
 2.09a
July 2018

DesignWare DW_apb_ictl Databook

DW_apb_ictl – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://www.synopsys.com/company/legal/trademarks-brands.html
www.synopsys.com
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 3

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

Contents

Revision History . 7

Preface . 9
Organization . 9
Related Documentation . 9
Web Resources .10
Customer Support .10
Product Code .11

Chapter 1
Product Overview .13

1.1 DesignWare System Overview .13
1.2 General Product Description .15

1.2.1 DW_apb_ictl Block Diagram .15
1.3 Features .15
1.4 Standards Compliance .16
1.5 Verification Environment Overview .16
1.6 Licenses .16
1.7 Where to Go From Here .16

Chapter 2
Functional Description .17

2.1 Overview .17
2.2 IRQ Interrupt Processing .18

2.2.1 IRQ Interrupt Polarity .19
2.2.2 IRQ Software-Programmable Interrupts .19
2.2.3 IRQ Enable and Masking .20
2.2.4 IRQ Software-Programmable Priority Levels .20
2.2.5 IRQ Priority Filter .20
2.2.6 IRQ Interrupt Status Registers .21
2.2.7 IRQ Interrupt Vectors .21

2.3 Vector Port .22
2.3.1 Handshaking Operation .22
2.3.2 Priority-Level Registers .23
2.3.3 Synchronization .24
2.3.4 Interrupt Timing .25

2.4 FIQ Interrupt Processing .25
2.4.1 FIQ Interrupt Polarity .26
2.4.2 FIQ Software-Programmable Interrupts .26
2.4.3 FIQ Enable and Masking .27

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Contents DesignWare DW_apb_ictl Databook

2.4.4 FIQ Interrupt Status Registers .27
2.5 Scan Mode .27

Chapter 3
Parameter Descriptions .29

3.1 Top Level Parameters .30
3.2 Vector Port Interface Parameters .34
3.3 Priority Controller Configuration Parameters .35
3.4 Configuration of Vector Generation Module Parameters .36
3.5 Individual IRQ Polarity Configuration Parameters .37
3.6 Individual FIQ Polarity Configuration Parameters .38

Chapter 4
Signal Descriptions .39

4.1 APB Interface Signals .41
4.2 Miscellaneous Signals .43
4.3 Interrupt Signals .44
4.4 Vector Interrupt and Handshake Signals .45
4.5 Interrupt Source Signals .46

Chapter 5
Register Descriptions .47

5.1 DW_apb_ictl_mem_map/DW_apb_ictl_addr_block1 Registers .50
5.1.1 IRQ_INTEN_L .52
5.1.2 IRQ_INTEN_H .53
5.1.3 IRQ_INTMASK_L .54
5.1.4 IRQ_INTMASK_H .55
5.1.5 IRQ_INTFORCE_L .56
5.1.6 IRQ_INTFORCE_H .58
5.1.7 IRQ_RAWSTATUS_L .60
5.1.8 IRQ_RAWSTATUS_H .62
5.1.9 IRQ_STATUS_L .63
5.1.10 IRQ_STATUS_H .64
5.1.11 IRQ_MASKSTATUS_L .65
5.1.12 IRQ_MASKSTATUS_H .67
5.1.13 IRQ_FINALSTATUS_L .68
5.1.14 IRQ_FINALSTATUS_H .70
5.1.15 IRQ_VECTOR .72
5.1.16 IRQ_VECTOR_n (for n = 0; n <= ICT_IRQ_PLEVEL) .73
5.1.17 FIQ_INTEN .74
5.1.18 FIQ_INTMASK .75
5.1.19 FIQ_INTFORCE .76
5.1.20 FIQ_RAWSTATUS .77
5.1.21 FIQ_STATUS .78
5.1.22 FIQ_FINALSTATUS .79
5.1.23 IRQ_PLEVEL .80
5.1.24 IRQ_INTERNAL_PLEVEL .81
5.1.25 ICTL_VERSION_ID .83
5.1.26 IRQ_PR_n (for n = 0; n <= ICT_IRQ_NUM-1) .84
5.1.27 IRQ_VECTOR_DEFAULT .85

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Contents

Chapter 6
Programming the DW_apb_ictl .87

6.1 Programming Considerations .87
6.2 Reading/Writing Registers Wider than APB_DATA_WIDTH .87
6.3 Initialization .87
6.4 Interrupt Service .88

Chapter 7
Verification .89

7.1 Overview of Vera Tests .89
7.1.1 Reset .89
7.1.2 Slave Interface .89
7.1.3 FIQ .90
7.1.4 IRQ .90
7.1.5 Priority Controller .90
7.1.6 Dynamic Reconfiguration .90

7.2 Overview of DW_apb_ictl Testbench .91
7.3 Running Simulations from the Command Line .92
7.4 Command Line Output Files .92

Chapter 8
Integration Considerations .93

8.1 Bus Interface .93
8.2 Reading and Writing from an APB Slave .93

8.2.1 Reading From Unused Locations .94
8.2.2 32-bit Bus System .95
8.2.3 16-bit Bus System .96
8.2.4 8-bit Bus System .96

8.3 Write Timing Operation .97
8.4 Read Timing Operation .98
8.5 Accessing Top-level Constraints .98
8.6 Coherency .99

8.6.1 Writing Coherently .99
8.6.2 Reading Coherently . 105

8.7 Performance . 108
8.7.1 Power Consumption, Frequency, and Area Results . 108

Appendix A
Synchronizer Methods . 111

A.1 Synchronizers Used in DW_apb_ictl . 112
A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_ictl) . 113

Chapter B
Internal Parameter Descriptions . 115

Appendix C
Glossary . 117

Index . 121

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Contents DesignWare DW_apb_ictl Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

Revision History

This table shows the revision history for the databook from release to release. This is being tracked from
version 2.03b onward.

Version Date Description

2.09a July 2018 Added:
■ “Vector Port” on page 22

■ Appendix A, “Synchronizer Methods”

Updated:
■ “Performance” on page 108

■ “Parameter Descriptions” on page 29 and “Register Descriptions” on page 47
“Signal Descriptions” on page 39, “Internal Parameter Descriptions” on page 115
are auto extracted with change bars from the RTL.

Removed:
■ Chapter 2, “Building and Verifying a Component or Subsystem” and added the

contents in the newly created user guide.

2.08a October 2016 ■ Version number change to 2016.10a

■ “Parameter Descriptions” on page 29 and “Register Descriptions” on page 47 auto-
extracted from the RTL

■ Removed the “Running Leda on Generated Code with coreConsultant” section, and
reference to Leda directory in Table 2-1

■ Removed the “Running Leda on Generated Code with coreAssembler” section, and
reference to Leda directory in Table 2-4

■ Replaced Figure 2-2 and Figure 2-3 to remove references to Leda

■ Moved Appendix B, “Internal Parameter Descriptions” to Appendix

■ Added an entry for the xprop directory in Table 2-1 and Table 2-4.

2.07a June 2015 ■ Added “Running SpyGlass® Lint and SpyGlass® CDC”

■ Added “Running SpyGlass on Generated Code with coreAssembler”

■ Chapter 4, “Signal Descriptions” auto-extracted from the RTL

■ Added Chapter B, “Internal Parameter Descriptions”

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Revision History DesignWare DW_apb_ictl Databook

2.06a June 2014 ■ Version change for 2014.06a release.

■ Added “Performance” section in the “Integration Considerations” chapter

■ Corrected Default Input/Output Delay in Signals chapter

2.05f May 2013 ■ Version change for 2013.05a release

■ Updated the template

2.05e Oct 2012 Added the product code on the cover and in Table 1-1

2.05e Mar 2012 Version change for 2012.03a release

2.05d Nov 2011 Version change for 2011.11a release

2.05c Oct 2011 Version change for 2011.10a release

2.05b Jun 2011 ■ Updated system diagram in Figure 1-1

■ Enhanced “Related Documents” section in Preface

2.05b Apr 2011 Version change for 2011.03a release.

2.05a Sep 2010 Corrected names of include files and vcs command used for simulation

2.04a Dec 2009 Updated databook to new template for consistency with other IIP/VIP/PHY
databooks

2.04a May 2009 Removed references to QuickStarts, as they are no longer supported

2.04a Oct 2008 Version change for 2007.10a release.

2.03c Aug 2008 Added note about irq_intpfilt signal and changed names of signals in Figures 6
and 10

2.03c Jun 2008 Version change for 2008.06a release.

2.03b Dec 2007 ■ Updated for revised installation guide and consolidated release notes titles

■ Changed references of “Designware AMBA” to simply “DesignWare”

2.03b Jun 2007 Version change for 2007.06a release

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

Preface

This databook provides information that you need to interface the DesignWare APB Interrupt Controller
(DW_apb_ictl) component to the Advanced Peripheral Bus (APB). This component conforms to the AMBA
Specification, Revision 2.0 from Arm®.

The information in this databook includes a functional description, pin and parameter descriptions, and a
memory map. Also provided are an overview of the component testbench, a description of the tests that are
run to verify the coreKit, and synthesis information for the coreKit.

Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Functional Description” describes the functional operation of the DW_apb_ictl.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_apb_ictl.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_apb_ictl signals.

■ Chapter 5, “Register Descriptions” describes the programmable registers of the DW_apb_ictl.

■ Chapter 6, “Programming the DW_apb_ictl” provides information needed to program the
configured DW_apb_ictl.

■ Chapter 7, “Verification” provides information on verifying the configured DW_apb_ictl.

■ Chapter 8, “Integration Considerations” includes information you need to integrate the configured
DW_apb_ictl into your design.

■ Appendix B, “Internal Parameter Descriptions” describes the programmable registers of the
DW_apb_ictl.

■ Appendix C, “Glossary” provides a glossary of general terms.

Related Documentation
■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using

DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA_Spec.html
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Preface DesignWare DW_apb_ictl Databook

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA 2,
see the to the Guide to Documentation for DesignWare Synthesizable Components for AMBA 2 and AMBA
3 AXI.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the requested
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained, your
issue is automatically routed to a support engineer who is experienced with your product. The
Sub Product entry is critical for correct routing.

Go to http://solvnet.synopsys.com/EnterACall and click Open A Support Case to enter a call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: <product version number>
■ Problem Type:
■ Priority:
■ Title: DW_apb_ictl
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

http://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
http://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
http://solvnet.synopsys.com/EnterACall
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Preface

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified earlier) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
https://www.synopsys.com/support/global-support-centers.html

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare AMBA Fabric.

Table 1-1 DesignWare AMBA Fabric – Product Code: 3768-0

Component Name Description

DW_ahb High performance, low latency interconnect fabric for AMBA 2 AHB

DW_ahb_eh2h High performance, high bandwidth AMBA 2 AHB to AHB bridge

DW_ahb_h2h Area efficient, low bandwidth AMBA 2 AHB to AHB Bridge

DW_ahb_icm Configurable multi-layer interconnection matrix

DW_ahb_ictl Configurable vectored interrupt controllers for AHB bus systems

DW_apb High performance, low latency interconnect fabric & bridge for AMBA 2 APB for direct
connect to AMBA 2 AHB fabric

DW_apb_ictl Configurable vectored interrupt controllers for APB bus systems

DW_axi High performance, low latency interconnect fabric for AMBA 3 AXI

DW_axi_a2x Configurable bridge between AXI and AHB components or AXI and AXI components.

DW_axi_gm Simplify the connection of third party/custom master controllers to any AMBA 3 AXI fabric

DW_axi_gs Simplify the connection of third party/custom slave controllers to any AMBA 3 AXI fabric

DW_axi_hmx Configurable high performance interface from and AHB master to an AXI slave

DW_axi_rs Configurable standalone pipelining stage for AMBA 3 AXI subsystems

DW_axi_x2h Bridge from AMBA 3 AXI to AMBA 2.0 AHB, enabling easy integration of legacy AHB
designs with newer AXI systems

DW_axi_x2p High performance, low latency interconnect fabric and bridge for AMBA 2 & 3 APB for direct
connect to AMBA 3 AXI fabric

https://solvnet.synopsys.com
www.designware.com
mailto:support_center@synopsys.com
https://www.synopsys.com/support/global-support-centers.html

12 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Preface DesignWare DW_apb_ictl Databook

DW_axi_x2x Flexible bridge between multiple AMBA 3 AXI components or busses

Component Name Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

1
Product Overview

This chapter describes the DesignWare APB Interrupt Controller, referred to as DW_apb_ictl.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Product Overview DesignWare DW_apb_ictl Databook

Figure 1-1 Example of DW_apb_ictl in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/DW_apb_i2s_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/dw_axi_rs_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Product Overview

You can connect, configure, synthesize, and verify the DW_apb_ictl within a DesignWare subsystem using
coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_apb_ictl component,
you might prefer to use coreConsultant, documentation for which is available in the coreConsultant User
Guide.

1.2 General Product Description
The DW_apb_ictl is a configurable, vectored interrupt controller for AMBA-based systems. It is an AMBA
2.0-compliant Advanced Peripheral Bus (APB) slave device and is part of the DesignWare Synthesizable
Components for AMBA 2.

1.2.1 DW_apb_ictl Block Diagram

Figure 1-2 shows a block diagram of the DW_apb_ictl.

Figure 1-2 DW_apb_ictl Block Diagram

1.3 Features
The DW_apb_ictl supports the following features:

■ 2 to 64 IRQ normal interrupt sources

■ 1 to 8 FIQ fast interrupt sources (optional)

■ Vectored interrupts (optional)

■ Vector Port

■ Software interrupts

■ Priority filtering (optional)

■ Masking

IRQ
Generation

FIQ
Generation

Vector
Generation

&
Masking

Interrupt
Registers

DW_apb_ictl

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Product Overview DesignWare DW_apb_ictl Databook

■ Scan mode (optional)

■ Programmable interrupt priorities (after configuration)

Source code for this component is available on a per-project basis as a DesignWare Core. Contact your local
sales office for the details.

1.4 Standards Compliance
The DW_apb_ictl component conforms to the AMBA Specification, Revision 2.0 from Arm®. Readers are
assumed to be familiar with this specification.

1.5 Verification Environment Overview
The DW_apb_ictl includes an extensive verification environment, which sets up and invokes your selected
simulation tool to execute tests that verify the functionality of the configured component. You can then
analyze the results of the simulation.

The “Verification” on page 89 chapter discusses the specific procedures for verifying the DW_apb_ictl.

1.6 Licenses
Before you begin using the DW_apb_ictl, you must have a valid license. For more information, see
“Licenses” section in the DesignWare Synthesizable Components for AMBA 2, AMBA 3 AXI, and AMBA 4 AXI
Installation Guide

1.7 Where to Go From Here
At this point, you may want to get started working with the DW_apb_ictl component within a subsystem or
by itself. Synopsys provides several tools within its coreTools suite of products for the purposes of
configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

For more information about configuring, synthesizing, and verifying just your DW_apb_ictl component, see
“Overview of the coreConsultant Configuration and Integration Process” in DesignWare Synthesizable
Components for AMBA 2 User Guide.

For more information about implementing your DW_apb_ictl component within a DesignWare subsystem
using coreAssembler, see “Overview of the coreAssembler Configuration and Integration Process” in
DesignWare Synthesizable Components for AMBA 2 User Guide.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 17

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

2
Functional Description

This chapter describes the functional operation of the DesignWare APB Interrupt Controller, referred to as
DW_apb_ictl. Following topics are covered in this chapter:

■ “Overview” on page 17

■ “IRQ Interrupt Processing” on page 18

■ “Vector Port” on page 22

■ “FIQ Interrupt Processing” on page 25

■ “Scan Mode” on page 27

2.1 Overview
The DW_apb_ictl component is a configurable, vectored interrupt controller for DesignWare systems. It
supports from 2 to 64 normal interrupt (IRQ) sources that are processed to produce a single IRQ interrupt to
the processor. It supports from 1 to 8 fast interrupt (FIQ) sources that are processed to produce a single FIQ
interrupt to the processor. All interrupt processing is combinational so that interrupts are propagated if the
bus interface of the DW_apb_ictl is powered down. This means that reading any of the interrupt status
registers (raw, status, or final_status) is simply returning the status of the combinational logic, since there
are no flip-flops associated with these registers. It is the your responsibility to make sure that the interrupts
stay asserted until they are serviced.

IRQ interrupts support software interrupts, priority filtering, and vector generation. They have configurable
input and output polarity. FIQ interrupts are similar to IRQ interrupts, with the exception that priority
filtering and vector generation are not included.

https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Functional Description DesignWare DW_apb_ictl Databook

Figure 2-1 shows a block diagram of the DW_apb_ictl.

Figure 2-1 DW_apb_ictl Block Diagram
s

2.2 IRQ Interrupt Processing
The DW_apb_ictl can be configured to support from 2 to 64 IRQ interrupt sources (irq_intsrcN) using the
ICT_IRQ_NUM configuration parameter. The DW_apb_ictl processes these interrupt sources to produce a
single IRQ interrupt to the processor; irq or irq_n.

NoteNoteNoteNote The irq_intpfilt signal is an internally-generated priority mask signal. Its purpose is to mask
any IRQ sources with a priority level below the irq_plevel register.

IRQ
Generation

FIQ
Generation

Vector
Generation

&
Masking

Interrupt
Registers

DW_apb_ictl

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Functional Description

The processing of the interrupt sources is shown in Figure 2-2 and described in the following sections.

Figure 2-2 Normal Interrupt Generation – Interrupt 1 Example

2.2.1 IRQ Interrupt Polarity

The input polarity of each IRQ interrupt source is individually configurable. To configure the input polarity,
use the ICT_IRQSRC_POL_n parameter. This parameter exists for n = 0 to ICT_IRQ_NUM–1 (a polarity
parameter for each irq_intsrc bit). Setting one of these parameters to 1 makes the corresponding interrupt
source active-high; setting it to 0 makes the corresponding interrupt source active-low. This parameter also
determines the polarity of the software-programmable interrupt force bits in the irq_intforce registers
(irq_intforce_l or irq_intforce_h).

The output polarity of the interrupt signal is also configurable. The output polarity is set using the
ICT_INT_POL parameter. Setting this parameter to 1 configures both the normal and fast interrupt outputs
to be active-high; setting it to 0 configures them to be active-low. When configured to active-high, the signal
names for the interrupt outputs are irq and fiq; when configured to active-low, the signal names are irq_n
and fiq_n.

All interrupt status registers are always active-high, regardless of the polarity configured for the interrupt
sources and outputs.

2.2.2 IRQ Software-Programmable Interrupts

The DW_apb_ictl supports forcing interrupts from software. To force an interrupt to be active, write to the
corresponding bit in the irq_intforce registers (irq_intforce_l or irq_intforce_h). The polarity of each bit in
these registers is the same as the polarity of the corresponding interrupt source signal.

To configure the polarity of both the irq_intsrc signal and the irq_intforce register bits, set the corresponding
bits of the ICT_IRQSRC_POL_n parameter (n = ICT_IRQ_NUM–1). Setting one of these parameters to 1
configures the corresponding bit of irq_intsrc and irq_intforce to be active-high; setting one of these
parameters to 0 configures them to be active-low.

irq_intsrc[x]

irq_intforce_<l/h>[x]

ICT_IRQSRC_POL_x

irq_inten_<l/h>[x]

irq_intmask_<l/h>[x]

irq_intpfilt[x]

irq_status_<l/h>[x]

irq_rawstatus_<l/h>[x]

irq_maskstatus_<l/h>[x]

irq_finalstatus_<l/h>[x]

irq

irq_n

https://solvnet.synopsys.com
www.designware.com

20 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Functional Description DesignWare DW_apb_ictl Databook

Regardless of the polarity you configure, the reset state of each bit in the irq_intforce registers is always
inactive.

2.2.3 IRQ Enable and Masking

To enable each interrupt source independently, write a 1 to the corresponding bit of the irq_inten registers
(irq_inten_l or irq_inten_h). To configure the reset state of these registers, set the ICT_IRQ_DFLT_EN
parameter. If you set a bit of the ICT_IRQ_DFLT_EN parameter to 1, the corresponding bits of the irq_inten
registers are 1 on reset, which enables the corresponding interrupt source.

To independently mask each interrupt source, write a 1 to the corresponding bit of the interrupt mask
register (irq_maskstatus_l/irq_maskstatus_h). The reset value for each mask bit is 0 (unmasked).

2.2.4 IRQ Software-Programmable Priority Levels

The DW_apb_ictl supports optional software programmable priority levels. To change the priority level of
an interrupt, you write the priority value to the corresponding priority level register in the memory map.
There is a priority register for each of the interrupt sources, which can be programmed to one of sixteen
values from 0x0 to 0xf. Priority registers exist for only available interrupt sources.

The priority registers take on the reset state of the configuration parameter ICT_IRQSRC_PLEVEL_n.

■ To enable reading the priorities, set the ICT_READ_PRIORITY parameter to 1. It is possible to read
the priority registers when the priorities are not programmable.

■ To enable programmable priorities, set the ICT_HC_PRIORITIES parameter to 0. This can be done
only if priorities can be read; that is, if ICT_READ_PRIORITIES is 1.

2.2.5 IRQ Priority Filter

The DW_apb_ictl supports optional priority filtering. To enable the priority filtering logic, set the
ICT_HAS_PFLT parameter to 1. If ICT_HAS_PFLT is set to 0, none of the associated logic is instantiated and
vectored interrupts are not supported.

The function of the priority filtering logic is described as follows:

■ Each interrupt source is configured to one of sixteen priority levels. To configure an interrupt source
to a priority level, set the ICT_IRQSRC_PLEVEL_n to a value from 0 to 15, where 0 is the lowest
priority, assuming that programmable priorities is not enabled. If programmable priorities are
enabled (ICT_HC_PRIORITIES = 0), then the priority registers can be changed dynamically after
configuration.

■ A system priority level can be programmed into the irq_plevel register, which holds values from 0 to
15. The reset value of this register is set by programming the ICT_IRQ_PLEVEL parameter to a value
from 0 to 15.

■ The DW_apb_ictl filters out any interrupt source with a configured priority level less than the
priority currently programmed in the irq_plevel register.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 21SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Functional Description

2.2.6 IRQ Interrupt Status Registers

The DW_apb_ictl includes up to four status registers used for querying the current status of any interrupt at
various stages of the processing. Refer to Figure 2-2 for an illustration of the register values. All of the
following status registers have the same polarity; a 1 indicates that an interrupt is active, a 0 indicates it is
inactive.

■ irq_rawstatus (irq_rawstatus_l/irq_rawstatus_h) – Contains the state of the interrupt sources after
being adjusted for input polarity. Each bit of this register is set to 1 if the corresponding interrupt
source bit is active, and is set to 0 if it is inactive.

■ irq_status (irq_status_l/irq_status_h) – Contains the state of all interrupts after the enabling stage;
that is, an active-high bit indicates that a particular interrupt source is active and enabled.

■ irq_maskstatus (irq_maskstatus_l/irq_maskstatus_h) – Contains the state of all interrupts after the
masking stage; that is, an active-high bit indicates that a particular interrupt source is active, enabled,
and not masked.

■ irq_finalstatus (irq_finalstatus_l/irq_finalstatus_h) – Contains the state of all interrupts after the
priority filtering stage; that is, an active-high bit indicates that particular interrupt source is active,
enabled, not masked, and its configured priority level is greater or equal to the value programmed in
the irq_plevel register. If priority filtering has not been selected, this register contains the same value
as the irq_maskstatus register (the final stage of processing).

2.2.7 IRQ Interrupt Vectors

The DW_apb_ictl can be configured to support interrupt vectors. To enable vectored interrupt support, the
user must include priority filtering logic by setting the ICT_HAS_PFLT parameter to 1. To include vector
generation logic, set the ICT_HAS_VECTOR parameter to 1. If ICT_HAS_VECTOR is set to 0, none of the
interrupt vector logic is instantiated, and vectored interrupts are not supported.

The DW_apb_ictl has one vector register associated with each of the sixteen interrupt priority levels:
irq_vector_0 through irq_vector_15. These registers are 32 bits wide.

The value of each interrupt vector register can be hardcoded or programmed. If the parameter
ICT_HC_VECTOR_n is set to 1, irq_vector_n has a hardcoded value and is a read-only register. If the
parameter ICT_HC_VECTOR_n is set to 0, irq_vector_n is programmable and is a read/write value.

If configuration parameter ICT_HAS_DEFAULT_VECTOR is set to 1, register irq_vector_default is
included. This register can be used to return a known vector when the irq_vector register is read and no
interrupts are active. The value of this register can be hardcoded or programmed. If
ICT_HC_VECTOR_DEFAULT is set to 1, irq_vector_default has a hardcoded value and is read-only. If
ICT_HC_VECTOR_DEFAULT is set to 0, irq_vector_default is programmable and has a read/write value.

To configure the vector register value for hardcoded vector registers and the reset value for programmable
vector registers, set the ICT_VECTOR_n parameter to the desired value.

Vector processing proceeds as follows:

■ Active interrupts are conditioned by their enable and mask control bits.

■ All active interrupts that have a configured priority level (ICT_IRQSRC_PLEVEL_n) less than the
current value programmed into the irq_plevel register are filtered out.

https://solvnet.synopsys.com
www.designware.com

22 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Functional Description DesignWare DW_apb_ictl Databook

■ The highest priority level from among the remaining active interrupts is used to select one of the
sixteen interrupt vectors that have been programmed or configured into the irq_vector registers.

■ The user retrieves the vector associated with the highest priority level that has an active interrupt
source by reading the irq_vector register

The irq_vector register is “read coherent” – that is, you need to be guaranteed that you are reading a valid
value for the entire vector. In a system where the APB data width is less than the width of the irq_vector
register, the contents of irq_vector is stored in a shadow location when the user starts to read the irq_vector
register so that the irq_vector register can be read without being corrupted by it being changed by
subsequent interrupts occurring. For more information on coherency, see “Integration Considerations” on
page 93.

2.3 Vector Port
You can configure the DW_apb_ictl to include vector port functionality through the
ICT_ADD_VECTOR_PORT parameter. If you enable this parameter, signals are added to the top level of the
DW_apb_ictl that allows a processor to quickly sample the vector address associated with a currently
pending IRQ.

Using the vector port potentially decreases IRQ service latency, as the processor does not need to initiate an
APB bus transaction in order to discover the vector address associated with the current highest-priority
interrupt.

The DW_apb_ictl vector port supports the ARM11 and ARM1026EJ processor VIC ports. Vector port
functionality applies only to IRQ processing; FIQ processing remains unaffected.

Figure 2-3 shows the operation of the vector port where the processor clock and bus clock are running at the
same frequency.

Figure 2-3 Vector Port Handshaking (Synchronous Processor Clock)

2.3.1 Handshaking Operation

The irq_addr output becomes valid in the same cycle that irq_n asserts. At some point after this, the
processor asserts irq_ack to acknowledge receipt of the IRQ, which then causes the DW_apb_ictl to assert
irq_addr_v in order to inform the processor that it may sample irq_addr. Until the DW_apb_ictl asserts
irq_addr_v, irq_addr changes combinatorially to reflect the vector associated with the currently highest-
priority active interrupt source. The DW_apb_ictl holds irq_addr static while irq_addr_v is asserted.

In the same cycle that the DW_apb_ictl de-asserts irq_addr_v, irq_n also de-asserts. At this point in the
handshaking, the DW_apb_ictl has reset its internal priority filter to mask out all interrupt sources of a

vector1 vector2 vector3 vector4

pclk

irq_addr

irq_n

irq_ack

irq_addr_v

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Functional Description

priority level less than or equal to the priority of the interrupt source just sampled by the processor; this
prevents the processor from re-sampling the same interrupt and also prevents lower-priority interrupt
sources from causing an assertion of irq_n during the interrupt service routine (ISR) of the sampled
interrupt. If the interrupt source currently being processed has the highest possible priority level (4'hF), then
all IRQs are masked until software resets the priority filter.

The processor can reset the level of the priority filter to its previous setting by writing a new priority level to
the irq_internal_plevel register. Ideally this should be one of the last steps in the ISR code.

If a higher-priority interrupt occurs during the handshaking process, irq_n stays asserted when irq_addr_v
de-asserts, and the DW_apb_ictl waits for the processor to assert irq_ack in order to start the handshaking
process for the new interrupt.

Figure 2-3 shows the vector port handshaking when the bus clock and processor clock are identical
(synchronous). In this case, there is a one-cycle delay from the assertion of irq_ack by the processor to the
assertion of irq_addr_v by the DW_apb_ictl. Also there is a one-cycle delay from the de-assertion of irq_ack
by the processor to the de-assertion of irq_addr_v by the DW_apb_ictl.

2.3.2 Priority-Level Registers

If the ICT_ADD_VECTOR_PORT parameter is equal to 1, you can use a priority-level memory-mapped
register—irq_internal_plevel—to sample the priority level currently being applied by the DW_apb_ictl; if
ICT_ADD_VECTOR_PORT is equal to 0, irq_internal_plevel does not exist.

Unless an IRQ is currently being handled, the irq_internal_plevel register reflects the value of the system
priority level register, irq_plevel. While an IRQ is being handled, irq_internal_plevel is set to one priority
level greater than the priority of the IRQ being processed. In contrast to the irq_plevel register that is 4 bits
wide, the irq_internal_plevel register is 5 bits wide in order to accommodate stacking an IRQ source with a
priority level of 15; in this case, irq_internal_plevel is set to 16.

At the end of the ISR, the processor writes to the irq_internal_plevel register in order to reset it to the value
stored in the irq_plevel register. Writing to the irq_internal_plevel register at any other time may break the
operation of the DW_apb_ictl.

Splitting up the system priority level into two separate locations enables you to have read/write access to
the current system priority level independent of the temporary priority level used during the ISR. If a higher
priority IRQ occurs while a stacked priority is being used, irq_internal_plevel is reset to the value of
irq_plevel from the next hclk cycle. This new IRQ is stacked after the handshaking procedure, described in
“Handshaking Operation” on page 22.

If the ICT_ADD_VECTOR_PORT parameter is set to false, the irq_internal_plevel register does not exist,
and only the irq_plevel register is used to set the current priority level of the DW_apb_ictl.

NoteNoteNoteNote For writes to the irq_internal_plevel register, the write data on the bus is ignored. The only
effect of a write to the irq_internal_plevel register is to reset its value to that of the irq_plevel
register.

https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Functional Description DesignWare DW_apb_ictl Databook

Figure 2-4 shows how the priority filter value is changed by the DW_apb_ictl for the duration of the ISR.

Figure 2-4 Priority Masking During ISR

In this example, a lower-priority interrupt occurs after the handshaking but before the irq_internal_plevel
register is reset by the processor. Sometime later the processor writes to the irq_internal_plevel register in
order to reset the priority filter level, and the lower-priority interrupt is allowed to propagate to the
processor; the bus data is ignored in the write to the irq_internal_plevel register.

2.3.3 Synchronization

You can configure the DW_apb_ictl using the ICT_ADD_VECTOR_PORT_SYNC parameter to add
synchronization to vector port signals in order to support processors running at a different asynchronous
frequency to the bus clock. If this parameter is enabled, the DW_apb_ictl adds N-stages of pclk register
synchronization to all signals coming from the processor. Where N=
ICT_ADD_VECTOR_PORT_SYNC_DEPTH. By default, DW_apb_ictl adds 2-stages of pclk register
synchronization to all signals coming from the processor.

Figure 2-5 shows vector port handshaking with synchronization enabled. Processor signals coming into the
DW_apb_ictl go through two levels of metastability registers that give protection from one hclk cycle of

0x0 0xdc 0x0

0x1

0x1

0x1 0x7

vec. pr. 6 vec. pr. 5

0xX

CLK

psel

paddr

pwrite

pwdata

irq_intsrc[0]

irq_intsrc[1]

irq_plevel

irq_internal_plevel

irq_addr

irq_n

irq_ack

irq_addr_v

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Functional Description

metastability. In this situation, signals from the DW_apb_ictl to the processor should be synchronized
external to the DW_apb_ictl.

Figure 2-5 Vector Port Handshaking with Synchronization

Synchronization is not required for integer multiple or quasi-synchronous processor and bus clocks. This is
achieved when the parameter ICT_ADD_VECTOR_PORT_SYNC = 0.

2.3.4 Interrupt Timing

The following describes basic interrupt handling steps using the vector port feature of the DW_apb_ictl:

1. Sample vector associated with IRQ using DW_apb_ictl vector port.

2. If priority level is shared among IRQ sources, read irq_final_status to determine which interrupt
source caused the interrupt.

3. Execute interrupt service routine.

4. Optionally read irq_status to see if other interrupts are pending and service as required.

5. Clear interrupt at source (hardware peripheral or interrupt controller for s/w interrupt).

6. Write to irq_internal_plevel to reset the priority filter.

2.4 FIQ Interrupt Processing
FIQ interrupts are an optional feature of the DW_apb_ictl interrupt controller. To include FIQ interrupt
logic in the DW_apb_ictl, set the value of the ICT_HAS_FIQ parameter to 1. If ICT_HAS_FIQ is set to 0, the
FIQ logic is not included, and the associated signals are not present.

You can configure the DW_apb_ictl to support from 1 to 8 FIQ interrupt sources (fiq_intsrcN) using the
ICT_FIQ_NUM parameter. The DW_apb_ictl processes these interrupt sources to produce a single FIQ
interrupt to the processor; fiq or fiq_n.

FIQ interrupt processing is similar to IRQ interrupt processing, except that priority filtering and interrupt
vectors are not supported for the FIQ interrupts. This section describes how the DW_apb_ictl handles the
FIQ interrupt processing.

NoteNoteNoteNote N cycles of synchronization time are additional to the one cycle latency described for the
synchronous processor and AHB bus clocks, which yields a total of three cycles of latency
between irq_ack and irq_addr_v.

proc_clk

pclk

irq_n

irq_ack

irq_addr_v

https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Functional Description DesignWare DW_apb_ictl Databook

Figure 2-6 shows the processing of the interrupt sources, which is described in the following sections.

Figure 2-6 Fast Interrupt Generation – Interrupt 1 Example

2.4.1 FIQ Interrupt Polarity

The input polarity of each FIQ interrupt source can be individually configured. To configure the input
polarity, use the ICT_FIQSRC_POL parameter. This parameter exists for n = 0 to ICT_FIQ_NUM–1 (a
polarity parameter for each fiq_intsrc bit). Setting one of these parameters to 1 makes the corresponding
interrupt source active-high; setting it to 0 makes the corresponding interrupt source active-low. This
parameter also determines the polarity of the software programmable interrupt force bits in the fiq_intforce
register.

The output polarity of the interrupt signal can also be configured. You configure the output polarity using
the ICT_INT_POL parameter. Setting this parameter to 1 configures both the IRQ and FIQ interrupt outputs
to be active-high; setting the parameter to 0 configures them to be active-low. When configured as
active-high, the signal names for the interrupt outputs are irq and fiq; when configured active-low, the
signal names are irq_n and fiq_n.

All interrupt status registers are always active-high, regardless of the polarity configured for the interrupt
sources and outputs.

2.4.2 FIQ Software-Programmable Interrupts

The DW_apb_ictl supports forcing interrupts from software. You force an interrupt to be active by writing
to the corresponding bit in the fiq_intforce register. The polarity of each bit in this register is the same as the
polarity of the corresponding interrupt source signal.

To configure the polarity of both the fiq_intsrc signal and the fiq_intforce register bits, set the corresponding
bits of the ICT_FIQSRC_POL_n parameter (n = ICT_FIQ_NUM–1). Setting one of these parameters to 1
configures the corresponding bit of fiq_intsrc and fiq_intforce to be active-high; setting one of these
parameters to 0 configures them to be active-low.

Regardless of the polarity you configure, the reset state of each bit in the fiq_intforce register is always
inactive.

fiq_intsrc[x]

fiq_intforce_<l/h>[x]

ICT_FIQSRC_x

fiq_inten_<l/h>[x]

fiq_intmask_<l/h>[x]

fiq_status_<l/h>[x]

fiq_rawstatus_<l/h>[x]

fiq_finalstatus_<l/h>[x]

fiq

fiq_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Functional Description

2.4.3 FIQ Enable and Masking

You can enable each interrupt source independently by writing a 1 to the corresponding bit of the fiq_inten
register. You can configure the reset state of this register by setting the ICT_FIQ_DFLT_EN parameter. If
you set a bit of the ICT_FIQ_DFLT_EN parameter to 1, the corresponding bit of the fiq_inten register is 1 on
reset, which enables the corresponding interrupt source.

You can mask each interrupt source independently by writing a 1 to the corresponding bit of the
fiq_intmask register. The reset value for each mask bit is 0; that is, unmasked.

2.4.4 FIQ Interrupt Status Registers

The DW_apb_ictl includes three status registers that you can use to query the current status of any FIQ
interrupt at various stages of the processing. For an illustration of the register values, see Figure 2-6. All of
the following status registers have the same polarity; a 1 indicates that an interrupt is active, a 0 indicates
inactive.

■ fiq_rawstatus – Contains the state of the interrupt sources after being adjusted for input polarity.
Each bit of this register is set to 1 if the corresponding interrupt source bit is active; it is set to 0 if it is
inactive.

■ fiq_status – Contains the state of all interrupts after the enabling stage; that is, an active-high bit
indicates that a particular interrupt source is active and enabled.

■ fiq_finalstatus – Contains the state of all interrupts after the masking; that is an active-high bit
indicates that a particular interrupt source is active, enabled, and unmasked.

2.5 Scan Mode
This input is an optional signal and is included only when vector generation is enabled. The scan_mode
input signal should be asserted high when scan testing is performed on the design. The DW_apb_ictl
includes shadow registers in a complicated combinational path so that when test_mode is asserted, the
output of these shadow registers is multiplexed into the data path to provide increased observability and
controllability of the logic in this path. This is illustrated in Figure 2-7.

Figure 2-7 Combinational Logic of Scan Mode Shadow Registers

4 1

0

64

0

32

32

4 4

4

scan_mode

Combinational
Logic

Combinational
Logic

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Functional Description DesignWare DW_apb_ictl Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

■ Top Level Parameters on page 30

■ Vector Port Interface on page 34

■ Priority Controller Configuration on page 35

■ Configuration of Vector Generation Module on page 36

■ Individual IRQ Polarity Configuration on page 37

■ Individual FIQ Polarity Configuration on page 38

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Parameter Descriptions DesignWare DW_apb_ictl Databook

3.1 Top Level Parameters

Table 3-1 Top Level Parameters

Label Description

 ICTL Source Code Configuration

Use DesignWare Foundation
Synthesis Library

Specifies whether the DesignWare Foundation Synthesis Library must be used. The
component code utilizes DesignWare Foundation parts for optimal Synthesis QoR.
Customers with only a DesignWare license must use Foundation parts. Customers
with only a Source license cannot use Foundation parts. Customers with both
Source and DesignWare licenses have the option of using Foundation parts.
Values:

■ false (0)

■ true (1)

Default Value: True if DesignWare License is available; False if no DesignWare
License is available
Enabled: Parameter is enabled if customer has both Source and DesignWare
licenses.
Parameter Name: USE_FOUNDATION

 System Configuration

APB Data bus width Specifies the APB system data bus width.
Values: 8, 16, 32
Default Value: 32
Enabled: Always
Parameter Name: APB_DATA_WIDTH

Make irq_intforce and
fiq_intforce active high?

When this parameter is set to 1, the irq_intforce and fiq_intforce register become
active-high. Writing a 1 to the corresponding interrupt source bit forces an interrupt
for that source, regardless of the interrupt sources' configured polarity.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: ICT_FORCEREG_ACTIVE_HIGH

Active-high Level for IRQ/FIQ
outputs?

When this parameter is set to 1, the polarity of the FIQ and IRQ interrupt output
signals is active-high. Both fast and normal interrupts are of the same polarity.
Values:

■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: ICT_INT_POL

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Parameter Descriptions

 IRQ Configuration

Install Priority Controller? When this parameter is set to 1, it allows interrupts that are assigned a priority level
to be compared against a system-level priority level. If the interrupt source has a
priority level that is greater than or equal to the system level, then it is not masked.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: ICT_HAS_PFLT

Be able to read back priorities? When this parameter is set to 1, the priority levels can be read. If set to 0, the priority
levels cannot be read.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: ICT_HAS_PFLT==1
Parameter Name: ICT_READ_PRIORITY

Hard-Coded Priorities? When this parameter is set to 1, the priority levels cannot be programmed. If set to
0, the priority levels can be programmed.
Values:
■ false (0)

■ true (1)

Default Value: true
Enabled: ICT_READ_PRIORITY==1 && ICT_HAS_PFLT==1
Parameter Name: ICT_HC_PRIORITIES

Install Vector Generation? Instantiates the interrupt vector generation circuitry and registers in the
DW_apb_ictl.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: ICT_HAS_PFLT==1
Parameter Name: ICT_HAS_VECTOR_USER

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Parameter Descriptions DesignWare DW_apb_ictl Databook

Include Default Vector Logic? Instantiates the irq_vector_default register and circuitry. When activated, the value
read from the irq_vector register, when no interrupts are pending, is the value in the
irq_vecter_default register.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: ICT_HAS_PFLT==1 && ICT_HAS_VECTOR_USER==1
Parameter Name: ICT_HAS_DEFAULT_VECTOR

Number of irq sources Defines the number of interrupt sources to generate.
Values: 2, ..., 64
Default Value: 32
Enabled: Always
Parameter Name: ICT_IRQ_NUM

IRQ Source Polarity Type Specifies the IRQ Source Polarity Type. You can use either the individual interrupt
polarities or override these to be all active high or all active low.
Values:

■ Individual (0)

■ All-Active-Low (1)

■ All-Active-High (2)

Default Value: Individual
Enabled: Always
Parameter Name: ICT_IRQSRC_POL_TYPE

Individual irq enables on reset Specifies the reset value of the IRQ interrupt source enable register (irq_inten). A
logic '1' in any bit position indicates that the interrupt source corresponding to that
bit is enabled on reset; a logic '0' indicates that it is not enabled on reset.
Values: 0x0 to 0xffffffffffffffff
Default Value: {multi} {ICT_IRQ_NUM} {0b0}
Enabled: Always
Parameter Name: ICT_IRQ_DFLT_EN

 FIQ Configuration

Install Fast Interrupt
Generation?

Instantiates the generation logic for fast interrupts.
Values:

■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: ICT_HAS_FIQ

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Parameter Descriptions

Number of fiq sources Defines the number of fast interrupt sources to generate. This parameter can be set
only if ICT_HAS_FIQ is set to True (1).
Values: 1, 2, 3, 4, 5, 6, 7, 8
Default Value: 4
Enabled: ICT_HAS_FIQ==1
Parameter Name: ICT_FIQ_NUM

FIQ Source Polarities Specifies the FIQ Source Polarity Type. You can use either the individual interrupt
polarities or override these to be all active high or all active low.
Values:

■ Individual (0)

■ All-Active-Low (1)

■ All-Active-High (2)

Default Value: Individual
Enabled: ICT_HAS_FIQ==1
Parameter Name: ICT_FIQSRC_POL_TYPE

Individual fiq enables on reset Specifies the reset state of the FIQ interrupt source enable register. A logic '1' in any
bit position indicates that the fast interrupt source corresponding to that bit is
enabled on reset; a logic '0' indicates that it is not enabled on reset.
Values: 0x0 to 0xff
Default Value: {multi} {ICT_FIQ_NUM} {0b0}
Enabled: ICT_HAS_FIQ==1
Parameter Name: ICT_FIQ_DFLT_EN

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Parameter Descriptions DesignWare DW_apb_ictl Databook

3.2 Vector Port Interface Parameters

Table 3-2 Vector Port Interface Parameters

Label Description

 Vector Port Configuration

Add Vector Port Interface ? Selects whether or not to include vector port signals and functionality in the interrupt
controller. The vector port allows a processor with similar functionality to sample the
IRQ vector address directly without performing an APB bus access, thereby
potentially improving interrupt service latency.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: ((ICT_HAS_PFLT==1)?ICT_HAS_VECTOR_USER:0)==1
Parameter Name: ICT_ADD_VECTOR_PORT

Add Vector Port Interface
Synchronisation ?

Adds a N-stage (where N = ICT_ADD_VECTOR_PORT_SYNC_DEPTH) pclk
synchronization on vector port signals coming from the processor (irq_ack). This
parameter is used when the processor clock and pclk are asynchronous.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: ICT_ADD_VECTOR_PORT==1
Parameter Name: ICT_ADD_VECTOR_PORT_SYNC

Number of synchronization
stages on vector port signal
coming from processor?

Selects the number of pclk synchronization stages on vector port signal.
Values: 2, 3, 4
Default Value: 2
Enabled: ICT_ADD_VECTOR_PORT_SYNC==1
Parameter Name: ICT_ADD_VECTOR_PORT_SYNC_DEPTH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Parameter Descriptions

3.3 Priority Controller Configuration Parameters

Table 3-3 Priority Controller Configuration Parameters

Label Description

 Priority Controller Configuration

System priority controller filter
level

Defines the default system priority controller filter level. This is the reset value of the
interrupt priority level filter register. Interrupts must have a priority greater than or
equal to this value to be propagated to the CPU. This value may always be
overwritten by the software and is required only when the priority filter is installed.
Values: 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe,
0xf
Default Value: 0x0
Enabled: ICT_HAS_PFLT==1
Parameter Name: ICT_IRQ_PLEVEL

Priority level of IRQ Source n
(for n = 0; n <= ICT_IRQ_NUM-
1)

This parameter sets the default priority level for each normal interrupt source. 0 is
the lowest priority.
Values: 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe,
0xf
Default Value: 0x0
Enabled: ICT_HAS_PFLT==1
Parameter Name: ICT_ISRC_PLEVEL_n

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Parameter Descriptions DesignWare DW_apb_ictl Databook

3.4 Configuration of Vector Generation Module Parameters

Table 3-4 Configuration of Vector Generation Module Parameters

Label Description

 Configuration of Vector n

Priority n vector
(for n = 0; n <=
ICT_IRQ_PLEVEL)

Specifies the vector for interrupts with a priority setting of n. The value must be less
than HADDR_WIDTH.
Values: 0x0, ..., 0xffffffff
Default Value: 0x0
Enabled: ICT_HAS_VECTOR_USER==1 && ICT_HAS_PFLT==1
Parameter Name: ICT_VECTOR_n

Hardcode Vector n
(for n = 0; n <=
ICT_IRQ_PLEVEL)

Specifies that the corresponding priority vector is hardcoded and the irq_vector_n
register is read only. If this parameter is set to False (0), the corresponding priority
vector is programmable and the corresponding irq_vector_n register is read/write.
Values: 0, 1
Default Value: 0
Enabled: ICT_HAS_VECTOR_USER==1 && ICT_HAS_PFLT==1
Parameter Name: ICT_HC_VECTOR_n

 Configuration of Default Vector

Default Priority vector Specifies the reset value for the irq_vector_default register.
Values: 0x0, ..., 0xffffffff
Default Value: 0x0
Enabled: ICT_HAS_DEFAULT_VECTOR==1 && ICT_HAS_PFLT==1
Parameter Name: ICT_VECTOR_DEFAULT

Hardcode Default Vector Specifies that the default priority vector (returned on a read from the irq_vector
register when no source IRQs are active) is hardcoded and the irq_vector_default
register is read only. If this parameter is set to False (0), the corresponding vector is
programmable and the corresponding irq_vector_default register is read/write.
Values: 0, 1
Default Value: 0
Enabled: ICT_HAS_DEFAULT_VECTOR==1 && ICT_HAS_PFLT==1
Parameter Name: ICT_HC_VECTOR_DEFAULT

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Parameter Descriptions

3.5 Individual IRQ Polarity Configuration Parameters

Table 3-5 Individual IRQ Polarity Configuration Parameters

Label Description

 Individual IRQ Polarity Configuration

Interrupt irq n Active High ?
(for n = 0; n <= ICT_IRQ_NUM-
1)

Sets the interrupt level of interrupt n to either active high (1) or active low (0).
Values: 0x0, 0x1
Default Value: True (1) if ICT_IRQSRC_POL_TYPE is not 1; that is, if it is not All-
active-low.
Enabled: ICT_IRQSRC_POL_TYPE == 0 && ICT_IRQ_NUM > 0
Parameter Name: ICT_IRQSRC_POL_n

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Parameter Descriptions DesignWare DW_apb_ictl Databook

3.6 Individual FIQ Polarity Configuration Parameters

Table 3-6 Individual FIQ Polarity Configuration Parameters

Label Description

 Individual FIQ Polarity Configuration

Interrupt n Active High ?
(for n = 0; n <= ICT_FIQ_NUM-
1)

Sets the interrupt level of interrupt n to either active high (1) or active low (0).
Values: 0x0, 0x1
Default Value: True (1) if ICT_FIQSRC_POL_TYPE is not 1; that is, if it is not All-
active-low.
Enabled: ICT_HAS_FIQ==1 && ICT_FIQSRC_POL_TYPE == 0 &&
ICT_FIQ_NUM > 0
Parameter Name: ICT_FIQSRC_POL_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the controller. For configurable IP titles, your actual
configuration might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
controller. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the inactive state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Signal Descriptions DesignWare DW_apb_ictl Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ APB Interface on page 41

■ Miscellaneous on page 43

■ Interrupt on page 44

■ Vector Interrupt and Handshake Signals on page 45

■ Interrupt Source on page 46

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Signal Descriptions

4.1 APB Interface Signals

pclk - - prdata
presetn -

psel -
paddr -
pwrite -

penable -
pwdata -

Table 4-1 APB Interface Signals

Port Name I/O Description

pclk I APB clock.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

presetn I APB interface domain reset. Asynchronous assertion, synchronous
de-assertion. The reset must be synchronously de-asserted after the
rising edge of pclk. DW_apb_ictl does not contain logic to perform
this synchronization, so it must be provided externally.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

psel I APB peripheral select.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

paddr[HADDR_REGFILE_SLICE_LHS:0
]

I APB address bus.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Signal Descriptions DesignWare DW_apb_ictl Databook

pwrite I APB write control.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

penable I APB enable control that indicates the second cycle of the APB frame.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pwdata[(APB_DATA_WIDTH-1):0] I APB write data bus.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

prdata[(APB_DATA_WIDTH-1):0] O APB read back data.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-1 APB Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Signal Descriptions

4.2 Miscellaneous Signals

scan_mode -
irq_ack -

Table 4-2 Miscellaneous Signals

Port Name I/O Description

scan_mode I Optional. Scan mode. This signal helps increase fault coverage in the
design. During scan testing, scan_mode must be asserted that is,
tied to logic 1. At all other times, this signal must be deasserted tied
to logic 0.
Exists: (ICT_HAS_PFLT==1)
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

irq_ack I Optional. Asserted by processor to acknowledge receipt of the IRQ.
Exists: (ICT_ADD_VECTOR_PORT==1)
Synchronous To: ICT_ADD_VECTOR_PORT_SYNC==0 ? "pclk" :
"Asynchronous"
Registered: ICT_ADD_VECTOR_PORT_SYNC==1 ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Signal Descriptions DesignWare DW_apb_ictl Databook

4.3 Interrupt Signals

- irq
- fiq
- irq_n
- fiq_n

Table 4-3 Interrupt Signals

Port Name I/O Description

irq O Optional. Active-high normal interrupt.
Exists: ICT_INT_POL==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

fiq O Optional. Active-high fast interrupt.
Exists: (ICT_INT_POL==1) && (ICT_HAS_FIQ==1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

irq_n O Optional. Active-low normal interrupt.
Exists: ICT_INT_POL==0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

fiq_n O Optional. Active-low fast interrupt.
Exists: (ICT_INT_POL==0) && (ICT_HAS_FIQ==1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Signal Descriptions

4.4 Vector Interrupt and Handshake Signals

- irq_addr
- irq_addr_v

Table 4-4 Vector Interrupt and Handshake Signals

Port Name I/O Description

irq_addr[(HADDR_WIDTH-1):0] O Optional. Address vector sampled by the processor during vector
port handshaking.
Exists: (ICT_ADD_VECTOR_PORT==1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

irq_addr_v O Optional. Asserted by DW_apb_ictl to inform processor that it may
sample irq_addr.
Exists: (ICT_ADD_VECTOR_PORT==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Signal Descriptions DesignWare DW_apb_ictl Databook

4.5 Interrupt Source Signals

fiq_intsrc -
irq_intsrc -

Table 4-5 Interrupt Source Signals

Port Name I/O Description

fiq_intsrc[(ICT_FIQ_NUM-1):0] I Interrupt source bus for fast interrupt generation.
Exists: ICT_HAS_FIQ==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

irq_intsrc[(ICT_IRQ_NUM-1):0] I Interrupt source bus for normal interrupt generation.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

5
Register Descriptions

This chapter details all possible registers in the controller. They are arranged hierarchically into maps and
blocks (banks). For configurable IP titles, your actual configuration might not contain all of these registers.

Attention: For configurable IP titles, do not use this document to determine the exact attributes of your
register map. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the register attributes for your actual
configuration at workspace/report/ComponentRegisters.html or
workspace/report/ComponentRegisters.xml after you have completed the report creation activity. That
report comes from the exact same source as this chapter but removes all the registers that are not in your
actual configuration. This does not apply to non-configurable IP titles. In addition, all parameter
expressions are evaluated to actual values. Therefore, the Offset and Memory Access values might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

Exists Expressions

These expressions indicate the combination of configuration parameters required for a register, field, or
block to exist in the memory map. The expression is only valid in the local context and does not indicate the
conditions for existence of the parent. For example, the expression for a bit field in a register assumes that
the register exists and does not include the conditions for existence of the register.

Offset

The term Offset is synonymous with Address.

Memory Access Attributes

The Memory Access attribute is defined as <ReadBehavior>/<WriteBehavior> which are defined in the
following table.

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

Special Optional Attributes

Some register fields might use the following optional attributes.

Table 5-1 Possible Read and Write Behaviors

Read (or Write) Behavior Description

RC A read clears this register field.

RS A read sets this register field.

RM A read modifies the contents of this register field.

Wo You can only write to this register once field.

W1C A write of 1 clears this register field.

W1S A write of 1 sets this register field.

W1T A write of 1 toggles this register field.

W0C A write of 0 clears this register field.

W0S A write of 0 sets this register field.

W0T A write of 0 toggles this register field.

WC Any write clears this register field.

WS Any write sets this register field.

WM Any write toggles this register field.

no Read Behavior attribute You cannot read this register. It is Write-Only.

no Write Behavior attribute You cannot write to this register. It is Read-Only.

Table 5-2 Memory Access Examples

Memory Access Description

R Read-only register field.

W Write-only register field.

R/W Read/write register field.

R/W1C You can read this register field. Writing 1 clears it.

RC/W1C Reading this register field clears it. Writing 1 clears it.

R/Wo You can read this register field. You can only write to it once.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

Component Banks/Blocks

The following table shows the address blocks for each memory map. Follow the link for an address block to
see a table of its registers.

Table 5-3 Optional Attributes

Attribute Description

Volatile As defined by the IP-XACT specification. If true, indicates in the
case of a write followed by read, or in the case of two consecutive
reads, there is no guarantee as to what is returned by the read on
the second transaction or that this return value is consistent with the
write or read of the first transaction. The element implies there is
some additional mechanism by which this field can acquire new
values other than by reads/writes/resets and other access methods
known to IP-XACT. For example, when the core updates the register
field contents.

Testable As defined by the IP-XACT specification. Possible values are
unconstrained, untestable, readOnly, writeAsRead, restore.
Untestable means that this field is untestable by a simple automated
register test. For example, the read-write access of the register is
controlled by a pin or another register. readOnly means that you
should not write to this register; only read from it. This might apply
for a register that modifies the contents of another register.

Reset Mask As defined by the IP-XACT specification. Indicates that this register
field has an unknown reset value. For example, the reset value is set
by another register or an input pin; or the register is implemented
using RAM.

* Varies Indicates that the memory access (or reset) attribute (read, write
behavior) is not fixed. For example, the read-write access of the
register is controlled by a pin or another register. Or when the
access depends on some configuration parameter; in this case the
post-configuration report in coreConsultant gives the actual access
value.

Table 5-4 Address Banks/Blocks for Memory Map: DW_apb_ictl_mem_map

Address Block Description

DW_apb_ictl_addr_block1 on page 50 DW_apb_ictl address block
Exists: Always

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1 DW_apb_ictl_mem_map/DW_apb_ictl_addr_block1 Registers
DW_apb_ictl address block. Follow the link for the register to see a detailed description of the register.

Table 5-5 Registers for Address Block: DW_apb_ictl_mem_map/DW_apb_ictl_addr_block1

Register Offset Description

IRQ_INTEN_L on page 52 0x0 This register specifies the interrupt enable bits for lower 32
interrupt sources.

IRQ_INTEN_H on page 53 0x4 This register enables the upper 32 interrupt sources.

IRQ_INTMASK_L on page 54 0x8 This register masks the lower 32 interrupt sources.

IRQ_INTMASK_H on page 55 0xc This register masks the upper 32 interrupt sources.

IRQ_INTFORCE_L on page 56 0x10 This register specifies the interrupt force bits for the lower 32
interrupt sources.

IRQ_INTFORCE_H on page 58 0x14 This register specifies the interrupt force bits for the upper 32
interrupt sources.

IRQ_RAWSTATUS_L on page 60 0x18 This register specifies the raw status of lower 32 interrupt
sources.

IRQ_RAWSTATUS_H on page 62 0x1c This register specifies the raw status of the upper 32
interrupt sources.

IRQ_STATUS_L on page 63 0x20 This register specifies the interrupt Status of the lower 32
interrupt sources.

IRQ_STATUS_H on page 64 0x24 This register specifies the interrupt status of the upper 32
interrupt sources.

IRQ_MASKSTATUS_L on page 65 0x28 This register specifies the interrupt mask status of the lower
32 interrupt sources.

IRQ_MASKSTATUS_H on page 67 0x2c This register specifies the interrupt mask status of the upper
32 interrupt sources.

IRQ_FINALSTATUS_L on page 68 0x30 This register specifies the interrupt final status of the lower
32 interrupt sources.

IRQ_FINALSTATUS_H on page 70 0x34 This register specifies the interrupt final status of the upper
32 interrupt sources.

IRQ_VECTOR on page 72 0x38 This register specifies the interrupt vector of the highest
pending interrupt.

IRQ_VECTOR_n
(for n = 0; n <= ICT_IRQ_PLEVEL) on
page 73

0x40 +
8*n

This register specifies the Interrupt Vector (Priority Level n).

FIQ_INTEN on page 74 0xc0 This register specifies the bits to enable the fast interrupt.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

FIQ_INTMASK on page 75 0xc4 This register specifies the bit to mask an interrupt.

FIQ_INTFORCE on page 76 0xc8 This register specifies the fast interrupt force bits.

FIQ_RAWSTATUS on page 77 0xcc This register specifies the fast interrupt source raw status.

FIQ_STATUS on page 78 0xd0 This register specifies the fast interrupt status.

FIQ_FINALSTATUS on page 79 0xd4 This register specifies the fast interrupt final status.

IRQ_PLEVEL on page 80 0xd8 This register specifies the IRQ system priority level.

IRQ_INTERNAL_PLEVEL on page 81 0xdc This register specifies the internal IRQ system priority level.

ICTL_VERSION_ID on page 83 0xe0 This register specifies the component version.

IRQ_PR_n
(for n = 0; n <= ICT_IRQ_NUM-1) on
page 84

0xe8 +
4*n

This register specifies the IRQ Individual Interrupt n Priority
Level.

IRQ_VECTOR_DEFAULT on page 85 0x1e8 This register specifies the default interrupt vector register.

Table 5-5 Registers for Address Block: DW_apb_ictl_mem_map/DW_apb_ictl_addr_block1 (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.1 IRQ_INTEN_L

■ Name: Interrupt Source Enable (Low) Register

■ Description: This register specifies the interrupt enable bits for lower 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x0

■ Exists: Always

31
:y

x:
0

R
S

V
D

_I
R

Q
_I

N
T

E
N

_L

IR
Q

_I
N

T
E

N
_L

Table 5-6 Fields for Register: IRQ_INTEN_L

Bits Name
Memory
Access Description

31:y RSVD_IRQ_INTEN_L R IRQ_INTEN_L 31toICT_IRQ_NUM Reserved bits - Read
Only.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: ICT_IRQ_NUM

x:0 IRQ_INTEN_L R/W These bits specify the interrupt enable bits for lower 32
interrupt sources. A 1 in any bit position enables the
corresponding interrupt.
Values:

■ 0x0 (DISABLED): Interrupt disabled

■ 0x1 (ENABLED): Interrupt enabled

Value After Reset: The corresponding bits of the
ICT_IRQ_DFLT_EN configuration parameter.
Exists: Always
Range Variable[x]: "(ICT_IRQ_NUM > 32) ? 32 :
ICT_IRQ_NUM" - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.2 IRQ_INTEN_H

■ Name: Interrupt Source Enable (High) Register

■ Description: This register enables the upper 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x4

■ Exists: ICT_IRQ_NUM > 32

x:
y

x:
0

R
S

V
D

_I
R

Q
_I

N
T

E
N

_H

IR
Q

_I
N

T
E

N
_H

Table 5-7 Fields for Register: IRQ_INTEN_H

Bits Name
Memory
Access Description

x:y RSVD_IRQ_INTEN_H R IRQ_INTEN_H 31toICT_IRQ_NUM-32 Reserved bits - Read
Only.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: "32-(ICT_IRQ_NUM-32)" +
(ICT_IRQ_NUM-32) - 1
Range Variable[y]: ICT_IRQ_NUM - 32

x:0 IRQ_INTEN_H R/W These bits specify the interrupt enable bit for upper 32
interrupt sources. A 1 in any bit position enables the
corresponding interrupt. If there are less than 32 interrupt
sources, this address location and register do not exist for a
write or a read. By default, all bits enabled.
Value After Reset: The corresponding bits of the
ICT_IRQ_DFLT_EN configuration parameter.
Exists: (ICT_IRQ_NUM>32) ? 1 : 0
Range Variable[x]: (ICT_IRQ_NUM-32) - 1

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.3 IRQ_INTMASK_L

■ Name: Interrupt Source Mask (Low) Register

■ Description: This register masks the lower 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x8

■ Exists: Always

31
:y

x:
0

R
S

V
D

_I
R

Q
_I

N
T

M
A

S
K

_L

IR
Q

_I
N

T
M

A
S

K
_L

Table 5-8 Fields for Register: IRQ_INTMASK_L

Bits Name
Memory
Access Description

31:y RSVD_IRQ_INTMASK_L R IRQ_INTMASK_L 31toICT_IRQ_NUM Reserved bits - Read
Only.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: ICT_IRQ_NUM

x:0 IRQ_INTMASK_L R/W These bits specify the interrupt mask bits for the lower 32
interrupt sources. A 1 in any bit position masks (disables) the
corresponding interrupt. By default, all bits are unmasked.
Values:

■ 0x0 (UNMASK): Unmasks the interrupts

■ 0x1 (MASK): Masks the interrupt

Value After Reset: 0x0
Exists: Always
Range Variable[x]: "(ICT_IRQ_NUM > 32) ? 32 :
ICT_IRQ_NUM" - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.4 IRQ_INTMASK_H

■ Name: Interrupt Source Mask (High) Register

■ Description: This register masks the upper 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0xc

■ Exists: ICT_IRQ_NUM > 32

x:
y

x:
0

R
S

V
D

_I
R

Q
_I

N
T

M
A

S
K

_H

IR
Q

_I
N

T
M

A
S

K
_H

Table 5-9 Fields for Register: IRQ_INTMASK_H

Bits Name
Memory
Access Description

x:y RSVD_IRQ_INTMASK_H R IRQ_INTMASK_H 31toICT_IRQ_NUM-32 Reserved bits -
Read Only.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: "32-(ICT_IRQ_NUM-32)" +
(ICT_IRQ_NUM-32) - 1
Range Variable[y]: ICT_IRQ_NUM - 32

x:0 IRQ_INTMASK_H R/W These bits specify the interrupt mask bits for the upper 32
interrupt sources. If there are less than 32 interrupt sources,
this address location does not exist for a write or a read. By
default, all bits are unmasked.
Value After Reset: 0x0
Exists: (ICT_IRQ_NUM>32) ? 1 : 0
Range Variable[x]: (ICT_IRQ_NUM-32) - 1

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.5 IRQ_INTFORCE_L

■ Name: Interrupt Force (Low) Register

■ Description: This register specifies the interrupt force bits for the lower 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x10

■ Exists: Always

31
:y

x:
0

R
S

V
D

_I
R

Q
_I

N
T

F
O

R
C

E
_L

IR
Q

_I
N

T
F

O
R

C
E

_L

Table 5-10 Fields for Register: IRQ_INTFORCE_L

Bits Name
Memory
Access Description

31:y RSVD_IRQ_INTFORCE_L R IRQ_INTFORCE_L 31toICT_IRQ_NUM Reserved bits -
Read Only.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: ICT_IRQ_NUM

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

x:0 IRQ_INTFORCE_L R/W These bits specify the interrupt force bits for the lower 32
interrupt sources. Each bit corresponds to one bit of the
irq_intsrc input. The polarity of the bits in the register
correspond to the polarity of the associated irq_intsrc input.
If the interrupt input is configured to be active-high, the
corresponding bit in the register is also active-high.
Values:

■ 0x0 (ACTIVE_LOW): Active low polarity

■ 0x1 (ACTIVE_HIGH): Active high polarity

Value After Reset: The reset state of the force bits is always
inactive. It is derived by the configuration parameter
ICT_IRQSRC_POL or ICT_FORCEREG_ACTIVE_HIGH.
Exists: Always
Range Variable[x]: "(ICT_IRQ_NUM > 32) ? 32 :
ICT_IRQ_NUM" - 1

Table 5-10 Fields for Register: IRQ_INTFORCE_L (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.6 IRQ_INTFORCE_H

■ Name: Interrupt Force (High) Register

■ Description: This register specifies the interrupt force bits for the upper 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x14

■ Exists: ICT_IRQ_NUM > 32

x:
y

x:
0

R
S

V
D

_I
R

Q
_I

N
T

F
O

R
C

E
_H

IR
Q

_I
N

T
F

O
R

C
E

_H

Table 5-11 Fields for Register: IRQ_INTFORCE_H

Bits Name
Memory
Access Description

x:y RSVD_IRQ_INTFORCE_H R IRQ_INTFORCE_H 31toICT_IRQ_NUM-32 Reserved bits -
Read Only.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: "32-(ICT_IRQ_NUM-32)" +
"(ICT_IRQ_NUM - 32)" - 1
Range Variable[y]: "(ICT_IRQ_NUM - 32)"

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

x:0 IRQ_INTFORCE_H R/W These bits specify the interrupt force bits for the upper 32
interrupt sources. Each bit in this register corresponds to one
bit of the irq_intsrc input. The polarity of the bits in the
register correspond to the polarity of the associated
irq_intsrc input. If the interrupt input is configured to be
active-high, the corresponding bit in the register is also
active-high. The reset state of the force bits is always
inactive.
Value After Reset: The reset state of the force bits is always
inactive. It is derived by the configuration parameter
ICT_IRQSRC_POL or ICT_FORCEREG_ACTIVE_HIGH.
Exists: (ICT_IRQ_NUM>32) ? 1 : 0
Range Variable[x]: "(ICT_IRQ_NUM-32)" - 1

Table 5-11 Fields for Register: IRQ_INTFORCE_H (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.7 IRQ_RAWSTATUS_L

■ Name: Interrupt Raw Status (Low) Register

■ Description: This register specifies the raw status of lower 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x18

■ Exists: Always

31
:y

x:
0

R
S

V
D

_I
R

Q
_R

A
W

S
T

A
T

U
S

_L

IR
Q

_R
A

W
S

T
A

T
U

S
_L

Table 5-12 Fields for Register: IRQ_RAWSTATUS_L

Bits Name
Memory
Access Description

31:y RSVD_IRQ_RAWSTATUS_L R IRQ_RAWSTATUS_L 31toICT_IRQ_NUM Reserved bits -
Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: ICT_IRQ_NUM

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

x:0 IRQ_RAWSTATUS_L R These bits specify the actual interrupt source. These are the
lower 32 interrupt sources.
Values:

■ 0x0 (INACTIVE): Inactive Raw Interrupt Status

■ 0x1 (ACTIVE): Active Raw Interrupt Status

Value After Reset: IRQ_RAWSTATUS_L - Dependent on
setting of corresponding interrupt source bit.
Exists: Always
Volatile: true
Range Variable[x]: "(ICT_IRQ_NUM > 32) ? 32 :
ICT_IRQ_NUM" - 1

Table 5-12 Fields for Register: IRQ_RAWSTATUS_L (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.8 IRQ_RAWSTATUS_H

■ Name: Interrupt Raw Status (High) Register

■ Description: This register specifies the raw status of the upper 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x1c

■ Exists: ICT_IRQ_NUM > 32

x:
y

x:
0

R
S

V
D

_I
R

Q
_R

A
W

S
T

A
T

U
S

_H

IR
Q

_R
A

W
S

T
A

T
U

S
_H

Table 5-13 Fields for Register: IRQ_RAWSTATUS_H

Bits Name
Memory
Access Description

x:y RSVD_IRQ_RAWSTATUS_H R IRQ_RAWSTATUS_H 31toICT_IRQ_NUM-32 Reserved bits
- Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: "32-(ICT_IRQ_NUM-32)" +
"(ICT_IRQ_NUM - 32)" - 1
Range Variable[y]: "(ICT_IRQ_NUM - 32)"

x:0 IRQ_RAWSTATUS_H R These bits specify the actual interrupt source. These are the
upper 32 interrupt sources. If there are less than 32 interrupt
sources, this address location does not exist for a read.
Value After Reset: IRQ_RAWSTATUS_H - Dependent on
setting of corresponding interrupt source bit.
Exists: (ICT_IRQ_NUM>32) ? 1 : 0
Volatile: true
Range Variable[x]: "(ICT_IRQ_NUM-32)" - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.9 IRQ_STATUS_L

■ Name: Interrupt Status (Low) Register

■ Description: This register specifies the interrupt Status of the lower 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x20

■ Exists: Always

31
:y

x:
0

R
S

V
D

_I
R

Q
_S

T
A

T
U

S
_L

IR
Q

_S
T

A
T

U
S

_L

Table 5-14 Fields for Register: IRQ_STATUS_L

Bits Name
Memory
Access Description

31:y RSVD_IRQ_STATUS_L R IRQ_STATUS_L 31toICT_IRQ_NUM Reserved bits - Read
Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: ICT_IRQ_NUM

x:0 IRQ_STATUS_L R These bits specify the interrupt status after the forcing and
interrupt enabling stage. These are the interrupt status
signals for the lower 32 interrupt sources.
Values:

■ 0x0 (INACTIVE): Inactive interrupt status

■ 0x1 (ACTIVE): Active interrupt status

Value After Reset: IRQ_STATUS_L - Dependent on setting
of corresponding interrupt source bit.
Exists: Always
Volatile: true
Range Variable[x]: "(ICT_IRQ_NUM > 32) ? 32 :
ICT_IRQ_NUM" - 1

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.10 IRQ_STATUS_H

■ Name: Interrupt Status (High) Register

■ Description: This register specifies the interrupt status of the upper 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x24

■ Exists: ICT_IRQ_NUM > 32

x:
y

x:
0

R
S

V
D

_I
R

Q
_S

T
A

T
U

S
_H

IR
Q

_S
T

A
T

U
S

_H

Table 5-15 Fields for Register: IRQ_STATUS_H

Bits Name
Memory
Access Description

x:y RSVD_IRQ_STATUS_H R IRQ_STATUS_H 31toICT_IRQ_NUM-32 Reserved bits -
Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: "32-(ICT_IRQ_NUM-32)" +
"(ICT_IRQ_NUM - 32)" - 1
Range Variable[y]: "(ICT_IRQ_NUM - 32)"

x:0 IRQ_STATUS_H R These bits specify the interrupt status after the forcing and
interrupt enabling stage. These are the interrupt status
signals for the upper 32 interrupt sources. If there are less
than 32 interrupt sources, this address location does not
exist for a write or a read.
Value After Reset: IRQ_STATUS_H - Dependent on setting
of corresponding interrupt source bit.
Exists: (ICT_IRQ_NUM>32) ? 1 : 0
Volatile: true
Range Variable[x]: "(ICT_IRQ_NUM-32)" - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.11 IRQ_MASKSTATUS_L

■ Name: Interrupt Mask Status (Low) Register

■ Description: This register specifies the interrupt mask status of the lower 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x28

■ Exists: Always

31
:y

x:
0

R
S

V
D

_I
R

Q
_M

A
S

K
S

T
A

T
U

S
_L

IR
Q

_M
A

S
K

S
T

A
T

U
S

_L

Table 5-16 Fields for Register: IRQ_MASKSTATUS_L

Bits Name
Memory
Access Description

31:y RSVD_IRQ_MASKSTATUS_L R IRQ_MASKSTATUS_L 31toICT_IRQ_NUM Reserved bits -
Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: ICT_IRQ_NUM

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

x:0 IRQ_MASKSTATUS_L R These bits specify the interrupt status after the masking
stage. These are the interrupt status signals for the lower 32
interrupt sources.
Values:

■ 0x0 (INACTIVE): Inactive interrupt mask status

■ 0x1 (ACTIVE): Active interrupt mask status

Value After Reset: IRQ_MASKSTATUS_L - Dependent on
setting of corresponding interrupt source bit.
Exists: Always
Volatile: true
Range Variable[x]: "(ICT_IRQ_NUM > 32) ? 32 :
ICT_IRQ_NUM" - 1

Table 5-16 Fields for Register: IRQ_MASKSTATUS_L (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.12 IRQ_MASKSTATUS_H

■ Name: Interrupt Mask Status (High) Register

■ Description: This register specifies the interrupt mask status of the upper 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x2c

■ Exists: ICT_IRQ_NUM > 32

x:
y

x:
0

R
S

V
D

_I
R

Q
_M

A
S

K
S

T
A

T
U

S
_H

IR
Q

_M
A

S
K

S
T

A
T

U
S

_H

Table 5-17 Fields for Register: IRQ_MASKSTATUS_H

Bits Name
Memory
Access Description

x:y RSVD_IRQ_MASKSTATUS_H R IRQ_MASKSTATUS_H 31toICT_IRQ_NUM-32 Reserved
bits - Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: "32-(ICT_IRQ_NUM-32)" +
"(ICT_IRQ_NUM - 32)" - 1
Range Variable[y]: "(ICT_IRQ_NUM - 32)"

x:0 IRQ_MASKSTATUS_H R These bits specify the interrupt status after the masking
stage. These are the interrupt status signals for the upper 32
interrupt sources. If there are less than 32 interrupt sources,
this address location does not exist for a write or a read.
Value After Reset: IRQ_MASKSTATUS_H - Dependent on
setting of corresponding interrupt source bit.
Exists: (ICT_IRQ_NUM>32) ? 1 : 0
Volatile: true
Range Variable[x]: "(ICT_IRQ_NUM-32)" - 1

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.13 IRQ_FINALSTATUS_L

■ Name: Interrupt Final Status (Low) Register

■ Description: This register specifies the interrupt final status of the lower 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x30

■ Exists: Always

31
:y

x:
0

R
S

V
D

_I
R

Q
_F

IN
A

LS
T

A
T

U
S

_L

IR
Q

_F
IN

A
LS

T
A

T
U

S
_L

Table 5-18 Fields for Register: IRQ_FINALSTATUS_L

Bits Name
Memory
Access Description

31:y RSVD_IRQ_FINALSTATUS_L R IRQ_FINALSTATUS_L 31toICT_IRQ_NUM Reserved bits -
Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: ICT_IRQ_NUM

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

x:0 IRQ_FINALSTATUS_L R These bits specify the interrupt status after the priority level
filtering stage. These are the interrupt status signals for the
lower 32 interrupt sources. If there is no priority interrupt
scheme configured, then this location contains the same
value as irq_maskstatus_l.
Values:

■ 0x0 (INACTIVE): Inactive interrupt final status

■ 0x1 (ACTIVE): Active interrupt final status

Value After Reset: IRQ_FINALSTATUS_L - Dependent on
setting of corresponding interrupt source bit.
Exists: Always
Volatile: true
Range Variable[x]: "(ICT_IRQ_NUM > 32) ? 32 :
ICT_IRQ_NUM" - 1

Table 5-18 Fields for Register: IRQ_FINALSTATUS_L (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.14 IRQ_FINALSTATUS_H

■ Name: Interrupt Final Status (High) Register

■ Description: This register specifies the interrupt final status of the upper 32 interrupt sources.

■ Size: 32 bits

■ Offset: 0x34

■ Exists: ICT_IRQ_NUM > 32

x:
y

x:
0

R
S

V
D

_I
R

Q
_F

IN
A

LS
T

A
T

U
S

_H

IR
Q

_F
IN

A
LS

T
A

T
U

S
_H

Table 5-19 Fields for Register: IRQ_FINALSTATUS_H

Bits Name
Memory
Access Description

x:y RSVD_IRQ_FINALSTATUS_H R IRQ_FINALSTATUS_H 31toICT_IRQ_NUM-32 Reserved
bits - Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: "32-(ICT_IRQ_NUM-32)" +
"(ICT_IRQ_NUM - 32)" - 1
Range Variable[y]: "(ICT_IRQ_NUM - 32)"

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

x:0 IRQ_FINALSTATUS_H R These bits specify the interrupt status after the priority level
filtering stage. These are the interrupt status signals for the
upper 32 interrupt sources. If there are less than 32 interrupt
sources, this location does not exist. If there is no priority
interrupt scheme, this location contains the same value as
irq_maskstatus_h.
Value After Reset: IRQ_FINALSTATUS_H - Dependent on
setting of corresponding interrupt source bit.
Exists: (ICT_IRQ_NUM>32) ? 1 : 0
Volatile: true
Range Variable[x]: "(ICT_IRQ_NUM-32)" - 1

Table 5-19 Fields for Register: IRQ_FINALSTATUS_H (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.15 IRQ_VECTOR

■ Name: IRQ Vector Register

■ Description: This register specifies the interrupt vector of the highest pending interrupt.

■ Size: 32 bits

■ Offset: 0x38

■ Exists: Always

31
:0

IR
Q

_V
E

C
T

O
R

Table 5-20 Fields for Register: IRQ_VECTOR

Bits Name
Memory
Access Description

31:0 IRQ_VECTOR R This location can be read when an interrupt occurs, and the
provided vectored interrupts are supported. This register
field returns one of the 16 vectors. The returned vector
corresponds to the highest priority level interrupt.
When no final status interrupts are active, the read value
depends on the ICT_HAS_DEFAULT_VECTOR
configuration parameter:

■ ICT_HAS_DEFAULT_VECTOR = 1: Contains the vector
value in the irq_vector_default register location.

■ ICT_HAS_DEFAULT_VECTOR = 0: Contains the vector
value corresponding to the priority programmed into the
irq_plevel register.

This register returns 0 when ICT_HAS_VECTOR = 0. This
register is read coherent, allowing the register to be read,
regardless of the data bus width.
Value After Reset: If ICT_HAS_VECTOR = 0, resets to 0
else, if ICT_HAS_DEFAULT_VECTOR = 1, resets to
ICT_VECTOR_DEFAULT or resets to ICT_VECTOR_n;
where n = ICT_IRQ_PLEVEL.
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.16 IRQ_VECTOR_n (for n = 0; n <= ICT_IRQ_PLEVEL)

■ Name: Interrupt Vector (Priority Level 0) Register

■ Description: This register specifies the Interrupt Vector (Priority Level n).

■ Size: 32 bits

■ Offset: 0x40 + 8*n

■ Exists: ((ICT_HAS_PFLT==1)?ICT_HAS_VECTOR_USER:0)==1

31
:0

IR
Q

_V
E

C
T

O
R

_n

Table 5-21 Fields for Register: IRQ_VECTOR_n (for n = 0; n <= ICT_IRQ_PLEVEL)

Bits Name
Memory
Access Description

31:0 IRQ_VECTOR_n (ICT_HC
_VECTO
R_n==0)
? read-
write :
read-only

These bits specify the interrupt vector for priority level 0. This
register does not exist when ICT_HAS_VECTOR = 0.
Value After Reset: If ICT_HC_VECTOR_n is set to 1, this is
a read-only register and the interrupt vector is set by
ICT_VECTOR_n. If ICT_HC_VECTOR_n is set to 0, this is a
read/write register used to program the interrupt vector; the
reset value is determined by ICT_VECTOR_n.
Exists: Always

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.17 FIQ_INTEN

■ Name: Fast Interrupt Enable Register

■ Description: This register specifies the bits to enable the fast interrupt.

■ Size: 32 bits

■ Offset: 0xc0

■ Exists: ICT_HAS_FIQ==1

31
:y

x:
0

R
S

V
D

_F
IQ

_I
N

T
E

N

F
IQ

_I
N

T
E

N

Table 5-22 Fields for Register: FIQ_INTEN

Bits Name
Memory
Access Description

31:y RSVD_FIQ_INTEN R FIQ_INTEN 31toICT_FIQ_NUM Reserved bits - Read Only.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: ICT_FIQ_NUM

x:0 FIQ_INTEN R/W These bits specify the fast interrupt enable bits. A 1 in any bit
position enables the corresponding interrupt.
Values:

■ 0x0 (DISABLED): Fast interrupt disabled

■ 0x1 (ENABLED): Fast interrupt enabled

Value After Reset: ICT_FIQ_DFLT_EN
Exists: (ICT_HAS_FIQ==1) ? 1 : 0
Range Variable[x]: ICT_FIQ_NUM - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.18 FIQ_INTMASK

■ Name: Fast Interrupt Mask Register

■ Description: This register specifies the bit to mask an interrupt.

■ Size: 32 bits

■ Offset: 0xc4

■ Exists: ICT_HAS_FIQ==1

31
:y

x:
0

R
S

V
D

_F
IQ

_I
N

T
M

A
S

K

F
IQ

_I
N

T
M

A
S

K

Table 5-23 Fields for Register: FIQ_INTMASK

Bits Name
Memory
Access Description

31:y RSVD_FIQ_INTMASK R FIQ_INTMASK 31toICT_FIQ_NUM Reserved bits - Read
Only.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: ICT_FIQ_NUM

x:0 FIQ_INTMASK R/W These bits specify the fast interrupt mask bits. A 1 in any bit
position masks the corresponding interrupt.
Values:
■ 0x0 (UNMASK): Unmasks the interrupts

■ 0x1 (MASK): Masks the interrupts

Value After Reset: 0x0
Exists: (ICT_HAS_FIQ==1) ? 1 : 0
Range Variable[x]: ICT_FIQ_NUM - 1

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.19 FIQ_INTFORCE

■ Name: Fast Interrupt Force Register

■ Description: This register specifies the fast interrupt force bits.

■ Size: 32 bits

■ Offset: 0xc8

■ Exists: ICT_HAS_FIQ==1

31
:y

x:
0

R
S

V
D

_F
IQ

_I
N

T
F

O
R

C
E

F
IQ

_I
N

T
F

O
R

C
E

Table 5-24 Fields for Register: FIQ_INTFORCE

Bits Name
Memory
Access Description

31:y RSVD_FIQ_INTFORCE R FIQ_INTFORCE 31toICT_FIQ_NUM Reserved bits - Read
Only.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: ICT_FIQ_NUM

x:0 FIQ_INTFORCE R/W These bits specify the fast interrupt force bits. Each bit in this
register corresponds to one bit of the irq_intsrc input. The
polarity of the bits in the register corresponds to the polarity
of the associated fiq_intsrc input. If the interrupt input is
configured to be active-high, the corresponding bit in the
register is also active-high.
Values:

■ 0x0 (ACTIVE_LOW): Active low interrupts

■ 0x1 (ACTIVE_HIGH): Active high interrupts

Value After Reset: The reset state of the force bits is always
inactive. It is derived by the configuration parameter
ICT_FORCEREG_ACTIVE_HIGH.
Exists: (ICT_HAS_FIQ==1) ? 1 : 0
Range Variable[x]: ICT_FIQ_NUM - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.20 FIQ_RAWSTATUS

■ Name: Fast Interrupt Source Raw Status Register

■ Description: This register specifies the fast interrupt source raw status.

■ Size: 32 bits

■ Offset: 0xcc

■ Exists: ICT_HAS_FIQ==1

31
:y

x:
0

R
S

V
D

_F
IQ

_R
A

W
S

T
A

T
U

S

F
IQ

_R
A

W
S

T
A

T
U

S

Table 5-25 Fields for Register: FIQ_RAWSTATUS

Bits Name
Memory
Access Description

31:y RSVD_FIQ_RAWSTATUS R FIQ_RAWSTATUS 31toICT_FIQ_NUM Reserved bits - Read
Only.
Value After Reset: 0x0
Exists: Always
Range Variable[y]: ICT_FIQ_NUM

x:0 FIQ_RAWSTATUS R These bits specify the fast interrupt source raw input status.
Values:

■ 0x0 (INACTIVE): Inactive raw interrupt status

■ 0x1 (ACTIVE): Active raw interrupt status

Value After Reset: FIQ_RAWSTATUS - Dependent on
setting of corresponding interrupt source bit.
Exists: (ICT_HAS_FIQ==1) ? 1 : 0
Range Variable[x]: ICT_FIQ_NUM - 1

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.21 FIQ_STATUS

■ Name: Fast Interrupt Status Register

■ Description: This register specifies the fast interrupt status.

■ Size: 32 bits

■ Offset: 0xd0

■ Exists: ICT_HAS_FIQ==1

31
:y

x:
0

R
S

V
D

_F
IQ

_S
T

A
T

U
S

F
IQ

_S
T

A
T

U
S

Table 5-26 Fields for Register: FIQ_STATUS

Bits Name
Memory
Access Description

31:y RSVD_FIQ_STATUS R FIQ_STATUS 31toICT_FIQ_NUM Reserved bits - Read
Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: ICT_FIQ_NUM

x:0 FIQ_STATUS R These bits specify the fast interrupt status after the forcing
and interrupt enabling stage.
Values:
■ 0x0 (INACTIVE): Fast interrupt status is inactive

■ 0x1 (ACTIVE): Fast interrupt status is active

Value After Reset: FIQ_STATUS - Dependent on setting of
corresponding interrupt source bit.
Exists: (ICT_HAS_FIQ==1) ? 1 : 0
Volatile: true
Range Variable[x]: ICT_FIQ_NUM - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.22 FIQ_FINALSTATUS

■ Name: Fast Interrupt Final Status Register

■ Description: This register specifies the fast interrupt final status.

■ Size: 32 bits

■ Offset: 0xd4

■ Exists: ICT_HAS_FIQ==1

31
:y

x:
0

R
S

V
D

_F
IQ

_F
IN

A
LS

T
A

T
U

S

F
IQ

_F
IN

A
LS

T
A

T
U

S

Table 5-27 Fields for Register: FIQ_FINALSTATUS

Bits Name
Memory
Access Description

31:y RSVD_FIQ_FINALSTATUS R FIQ_FINALSTATUS 31toICT_FIQ_NUM Reserved bits -
Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: ICT_FIQ_NUM

x:0 FIQ_FINALSTATUS R These bits specify the fast interrupt status after the masking
stage.
Values:

■ 0x0 (INACTIVE): Fast interrupt final status is inactive

■ 0x1 (ACTIVE): Fast interrupt final status is active

Value After Reset: FIQ_FINALSTATUS - Dependent on
setting of corresponding interrupt source bit.
Exists: (ICT_HAS_FIQ==1) ? 1 : 0
Volatile: true
Range Variable[x]: ICT_FIQ_NUM - 1

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.23 IRQ_PLEVEL

■ Name: IRQ System Priority Level Register

■ Description: This register specifies the IRQ system priority level.

■ Size: 32 bits

■ Offset: 0xd8

■ Exists: Always

31
:4

3:
0

R
S

V
D

_I
R

Q
_P

LE
V

E
L

IR
Q

_P
LE

V
E

L

Table 5-28 Fields for Register: IRQ_PLEVEL

Bits Name
Memory
Access Description

31:4 RSVD_IRQ_PLEVEL R IRQ_PLEVEL 31to4 Reserved bits - Read Only.
Value After Reset: 0x0
Exists: Always

3:0 IRQ_PLEVEL R/W These bits specify the interrupt controller system priority
level for normal interrupt sources. The default state can be
configured so that after reset, the interrupt controller accepts
only interrupts that are enabled and have a priority the same
or greater than the system level priority setting.
Value After Reset: ICT_IRQ_PLEVEL
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.24 IRQ_INTERNAL_PLEVEL

■ Name: Internal IRQ System Priority Level Register

■ Description: This register specifies the internal IRQ system priority level.

■ Size: 32 bits

■ Offset: 0xdc

■ Exists: ICT_ADD_VECTOR_PORT==1

31
:5

4:
0

R
S

V
D

_I
R

Q
_I

N
T

E
R

N
A

L_
P

LE
V

E
L

IR
Q

_I
N

T
E

R
N

A
L_

P
LE

V
E

L

Table 5-29 Fields for Register: IRQ_INTERNAL_PLEVEL

Bits Name
Memory
Access Description

31:5 RSVD_IRQ_INTERNAL_PLEVEL R IRQ_INTERNAL_PLEVEL 31to4 Reserved bits - Read Only.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

4:0 IRQ_INTERNAL_PLEVEL R/W Internal interrupt system priority level register.
If ICT_ADD_VECTOR_PORT is set to true, this register
reflects the priority level currently being applied by the
DW_apb_ictl. In the period between the completion of vector
port handshaking and a write to irq_internal_plevel or arrival
of a higher priority IRQ, it is set to one priority level greater
than the priority level currently being handled by the
processor. At all other times, it reflects the value of
irq_plevel. This register should only be written to at the end
of an interrupt service routine in order to reset the priority
level to that of irq_plevel.
Reads to this register return the current priority level.
Writes to this register reset its value to irq_plevel; bus write
data is ignored.
Value After Reset: ICT_IRQ_PLEVEL
Exists: (ICT_ADD_VECTOR_PORT==1) ? 1 : 0
Volatile: true

Table 5-29 Fields for Register: IRQ_INTERNAL_PLEVEL (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.25 ICTL_VERSION_ID

■ Name: Component Version Register

■ Description: This register specifies the component version.

■ Size: 32 bits

■ Offset: 0xe0

■ Exists: Always

31
:0

IC
T

L_
V

E
R

S
IO

N
_I

D

Table 5-30 Fields for Register: ICTL_VERSION_ID

Bits Name
Memory
Access Description

31:0 ICTL_VERSION_ID R These bits specify values of the ICTL_VERSION_ID.
Value After Reset: ICTL_VERSION_ID
Exists: Always

https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

5.1.26 IRQ_PR_n (for n = 0; n <= ICT_IRQ_NUM-1)

■ Name: IRQ Individual Interrupt n Priority Level Register

■ Description: This register specifies the IRQ Individual Interrupt n Priority Level.

■ Size: 32 bits

■ Offset: 0xe8 + 4*n

■ Exists: (ICT_READ_PRIORITY==1 && ICT_IRQ_NUM-1 >= 0) ? 1 : 0

31
:4

3:
0

R
S

V
D

_I
R

Q
_P

R
_n

IR
Q

_P
R

_n

Table 5-31 Fields for Register: IRQ_PR_n (for n = 0; n <= ICT_IRQ_NUM-1)

Bits Name
Memory
Access Description

31:4 RSVD_IRQ_PR_n R IRQ_PR_n 31to4 Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

3:0 IRQ_PR_n (ICT_HC
_PRIORI
TIES==0)
? read-
write :
read-only

These bits specify the individual interrupt priority level. The
number of Individual Interrupt Priority Level registers is from
0 to ICT_IRQ_NUM-1. The value of the register must be an
integer from 0x0 to 0xf.
Following are the Read/Write Values:

■ DNE: If ICT_READ_PRIORITY=0, then all irq_pN_priority
registers do not exist.

■ R: If ICT_READ_PRIORITY=1 and
ICT_HC_PRIORITIES=1, then interrupt 0 priority register
is read-only R/W: If ICT_READ_PRIORITY=1 and
ICT_HC_PRIORITIES=0, then interrupt 0 priority register
is read/write

Value After Reset: ICT_ISRC_PLEVEL_n
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Register Descriptions

5.1.27 IRQ_VECTOR_DEFAULT

■ Name: Default Interrupt Vector Register

■ Description: This register specifies the default interrupt vector register.

■ Size: 32 bits

■ Offset: 0x1e8

■ Exists: ICT_HAS_DEFAULT_VECTOR==1

31
:0

IR
Q

_V
E

C
T

O
R

_D
E

F
A

U
LT

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Register Descriptions DesignWare DW_apb_ictl Databook

Table 5-32 Fields for Register: IRQ_VECTOR_DEFAULT

Bits Name
Memory
Access Description

31:0 IRQ_VECTOR_DEFAULT (ICT_HC
_VECTO
R_DEFA
ULT==0)
? read-
write :
read-only

These bits specify the default interrupt vector. The value in
this register is returned on a read to the irq_vector register
when no interrupts are active. Final status is used to decode
an active interrupt. This register can be read and, if not
hardcoded, can be reconfigured by a master. This register
does not exist when ICT_HAS_DEFAULT_VECTOR = 0.

■ If ICT_HC_VECTOR_DEFAULT is set to 1, this is a read-
only register and the interrupt vector is set by
ICT_VECTOR_DEFAULT.

■ If ICT_HC_VECTOR_DEFAULT is set to 0, this is a
read/write register used to program the default interrupt
vector; the reset value is determined by
ICT_VECTOR_DEFAULT.

Value After Reset: If ICT_HC_VECTOR_DEFAULT is set to
1, this is a read-only register and the interrupt vector is set by
ICT_VECTOR_DEFAULT. If ICT_HC_VECTOR_DEFAULT is
set to 0, this is a read/write register used to program the
default interrupt vector; the reset value is determined by
ICT_VECTOR_DEFAULT.
Exists: ICT_HAS_DEFAULT_VECTOR==1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

6
Programming the DW_apb_ictl

This section describes the some of the programmable features of the DW_apb_ictl.

6.1 Programming Considerations
The APB data bus width is independently configurable from the width of registers internal to the
DW_apb_ictl. If the APB data bus width is narrower than the width of an internal register, multiple reads
and writes are necessary to access the complete register.

6.2 Reading/Writing Registers Wider than APB_DATA_WIDTH

Values of status registers can change if new interrupts arrive between reading slices of the register.
Configuration registers should not be programmed while interrupts are enabled. Therefore, all IRQ
interrupts should be disabled using the irq_inten register prior to programming the vector registers.

6.3 Initialization
A normal initialization sequence is as follows:

1. Disable all interrupts by writing to the irq_inten and fiq_inten. You can also configure the
DW_apb_ictl so that this is the reset state using the ICT_IRQ_DFLT_EN and ICT_FIQ_DFLT_EN
parameters.

2. Initialize peripheral devices that could generate interrupts.

3. Program the irq_vector, irq_plevel, irq_intmask, and fiq_intmask registers as appropriate.

4. Enable interrupts.

Attention Because interrupt processing is combinational, care must be taken when reading and
writing registers that are wider than APB_DATA_WIDTH.

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Programming the DW_apb_ictl DesignWare DW_apb_ictl Databook

6.4 Interrupt Service
Without vectored interrupts, a normal interrupt servicing sequence is as follows:

1. Poll the interrupt status register (irq_finalstatus, irq_maskstatus, or fiq_finalstatus, as appropriate) to
determine which interrupt source caused the interrupt.

2. Service the interrupt.

3. Optionally read the irq_status or fiq_status register to see if other currently masked interrupts are
pending; service these as required.

With vectored interrupt support, a normal interrupt servicing sequence is as follows:

1. Read the irq_vector register to get the address of the service routine.

2. Service routine reads irq_finalstatus to see which interrupt sources caused the interrupt.

3. Service the interrupt.

4. Optionally read the irq_status to see if other interrupts are pending; service these as required.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

7
Verification

This chapter provides an overview of the testbench available for DW_apb_ictl verification. Once you have
configured the DW_apb_ictl in coreConsultant and have set up the verification environment, you can
automatically run simulations.

7.1 Overview of Vera Tests
The DW_apb_ictl can be configured as an APB slave. The DW_apb_ictl verification testbench performs the
following set of tests, which exhaustively verify the functionality of the component and have also achieved
maximum RTL code coverage.

7.1.1 Reset

The objective of this test is to ensure that all configurable registers are reset to the correct values defined for
the DW_apb_ictl under test.

7.1.2 Slave Interface

Accesses to registers that do not contain configured interrupt or fast interrupt information return zeros.
Registers are valid for only the number of active bits contained. For example, bytes 0 and 1 are valid for an
access to irq_register name when ICT_IRQ_NUM is 9 or greater. If ICT_IRQ_NUM is 8 or less, then only byte
0 is valid.

NoteNoteNoteNote The DW_apb_ictl verification testbench is built with DesignWare Verification IP (VIP). Make
sure you have the supported version of the VIP components for this release, otherwise, you
may experience some tool compatibility problems. For more information about supported tools
in this release, see the DesignWare Synthesizable Components for AMBA 2, AMBA 3 AXI,
and AMBA 4 AXI Installation Guide

NoteNoteNoteNote All tests use the APB Interface to program memory mapped registers dynamically during
tests.

https://solvnet.synopsys.com
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Verification DesignWare DW_apb_ictl Databook

7.1.3 FIQ

This sequence of tests verifies the operation of the FIQ generation circuitry and is repeated for active-low
and active-high input FIQ source levels (fiq_intrsrc). These tests are independent of the active level of the
fast interrupt source inputs and are executed on each fiq_intrsrc bit to verify all paths in the FIQ generation
circuitry. The active level of fiq_intsrcN and fiq_forceN is determined by the ICT_FIQ_INTSRC_POL_n
configuration parameter.

7.1.4 IRQ

This sequence of tests verifies the operation of the IRQ generation circuitry and is repeated for active-low
and active-high input IRQ source levels (irq_intrsrc). These tests are independent of the active level of the
interrupt source inputs and are executed on each irq_intrsrc bit to verify all paths in the IRQ generation
circuitry. The active level of irq_intsrcN and irq_forceN is determined by the ICT_IRQ_INTSRC_POL_n
configuration parameter.

7.1.5 Priority Controller

This sequence of tests verifies the operation of the priority controller and vector generation. It verifies the
generation of irq_intpmask bus. This test is run when the DW_apb_ictl is configured to have a priority
controller. The vector generation sections of this test can be run only when the ICT_HAS_VECTOR
configuration parameter is set to 1. These tests are independent of the active level of the interrupt source
inputs.

7.1.6 Dynamic Reconfiguration

The tests associated with Priority Controller and IRQ tests verify the operation of the priority controller and
of the enable, mask, and status registers. The user must also be able to dynamically change the priority and
vector register values without affecting the operation of the DW_apb_ictl. This test is run only when the
DW_apb_ictl is configured to have a priority controller with vector generation. These tests are independent
of the active level of the interrupt source inputs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Verification

7.2 Overview of DW_apb_ictl Testbench
As illustrated in Figure 7-1, the Verilog DW_apb_ictl testbench includes an instantiation of the design under
test (DUT), AHB and APB Bridge bus models, and a Vera shell.

Figure 7-1 DW_apb_ictl Testbench

The Vera shell consists of an AHB Master bus functional model (BFM), one AHB Slave BFM, an AHB
Monitor, APB Slave BFMs, an APB Monitor, test stimuli, BFM configuration, and test results. The AHB
Monitor monitors activity from the AHB Master and Slave BFMs; the APB Monitor oversees activity from
the APB Slave BFMs.

The testbench tests for all possible user configurations chosen in the Specify Configuration task of
coreConsultant. The testbench also tests that the component is AMBA-compliant and includes a
self-checking mechanism.

Vera Tests
(test stimuli and results)

AHB Master
BFM

AHB Slave2
BFM

APB Slave1
BFM

AHB Bus Model

APB Bridge Model
(AHB Slave1)

AHB
Monitor

DUT

(APB Slave0)

APB
Monitor

= Vera Shell

Interrupt Sources
Generated Interrupts

DW_apb_ictl

test_DW_apb_ictlv

AHB Bus Model

https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Verification DesignWare DW_apb_ictl Databook

7.3 Running Simulations from the Command Line
To run simulations from a UNIX command line, a simulation model must be generated through the
coreConsultant GUI. In addition, all tests and test options must be configured in the Verification tab of the
GUI. Then, simulations can be run as follows:

■ To run all tests selected in the GUI, change your working directory to DW_apb_ictl/sim and then
execute the following command:

runtest.sh

■ To run single tests, change the working directory to DW_apb_ictl/sim and run the following:

runtest --simulator selected_simulator --test test_name

The selected_simulator is the one chosen in the GUI; it does not work if not configured in the GUI. The
test_name is the name of the selected test and the sub directory where the test is located. For example, to run
the simple register write/read test using VCS, run the following:

runtest --simulator vcs --test test_reg_wr_rd

The results of running tests through the command line are available only in the test.log file in each test
directory.

7.4 Command Line Output Files
The runtest.log file is generated in workspace/sim/ only as a result of running simulations from
coreConsultant or coreAssembler. The runtest.log file provides a pass/fail result for the particular
simulation, as well as some detailed information. The test.log file located in workspace/sim/test_name is
generated when tests are run from the GUI or command line, and provides more detail on each specific test
simulation, in addition to the pass/fail status. The waveforms are also written to this directory, when
enabled.

To enable waveform generation from the command line, the switch DumpEnabled must be set as follows:

runtest --simulator vcs --DumpEnabled 1 --test test_reg_wr_rd

If the simulation results match expected results, the simulation completes successfully and the simulation
status in the test.log file is PASSED. If the simulation results do not match expected results, the simulation
terminates and the simulation status in the test.log file is FAILED.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

8
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment. The following sections discuss general
integration considerations.

8.1 Bus Interface
The DW_apb_ictl peripheral has a standard AMBA 2.0 APB interface for reading and writing the internal
registers. This component supports APB data bus widths of 8, 16, or 32 bits, which is set with the
APB_DATA_WIDTH parameter.

Figure 8-1 shows the read/write buses between the DW_apb and the APB slave.

Figure 8-1 Relationship Between DW_apb and Slave Data Widths

For more information about the APB interface, refer to “Integration Considerations”, “Integration
Considerations” on page 93.

8.2 Reading and Writing from an APB Slave
When writing to and reading from DesignWare APB slaves, you should consider the following:

■ The size of the APB peripheral should always be set equal to the size of the APB data bus, if possible.

■ The APB bus has no concept of a transfer size or a byte lane, unlike the DW_ahb.

DW_apb DW_apb Slave

APB_DATA_WIDTH

prdata

APB_DATA_WIDTH

pwdata

Unused bits are padded with ‘0’

pwdata

APB_DATA_WIDTH

APB_DATA_WIDTH

Unused bits
are ignored

prdata

Register
Block

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

■ The APB slave subsystem is little endian; the DW_apb performs the conversion from a big-endian
AHB to the little-endian APB.

■ All APB slave programming registers are aligned on 32-bit boundaries, irrespective of the APB bus
size.

■ The maximum APB_DATA_WIDTH is 32 bits. Registers larger than this occupies more than one
location in the memory map.

■ The DW_apb does not return any ERROR, SPLIT, or RETRY responses; it always returns an OKAY
response to the AHB.

■ For all bus widths:

❑ In the case of a read transaction, registers less than the full bus width returns zeros in the unused
upper bits.

❑ Writing to bit locations larger than the register width does not have any effect. Only the pertinent
bits are written to the register.

■ The APB slaves do not need the full 32-bit address bus, paddr. The slaves include the lower bits even
though they are not actually used in a 32- or 16-bit system.

8.2.1 Reading From Unused Locations

Reading from an unused location or unused bits in a particular register always returns zeros. Unlike an
AHB slave interface, which would return an error, there is no error mechanism in an APB slave and,
therefore, in the DW_apb.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Integration Considerations

The following sections show the relationship between the register map and the read/write operations for
the three possible APB_DATA_WIDTH values: 8-, 16-, and 32-bit APB buses.

Figure 8-2 Read/Write Locations for Different APB Bus Data Widths

8.2.2 32-bit Bus System

For 32-bit bus systems, all programming registers can be read or written with one operation, as illustrated in
the previous figure.

Because all registers are on 32-bit boundaries, paddr[1:0] is not actually needed in the 32-bit bus case. But
these bits still exist in the configured code for usability purposes.

NoteNoteNoteNote If you write to an address location not on a 32-bit boundary, the bottom bits are ignored/not
used.

31 0715 APB Address
nn00

nn04

nn08
nn09Register 3 [15:8] Register 3 [7:0]

Register 2 [15:8] Register 2 [7:0]

Register 1 [7:0]

Register 3 [31:24]
Register 3 [23:16]

nn05

nn0A
nn0B

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:16] Register 3 [15:0]

Register 2 [15:0]

Register 1 [7:0]

nn0A

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:0]

Register 2 [15:0]

Register 1 [7:0]

32-bit APB

16-bit APB

8-bit APB

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

8.2.3 16-bit Bus System

For 16-bit bus systems, two scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 16 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 16 bits wide returns zeros in the un-used bits. Writing to bit locations larger than
the register width causes nothing to happen, i.e. only the pertinent bits are written to the register.

2. The register to be written to or read from is >16 and <= 32 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower two bytes (half-word) and the
second transaction the upper half-word.

Because the bus is reading a half-word at a time, paddr[0] is not actually needed in the 16-bit bus case. But
these bits still exist in the configured code for connectivity purposes.

8.2.4 8-bit Bus System

For 8-bit bus systems, three scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 8 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 8 bits wide returns zeros in the unused bits. Writing to bit locations larger than the
register width causes nothing to happen, that is, only the pertinent bits are written to the register.

2. The register to be written to or read from is >8 and <=16 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the upper byte.

3. The register to be written to or read from is >16 and <=32 bits

In this case, four AHB transactions are required, which in turn creates four APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the second byte, and so on.

Because the bus is reading a byte at a time, all lower bits of paddr are decoded in the 8-bit bus case.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Integration Considerations

8.3 Write Timing Operation
A timing diagram of an APB write transaction for an APB peripheral register (an earlier version of the
DW_apb_ictl) is shown in the following figure. Data, address, and control signals are aligned. The APB
frame lasts for two cycles when psel is high.

Figure 8-3 APB Write Transaction

A write can occur after the first phase with penable low, or after the second phase when penable is high. The
second phase is preferred and is used in all APB slave components. The timing diagram is shown with the
write occurring after the second phase. Whenever the address on paddr matches a corresponding address
from the memory map and provided psel, pwrite, and penable are high, then the corresponding register
write enable is generated.

A write from the AHB to the APB does not require the AHB system bus to stall until the transfer on the APB
has completed. A write to the APB can be followed by a read transaction from another AHB peripheral (not
the DW_apb).

The timing example is a 33-bit register and a 32-bit APB data bus. To write this, 5 byte enables would be
generated internally. The example shows writing to the first 32 bits with one write transaction.

Register

pclk

psel

penable

pwrite

paddr[7:2]

pwdata[31:0]

irq_inten[32:0]

wen_inten[4:0] 0x0f

0x100000000 0x100001234

0x00001234

IrqIntEnL

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

8.4 Read Timing Operation
A timing diagram of an APB read transaction for an APB peripheral (an earlier version of the DW_apb_ictl)
is shown in the following figure. The APB frame lasts for two cycles, when psel is high.

Figure 8-4 APB Read Transaction

Whenever the address on paddr matches the corresponding address from the memory map—psel is high,
pwrite and penable are low—then the corresponding read enable is generated. The read data is registered
within the peripheral before passing back to the master through the DW_apb and DW_ahb.

The qualification of the read-back data with hready from the bridge is shown in the timing diagram, but this
does not form part of the APB interface. The read happens in the first APB cycle and is passed straight back
to the AHB master in the same cycles as it passes through the bridge. By returning the data immediately to
the AHB bus, the bridge can release control of the AHB data bus faster. This is important for systems where
the APB clock is slower than the AHB clock.

Once a read transaction is started, it is completed and the AHB bus is held until the data is returned from
the slave

8.5 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

NoteNoteNoteNote If a read enable is not active, then the previously read data is maintained on the read-back
data bus.

Register

pclk

psel

penable

pwrite

paddr[7:2]

prdata[31:0]

irq_inten[32:0]

ren_irq_inten[4:0]

0x100001234

0x1234

IrqIntEnL

0x1234hrdata[31:0]

hready

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Integration Considerations

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

8.6 Coherency
Coherency is where bits within a register are logically connected. For instance, part of a register is read at
time 1 and another part is read at time 2. Being coherent means that the part read at time 2 is at the same
value it was when the register was read at time 1. The unread part is stored into a shadow register and this
is read at time 2. When there is no coherency, no shadow registers are involved.

A bus master may need to be able to read the contents of a register, regardless of the data bus width, and be
guaranteed of the coherency of the value read. A bus master may need to be able to write a register
coherently regardless of the data bus width and use that register only when it has been fully programmed.
This may need to be the case regardless of the relationship between the clocks.

Coherency enables a value to be read that is an accurate reflection of the state of the counter, independent of
the data bus width, the counter width, and even the relationship between the clocks. Additionally, a value
written in one domain is transferred to another domain in a seamless and coherent fashion.

Throughout this appendix the following terms are used:

■ Writing. A bus master programs a configuration register. An example is programming the load value
of a counter into a register.

■ Transferring. The programmed register is in a different clock domain to where it is used, therefore, it
needs to be transferred to the other clock domain.

■ Loading. Once the programmed register is transferred into the correct clock domain, it needs to be
loaded or used to perform its function. For example, once the load value is transferred into the
counter domain, it gets loaded into the counter.

8.6.1 Writing Coherently

Writing coherently means that all the bits of a register can be written at the same time. A peripheral may
have programmable registers that are wider than the width of the connected APB data bus, which prevents
all the bits being programmed at the same time unless additional coherency circuitry is provided.

The programmable register could be the load value for a counter that may exist in a different clock domain.
Not only does the value to be programmed need to be coherent, it also needs to be transferred to a different
clock domain and then loaded into the counter. Depending on the function of the programmable register, a
qualifier may need to be generated with the data so that it knows when the new value is currently
transferred and when it should be loaded into the counter.

Depending on the system and on the register being programmed, there may be no need for any special
coherency circuitry. One example that requires coherency circuitry is a 32-bit timer within an 8-bit APB
system. The value is entirely programmed only after four 8-bit wide write transfers. It is safe to transfer or
use the register when the last byte is currently written. An example where no coherency is required is a
16-bit wide timer within a 16-bit APB system. The value is entirely programmed after a single 16-bit wide
write transfer.

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

Coherency circuitry enables the value to be loaded into the counter only when fully programmed and
crossed over clock domains if the peripheral clock is not synchronous to the processor clock. While the load
register is being programmed, the counter has access to the previous load value in case it needs to reload the
counter.

Coherency circuitry is only added in cores where it is needed. The coherency circuitry incorporates an
upper byte method that requires users to program the load register in LSB to MSB order when the
peripheral width is smaller than the register width. When the upper byte is programmed, the value can be
transferred and loaded into the load register. When the lower bytes are being programmed, they need to be
stored in shadow registers so that the previous load register is available to the counter if it needs to reload.
When the upper byte is programmed, the contents of the shadow registers and the upper byte are loaded
into the load register.

The upper byte is the top byte of a register. A register can be transferred and loaded into the counter only
when it has been fully programmed. A new value is available to the counter once this upper byte is written
into the register. The following table shows the relationship between the register width and the peripheral
bus width for the generation of the correct upper byte. The numbers in the table represent bytes, Byte 0 is
the LSB and Byte 3 is the MSB. NCR means that no coherency circuitry is required, as the entire register is
written with one access.

There are three relationship cases to be considered for the processor and peripheral clocks:

■ Identical

■ Synchronous (phase coherent but of an integer fraction)

■ Asynchronous

Table 8-1 Upper Byte Generation

Upper Byte
Bus Width

Load Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 1 NCR NCR

17 - 24 2 2 NCR

25 - 32 3 2 (or 3) NCR

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Integration Considerations

8.6.1.1 Identical Clocks

The following figure illustrates an RTL diagram for the circuitry required to implement the coherent write
transaction when the APB bus clock and peripheral clocks are identical.

Figure 8-5 Coherent Loading – Identical Synchronous Clocks

The following figure shows a 32-bit register that is written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal lasts
for one cycle and is used to load the counter with CntLoadValue.

Figure 8-6 Coherent Loading – Identical Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

pclk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

LoadValue[31:0]

UpperByteWen

LoadCnt

Counter[31:0]

https://solvnet.synopsys.com
www.designware.com

102 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

Each of the bytes that make up the load register are stored into shadow registers until the final byte is
written. The shadow register is up to three bytes wide. The contents of the shadow registers and the final
byte are transferred into the CntLoadValue register when the final byte is written. The counter uses this
register to load/initialize itself. If the counter is operating in a periodic mode, it reloads from this register
each time the count expires.

By using the shadow registers, the CntLoadValue is kept stable until it can be changed in one cycle. This
allows the counter to be loaded in one access and the state of the counter is not affected by the latency in
programming it. When there is a new value to be loaded into the counter initially, this is signaled by
LoadCnt = 1. After the upper byte is written, the LoadCnt goes to zero.

8.6.1.2 Synchronous Clocks

When the clocks are synchronous but do not have identical periods, the circuitry needs to be extended so
that the LoadCnt signal is kept high until a rising edge of the counter clock occurs. This extension is
necessary so that the value can be loaded, using LoadCnt, into the counter on the first counter clock edge. At
the rising edge of the counter clock if LoadCnt is high, then a register clocked with the counter clock toggles,
otherwise it keeps its current value. A circuit detecting the toggling is used to clear the original LoadCnt by
looking for edge changes. The value is loaded into the counter when a toggle has been detected. Once it is
loaded, the counter should be free to increment or decrement by normal rules.

The following figure shows an RTL diagram for the circuitry required to implement the coherent write
when the bus and peripheral clocks are synchronous.

Figure 8-7 Coherent Loading – Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

OR

AND
ToggleToggle

1

1

Shaded Registers are all
connected to the Bus clock.
Others are connected to the
Peripheral clock.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 103SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Integration Considerations

The following figure shows a 32-bit register being written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal is
extended until a change in the toggle is detected and is used to load the counter.

Figure 8-8 Coherent Loading – Synchronous Clocks

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

counter_clk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

CntLoadValue[31:0]

LoadCnt

toggle_edge_detect

Counter[31:0]

toggle

pclk

https://solvnet.synopsys.com
www.designware.com

104 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

8.6.1.3 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three-times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock. The following figure shows an RTL diagram for the circuitry
required to implement the coherent write when the bus and peripheral clocks are asynchronous.

Figure 8-9 Coherent Loading – Asynchronous Clocks

When the clocks are asynchronous, you need to transfer the contents of the register from one clock domain
to another. It is not desirable to transfer the entire register through meta-stability registers, as coherency is
not guaranteed with this method. The circuitry needed requires the processor clock to be used to re-time the
peripheral clock. Upon a rising edge of the re-timed clock, the new value signal, NewValue, is transferred
into a safe new value signal, SafeNewValue, which happens after the edge of the peripheral clock has
occurred.

Every time there is a rising edge of the peripheral clock detected, the CntLoadValue is transferred into a
SafeCntLoadValue. This value is used to transfer the load value across the clock domains. The
SafeCntLoadValue only changes a number of bus clock cycles after the peripheral clock edge changes. A

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0]

Counter
[31:0]

Shadow

Toggle 1

1

Shaded and edge detect registers are all
connected to the Bus clock. Others are
connected to the Peripheral clock.

(or ByteWen[3])

ClrNewValue
Reset

EN

32

NewValue

red_counter_clk

SafeCountLoadValue

&

Reset

EN

ClrNewValue

red_counter_clk

Edge
Detect

ClrNewValue

pclk

Rising

Detect
counter_clk

pclk

Edge red_counter_clk

SafeNewValue

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 105SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Integration Considerations

counter running on the peripheral clock is able to use this value safely. It could be up to two peripheral
clock periods before the value is loaded into the counter. Along with this loaded value, there also is a single
bit transferred that is used to qualify the loading of the value into the counter.

The timing diagram depicted in the following figure does not show the shadow registers being loaded. This
is identical to the loading for the other clock modes.

Figure 8-10 Coherent Loading – Asynchronous Clocks

The NewValue signal is extended until a change in the toggle is detected and is used to update the safe
value. The SafeNewValue is used to load the counter at the rising edge of the peripheral clock. Each time a
new value is written the toggle bit is flipped and the edge detection of the toggle is used to remove both the
NewValue and the SafeNewValue.

8.6.2 Reading Coherently

For writing to registers, an upper-byte concept is proposed for solving coherency issues. For read
transactions, a lower-byte concept is required. The following table provides the relationship between the
register width and the bus width for the generation of the correct lower byte.

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

Counter Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 0 NCR NCR

0D0C0B0A

0D0C0B0A

0D0C0B0A

A3

counter_clk

paddr

penable

pwdata[7:0]

NewValue

ntLoadValue[31:0]

red_counter_clk

ntLoadValue[31:0]

SafeNewValue

ClrNewValue

Counter[31:0]

toggle

pclk

0D

UpperByteWen

https://solvnet.synopsys.com
www.designware.com

106 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

Depending on the bus width and the register width, there may be no need to save the upper bits because the
entire register is read in one access, in which case there is no problem with coherency. When the lower byte
is read, the remaining upper bytes within the counter register are transferred into a holding register. The
holding register is the source for the remaining upper bytes. Users must read LSB to MSB for this solution to
operate correctly. NCR means that no coherency circuitry is required, as the entire register is read with one
access.

There are two cases regarding the relationship between the processor and peripheral clocks to be considered
as follows:

■ Identical and/or synchronous

■ Asynchronous

8.6.2.1 Synchronous Clocks

When the clocks are identical and/or synchronous, the remaining unread bits (if any) need to be saved into
a holding register once a read is started. The first read byte must be the lower byte provided in the previous
table, which causes the other bits to be moved into the holding register, SafeCntVal, provided that the
register cannot be read in one access. The upper bytes of the register are read from the holding register
rather than the actual register so that the value read is coherent. This is illustrated in the following figure
and in the timing diagram after it.

Figure 8-11 Coherent Registering – Synchronous Clocks

17 - 24 0 0 NCR

25 - 32 0 0 NCR

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

CntVal[31:8]

CntVal[31:8]

EN

LowerByteRen

SafeCntVal

ReadCntVal[31:0]

ByteRen[3:0]

Counter
Block

Shaded registers are clocked
with the processor clock.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 107SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Integration Considerations

Figure 8-12 Coherent Registering – Synchronous Clocks

8.6.2.2 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock.

To safely transfer a counter value from the counter clock domain to the bus clock domain, the counter clock
signal should be transferred to the bus clock domain. When the rising edge detect of this re-timed counter
clock signal is detected, it is safe to use the counter value to update a shadow register that holds the current
value of the counter.

While reading the counter contents it may take multiple APB transfers to read the value.

Once a read transaction has started, the value of the upper register bits need to be stored into a shadow
register so that they can be read with subsequent read accesses. Storing these upper bits preserves the
coherency of the value that is being read. When the processor reads the current value it actually reads the
contents of the shadow register instead of the actual counter value. The holding register is read when the
bus width is narrower than the counter width. When the LSB is read, the value comes from the shadow
register; when the remaining bytes are read they come from the holding register. If the data bus width is
wide enough to read the counter in one access, then the holding registers do not exist.

The counter clock is registered and successively pipelined to sense a rising edge on the counter clock.
Having detected the rising edge, the value from the counter is known to be stable and can be transferred
into the shadow register. The coherency of the counter value is maintained before it is transferred, because
the value is stable.

NoteNoteNoteNote You must read LSB to MSB when the bus width is narrower than the counter width.

A0 A1 A2 A3

00010203 0A0B0C0D 0E0F0G0H

clk1

CntVal[31:0]

paddr

penable

prdata[7:0]

SafeCntVal[31:8]

LowerByteRen

pclk

A0 A1 A2

03 02 01 00 0H 0G

000102 0E0F0G

https://solvnet.synopsys.com
www.designware.com

108 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

The following figure illustrates the synchronization of the counter clock and the update of the shadow
register.

Figure 8-13 Coherency and Shadow Registering – Asynchronous Clocks

Performance

8.7 Performance
This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_apb_ictl.

8.7.1 Power Consumption, Frequency, and Area Results

Table 8-3 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_apb_ictl using the industry standard 28nm technology library and how it affects performance.

Table 8-3 Power Consumption, Frequency, and Area Results for DW_apb_ictl Using 28nm Technology Library

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration hclk: 300 MHz 1550 gates 26.5 nW 4.661 uW

Minimum Configuration:
APB_DATA_WIDTH 8
ICT_IRQ_NUM 2
ICT_HAS_FIQ 0
ICT_HAS_PFLT 0

hclk: 300 MHz 196 gates 3.07 nW 0.52 uW

CntVal

EN

LowerByteRen

SafeCntVal

ReadCntVal

Sync and shaded registers are
clocked with the processor clock.

ShdwCntVal

EN

Sync & Rising
Edge Detect

Safe To Update

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 109SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Integration Considerations

Maximum Configuration:
APB_DATA_WIDTH 32
ICT_IRQ_NUM 64
ICT_HAS_FIQ 1
ICT_FIQ_NUM 8
ICT_HAS_PFLT 1
ICT_HAS_VECTOR_USER 1
ICT_IRQ_PLEVEL 5

hclk: 300 MHz 9302 gates 156 nW 24.998 uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

110 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Integration Considerations DesignWare DW_apb_ictl Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 111

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

A
Synchronizer Methods

This appendix describes the synchronizer methods (blocks of synchronizer functionality) that are used in
the DW_apb_ictl to cross clock boundaries.

This appendix contains the following sections:

■ “Synchronizers Used in DW_apb_ictl” on page 112

■ “Synchronizer 1: Simple Double Register Synchronizer (DW_apb_ictl)” on page 113

NoteNoteNoteNote The DesignWare Building Blocks (DWBB) contains several synchronizer components with
functionality similar to methods documented in this appendix. For more information about the
DWBB synchronizer components go to:
https://www.synopsys.com/dw/buildingblock.php

https://www.synopsys.com/dw/buildingblock.php
https://solvnet.synopsys.com
www.designware.com

112 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Synchronizer Methods DesignWare DW_apb_ictl Databook

A.1 Synchronizers Used in DW_apb_ictl
Each of the synchronizers and synchronizer sub-modules are comprised of verified DesignWare Basic Core
(BCM) RTL designs. The BCM synchronizer designs are identified by the synchronizer type. The
corresponding RTL files comprising the BCM synchronizers used in the DW_apb_ictl are listed and cross
referenced to the synchronizer type in Table A-1. Note that certain BCM modules are contained in other
BCM modules, as they are used in a building block fashion.

Table A-1 Synchronizer used in DW_apb_ictl

Synchronizer Module File Synchronizer Type and Number

DW_apb_ictl_bcm21.v Synchronizer 1: Simple Multiple Register Synchronizer

NoteNoteNoteNote The BCM21 is a basic multiple register based synchronizer module used in the design. It can be
replaced with equivalent technology specific synchronizer cell.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 113SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Synchronizer Methods

A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_ictl)
This is a single clock data bus synchronizer for synchronizing control signals that crosses asynchronous
clock boundaries. The synchronization scheme uses two stage synchronization process (Figure A-1) both
using positive edge of clock.

Figure A-1 Block Diagram of Synchronizer 1 With Two Stage Synchronization (Both Positive Edge)

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

114 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Synchronizer Methods DesignWare DW_apb_ictl Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 115

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

B
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table B-1 Internal Parameters

Parameter Name Equals To

HADDR_REGFILE_SLICE_LHS 9

HADDR_WIDTH 32

ICT_HAS_VECTOR (((ICT_HAS_PFLT == 1)) ? ICT_HAS_VECTOR_USER :
0)

ICTL_VERSION_ID 32'h3230392a

https://solvnet.synopsys.com
www.designware.com

116 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Internal Parameter Descriptions DesignWare DW_apb_ictl Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 117

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

C
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces (Arm® Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by Arm®
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (Arm® Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in a
word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

https://solvnet.synopsys.com
www.designware.com

118 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Glossary DesignWare DW_apb_ictl Databook

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable block
that can be instantiated as a single entity (VHDL) or module (Verilog) in a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used in
the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a big
piece of IIP. Anything that requires coreConsultant for configuration, as well as
anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in the
DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable cores
into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design views
and synthesis views you need to integrate the core into your design. Can also
synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format back
to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant or
coreAssembler to quickly build DesignWare Synthesizable Component designs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 119SolvNet
DesignWare.com

2.09a
July 2018

DesignWare DW_apb_ictl Databook Glossary

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is authorized
by a single DesignWare license. Products include SmartModels, VMT model
suites, DesignWare Memory Models, Building Block IP, and the DesignWare
Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code by
non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

https://solvnet.synopsys.com
www.designware.com

120 Synopsys, Inc. SolvNet
DesignWare.com

2.09a
July 2018

Glossary DesignWare DW_apb_ictl Databook

RTL Register Transfer Level. A higher level of abstraction that implies a certain gate-
level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as synthesizable
IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology through
synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component. The
files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in any
form, including a Design View.

workspace A network location that contains a personal copy of a component or subsystem.
After you configure the component or subsystem (using coreConsultant or
coreAssembler), the workspace contains the configured component/subsystem
and generated views needed for integration of the component/subsystem at the
top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing easier
interfacing. Usually requires an extra, sometimes automated, step to create the
wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 121

DesignWare DW_apb_ictl Databook

SolvNet
DesignWare.com

2.09a
July 2018

Index

A
active command queue

definition 117
activity

definition 117
AHB

definition 117
AMBA

definition 117
APB

definition 117
APB bridge

definition 117
APB interface, reading to/writing from 93
application design

definition 117
arbiter

definition 117
B
BFM

definition 117
big-endian

definition 117
blocked command stream

definition 117
blocking command

definition 117
bus bridge

definition 118
C
Coherency

about 99
read 105
write 99

command channel
definition 118

command stream
definition 118

component
definition 118

configuration
definition 118

configuration intent
definition 118

core
definition 118

core developer
definition 118

core integrator
definition 118

coreAssembler
definition 118

coreConsultant
definition 118

coreKit
definition 118

Customer Support 10
cycle command

definition 118
D
decoder

definition 118
design context

definition 118
design creation

definition 118
Design View

definition 118
DesignWare cores

definition 119
DesignWare Library

definition 119

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_ictl Databook

122 Synopsys, Inc.SolvNet
DesignWare.com

2.09a
July 2018

DesignWare Synthesizable Components
definition 118

dual role device
definition 119

DW_apb
interface 93
slaves

read timing operation 98
write timing operation 97

DW_apb_ictl 92
features of 15
FIQ interrupt processing 25
functional description 17
IRQ interrupt processing 18
polarity of IRQ interrupt 19
programming 87
testbench

about 91
overview of tests 89

E
Enabling

FIQ interrupts 27
IRQ interrupts 20

endian
definition 119

Environment, licenses 16
F
FIQ interrupts

enabling 27
masking of 27
polarity of 26
processing of 25
programming of 26
status registers for 27

fiq_finalstatus 27
fiq_rawstatus 27
fiq_status 27
Full-Functional Mode

definition 119
G
GPIO

definition 119
GTECH

definition 119
H
hard IP

definition 119
HDL

definition 119
I
IIP

definition 119
implementation view

definition 119
instantiate

definition 119
interface

definition 119
IP

definition 119
IRQ interrupts

enabling of 20
masking of 20
polarity of 19
priority filter 20
processing of 18
programming of 19
status registers for 21
vectors 21

irq_finalstatus 21
irq_maskstatus 21
irq_rawstatus 21
irq_status 21
L
Licenses 16
little-endian

definition 119
M
MacroCell

definition 119
Masking

FIQ interrupts 27
IRQ interrupts 20

master
definition 119

model
definition 119

monitor
definition 119

N
non-blocking command

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb_ictl Databook Index

Synopsys, Inc. 1232.09a
July 2018

SolvNet
DesignWare.com

definition 119
P
peripheral

definition 119
Programming DW_apb_ictl

memory map 87
notes for 87

R
Read coherency

about 105
and asynchronous clocks 107
and synchronous clocks 106

Reading, from unused locations 94
Registers

and APB_DATA_WIDTH 87
fiq_finalstatus 27
fiq_rawstatus 27
fiq_status 27
irq_finalstatus 21
irq_maskstatus 21
irq_rawstatus 21
irq_status 21

RTL
definition 120

runtest.log 92
S
SDRAM

definition 120
SDRAM controller

definition 120
Simple double register synchronizer 113
Simulation

command line output files 92
from command line 92
of DW_apb_ictl 91
results 92

slave
definition 120

SoC
definition 120

SoC Platform
AHB contained in 13
APB, contained in 13
defined 13

soft IP
definition 120

static controller
definition 120

subsystem
definition 120

Synchronizer
simple double register 113

synthesis intent
definition 120

synthesizable IP
definition 120

T
technology-independent

definition 120
test.log 92
testbench

output files 92
Testsuite Regression Environment (TRE)

definition 120
Timing

read operation of DW_apb slave 98
write operation of DW_apb slave 97

TRE
definition 120

V
Vera, overview of tests 89
Verification

and Vera tests 89
of DW_apb_ictl 91
output file 92
results 92

VIP
definition 120

W
workspace

definition 120
wrap

definition 120
wrapper

definition 120
Write coherency

about 99
and asynchronous clocks 104
and identical clocks 101
and synchronous clocks 102

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_ictl Databook

124 Synopsys, Inc.SolvNet
DesignWare.com

2.09a
July 2018

Z
zero-cycle command

definition 120

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_apb_ictl Block Diagram

	1.3 Features
	1.4 Standards Compliance
	1.5 Verification Environment Overview
	1.6 Licenses
	1.7 Where to Go From Here

	2 Functional Description
	2.1 Overview
	2.2 IRQ Interrupt Processing
	2.2.1 IRQ Interrupt Polarity
	2.2.2 IRQ Software-Programmable Interrupts
	2.2.3 IRQ Enable and Masking
	2.2.4 IRQ Software-Programmable Priority Levels
	2.2.5 IRQ Priority Filter
	2.2.6 IRQ Interrupt Status Registers
	2.2.7 IRQ Interrupt Vectors

	2.3 Vector Port
	2.3.1 Handshaking Operation
	2.3.2 Priority-Level Registers
	2.3.3 Synchronization
	2.3.4 Interrupt Timing

	2.4 FIQ Interrupt Processing
	2.4.1 FIQ Interrupt Polarity
	2.4.2 FIQ Software-Programmable Interrupts
	2.4.3 FIQ Enable and Masking
	2.4.4 FIQ Interrupt Status Registers

	2.5 Scan Mode

	3 Parameter Descriptions
	3.1 Top Level Parameters
	3.2 Vector Port Interface Parameters
	3.3 Priority Controller Configuration Parameters
	3.4 Configuration of Vector Generation Module Parameters
	3.5 Individual IRQ Polarity Configuration Parameters
	3.6 Individual FIQ Polarity Configuration Parameters

	4 Signal Descriptions
	4.1 APB Interface Signals
	4.2 Miscellaneous Signals
	4.3 Interrupt Signals
	4.4 Vector Interrupt and Handshake Signals
	4.5 Interrupt Source Signals

	5 Register Descriptions
	5.1 DW_apb_ictl_mem_map/DW_apb_ictl_addr_block1 Registers
	5.1.1 IRQ_INTEN_L
	5.1.2 IRQ_INTEN_H
	5.1.3 IRQ_INTMASK_L
	5.1.4 IRQ_INTMASK_H
	5.1.5 IRQ_INTFORCE_L
	5.1.6 IRQ_INTFORCE_H
	5.1.7 IRQ_RAWSTATUS_L
	5.1.8 IRQ_RAWSTATUS_H
	5.1.9 IRQ_STATUS_L
	5.1.10 IRQ_STATUS_H
	5.1.11 IRQ_MASKSTATUS_L
	5.1.12 IRQ_MASKSTATUS_H
	5.1.13 IRQ_FINALSTATUS_L
	5.1.14 IRQ_FINALSTATUS_H
	5.1.15 IRQ_VECTOR
	5.1.16 IRQ_VECTOR_n (for n = 0; n <= ICT_IRQ_PLEVEL)
	5.1.17 FIQ_INTEN
	5.1.18 FIQ_INTMASK
	5.1.19 FIQ_INTFORCE
	5.1.20 FIQ_RAWSTATUS
	5.1.21 FIQ_STATUS
	5.1.22 FIQ_FINALSTATUS
	5.1.23 IRQ_PLEVEL
	5.1.24 IRQ_INTERNAL_PLEVEL
	5.1.25 ICTL_VERSION_ID
	5.1.26 IRQ_PR_n (for n = 0; n <= ICT_IRQ_NUM-1)
	5.1.27 IRQ_VECTOR_DEFAULT

	6 Programming the DW_apb_ictl
	6.1 Programming Considerations
	6.2 Reading/Writing Registers Wider than APB_DATA_WIDTH
	6.3 Initialization
	6.4 Interrupt Service

	7 Verification
	7.1 Overview of Vera Tests
	7.1.1 Reset
	7.1.2 Slave Interface
	7.1.3 FIQ
	7.1.4 IRQ
	7.1.5 Priority Controller
	7.1.6 Dynamic Reconfiguration

	7.2 Overview of DW_apb_ictl Testbench
	7.3 Running Simulations from the Command Line
	7.4 Command Line Output Files

	8 Integration Considerations
	8.1 Bus Interface
	8.2 Reading and Writing from an APB Slave
	8.2.1 Reading From Unused Locations
	8.2.2 32-bit Bus System
	8.2.3 16-bit Bus System
	8.2.4 8-bit Bus System

	8.3 Write Timing Operation
	8.4 Read Timing Operation
	8.5 Accessing Top-level Constraints
	8.6 Coherency
	8.6.1 Writing Coherently
	8.6.1.1 Identical Clocks
	8.6.1.2 Synchronous Clocks
	8.6.1.3 Asynchronous Clocks

	8.6.2 Reading Coherently
	8.6.2.1 Synchronous Clocks
	8.6.2.2 Asynchronous Clocks

	8.7 Performance
	8.7.1 Power Consumption, Frequency, and Area Results

	A Synchronizer Methods
	A.1 Synchronizers Used in DW_apb_ictl
	A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_ictl)

	B Internal Parameter Descriptions
	C Glossary
	Index

