus width, the counter width, and even the relationship between the clocks. Additionally, a value
written in one domain is transferred to another domain in a seamless and coherent fashion.

Throughout this appendix the following terms are used:

■ Writing. A bus master programs a configuration register. An example is programming the load value
of a counter into a register.

■ Transferring. The programmed register is in a different clock domain to where it is used, therefore, it
needs to be transferred to the other clock domain.

■ Loading. Once the programmed register is transferred into the correct clock domain, it needs to be
loaded or used to perform its function. For example, once the load value is transferred into the
counter domain, it gets loaded into the counter.

8.5.1 Writing Coherently

Writing coherently means that all the bits of a register can be written at the same time. A peripheral may
have programmable registers that are wider than the width of the connected APB data bus, which prevents
all the bits being programmed at the same time unless additional coherency circuitry is provided.

The programmable register could be the load value for a counter that may exist in a different clock domain.
Not only does the value to be programmed need to be coherent, it also needs to be transferred to a different
clock domain and then loaded into the counter. Depending on the function of the programmable register, a
qualifier may need to be generated with the data so that it knows when the new value is currently
transferred and when it should be loaded into the counter.

Depending on the system and on the register being programmed, there may be no need for any special
coherency circuitry. One example that requires coherency circuitry is a 32-bit timer within an 8-bit APB
system. The value is entirely programmed only after four 8-bit wide write transfers. It is safe to transfer or
use the register when the last byte is currently written. An example where no coherency is required is a
16-bit wide timer within a 16-bit APB system. The value is entirely programmed after a single 16-bit wide
write transfer.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Integration Considerations

Coherency circuitry enables the value to be loaded into the counter only when fully programmed and
crossed over clock domains if the peripheral clock is not synchronous to the processor clock. While the load
register is being programmed, the counter has access to the previous load value in case it needs to reload the
counter.

Coherency circuitry is only added in cores where it is needed. The coherency circuitry incorporates an
upper byte method that requires users to program the load register in LSB to MSB order when the
peripheral width is smaller than the register width. When the upper byte is programmed, the value can be
transferred and loaded into the load register. When the lower bytes are being programmed, they need to be
stored in shadow registers so that the previous load register is available to the counter if it needs to reload.
When the upper byte is programmed, the contents of the shadow registers and the upper byte are loaded
into the load register.

The upper byte is the top byte of a register. A register can be transferred and loaded into the counter only
when it has been fully programmed. A new value is available to the counter once this upper byte is written
into the register. The following table shows the relationship between the register width and the peripheral
bus width for the generation of the correct upper byte. The numbers in the table represent bytes, Byte 0 is
the LSB and Byte 3 is the MSB. NCR means that no coherency circuitry is required, as the entire register is
written with one access.

There are three relationship cases to be considered for the processor and peripheral clocks:

■ Identical

■ Synchronous (phase coherent but of an integer fraction)

■ Asynchronous

Table 8-1 Upper Byte Generation

Upper Byte
Bus Width

Load Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 1 NCR NCR

17 - 24 2 2 NCR

25 - 32 3 2 (or 3) NCR

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Integration Considerations DesignWare DW_apb_timers Databook

8.5.1.1 Identical Clocks

The following figure illustrates an RTL diagram for the circuitry required to implement the coherent write
transaction when the APB bus clock and peripheral clocks are identical.

Figure 8-4 Coherent Loading – Identical Synchronous Clocks

The following figure shows a 32-bit register that is written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal lasts
for one cycle and is used to load the counter with CntLoadValue.

Figure 8-5 Coherent Loading – Identical Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

pclk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

LoadValue[31:0]

UpperByteWen

LoadCnt

Counter[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Integration Considerations

Each of the bytes that make up the load register are stored into shadow registers until the final byte is
written. The shadow register is up to three bytes wide. The contents of the shadow registers and the final
byte are transferred into the CntLoadValue register when the final byte is written. The counter uses this
register to load/initialize itself. If the counter is operating in a periodic mode, it reloads from this register
each time the count expires.

By using the shadow registers, the CntLoadValue is kept stable until it can be changed in one cycle. This
allows the counter to be loaded in one access and the state of the counter is not affected by the latency in
programming it. When there is a new value to be loaded into the counter initially, this is signaled by
LoadCnt = 1. After the upper byte is written, the LoadCnt goes to zero.

8.5.1.2 Synchronous Clocks

When the clocks are synchronous but do not have identical periods, the circuitry needs to be extended so
that the LoadCnt signal is kept high until a rising edge of the counter clock occurs. This extension is
necessary so that the value can be loaded, using LoadCnt, into the counter on the first counter clock edge. At
the rising edge of the counter clock if LoadCnt is high, then a register clocked with the counter clock toggles,
otherwise it keeps its current value. A circuit detecting the toggling is used to clear the original LoadCnt by
looking for edge changes. The value is loaded into the counter when a toggle has been detected. Once it is
loaded, the counter should be free to increment or decrement by normal rules.

The following figure shows an RTL diagram for the circuitry required to implement the coherent write
when the bus and peripheral clocks are synchronous.

Figure 8-6 Coherent Loading – Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

OR

AND
ToggleToggle

1

1

Shaded Registers are all
connected to the Bus clock.
Others are connected to the
Peripheral clock.

https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Integration Considerations DesignWare DW_apb_timers Databook

The following figure shows a 32-bit register being written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal is
extended until a change in the toggle is detected and is used to load the counter.

Figure 8-7 Coherent Loading – Synchronous Clocks

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

counter_clk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

CntLoadValue[31:0]

LoadCnt

toggle_edge_detect

Counter[31:0]

toggle

pclk

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Integration Considerations

8.5.1.3 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three-times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock. The following figure shows an RTL diagram for the circuitry
required to implement the coherent write when the bus and peripheral clocks are asynchronous.

Figure 8-8 Coherent Loading – Asynchronous Clocks

When the clocks are asynchronous, you need to transfer the contents of the register from one clock domain
to another. It is not desirable to transfer the entire register through meta-stability registers, as coherency is
not guaranteed with this method. The circuitry needed requires the processor clock to be used to re-time the
peripheral clock. Upon a rising edge of the re-timed clock, the new value signal, NewValue, is transferred
into a safe new value signal, SafeNewValue, which happens after the edge of the peripheral clock has
occurred.

Every time there is a rising edge of the peripheral clock detected, the CntLoadValue is transferred into a
SafeCntLoadValue. This value is used to transfer the load value across the clock domains. The
SafeCntLoadValue only changes a number of bus clock cycles after the peripheral clock edge changes. A

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0]

Counter
[31:0]

Shadow

Toggle 1

1

Shaded and edge detect registers are all
connected to the Bus clock. Others are
connected to the Peripheral clock.

(or ByteWen[3])

ClrNewValue
Reset

EN

32

NewValue

red_counter_clk

SafeCountLoadValue

&

Reset

EN

ClrNewValue

red_counter_clk

Edge
Detect

ClrNewValue

pclk

Rising

Detect
counter_clk

pclk

Edge red_counter_clk

SafeNewValue

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Integration Considerations DesignWare DW_apb_timers Databook

counter running on the peripheral clock is able to use this value safely. It could be up to two peripheral
clock periods before the value is loaded into the counter. Along with this loaded value, there also is a single
bit transferred that is used to qualify the loading of the value into the counter.

The timing diagram depicted in the following figure does not show the shadow registers being loaded. This
is identical to the loading for the other clock modes.

Figure 8-9 Coherent Loading – Asynchronous Clocks

The NewValue signal is extended until a change in the toggle is detected and is used to update the safe
value. The SafeNewValue is used to load the counter at the rising edge of the peripheral clock. Each time a
new value is written the toggle bit is flipped and the edge detection of the toggle is used to remove both the
NewValue and the SafeNewValue.

8.5.2 Reading Coherently

For writing to registers, an upper-byte concept is proposed for solving coherency issues. For read
transactions, a lower-byte concept is required. The following table provides the relationship between the
register width and the bus width for the generation of the correct lower byte.

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

Counter Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 0 NCR NCR

0D0C0B0A

0D0C0B0A

0D0C0B0A

A3

counter_clk

paddr

penable

pwdata[7:0]

NewValue

ntLoadValue[31:0]

red_counter_clk

ntLoadValue[31:0]

SafeNewValue

ClrNewValue

Counter[31:0]

toggle

pclk

0D

UpperByteWen

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Integration Considerations

Depending on the bus width and the register width, there may be no need to save the upper bits because the
entire register is read in one access, in which case there is no problem with coherency. When the lower byte
is read, the remaining upper bytes within the counter register are transferred into a holding register. The
holding register is the source for the remaining upper bytes. Users must read LSB to MSB for this solution to
operate correctly. NCR means that no coherency circuitry is required, as the entire register is read with one
access.

There are two cases regarding the relationship between the processor and peripheral clocks to be considered
as follows:

■ Identical and/or synchronous

■ Asynchronous

8.5.2.1 Synchronous Clocks

When the clocks are identical and/or synchronous, the remaining unread bits (if any) need to be saved into
a holding register once a read is started. The first read byte must be the lower byte provided in the previous
table, which causes the other bits to be moved into the holding register, SafeCntVal, provided that the
register cannot be read in one access. The upper bytes of the register are read from the holding register
rather than the actual register so that the value read is coherent. This is illustrated in the following figure
and in the timing diagram after it.

Figure 8-10 Coherent Registering – Synchronous Clocks

17 - 24 0 0 NCR

25 - 32 0 0 NCR

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

CntVal[31:8]

CntVal[31:8]

EN

LowerByteRen

SafeCntVal

ReadCntVal[31:0]

ByteRen[3:0]

Counter
Block

Shaded registers are clocked
with the processor clock.

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Integration Considerations DesignWare DW_apb_timers Databook

Figure 8-11 Coherent Registering – Synchronous Clocks

8.5.2.2 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock.

To safely transfer a counter value from the counter clock domain to the bus clock domain, the counter clock
signal should be transferred to the bus clock domain. When the rising edge detect of this re-timed counter
clock signal is detected, it is safe to use the counter value to update a shadow register that holds the current
value of the counter.

While reading the counter contents it may take multiple APB transfers to read the value.

Once a read transaction has started, the value of the upper register bits need to be stored into a shadow
register so that they can be read with subsequent read accesses. Storing these upper bits preserves the
coherency of the value that is being read. When the processor reads the current value it actually reads the
contents of the shadow register instead of the actual counter value. The holding register is read when the
bus width is narrower than the counter width. When the LSB is read, the value comes from the shadow
register; when the remaining bytes are read they come from the holding register. If the data bus width is
wide enough to read the counter in one access, then the holding registers do not exist.

The counter clock is registered and successively pipelined to sense a rising edge on the counter clock.
Having detected the rising edge, the value from the counter is known to be stable and can be transferred
into the shadow register. The coherency of the counter value is maintained before it is transferred, because
the value is stable.

NoteNoteNoteNote You must read LSB to MSB when the bus width is narrower than the counter width.

A0 A1 A2 A3

00010203 0A0B0C0D 0E0F0G0H

clk1

CntVal[31:0]

paddr

penable

prdata[7:0]

SafeCntVal[31:8]

LowerByteRen

pclk

A0 A1 A2

03 02 01 00 0H 0G

000102 0E0F0G

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Integration Considerations

The following figure illustrates the synchronization of the counter clock and the update of the shadow
register.

Figure 8-12 Coherency and Shadow Registering – Asynchronous Clocks

8.6 Performance
This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_apb_timers.

8.6.1 Power Consumption, Frequency, and Area Results

Table 8-3 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_apb_timers using the industry standard 28nm technology library and how it affects performance.

Table 8-3 Power Consumption, Frequency, and Area Results for DW_apb_timers Using 28nm Technology
Library

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration pclk: 200 MHz
timer_1_clk: 100 MHz
timer_2_clk: 100 MHz

2101 gates 35.5 nW 4.5668 uW

Minimum Configuration:
APB_DATA_WIDTH 8
NUM_TIMERS 1
TIMER_WIDTH_1 8
TIM_PULSE_EXTD_1 0
TIM_METASTABLE_1 0

pclk: 200 MHz
timer_1_clk: 100 MHz

390 gates 6.2 nW 1.1182 uW

CntVal

EN

LowerByteRen

SafeCntVal

ReadCntVal

Sync and shaded registers are
clocked with the processor clock.

ShdwCntVal

EN

Sync & Rising
Edge Detect

Safe To Update

https://solvnet.synopsys.com
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Integration Considerations DesignWare DW_apb_timers Databook

Maximum Configuration:
APB_DATA_WIDTH 32
NUM_TIMERS 8
TIMER_WIDTH_1 32
TIMER_WIDTH_2 32
TIMER_WIDTH_3 32
TIMER_WIDTH_4 32
TIMER_WIDTH_5 32
TIMER_WIDTH_6 32
TIMER_WIDTH_7 32
TIMER_WIDTH_8 32
TIM_METASTABLE_1 1
TIM_METASTABLE_2 1
TIM_METASTABLE_3 1
TIM_METASTABLE_4 1
TIM_METASTABLE_5 1
TIM_METASTABLE_6 1
TIM_METASTABLE_7 1
TIM_METASTABLE_8 1
TIM_PULSE_EXTD_1 3
TIM_PULSE_EXTD_2 3
TIM_PULSE_EXTD_3 3
TIM_PULSE_EXTD_4 3
TIM_PULSE_EXTD_5 3
TIM_PULSE_EXTD_6 3
TIM_PULSE_EXTD_7 3
TIM_PULSE_EXTD_8 3
TIMER_HAS_TOGGLE_1 1
TIMER_HAS_TOGGLE_2 1
TIMER_HAS_TOGGLE_3 1
TIMER_HAS_TOGGLE_4 1
TIMER_HAS_TOGGLE_5 1
TIMER_HAS_TOGGLE_6 1
TIMER_HAS_TOGGLE_7 1
TIMER_HAS_TOGGLE_8 1

pclk: 200 MHz
timer_1_clk: 100 MHz
timer_2_clk: 100MHz
timer_3_clk: 100 MHz
timer_4_clk: 100MHz
timer_5_clk: 100 MHz
timer_6_clk: 100 MHz
timer_7_clk: 100 MHz
timer_8_clk: 100 MHz

8112 gates 132 nW 12.2606 uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

A
Synchronizer Methods

This appendix describes the synchronizer methods (blocks of synchronizer functionality) that are used in
the DW_apb_timers to cross clock boundaries.

This appendix contains the following sections:

■ “Synchronizers Used in DW_apb_timers” on page 92

■ “Synchronizer 1: Simple Double Register Synchronizer (DW_apb_timers)” on page 93

NoteNoteNoteNote The DesignWare Building Blocks (DWBB) contains several synchronizer components with
functionality similar to methods documented in this appendix. For more information about the
DWBB synchronizer components go to:
https://www.synopsys.com/dw/buildingblock.php

https://www.synopsys.com/dw/buildingblock.php
https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Synchronizer Methods DesignWare DW_apb_timers Databook

A.1 Synchronizers Used in DW_apb_timers
Each of the synchronizers and synchronizer sub-modules are comprised of verified DesignWare Basic Core
(BCM) RTL designs. The BCM synchronizer designs are identified by the synchronizer type. The
corresponding RTL files comprising the BCM synchronizers used in the DW_apb_timers are listed and cross
referenced to the synchronizer type in Table A-1. Note that certain BCM modules are contained in other
BCM modules, as they are used as building blocks

Table A-1 Synchronizers used in DW_apb_timers

Synchronizer module file Synchronizer Type and Number

DW_apb_timers_bcm21.v Synchronizer 1: Simple Multiple Register Synchronizer

NoteNoteNoteNote The BCM21 is a basic multiple register based synchronizer module used in the design. It can be
replaced with equivalent technology specific synchronizer cell.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Synchronizer Methods

A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_timers)

This is a single clock data bus synchronizer for synchronizing control signals that crosses asynchronous
clock boundaries. The synchronization scheme uses two stage synchronization process (Figure A-1) both
using positive edge of clock.

Figure A-1 Block Diagram of Synchronizer 1 With Two Stage Synchronization (Both Positive Edges)

Table A-2

DW_apb_timers_bcm21.v Synchronizer 1: Simple Multiple Register Synchronizer

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Synchronizer Methods DesignWare DW_apb_timers Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

B
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table B-1 Internal Parameters

Parameter Name Equals To

TIM_ADDR_SLICE_LHS 7

TIM_COMBINED 1

TIM_INDIVIDUAL 0

TIM_NEWMODE_VAL {(TIM_NEWMODE == 1)}

TIM_VERSION_ID 32'h3231322a

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Internal Parameter Descriptions DesignWare DW_apb_timers Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

C
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces (Arm® Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by Arm®
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (Arm® Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in a
word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Glossary DesignWare DW_apb_timers Databook

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable block
that can be instantiated as a single entity (VHDL) or module (Verilog) in a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used in
the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a big
piece of IIP. Anything that requires coreConsultant for configuration, as well as
anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in the
DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable cores
into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design views
and synthesis views you need to integrate the core into your design. Can also
synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format back
to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant or
coreAssembler to quickly build DesignWare Synthesizable Component designs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

2.12a
July 2018

DesignWare DW_apb_timers Databook Glossary

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is authorized
by a single DesignWare license. Products include SmartModels, VMT model
suites, DesignWare Memory Models, Building Block IP, and the DesignWare
Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code by
non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

2.12a
July 2018

Glossary DesignWare DW_apb_timers Databook

RTL Register Transfer Level. A higher level of abstraction that implies a certain gate-
level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as synthesizable
IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology through
synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component. The
files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in any
form, including a Design View.

workspace A network location that contains a personal copy of a component or subsystem.
After you configure the component or subsystem (using coreConsultant or
coreAssembler), the workspace contains the configured component/subsystem
and generated views needed for integration of the component/subsystem at the
top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing easier
interfacing. Usually requires an extra, sometimes automated, step to create the
wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101

DesignWare DW_apb_timers Databook

SolvNet
DesignWare.com

2.12a
July 2018

Index

A
active command queue

definition 97
activity

definition 97
AHB

definition 97
AMBA

definition 97
APB

definition 97
APB bridge

definition 97
application design

definition 97
arbiter

definition 97
B
BFM

definition 97
big-endian

definition 97
Block diagram, of DW_apb_timers 17
blocked command stream

definition 97
blocking command

definition 97
bus bridge

definition 98
C
Clock boundaries 24
Clock domains 25
Coherency

about 80
read 86
write 80

command channel
definition 98

command stream
definition 98

component
definition 98

configuration
definition 98

configuration intent
definition 98

core
definition 98

core developer
definition 98

core integrator
definition 98

coreAssembler
definition 98

coreConsultant
definition 98

coreKit
definition 98

Customer Support 12
cycle command

definition 98
D
decoder

definition 98
design context

definition 98
design creation

definition 98
Design for test 33
Design View

definition 98
DesignWare cores

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_timers Databook

102 Synopsys, Inc.SolvNet
DesignWare.com

2.12a
July 2018

definition 99
DesignWare Library

definition 99
DesignWare Synthesizable Components

definition 98
dual role device

definition 99
DW_ahb_dmac

testbench
overview of tests 71

DW_apb
slaves

read timing operation 79
write timing operation 78

DW_apb_timers
block diagram of 17
design for test 33
functional description of 17
memory map 69
programming of 69
setting operating mode 21
testbench

overview of 73
E
endian

definition 99
Environment, licenses 18
F
Full-Functional Mode

definition 99
Functional description 17
G
Generating interrupts 22
GPIO

definition 99
GTECH

definition 99
H
hard IP

definition 99
HDL

definition 99
I
IIP

definition 99

implementation view
definition 99

instantiate
definition 99

interface
definition 99

Interrupt, handling and generation of 22
IP

definition 99
L
Licenses 18
little-endian

definition 99
M
MacroCell

definition 99
master

definition 99
Memory map, of DW_apb_timers 69
Metastability, about 24
model

definition 99
monitor

definition 99
N
non-blocking command

definition 99
O
Operating mode, setting 21
P
peripheral

definition 99
Programming DW_apb_timers

memory map 69
R
Read coherency

about 86
and asynchronous clocks 88
and synchronous clocks 87

Reading, from unused locations 75
RTL

definition 100

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb_timers Databook Index

Synopsys, Inc. 1032.12a
July 2018

SolvNet
DesignWare.com

S
scan_mode 33
SDRAM

definition 100
SDRAM controller

definition 100
Setting, operating mode 21
Simple double register synchronizer 93
Simulation

of DW_apb_timers coreKit 73
slave

definition 100
SoC

definition 100
SoC Platform

AHB contained in 15
APB, contained in 15
defined 15

soft IP
definition 100

static controller
definition 100

subsystem
definition 100

Synchronizer
simple double register 93

synthesis intent
definition 100

synthesizable IP
definition 100

T
technology-independent

definition 100
Testsuite Regression Environment (TRE)

definition 100
TIM_INTR_IO 19
TIMER_WIDTH 21
Timing

read operation of DW_apb slave 79
write operation of DW_apb slave 78

TRE
definition 100

V
Vera, overview of tests 71
Verification

and Vera tests 71
of DW_apb_timers coreKit 73

VIP
definition 100

W
workspace

definition 100
wrap

definition 100
wrapper

definition 100
Write coherency

about 80
and asynchronous clocks 85
and identical clocks 82
and synchronous clocks 83

Z
zero-cycle command

definition 100

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_timers Databook

104 Synopsys, Inc.SolvNet
DesignWare.com

2.12a
July 2018

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_apb_timers Block Diagram

	1.3 Features
	1.4 Standards Compliance
	1.5 Verification Environment Overview
	1.6 Licenses
	1.7 Where To Go From Here

	2 Functional Description
	2.1 Timer Operation
	2.2 DW_apb_timers Usage Flow
	2.3 DW_apb_timers Configuration
	2.3.1 Choosing the Number of Timers
	2.3.2 Enabling and Disabling a Timer
	2.3.2.1 Enabling a Timer
	2.3.2.2 Disabling a Timer

	2.3.3 Configuring the Width of a Timer
	2.3.4 Loading a Timer Countdown Value
	2.3.5 Working with Interrupts
	2.3.5.1 Clearing Interrupts
	2.3.5.2 Checking Interrupt Status
	2.3.5.3 Masking Interrupts
	2.3.5.4 Setting Interrupt Polarity

	2.3.6 Controlling Clock Boundaries and Metastability
	2.3.7 Generating Toggled Outputs
	2.3.7.1 Pulse Width Modulation of Toggle Outputs
	2.3.7.2 Pulse Width Modulation with 0% and 100% Duty Cycle

	2.3.8 Timer Pause Mode

	2.4 APB Interface
	2.4.1 APB 3.0 Support
	2.4.2 APB 4.0 Support

	2.5 Design For Test

	3 Parameter Descriptions
	3.1 Top Level Parameters
	3.2 Timer N Configuration Parameters

	4 Signal Descriptions
	4.1 APB Interface Signals
	4.2 Timer Signals

	5 Register Descriptions
	5.1 DW_apb_timers_mem_map/DW_apb_timers_addr_block Registers
	5.1.1 TimerNLoadCount (for N = 1; N <= NUM_TIMERS)
	5.1.2 TimerNCurrentValue (for N = 1; N <= NUM_TIMERS)
	5.1.3 TimerNControlReg (for N = 1; N <= NUM_TIMERS)
	5.1.4 TimerNEOI (for N = 1; N <= NUM_TIMERS)
	5.1.5 TimerNIntStatus (for N = 1; N <= NUM_TIMERS)
	5.1.6 TimersIntStatus
	5.1.7 TimersEOI
	5.1.8 TimersRawIntStatus
	5.1.9 TIMERS_COMP_VERSION
	5.1.10 TimerNLoadCount2 (for N = 1; N <= NUM_TIMERS)
	5.1.11 TIMER_N_PROT_LEVEL (for N = 1; N <= NUM_TIMERS)

	6 Programming Considerations
	6.1 Programming the 0% and 100% Duty Cycle Mode

	7 Verification
	7.1 Overview of Vera Tests
	7.2 Overview of DW_apb_timers Testbench

	8 Integration Considerations
	8.1 Reading and Writing from an APB Slave
	8.1.1 Reading From Unused Locations
	8.1.2 32-bit Bus System
	8.1.3 16-bit Bus System
	8.1.4 8-bit Bus System

	8.2 Write Timing Operation
	8.3 Read Timing Operation
	8.4 Accessing Top-level Constraints
	8.5 Coherency
	8.5.1 Writing Coherently
	8.5.1.1 Identical Clocks
	8.5.1.2 Synchronous Clocks
	8.5.1.3 Asynchronous Clocks

	8.5.2 Reading Coherently
	8.5.2.1 Synchronous Clocks
	8.5.2.2 Asynchronous Clocks

	8.6 Performance
	8.6.1 Power Consumption, Frequency, and Area Results

	A Synchronizer Methods
	A.1 Synchronizers Used in DW_apb_timers
	A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_timers)

	B Internal Parameter Descriptions
	C Glossary
	Index

