
 1.11a
July 2018

DesignWare DW_apb_i2s Databook

DW_apb_i2s – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook

Copyright Notice and Proprietary Information Notice
© 2018 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in
accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or
translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of
Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://www.synopsys.com/company/legal/trademarks-brands.html
www.synopsys.com
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 3SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Contents

Contents

Revision History . 7

Preface .11
Organization .11
Related Documentation .12
Web Resources .12
Customer Support .12
Product Code .13

Chapter 1
Product Overview .15

1.1 DesignWare System Overview .15
1.2 General Product Description .17

1.2.1 DW_apb_i2s Features .17
1.2.2 DW_apb_i2s Block Diagram .18
1.2.3 I2S Terminology .18
1.2.4 Overview of DW_apb_i2s .18

1.3 Standards Compliance .20
1.4 Verification Environment Overview .20
1.5 Licenses .20
1.6 Where To Go From Here .20

Chapter 2
Functional Description .23

2.1 Overview .23
2.2 DW_apb_i2s Enable .24
2.3 DW_apb_i2s as Transmitter .25

2.3.1 Transmitter Block Enable .26
2.3.2 Transmit Channel Enable .27
2.3.3 Transmit Channel Audio Data Resolution .27
2.3.4 Transmit Channel FIFOs .28
2.3.5 Transmit Channel Interrupts .28
2.3.6 Writing to a Transmit Channel .29

2.4 DW_apb_i2s as Receiver .31
2.4.1 Receiver Block Enable .33
2.4.2 Receive Channel Enable .33
2.4.3 Receive Channel Audio Data Resolution .34
2.4.4 Receive Channel FIFOs .34
2.4.5 Receive Channel Interrupts .35
2.4.6 Reading from a Receive Channel .36

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Contents DesignWare DW_apb_i2s Databook

2.5 Clock Generation (Master Mode) .36
2.5.1 Clock Generation Enable .36
2.5.2 Word Select Generation .37
2.5.3 SCLK Gating .37

2.6 Transaction Example .38
2.7 APB Interface .39
2.8 DW_apb_i2s Registers .39

2.8.1 Register Memory Map .39
2.8.2 Coherency .39

2.9 DMA Handshaking Interface .40
2.9.1 DMA Controller Interface .40

Chapter 3
Parameter Descriptions .55

3.1 Basic Configuration Parameters .56
3.2 Receiver Channel(s) Parameters .61
3.3 Transmitter Channel(s) Parameters .63

Chapter 4
Signal Descriptions .65

4.1 APB Slave Interface Signals .67
4.2 I2S Clock Interface Signals .69
4.3 I2S Clock Interface - Master Mode Signals .70
4.4 I2S Clock Interface - Slave Mode Signals .71
4.5 I2S Receiver Interface (for x = 0; x <= I2S_RX_CHANNELS-1) Signals .72
4.6 I2S Transmitter Interface (for x = 0; x <= I2S_TX_CHANNELS-1) Signals .73
4.7 DMA Interface Signals .74
4.8 I2S Interrupts Signals .79

Chapter 5
Register Descriptions .81

5.1 DW_apb_i2s_mem_map/DW_apb_i2s_addr_block1 Registers .84
5.1.1 IER .87
5.1.2 IRER .88
5.1.3 ITER .89
5.1.4 CER .90
5.1.5 CCR .91
5.1.6 RXFFR .93
5.1.7 TXFFR .94
5.1.8 LRBRx (for x = 0; x <= I2S_RX_CHANNELS-1) .95
5.1.9 LTHRx (for x = 0; x <= I2S_TX_CHANNELS-1) .97
5.1.10 RRBRx (for x = 0; x <= I2S_RX_CHANNELS-1) .99
5.1.11 RTHRx (for x = 0; x <= I2S_TX_CHANNELS-1) .101
5.1.12 RERx (for x = 0; x <= I2S_RX_CHANNELS-1) . 103
5.1.13 TERx (for x = 0; x <= I2S_TX_CHANNELS-1) . 104
5.1.14 RCRx (for x = 0; x <= I2S_RX_CHANNELS-1) . 105
5.1.15 TCRx (for x = 0; x <= I2S_TX_CHANNELS-1) . 107
5.1.16 ISRx (for x = 0; x <= I2S_TX_CHANNELS-1) . 109
5.1.17 IMRx (for x = 0; x <= I2S_TX_CHANNELS-1) . 111
5.1.18 RORx (for x = 0; x <= I2S_RX_CHANNELS-1) . 113

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Contents

5.1.19 TORx (for x = 0; x <= I2S_TX_CHANNELS-1) . 114
5.1.20 RFCRx (for x = 0; x <= I2S_RX_CHANNELS-1) . 115
5.1.21 TFCRx (for x = 0; x <= I2S_TX_CHANNELS-1) . 118
5.1.22 RFFx (for x = 0; x <= I2S_RX_CHANNELS-1) . 121
5.1.23 TFFx (for x = 0; x <= I2S_TX_CHANNELS-1) . 122
5.1.24 RXDMA . 123
5.1.25 RRXDMA . 125
5.1.26 TXDMA . 127
5.1.27 RTXDMA . 128
5.1.28 I2S_COMP_PARAM_2 . 129
5.1.29 I2S_COMP_PARAM_1 . 132
5.1.30 I2S_COMP_VERSION . 136
5.1.31 I2S_COMP_TYPE . 137
5.1.32 DMACR . 138
5.1.33 RXDMA_CHx (for x = 0; x <= I2S_RX_CHANNELS-1) . 142
5.1.34 TXDMA_CHx (for x = 0; x <= I2S_TX_CHANNELS-1) . 144

Chapter 6
Programming the DW_apb_i2s . 147

6.1 DW_apb_i2s as Transmitter . 147
6.1.1 Slave Mode . 147
6.1.2 Master Mode . 148

6.2 DW_apb_i2s as Receiver . 148
6.2.1 Slave Mode . 148
6.2.2 Master Mode . 148

6.3 DW_apb_i2s as Transmitter—With DMA Handshake Interface . 149
6.3.1 Slave Mode . 149
6.3.2 Master Mode . 150

6.4 DW_apb_i2s as Receiver—With DMA Handshake Interface . 150
6.4.1 Slave Mode . 150
6.4.2 Master Mode . 151

6.5 Example Configurations . 152
6.5.1 Example 1 . 152
6.5.2 Example 2 . 153
6.5.3 Example 3 . 153

Chapter 7
Verification . 155

Chapter 8
Integration Considerations . 159

8.1 Reading and Writing from an APB Slave . 159
8.1.1 Reading From Unused Locations .159
8.1.2 32-bit Bus System . 160
8.1.3 16-bit Bus System . 161
8.1.4 8-bit Bus System . 161

8.2 Write Timing Operation . 162
8.3 Read Timing Operation . 163
8.4 Accessing Top-level Constraints . 163
8.5 Coherency . 164

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Contents DesignWare DW_apb_i2s Databook

8.5.1 Writing Coherently . 164
8.5.2 Reading Coherently . 170

8.6 Performance . 173
8.6.1 Power Consumption, Frequency, and Area Results . 173

Appendix A
Synchronizer Methods . 177

A.1 Synchronizers Used in DW_apb_i2s . 178
A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_i2s) .179

Chapter B
Internal Parameter Descriptions . 181

Appendix C
Glossary . 183

Index . 187

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

Revision History

This table shows the revision history for the databook from release to release. This is being tracked from
version 1.08a onward.

Version Date Description

1.11a July 2018 Added:
■ “DMA Handshaking Interface” on page 40

■ “DW_apb_i2s as Transmitter—With DMA Handshake Interface” on page 149

■ “DW_apb_i2s as Receiver—With DMA Handshake Interface” on page 150

Updated:

■ Version changed for 2018.07a release

■ “Performance” on page 173

■ Figure 1-2 and Figure 2-1

■ “Parameter Descriptions” on page 55, “Signal Descriptions” on page 65, “Register
Descriptions” on page 81 and “Internal Parameter Descriptions” on page 181 are
auto extracted with change bars from the RTL

Removed:
■ Chapter 2, “Building and Verifying a Component or Subsystem” and added the

contents in the newly created user guide.

1.10a October 2016 ■ Version number change to 2016.10a

■ “Parameter Descriptions” on page 55 and “Register Descriptions” on page 81 auto-
extracted from the RTL

■ Removed the “Running Leda on Generated Code with coreConsultant” section, and
reference to Leda directory in Table 2-1

■ Removed the “Running Leda on Generated Code with coreAssembler” section, and
reference to Leda directory in Table 2-4

■ Added “Running VCS XPROP Analyzer”

■ Replaced Figure 2-2 and Figure 2-3 to remove references to Leda

■ Moved Internal Parameter Descriptions to Appendix

■ Added an entry for the xprop directory in Table 2-1 and Table 2-4.

■ Added “DW_apb_i2s Registers” on page 39

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Revision History DesignWare DW_apb_i2s Databook

1.09a June 2015 ■ Added “Running SpyGlass® Lint and SpyGlass® CDC”

■ Added “Running SpyGlass on Generated Code with coreAssembler”

■ “Signal Descriptions” on page 65 auto-extracted from the RTL

■ Added “Internal Parameter Descriptions” on page 181

■ Added Appendix A, “Synchronizer Methods”

1.08a June 2014 ■ Version change for 2014.06a release

■ Added "Transaction Example" section in the "Functional Description" chapter

■ Added “Performance” section in the “Integration Considerations” chapter

1.07a May 2013 ■ Made minor corrections in the description of the ws_out, sw_slv, and sdox signals

■ Removed a note regarding DesignWare Verification IP (VIP) in “Verification” chapter,
as DW_apb_i2s does not use DesignWare VIP

■ Updated the template.

1.06e Sep 2012 Added the product code on the cover and in Table 1-1

1.06e Mar 2012 Version change for 2012.03a release

1.06d Nov 2011 Version change for 2011.11a release

1.06c Oct 2011 Version change for 2011.10a release

1.06b Jun 2011 ■ Updated system diagram in Figure 1-1

■ Enhanced “Related Documents” section in Preface

1.06b Apr 2011 ■ Clarification added on the use of the sclk_en and sclk_gate outputs

■ Removed signals starting with dma_*, which are not implemented in RTL

1.06a Jan 2011 Corrected conditions for programmed gating value in SCLKG field of CCR register

1.06a Dec 2010 Removed signals starting with dma_*, which are not implemented in RTL

1.06a Sep 2010 Corrected names of include files and vcs command used for simulation

1.05a May 2010 Corrected FIFO depths from 2, 4, 8, and 16 bits to I2S_RX_WORDSIZE_x or
I2S_TX_WORDSIZE_x

1.05a Mar 2010 Version change for 2010.03a release

1.04a Dec 2009 ■ Corrected usage flow diagrams for DW_apb_i2s as a receiver and as a transmitter

■ Enhanced information on writing to a transmit channel and reading from a receive
channel

■ Modified procedures in the “Programming the DW_apb_i2s” chapter

■ Modified parameter descriptions

■ Updated databook to new template for consistency with other IIP/VIP/PHY
databooks

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Revision History

1.04a May 2009 Removed references to QuickStarts, as they are no longer supported

1.04a Oct 2008 Version change for 2008.10a release

1.03a Jun 2008 Version change for 2008.06a release

1.02b Apr 2008 Corrected gating relationship of sclk and sclk_gate

1.02b Dec 2007 ■ Updated for revised installation guide and consolidated release notes titles

■ Changed references of “Designware AMBA” to simply “DesignWare”

1.02b Jun 2007 Version change for 2007.06a release

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Revision History DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Preface

Preface

This databook provides information that you need to interface the DW_apb_i2s to the Advanced Peripheral
Bus (APB). The DW_apb_i2s conforms to the AMBA Specification, Revision 2.0 from Arm®.

The information in this databook includes an overview, pin and parameter descriptions, a memory map,
and functional behavior of the component. An overview of the testbench, a description of the tests that are
run to verify the coreKit, and synthesis information for the component are also provided.

Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Functional Description” describes the functional operation of the DW_apb_i2s.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_apb_i2s.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_apb_i2s signals.

■ Chapter 5, “Register Descriptions” describes the programmable registers of the DW_apb_i2s.

■ Chapter 6, “Programming the DW_apb_i2s” provides information needed to program the configured
DW_apb_i2s.

■ Chapter 7, “Verification” provides information on verifying the configured DW_apb_i2s.

■ Chapter 8, “Integration Considerations” includes information you need to integrate the configured
DW_apb_i2s into your design.

■ Appendix A, “Synchronizer Methods”, documents the synchronizer methods (blocks of synchronizer
functionality) used in DW_apb_i2s to cross clock boundaries.

■ Appendix B, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals chapter.

■ Appendix C, “Glossary” provides a glossary of general terms.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Preface DesignWare DW_apb_i2s Databook

Related Documentation
■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using

DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA 2,
see the Guide to Documentation for DesignWare Synthesizable Components for AMBA 2 and AMBA 3 AXI.

The DW_apb_i2s component interfaces to the I2S bus, which is protected by patents held by Philips (NXP).
Synopsys does not convey permission for I2S use; you must obtain this permission directly from Philips
(NXP). Additionally, DW_apb_i2s conforms to the I2S Bus Specification from Philips (NXP). For licensing
information and to obtain this specification, see the Philips (NXP) web site.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the requested
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained, your
issue is automatically routed to a support engineer who is experienced with your product. The
Sub Product entry is critical for correct routing.

http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
https://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Preface

Go to http://solvnet.synopsys.com/EnterACall and click Open A Support Case to enter a call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: product version number
■ Problem Type:
■ Priority:
■ Title: DW_apb_i2s
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified earlier) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
https://www.synopsys.com/support/global-support-centers.html

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare APB Advanced
Peripherals.

Table 1-1 DesignWare APB Advanced Peripherals – Product Code: 3772-0

Component Name Description

DW_apb_i2c A highly configurable, programmable master or slave i2c device with an APB slave interface

DW_apb_i2s A configurable master or slave device for the three-wire interface (I2S) for streaming stereo
audio between devices

DW_apb_ssi A configurable, programmable, full-duplex, master or slave synchronous serial interface

DW_apb_uart A programmable and configurable Universal Asynchronous Receiver/Transmitter (UART)
for the AMBA 2 APB bus

http://solvnet.synopsys.com/EnterACall
mailto:support_center@synopsys.com
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Preface DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

1
Product Overview

This chapter describes the DesignWare APB Inter-IC Sound (I2S) Bus (referred to as DW_apb_i2s), which is
a serial link designed for digital audio systems. The DW_apb_i2s component is an AMBA 2.0-compliant
Advanced Peripheral Bus (APB) slave device and is part of the family of DesignWare Synthesizable
Components.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_apb_i2s Databook

Figure 1-1 Example of DW_apb_i2s in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/DW_apb_i2s_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/DW_axi_rs_databook.pdf

https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 17SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Product Overview

You can connect, configure, synthesize, and verify the DW_apb_i2s within a DesignWare subsystem using
coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_apb_i2s component,
you might prefer to use coreConsultant, documentation for which is available in the coreConsultant User
Guide.

1.2 General Product Description
The DW_apb_i2s is a configurable, synthesizable, and programmable component designed to be used in
systems that process digital audio signals, such as:

■ A/D and D/A converters

■ digital signal processors

■ error correction for compact disc and digital recording

■ digital filters

■ digital input/output interfaces

The Inter-IC Sound (I2S) Bus is a simple three-wire serial bus protocol developed by Philips to transfer
stereo audio data. The bus only handles the transfer of audio data; hence control and subcoding signals
need to be transferred separately using a different bus protocol (such as I2C).

1.2.1 DW_apb_i2s Features

DW_apb_i2s has the following features:

■ APB data bus widths of 8, 16, and 32 bits

■ I2S transmitter and/or receiver based on the Philips I2S serial protocol

■ Configurable number of stereo channels (up to 4) for both transmitter and receiver

■ Full duplex communication due to the independence of transmitter and receiver

■ Asynchronous clocking of APB bus and I2S sclk

■ Master or slave mode of operation

■ Audio data resolutions of 12, 16, 20, 24, and 32 bits

■ External sclk gating and enable signals

■ Configurable FIFO depth of 2, 4, 8, and 16 words, where the wordsize is determined by
I2S_RX_WORDSIZE_x or I2S_TX_WORDSIZE_x

■ Configurable support for programmable DMA registers

■ Programmable FIFO thresholds

■ Component parameters for configurable software driver support

■ Support for DMA Hardware Handshaking Interface

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_apb_i2s Databook

1.2.2 DW_apb_i2s Block Diagram

Figure 1-2 illustrates a block diagram of the DW_apb_i2s.

Figure 1-2 Block Diagram of DW_apb_i2s

1.2.3 I2S Terminology

The following terms are used throughout this manual and are defined as follows

■ sclk – serial clock

■ ws – word select

■ sd – serial data

■ Transmitter – device that places data on the sd line and is clocked by sclk and ws

■ Receiver – device that receives data from the sd line and is clocked by sclk and ws

■ Master – when configured as a master, DW_apb_i2s initializes the ws signal and supplies the clock
gating and clock enabling signals

■ Slave – when configured as a slave, DW_apb_i2s responds to externally generated sclk and ws
signals

1.2.4 Overview of DW_apb_i2s

The bus consists of a serial data line (sd), a word select line (ws), and a serial clock (sclk). The serial data line
is time multiplexed to allow the transfer of two data streams (such as, left and right stereo data).
DW_apb_i2s can be configured to have up to four data channels for both transmit and receive operations. In
essence, if you configured DW_apb_i2s with the maximum channels for transmitter and receiver
transactions, there would be a total of eight data lines in addition to the serial clock and word select—10
wires total.

DW_apb_i2s

APB Slave
Interface

I2S
Register

Block

TX FIFOs

I2S
Clock

RX FIFOs

I2S
Transmitter

Block

I2S
Receiver

Block

Generation
DMA

Interface

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Product Overview

Figure 1-3 illustrates three simple system configurations for the DW_apb_i2s component. Note that the
examples show a second instantiation of the DW_apb_i2s component, which acts as the receiver configured
as either a slave or master.

Figure 1-3 Simple System Configurations for DW_apb_i2s

Examples 1 and 2 in the figure show that either the transmitter or the receiver can act as the bus master. The
master is responsible for generating the shared sclk and ws clocking signals. In complex systems where
there may be several transmitters and receivers, a separate system master can be used. As illustrated in
example 3 in the figure, this system master can also be combined with one of the transmitters or receivers in
the system. The “controller” in this example is enabled and disabled by configuring the component to act as
a master and by programming the clock enable and clock configuration registers.

The serial data is transmitted in two’s complement format with the most significant bit (MSB) first. This
means that the transmitter and receiver can have different word lengths, and neither the transmitter nor
receiver needs to know what size words the other can handle. If the word being transferred is too large for
the receiver, the least significant bits (LSB) are truncated. Similarly, if the word size is less than what the
receiver can handle, the data is zero padded.

The word select line is used to time the multiplexed data streams. For instance, when ws is low, the word
being transferred is left stereo data; when ws is high, the word being transferred is right stereo data. This
format is illustrated in Figure 1-4. For standard I2S formats, the MSB of a word is sent one sclk cycle after a

sclk

ws

sd

sclk

ws

sd

DW_apb_i2s
Transmitter

(Master)

DW_apb_i2s(2)

DW_apb_i2s(2)
Receiver
(Master)

DW_apb_i2s
Transmitter

(Slave)

DW_apb_i2s
Transmitter

(Slave)

DW_apb_i2s(2)
Receiver
(Slave)

sclk

ws

sd

DW_apb_i2s
Controller
(Master)

1

2

3

(Receiver)
(Slave)

https://solvnet.synopsys.com
www.designware.com

20 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_apb_i2s Databook

ws change. Serial data sent by the transmitter can be synchronized with either the negative edge or positive
edge of the sclk signal. However, the receiver must latch the serial data on the rising edge of sclk.

Figure 1-4 I2S Stereo Frame Format

For more details about the operation of the DW_apb_i2s, see “Functional Description” on page 23.

Source code for this component is available on a per-project basis as a DesignWare core; contact your local
sales office for the details.

1.3 Standards Compliance
The DW_apb_i2s component conforms to the AMBA Specification, Revision 2.0 from Arm®. Readers are
assumed to be familiar with this specification.

The DW_apb_i2s component interfaces to the I2S bus, which is protected by patents held by Philips (NXP).
Synopsys does not convey permission for I2S use; you must obtain this permission directly from Philips
(NXP). Additionally, DW_apb_i2s conforms to the I2S Bus Specification from Philips (NXP). For licensing
information and to obtain this specification, see the Philips (NXP) web site.

1.4 Verification Environment Overview
The DW_apb_i2s includes an extensive verification environment, which sets up and invokes your selected
simulation tool to execute tests that verify the functionality of the configured component. You can then
analyze the results of the simulation.

The “Verification” on page 155 chapter discusses the testbench of DW_apb_i2s.

1.5 Licenses
Before you begin using the DW_apb_i2s, you must have a valid license. For more information, see
“Licenses” section in the DesignWare Synthesizable Components for AMBA 2, AMBA 3 AXI, and AMBA 4 AXI
Installation Guide.

1.6 Where To Go From Here
At this point, you may want to get started working with the DW_apb_i2s component within a subsystem or
by itself. Synopsys provides several tools within its coreTools suite of products for the purposes of
configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

SCLK

Left RightWS

Data MSB LSB MSB LSBMSB LSB MSB LSB

sclk

ws

data

http://www.arm.com/products/solutions/AMBA_Spec.html
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 21SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Product Overview

For more information about configuring, synthesizing, and verifying just your DW_apb_i2s component, see
DesignWare Synthesizable Components for AMBA 2 User Guide.

For more information about implementing your DW_apb_i2s component within a DesignWare subsystem
using coreAssembler, see DesignWare Synthesizable Components for AMBA 2 User Guide.

https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf

22 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

2
Functional Description

This chapter describes the functional behavior of DW_apb_i2s in more detail.

■ “Overview” on page 23

■ “DW_apb_i2s Enable” on page 24

■ “DW_apb_i2s as Transmitter” on page 25

■ “DW_apb_i2s as Receiver” on page 31

■ “Clock Generation (Master Mode)” on page 36

■ “Transaction Example” on page 38

■ “APB Interface” on page 39

■ “DW_apb_i2s Registers” on page 39

■ “DMA Handshaking Interface” on page 40

2.1 Overview
The I2S bus can only handle audio data transmissions; subcoding and controls are handled by another
device, such as an I2C. The I2S protocol requires a minimum of three wires—data (sd), word select (ws), and
serial clock (sclk)—keeping the design simple and the pin count minimal. However, DW_apb_i2s can be
configured to have up to four channels for transmit and receive operations, making the maximum
configured wire count 10.

The component also can be configured to operate as either a master or a slave (the default mode). When
configured as a master, DW_apb_i2s initializes the word select (ws_out signal) and supplies the clock gating
(sclk_gate) and clock enabling (sclk_en) signals. When operating as a slave, DW_apb_i2s responds to
externally generated sclk and ws signals.

Whether configured as a master or slave, an external sclk and an inverted version of sclk need to be
supplied to the device through input signals sclk and sclk_n.

DW_apb_i2s supports the standard I2S frame format for transmitting and receiving data —the MSB of a
word is sent one sclk cycle after a word select change.

https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

Figure 2-1 shows the block diagram of DW_apb_i2s.

Figure 2-1 DW_apb_i2s Block Diagram

2.2 DW_apb_i2s Enable
You must enable the DW_apb_i2s component before any data can be received or transmitted into the FIFOs.
To enable the component, set the I2S Enable (IEN) bit of the I2S Enable Register (IER) to 1. When you disable
the device, it acts as a global disable. To disable DW_apb_i2s, set IER[0] to 0.

After disable, the following events occur:

■ TX and RX FIFOs are cleared, and read/write pointers are reset;

■ Any data in the process of being transmitted or received is lost;

■ All other programmable enables (such as transmitter/receiver block enables and individual TX/RX
channel enables) in the component are overridden;

APB
Interface

I2S
Register

Block

I2S Clock

Sync

I2S

pclk

TX FIFOs

Generation

Transmitter

I2S
Receiver

Block

Block

sclk sclk_npclk domain sclk domain

tx_data

tx_interrupts

RX FIFOs

Sync

rx_data

rx_interrupts

tx_configure

rx_configure

WS

SDO0

SDO2

SDO3

SDO1

SDI0

SDI1

SDI2

SDI3

WS_intSCLK_int

pwrite

psel

penable

paddr

pwdata

prdata

(Master Mode)

 dma_rx_ack(_n)

dma_tx_ack(_n)

interrupts

 dma_rx_single(_n)
 dma_tx_single(_n)

 dma_tx_req(_n)
dma_rx_req(_n)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

■ Generation of master mode clock signals sclk_en, ws_out and sclk_gate are disabled (for instance,
they are held low).

When DW_apb_i2s is enabled and configured as a master, the device always starts in the left stereo
data cycle (ws = 0), and one sclk cycle later transitions to the right stereo data cycle (ws = 1). This
allows for half a frame of sclks to write data to the TX FIFOs and to ensure that any connected slave
receivers do not miss the start of the data frame (for instance, the ws 1-to-0 transition) once the sclk
restarts. (When DW_apb_i2s is configured as a slave, ws is externally supplied.)

On reset, the IER[0] is set to 0 (disable).

2.3 DW_apb_i2s as Transmitter
The DW_apb_i2s component can be configured to support up to four stereo I2S transmit (TX) channels.
These channels can operate in either master or slave mode. By default, DW_apb_i2s is configured in slave
mode. Stereo data pairs (such as, left and right audio data) written to a TX channel through the APB bus are
shifted out serially on the appropriate serial data out line (sdo0, sdo1, sdo2, sdo3). The shifting is timed with
respect to the serial clock (sclk) and the word select line (ws).

The instantiation of the I2S transmitter block and the number of TX channels is determined by the two
configuration parameters: Transmitter Block Enabled (I2S_TRANSMITTER_BLOCK) and Number of
Transmit Channels (I2S_TX_CHANNELS), respectively. By default, DW_apb_i2s is configured with one
transmit channel. For more information about these parameters, see “Parameter Descriptions” on page 55.

https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

Figure 2-2 illustrates the basic usage flow for DW_apb_i2s when it acts as a transmitter.

Figure 2-2 Basic Usage Flow – DW_apb_i2s as Transmitter

2.3.1 Transmitter Block Enable

The Transmitter Block Enable (TXEN) bit of the I2S Transmitter Enable Register (ITER) globally turns on
and off all of the configured TX channels. To enable the transmitter block, set ITER[0] to 1. To disable the
block, set ITER[0] to 0.

When the transmitter block is disabled, the following events occur:

■ Outgoing data is lost and the channel outputs are held low;

■ Data in the TX FIFOs are preserved and the FIFOs can be written to;

IDLE

Software Flow

Enable
DW_apb_i2s

IER[0] = 1

Fill TX FIFOs
by writing data to
LTHR and RTHR

Enable
Transmitter block

ITER[0] = 1

until filled

No

Yes

Enable
Clock Generation

CER[0] = 1

Master
mode?

TX DMA
enabled?

Fill TX FIFOs
by writing data

through TXDMA

Enable
Transmitter block

ITER[0] = 1

Yes

No

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

■ Any previous programming (like changes in word size, threshold levels, and so on) of the TX
channels is preserved; and

■ Any individual TX channel enables are overridden.

When the transmitter block is enabled, if there is data in the TX FIFOs, the channel resumes
transmission on the next left stereo data cycle (such as when the ws line goes low).

When the block is disabled, you can perform any of the following procedures:

■ Program (or further program) TX channel registers

■ Flush the TX FIFOs by programming the Transmitter FIFOs Reset bit of the Transmitter FIFO Flush
Register (TXFFR[0] = 1)

■ Flush an individual channel’s TX FIFO by programming the Transmit Channel FIFO Reset (TXCHFR)
bit of the Transmit FIFO Flush Register (TFFx[0] = 1, where x is the channel number)

On reset, the ITER[0] is set to 0 (disable).

2.3.2 Transmit Channel Enable

Each transmit channel has its own enable/disable that can be set independently of the other channels to
allow the reprogramming of a channel and to flush the channel’s TX FIFOs while other TX channels are
transmitting. This enable/disable is controlled by bit 0 of the Transmitter Enable Register (TERx, where x is
the channel number). For example, to enable TX Channel 1, write 1 to TER1[0]. To disable this channel, write
0 to TER1[0].

When a TX channel is disabled, the following occurs:

■ Outgoing stereo data is lost;

■ Channel output is held low;

■ Data in the TX FIFO is preserved, and the FIFO can be written to; and

■ Any previous programming of the TX channel’s registers is preserved, and the registers can be
further reprogrammed.

When a TX channel is disabled, you can flush the channel’s TX FIFO by programming the Transmit Channel
FIFO Reset (TXCHFR) bit of the Transmit FIFO Flush (TFFx[0] = 1, where x is the channel number). When
the TX channel is enabled, if there is data in the TX FIFO, the channel resumes transmission on the next left
stereo data cycle (such as, when the ws line goes low).

On reset, the TFFx[0] is set to 1 (enable).

2.3.3 Transmit Channel Audio Data Resolution

Each TX channel is initially configured with a maximum audio data resolution as set by the Maximum
Audio Resolution parameter (I2S_TX_WORDSIZE_x, where x is the channel number). A TX channel can be
reprogrammed during operation to any supported audio data resolution that is less than
I2S_TX_WORDSIZE_x.

For example, if the TX Channel 2 is initially configured with a 32-bit audio resolution, it can be programmed
to support a resolution of 12, 16, 20, 24, or 32 bits. However, if TX Channel 3 is initially configured with a 20-
bit audio resolution, it can only be programmed to support resolution of 12, 16, or 20 bits. Any other

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

resolution values are considered invalid. Furthermore, if the channel is programmed with an invalid audio
resolution, the TX channel defaults to I2S_TX_WORDSIZE_x.

Reprogramming of the audio resolution ensures that the MSB of the data is still transmitted first if the
resolution of the data to be sent is reduced. Changes to the resolution are programmed through the Word
Length (WLEN) bits of the Transmitter Configuration Registers (TCRx[2:0], where x is the channel number).
The channel must be disabled prior to any resolution changes.

On reset or if an invalid resolution is selected, the TX channel’s audio data resolution defaults back to the
initial parameter setting of I2S_TX_WORDSIZE_x. For more information about this parameter, see
“Parameter Descriptions” on page 55.

2.3.4 Transmit Channel FIFOs

Each Transmit Channel has two FIFO banks for left and right stereo data. The FIFOs can be configured as
determined by the I2S_FIFO_DEPTH_GLOBAL parameter. The FIFO width is determined by the
“Maximum Audio Resolution – Transmit Channel X” parameter (I2S_TX_WORDSIZE_x, where x is the
channel number).

There are several ways to clear the TX FIFOs and reset the read/write pointers as described as follows;

■ on reset

■ by disabling DW_apb_i2s (IER[0] = 0)

■ by flushing the transmitter block (TXFFR[0] = 1)

■ by flushing an individual TX channel (TFFx[0] = 1, where x is the channel number)

You must disable the transmitter block/channel before the transmitter block and individual channel FIFO
can be flushed.

The TX FIFO Empty Threshold Trigger Level parameter (I2S_TX_FIFO_THRE_x, where x is the channel
number) sets the default trigger threshold level for the TX FIFO. The trigger level can be set to any value in
the range of 0 to I2S_TX_FIFO_x – 1. When this level is reached, a transmit channel empty interrupt is
generated. This level can be reprogrammed during operation by writing to the Transmit Channel Empty
Trigger (TXCHET) bits of the Transmit FIFO Configuration Register (TFCRx[3:0], where x is the channel
number).

You must disable the TX channel prior to changing the trigger level.

For more information about the I2S_FIFO_DEPTH_GLOBAL and I2S_TX_FIFO_THRE_x parameters, see
“Parameter Descriptions” on page 55.

2.3.5 Transmit Channel Interrupts

All interrupts in DW_apb_i2s can be configured as active low or active high by setting the “Polarity of
Interrupt Signals is Active High?” parameter (I2S_INTR_POL). Each TX channel generates two interrupts:
TX FIFO Empty and Data Overrun.

■ TX FIFO Empty interrupt – This interrupt is asserted when the empty trigger threshold level for the
TX FIFO is reached. When this interrupt is included on the I/O, it appears on the outputs
tx_emp_x_intr (where x is the channel number). A TX FIFO Empty interrupt is cleared by writing
data to the TX FIFO to bring its level above the empty trigger threshold level for the channel.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

■ Data Overrun interrupt –This interrupt is asserted when an attempt is made to write to a full TX FIFO
(any data being written is lost while data in the FIFO is preserved). When this interrupt is included
on the I/O, it appears on the outputs tx_or_x_intr (where x is the channel number). A Data Overrun
interrupt is cleared by reading the Transmit Channel Overrun (TXCHO) bit [0] of the Transmit
Overrun Register (TORx, where x is the channel number).

The interrupt status of any TX channel can be determined by polling the Interrupt Status Register (ISRx,
where x is the channel number). The TXFE bit [4] indicates the status of the TX FIFO Empty interrupt, while
the TXFO bit [5] indicates the status of the Data Overrun interrupt.

Both the TX FIFO Empty and Data Overrun interrupts can be masked off by writing 1 in the Transmit
Empty Mask (TXFEM) and Transmit Overrun Mask (TXFOM) bits of the Interrupt Mask Register (IMRx,
where x is the channel number), respectively. This prevents the interrupts from driving their output lines,
however, the ISRx always shows the current status of the interrupts regardless of any masking.

The setting of the “Multiple Interrupt Output Ports Present?” configuration parameter
(I2S_INTERRUPT_SIGNALS) affects whether these two interrupts are included on DW_apb_i2s’s interface.
Table 2-1 shows the specific interrupt signal to appear on the I/O according to the setting of
I2S_INTERRUPT_SIGNALS.

For more information about the I2S_INTERRUPT_SIGNALS parameter, see “Parameter Descriptions” on
page 55.

2.3.6 Writing to a Transmit Channel

The stereo data pairs to be transmitted by a TX channel are written to the TX FIFOs through the Left
Transmit Holding Register (LTHRx, where x is the channel number) and the Right Transmit Holding
Register (RTHRx, where x is the channel number). All stereo data pairs must be written using the following
two-stage process:

1. Write left stereo data to LTHRx

2. Write right stereo data to RTHRx.

Table 2-1 TX Channel Interrupt Signals on I/O

Interrupt Signal on I/O

I2S_INTERRUPT_SIGNALS = True (multiple interrupts on I/O)

TX FIFO Empty tx_emp_x_intr

Data Overrun tx_or_x_intr

I2S_INTERRUPT_SIGNALS = False (shared single interrupt on I/O)

combined interrupt signal intr

NoteNoteNoteNote You must write stereo data to the device in this order, otherwise, the interrupt and status lines
values are invalid, and the left/right stereo pairs might be transmitted out of sync.

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

When TX DMA is enabled (I2S_TX_DMA = 1), data to be transmitted by TX channels are written to the TX
FIFOs through the TXDMA register rather than through LTHRx and RTHRx. Data is written cyclically
through all enabled TX channels starting from the lowest-numbered enabled channel. After a stereo data
pair is transmitted, the component points to the next enabled channel.

The following example describes the behavior of the TXDMA register for a component that has been
configured with four Transmit channels, where Channels 0 and 2 are enabled.

Order of transmitted data:

1. Ch0 — Left Data

2. Ch0 — Right Data

3. Ch2 — Left Data

4. Ch2 — Right Data

5. Ch0 — Left Data

6. Ch0 — Right Data, and so on

The RTXDMA register resets TXMDA to the lowest-enabled Channel. The RTXDMA register can be written
to at any stage of the TXDMA transmit cycle; however, it has no effect when the component is in the middle
of a stereo pair transmit.

The following example describes the operation of this register for a system with four Transmit channels,
where all the channels are enabled.

Order of transmitted data:

1. Ch0 — Left Data

2. Ch0 — Right Data

3. RTXDMA Reset

4. Ch0 — Left Data

5. Ch0 — Right Data

6. Ch1 — Left Data

7. RTXDMA Reset — No effect (read not complete)

8. Ch1 — Right Data, and so on.

9. Ch2 — Left Data

10. Ch2 — Right Data

11. RTXDMA Reset

12. Ch0 — Left Data

13. Ch0 — Right Data

When DW_apb_i2s is enabled, if the TX FIFO is empty and data is not written to the FIFOs before the next
left cycle, the channel outputs zeros for a full frame (left and right cycle). Transmission only commences if

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

there is data in the TX FIFO prior to the transition to the left data cycle. In other words, if the start of the
frame is missed, the channel output idles until the next available frame.

If the APB bus width is less than the configured or programmed audio resolution, multiple writes are
required to write each stereo word. For example, if the Maximum Audio Resolution for Transmit Channel 1
is 20 (I2S_TX_WORDSIZE_1 = 20) and APB_DATA_WIDTH = 8, then three writes per register are required
to write data to LTHR1 and RTHR1. However, if the audio resolution of the channel is reprogrammed to be
12 bits, then only two writes per register are required (the third write is ignored by the device). Thus, if the
audio resolution is reduced, there is no need to perform the extra write to pad the data with leading zeros.
For more information about these parameters, see “Parameter Descriptions” on page 55.

2.4 DW_apb_i2s as Receiver
DW_apb_i2s can be configured to support up to four stereo I2S receive (RX) channels. These channels can
operate in either master or slave mode. By default, DW_apb_i2s is configured in slave mode. Stereo data
pairs (such as, left and right audio data) are received serially from a data input line (sdi0, sdi1, sdi2, sdi3).
These data words are stored in RX FIFOs until they are read through the APB bus. The receiving is timed
with respect to the serial clock (sclk) and the word select line (ws).

The instantiation of the receiver block and the number of RX channels is determined by two configuration
parameters: Receiver Block Enabled (I2S_RECEIVER_BLOCK) and Number of Receive Channels
(I2S_RX_CHANNELS), respectively. By default, DW_apb_i2s is configured with one receive channel. For
more information about configuration parameters, see “Parameter Descriptions” on page 55.

NoteNoteNoteNote Data should only be written to the FIFO when it is not full. Any attempt to write to a full FIFO
results in that data being lost and a Data Overrun interrupt being generated.

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

Figure 2-3 illustrates the basic usage flow for DW_apb_i2s when it acts as a receiver.

Figure 2-3 Basic Usage Flow – DW_apb_i2s as Receiver

IDLE

Software Flow

Enable
DW_apb_i2s

IER[0] = 1

Read ISR[0]
when bit goes high
default trigger level

Enable
Receiver block

IRER[0] = 1

has been reached

No

Yes

Enable
Clock Generation

CER[0] = 1

Master
mode?

Read contents of
LRBR and RRBR

Read contents of
LRBR/RRBR

through RXDMA

RX DMA
enabled?

No

Yes

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

2.4.1 Receiver Block Enable

The Receiver Block Enable (RXEN) bit of the I2S Receiver Enable Register (IRER) enables/disables all
configured RX channels. To enable the receiver block, set IRER[0] to ‘1.’ To disable the block, set this bit to
‘0.’

When the receiver block is disabled, the following events occur:

■ Incoming data is lost;

■ Data in the RX FIFOs is preserved and the FIFOs can be read;

■ Any previous programming (such as changes in word size, threshold levels, and so on) of the RX
channels is preserved; and

■ Any individual RX channel enable is overridden. Enabling the channel resumes receiving on the next
left stereo data cycle (for instance, when ws goes low).

When the block is disabled, you can perform any of the following procedures:

■ Program (or further program) the RX channel registers;

■ Flush the RX FIFOs by programming the Receiver FIFOs Reset (RXFR) bit of the Receiver FIFO Flush
Register (RXFFR[0] = 1).

■ Flush an individual channel’s RX FIFO by programming the Receive Channel FIFO Reset (RXCHFR)
bit of the Receive FIFO Flush Register (RFFx [0] = 1, where x is the channel number).

On reset, IRER[0] is set to 0 (disable).

2.4.2 Receive Channel Enable

Each RX channel has its own enable/disable that can be set independently of the other channels to allow
programming of the channel and to clear the channel’s RX FIFO while other RX channels are still receiving
data. This enable/disable is controlled by bit 0 of the Receiver Enable Register (RERx[0], where x is the
channel number). For example, to enable RX Channel 1, write 1 to RER1[0]. To disable this channel, write 0
to RER1[0].

When the RX channel is disabled, the following occurs:

■ Incoming data is lost;

■ Data in the RX FIFO is preserved;

■ FIFO can be read;

■ Previous programming of the RX channel is preserved; and

■ RX channel can be further programmed.

When the RX channel or block is disabled, you can flush the channel’s RX FIFO by writing 1 in bit 0 of the
Receive FIFO Flush Register (RFFx, where x is the channel number). When the channel is enabled, it
resumes receiving on the next left stereo data cycle (for instance. when ws line goes low).

On reset, the RFFx[0] is set to 1 (enable).

https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

2.4.3 Receive Channel Audio Data Resolution

Each RX channel is initially configured with a maximum audio data resolution as set by the “Max Audio
Resolution – Receive Channel X” parameter (I2S_RX_WORDSIZE_x, where x is the channel number). An RX
channel can be programmed during operation to any supported audio data resolution that is less than
I2S_RX_WORDSIZE_x.

For example, if the RX Channel 2 is initially configured with a 32-bit audio resolution, it can be programmed
to support resolutions of 12 16, 20, 24, or 32 bits. However, if RX Channel 3 is initially configured with a 20-
bit audio resolution, it can only be programmed to support resolutions of 12, 16, or 20 bits. Any other
resolution values are considered invalid. Additionally, if the channel is programmed with an invalid audio
resolution, the RX channel defaults to I2S_RX_WORDSIZE_x.

This programming ensures that the LSB of the received data is placed in the LSB position of the RX FIFO if
the resolution of the data being received is reduced. Changes to the resolution are programmed through the
Word Length (WLEN) bits of the Receive Configuration registers (RCRx[3:0], where x is the channel
number). The channel must be disabled prior to any resolution changes.

The RX channel also supports unknown data resolutions. If the received word is greater than the configured
channel resolution, the least significant bits are ignored. If the received word is less than the
configured/programmed channel resolution, the least significant bits are padded with zeros.

On reset or if an invalid resolution is selected, the RX channel’s audio data resolution defaults back to the
initial parameter setting of I2S_RX_WORDSIZE_x.

For more information about the I2S_RX_WORDSIZE_x parameter, see “Parameter Descriptions” on
page 55.

2.4.4 Receive Channel FIFOs

Each Receive Channel has two FIFO banks for left and right stereo data. The FIFOs can be configured as
determined by the “FIFO Depth for RX and TX Channels?” parameter (I2S_FIFO_DEPTH_GLOBAL). The
FIFO width is determined by the configured maximum data resolution for the channel
(I2S_RX_WORDSIZE_x, where x is the channel number).

The RX FIFOs can be cleared and the read/write pointers reset in a number ways, as described as follows:

■ on reset

■ by disabling DW_apb_i2s (IER[0] = 0)

■ by flushing the receiver block (RXFFR[0] = 1)

■ by flushing an individual RX channel (RFFx[0] = 1, where x is the channel number)

Before you flush the receiver block or individual channels, you must disable the receiver block or channel.

The RX FIFO Data Available Level parameter (I2S_RX_FIFO_THRE_x, where x is the channel number) sets
the default data available trigger level for the RX FIFO. When this level is reached, a RX channel data
available interrupt is generated. The valid values are 0 to FIFO_DEPTH–1, which correspond to trigger
levels of 1 to FIFO_DEPTH (for example, Trigger Level = Configured Value + 1). This level can be
reprogrammed during operation through the Receive Channel Data Trigger (RXCHDT) bits of the Receive
FIFO Configuration Register (RFCRx[3:0], where x is the channel number). The RX channel needs to be
disabled prior to any changes in the trigger level.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

For more information about I2S_RX_FIFO_THRE_x and I2S_RX_WORDSIZE_x parameters, see “Parameter
Descriptions” on page 55.

2.4.5 Receive Channel Interrupts

All interrupts in DW_apb_i2s can be configured as active low or active high through the “Polarity of
Interrupts Signals is Active High?” parameter (I2S_INTR_POL). Each RX channel generates two interrupts:
RX FIFO Data Available and Data Overrun.

■ RX FIFO Data Available interrupt – This interrupt is asserted when the trigger level for the RX FIFO
is reached. When this interrupt is included on the I/O, it appears on the outputs rx_da_x_intr (where
x is the channel number). This interrupt is cleared by reading data from the RX FIFO until its level
drops below the data available trigger level for the channel.

■ Data Overrun interrupt – This interrupt is asserted when an attempt is made to write received data to
a full RX FIFO (any data being written is lost while data in the FIFO is preserved). When this
interrupt is included on the I/O, it appears on the outputs rx_or_x_intr (where x is the channel
number). This interrupt is cleared by reading the Receive Channel Overrun (RXCHO) bit [0] of the
Receive Overrun Register (RORx, where x is the channel number).

The interrupt status of any RX channel can be determined by polling the Interrupt Status Register (ISRx,
where x is the channel number). The RXDA bit [0] indicates the status of the RX FIFO Data Available
interrupt; the RXFO bit [1] indicates the status of the RX FIFO Data Overrun interrupt.

Both the Receive Empty Threshold and Data Overrun interrupts can be masked by writing 1 in the Receive
Empty Threshold Mask (RDM) and Receive Overrun Mask (ROM) bits of the Interrupt Mask Register
(IMRx, where x is the channel number), respectively. This prevents the interrupts from driving their output
lines, however, the ISRx always shows the current status of the interrupts regardless of any masking.

The setting of the “Multiple Interrupt Output Ports Present?” configuration parameter
(I2S_INTERRUPT_SIGNALS) affects whether these two interrupts are included on DW_apb_i2s’s interface.
Table 2-2 shows the specific interrupt signal to appear on the I/O according to the setting of
I2S_INTERRUPT_SIGNALS

Table 2-2 RX Channel Interrupt Signals on I/O

For more information about the I2S_INTERRUPT_SIGNALS parameter, see “Parameter Descriptions” on
page 55.

Interrupt Signal on I/O

I2S_INTERRUPT_SIGNALS = True (multiple interrupts on I/O)

RX FIFO Data Available rx_da_x_intr

Data Overrun rx_or_x_intr

I2S_INTERRUPT_SIGNALS = False (shared single interrupt on I/O)

combined interrupt signal intr

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

2.4.6 Reading from a Receive Channel

The stereo data pairs received by a RX channel are written to the left and right RX FIFOs. These FIFOs can
be read through the Left Receive Buffer Register (LRBRx, where x is the channel number) and the Right
Receive Buffer Register (RRBRx, where x is the channel number). All stereo data pairs must be read using
the following two-stage process:

1. Read the left stereo data from LRBRx.

2. Read the right stereo data from RRBRx.

When RX DMA is enabled (I2S_RX_DMA = 1), data can be read from RX FIFOs through the RXDMA
register rather than through LRBRx and RRBRx. The RXDMA register cyclically accesses the RX FIFOs of all
enabled RX channels similarly to the TXDMA register.

The RRXDMA register resets the RXDMA read cycle. This register provides the same functionality as the
RTXDMA register, but targets RXDMA instead.

2.5 Clock Generation (Master Mode)
The clock generation block is only instantiated when the “Is an I2S Master?” parameter (I2S_MODE_EN) is
checked (“True”). When DW_apb_i2s is a master, it initializes the word select signal (ws_out) and supplies
the clock gating (sclk_gate) and clock enabling (sclk_en) signals. Additionally, the sclk and sclk_n inputs are
included on the I/O regardless of whether the device is a master or a slave.

2.5.1 Clock Generation Enable

The Clock Generation Enable (CLKEN) bit of the Clock Enable Register (CER) enables and disables the
master mode clock signals: ws_out, sclk_en, and sclk_gate. To enable these signals, set CER[0] to 1; to
disable them, set this bit to 0, in which case ws_out is held low (ws_out = 0).

When the CLKEN bit is disabled, any incoming or outgoing data is lost. However, data already in the RX
and TX FIFOs are preserved. After this bit is enabled, transmission recommences at the start of the next
stereo frame.

On enabling CER[0], ws_out always starts in the left stereo data cycle (ws_out = 0). One sclk cycle later, it
transitions to the right stereo data cycle (ws_out = 1); hence—0-to-1 transition. This allows for half a frame
of sclks to write data to the TX FIFOs and ensures that any connected slave receivers do not miss the start of
the data frame (the ws 1-to-0 transition) once the sclk restarts.

To further explain this behavior, the ws transitions—0-to-1 and 1-to-0—are used by the device to clock the
start of the right or left stereo data cycle. The transition 1-to-0 indicates the start of a new stereo data pair.
Because DW_apb_i2s is simple in terms of control, for every 1-to-0 transition, the device sends the next
entry in its FIFO (similarly, the Receiver assumes new data is being sent and starts receiving). On enabling
CER[0], the device starts with ws = 0 for one cycle and then transitions 0-to-1. This allows connected devices
to clock off the transition and determine which cycle they are in. However, because it is not 1-to-0 transition,
the devices do not have to start TX or RX with potential garbage (assuming FIFOs are empty prior to

NoteNoteNoteNote You must read the stereo data in this order to avoid the status and interrupt lines becoming out
of sync.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

enable). Additionally, the transmission ensures that after a clk_en, there is ample time to configure TX or RX
and to input some data for transmission before the start of the next frame.

The signal sclk_en is provided that can be AND’d with sclk to disable the clock when the master device is
disabled.

2.5.2 Word Select Generation

When DW_apb_i2s is configured as a master, the number of sclk cycles during which ws_out is held high or
low is determined by the “Has a Word Select Length of?” parameter (I2S_WS_LENGTH). However, this
setting can be reprogrammed during operation of the component by setting the Word Select Size (WSS) bits
[4:3] of the Clock Configuration Register (CCR). You must disable the Clock Generation block (CER[0] = 0)
before you can change the word select size.

The DW_apb_i2s supports 16, 24, or 32 sclk cycles per left/right ws cycle as illustrated in Figure 2-4.

Figure 2-4 Number of SCLK Cycles Per Left/Right WS Cycle

2.5.3 SCLK Gating

When DW_apb_i2s is configured as a master and the audio data resolution of the receive and transmit
channels is less than the current word select size, the sclk can be gated off for the remainder of the left/right
cycle, as illustrated in Figure 2-5. This gating is determined by the “Has a Serial Clock Gating of?”

NoteNoteNoteNote The sclk_en output cannot be used to gate the sclk inputs to the DW_apb_i2s master instance
that is driving sclk_en. It can only be used to gate the sclk inputs to a slave I2S device.

NoteNoteNoteNote The number of sclk cycles should be equal to or greater than the
I2S_RX_WORDSIZE_x/I2S_TX_WORDSIZE_x parameter setting of the configured channel
to prevent data loss. If this is not observed, the least significant bits of the transmission data
and/or the received data are truncated.

left right

sclk

ws_out

16/24/32 Clock Cycles 16/24/32 Clock Cycles

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

parameter (I2S_SCLK_GATE). However, this can be reprogrammed during operation of the component by
setting the SCLK Gating (SCLKG) bits [2:0] of the Clock Configuration Register (CCR).

Figure 2-5 Gating of SCLK

The Clock Generation Block must be disabled prior to any changes to sclk gating value. Since sclk_gate is 1
during the cycles that are to be gated off, the actual gating of sclk needs to be done externally by AND'ing
the inverse of the generated sclk_gate signal with sclk.

2.6 Transaction Example
In DW_apb_i2s, serial data is transmitted in two’s complement format with the most significant bit (MSB)
first. This means that the transmitter and receiver can have different word lengths, and neither the
transmitter nor receiver needs to know what size words the other can handle. If the word being transferred
is too large for the receiver, the least significant bits (LSB) are truncated. Similarly, if the word size is less
than what the receiver can handle, the data is zero padded.

The word select line is used to time the multiplexed data streams. For instance, when ws is low, the word
being transferred is left stereo data; when ws is high, the word being transferred is right stereo data. For
standard I2S formats, the MSB of a word is sent one sclk cycle after a ws change. Serial data sent by the
transmitter can be synchronized with either the negative edge or positive edge of the sclk signal. However,
the receiver must latch the serial data on the rising edge of sclk.

illustrates an example I2S transfer in which DW_apb_i2s is a slave. The IDLE state of Word Select line is 0.
Whenever the WS line makes a transition to 1, it means that after the next transition (0->1), the data starts
being received. Therefore, the DW_apb_i2s slave treats the transfer as a START condition. When the stereo
data is completely latched (signaled by Word Select Line going 0 again, also treated as start of new data
frame), the data is pushed into the internal FIFO.

NoteNoteNoteNote The sclk_gate output cannot be used to gate the sclk inputs to the DW_apb_i2s master
instance that is driving sclk_gate. It can only be used to gate the sclk inputs to a slave I2S
device.

left right

sclk

ws_out

16/24/32 Clock Cycles 16/24/32 Clock Cycles

SCLK Gating Size + 1 SCLK Gating Size + 1

sclk_gate

gated_sclk

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

Figure 2-6 I2S Transaction Example (DW_apb_i2s Slave)

2.7 APB Interface
The host processor accesses data, control, and status information on DW_apb_i2s through the APB
interface. DW_apb_i2s supports APB data bus widths of 8, 16, and 32 bits.

For more information about the APB Interface and data widths, see “Integration Considerations” on
page 159.

2.8 DW_apb_i2s Registers

2.8.1 Register Memory Map

An address definition (memory map) C header file is shipped with the DW_apb_i2s component. This
header file is when the DW_apb_i2s is programmed in a C environment. “Register Descriptions” on page 81
provides details of the DW_apb_i2s memory map. The DW_apb_i2s component is little endian. Regardless
of the APB bus width, aligning to 32-bit boundaries keeps the same memory map for all bus widths. The
APB bus reset and presetn signals resets all registers. The base address of DW_apb_i2s is not fixed and is
determined by the DW_apb component in the generation of the psel for DW_apb_i2s. The offset addresses
from the base address are used for each register.

For information about programming DW_apb_i2s using the software register described in this chapter, see
“Programming the DW_apb_i2s” on page 147.

2.8.2 Coherency

When a register to be written or read is narrower than the data bus width a coherency logic is not required,
and this logic is not implemented. It is possible for the Left Receive Buffer (LRBRx) and Right Receive Buffer
(RRBRx) registers to be larger than the data bus width, therefore coherency logic maybe required when
reading. It is also possible for the Left Transmit Holding (LTHRx) and Register Transmit Holding (RTHRx)
registers to be larger than the data bus width, therefore coherency logic maybe required when writing to
these registers. For a general discussion of coherency and the APB Interface, refer “Integration
Considerations” on page 159.

NoteNoteNoteNote
■ A read operation to an address location that contains unused bits results in 0 value being

returned on each of the unused bits.

■ The reset value for each register considers that all channels for both transmitter
and receiver blocks and master mode have been configured.

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

2.9 DMA Handshaking Interface

2.9.1 DMA Controller Interface

The DW_apb_i2s has an optional built-in DMA capability that can be selected at configuration time; it has a
handshaking interface to a DMA Controller to request and control transfers. The APB bus is used to perform
the data transfer to or from the DMA. While the DW_apb_i2s DMA operation is designed in a generic way
to fit any DMA controller as easily as possible, it is designed to work seamlessly, and best used, with the
DesignWare DMA Controller, the DW_ahb_dmac. The settings of the DW_ahb_dmac that are relevant to
the operation of the DW_apb_i2s are discussed here, mainly bit fields in the DW_ahb_dmac channel control
register, CTLx, where x is the channel number.

DW_apb_i2s supports DMA handshake interface when it is configured with I2S_HAS_DMA_INTERFACE
parameter set to 1. The I2S_DMA_HS_TYPE parameter selects DMA handshake interface type as described
below. The I2S_DMA_HS_TYPE parameter is enabled only when the I2S_HAS_DMA_INTERFACE
parameter is set to 1.

■ I2S_DMA_HS_TYPE=0 — Dedicated DMA handshake interface for each transmit and receive
channel.

■ I2S_DMA_HS_TYPE=1 — Single DMA handshake interface for each transmitter block and receiver
block; that is one DMA handshake interface for all transmit channels and one DMA handshake
interface for all receive channels.

The relevant DMA settings are discussed in the following sections.

2.9.1.1 Dedicated DMA handshake Interface, I2S_DMA_HS_TYPE=0

When the parameter I2S_DMA_HS_TYPE is set to 0, DW_apb_i2s supports dedicated DMA handshake
interface for each transmit and receive channel. For example, if DW_apb_i2s is configured with 4 transmit
and 4 receive channels, then the DW_apb_i2s has 8 DMA handshaking interfaces.

2.9.1.1.1 Enabling the DMA Controller Interface on Transmit/Receive Channel

To enable the DMA Controller interface on transmit/receive channel of the DW_apb_i2s, you must write
the DMA Control Register (DMACR).

■ Writing 1 into the DMAEN_TXCH_x (x <= I2S_TX_CHANNELS-1) bit field of DMACR register,
enables the DW_apb_i2s transmit handshaking interface on the transmitter channel x.

NoteNoteNoteNote When the DW_apb_i2s interfaces to the DW_ahb_dmac, the DW_ahb_dmac is always a flow
controller; that is, it controls the block size. This must be programmed by software in the
DW_ahb_dmac. The DW_ahb_dmac always transfers data using DMA burst transactions if
possible, for efficiency. For more information, see the DW_ahb_dmac Databook. Other DMA
controllers act in a similar manner.

NoteNoteNoteNote The DMA output dma_finish is a status signal to indicate that the DMA block transfer is
complete. DW_apb_i2s does not use this status signal, and therefore does not appear in the
I/O port list.

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

■ Writing 1 into the DMAEN_RXCH_x (x <= I2S_RX_CHANNELS-1) bit field of the DMACR register,
enables the DW_apb_i2s receive handshaking interface on the receiver channel x.

When dedicated DMA handshake Interface is enabled that is I2S_DMA_HS_TYPE=0, RXDMA_CHx and
TXDMA_CHx registers are used for reading and writing of stereo data pairs. Cyclic channel access is not
supported with dedicated DMA handshake Interface enabled. Therefore, RXDMA and TXDMA registers
are not used if I2S_DMA_HS_TYPE=0.

It is not recommended to disable receiver or transmitter block in between of reading or writing of stereo
data pairs. Otherwise, left or right stereo pairs might be transmitted out of sync. If the out of sync happens
as receiver/transmitter block is disabled between reading or writing of stereo data pairs, receive or transmit
channel FIFO must be flushed before enabling receiver or transmitter block again to ensure that left/right
stereo pairs are transmitted in sync.

Table 2-3 provides description for different DMA transmit channel FIFO data level values.

Table 2-3 Transmit Channel x Threshold Decode Value (x <= I2S_TX_CHANNELS-1)

Table 2-4 provides description for different DMA receive channel data level values.

Table 2-4 Receive Channel x Threshold Decode Value (x <= I2S_RX_CHANNELS-1)

TFCRx.TXCHET
Value Description

0x0 dma_tx_req_x is asserted when 0 data entries are present in the transmit channel x FIFO

0x1 dma_tx_req_x is asserted when 1 or less data entries are present in the transmit channel x FIFO

0x2 dma_tx_req_x is asserted when 2 or less data entries are present in the transmit channel x FIFO

0x3 dma_tx_req_x is asserted when 3 or less data entries are present in the transmit channel x FIFO

0x4 dma_tx_req_x is asserted when 4 or less data entries are present in the transmit channel x FIFO

0x5 dma_tx_req_x is asserted when 5 or less data entries are present in the transmit channel x FIFO

0x6 dma_tx_req_x is asserted when 6 or less data entries are present in the transmit channel x FIFO

0x7 dma_tx_req_x is asserted when 7 or less data entries are present in the transmit channel x FIFO

0x8 dma_tx_req_x is asserted when 8 or less data entries are present in the transmit channel x FIFO

0x9 dma_tx_req_x is asserted when 9 or less data entries are present in the transmit channel x FIFO

0xa dma_tx_req_x is asserted when 10 or less data entries are present in the transmit channel x FIFO

0xb dma_tx_req_x is asserted when 11 or less data entries are present in the transmit channel x FIFO

0xc dma_tx_req_x is asserted when 12 or less data entries are present in the transmit channel x FIFO

0xd dma_tx_req_x is asserted when 13 or less data entries are present in the transmit channel x FIFO

0xe dma_tx_req_x is asserted when 14 or less data entries are present in the transmit channel x FIFO

0xf dma_tx_req_x is asserted when 15 or less data entries are present in the transmit channel x FIFO

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

2.9.1.2 Single DMA Handshake Interface, I2S_DMA_HS_TYPE=1

When the I2S_DMA_HS_TYPE parameter is set to 1, DW_apb_i2s supports only one DMA handshake
interface for each transmitter and receiver block. For example, if DW_apb_i2s is configured with 4 transmit
and 4 receive channels, then there is 1 DMA handshake interface for transmit channels and 1 DMA
handshake interface for receive channels.

In this mode of DMA operation, it is assumed that all transmit/receive channels are synchronous to each
other.

2.9.1.2.1 Enabling the DMA Controller Interface on Transmitter/Receiver Block

To enable the DMA Controller interface on transmitter/receiver block of the DW_apb_i2s, you must write
the DMA Control Register (DMACR).

■ Writing 1 into the DMAEN_TXBLOCK bit field of DMACR register, enables the DMA handshaking
interface on the transmitter block for all available transmit channels.

■ Writing 1 into the DMAEN_RXBLOCK bit field of the DMACR register, enables the DMA
handshaking interface on the receiver block for all available receive channels.

RFCRx.RXCHE
T Value Description

0x0 dma_rx_req_x is asserted when 1 or more data entries are present in the receive channel x FIFO

0x1 dma_rx_req_x is asserted when 2 or more data entries are present in the receive channel x FIFO

0x2 dma_rx_req_x is asserted when 3 or more data entries are present in the receive channel x FIFO

0x3 dma_rx_req_x is asserted when 4 or more data entries are present in the receive channel x FIFO

0x4 dma_rx_req_x is asserted when 5 or more data entries are present in the receive channel x FIFO

0x5 dma_rx_req_x is asserted when 6 or more data entries are present in the receive channel x FIFO

0x6 dma_rx_req_x is asserted when 7 or more data entries are present in the receive channel x FIFO

0x7 dma_rx_req_x is asserted when 8 or more data entries are present in the receive channel x FIFO

0x8 dma_rx_req_x is asserted when 9 or more data entries are present in the receive channel x FIFO

0x9 dma_rx_req_x is asserted when 10 or more data entries are present in the receive channel x FIFO

0xa dma_rx_req_x is asserted when 11 or more data entries are present in the receive channel x FIFO

0xb dma_rx_req_x is asserted when 12 or more data entries are present in the receive channel x FIFO

0xc dma_rx_req_x is asserted when 13 or more data entries are present in the receive channel x FIFO

0xd dma_rx_req_x is asserted when 14 or more data entries are present in the receive channel x FIFO

0xe dma_rx_req_x is asserted when 15 or more data entries are present in the receive channel x FIFO

0xf dma_rx_req_x is asserted when 16 data entries are present in the receive channel x FIFO

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

When I2S_DMA_HS_TYPE=1, RXDMA and TXDMA registers are used for reading and writing of stereo
data pairs. The RXDMA/TXDMA register allows access to all enabled transmit or receive channels through
a single point. The receive/transmit channels are targeted in a cyclical fashion (starting at the lowest
numbered enabled channel) and takes two reads (left and right stereo data) before the component points to
the next channel. For more information refer to the RXMDA and TXDMA registers in Chapter 5, “Register
Descriptions” of DW_apb_i2s databook.

Table 2-5 provides description for different DMA transmit channel FIFO data level values.

Table 2-5 Transmit Channel x Threshold Decode Value (x <= I2S_TX_CHANNELS-1)

Table 2-6 provides description for different DMA receive channel data level values.

Table 2-6 Receive Channel x Threshold Decode Value (x <= I2S_RX_CHANNELS-1)

TFCRx.TXCHET
Value Description

0x0 dma_tx_req is asserted when 0 data entries are present in any of the transmit channel FIFO

0x1 dma_tx_req is asserted when 1 or less data entries are present in any of the transmit channel FIFO

0x2 dma_tx_req is asserted when 2 or less data entries are present in any of the transmit channel FIFO

0x3 dma_tx_req is asserted when 3 or less data entries are present in any of the transmit channel FIFO

0x4 dma_tx_req is asserted when 4 or less data entries are present in any of the transmit channel FIFO

0x5 dma_tx_req is asserted when 5 or less data entries are present in any of the transmit channel FIFO

0x6 dma_tx_req is asserted when 6 or less data entries are present in any of the transmit channel FIFO

0x7 dma_tx_req is asserted when 7 or less data entries are present in any of the transmit channel FIFO

0x8 dma_tx_req is asserted when 8 or less data entries are present in any of the transmit channel FIFO

0x9 dma_tx_req is asserted when 9 or less data entries are present in any of the transmit channel FIFO

0xa dma_tx_req is asserted when 10 or less data entries are present in any of the transmit channel
FIFO

0xb dma_tx_req is asserted when 11 or less data entries are present in any of the transmit channel
FIFO

0xc dma_tx_req is asserted when 12 or less data entries are present in any of the transmit channel
FIFO

0xd dma_tx_req is asserted when 13 or less data entries are present in any of the transmit channel
FIFO

0xe dma_tx_req is asserted when 14 or less data entries are present in any of the transmit channel
FIFO

0xf dma_tx_req is asserted when 15 or less data entries are present in any of the transmit channel
FIFO

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

2.9.1.3 Overview of Operation

As a block flow control device, the DMA Controller is programmed by the processor with the number of
data items (block size) that are to be transmitted or received by DW_apb_i2s; this is programmed into the
BLOCK_TS field of the DW_ahb_dmac CTLx register.

RFCRx.RXCHET
Value Description

0x0 dma_rx_req is asserted when 1 or more data entries are present in any of the receive channel
FIFO

0x1 dma_rx_req is asserted when 2 or more data entries are present in any of the receive channel
FIFO

0x2 dma_rx_req is asserted when 3 or more data entries are present in any of the receive channel
FIFO

0x3 dma_rx_req is asserted when 4 or more data entries are present in any of the receive channel
FIFO

0x4 dma_rx_req is asserted when 5 or more data entries are present in any of the receive channel
FIFO

0x5 dma_rx_req is asserted when 6 or more data entries are present in any of the receive channel
FIFO

0x6 dma_rx_req is asserted when 7 or more data entries are present in any of the receive channel
FIFO

0x7 dma_rx_req is asserted when 8 or more data entries are present in any of the receive channel
FIFO

0x8 dma_rx_req is asserted when 9 or more data entries are present in any of the receive channel
FIFO

0x9 dma_rx_req is asserted when 10 or more data entries are present in any of the receive channel
FIFO

0xa dma_rx_req is asserted when 11 or more data entries are present in any of the receive channel
FIFO

0xb dma_rx_req is asserted when 12 or more data entries are present in any of the receive channel
FIFO

0xc dma_rx_req is asserted when 13 or more data entries are present in any of the receive channel
FIFO

0xd dma_rx_req is asserted when 14 or more data entries are present in any of the receive channel
FIFO

0xe dma_rx_req is asserted when 15 or more data entries are present in any of the receive channel
FIFO

0xf dma_rx_req is asserted when 16 data entries are present in any of the receive channel FIFO

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

The block is broken into several transactions, each initiated by a request from the DW_apb_i2s. The DMA
Controller must also be programmed with the number of data items (in this case, DW_apb_i2s FIFO entries)
to be transferred for each DMA request. This is also known as the burst transaction length and is
programmed into the SRC_MSIZE/DEST_MSIZE fields of the DW_ahb_dmac CTLx register for source and
destination, respectively.

Figure 2-7 shows a single block transfer, where the block size programmed into the DMA Controller is 12
and the burst transaction length is set to 4. In this case, the block size is a multiple of the burst transaction
length. Therefore, the DMA block transfer consists of a series of burst transactions. If the DW_apb_i2s
makes a transmit request to this channel, four data items are written to the DW_apb_i2s TX FIFO. Similarly,
if the DW_apb_i2s makes a receive request to this channel, four data items are read from the DW_apb_i2s
RX FIFO. Three separate requests must be made to this DMA channel before all 12 data items are written or
read.

Figure 2-7 Breakdown of DMA Transfer into Burst Transactions

DMA Burst DMA Burst DMA Burst

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

Transaction 1 Transaction 2 Transaction 3

12 Data Items

DMA
Multi-block Transfer

Level

12 Data Items

Block Size: DMA.CTLx.BLOCK_TS=12
Number of data items per source burst transaction: DMA.CTLx.SRC_MSIZE = 4
I2S receive FIFO watermark level: I2S.RFCRx.RXCHET + 1 = DMA.CTLx.SRC_MSIZE = 4

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

When the block size programmed into the DMA Controller is not a multiple of the burst transaction length,
as shown in Figure 2-8, a series of burst transactions followed by single transactions are needed to complete
the block transfer.

Figure 2-8 Breakdown of DMA Transfer into Single and Burst Transactions

2.9.1.4 Transmit Watermark Level and Transmit FIFO Underflow

During DW_apb_i2s serial transfers, transmit FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the transmit FIFO is less than or equal to the DMA Transmit Data Level Register
(TFCRx.TXCHET) value; this is known as the watermark level. The DW_ahb_dmac responds by writing a
burst of data to the transmit FIFO buffer, of length CTLx.DEST_MSIZE.

Data should be fetched from the DMA often enough for the transmit FIFO to perform serial transfers
continuously; that is, when the FIFO begins to empty another DMA request should be triggered. Otherwise,
the FIFO runs out of data causing a STOP to be inserted on the I2S bus. To prevent this condition, you must
set the watermark level correctly.

2.9.1.5 Choosing the Transmit Watermark Level

Consider the example where the assumption is made:

DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2S.TFCRx.TXCHET

Here the number of data items to be transferred in a DMA burst is equal to the empty space in the Transmit
FIFO. Consider two different watermark level settings.

15 Data Items

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

DMA Burst DMA SingleDMA SingleDMA Single
Transaction 1

DMA Burst
Transaction2

DMA Burst
Transaction 3

1 Data Item 1 Data Item 1 Data Item

Transaction 1 Transaction 2 Transaction 3

15 Data Items

DMA
Multi-Block Transfer

Level

Block Size: DMA.CTLx.BLOCK_TS=15
Number of data items per burst transaction: DMA.CTLx.DEST_MSIZE = 4
I2S transmit FIFO watermark level: I2S.TFCRx.TXCHET = DMA.CTLx.DEST_MSIZE = 4

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

Case 1: I2S.TFCRx.TXCHET = 2

■ Transmit FIFO watermark level = I2S.TFCRx.TXCHET = 2

■ DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2S.TFCRx.TXCHET = 6

■ I2S transmit FIFO_DEPTH = 8

■ DMA.CTLx.BLOCK_TS = 30

Figure 2-9 Case 1 Watermark Levels

Therefore, the number of burst transactions needed equals the block size divided by the number of data
items per burst:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/6 = 5

The number of burst transactions in the DMA block transfer is 5. But the watermark level,
I2S.TFCRx.TXCHET, is quite low. Therefore, the probability of an I2S underflow is high where the I2S serial
transmit line needs to transmit data, but where there is no data left in the transmit FIFO. This occurs because
the DMA has not had time to service the DMA request before the transmit FIFO becomes empty.

Case 2: IC_DMA_TDLR = 6

■ Transmit FIFO watermark level = I2S.TFCRx.TXCHET = 6

■ DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2S.TFCRx.TXCHET = 2

■ I2S transmit FIFO_DEPTH = 8

■ DMA.CTLx.BLOCK_TS = 30

Figure 2-10 Case 2 Watermark Levels

FIFO_DEPTH = 8

I2S.TFCRx.TXCHET=6

FIFO_DEPTH - I2S.TFCRx.TXCHET=6

FULL

EMPTY

I2S Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

FIFO_DEPTH = 8

FIFO_DEPTH - I2S.TFCRx.TXCHET = 2

FULL

EMPTY

I2S Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

I2S.TFCRx.TXCHET = 6

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

Number of burst transactions in Block:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/2 = 15

In this block transfer, there are 15 destination burst transactions in a DMA block transfer. But the watermark
level, I2S.TFCRx.TXCHET, is high. Therefore, the probability of an I2S underflow is low because the DMA
controller has plenty of time to service the destination burst transaction request before the I2S transmit FIFO
becomes empty.

Thus, the second case has a lower probability of underflow at the expense of more burst transactions per
block. This provides a potentially greater amount of AMBA bursts per block and worse bus utilization than
the former case.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while
at the same time keeping the probability of an underflow condition to an acceptable level. In practice, this is
a function of the ratio of the rate at which the I2S transmits data to the rate at which the DMA can respond to
destination burst requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the DMA
master interface to the highest priority master in the AMBA layer, increases the rate at which the DMA
controller can respond to burst transaction requests. This in turn allows you to decrease the watermark
level, which improves bus utilization without compromising the probability of an underflow occurring.

2.9.1.6 Selecting DEST_MSIZE and Transmit FIFO Overflow

As described in Figure 2-10, programming DMA.CTLx.DEST_MSIZE to a value greater than the watermark
level that triggers the DMA request may cause overflow when there is not enough space in the I2S transmit
FIFO to service the destination burst request. Therefore, the following equation must be adhered to in order
to avoid overflow:

DMA.CTLx.DEST_MSIZE <= I2S.FIFO_DEPTH - I2S.TFCRx.TXCHET (1)

In “Case 2: IC_DMA_TDLR = 6”, the amount of space in the transmit FIFO at the time the burst request is
made is equal to the destination burst length, DMA.CTLx.DEST_MSIZE. Thus, the transmit FIFO may be
full, but not overflowed, at the completion of the burst transaction.

Therefore, for optimal operation, DMA.CTLx.DEST_MSIZE should be set at the FIFO level that triggers a
transmit DMA request; that is:

DMA.CTLx.DEST_MSIZE = I2S.FIFO_DEPTH - I2S.TFCRx.TXCHET (2)

This is the setting used in Figure 2-8.

Adhering to equation (2) reduces the number of DMA bursts needed for a block transfer, and this in turn
improves AMBA bus utilization.

2.9.1.7 Receive Watermark Level and Receive FIFO Overflow

During DW_apb_i2s serial transfers, receive FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the receive FIFO is at or above the DMA Receive Data Level Register; that is,

NoteNoteNoteNote The transmit FIFO is not be full at the end of a DMA burst transfer if the I2S has successfully
transmitted one data item or more on the I2S serial transmit line during the transfer.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

RFCRx.RXCHDT+1. This is known as the watermark level. The DW_ahb_dmac responds by fetching a burst
of data from the receive FIFO buffer of length CTLx.SRC_MSIZE.

Data should be fetched by the DMA often enough for the receive FIFO to accept serial transfers
continuously; that is, when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the FIFO
fills with data (overflow). To prevent this condition, you must correctly set the watermark level.

2.9.1.8 Choosing the Receive Watermark level

Similar to choosing the transmit watermark level described earlier, the receive watermark level,
RFCRx.RXCHDT+1, should be set to minimize the probability of overflow, as shown in Figure 2-11. It is a
trade-off between the number of DMA burst transactions required per block versus the probability of an
overflow occurring.

Figure 2-11 I2S Receive FIFO

2.9.1.9 Selecting SRC_MSIZE and Receive FIFO Underflow

As described in Figure 2-11, programming a source burst transaction length greater than the watermark
level may cause underflow when there is not enough data to service the source burst request. Therefore,
equation 3 following must be adhered to avoid underflow.

If the number of data items in the receive FIFO is equal to the source burst length at the time the burst
request is made – DMA.CTLx.SRC_MSIZE – the receive FIFO may be emptied, but not underflowed, at the
completion of the burst transaction. For optimal operation, DMA.CTLx.SRC_MSIZE should be set at the
watermark level; that is:

DMA.CTLx.SRC_MSIZE = I2S.RFCRx.RXCHDT + 1 (3)

Adhering to equation (3) reduces the number of DMA bursts in a block transfer, which in turn can avoid
underflow and improve AMBA bus utilization.

NoteNoteNoteNote The receive FIFO is not empty at the end of the source burst transaction if the I2S has
successfully received one data item or more on the I2S serial receive line during the burst.

I2S.RFCRx.RXCHDT + 1FULL

EMPTY

I2S Receive FIFO

DMA
Controller

Data In

Data Out

Receive FIFO
Watermark level

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

2.9.1.10 Handshaking Interface Operation

The following sections discuss the handshaking interface.

■ If DW_apb_i2s is configured with dedicated type of DMA operation (i.e. I2S_DMA_HS_TYPE=0),
then dedicated DMA handshaking interfaces are present for each receive and transmit channels. In
this mode, DMA handshake signals are represented as dma_rx_req_x(_n)/dma_tx_req_x(_n),
dma_rx_single_x(_n)/dma_tx_single_x(_n) and dma_rx_ack_x(_n)/dma_tx_ack_x(_n) - where, x <=
I2S_RX_CHANNELS-1 or x <= I2S_TX_CHANNELS-1.

■ If DW_apb_i2s is configured with combined type of DMA operation (i.e. I2S_DMA_HS_TYPE=1),
then there is only one DMA handshake interface for each transmitter and receiver block. In this
mode, DMA handshake signals are represented as dma_rx_req(_n)/dma_tx_req(_n),
dma_rx_single(_n)/dma_tx_single(_n) and dma_rx_ack(_n)/dma_tx_ack(_n).

Polarity of DMA handshake signals is determined by the parameter I2S_DMA_POL. For example, if
DW_apb_i2s is configured with dedicated DMA handshake interface type (I2S_DMA_HS_TYPE=0) and
active High polarity (I2S_DMA_POL=1), then following signals are present on interface:
dma_rx_req_x/dma_tx_req_x, dma_rx_single_x/dma_tx_single_x and dma_rx_ack_x/dma_tx_ack_x. If
polarity is configured as active Low (I2S_DMA_POL=0) then following signals are present on interface:
dma_rx_req_x(_n)/dma_tx_req_x(_n), dma_rx_single_x(_n)/dma_tx_single_x(_n) and
dma_rx_ack_x(_n)/dma_tx_ack_x(_n).

The handshaking interface operation is described for active high signals. Similar argument follows for
active Low signals, if it is configured with I2S_DMA_POL set to 0.

2.9.1.10.1 dma_tx_req(_x), dma_rx_req(_x)

The request signals for source and destination, dma_tx_req(_x) and dma_rx_req(_x), are activated when
their corresponding FIFOs reach the watermark levels as discussed earlier.

The DW_ahb_dmac uses rising-edge detection of the dma_tx_req(_x) signal/dma_rx_req(_x) to identify a
request on the channel. Upon reception of the dma_tx_ack(_x)/dma_rx_ack(_x) signal from the
DW_ahb_dmac to indicate the burst transaction is complete, the DW_apb_i2s de-asserts the burst request
signals, dma_tx_req/dma_rx_req, until dma_tx_ack(_x)/dma_rx_ack(_x) is de-asserted by the
DW_ahb_dmac.

When the DW_apb_i2s samples that dma_tx_ack(_x)/dma_rx_ack(_x) is de-asserted, it can re-assert the
dma_tx_req(_x)/dma_rx_req(_x) of the request line if their corresponding FIFOs exceed their watermark
levels (back-to-back burst transaction). If this is not the case, the DMA request lines remain de-asserted.
Figure 2-12 shows a timing diagram of a burst transaction where pclk = hclk.

Figure 2-12 Burst Transaction – pclk = hclk

burst transaction request

burst transaction complete

pclk

hclk

dma_tx_req_x

dma_tx_ack_x

dma_tx_single_X not sampled by the DW_ahb_dmac for burst transactions

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

The handshaking loop is as follows:

■ dma_tx_req(_x)/dma_rx_req(_x) asserted by DW_apb_i2s

■ dma_tx_ack(_x)/dma_rx_ack(_x) asserted by DW_ahb_dmac

■ dma_tx_req(_x)/dma_rx_req(_x) de-asserted by DW_apb_i2s

■ dma_tx_ack(_x)/dma_rx_ack(_x) de-asserted by DW_ahb_dmac

■ dma_tx_req(_x)/dma_rx_req(_x) reasserted by DW_apb_i2s, if back-to-back transaction is required

Note the following:

■ The burst request lines, dma_tx_req signal(_x)/dma_rx_req(_x), once asserted remain asserted until
their corresponding dma_tx_ack(_x)/dma_rx_ack(_x) signal is received even if the respective FIFO’s
drop below their watermark levels during the burst transaction.

■ The dma_tx_req(_x)/dma_rx_req(_x) signals are de-asserted when their corresponding
dma_tx_ack(_x)/dma_rx_ack(_x) signals are asserted, even if the respective FIFOs exceed their
watermark levels.

2.9.1.10.2 dma_tx_req_single(_x), dma_rx_req_single(_x)

The dma_tx_single(_x) signal is asserted when there is at least one free entry in the transmit FIFO, and is
cleared when the dma_tx_ack(_x) signal is active. The dma_tx_single(_x) signal is re-asserted when the
dma_tx_ack(_x) signal is de-asserted, if the condition for setting still holds true.

The dma_rx_single(_x) signal is asserted when there is at least one valid data entry in the receive FIFO, and
is cleared when the dma_rx_ack(_x) signal is active. The dma_rx_single(_x) signal is re-asserted when the
dma_rx_ack(_x) signal is de-asserted, if the condition for setting still holds true.

These signals are needed by only the DW_ahb_dmac for the case where the block size, CTLx.BLOCK_TS,
that is programmed into the DW_ahb_dmac is not a multiple of the burst transaction length,
CTLx.SRC_MSIZE, CTLx.DEST_MSIZE, as shown in Figure 2-8. In this case, the DMA single outputs inform
the DW_ahb_dmac that it is still possible to perform single data item transfers, so it can access all data items
in the transmit/receive FIFO and complete the DMA block transfer. The DMA single outputs from the
DW_apb_i2s are not sampled by the DW_ahb_dmac otherwise. This is illustrated in the following example.

Consider first an example where the receive FIFO channel of the DW_apb_i2s is as follows:

DMA.CTLx.SRC_MSIZE = I2S.RFCRx.RXCHDT + 1 = 4
DMA.CTLx.BLOCK_TS = 12

For example in Figure 2-7, with the block size set to 12, the dma_rx_req signal is asserted when four data
items are present in the receive FIFO. The dma_rx_req signal is asserted three times during the DW_apb_i2s
serial transfer, ensuring that all 12 data items are read by the DW_ahb_dmac. All DMA requests read a

NoteNoteNoteNote The burst transaction request signals, dma_tx_req(_x) and dma_rx_req(_x), are generated in
the DW_apb_i2s off pclk and sampled in the DW_ahb_dmac by hclk. The acknowledge
signals, dma_tx_ack(_x) and dma_rx_ack(_x), are generated in the DW_ahb_dmac off hclk
and sampled in the DW_apb_i2s of pclk. The handshaking mechanism between the
DW_ahb_dmac and the DW_apb_i2s supports quasi-synchronous clocks; that is, hclk and
pclk must be phase-aligned, and the hclk frequency must be a multiple of the pclk frequency.

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

block of data items and no single DMA transactions are required. This block transfer is made up of three
burst transactions.

Now, for the following block transfer:

DMA.CTLx.SRC_MSIZE = I2S.RFCRx.RXCHDT + 1 = 4
DMA.CTLx.BLOCK_TS = 15

The first 12 data items are transferred as already described using three burst transactions. But when the last
three data frames enter the receive FIFO, the dma_rx_req(_x) signal is not activated because the FIFO level is
below the watermark level. The DW_ahb_dmac samples dma_rx_single(_x) and completes the DMA block
transfer using three single transactions. The block transfer is made up of three burst transactions followed
by three single transactions.

Figure 2-13 shows a single transaction. The handshaking loop is as follows:

■ dma_tx_single(_x)/dma_rx_single(_x) asserted by DW_apb_i2s

■ dma_tx_ack(_x)/dma_rx_ack(_x) asserted by DW_ahb_dmac

■ dma_tx_single(_x)/dma_rx_single(_x) de-asserted by DW_apb_i2s

■ dma_tx_ack(_x)/dma_rx_ack(_x) de-asserted by DW_ahb_dmac

Figure 2-13 Single Transaction

Figure 2-14 shows a burst transaction, followed by three back-to-back single transactions, where the hclk
frequency is twice the pclk frequency.

Figure 2-14 Burst Transaction + 3 Back-to-Back Singles – hclk = 2*pclk

m0 m1 m2 n0 n1 n2 n3 n4

single transaction complete

pclk

hclk

dma_rx_req_x

dma_rx_ack_x

dma_rx_single_x

hclk

pclk

dma_tx_req_x

dma_tx_ack_x

dma_tx_single_x

burst transaction request

burst transaction complete
Single transaction complete

Single transaction complete
Single transaction complete

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Functional Description

NoteNoteNoteNote The single transaction request signals, dma_tx_single(_x) and dma_rx_single(_x), are
generated in the DW_apb_i2s on the pclk edge and sampled in DW_ahb_dmac on hclk. The
acknowledge signals, dma_tx_ack(_x) and dma_rx_ack(_x), are generated in the
DW_ahb_dmac on the hclk edge hclk and sampled in the DW_apb_i2s on pclk. The
handshaking mechanism between the DW_ahb_dmac and the DW_apb_i2s supports
quasi-synchronous clocks; that is, hclk and pclk must be phase aligned and the hclk frequency
must be a multiple of pclk frequency.

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

■ Basic Configuration on page 56

■ Receiver Channel(s) on page 61

■ Transmitter Channel(s) on page 63

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_apb_i2s Databook

3.1 Basic Configuration Parameters

Table 3-1 Basic Configuration Parameters

Label Description

 General Configuration Settings

APB Data Bus Width? Width of APB data bus to which this component is attached.
Values: 8, 16, 32
Default Value: 32
Enabled: Always
Parameter Name: APB_DATA_WIDTH

Receiver Block Enabled? Controls whether the DW_apb_i2s component has I2S receiver block(s) or not. This
must be enabled to be able to set the number of RX channels
(I2S_RX_CHANNELS). For more information about the operation of the component
when it is a receiver, refer to "DW_apb_i2s as Receiver". You can also program the
enabling/disabling of this block during operation by setting bit 0 of the I2S Receiver
Block Enable Register (IRER).
Values:
■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: I2S_RECEIVER_BLOCK

Number of Receive Channels? Controls the number of receive channels for this DW_apb_i2s component. For more
information about enabling/disabling individual receive channels during operation,
refer to "Receive Channel Enable".
Values: 1, 2, 3, 4
Default Value: 1
Enabled: I2S_RECEIVER_BLOCK==1
Parameter Name: I2S_RX_CHANNELS

Transmitter Block Enabled? Controls whether the DW_apb_i2s component has I2S transmitter block(s). This
must be enabled in order to be able to set the number of TX channels
(I2S_TX_CHANNELS). For more information about the operation of the component
when it is a transmitter, refer to "DW_apb_i2s as Transmitter". You can also program
the enabling/disabling of this block during operation by setting bit 0 of the I2S
Transmitter Block Enable Register (ITER).
Values:

■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: I2S_TRANSMITTER_BLOCK

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Parameter Descriptions

Number of Transmit Channels? Controls the number of transmit channels for this DW_apb_i2s component. For
more information about enabling/disabling individual transmit channels during
operation, refer to "Writing to a Transmit Channel".
Values: 1, 2, 3, 4
Default Value: 1
Enabled: I2S_TRANSMITTER_BLOCK==1
Parameter Name: I2S_TX_CHANNELS

Is an I2S Master? Determines whether the component acts as the I2S master or slave. For more
information about clock generation, which can only occur when the component is a
master, refer to "Clock Generation (Master Mode)".
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: I2S_MODE_EN

FIFO Depth for RX and TX
Channels?

Determines the FIFO depth for all channels. Both the RX and TX channels have the
same depth. This is used to set both the I2S_RX_FIFO_x and I2S_TX_FIFO_x
values of all the channels chosen. For more information about the RX and TX
channel FIFOs, refer to "Transmit Channel FIFOs" and "Receive Channel FIFOs"
respectively.
Values: 2, 4, 8, 16
Default Value: 8
Enabled: I2S_RECEIVER_BLOCK>=1 || I2S_TRANSMITTER_BLOCK>=1
Parameter Name: I2S_FIFO_DEPTH_GLOBAL

 Master Clk/Slave Clk Settings

Has a Word Select Length of? Sets the default number of sclk cycles for which the Word Select Line is held high or
low. For more information about the ws line, refer to "Word Select Generation".
Values:
■ 16 (0x0)

■ 24 (0x1)

■ 32 (0x2)

Default Value: 16
Enabled: I2S_MODE_EN!=0
Parameter Name: I2S_WS_LENGTH

Table 3-1 Basic Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_apb_i2s Databook

Has a Serial Clock Gating of? Selects the default type of clock gating used on the sclk output. For more
information about this feature, refer to "SCLK Gating".
Values:
■ No Gating (0x0)

■ 12 Clock Cycles (0x1)

■ 16 Clock Cycles (0x2)

■ 20 Clock Cycles (0x3)

■ 24 Clock Cycles (0x4)

Default Value: No Gating
Enabled: I2S_MODE_EN!=0
Parameter Name: I2S_SCLK_GATE

 Interrupt Settings

Multiple Interrupt Output Ports
Present?

Determines whether the component has multiple individual interrupt outputs (True)
or a single global interrupt output (False). For more information about these signals,
refer to "Signal Descriptions". For more information about when these interrupts are
generated, refer to "Transmit Channel Interrupts" and "Receive Channel Interrupts".
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: I2S_INTERRUPT_SIGNALS

Polarity of Interrupt Signals is
Active High?

Sets the polarity of the interrupt signals. For more information about the interrupt
signals, refer to "Signal Descriptions", "Transmit Channel Interrupts" and "Receive
Channel Interrupts".
Values:

■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: I2S_INTR_POL

Table 3-1 Basic Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Parameter Descriptions

 Clock Domain Crossing Settings

Clock Domain Crossing
Synchronisation Depth?

Sets the number of synchronisation register stages used when crossing between
clock domains. These are required to avoid metastability issues between clock
domains.

■ 1 => Two-stage synchronisation, first stage negative edge. second stage positive
edge.

■ 2 => Two-stage synchronisation, both stages positive edge.

■ 3 => Three-stage synchronisation, all stages positive edge.

Values: 1, 2, 3
Default Value: 2
Enabled: Always
Parameter Name: I2S_SYNC_DEPTH

 DMA Handhshake Interface Settings

Has DMA Controller Interface? Selects if DW_apb_i2s requires DMA handshaking interface.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: (I2S_RECEIVER_BLOCK==1) ? ((I2S_TRANSMITTER_BLOCK==1) ?
(APB_DATA_WIDTH>=I2S_RX_WORDSIZE_0 &&
APB_DATA_WIDTH>=I2S_RX_WORDSIZE_1 && APB_DATA_WIDTH >=
I2S_RX_WORDSIZE_2 && APB_DATA_WIDTH >= I2S_RX_WORDSIZE_3) &&
(APB_DATA_WIDTH>=I2S_TX_WORDSIZE_0 &&
APB_DATA_WIDTH>=I2S_TX_WORDSIZE_1 && APB_DATA_WIDTH >=
I2S_TX_WORDSIZE_2 && APB_DATA_WIDTH >= I2S_TX_WORDSIZE_3) :
(APB_DATA_WIDTH>=I2S_RX_WORDSIZE_0 &&
APB_DATA_WIDTH>=I2S_RX_WORDSIZE_1 && APB_DATA_WIDTH >=
I2S_RX_WORDSIZE_2 && APB_DATA_WIDTH >= I2S_RX_WORDSIZE_3)) :
((I2S_TRANSMITTER_BLOCK==1) ?
(APB_DATA_WIDTH>=I2S_TX_WORDSIZE_0 &&
APB_DATA_WIDTH>=I2S_TX_WORDSIZE_1 && APB_DATA_WIDTH >=
I2S_TX_WORDSIZE_2 && APB_DATA_WIDTH >= I2S_TX_WORDSIZE_3) : 0)
Parameter Name: I2S_HAS_DMA_INTERFACE

Table 3-1 Basic Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_apb_i2s Databook

DMA handshake interface
type?

Selects the DMA handshake interface type:
0 (DEDICATED) - Dedicated DMA handshake interface for each transmit and
receive channels.
1 (COMBINED) - Single DMA handshake interface for each transmitter and receiver
block.
Values:

■ DEDICATED (0)

■ COMBINED (1)

Default Value: COMBINED
Enabled: I2S_HAS_DMA_INTERFACE==1
Parameter Name: I2S_DMA_HS_TYPE

Polarity of DMA Interface
Signals is Active High?

Sets the polarity of the DMA Interface signals. For more information about the DMA
interface signals, refer to "DMA Interface Signals" in "Signals" chapter of
DW_apb_i2s databook.
Values:

■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: I2S_HAS_DMA_INTERFACE==1
Parameter Name: I2S_DMA_POL

Table 3-1 Basic Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Parameter Descriptions

3.2 Receiver Channel(s) Parameters

Table 3-2 Receiver Channel(s) Parameters

Label Description

 Receiver DMA

Receiver Block DMA Enabled? Controls whether the DW_apb_i2s component has a DMA register for I2S RX
Channels.
Values:

■ false (0)

■ true (1)

Default Value: I2S_RECEIVER_BLOCK==1 && I2S_HAS_DMA_INTERFACE==1
&& I2S_DMA_HS_TYPE==1
Enabled: I2S_RECEIVER_BLOCK==1 &&
APB_DATA_WIDTH>=I2S_RX_WORDSIZE_0 &&
APB_DATA_WIDTH>=I2S_RX_WORDSIZE_1 && APB_DATA_WIDTH >=
I2S_RX_WORDSIZE_2 && APB_DATA_WIDTH >= I2S_RX_WORDSIZE_3 &&
I2S_HAS_DMA_INTERFACE==0
Parameter Name: I2S_RX_DMA

 Receiver Channel x

Max Audio Resolution -
Receive Channel x
(for x = 0; x <= 3)

Sets the maximum audio data resolution (word size) of the left and right data for
Receive Channel x. For more information about this feature, refer to "Receive
Channel Audio Data Resolution".
Values: 12, 16, 20, 24, 32
Default Value: 16
Enabled: I2S_RECEIVER_BLOCK==1 && I2S_RX_CHANNELS>=x
Parameter Name: I2S_RX_WORDSIZE_x

FIFO Depth - Receive Channel
x
(for x = 0; x <= 3)

Determines the FIFO depth for both the left and right RX_FIFOs for Receive
Channel x.
Values: 2, 4, 8, 16
Default Value: I2S_FIFO_DEPTH_GLOBAL
Enabled: This is not selectable as it is set by the global FIFO depth value,
I2S_FIFO_DEPTH_GLOBAL.
Parameter Name: I2S_RX_FIFO_x

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_apb_i2s Databook

RX FIFO Data Available
Trigger Level - Receive
Channel x
(for x = 0; x <= 3)

Sets the level at which the data available signal for the Receive Channel x is
generated.
 Data Available Trigger Level = Selected Value + 1
This parameter is only available when device is configured as a receiver
(I2S_RECEIVER_BLOCK = 1) and must be set to a value less than the channel
FIFO depth (I2S_RX_FIFO_x - 1). For more information about this interrupt, refer to
"Receive Channel Interrupts".
Values: 0, ..., 15
Default Value: ((I2S_RECEIVER_BLOCK == 1 && I2S_RX_CHANNELS>=x) ? 3 :
0)
Enabled: I2S_RECEIVER_BLOCK==1 && I2S_RX_CHANNELS>=x
Parameter Name: I2S_RX_FIFO_THRE_x

Table 3-2 Receiver Channel(s) Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Parameter Descriptions

3.3 Transmitter Channel(s) Parameters

Table 3-3 Transmitter Channel(s) Parameters

Label Description

 Transmitter DMA

Transmitter Block DMA
Enabled?

Controls whether the DW_apb_i2s component has a DMA register for the I2S TX
Channels or not.
Values:

■ false (0)

■ true (1)

Default Value: I2S_TRANSMITTER_BLOCK==1 &&
I2S_HAS_DMA_INTERFACE==1 && I2S_DMA_HS_TYPE==1
Enabled: I2S_TRANSMITTER_BLOCK==1 &&
APB_DATA_WIDTH>=I2S_TX_WORDSIZE_0 &&
APB_DATA_WIDTH>=I2S_TX_WORDSIZE_1 && APB_DATA_WIDTH >=
I2S_TX_WORDSIZE_2 && APB_DATA_WIDTH >= I2S_TX_WORDSIZE_3 &&
I2S_HAS_DMA_INTERFACE==0
Parameter Name: I2S_TX_DMA

 Transmitter Channel x

Max Audio Resolution -
Transmit Channel x
(for x = 0; x <= 3)

Sets the maximum audio data resolution (word size) of the left and right data for
Transmit Channel x. For more information about this feature, refer to "Transmit
Channel Audio Data Resolution".
Values: 12, 16, 20, 24, 32
Default Value: 16
Enabled: I2S_TRANSMITTER_BLOCK==1 && I2S_TX_CHANNELS>=x
Parameter Name: I2S_TX_WORDSIZE_x

FIFO Depth - Transmit Channel
x
(for x = 0; x <= 3)

Determines the FIFO depth for both the left and right TX_FIFOs for Transmitter
Channel x.
Values: 2, 4, 8, 16
Default Value: I2S_FIFO_DEPTH_GLOBAL
Enabled: This is not selectable as it is set by the global FIFO depth value,
I2S_FIFO_DEPTH_GLOBAL.
Parameter Name: I2S_TX_FIFO_x

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_apb_i2s Databook

TX FIFO Empty Threshold
Trigger Level - Transmit
Channel x
(for x = 0; x <= 3)

Set the level at which the empty threshold reached signal for Transmit Channel x is
generated. This is only selectable when device is configured as a transmitter
(I2S_TRANSMITTER_BLOCK==1) and It must be set to a value less than the
channel's FIFO depth (I2S_TX_FIFO_0-1). For more information about this
interrupt, refer to "Transmit Channel Interrupts".
Values: 0, ..., 15
Default Value: ((I2S_TRANSMITTER_BLOCK==1 && I2S_TX_CHANNELS>=x) ?
3 : 0)
Enabled: I2S_TRANSMITTER_BLOCK==1 && I2S_TX_CHANNELS>=x
Parameter Name: I2S_TX_FIFO_THRE_x

Table 3-3 Transmitter Channel(s) Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the controller. For configurable IP titles, your actual
configuration might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
controller. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the inactive state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_apb_i2s Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ APB Slave Interface on page 67

■ I2S Clock Interface on page 69

■ I2S Clock Interface - Master Mode on page 70

■ I2S Clock Interface - Slave Mode on page 71

■ I2S Receiver Interface on page 72

■ I2S Transmitter Interface on page 73

■ DMA Interface on page 74

■ I2S Interrupts on page 79

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Signal Descriptions

4.1 APB Slave Interface Signals

presetn - - prdata
penable -

pwrite -
pwdata -

paddr -
psel -
pclk -

Table 4-1 APB Slave Interface Signals

Port Name I/O Description

presetn I An APB interface domain reset. This signal resets only the bus
interface. The signal is asserted asynchronously, but is de-asserted
synchronously after the rising edge of pclk. The synchronization
must be provided external to the component.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

penable I APB enable control. Asserted for a single pclk cycle and used for
timing read/write operations.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pwrite I APB write control. When high, indicates a write access to the
peripheral; when low, indicates a read access.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_apb_i2s Databook

pwdata[(APB_DATA_WIDTH-1):0] I APB write data bus. Driven by the bus master (bridge unit) during
write cycles.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

prdata[(APB_DATA_WIDTH-1):0] O APB readback data. Driven by the selected peripheral during read
cycles.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

paddr[(I2S_ADDR_SLICE_LHS-1):0] I APB address bus. Uses lower 7 bits of the address bus for register
decoding.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

psel I APB peripheral select that lasts for two pclk cycles. When asserted,
indicates that the peripheral has been selected for read/write
operation.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pclk I APB clock for the bus interface unit.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-1 APB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Signal Descriptions

4.2 I2S Clock Interface Signals

sresetn -
sclk -

sclk_n -

Table 4-2 I2S Clock Interface Signals

Port Name I/O Description

sresetn I An SCLK domain reset. The signal is asserted asynchronously, but is
deasserted synchronously after the rising edge of sclk. The
synchronization must be provided external to this component.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

sclk I Serial interface clock.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

sclk_n I Inverted serial interface clock.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_apb_i2s Databook

4.3 I2S Clock Interface - Master Mode Signals

- sclk_en
- sclk_gate
- ws_out

Table 4-3 I2S Clock Interface - Master Mode Signals

Port Name I/O Description

sclk_en O External sclk enable signal. This signal can be AND'd with sclk to
disable the clock when the master device is disabled.
Exists: I2S_MODE_EN != 0
Synchronous To: sclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

sclk_gate O Clock gating signal. Since sclk_gate is 1 during the cycles that are to
be gated off, the actual gating of sclk needs to be done externally by
AND'ing the inverse of the generated sclk_gate signal with sclk.
Exists: I2S_MODE_EN != 0
Synchronous To: sclk_n
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

ws_out O Word select line when DW_apb_i2s is a master.
Exists: I2S_MODE_EN != 0
Synchronous To: sclk_n
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Signal Descriptions

4.4 I2S Clock Interface - Slave Mode Signals

ws_slv -

Table 4-4 I2S Clock Interface - Slave Mode Signals

Port Name I/O Description

ws_slv I Word select line when DW_apb_i2s is a slave.
Exists: I2S_MODE_EN == 0
Synchronous To: sclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_apb_i2s Databook

4.5 I2S Receiver Interface (for x = 0; x <= I2S_RX_CHANNELS-1) Signals

sdix -

Table 4-5 I2S Receiver Interface (for x = 0; x <= I2S_RX_CHANNELS-1) Signals

Port Name I/O Description

sdix I Serial data input for Receive Channel x, where x is the number of the
receive channel.
Exists: I2S_RECEIVER_BLOCK ==1
Synchronous To: sclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Signal Descriptions

4.6 I2S Transmitter Interface (for x = 0; x <= I2S_TX_CHANNELS-1) Signals

- sdox

Table 4-6 I2S Transmitter Interface (for x = 0; x <= I2S_TX_CHANNELS-1) Signals

Port Name I/O Description

sdox O Serial data output for Transmit Channel x, where x is the number of
the transmit channel.
Exists: I2S_TRANSMITTER_BLOCK ==1
Synchronous To: sclk_n
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_apb_i2s Databook

4.7 DMA Interface Signals

dma_tx_ack(_n) - - dma_tx_req(_n)
dma_rx_ack(_n) - - dma_rx_req(_n)

dma_tx_ack_x_n (for x = 0; x <=
I2S_TX_CHANNELS-1) -

- dma_tx_single(_n)

dma_rx_ack_x_n (for x = 0; x <=
I2S_RX_CHANNELS-1) -

- dma_rx_single(_n)

- dma_tx_req_x_n (for x = 0; x <= I2S_TX_CHANNELS-1)
- dma_tx_single_x_n (for x = 0; x <= I2S_TX_CHANNELS-1)
- dma_rx_req_x_n (for x = 0; x <= I2S_RX_CHANNELS-1)
- dma_rx_single_x_n (for x = 0; x <= I2S_RX_CHANNELS-1)

Table 4-7 DMA Interface Signals

Port Name I/O Description

dma_tx_ack(_n) I DMA Transmit Acknowledgement. Sent by the DMA Controller to
acknowledge the end of each DMA burst or single transaction to the
transmit FIFO.
Exists: I2S_TRANSMITTER_BLOCK ==1 && I2S_DMA_HS_TYPE
== 1 && I2S_HAS_DMA_INTERFACE ==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

dma_rx_ack(_n) I DMA Receive Acknowledgement. Sent by the DMA Controller to
acknowledge the end of each DMA burst or single transaction to the
receive FIFO.
Exists: I2S_RECEIVER_BLOCK ==1 && I2S_DMA_HS_TYPE == 1
&& I2S_HAS_DMA_INTERFACE ==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Signal Descriptions

dma_tx_req(_n) O Transmit FIFO DMA Request. Asserted when the transmit FIFO
requires service from the DMA Controller; that is, the transmit FIFO
is at or below the watermark level.
 0 - not requesting
 1 - requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the DEST_MSIZE field
of the CTLx register.
Exists: I2S_TRANSMITTER_BLOCK ==1 && I2S_DMA_HS_TYPE
== 1 && I2S_HAS_DMA_INTERFACE ==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

dma_rx_req(_n) O Receive FIFO DMA Request. Asserted when the receive FIFO
requires service from the DMA Controller; that is, the receive FIFO is
at or above the watermark level.
 0 - not requesting
 1 - requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the SRC_MSIZE field of
the CTLx register.
Exists: I2S_RECEIVER_BLOCK ==1 && I2S_DMA_HS_TYPE == 1
&& I2S_HAS_DMA_INTERFACE ==1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

dma_tx_single(_n) O DMA Transmit FIFO Single Signal. This DMA status output informs
the DMA Controller that there is at least one free entry in the transmit
FIFO. This output does not request a DMA transfer.
 0 - Transmit FIFO is full
 1 - Transmit FIFO is not full
Exists: I2S_TRANSMITTER_BLOCK ==1 && I2S_DMA_HS_TYPE
== 1 && I2S_HAS_DMA_INTERFACE ==1
Synchronous To: pclk
Registered: I2S_TRANSMITTER_BLOCK==1 &&
I2S_TX_CHANNELS>=2 ? No : Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

Table 4-7 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_apb_i2s Databook

dma_rx_single(_n) O DMA Receive FIFO Single Signal. This DMA status output informs
the DMA Controller that there is at least one valid data entry in the
receive FIFO. This output does not request a DMA transfer.
 0 - Receive FIFO is empty
 1 - Receive FIFO is not empty
Exists: I2S_RECEIVER_BLOCK ==1 && I2S_DMA_HS_TYPE == 1
&& I2S_HAS_DMA_INTERFACE ==1
Synchronous To: pclk
Registered: I2S_RECEIVER_BLOCK==1 &&
I2S_RX_CHANNELS>=2 ? No : Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

dma_tx_ack_x(_n)
(for x = 0; x <= I2S_TX_CHANNELS-1)

I DMA Transmit Acknowledgement. Sent by the DMA Controller to
acknowledge the end of each DMA burst or single transaction to the
transmit FIFO.
Exists: I2S_TRANSMITTER_BLOCK ==1 && I2S_DMA_HS_TYPE
== 0 && I2S_HAS_DMA_INTERFACE ==1 && I2S_TX_CHANNELS-
1 >= x
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

dma_rx_ack_x(_n)
(for x = 0; x <= I2S_RX_CHANNELS-1)

I DMA Receive Acknowledgement. Sent by the DMA controller to
acknowledge the end of each DMA burst or single transaction from
the receive FIFO.
Exists: I2S_RECEIVER_BLOCK ==1 && I2S_DMA_HS_TYPE == 0
&& I2S_HAS_DMA_INTERFACE ==1 && I2S_RX_CHANNELS-1 >=
x
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

Table 4-7 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Signal Descriptions

dma_tx_req_x(_n)
(for x = 0; x <= I2S_TX_CHANNELS-1)

O Transmit FIFO DMA Request. Asserted when the transmit FIFO
requires service from the DMA Controller; that is, the transmit FIFO
is at or below the watermark level.
 0 not requesting
 1 requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the DEST_MSIZE field
of the CTLx register.
Exists: I2S_TRANSMITTER_BLOCK ==1 && I2S_DMA_HS_TYPE
== 0 && I2S_HAS_DMA_INTERFACE ==1 && I2S_TX_CHANNELS-
1 >= x
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

dma_tx_single_x(_n)
(for x = 0; x <= I2S_TX_CHANNELS-1)

O DMA Transmit FIFO Single Signal. This DMA status output informs
the DMA Controller that there is at least one free entry in the transmit
FIFO. This output does not request a DMA transfer.
 0: Transmit FIFO is full
 1: Transmit FIFO is not full
Exists: I2S_TRANSMITTER_BLOCK ==1 && I2S_DMA_HS_TYPE
== 0 && I2S_HAS_DMA_INTERFACE ==1 && I2S_TX_CHANNELS-
1 >= x
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

dma_rx_req_x(_n)
(for x = 0; x <= I2S_RX_CHANNELS-1)

O Receive FIFO DMA Request. Asserted when the receive FIFO
requires service from the DMA Controller; that is, the receive FIFO is
at or above the watermark level.
 0 not requesting
 1 requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the SRC_MSIZE field of
the CTLx register.
Exists: I2S_RECEIVER_BLOCK ==1 && I2S_DMA_HS_TYPE == 0
&& I2S_HAS_DMA_INTERFACE ==1 && I2S_RX_CHANNELS-1 >=
x
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

Table 4-7 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_apb_i2s Databook

dma_rx_single_x(_n)
(for x = 0; x <= I2S_RX_CHANNELS-1)

O DMA Receive FIFO Single Signal. This DMA status output informs
the DMA Controller that there is at least one valid data entry in the
receive FIFO. This output does not request a DMA transfer.
 0: Receive FIFO is empty
 1: Receive FIFO is not empty
Exists: I2S_RECEIVER_BLOCK ==1 && I2S_DMA_HS_TYPE == 0
&& I2S_HAS_DMA_INTERFACE ==1 && I2S_RX_CHANNELS-1 >=
x
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_DMA_POL=1 otherwise Low

Table 4-7 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Signal Descriptions

4.8 I2S Interrupts Signals

- rx_da_x_intr_n (for x = 0; x <= I2S_RX_CHANNELS-1)
- rx_or_x_intr_n (for x = 0; x <= I2S_RX_CHANNELS-1)
- tx_emp_x_intr_n (for x = 0; x <= I2S_TX_CHANNELS-1)
- tx_or_x_intr_n (for x = 0; x <= I2S_TX_CHANNELS-1)
- intr(_n)

Table 4-8 I2S Interrupts Signals

Port Name I/O Description

rx_da_x_intr(_n)
(for x = 0; x <= I2S_RX_CHANNELS-1)

O Data Available Interrupt for Receive Channel x, where x is the
number of the receive channel. This interrupt is asserted when the
trigger level for the RX FIFO is reached.
Exists: I2S_INTERRUPT_SIGNALS == 1 &
I2S_RECEIVER_BLOCK==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_INTR_POL=1 otherwise Low

rx_or_x_intr(_n)
(for x = 0; x <= I2S_RX_CHANNELS-1)

O Data Overrun Interrupt for Receive Channel x, where x is the
number of the receive channel. This interrupt is asserted when an
attempt is made to write received data to full RX FIFO (any data
being written is lost while data in the FIFO is preserved).
Exists: I2S_INTERRUPT_SIGNALS == 1 &
I2S_RECEIVER_BLOCK==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_INTR_POL=1 otherwise Low

tx_emp_x_intr(_n)
(for x = 0; x <= I2S_TX_CHANNELS-1)

O FIFO Empty Interrupt for Transmit Channel x, where x is the number
of the transmit channel. This interrupt is asserted when the empty
trigger threshold level for the TX FIFO is reached.
Exists: I2S_INTERRUPT_SIGNALS == 1 &
I2S_TRANSMITTER_BLOCK==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_INTR_POL=1 otherwise Low

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_apb_i2s Databook

tx_or_x_intr(_n)
(for x = 0; x <= I2S_TX_CHANNELS-1)

O Data Overrun Interrupt for Transmit Channel x, where x is the
number of the transmit channel. This interrupt is asserted when an
attempt is made to write to a full TX FIFO (any data being written is
lost while data in the FIFO is preserved).
Exists: I2S_INTERRUPT_SIGNALS == 1 &
I2S_TRANSMITTER_BLOCK==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_INTR_POL=1 otherwise Low

intr(_n) O DW_apb_i2s global interrupt signal.
Exists: I2S_INTERRUPT_SIGNALS == 0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when I2S_INTR_POL=1 otherwise Low

Table 4-8 I2S Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

5
Register Descriptions

This chapter details all possible registers in the controller. They are arranged hierarchically into maps and
blocks (banks). For configurable IP titles, your actual configuration might not contain all of these registers.

Attention: For configurable IP titles, do not use this document to determine the exact attributes of your
register map. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the register attributes for your actual
configuration at workspace/report/ComponentRegisters.html or
workspace/report/ComponentRegisters.xml after you have completed the report creation activity. That
report comes from the exact same source as this chapter but removes all the registers that are not in your
actual configuration. This does not apply to non-configurable IP titles. In addition, all parameter
expressions are evaluated to actual values. Therefore, the Offset and Memory Access values might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

Exists Expressions

These expressions indicate the combination of configuration parameters required for a register, field, or
block to exist in the memory map. The expression is only valid in the local context and does not indicate the
conditions for existence of the parent. For example, the expression for a bit field in a register assumes that
the register exists and does not include the conditions for existence of the register.

Offset

The term Offset is synonymous with Address.

Memory Access Attributes

The Memory Access attribute is defined as <ReadBehavior>/<WriteBehavior> which are defined in the
following table.

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

Special Optional Attributes

Some register fields might use the following optional attributes.

Table 5-1 Possible Read and Write Behaviors

Read (or Write) Behavior Description

RC A read clears this register field.

RS A read sets this register field.

RM A read modifies the contents of this register field.

Wo You can only write to this register once field.

W1C A write of 1 clears this register field.

W1S A write of 1 sets this register field.

W1T A write of 1 toggles this register field.

W0C A write of 0 clears this register field.

W0S A write of 0 sets this register field.

W0T A write of 0 toggles this register field.

WC Any write clears this register field.

WS Any write sets this register field.

WM Any write toggles this register field.

no Read Behavior attribute You cannot read this register. It is Write-Only.

no Write Behavior attribute You cannot write to this register. It is Read-Only.

Table 5-2 Memory Access Examples

Memory Access Description

R Read-only register field.

W Write-only register field.

R/W Read/write register field.

R/W1C You can read this register field. Writing 1 clears it.

RC/W1C Reading this register field clears it. Writing 1 clears it.

R/Wo You can read this register field. You can only write to it once.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

Component Banks/Blocks

The following table shows the address blocks for each memory map. Follow the link for an address block to
see a table of its registers.

Table 5-3 Optional Attributes

Attribute Description

Volatile As defined by the IP-XACT specification. If true, indicates in the
case of a write followed by read, or in the case of two consecutive
reads, there is no guarantee as to what is returned by the read on
the second transaction or that this return value is consistent with the
write or read of the first transaction. The element implies there is
some additional mechanism by which this field can acquire new
values other than by reads/writes/resets and other access methods
known to IP-XACT. For example, when the core updates the register
field contents.

Testable As defined by the IP-XACT specification. Possible values are
unconstrained, untestable, readOnly, writeAsRead, restore.
Untestable means that this field is untestable by a simple automated
register test. For example, the read-write access of the register is
controlled by a pin or another register. readOnly means that you
should not write to this register; only read from it. This might apply
for a register that modifies the contents of another register.

Reset Mask As defined by the IP-XACT specification. Indicates that this register
field has an unknown reset value. For example, the reset value is set
by another register or an input pin; or the register is implemented
using RAM.

* Varies Indicates that the memory access (or reset) attribute (read, write
behavior) is not fixed. For example, the read-write access of the
register is controlled by a pin or another register. Or when the
access depends on some configuration parameter; in this case the
post-configuration report in coreConsultant gives the actual access
value.

Table 5-4 Address Banks/Blocks for Memory Map: DW_apb_i2s_mem_map

Address Block Description

DW_apb_i2s_addr_block1 on page 84 DW_apb_i2s address block
Exists: Always

https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1 DW_apb_i2s_mem_map/DW_apb_i2s_addr_block1 Registers
DW_apb_i2s address block. Follow the link for the register to see a detailed description of the register.

Table 5-5 Registers for Address Block: DW_apb_i2s_mem_map/DW_apb_i2s_addr_block1

Register Offset Description

IER on page 87 0x0 This register acts as a global enable/disable for
DW_apb_i2s.

IRER on page 88 0x4 This register acts as an enable/disable for the DW_apb_i2s
Receiver block.

ITER on page 89 0x8 This register acts as an enable/disable for the DW_apb_i2s
Transmitter block.

CER on page 90 0xc This register acts as an enable/disable for the DW_apb_i2s
Clock Generation block, which is only...

CCR on page 91 0x10 This register configures the ws_out and sclk_gate signals
when DW_apb_i2s is a master.

RXFFR on page 93 0x14 This register specifies the Receiver Block FIFO Reset
Register.

TXFFR on page 94 0x18 This register specifies the Transmitter Block FIFO Reset
Register.

LRBRx
(for x = 0; x <= I2S_RX_CHANNELS-1) on
page 95

0x020 +
0x40*x

This specifies the Left Receive Buffer Register.

LTHRx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 97

0x020 +
0x40*x

This specifies the Left Transmit Holding Register.

RRBRx
(for x = 0; x <= I2S_RX_CHANNELS-1) on
page 99

0x024 +
0x40*x

This specifies the Right Receive Buffer Register.

RTHRx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 101

0x024 +
0x40*x

This specifies the Right Transmit Holding Register.

RERx
(for x = 0; x <= I2S_RX_CHANNELS-1) on
page 103

0x028 +
0x40*x

This specifies the Receive Enable Register.

TERx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 104

0x02C +
0x40*x

This specifies the Transmit Enable Register.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

RCRx
(for x = 0; x <= I2S_RX_CHANNELS-1) on
page 105

0x030 +
0x40*x

This specifies the Receive Configuration Register.

TCRx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 107

0x034 +
0x40*x

This specifies the Transmit Configuration Register.

ISRx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 109

0x038 +
0x40*x

This specifies the Interrupt Status Register.

IMRx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 111

0x03C +
0x40*x

This specifies the Interrupt Mask Register.

RORx
(for x = 0; x <= I2S_RX_CHANNELS-1) on
page 113

0x040 +
0x40*x

This specifies the Receive Overrun Register.

TORx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 114

0x044 +
0x40*x

This specifies the Transmit Overrun Register.

RFCRx
(for x = 0; x <= I2S_RX_CHANNELS-1) on
page 115

0x048 +
0x40*x

This specifies the Receive FIFO Configuration Register.

TFCRx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 118

0x04C +
0x40*x

This specifies the Transmit FIFO Configuration Register.

RFFx
(for x = 0; x <= I2S_RX_CHANNELS-1) on
page 121

0x050 +
0x40*x

This specifies the Receive FIFO Flush Register.

TFFx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 122

0x054 +
0x40*x

This specifies the Transmit FIFO Flush Register.

RXDMA on page 123 0x1c0 The RXDMA register allows access to all enabled Receive
channels via a single point rather than...

RRXDMA on page 125 0x1c4 The RXDMA can be reset to the lowest enabled Channel via
the RRXDMA register. The RRXDMA register can...

TXDMA on page 127 0x1c8 The TXDMA register functions similar to the RXDMA register
and allows write accesses to all of...

RTXDMA on page 128 0x1cc This register provides the same functionality as the
RRXDMA register but targets TXDMA...

Table 5-5 Registers for Address Block: DW_apb_i2s_mem_map/DW_apb_i2s_addr_block1 (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

I2S_COMP_PARAM_2 on page 129 0x1f0 This specifies bits for Component Parameter Register 2.
Note: This is a constant read-only register...

I2S_COMP_PARAM_1 on page 132 0x1f4 This specifies bits for Component Parameter Register 1.
Note: This is a constant read-only register...

I2S_COMP_VERSION on page 136 0x1f8 This register specifies the I2S Component Version.

I2S_COMP_TYPE on page 137 0x1fc This register specifies the I2S Component Type.

DMACR on page 138 0x200 This register is only valid when DW_apb_i2s is configured
with a set of DMA Controller interface...

RXDMA_CHx
(for x = 0; x <= I2S_RX_CHANNELS-1) on
page 142

0x204 The RXDMA_CHx register allows access to enabled Receive
channel x via a single point rather than...

TXDMA_CHx
(for x = 0; x <= I2S_TX_CHANNELS-1) on
page 144

0x214 The TXDMA_CHx register allows access to enabled
Transmit channel x via a single point rather than...

Table 5-5 Registers for Address Block: DW_apb_i2s_mem_map/DW_apb_i2s_addr_block1 (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.1 IER

■ Name: DW_apb_i2s Enable Register

■ Description: This register acts as a global enable/disable for DW_apb_i2s.

■ Size: 32 bits

■ Offset: 0x0

■ Exists: Always

31
:1

0

R
S

V
D

_I
E

R

IE
N

Table 5-6 Fields for Register: IER

Bits Name
Memory
Access Description

31:1 RSVD_IER R RSVD_IER Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

0 IEN R/W DW_apb_i2s enable.
This bit enables or disables DW_apb_i2s. A disable on this
bit overrides any other block or channel enables and flushes
all FIFOs. For more information about how this register
affects the other DW_apb_i2s blocks, refer to "DW_apb_i2s
Enable".
Values:

■ 0x0 (DISABLED): DW_apb_i2s disabled.

■ 0x1 (ENABLED): DW_apb_i2s enabled

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.2 IRER

■ Name: I2S Receiver Block Enable Register

■ Description: This register acts as an enable/disable for the DW_apb_i2s Receiver block.

■ Size: 32 bits

■ Offset: 0x4

■ Exists: I2S_RECEIVER_BLOCK==1

31
:1

0

R
S

V
D

_I
R

E
R

R
X

E
N

Table 5-7 Fields for Register: IRER

Bits Name
Memory
Access Description

31:1 RSVD_IRER R RSVD_IRER Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

0 RXEN R/W Receiver block enable.
This bit enables or disables the receiver. A disable on this bit
overrides any individual receive channel enables. For more
information about the receiver block, refer to "DW_apb_i2s
as Receiver".
Values:

■ 0x0 (DISABLED): Receiver disabled

■ 0x1 (ENABLED): Receiver enabled

Value After Reset: 0x0
Exists: I2S_RECEIVER_BLOCK==1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.3 ITER

■ Name: I2S Transmitter Block Enable Register

■ Description: This register acts as an enable/disable for the DW_apb_i2s Transmitter block.

■ Size: 32 bits

■ Offset: 0x8

■ Exists: I2S_TRANSMITTER_BLOCK==1

31
:1

0

R
S

V
D

_I
T

E
R

T
X

E
N

Table 5-8 Fields for Register: ITER

Bits Name
Memory
Access Description

31:1 RSVD_ITER R RSVD_ITER Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

0 TXEN R/W Transmitter block enable.
This bit enables or disables the transmitter. A disable on this
bit overrides any individual transmit channel enables. For
more information about the transmitter block, refer to
"DW_apb_i2s as Transmitter".
Values:
■ 0x0 (DISABLED): Transmitter disabled

■ 0x1 (ENABLED): Transmitter enabled

Value After Reset: 0x0
Exists: I2S_TRANSMITTER_BLOCK==1

https://solvnet.synopsys.com
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.4 CER

■ Name: Clock Enable Register

■ Description: This register acts as an enable/disable for the DW_apb_i2s Clock Generation block,
which is only relevant in master mode (I2S_MODE_EN = 1). When this block is enabled, the clock
signals sclk_en, ws_out, and sclk_gate appear on the interface.

■ Size: 32 bits

■ Offset: 0xc

■ Exists: I2S_MODE_EN==1

31
:1

0

R
S

V
D

_C
E

R

C
LK

E
N

Table 5-9 Fields for Register: CER

Bits Name
Memory
Access Description

31:1 RSVD_CER R RSVD_CER Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

0 CLKEN R/W Clock generation enable/disable.
This bit enables/disables the clock generation signals when
DW_apb_i2s is a master: sclk_en, ws_out, and sclk_gate.
For more information about clock generation, refer to "Clock
Generation (Master Mode)".
Values:
■ 0x0 (DISABLED): Clock generation disabled

■ 0x1 (ENABLED): Clock generation enabled

Value After Reset: 0x0
Exists: I2S_MODE_EN==1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.5 CCR

■ Name: Clock Configuration Register

■ Description: This register configures the ws_out and sclk_gate signals when DW_apb_i2s is a master.

■ Size: 32 bits

■ Offset: 0x10

■ Exists: I2S_MODE_EN==1

31
:5

4:
3

2:
0

R
S

V
D

_C
C

R

W
S

S

S
C

LK
G

Table 5-10 Fields for Register: CCR

Bits Name
Memory
Access Description

31:5 RSVD_CCR R RSVD_CCR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

4:3 WSS R/W These bits are used to program the number of sclk cycles for
which the word select line (ws_out) stays in the left or right
sample mode. The I2S Clock Generation block must be
disabled (CER[0] = 0) prior to any changes in this value.
Values:

■ 0x0 (CLOCK_CYCLES_16): 16 sclk cycles

■ 0x1 (CLOCK_CYCLES_24): 24 sclk cycles

■ 0x2 (CLOCK_CYCLES_32): 32 sclk cycles

Value After Reset: I2S_WS_LENGTH
Exists: I2S_MODE_EN==1

https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

2:0 SCLKG R/W These bits are used to program the gating of sclk. The
programmed gating value must be less than or equal to the
largest configured/programmed audio resolution to prevent
the truncating of RX/TX data. The I2S Clock Generation
block must be disabled (CER[0] = 0) before making any
changes in this value.
Values:

■ 0x0 (NO_CLOCK_GATING): Clock gating is disabled

■ 0x1 (CLOCK_CYCLES_12): Gating after 12 sclk cycles

■ 0x2 (CLOCK_CYCLES_16): Gating after 16 sclk cycles

■ 0x3 (CLOCK_CYCLES_20): Gating after 20 sclk cycles

■ 0x4 (CLOCK_CYCLES_24): Gating after 24 sclk cycles

Value After Reset: I2S_SCLK_GATE
Exists: I2S_MODE_EN==1

Table 5-10 Fields for Register: CCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.6 RXFFR

■ Name: Receiver Block FIFO Reset Register

■ Description: This register specifies the Receiver Block FIFO Reset Register.

■ Size: 32 bits

■ Offset: 0x14

■ Exists: I2S_RECEIVER_BLOCK==1

31
:1

0

R
S

V
D

_R
X

F
F

R

R
X

F
F

R

Table 5-11 Fields for Register: RXFFR

Bits Name
Memory
Access Description

31:1 RSVD_RXFFR W RSVD_RXFFR Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 RXFFR W Receiver FIFO Reset.
Writing a 1 to this register flushes all the RX FIFOs (this is a
self clearing bit). The Receiver Block must be disabled
before writing to this bit.
Values:
■ 0x0 (NO_FLUSH): Does not flush the RX FIFO

■ 0x1 (FLUSH): Flushes the RX FIFO

Value After Reset: 0x0
Exists: I2S_RECEIVER_BLOCK==1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.7 TXFFR

■ Name: Transmitter Block FIFO Reset Register

■ Description: This register specifies the Transmitter Block FIFO Reset Register.

■ Size: 32 bits

■ Offset: 0x18

■ Exists: I2S_TRANSMITTER_BLOCK==1

31
:1

0

R
S

V
D

_T
X

F
F

R

T
X

F
F

R

Table 5-12 Fields for Register: TXFFR

Bits Name
Memory
Access Description

31:1 RSVD_TXFFR W RSVD_TXFFR Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 TXFFR W Transmitter FIFO Reset.
Writing a 1 to this register flushes all the TX FIFOs (this is a
self clearing bit). The Transmitter Block must be disabled
prior to writing this bit.
Values:

■ 0x0 (NO_FLUSH): Does not flush the TX FIFO

■ 0x1 (FLUSH): Flushes the TX FIFO

Value After Reset: 0x0
Exists: I2S_TRANSMITTER_BLOCK==1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.8 LRBRx (for x = 0; x <= I2S_RX_CHANNELS-1)

■ Name: Left Receive Buffer Register x

■ Description: This specifies the Left Receive Buffer Register.

■ Size: 32 bits

■ Offset: 0x020 + 0x40*x

■ Exists: (I2S_RX_CHANNELS>x && I2S_RECEIVER_BLOCK==1)

32
-I

2S
_R

X
_W

O
R

D
S

IZ
E

_x

I2
S

_R
X

_W
O

R
D

S
IZ

E
_x

R
S

V
D

_L
R

B
x

LR
B

R
x

Table 5-13 Fields for Register: LRBRx (for x = 0; x <= I2S_RX_CHANNELS-1)

Bits Name
Memory
Access Description

32-
I2S_RX
_WORD
SIZE_x

RSVD_LRBx R RSVD_LRBRx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

I2S_RX
_WORD
SIZE_x

LRBRx R The left stereo data received serially from the receive
channel input (sdix). If the RX FIFO is full and the two-stage
read operation (for instance, a read from LRBRx followed by
a read from RRBRx) is not performed before the start of the
next stereo pair, then the new data is lost and an overrun
interrupt occurs. (data already in the RX FIFO is preserved.)
Note: Before reading this register again, the right stereo data
must be read from RRBRx or the status/interrupts will not be
valid.
Value After Reset: 0x0
Exists: I2S_RX_CHANNELS > x
Volatile: true

Table 5-13 Fields for Register: LRBRx (for x = 0; x <= I2S_RX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.9 LTHRx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Left Transmit Holding Register x

■ Description: This specifies the Left Transmit Holding Register.

■ Size: 32 bits

■ Offset: 0x020 + 0x40*x

■ Exists: (I2S_TX_CHANNELS>x && I2S_TRANSMITTER_BLOCK==1)

32
-I

2S
_T

X
_W

O
R

D
S

IZ
E

_x

I2
S

_T
X

_W
O

R
D

S
IZ

E
_x

R
S

V
D

_L
T

H
R

x

LT
H

R
x

Table 5-14 Fields for Register: LTHRx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

32-
I2S_TX
_WORD
SIZE_x

RSVD_LTHRx W RSVD_LTHRx Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

I2S_TX
_WORD
SIZE_x

LTHRx W The left stereo data to be transmitted serially through the
transmit channel output (sdox) is written through this register.
Writing is a two-stage process:
1. A write to this register passes the left stereo sample to the
transmitter.
2. This MUST be followed by writing the right stereo sample
to the RTHRx register.
Data must only be written to the FIFO when it is not full. Any
attempt to write to a full FIFO results in that data being lost
and an overrun interrupt being generated.
Value After Reset: 0x0
Exists: I2S_TX_CHANNELS > x
Volatile: true

Table 5-14 Fields for Register: LTHRx (for x = 0; x <= I2S_TX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.10 RRBRx (for x = 0; x <= I2S_RX_CHANNELS-1)

■ Name: Right Transmit Holding Register x

■ Description: This specifies the Right Receive Buffer Register.

■ Size: 32 bits

■ Offset: 0x024 + 0x40*x

■ Exists: (I2S_RX_CHANNELS>x && I2S_RECEIVER_BLOCK==1)

32
-I

2S
_R

X
_W

O
R

D
S

IZ
E

_x

I2
S

_R
X

_W
O

R
D

S
IZ

E
_x

R
S

V
D

_R
R

B
R

x

R
R

B
R

x

Table 5-15 Fields for Register: RRBRx (for x = 0; x <= I2S_RX_CHANNELS-1)

Bits Name
Memory
Access Description

32-
I2S_RX
_WORD
SIZE_x

RSVD_RRBRx R RSVD_RRBRx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

I2S_RX
_WORD
SIZE_x

RRBRx R The right stereo data received serially from the receive
channel input (sdix) is read through this register. If the RX
FIFO is full and the two-stage read operation (for instance,
read from LRBRx followed by a read from RRBRx) is not
performed before the start of the next stereo pair, then the
new data is lost and an overrun interrupt occurs. (Data
already in the RX FIFO is preserved.)
Note: Prior to reading this register, the left stereo data MUST
be read from LRBRx, or the status/interrupts will not be valid.
Value After Reset: 0x0
Exists: I2S_RX_CHANNELS > x
Volatile: true

Table 5-15 Fields for Register: RRBRx (for x = 0; x <= I2S_RX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.11 RTHRx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Description: This specifies the Right Transmit Holding Register.

■ Size: 32 bits

■ Offset: 0x024 + 0x40*x

■ Exists: (I2S_TX_CHANNELS>x && I2S_TRANSMITTER_BLOCK==1)

32
-I

2S
_T

X
_W

O
R

D
S

IZ
E

_x

I2
S

_T
X

_W
O

R
D

S
IZ

E
_x

R
S

V
D

_R
T

H
R

x

R
T

H
R

x

Table 5-16 Fields for Register: RTHRx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

32-
I2S_TX
_WORD
SIZE_x

RSVD_RTHRx W RSVD_RTHRx Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

102 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

I2S_TX
_WORD
SIZE_x

RTHRx W The right stereo data to be transmitted serially through the
transmit channel output (sdox) is written through this register.
Writing is a two-stage process:
1. A left stereo sample MUST be written to the LTHRx
register.
2. A write to this register passes the right stereo sample to
the transmitter.
Data should only be written to the FIFO when it is not full.
Any attempt to write to a full FIFO results in that data being
lost and an overrun interrupt being generated.
Value After Reset: 0x0
Exists: I2S_TX_CHANNELS > x
Volatile: true

Table 5-16 Fields for Register: RTHRx (for x = 0; x <= I2S_TX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 103SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.12 RERx (for x = 0; x <= I2S_RX_CHANNELS-1)

■ Name: Receive Enable Register x

■ Description: This specifies the Receive Enable Register.

■ Size: 32 bits

■ Offset: 0x028 + 0x40*x

■ Exists: (I2S_RX_CHANNELS>x && I2S_RECEIVER_BLOCK==1)

31
:1

0

R
S

V
D

_R
E

R
x

R
X

C
H

E
N

x

Table 5-17 Fields for Register: RERx (for x = 0; x <= I2S_RX_CHANNELS-1)

Bits Name
Memory
Access Description

31:1 RSVD_RERx R RSVD_RERx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

0 RXCHENx R/W Receive channel enable. This bit enables/disables a receive
channel, independently of all other channels.
On enable, the channel begins receiving on the next left
stereo cycle.
A global disable of DW_apb_i2s (IER[0] = 0) or the Receiver
block (IRER[0] = 0) overrides this value.
Values:

■ 0x0 (DISABLED): Receive Channel Disable

■ 0x1 (ENABLED): Receive Channel Enable

Value After Reset: 0x1
Exists: I2S_RX_CHANNELS > x

https://solvnet.synopsys.com
www.designware.com

104 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.13 TERx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Transmit Enable Register x

■ Description: This specifies the Transmit Enable Register.

■ Size: 32 bits

■ Offset: 0x02C + 0x40*x

■ Exists: (I2S_TX_CHANNELS>x && I2S_TRANSMITTER_BLOCK==1)

31
:1

0

R
S

V
D

_T
E

R
x

T
X

C
H

E
N

x

Table 5-18 Fields for Register: TERx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

31:1 RSVD_TERx R RSVD_TERx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

0 TXCHENx R/W Transmit channel enable. This bit enables/disables a transmit
channel, independently of all other channels.
On enable, the channel begins transmitting on the next left
stereo cycle.
A global disable of DW_apb_i2s (IER[0] = 0) or Transmitter
block (ITER[0] = 0) overrides this value.
Values:

■ 0x0 (DISABLED): Transmit Channel Disable

■ 0x1 (ENABLED): Transmit Channel Enable

Value After Reset: 0x1
Exists: I2S_TX_CHANNELS > x

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 105SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.14 RCRx (for x = 0; x <= I2S_RX_CHANNELS-1)

■ Name: Receive Configuration Register x

■ Description: This specifies the Receive Configuration Register.

■ Size: 32 bits

■ Offset: 0x030 + 0x40*x

■ Exists: (I2S_RX_CHANNELS>x && I2S_RECEIVER_BLOCK==1)

31
:3

2:
0

R
S

V
D

_R
C

R
x

W
LE

N

Table 5-19 Fields for Register: RCRx (for x = 0; x <= I2S_RX_CHANNELS-1)

Bits Name
Memory
Access Description

31:3 RSVD_RCRx R RSVD_RCRx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

106 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

2:0 WLEN R/W These bits are used to program the desired data resolution of
the receiver and enables the LSB of the incoming left (or
right) word to be placed in the LSB of the LRBRx (or
RRBRx) register.
Programmed data resolution must be less than or equal to
I2S_RX_WORDSIZE_x. If the selected resolution is greater
than the I2S_RX_WORDSIZE_x, the receive channel
defaults back to I2S_RX_WORDSIZE_RESET_VALUE_x.
 The channel must be disabled prior to any changes in this
value (RER0[0] = 0).
Values:

■ 0x0 (IGNORE_WORD_LENGTH): Ignore the word length

■ 0x1 (RESOLUTION_12_BIT): 12-bit data resolution of
the receiver.

■ 0x2 (RESOLUTION_16_BIT): 16-bit data resolution of
the receiver.

■ 0x3 (RESOLUTION_20_BIT): 20-bit data resolution of
the receiver.

■ 0x4 (RESOLUTION_24_BIT): 24-bit data resolution of
the receiver.

■ 0x5 (RESOLUTION_32_BIT): 32-bit data resolution of
the receiver.

Value After Reset:
I2S_RX_WORDSIZE_RESET_VALUE_[x]
Exists: I2S_RX_CHANNELS > x

Table 5-19 Fields for Register: RCRx (for x = 0; x <= I2S_RX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 107SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.15 TCRx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Transmit Configuration Register x

■ Description: This specifies the Transmit Configuration Register.

■ Size: 32 bits

■ Offset: 0x034 + 0x40*x

■ Exists: (I2S_TX_CHANNELS>x && I2S_TRANSMITTER_BLOCK==1)

31
:3

2:
0

R
S

V
D

_T
C

R
x

W
LE

N

Table 5-20 Fields for Register: TCRx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

31:3 RSVD_TCRx R RSVD_TCRx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

108 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

2:0 WLEN R/W These bits are used to program the data resolution of the
transmitter and ensures the MSB of the data is transmitted
first.
Programmed resolution must be less than or equal to
I2S_TX_WORDSIZE_x. If the selected resolution is greater
than I2S_TX_WORDSIZE_x, the transmit channel defaults
back to I2S_TX_WORDSIZE_RESET_VALUE_x value.
The channel must be disabled prior to any changes in this
value (TER0[0] = 0).
Values:

■ 0x0 (IGNORE_WORD_LENGTH): Ignore the word length

■ 0x1 (RESOLUTION_12_BIT): 12-bit data resolution of
the transmitter.

■ 0x2 (RESOLUTION_16_BIT): 16-bit data resolution of
the transmitter.

■ 0x3 (RESOLUTION_20_BIT): 20-bit data resolution of
the transmitter.

■ 0x4 (RESOLUTION_24_BIT): 24-bit data resolution of
the transmitter.

■ 0x5 (RESOLUTION_32_BIT): 32-bit data resolution of
the transmitter.

Value After Reset:
I2S_TX_WORDSIZE_RESET_VALUE_[x]
Exists: I2S_TX_CHANNELS > x

Table 5-20 Fields for Register: TCRx (for x = 0; x <= I2S_TX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 109SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.16 ISRx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Interrupt status Register x

■ Description: This specifies the Interrupt Status Register.

■ Size: 32 bits

■ Offset: 0x038 + 0x40*x

■ Exists: ((I2S_TX_CHANNELS>x) ? 1 : ((I2S_RX_CHANNELS>x) ? 1 : 0))

31
:6

5 4 3:
2

1 0

R
S

V
D

31
_6

T
X

F
O

T
X

F
E

R
S

V
D

3_
2

R
X

F
O

R
X

D
A

Table 5-21 Fields for Register: ISRx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

31:6 RSVD31_6 R RSVD31_6 Reserved bits - Read Only
Exists: Always
Volatile: true

5 TXFO R Status of Data Overrun interrupt for the TX channel.
This bit specifies whether the TX FIFO write is valid or an
overrun. Attempt to write to full TX FIFO.
Values:

■ 0x0 (WRITE_VALID): TX FIFO write valid

■ 0x1 (WRITE_OVERRUN): TX FIFO write overrun

Value After Reset: 0x0
Exists: (I2S_TX_CHANNELS>x &&
I2S_TRANSMITTER_BLOCK==1)
Volatile: true

https://solvnet.synopsys.com
www.designware.com

110 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

4 TXFE R Status of Transmit Empty Trigger interrupt.
This bit specifies whether the TX FIFO trigger level has
reached or not. TX FIFO is empty.
Values:
■ 0x0 (REACHED_TRIGGER_LEVEL): TX FIFO trigger

level is reached

■ 0x1 (NOT_REACHED): TX FIFO trigger level is not
reached

Value After Reset: 0x1
Exists: (I2S_TX_CHANNELS>x &&
I2S_TRANSMITTER_BLOCK==1)
Volatile: true

3:2 RSVD3_2 R RSVD3_2 Reserved bits - Read Only
Exists: Always
Volatile: true

1 RXFO R Status of Data Overrun interrupt for the RX channel.
Incoming data lost due to a full RX FIFO.
Values:

■ 0x0 (WRITE_VALID): RX FIFO write valid

■ 0x1 (WRITE_OVERRUN): RX FIFO write overrun

Value After Reset: 0x0
Exists: (I2S_RX_CHANNELS>x &&
I2S_RECEIVER_BLOCK==1)
Volatile: true

0 RXDA R Status of Receive Data Available interrupt. This bit denotes
the status of the RX FIFO trigger level.
Values:
■ 0x1 (REACHED_TRIGGER_LEVEL): RX FIFO trigger

level is reached

■ 0x0 (NOT_REACHED): RX FIFO trigger level is not
reached

Value After Reset: 0x0
Exists: (I2S_RX_CHANNELS>x &&
I2S_RECEIVER_BLOCK==1)
Volatile: true

Table 5-21 Fields for Register: ISRx (for x = 0; x <= I2S_TX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 111SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.17 IMRx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Interrupt Mask Register x

■ Description: This specifies the Interrupt Mask Register.

■ Size: 32 bits

■ Offset: 0x03C + 0x40*x

■ Exists: ((I2S_TX_CHANNELS>x) ? 1 : ((I2S_RX_CHANNELS>x && I2S_RECEIVER_BLOCK) ? 1 : 0))

31
:6

5 4 3:
2

1 0

R
S

V
D

_I
M

R
0_

6_
31

T
X

F
O

M

T
X

F
E

M

R
S

V
D

_I
M

R
0_

2_
3

R
X

F
O

M

R
X

D
A

M

Table 5-22 Fields for Register: IMRx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

31:6 RSVD_IMR0_6_31 R RSVD_IMR0_6_31 Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

5 TXFOM (I2S_TX_
CHANNE
LS>x &&
I2S_TRA
NSMITTE
R_BLOC
K==1) ?
read-
write :
read-only

Mask TX FIFO Overrun interrupt.
This bit masks or unmasks a TX FIFO overrun interrupt.
Values:

■ 0x1 (MASK_INTERRUPT): Masks TX FIFO Overrun
interrupt

■ 0x0 (UNMASK_INTERRUPT): Unmasks TX FIFO
Overrun interrupt

Value After Reset: I2S_TX_CHANNELS>x &&
I2S_TRANSMITTER_BLOCK==1
Exists: I2S_TX_CHANNELS > x

https://solvnet.synopsys.com
www.designware.com

112 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

4 TXFEM (I2S_TX_
CHANNE
LS>x &&
I2S_TRA
NSMITTE
R_BLOC
K==1) ?
read-
write :
read-only

Mask TX FIFO Empty interrupt.
This bit masks or unmasks a TX FIFO Empty interrupt.
Values:
■ 0x1 (MASK_INTERRUPT): Masks TX FIFO Empty

interrupt

■ 0x0 (UNMASK_INTERRUPT): Unmasks TX FIFO Empty
interrupt

Value After Reset: I2S_TX_CHANNELS>x &&
I2S_TRANSMITTER_BLOCK==1
Exists: I2S_TX_CHANNELS > x

3:2 RSVD_IMR0_2_3 R RSVD_IMRO_2_3 Reserved bits - Read Only
Exists: Always

1 RXFOM (I2S_RX_
CHANNE
LS>x &&
I2S_REC
EIVER_B
LOCK==
1) ? read-
write :
read-only

Mask RX FIFO Overrun interrupt.
This bit masks or unmasks an RX FIFO Overrun interrupt.
Values:

■ 0x1 (MASK_INTERRUPT): Masks RX FIFO Overrun
interrupt

■ 0x0 (UNMASK_INTERRUPT): Unmasks RX FIFO
Overrun interrupt

Value After Reset: I2S_RX_CHANNELS>x &&
I2S_RECEIVER_BLOCK==1
Exists: I2S_RX_CHANNELS > x

0 RXDAM (I2S_RX_
CHANNE
LS>x &&
I2S_REC
EIVER_B
LOCK==
1) ? read-
write :
read-only

Mask RX FIFO Data Available interrupt.
This bit masks or unmasks an RX FIFO Data Available
interrupt.
Values:

■ 0x1 (MASK_INTERRUPT): Masks RX FIFO data
available interrupt

■ 0x0 (UNMASK_INTERRUPT): Unmasks RX FIFO data
available interrupt

Value After Reset: I2S_RX_CHANNELS>x &&
I2S_RECEIVER_BLOCK==1
Exists: I2S_RX_CHANNELS > x

Table 5-22 Fields for Register: IMRx (for x = 0; x <= I2S_TX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 113SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.18 RORx (for x = 0; x <= I2S_RX_CHANNELS-1)

■ Name: Receive Overrun Register x

■ Description: This specifies the Receive Overrun Register.

■ Size: 32 bits

■ Offset: 0x040 + 0x40*x

■ Exists: (I2S_RX_CHANNELS>x && I2S_RECEIVER_BLOCK)

31
:1

0

R
S

V
D

_R
O

R
x

R
X

C
H

O

Table 5-23 Fields for Register: RORx (for x = 0; x <= I2S_RX_CHANNELS-1)

Bits Name
Memory
Access Description

31:1 RSVD_RORx R RSVD_RORx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 RXCHO R Read this bit to clear the RX FIFO Data Overrun interrupt.
Values:

■ 0x0 (WRITE_VALID): RX FIFO write valid

■ 0x1 (WRITE_OVERRUN): RX FIFO write overrun

Value After Reset: 0x0
Exists: I2S_RX_CHANNELS > x
Volatile: true

https://solvnet.synopsys.com
www.designware.com

114 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.19 TORx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Transmit Overrun Register x

■ Description: This specifies the Transmit Overrun Register.

■ Size: 32 bits

■ Offset: 0x044 + 0x40*x

■ Exists: (I2S_TX_CHANNELS>x && I2S_TRANSMITTER_BLOCK==1)

31
:1

0

R
S

V
D

_T
O

R
x

T
X

C
H

O

Table 5-24 Fields for Register: TORx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

31:1 RSVD_TORx R RSVD_TORx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 TXCHO R Read this bit to clear the TX FIFO Data Overrun interrupt.
Values:

■ 0x0 (WRITE_VALID): TX FIFO write valid

■ 0x1 (WRITE_OVERRUN): TX FIFO write overrun

Value After Reset: 0x0
Exists: I2S_TX_CHANNELS > x
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 115SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.20 RFCRx (for x = 0; x <= I2S_RX_CHANNELS-1)

■ Name: Receive FIFO Configuration Register x

■ Description: This specifies the Receive FIFO Configuration Register.

■ Size: 32 bits

■ Offset: 0x048 + 0x40*x

■ Exists: (I2S_RX_CHANNELS>x && I2S_RECEIVER_BLOCK==1)

31
:4

3:
0

R
S

V
D

_R
F

C
R

x

R
X

C
H

D
T

Table 5-25 Fields for Register: RFCRx (for x = 0; x <= I2S_RX_CHANNELS-1)

Bits Name
Memory
Access Description

31:4 RSVD_RFCRx R RSVD_RFCRx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

116 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

3:0 RXCHDT R/W These bits program the trigger level in the RX FIFO at which
the Received Data Available interrupt and DMA request is
generated.
Trigger Level = Programmed Value + 1
(for example, 1 to I2S_RX_FIFO_DEPTH_0)
Valid RXCHDT values: 0 to (I2S_RX_FIFO_0 - 1)
If an illegal value is programmed, these bits saturate to
(I2S_RX_FIFO_0 - 1).
The channel must be disabled prior to any changes in this
value (that is, RERx[0] = 0).
Values:

■ 0x0 (TRIGGER_LEVEL_1): Interrupt trigger and DMA
request asserted when FIFO level is 1.

■ 0x1 (TRIGGER_LEVEL_2): Interrupt trigger and DMA
request asserted when FIFO level is 2.

■ 0x2 (TRIGGER_LEVEL_3): Interrupt trigger and DMA
request asserted when FIFO level is 3.

■ 0x3 (TRIGGER_LEVEL_4): Interrupt trigger and DMA
request asserted when FIFO level is 4.

■ 0x4 (TRIGGER_LEVEL_5): Interrupt trigger and DMA
request asserted when FIFO level is 5.

■ 0x5 (TRIGGER_LEVEL_6): Interrupt trigger and DMA
request asserted when FIFO level is 6.

■ 0x6 (TRIGGER_LEVEL_7): Interrupt trigger and DMA
request asserted when FIFO level is 7.

■ 0x7 (TRIGGER_LEVEL_8): Interrupt trigger and DMA
request asserted when FIFO level is 8.

■ 0x8 (TRIGGER_LEVEL_9): Interrupt trigger and DMA
request asserted when FIFO level is 9.

■ 0x9 (TRIGGER_LEVEL_10): Interrupt trigger and DMA
request asserted when FIFO level is 10.

■ 0xa (TRIGGER_LEVEL_11): Interrupt trigger and DMA
request asserted when FIFO level is 11.

■ 0xb (TRIGGER_LEVEL_12): Interrupt trigger and DMA
request asserted when FIFO level is 12.

Table 5-25 Fields for Register: RFCRx (for x = 0; x <= I2S_RX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 117SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

■ 0xc (TRIGGER_LEVEL_13): Interrupt trigger and DMA
request asserted when FIFO level is 13.

■ 0xd (TRIGGER_LEVEL_14): Interrupt trigger and DMA
request asserted when FIFO level is 14.

■ 0xe (TRIGGER_LEVEL_15): Interrupt trigger and DMA
request asserted when FIFO level is 15.

■ 0xf (TRIGGER_LEVEL_16): Interrupt trigger and DMA
request asserted when FIFO level is 16.

Value After Reset: I2S_RX_FIFO_THRE_[x]
Exists: I2S_RX_CHANNELS > x

Table 5-25 Fields for Register: RFCRx (for x = 0; x <= I2S_RX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

118 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.21 TFCRx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Transmit FIFO Configuration Register x

■ Description: This specifies the Transmit FIFO Configuration Register.

■ Size: 32 bits

■ Offset: 0x04C + 0x40*x

■ Exists: (I2S_TX_CHANNELS>x && I2S_TRANSMITTER_BLOCK==1

31
:4

3:
0

R
S

V
D

_T
F

C
R

x

T
X

C
H

E
T

Table 5-26 Fields for Register: TFCRx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

31:4 RSVD_TFCRx R RSVD_TFCRx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 119SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

3:0 TXCHET R/W These bits program the trigger level in the TX FIFO at which
the Empty Threshold Reached Interrupt and DMA request is
generated.
Trigger Level = TXCHET
TXCHET values: 0 to (I2S_TX_FIFO_0 - 1)
If an illegal value is programmed, these bits saturate to
(I2S_TX_FIFO_0 - 1). The channel must be disabled prior to
any changes in this value (that is, TER0[0] = 0).
Values:

■ 0x0 (TRIGGER_LEVEL_1): Interrupt trigger and DMA
request asserted when FIFO level is 1.

■ 0x1 (TRIGGER_LEVEL_2): Interrupt trigger and DMA
request asserted when FIFO level is 2.

■ 0x2 (TRIGGER_LEVEL_3): Interrupt trigger and DMA
request asserted when FIFO level is 3.

■ 0x3 (TRIGGER_LEVEL_4): Interrupt trigger and DMA
request asserted when FIFO level is 4.

■ 0x4 (TRIGGER_LEVEL_5): Interrupt trigger and DMA
request asserted when FIFO level is 5.

■ 0x5 (TRIGGER_LEVEL_6): Interrupt trigger and DMA
request asserted when FIFO level is 6.

■ 0x6 (TRIGGER_LEVEL_7): Interrupt trigger and DMA
request asserted when FIFO level is 7.

■ 0x7 (TRIGGER_LEVEL_8): Interrupt trigger and DMA
request asserted when FIFO level is 8.

■ 0x8 (TRIGGER_LEVEL_9): Interrupt trigger and DMA
request asserted when FIFO level is 9.

■ 0x9 (TRIGGER_LEVEL_10): Interrupt trigger and DMA
request asserted when FIFO level is 10.

■ 0xa (TRIGGER_LEVEL_11): Interrupt trigger and DMA
request asserted when FIFO level is 11.

■ 0xb (TRIGGER_LEVEL_12): Interrupt trigger and DMA
request asserted when FIFO level is 12.

Table 5-26 Fields for Register: TFCRx (for x = 0; x <= I2S_TX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

120 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

■ 0xc (TRIGGER_LEVEL_13): Interrupt trigger and DMA
request asserted when FIFO level is 13.

■ 0xd (TRIGGER_LEVEL_14): Interrupt trigger and DMA
request asserted when FIFO level is 14.

■ 0xe (TRIGGER_LEVEL_15): Interrupt trigger and DMA
request asserted when FIFO level is 15.

■ 0xf (TRIGGER_LEVEL_16): Interrupt trigger and DMA
request asserted when FIFO level is 16.

Value After Reset: I2S_TX_FIFO_THRE_[x]
Exists: I2S_TX_CHANNELS > x

Table 5-26 Fields for Register: TFCRx (for x = 0; x <= I2S_TX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 121SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.22 RFFx (for x = 0; x <= I2S_RX_CHANNELS-1)

■ Name: Receive FIFO Flush Register x

■ Description: This specifies the Receive FIFO Flush Register.

■ Size: 32 bits

■ Offset: 0x050 + 0x40*x

■ Exists: (I2S_RX_CHANNELS>x && I2S_RECEIVER_BLOCK==1)

31
:1

0

R
S

V
D

_R
F

F
x

R
X

C
H

F
R

Table 5-27 Fields for Register: RFFx (for x = 0; x <= I2S_RX_CHANNELS-1)

Bits Name
Memory
Access Description

31:1 RSVD_RFFx W RSVD_RFFx Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 RXCHFR W Receive Channel FIFO Reset.
Writing a 1 to this register flushes an individual RX FIFO
(This is a self clearing bit.). A Rx channel or block must be
disabled prior to writing to this bit.
Values:
■ 0x0 (NO_FLUSH): Does not flush an individual RX FIFO

■ 0x1 (FLUSH): Flushes an individual RX FIFO

Value After Reset: 0x0
Exists: I2S_RX_CHANNELS > x
Volatile: true

https://solvnet.synopsys.com
www.designware.com

122 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.23 TFFx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Transmit FIFO Flush Register x

■ Description: This specifies the Transmit FIFO Flush Register.

■ Size: 32 bits

■ Offset: 0x054 + 0x40*x

■ Exists: (I2S_TX_CHANNELS>x && I2S_TRANSMITTER_BLOCK==1)

31
:1

0

R
S

V
D

_T
F

F
x

T
X

C
H

F
R

Table 5-28 Fields for Register: TFFx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

31:1 RSVD_TFFx W RSVD_TFFx Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 TXCHFR W Transmit Channel FIFO Reset.
Writing a 1 to this register flushes channel's TX FIFO (This is
a self clearing bit.). The TX channel or block must be
disabled prior to writing to this bit.
Values:

■ 0x0 (NO_FLUSH): Do not flushes channel's TX FIFO.

■ 0x1 (FLUSH): Flushes channel's TX FIFO.

Value After Reset: 0x0
Exists: I2S_TX_CHANNELS > x
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 123SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.24 RXDMA

■ Name: Receiver Block DMA Register

■ Description: The RXDMA register allows access to all enabled Receive channels via a single point
rather than through the LRBRx and RRBRx registers. The Receive channels are targeted in a cyclical
fashion (starting at the lowest numbered enabled channel) and takes two reads (left and right stereo
data) before the component points to the next channel.

The following example describes the behavior of this register for a component that has been
configured with four Receive channels, where Channels 0 and 3 are enabled:

Order of returned read data:

 1. Ch0 - Left Data

 2. Ch0 - Right Data

 3. Ch3 - Left Data

 4. Ch3 - Right Data

 5. Ch0 - Left Data

 6. Ch0 - Right Data, and so on

Note: There is no read coherency logic; hence, the APB_DATA_WIDTH must be greater than or
equal to the largest Receive channel word size to ensure all half data pairs can be accessed using a
single read.

Channels can be enabled or disabled during the read cycles; however, DW_apb_i2s does not support
disabling a channel in the middle of a stereo pair.

■ Size: 32 bits

■ Offset: 0x1c0

■ Exists: I2S_RECEIVER_BLOCK==1

31
:y

x:
0

R
S

V
D

_R
X

D
M

A

R
X

D
M

A

https://solvnet.synopsys.com
www.designware.com

124 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

Table 5-29 Fields for Register: RXDMA

Bits Name
Memory
Access Description

31:y RSVD_RXDMA R RSVD_RXDMA Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: APB_DATA_WIDTH

x:0 RXDMA R Receiver Block DMA Register.
These bits are used to cycle repeatedly through the enabled
receive channels (from lowest numbered to highest), reading
stereo data pairs.
Value After Reset: 0x0
Exists: I2S_RECEIVER_BLOCK==1
Volatile: true
Range Variable[x]: APB_DATA_WIDTH - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 125SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.25 RRXDMA

■ Name: Reset Receiver Block DMA Register

■ Description: The RXDMA can be reset to the lowest enabled Channel via the RRXDMA register. The
RRXDMA register can be written to at any stage of the RXDMA's read cycle, however, it has no effect
when the component is in the middle of a stereo pair read. The following example describes the
operation of this register for a system with four Receive channels, where channels 0, 1, 2, and 3 are
enabled.

Order of returned read data:

 1. Ch0 - Left Data

 2. Ch0 - Right Data

 3. RRXDMA Reset

 4. Ch0 - Left Data

 5. Ch0 - Right Data

 6. Ch1 - Left Data

 7. RRXDMA Reset - No effect (read not complete)

 8. Ch1 - Right Data, etc.

 9. Ch2 - Left Data

 10. Ch2 - Right Data

 11. RRXDMA Reset

 12. Ch0 - Left Data

 13. Ch0 - Right Data

■ Size: 32 bits

■ Offset: 0x1c4

■ Exists: ((I2S_RX_CHANNELS>1) ? (I2S_RECEIVER_BLOCK) : 0)

31
:1

0

R
S

V
D

_R
R

X
D

M
A

R
R

X
D

M
A

https://solvnet.synopsys.com
www.designware.com

126 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

Table 5-30 Fields for Register: RRXDMA

Bits Name
Memory
Access Description

31:1 RSVD_RRXDMA W RSVD_RRXDMA Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 RRXDMA W Reset Receiver Block DMA Register.
Writing a 1 to this self-clearing register resets the RXDMA
register mid-cycle to point to the lowest enabled Receive
channel.
Note: Writing to this register has no effect if the component
is performing a stereo pair read (such as, when left stereo
data has been read but not right stereo data).
Values:

■ 0x1 (RESET): Reset Receiver Block DMA Register

Value After Reset: 0x0
Exists: I2S_RX_CHANNELS>1 &&
I2S_RECEIVER_BLOCK==1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 127SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.26 TXDMA

■ Name: Transmitter Block DMA Register

■ Description: The TXDMA register functions similar to the RXDMA register and allows write accesses
to all of the enabled Transmit channels via a single point rather than through the LTHRx and RTHRx
registers.

Note: There is no write coherency logic, the APB_DATA_WIDTH must be greater than or equal to
the largest Transmit channel word size to ensure all half data pairs can be written using a single
write.

Channels can be enabled or disabled during the write cycles; however, DW_apb_i2s does not support
disabling a channel in the middle of a stereo pair.

■ Size: 32 bits

■ Offset: 0x1c8

■ Exists: I2S_TRANSMITTER_BLOCK==1
31

:y

x:
0

R
S

V
D

_T
X

D
M

A

T
X

D
M

A

Table 5-31 Fields for Register: TXDMA

Bits Name
Memory
Access Description

31:y RSVD_TXDMA W RSVD_TXDMA Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: APB_DATA_WIDTH

x:0 TXDMA W Transmitter Block DMA Register.
The register bits can be used to cycle repeatedly through the
enabled Transmit channels (from lowest numbered to
highest) to allow writing of stereo data pairs.
Value After Reset: 0x0
Exists: I2S_TRANSMITTER_BLOCK==1
Volatile: true
Range Variable[x]: APB_DATA_WIDTH - 1

https://solvnet.synopsys.com
www.designware.com

128 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.27 RTXDMA

■ Name: Reset Transmitter Block DMA Register

■ Description: This register provides the same functionality as the RRXDMA register but targets
TXDMA instead.

■ Size: 32 bits

■ Offset: 0x1cc

■ Exists: ((I2S_TX_CHANNELS>1) ? (I2S_TRANSMITTER_BLOCK) : 0)

31
:1

0

R
S

V
D

_R
T

X
D

M
A

R
T

X
D

M
A

Table 5-32 Fields for Register: RTXDMA

Bits Name
Memory
Access Description

31:1 RSVD_RTXDMA W RSVD_RTXDMA Reserved bits - Write Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 RTXDMA W Reset Transmitter Block DMA Register.
Writing a 1 to this self-clearing register resets the TXDMA
register mid-cycle to point to the lowest enabled Transmit
channel.
Note: This register has no effect in the middle of a stereo
pair write (such as, when left stereo data has been written
but not right stereo data).
Values:
■ 0x1 (RESET): Reset Transmitter Block DMA Register

Value After Reset: 0x0
Exists: I2S_TX_CHANNELS>1 &&
I2S_TRANSMITTER_BLOCK==1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 129SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.28 I2S_COMP_PARAM_2

■ Name: Component Parameter Register 2

■ Description: This specifies bits for Component Parameter Register 2.

Note: This is a constant read-only register that contains encoded information about the component's
parameter settings. The reset value depends on coreConsultant parameter(s).

■ Size: 32 bits

■ Offset: 0x1f0

■ Exists: Always

31
:1

3

12
:1

0

9:
7

6 5:
3

2:
0

R
S

V
D

_3
1_

13

I2
S

_R
X

_W
O

R
D

S
IZ

E
_3

I2
S

_R
X

_W
O

R
D

S
IZ

E
_2

R
S

V
D

_I
2S

_C
O

M
P

_P
A

R
A

M
_2

_6

I2
S

_R
X

_W
O

R
D

S
IZ

E
_1

I2
S

_R
X

_W
O

R
D

S
IZ

E
_0

Table 5-33 Fields for Register: I2S_COMP_PARAM_2

Bits Name
Memory
Access Description

31:13 RSVD_31_13 R RSVD_31_13 Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

130 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

12:10 I2S_RX_WORDSIZE_3 R These bits specify the RX resolution for WORDSIZE_3.
Values:

■ 0x0 (RESOLUTION_12_BIT): 12-bit Resolution

■ 0x1 (RESOLUTION_16_BIT): 16-bit Resolution

■ 0x2 (RESOLUTION_20_BIT): 20-bit Resolution

■ 0x3 (RESOLUTION_24_BIT): 24-bit Resolution

■ 0x4 (RESOLUTION_32_BIT): 32-bit Resolution

Value After Reset: ENCODED_I2S_RX_WORDSIZE_3
Exists: Always

9:7 I2S_RX_WORDSIZE_2 R These bits specify the RX resolution for WORDSIZE_2.
Values:

■ 0x0 (RESOLUTION_12_BIT): 12-bit Resolution

■ 0x1 (RESOLUTION_16_BIT): 16-bit Resolution

■ 0x2 (RESOLUTION_20_BIT): 20-bit Resolution

■ 0x3 (RESOLUTION_24_BIT): 24-bit Resolution

■ 0x4 (RESOLUTION_32_BIT): 32-bit Resolution

Value After Reset: ENCODED_I2S_RX_WORDSIZE_2
Exists: Always

6 RSVD_I2S_COMP_PARAM_2_6 R RSVD_I2S_COMP_PARAM_2_6 Reserved bits - Read Only
Exists: Always

5:3 I2S_RX_WORDSIZE_1 R These bits specify the RX resolution for WORDSIZE_1.
Values:

■ 0x0 (RESOLUTION_12_BIT): 12-bit Resolution

■ 0x1 (RESOLUTION_16_BIT): 16-bit Resolution

■ 0x2 (RESOLUTION_20_BIT): 20-bit Resolution

■ 0x3 (RESOLUTION_24_BIT): 24-bit Resolution

■ 0x4 (RESOLUTION_32_BIT): 32-bit Resolution

Value After Reset: ENCODED_I2S_RX_WORDSIZE_1
Exists: Always

Table 5-33 Fields for Register: I2S_COMP_PARAM_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 131SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

2:0 I2S_RX_WORDSIZE_0 R These bits specify the RX resolution for WORDSIZE_0.
Values:

■ 0x0 (RESOLUTION_12_BIT): 12-bit Resolution

■ 0x1 (RESOLUTION_16_BIT): 16-bit Resolution

■ 0x2 (RESOLUTION_20_BIT): 20-bit Resolution

■ 0x3 (RESOLUTION_24_BIT): 24-bit Resolution

■ 0x4 (RESOLUTION_32_BIT): 32-bit Resolution

Value After Reset: ENCODED_I2S_RX_WORDSIZE_0
Exists: Always

Table 5-33 Fields for Register: I2S_COMP_PARAM_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

132 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.29 I2S_COMP_PARAM_1

■ Name: Component Parameter Register 1

■ Description: This specifies bits for Component Parameter Register 1.

Note: This is a constant read-only register that contains encoded information about the component's
parameter settings. The reset value depends on coreConsultant parameter(s).

■ Size: 32 bits

■ Offset: 0x1f4

■ Exists: Always
31

:2
8

27
:2

5

24
:2

2

21
:1

9

18
:1

6

15
:1

1

10
:9

8:
7

6 5 4 3:
2

1:
0

R
S

V
D

_P
A

R
A

M
_1

_2
8_

31

I2
S

_T
X

_W
O

R
D

S
IZ

E
_3

I2
S

_T
X

_W
O

R
D

S
IZ

E
_2

I2
S

_T
X

_W
O

R
D

S
IZ

E
_1

I2
S

_T
X

_W
O

R
D

S
IZ

E
_0

R
S

V
D

_P
A

R
A

M
_1

_1
1_

15

I2
S

_T
X

_C
H

A
N

N
E

LS

I2
S

_R
X

_C
H

A
N

N
E

LS

I2
S

_R
E

C
E

IV
E

R
_B

LO
C

K

I2
S

_T
R

A
N

S
M

IT
T

E
R

_B
LO

C
K

I2
S

_M
O

D
E

_E
N

I2
S

_F
IF

O
_D

E
P

T
H

_G
LO

B
A

L

A
P

B
_D

A
T

A
_W

ID
T

H

Table 5-34 Fields for Register: I2S_COMP_PARAM_1

Bits Name
Memory
Access Description

31:28 RSVD_PARAM_1_28_31 R RSVD_I2S_COMP_PARAM_1_28_31 Reserved bits - Read
Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 133SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

27:25 I2S_TX_WORDSIZE_3 R These bits specify the TX resolution for WORDSIZE_3.
Values:

■ 0x0 (RESOLUTION_12_BIT): 12-bit Resolution

■ 0x1 (RESOLUTION_16_BIT): 16-bit Resolution

■ 0x2 (RESOLUTION_20_BIT): 20-bit Resolution

■ 0x3 (RESOLUTION_24_BIT): 24-bit Resolution

■ 0x4 (RESOLUTION_32_BIT): 32-bit Resolution

Value After Reset: ENCODED_I2S_TX_WORDSIZE_3
Exists: Always

24:22 I2S_TX_WORDSIZE_2 R These bits specify the TX resolution for WORDSIZE_2.
Values:

■ 0x0 (RESOLUTION_12_BIT): 12-bit Resolution

■ 0x1 (RESOLUTION_16_BIT): 16-bit Resolution

■ 0x2 (RESOLUTION_20_BIT): 20-bit Resolution

■ 0x3 (RESOLUTION_24_BIT): 24-bit Resolution

■ 0x4 (RESOLUTION_32_BIT): 32-bit Resolution

Value After Reset: ENCODED_I2S_TX_WORDSIZE_2
Exists: Always

21:19 I2S_TX_WORDSIZE_1 R These bits specify the TX resolution for WORDSIZE_1.
Values:
■ 0x0 (RESOLUTION_12_BIT): 12-bit Resolution

■ 0x1 (RESOLUTION_16_BIT): 16-bit Resolution

■ 0x2 (RESOLUTION_20_BIT): 20-bit Resolution

■ 0x3 (RESOLUTION_24_BIT): 24-bit Resolution

■ 0x4 (RESOLUTION_32_BIT): 32-bit Resolution

Value After Reset: ENCODED_I2S_TX_WORDSIZE_1
Exists: Always

18:16 I2S_TX_WORDSIZE_0 R These bits specify the TX resolution for WORDSIZE_0.
Values:
■ 0x0 (RESOLUTION_12_BIT): 12-bit Resolution

■ 0x1 (RESOLUTION_16_BIT): 16-bit Resolution

■ 0x2 (RESOLUTION_20_BIT): 20-bit Resolution

■ 0x3 (RESOLUTION_24_BIT): 24-bit Resolution

■ 0x4 (RESOLUTION_32_BIT): 32-bit Resolution

Value After Reset: ENCODED_I2S_TX_WORDSIZE_0
Exists: Always

Table 5-34 Fields for Register: I2S_COMP_PARAM_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

134 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

15:11 RSVD_PARAM_1_11_15 R RSVD_I2S_COMP_PARAM_1_11_15 Reserved bits - Read
Only
Value After Reset: 0x0
Exists: Always

10:9 I2S_TX_CHANNELS R These bits specify the number of TX channels.
Values:

■ 0x0 (TX_CHANNEL_1): 1 Transmit Channel

■ 0x1 (TX_CHANNEL_2): 2 Transmit Channels

■ 0x2 (TX_CHANNEL_3): 3 Transmit Channels

■ 0x3 (TX_CHANNEL_4): 4 Transmit Channels

Value After Reset: ENCODED_I2S_TX_CHANNELS
Exists: Always

8:7 I2S_RX_CHANNELS R These bits specify the number of RX channels.
Values:

■ 0x0 (RX_CHANNEL_1): 1 Receive Channel

■ 0x1 (RX_CHANNEL_2): 2 Receive Channels

■ 0x2 (RX_CHANNEL_3): 3 Receive Channels

■ 0x3 (RX_CHANNEL_4): 4 Receive Channels

Value After Reset: ENCODED_I2S_RX_CHANNELS
Exists: Always

6 I2S_RECEIVER_BLOCK R This bit specifies whether the receiver block is enabled or
not.
Values:

■ 0x0 (FALSE): Receiver block is disabled

■ 0x1 (TRUE): Receiver block is enabled

Value After Reset: I2S_RECEIVER_BLOCK
Exists: Always

5 I2S_TRANSMITTER_BLOCK R This bit specifies whether the transmitter block is enabled or
not.
Values:

■ 0x0 (FALSE): Transmitter block is disabled

■ 0x1 (TRUE): Transmitter block is enabled

Value After Reset: I2S_TRANSMITTER_BLOCK
Exists: Always

Table 5-34 Fields for Register: I2S_COMP_PARAM_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 135SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

4 I2S_MODE_EN R This bit specifies whether the master mode is enabled or not.
Values:

■ 0x0 (FALSE): Master mode is disabled

■ 0x1 (TRUE): Master mode is enabled

Value After Reset: I2S_MODE_EN
Exists: Always

3:2 I2S_FIFO_DEPTH_GLOBAL R These bits specify the FIFO depth for TX and RX channels.
Values:

■ 0x0 (FIFO_DEPTH_2): FIFO depth is equals to 2 for TX
and RX channels

■ 0x1 (FIFO_DEPTH_4): FIFO depth is equals to 4 for TX
and RX channels

■ 0x2 (FIFO_DEPTH_8): FIFO depth is equals to 8 for TX
and RX channels

■ 0x3 (FIFO_DEPTH_16): FIFO depth is equals to 16 for
TX and RX channels

Value After Reset:
ENCODED_I2S_FIFO_DEPTH_GLOBAL
Exists: Always

1:0 APB_DATA_WIDTH R These bits specify the APB data width.
Values:

■ 0x0 (BITS_8): 8 bits APB data width

■ 0x0 (BITS_16): 16 bits APB data width

■ 0x0 (BITS_32): 32 bits APB data width

Value After Reset: ENCODED_APB_DATA_WIDTH
Exists: Always

Table 5-34 Fields for Register: I2S_COMP_PARAM_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

136 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.30 I2S_COMP_VERSION

■ Name: I2S Component Version Register

■ Description: This register specifies the I2S Component Version.

■ Size: 32 bits

■ Offset: 0x1f8

■ Exists: Always

31
:0

I2
S

_C
O

M
P

_V
E

R
S

IO
N

Table 5-35 Fields for Register: I2S_COMP_VERSION

Bits Name
Memory
Access Description

31:0 I2S_COMP_VERSION R These bits specify the I2S component version. The value for
I2S_COMP_VERSION are described in the "DesignWare
Synthesizable Components for AMBA 2, AMBA 3 AXI, and
AMBA 4 AXI Release Notes".
Value After Reset: I2S_COMP_VERSION
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 137SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

5.1.31 I2S_COMP_TYPE

■ Name: I2S Component Type Register

■ Description: This register specifies the I2S Component Type.

■ Size: 32 bits

■ Offset: 0x1fc

■ Exists: Always

31
:0

I2
S

_C
O

M
P

_T
Y

P
E

Table 5-36 Fields for Register: I2S_COMP_TYPE

Bits Name
Memory
Access Description

31:0 I2S_COMP_TYPE R DesignWare Component Type number = 0x445701a0.
This unique hexadecimal value is constant and is derived
from the two ASCII letters 'DW' followed by a 16-bit unsigned
number.
Value After Reset: I2S_COMP_TYPE
Exists: Always

https://solvnet.synopsys.com
www.designware.com

138 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.32 DMACR

■ Name: DMA Control Register

■ Description: This register is only valid when DW_apb_i2s is configured with a set of DMA
Controller interface signals (I2S_HAS_DMA_INTERFACE = 1). When DW_apb_i2s is not configured
with DMA handshake interface, this register will not exist and writing to the register?s address will
have no effect and reading from this register address will return zero. The register is used to enable
the DMA Controller interface operation.

■ Size: 32 bits

■ Offset: 0x200

■ Exists: I2S_HAS_DMA_INTERFACE==1

31
:1

8

17 16 15
:1

2

11 10 9 8 7:
4

3 2 1 0

R
S

V
D

_D
M

A
C

R

D
M

A
E

N
_T

X
B

LO
C

K

D
M

A
E

N
_R

X
B

LO
C

K

R
S

V
D

_D
M

A
E

N
_T

X
C

H

D
M

A
E

N
_T

X
C

H
_3

D
M

A
E

N
_T

X
C

H
_2

D
M

A
E

N
_T

X
C

H
_1

D
M

A
E

N
_T

X
C

H
_0

R
S

V
D

_D
M

A
E

N
_R

X
C

H

D
M

A
E

N
_R

X
C

H
_3

D
M

A
E

N
_R

X
C

H
_2

D
M

A
E

N
_R

X
C

H
_1

D
M

A
E

N
_R

X
C

H
_0

Table 5-37 Fields for Register: DMACR

Bits Name
Memory
Access Description

31:18 RSVD_DMACR R DMACR Reserved bits - Read Only.
Value After Reset: 0x0
Exists: Always

17 DMAEN_TXBLOCK R/W DMA Enable for transmit block. The corresponding bits of
this field enables/disables the DMA handshake logic for
transmitter block.
Values:

■ 0x0 (DISABLED): DMA disabled for transmit block

■ 0x1 (ENABLED): DMA enabled for transmit block

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==1 &&
I2S_TRANSMITTER_BLOCK==1)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 139SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

16 DMAEN_RXBLOCK R/W DMA Enable for receive block. The corresponding bits of this
field enables/disables the DMA handshake logic for receiver
block
Values:

■ 0x0 (DISABLED): DMA disabled for receiver block

■ 0x1 (ENABLED): DMA enabled for receiver block

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==1 && I2S_RECEIVER_BLOCK==1)

15:12 RSVD_DMAEN_TXCH R Reserved bits for transmit channel DMA Enable - Read Only.
Value After Reset: 0x0
Exists: Always

11 DMAEN_TXCH_3 R/W DMA Enable for transmit channel 3. The corresponding bits
of this field enables/disables the transmit FIFO DMA for
channel 3.
Values:
■ 0x0 (DISABLED): DMA disabled for transmit channel 3

■ 0x1 (ENABLED): DMA enabled for transmit channel 3

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 && I2S_TX_CHANNELS>3 &&
I2S_TRANSMITTER_BLOCK==1)

10 DMAEN_TXCH_2 R/W DMA Enable for transmit channel 2. The corresponding bits
of this field enables/disables the transmit FIFO DMA for
channel 2.
Values:
■ 0x0 (DISABLED): DMA disabled for transmit channel 2

■ 0x1 (ENABLED): DMA enabled for transmit channel 2

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 && I2S_TX_CHANNELS>2 &&
I2S_TRANSMITTER_BLOCK==1)

Table 5-37 Fields for Register: DMACR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

140 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

9 DMAEN_TXCH_1 R/W DMA Enable for transmit channel 1. The corresponding bits
of this field enables/disables the transmit FIFO DMA for
channel 1.
Values:

■ 0x0 (DISABLED): DMA disabled for transmit channel 1

■ 0x1 (ENABLED): DMA enabled for transmit channel 1

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 && I2S_TX_CHANNELS>1 &&
I2S_TRANSMITTER_BLOCK==1)

8 DMAEN_TXCH_0 R/W DMA Enable for transmit channel 0. The corresponding bits
of this field enables/disables the transmit FIFO DMA for
channel 0.
Values:

■ 0x0 (DISABLED): DMA disabled for transmit channel 0

■ 0x1 (ENABLED): DMA enabled for transmit channel 0

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 &&
I2S_TRANSMITTER_BLOCK==1)

7:4 RSVD_DMAEN_RXCH R Reserved bits for receive channel DMA Enable - Read Only.
Value After Reset: 0x0
Exists: Always

3 DMAEN_RXCH_3 R/W DMA Enable for receive channel 3. The corresponding bits of
this field enables/disables the receive FIFO DMA for channel
3.
Values:
■ 0x0 (DISABLED): DMA disabled for receive channel 3

■ 0x1 (ENABLED): DMA enabled for receive channel 3

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 && I2S_RX_CHANNELS>3 &&
I2S_RECEIVER_BLOCK==1)

Table 5-37 Fields for Register: DMACR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 141SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

2 DMAEN_RXCH_2 R/W DMA Enable for receive channel 2. The corresponding bits of
this field enables/disables the receive FIFO DMA for channel
2.
Values:

■ 0x0 (DISABLED): DMA disabled for receive channel 2

■ 0x1 (ENABLED): DMA enabled for receive channel 2

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 && I2S_RX_CHANNELS>2 &&
I2S_RECEIVER_BLOCK==1)

1 DMAEN_RXCH_1 R/W DMA Enable for receive channel 1. The corresponding bits of
this field enables/disables the receive FIFO DMA for channel
1.
Values:

■ 0x0 (DISABLED): DMA disabled for receive channel 1

■ 0x1 (ENABLED): DMA enabled for receive channel 1

Value After Reset: 0x0
Exists: (I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 && I2S_RX_CHANNELS>1 &&
I2S_RECEIVER_BLOCK==1)

0 DMAEN_RXCH_0 R/W DMA Enable for receive channel 0. The corresponding bits of
this field enables/disables the receive FIFO DMA for channel
0.
Values:
■ 0x0 (DISABLED): DMA disabled for receive channel 0

■ 0x1 (ENABLED): DMA enabled for receive channel 0

Value After Reset: 0x0
Exists: I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 && I2S_RECEIVER_BLOCK==1

Table 5-37 Fields for Register: DMACR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

142 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.33 RXDMA_CHx (for x = 0; x <= I2S_RX_CHANNELS-1)

■ Name: Receiver Block DMA Register

■ Description: The RXDMA_CHx register allows access to enabled Receive channel x via a single point
rather than through the LRBRx and RRBRx registers. This register is available only if I2S has
dedicated DMA handshaking interface enabled for channel x.

Note: There is no read coherency logic; hence, the APB_DATA_WIDTH must be greater than or
equal to the largest Receive channel word size to ensure all half data pairs can be accessed using a
single read.

Channels can be enabled or disabled during the read cycles; however, it is recommended not to
disable a channel in the middle of a stereo pair.

■ Size: 32 bits

■ Offset: 0x204

■ Exists: I2S_HAS_DMA_INTERFACE==1 && I2S_DMA_HS_TYPE==0 &&
I2S_RECEIVER_BLOCK==1 && I2S_RX_CHANNELS>x

31
:y

x:
0

R
S

V
D

_R
X

D
M

A
_C

H
x

R
X

D
M

A
_C

H
x

Table 5-38 Fields for Register: RXDMA_CHx (for x = 0; x <= I2S_RX_CHANNELS-1)

Bits Name
Memory
Access Description

31:y RSVD_RXDMA_CHx R RXDMA_CHx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: APB_DATA_WIDTH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 143SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

x:0 RXDMA_CHx R Receiver Block DMA Register for channel x. These bits are
used for reading stereo data pairs.
Value After Reset: 0x0
Exists: I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 && I2S_RECEIVER_BLOCK==1
&& I2S_RX_CHANNELS>x
Volatile: true
Range Variable[x]: APB_DATA_WIDTH - 1

Table 5-38 Fields for Register: RXDMA_CHx (for x = 0; x <= I2S_RX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

144 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

5.1.34 TXDMA_CHx (for x = 0; x <= I2S_TX_CHANNELS-1)

■ Name: Receiver Block DMA Register

■ Description: The TXDMA_CHx register allows access to enabled Transmit channel x via a single
point rather than through the LTHRx and RTHRx registers. This register is available only if I2S has
dedicated DMA handshaking interface enabled for channel x.

Note: There is no read coherency logic; hence, the APB_DATA_WIDTH must be greater than or
equal to the largest Transmit channel word size to ensure all half data pairs can be accessed using a
single read.

Channels can be enabled or disabled during the read cycles; however, it is recommended not to
disable a channel in the middle of a stereo pair.

■ Size: 32 bits

■ Offset: 0x214

■ Exists: I2S_HAS_DMA_INTERFACE==1 && I2S_DMA_HS_TYPE==0 &&
I2S_TRANSMITTER_BLOCK==1 && I2S_TX_CHANNELS>x

31
:y

x:
0

R
S

V
D

_T
X

D
M

A
_C

H
x

T
X

D
M

A
_C

H
x

Table 5-39 Fields for Register: TXDMA_CHx (for x = 0; x <= I2S_TX_CHANNELS-1)

Bits Name
Memory
Access Description

31:y RSVD_TXDMA_CHx W TXDMA_CHx Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: APB_DATA_WIDTH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 145SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Register Descriptions

x:0 TXDMA_CHx W Receiver Block DMA Register for channel x. These bits are
used for reading stereo data pairs.
Value After Reset: 0x0
Exists: I2S_HAS_DMA_INTERFACE==1 &&
I2S_DMA_HS_TYPE==0 &&
I2S_TRANSMITTER_BLOCK==1 &&
I2S_TX_CHANNELS>x
Volatile: true
Range Variable[x]: APB_DATA_WIDTH - 1

Table 5-39 Fields for Register: TXDMA_CHx (for x = 0; x <= I2S_TX_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

146 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 147

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

6
Programming the DW_apb_i2s

The DW_apb_i2s can be programmed through software registers, which are described in more detail in
“Register Descriptions” on page 81. This chapter describes the following:

■ “DW_apb_i2s as Transmitter” on page 147

■ “DW_apb_i2s as Receiver” on page 148

■ “DW_apb_i2s as Transmitter—With DMA Handshake Interface” on page 149

■ “DW_apb_i2s as Receiver—With DMA Handshake Interface” on page 150

■ “Example Configurations” on page 152

6.1 DW_apb_i2s as Transmitter
This section describes how to program the DW_apb_i2s when it is configured as a transmitter in either slave
mode or master mode with one stereo channel.

6.1.1 Slave Mode

The following subsections describe normal and TX DMA sequences when DW_apb_i2s is a transmitter in
slave mode.

6.1.1.1 Normal Mode

To program DW_apb_i2s when it is a transmitter in slave mode, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Fill the TX-FIFO by writing data to the Left Transmit Holding Register (LTHR) and the Right
Transmit Holding Register (RTHR), respectively. Keep writing in this order—left and then right—
until the FIFO is filled with data.

The DW_apb_i2s starts transmitting stereo data on the first left cycle when the ws signal goes low.

3. Enable the I2S Transmitter block by writing 1 in bit 0 (TXEN) of the 2S Transmitter Block Enable
Register (ITER).

https://solvnet.synopsys.com
www.designware.com

148 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Programming the DW_apb_i2s DesignWare DW_apb_i2s Databook

6.1.1.2 TX DMA Mode

To program DW_apb_i2s when it is a transmitter in slave mode, and when TX DMA mode is enabled,
complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Enable the I2S Transmitter block by writing a 1 in bit 0 (TXEN) of the I2S Transmitter Block Enable
Register (ITER).

3. Fill the TX-FIFO by writing to the Transmitter Block DMA Register (TXDMA).

6.1.2 Master Mode

To program DW_apb_i2s when it is a transmitter in master mode, complete the following steps:

1. Complete steps 1 to 3 of the previous procedure (transmitter, slave mode).

2. Enable the I2S Clock Generation block by writing 1 in bit 0 (CLKEN) of the Clock Enable Register
(CER).

6.2 DW_apb_i2s as Receiver
This section describe how to program the DW_apb_i2s when it is configured as a receiver in either slave
mode or master mode with one stereo channel.

6.2.1 Slave Mode

To program DW_apb_i2s when it is a receiver in slave mode, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Enable the I2S Receiver block by writing 1 in bit 0 (RXEN) of the I2S Receiver Block Enable Register
(IRER).

3. Read bit 0 (RXDA) of the Interrupt Status Register (ISR). When bit 0 of the goes high, the default
trigger has been reached.

4. Read the contents of the Left Receive Buffer Register (LRBR) and Right Receive Buffer Register
(RRBR).

The bit is dependent on how you have configured (or programmed) the trigger level.

6.2.1.1 RX DMA Mode

When RX DMA is enabled, the data contents is read from RXDMA instead of the Left Receive Buffer
Register (LRBR) and the Right Receive Buffer Register (RRBR), as defined in step 4 of the previous
procedure (receiver, slave mode).

6.2.2 Master Mode

To program DW_apb_i2s when it is a receiver in master mode, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Enable the I2S Receiver block by writing 1 in bit 0 (RXEN) of the I2S Receiver Block Enable Register
(IRER).

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 149SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Programming the DW_apb_i2s

3. Enable the I2S Clock Generation block by writing 1 in bit 0 (CLKEN) of the Clock Enable Register
(CER).

4. Read bit 0 (RXDA) of the Interrupt Status Register (ISR). When bit 0 of the goes high, the default
trigger has been reached.

5. Read the contents of the Left Receive Buffer Register (LRBR) and Right Receive Buffer Register
(RRBR).

The bit is dependent on how you have configured (or programmed) the trigger level.

6.2.2.1 RX DMA Mode

When RX DMA is enabled, the data contents is read from RXDMA instead of the Left Receive Buffer
Register (LRBR) and the Right Receive Buffer Register (RRBR), as defined in step 5 of the previous
procedure (receiver, master mode).

6.3 DW_apb_i2s as Transmitter—With DMA Handshake Interface
The following sections describe:

■ How to program DW_apb_i2s when it is configured as the transmitter in either slave mode or master
mode with one stereo channel

■ How to program DW_apb_i2s for DMA controller interface operation
(I2S_HAS_DMA_INTERFACE=1)

■ How to fill TX FIFO using DMA handshaking interface

6.3.1 Slave Mode

The following subsections describe dedicated and combined DMA handshake sequences when
DW_apb_i2s is a transmitter in slave mode.

6.3.1.1 Dedicated DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=0)

To program DW_apb_i2s when it is a transmitter in slave mode, and when dedicated DMA handshake
interface mode is enabled, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Enable the I2S Transmitter block by writing 1 in bit 0 (TXEN) of the I2S Transmitter Block Enable
Register (ITER).

3. Enable DMA handshaking by writing 1 in bit 8 (DMAEN_TXCH_0) of the DMA Control Register
(DMACR).

4. Fill the TX-FIFO by writing to the Transmitter Channel 0 DMA Register (TXDMA_CH0).

6.3.1.2 Combined DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=1)

To program DW_apb_i2s when it is a transmitter in slave mode, and when combined DMA handshake
interface mode is enabled, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

https://solvnet.synopsys.com
www.designware.com

150 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Programming the DW_apb_i2s DesignWare DW_apb_i2s Databook

2. Enable the I2S Transmitter block by writing 1 in bit 0 (TXEN) of the I2S Transmitter Block Enable
Register (ITER).

3. Enable DMA handshaking by writing 1 in bit 8 (DMAEN_TXCH_0) of the DMA Control Register
(DMACR).

4. Enable the Transmit channel by writing 1 in bit 0 (TXCHEN0) of the Transmit Enable Register 0
(TER0).

5. Fill the TX-FIFO by writing to the Transmitter Block DMA Register (TXDMA).

6.3.2 Master Mode

To program DW_apb_i2s when it is a transmitter in master mode, complete the following steps:

1. Complete all the steps described in “Slave Mode” on page 149.

2. Enable the I2S Clock Generation block by writing 1 in bit 0 (CLKEN) of the Clock Enable Register
(CER).

6.4 DW_apb_i2s as Receiver—With DMA Handshake Interface
The following flows describe:

■ How to program the DW_apb_i2s when it is configured as the receiver in either slave mode or master
mode with one stereo channel

■ How to program DW_apb_i2s for DMA Controller interface operation
(I2S_HAS_DMA_INTERFACE=1)

■ How to empty RX FIFO using DMA handshaking interface

6.4.1 Slave Mode

The following subsections describe dedicated and combined DMA handshake sequences when
DW_apb_i2s is a receiver in slave mode.

6.4.1.1 Dedicated DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=0)

To program DW_apb_i2s when it is a receiver in slave mode, and when dedicated DMA handshake
interface mode is enabled, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Enable the I2S Receiver block by writing 1 in bit 0 (RXEN) of the I2S Receiver Block Enable Register
(IRER).

3. Enable DMA handshaking by writing 1 in bit 0 (DMAEN_RXCH_0) of the DMA Control Register
(DMACR).

4. Empty the RX-FIFO by reading from the Receiver Channel 0 DMA Register (RXDMA_CH0).

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 151SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Programming the DW_apb_i2s

6.4.1.2 Combined DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=1)

To program DW_apb_i2s when it is a receiver in slave mode, and when combined DMA handshake
interface mode is enabled, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Enable the I2S Receiver block by writing 1 in bit 0 (RXEN) of the I2S Receiver Block Enable Register
(IRER).

3. Enable DMA handshaking by writing 1 in bit 8 (DMAEN_RXCH_0) of the DMA Control Register
(DMACR).

4. Enable the Receiver channel by writing 1 in bit 0 (RXCHEN0) of the Receiver Enable Register 0
(RER0).

5. Empty the RX-FIFO by reading from the Receiver Block DMA Register (RXDMA).

6.4.2 Master Mode

To program DW_apb_i2s when it is a receiver in master mode, complete the following steps:

6.4.2.1 Dedicated DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=0)

To program DW_apb_i2s when it is a receiver in master mode, and when dedicated DMA handshake
interface mode is enabled, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Enable the I2S Receiver block by writing 1 in bit 0 (RXEN) of the I2S Receiver Block Enable Register
(IRER).

3. Enable the I2S Clock Generation block by writing 1 in bit 0 (CLKEN) of the Clock Enable Register
(CER).

4. Enable DMA handshaking by writing 1 in bit 0 (DMAEN_RXCH_0) of the DMA Control Register
(DMACR).

5. Empty the RX-FIFO by reading from the Receiver Channel 0 DMA Register (RXDMA_CH0).

6.4.2.2 Combined DMA Handshake Interface mode (I2S_DMA_HS_TYPE=1)

To program DW_apb_i2s when it is a receiver in master mode, and when combined DMA handshake
interface mode is enabled, complete the following steps:

1. Enable the DW_apb_i2s by setting bit 0 of the DW_apb_i2s Enable Register (IER) to 1.

2. Enable the I2S Receiver block by writing 1 in bit 0 (RXEN) of the I2S Receiver Block Enable Register
(IRER).

3. Enable the I2S Clock Generation block by writing 1 in bit 0 (CLKEN) of the Clock Enable Register
(CER).

4. Enable DMA handshaking by writing 1 in bit 8 (DMAEN_RXCH_0) of the DMA Control Register
(DMACR).

5. Enable the Receiver channel by writing 1 in bit 0 (RXCHEN0) of the Receiver Enable Register 0
(RER0).

https://solvnet.synopsys.com
www.designware.com

152 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Programming the DW_apb_i2s DesignWare DW_apb_i2s Databook

6. Empty the RX-FIFO by reading from the Receiver Block DMA Register (RXDMA).

6.5 Example Configurations
The following examples describe how to program DW_apb_i2s for when it is configured as a receiver in
slave mode with multiple channels. If you configured the component as a transmitter with the following
configurations, the behavior would be similar.

Configure DW_apb_i2s using coreConsultant or coreAssembler and set the following configuration
parameter:

6.5.1 Example 1

This example illustrates the following operations:

■ Clearing a RX FIFO

■ Adjusting the RX FIFO data available trigger level and the word select size of one receive channel
while two other channels are receiving.

The procedure for this example is as follows:

1. Enable DW_apb_i2s by writing 1 in IER[0].

2. Enable Receiver block by writing 1 in IRER[0].

All three channels begin receiving once ws_slv goes low (ws_slv = 0)

3. Read from the channels through LRBRx and RRBRx registers, where x is the channel number.

4. Disable RX Channel 2 independently of Channel 1 and 3 by writing 0 in RER2[0].

Incoming data for RX Channel 2 is lost, while data in the RX FIFO is preserved.

5. Clear RX Channel 2 FIFO independently of the other channels by writing 1 in RFF2[0].

6. Reprogram the RX FIFO data available trigger level by writing to RFCR2[3:0].

7. Reprogram the word select size by writing to RCR2[2:0].

8. Enable RX Channel 2 by writing 1 in RER2[0].

DW_apb_i2s begins receiving new data when ws_slv goes low (ws_slv = 0).

coreConsultant Label Configuration Parameter Setting

Number of Receive Channels? I2S_RX_CHANNELS 3

NoteNoteNoteNote The entire time RX Channel 2 is disabled, channels 1 and 3 are functioning normally and
could be accessed.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 153SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Programming the DW_apb_i2s

6.5.2 Example 2

This example starts two of the three channels when the receiver block is enabled.

1. Enable DW_apb_i2s by writing 1 in IER[0].

2. Disable RX Channel 2 by writing 0 in RER2[0].

3. Enable the Receiver block by writing 1 in IRER[0].

Only channels 1 and 3 begin receiving once ws_slv goes low.

6.5.3 Example 3

This example illustrates the following operations:

■ Start receiving

■ Stop receiving

■ Flush all FIFOs

■ Resume receiving

1. Enable DW_apb_i2s by writing 1 in IER[0].

2. Enable the Receiver block by writing 1 in IRER[0].

All three channels begin receiving once ws_slv goes low (ws_slv = 0).

3. Read data from the channels by reading the LRBRx and RRBRx registers.

4. Disable the Receiver block by writing 0 in IRER[0].

5. Flush all RX FIFOs by writing 1 in RXFFR[0].

6. Enable the Receive block again by writing 1 in IRER[0].

All three channels resume receiving once ws_slv goes low (ws_slv = 0).

https://solvnet.synopsys.com
www.designware.com

154 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Programming the DW_apb_i2s DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 155

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

7
Verification

This chapter provides an overview of the testbench available for DW_apb_i2s verification. Once you have
configured the DW_apb_i2s in coreConsultant or DesignWare coreAssembler and have set up the
verification environment, you can run simulations automatically. The following sections describe the
testbench.

Figure 7-1 illustrates the Verilog DW_apb_i2s testbench.

The testbench tests the user configuration specified in the Specify Configuration task of coreConsultant and
Verify Component task in DesignWare coreAssembler. The testbench also tests that the component is
AMBA-compliant and includes a self-checking mechanism. When a coreKit has been unpacked and
configured, the verification environment is stored in workspace/sim. Files in workspace/sim/test_i2s form
the actual testbench for DW_apb_i2s.

https://solvnet.synopsys.com
www.designware.com

156 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Verification DesignWare DW_apb_i2s Databook

Figure 7-1 DW_apb_i2s Testbench

The DW_apb_i2s testbench consists of the following components:

■ test_DW_apb_i2s.v – The test_DW_apb_i2s.v file shows the instantiation of the top-level component
in a testbench and resides in the workspace/sim/testbench directory.

■ DUT – A single instantiation of the DW_apb_i2s or DUT is required. The DUT can be configured as
an I2S Master or Slave. The testbench automatically wires up the DUT to form a fully functional
single-link I2S system.

In order to verify the DUT operating as a I2S Master or Slave, separate configurations need to be built
with independent test simulations.

■ I2S BFM – The principle mode of testing used in the testbench is based on arbitrary transfers between
the DUT and the I2S BFM. All other types of checks on the DUT are invoked in parallel while the I2S
transfers are made in either direction.

■ APB BFM – An APB BFM implements all the required interfacing to the two APB interfaces of
DW_apb_i2s. This BFM ensures that all APB clocking, signal controls, address drives, and data drives
and samplings are correctly implemented. The APB BFM serves to hide the drive and timing aspects
of the APB bus from the Testbench Control block (TB_CTRL).

I2S
BFMDUT

DW_apb_i2s.v
(APB Slave)

APB
BFM

Driver

Stimulus Generation

TB_CTRL

Scoreboard

Text File

test_DW_apb_i2s.vsclk

ws

serial data lines

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 157SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Verification

■ Stimulus Generation – In order to separate the “how” from the “what” in the testbench, the stimulus
generation (SG) process is coded within but separately from the main parts of the TB_CTRL block.
The SG handles all of the generation of the required parameters, which are required to drive the DUT
and the BFM. For example, the direction of transfer, the data patterns used for the serial transfer, and
so on. To allow for simulation replays with a specific set of data which the SG uses, all the generated
parameters are stored into an ASCII file for later retrieval. This also facilitates manual modifications
to the simulation parameters if so desired. During generation, randomization can be applied to all or
some of the parameters generated by the SG block.

■ TB_CTRL – The Testbench Control block is responsible for the actual controls of the simulations
executed on the testbench, Data fed from the SG is used to direct the TB_CTRL to perform the
detailed steps/processes required to achieve the I2S transfers. These include the appropriate
programming of the DUT’s registers, writing of the transmit FIFOs, reading of the receive FIFOs, and
so on.

■ Scoreboard – To track the transfers made to and from the DUT, the Scoreboard keeps track of all the
writes and reads to all the FIFOs in the DUT and the BFM by recording in separate entries. At the end
of each simulation iteration, the Scoreboard is signalled by TB_CTRL to perform an internal check on
the entries. The testbench simulation is either allowed to continue if the Scoreboard deems that all
transfers have been correctly made (transmit and received) or otherwise terminated.

In addition, any check failures detected during the I2S transfers also force the simulation to terminate
early. An internal debug mode is available to facilitate completion of the simulation while logging all
transfer information and error messages.

■ Checkers

❑ Register integrity checks – ensure that the registers in the DUT are accessible through the APB
interface.

❑ Control checks – ensure that the DUT transmit and/or receive channel enables, as controlled
through the APB interface, influence the corresponding transmit and/or receive abilities in the
DUT.

❑ Transfer checks – ensure that the DUT is capable of performing the transmit and/or receive
operations correctly for the various modes and word sizes.

❑ Status checks – ensure that the status bits in the DUT, accessed through the APB interface,
correspond to the expected transmit and/or receive behaviors.

❑ Clocking – ensure that the clock and transfer control signals are generated correctly as controlled
through the APB interface.

❑ Interrupt checks – ensure that the DUT’s interrupt outport is asserted and negated correctly.

https://solvnet.synopsys.com
www.designware.com

158 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Verification DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 159

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

8
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment. The following sections discuss general
integration considerations for the slave interface of APB peripherals.

8.1 Reading and Writing from an APB Slave
When writing to and reading from DesignWare APB slaves, you should consider the following:

■ The size of the APB peripheral should always be set equal to the size of the APB data bus, if possible.

■ The APB bus has no concept of a transfer size or a byte lane, unlike the DW_ahb.

■ The APB slave subsystem is little endian; the DW_apb performs the conversion from a big-endian
AHB to the little-endian APB.

■ All APB slave programming registers are aligned on 32-bit boundaries, irrespective of the APB bus
size.

■ The maximum APB_DATA_WIDTH is 32 bits. Registers larger than this occupies more than one
location in the memory map.

■ The DW_apb does not return any ERROR, SPLIT, or RETRY responses; it always returns an OKAY
response to the AHB.

■ For all bus widths:

❑ In the case of a read transaction, registers less than the full bus width returns zeros in the unused
upper bits.

❑ Writing to bit locations larger than the register width does not have any effect. Only the pertinent
bits are written to the register.

■ The APB slaves do not need the full 32-bit address bus, paddr. The slaves include the lower bits even
though they are not actually used in a 32- or 16-bit system.

8.1.1 Reading From Unused Locations

Reading from an unused location or unused bits in a particular register always returns zeros. Unlike an
AHB slave interface, which would return an error, there is no error mechanism in an APB slave and,
therefore, in the DW_apb.

https://solvnet.synopsys.com
www.designware.com

160 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

The following sections show the relationship between the register map and the read/write operations for
the three possible APB_DATA_WIDTH values: 8-, 16-, and 32-bit APB buses.

Figure 8-1 Read/Write Locations for Different APB Bus Data Widths

8.1.2 32-bit Bus System

For 32-bit bus systems, all programming registers can be read or written with one operation, as illustrated in
the previous figure.

Because all registers are on 32-bit boundaries, paddr[1:0] is not actually needed in the 32-bit bus case. But
these bits still exist in the configured code for usability purposes.

NoteNoteNoteNote If you write to an address location not on a 32-bit boundary, the bottom bits are ignored/not
used.

31 0715 APB Address
nn00

nn04

nn08
nn09Register 3 [15:8] Register 3 [7:0]

Register 2 [15:8] Register 2 [7:0]

Register 1 [7:0]

Register 3 [31:24]
Register 3 [23:16]

nn05

nn0A
nn0B

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:16] Register 3 [15:0]

Register 2 [15:0]

Register 1 [7:0]

nn0A

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:0]

Register 2 [15:0]

Register 1 [7:0]

32-bit APB

16-bit APB

8-bit APB

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 161SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Integration Considerations

8.1.3 16-bit Bus System

For 16-bit bus systems, two scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 16 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 16 bits wide returns zeros in the un-used bits. Writing to bit locations larger than
the register width causes nothing to happen, i.e. only the pertinent bits are written to the register.

2. The register to be written to or read from is >16 and <= 32 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower two bytes (half-word) and the
second transaction the upper half-word.

Because the bus is reading a half-word at a time, paddr[0] is not actually needed in the 16-bit bus case. But
these bits still exist in the configured code for connectivity purposes.

8.1.4 8-bit Bus System

For 8-bit bus systems, three scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 8 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 8 bits wide returns zeros in the unused bits. Writing to bit locations larger than the
register width causes nothing to happen, that is, only the pertinent bits are written to the register.

2. The register to be written to or read from is >8 and <=16 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the upper byte.

3. The register to be written to or read from is >16 and <=32 bits

In this case, four AHB transactions are required, which in turn creates four APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the second byte, and so on.

Because the bus is reading a byte at a time, all lower bits of paddr are decoded in the 8-bit bus case.

NoteNoteNoteNote If you write to an address location not on a 16-bit boundary, the bottom bits are ignored/not
used.

https://solvnet.synopsys.com
www.designware.com

162 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

8.2 Write Timing Operation
A timing diagram of an APB write transaction for an APB peripheral register (an earlier version of the
DW_apb_ictl) is shown in the following figure. Data, address, and control signals are aligned. The APB
frame lasts for two cycles when psel is high.

Figure 8-2 APB Write Transaction

A write can occur after the first phase with penable low, or after the second phase when penable is high. The
second phase is preferred and is used in all APB slave components. The timing diagram is shown with the
write occurring after the second phase. Whenever the address on paddr matches a corresponding address
from the memory map and provided psel, pwrite, and penable are high, then the corresponding register
write enable is generated.

A write from the AHB to the APB does not require the AHB system bus to stall until the transfer on the APB
has completed. A write to the APB can be followed by a read transaction from another AHB peripheral (not
the DW_apb).

The timing example is a 33-bit register and a 32-bit APB data bus. To write this, 5 byte enables would be
generated internally. The example shows writing to the first 32 bits with one write transaction.

Register

pclk

psel

penable

pwrite

paddr[7:2]

pwdata[31:0]

irq_inten[32:0]

wen_inten[4:0] 0x0f

0x100000000 0x100001234

0x00001234

IrqIntEnL

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 163SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Integration Considerations

8.3 Read Timing Operation
A timing diagram of an APB read transaction for an APB peripheral (an earlier version of the DW_apb_ictl)
is shown in the following figure. The APB frame lasts for two cycles, when psel is high.

Figure 8-3 APB Read Transaction

Whenever the address on paddr matches the corresponding address from the memory map—psel is high,
pwrite and penable are low—then the corresponding read enable is generated. The read data is registered
within the peripheral before passing back to the master through the DW_apb and DW_ahb.

The qualification of the read-back data with hready from the bridge is shown in the timing diagram, but this
does not form part of the APB interface. The read happens in the first APB cycle and is passed straight back
to the AHB master in the same cycles as it passes through the bridge. By returning the data immediately to
the AHB bus, the bridge can release control of the AHB data bus faster. This is important for systems where
the APB clock is slower than the AHB clock.

Once a read transaction is started, it is completed and the AHB bus is held until the data is returned from
the slave

8.4 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

NoteNoteNoteNote If a read enable is not active, then the previously read data is maintained on the read-back
data bus.

Register

pclk

psel

penable

pwrite

paddr[7:2]

prdata[31:0]

irq_inten[32:0]

ren_irq_inten[4:0]

0x100001234

0x1234

IrqIntEnL

0x1234hrdata[31:0]

hready

https://solvnet.synopsys.com
www.designware.com

164 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

8.5 Coherency
Coherency is where bits within a register are logically connected. For instance, part of a register is read at
time 1 and another part is read at time 2. Being coherent means that the part read at time 2 is at the same
value it was when the register was read at time 1. The unread part is stored into a shadow register and this
is read at time 2. When there is no coherency, no shadow registers are involved.

A bus master may need to be able to read the contents of a register, regardless of the data bus width, and be
guaranteed of the coherency of the value read. A bus master may need to be able to write a register
coherently regardless of the data bus width and use that register only when it has been fully programmed.
This may need to be the case regardless of the relationship between the clocks.

Coherency enables a value to be read that is an accurate reflection of the state of the counter, independent of
the data bus width, the counter width, and even the relationship between the clocks. Additionally, a value
written in one domain is transferred to another domain in a seamless and coherent fashion.

Throughout this appendix the following terms are used:

■ Writing. A bus master programs a configuration register. An example is programming the load value
of a counter into a register.

■ Transferring. The programmed register is in a different clock domain to where it is used, therefore, it
needs to be transferred to the other clock domain.

■ Loading. Once the programmed register is transferred into the correct clock domain, it needs to be
loaded or used to perform its function. For example, once the load value is transferred into the
counter domain, it gets loaded into the counter.

8.5.1 Writing Coherently

Writing coherently means that all the bits of a register can be written at the same time. A peripheral may
have programmable registers that are wider than the width of the connected APB data bus, which prevents
all the bits being programmed at the same time unless additional coherency circuitry is provided.

The programmable register could be the load value for a counter that may exist in a different clock domain.
Not only does the value to be programmed need to be coherent, it also needs to be transferred to a different
clock domain and then loaded into the counter. Depending on the function of the programmable register, a
qualifier may need to be generated with the data so that it knows when the new value is currently
transferred and when it should be loaded into the counter.

Depending on the system and on the register being programmed, there may be no need for any special
coherency circuitry. One example that requires coherency circuitry is a 32-bit timer within an 8-bit APB
system. The value is entirely programmed only after four 8-bit wide write transfers. It is safe to transfer or
use the register when the last byte is currently written. An example where no coherency is required is a
16-bit wide timer within a 16-bit APB system. The value is entirely programmed after a single 16-bit wide
write transfer.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 165SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Integration Considerations

Coherency circuitry enables the value to be loaded into the counter only when fully programmed and
crossed over clock domains if the peripheral clock is not synchronous to the processor clock. While the load
register is being programmed, the counter has access to the previous load value in case it needs to reload the
counter.

Coherency circuitry is only added in cores where it is needed. The coherency circuitry incorporates an
upper byte method that requires users to program the load register in LSB to MSB order when the
peripheral width is smaller than the register width. When the upper byte is programmed, the value can be
transferred and loaded into the load register. When the lower bytes are being programmed, they need to be
stored in shadow registers so that the previous load register is available to the counter if it needs to reload.
When the upper byte is programmed, the contents of the shadow registers and the upper byte are loaded
into the load register.

The upper byte is the top byte of a register. A register can be transferred and loaded into the counter only
when it has been fully programmed. A new value is available to the counter once this upper byte is written
into the register. The following table shows the relationship between the register width and the peripheral
bus width for the generation of the correct upper byte. The numbers in the table represent bytes, Byte 0 is
the LSB and Byte 3 is the MSB. NCR means that no coherency circuitry is required, as the entire register is
written with one access.

There are three relationship cases to be considered for the processor and peripheral clocks:

■ Identical

■ Synchronous (phase coherent but of an integer fraction)

■ Asynchronous

Table 8-1 Upper Byte Generation

Upper Byte
Bus Width

Load Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 1 NCR NCR

17 - 24 2 2 NCR

25 - 32 3 2 (or 3) NCR

https://solvnet.synopsys.com
www.designware.com

166 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

8.5.1.1 Identical Clocks

The following figure illustrates an RTL diagram for the circuitry required to implement the coherent write
transaction when the APB bus clock and peripheral clocks are identical.

Figure 8-4 Coherent Loading – Identical Synchronous Clocks

The following figure shows a 32-bit register that is written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal lasts
for one cycle and is used to load the counter with CntLoadValue.

Figure 8-5 Coherent Loading – Identical Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

pclk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

LoadValue[31:0]

UpperByteWen

LoadCnt

Counter[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 167SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Integration Considerations

Each of the bytes that make up the load register are stored into shadow registers until the final byte is
written. The shadow register is up to three bytes wide. The contents of the shadow registers and the final
byte are transferred into the CntLoadValue register when the final byte is written. The counter uses this
register to load/initialize itself. If the counter is operating in a periodic mode, it reloads from this register
each time the count expires.

By using the shadow registers, the CntLoadValue is kept stable until it can be changed in one cycle. This
allows the counter to be loaded in one access and the state of the counter is not affected by the latency in
programming it. When there is a new value to be loaded into the counter initially, this is signaled by
LoadCnt = 1. After the upper byte is written, the LoadCnt goes to zero.

8.5.1.2 Synchronous Clocks

When the clocks are synchronous but do not have identical periods, the circuitry needs to be extended so
that the LoadCnt signal is kept high until a rising edge of the counter clock occurs. This extension is
necessary so that the value can be loaded, using LoadCnt, into the counter on the first counter clock edge. At
the rising edge of the counter clock if LoadCnt is high, then a register clocked with the counter clock toggles,
otherwise it keeps its current value. A circuit detecting the toggling is used to clear the original LoadCnt by
looking for edge changes. The value is loaded into the counter when a toggle has been detected. Once it is
loaded, the counter should be free to increment or decrement by normal rules.

The following figure shows an RTL diagram for the circuitry required to implement the coherent write
when the bus and peripheral clocks are synchronous.

Figure 8-6 Coherent Loading – Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

OR

AND
ToggleToggle

1

1

Shaded Registers are all
connected to the Bus clock.
Others are connected to the
Peripheral clock.

https://solvnet.synopsys.com
www.designware.com

168 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

The following figure shows a 32-bit register being written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal is
extended until a change in the toggle is detected and is used to load the counter.

Figure 8-7 Coherent Loading – Synchronous Clocks

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

counter_clk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

CntLoadValue[31:0]

LoadCnt

toggle_edge_detect

Counter[31:0]

toggle

pclk

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 169SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Integration Considerations

8.5.1.3 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three-times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock. The following figure shows an RTL diagram for the circuitry
required to implement the coherent write when the bus and peripheral clocks are asynchronous.

Figure 8-8 Coherent Loading – Asynchronous Clocks

When the clocks are asynchronous, you need to transfer the contents of the register from one clock domain
to another. It is not desirable to transfer the entire register through meta-stability registers, as coherency is
not guaranteed with this method. The circuitry needed requires the processor clock to be used to re-time the
peripheral clock. Upon a rising edge of the re-timed clock, the new value signal, NewValue, is transferred
into a safe new value signal, SafeNewValue, which happens after the edge of the peripheral clock has
occurred.

Every time there is a rising edge of the peripheral clock detected, the CntLoadValue is transferred into a
SafeCntLoadValue. This value is used to transfer the load value across the clock domains. The
SafeCntLoadValue only changes a number of bus clock cycles after the peripheral clock edge changes. A

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0]

Counter
[31:0]

Shadow

Toggle 1

1

Shaded and edge detect registers are all
connected to the Bus clock. Others are
connected to the Peripheral clock.

(or ByteWen[3])

ClrNewValue
Reset

EN

32

NewValue

red_counter_clk

SafeCountLoadValue

&

Reset

EN

ClrNewValue

red_counter_clk

Edge
Detect

ClrNewValue

pclk

Rising

Detect
counter_clk

pclk

Edge red_counter_clk

SafeNewValue

https://solvnet.synopsys.com
www.designware.com

170 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

counter running on the peripheral clock is able to use this value safely. It could be up to two peripheral
clock periods before the value is loaded into the counter. Along with this loaded value, there also is a single
bit transferred that is used to qualify the loading of the value into the counter.

The timing diagram depicted in the following figure does not show the shadow registers being loaded. This
is identical to the loading for the other clock modes.

Figure 8-9 Coherent Loading – Asynchronous Clocks

The NewValue signal is extended until a change in the toggle is detected and is used to update the safe
value. The SafeNewValue is used to load the counter at the rising edge of the peripheral clock. Each time a
new value is written the toggle bit is flipped and the edge detection of the toggle is used to remove both the
NewValue and the SafeNewValue.

8.5.2 Reading Coherently

For writing to registers, an upper-byte concept is proposed for solving coherency issues. For read
transactions, a lower-byte concept is required. The following table provides the relationship between the
register width and the bus width for the generation of the correct lower byte.

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

Counter Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 0 NCR NCR

0D0C0B0A

0D0C0B0A

0D0C0B0A

A3

counter_clk

paddr

penable

pwdata[7:0]

NewValue

ntLoadValue[31:0]

red_counter_clk

ntLoadValue[31:0]

SafeNewValue

ClrNewValue

Counter[31:0]

toggle

pclk

0D

UpperByteWen

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 171SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Integration Considerations

Depending on the bus width and the register width, there may be no need to save the upper bits because the
entire register is read in one access, in which case there is no problem with coherency. When the lower byte
is read, the remaining upper bytes within the counter register are transferred into a holding register. The
holding register is the source for the remaining upper bytes. Users must read LSB to MSB for this solution to
operate correctly. NCR means that no coherency circuitry is required, as the entire register is read with one
access.

There are two cases regarding the relationship between the processor and peripheral clocks to be considered
as follows:

■ Identical and/or synchronous

■ Asynchronous

8.5.2.1 Synchronous Clocks

When the clocks are identical and/or synchronous, the remaining unread bits (if any) need to be saved into
a holding register once a read is started. The first read byte must be the lower byte provided in the previous
table, which causes the other bits to be moved into the holding register, SafeCntVal, provided that the
register cannot be read in one access. The upper bytes of the register are read from the holding register
rather than the actual register so that the value read is coherent. This is illustrated in the following figure
and in the timing diagram after it.

Figure 8-10 Coherent Registering – Synchronous Clocks

17 - 24 0 0 NCR

25 - 32 0 0 NCR

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

CntVal[31:8]

CntVal[31:8]

EN

LowerByteRen

SafeCntVal

ReadCntVal[31:0]

ByteRen[3:0]

Counter
Block

Shaded registers are clocked
with the processor clock.

https://solvnet.synopsys.com
www.designware.com

172 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

Figure 8-11 Coherent Registering – Synchronous Clocks

8.5.2.2 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock.

To safely transfer a counter value from the counter clock domain to the bus clock domain, the counter clock
signal should be transferred to the bus clock domain. When the rising edge detect of this re-timed counter
clock signal is detected, it is safe to use the counter value to update a shadow register that holds the current
value of the counter.

While reading the counter contents it may take multiple APB transfers to read the value.

Once a read transaction has started, the value of the upper register bits need to be stored into a shadow
register so that they can be read with subsequent read accesses. Storing these upper bits preserves the
coherency of the value that is being read. When the processor reads the current value it actually reads the
contents of the shadow register instead of the actual counter value. The holding register is read when the
bus width is narrower than the counter width. When the LSB is read, the value comes from the shadow
register; when the remaining bytes are read they come from the holding register. If the data bus width is
wide enough to read the counter in one access, then the holding registers do not exist.

The counter clock is registered and successively pipelined to sense a rising edge on the counter clock.
Having detected the rising edge, the value from the counter is known to be stable and can be transferred
into the shadow register. The coherency of the counter value is maintained before it is transferred, because
the value is stable.

NoteNoteNoteNote You must read LSB to MSB when the bus width is narrower than the counter width.

A0 A1 A2 A3

00010203 0A0B0C0D 0E0F0G0H

clk1

CntVal[31:0]

paddr

penable

prdata[7:0]

SafeCntVal[31:8]

LowerByteRen

pclk

A0 A1 A2

03 02 01 00 0H 0G

000102 0E0F0G

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 173SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Integration Considerations

The following figure illustrates the synchronization of the counter clock and the update of the shadow
register.

Figure 8-12 Coherency and Shadow Registering – Asynchronous Clocks

8.6 Performance
This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_apb_i2s.

8.6.1 Power Consumption, Frequency, and Area Results

Table 8-3 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_apb_i2s using the industry standard 28nm technology library and how it affects performance.

Table 8-3 Power Consumption, Frequency, and Area Results for DW_apb_i2s Using 28nm Technology Library

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration pclk: 200 MHz
sclk: 200 MHz
sclk_n: 200 MHz

6739 gates 0.0759uW 77.8uW

Master Minimum Configuration:
APB_DATA_WIDTH=8
I2S_MODE_EN=1
I2S_RECEIVER_BLOCK=1
I2S_TRANSMITTER_BLOCK=0
I2S_FIFO_DEPTH_GLOBAL=4

pclk: 200 MHz
sclk: 200 MHz
sclk_n: 200 MHz

2608 gates 0.0462uW 48.0uW

CntVal

EN

LowerByteRen

SafeCntVal

ReadCntVal

Sync and shaded registers are
clocked with the processor clock.

ShdwCntVal

EN

Sync & Rising
Edge Detect

Safe To Update

https://solvnet.synopsys.com
www.designware.com

174 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

Slave Minimum Configuration:
APB_DATA_WIDTH=8
I2S_MODE_EN=0
I2S_RECEIVER_BLOCK=1
I2S_TRANSMITTER_BLOCK=0
I2S_FIFO_DEPTH_GLOBAL=4

pclk: 200 MHz
sclk: 200 MHz
sclk_n: 200 MHz

2446 gates 0.0368uW 34.8uW

Master Maximum Combined
Configuration:
APB_DATA_WIDTH=32
I2S_MODE_EN=1
I2S_RECEIVER_BLOCK=1
I2S_TRANSMITTER_BLOCK=1
I2S_FIFO_DEPTH_GLOBAL=16
I2S_HAS_DMA_INTERFACE=1
I2S_DMA_HS_TYPE=1
I2S_DMA_POL=1
I2S_RX_DMA=1
I2S_TX_DMA=1

pclk: 200 MHz
sclk: 200 MHz
sclk_n: 200 MHz

12143 gates 0.114uW 135uW

Slave Maximum Combined
Configuration:
APB_DATA_WIDTH=32
I2S_MODE_EN=0
I2S_RECEIVER_BLOCK=1
I2S_TRANSMITTER_BLOCK=1
I2S_FIFO_DEPTH_GLOBAL=16
I2S_HAS_DMA_INTERFACE=1
I2S_DMA_HS_TYPE=1
I2S_DMA_POL=1
I2S_RX_DMA=1
I2S_TX_DMA=1

pclk: 200 MHz
sclk: 200 MHz
sclk_n: 200 MHz

11788 gates 0.106uW 105uW

Master Maximum Configuration:
APB_DATA_WIDTH=32
I2S_MODE_EN=1
I2S_RECEIVER_BLOCK=1
I2S_TRANSMITTER_BLOCK=1
I2S_FIFO_DEPTH_GLOBAL=16
I2S_HAS_DMA_INTERFACE=1
I2S_DMA_HS_TYPE=0
I2S_DMA_POL=1
I2S_RX_DMA=1
I2S_TX_DMA=1

pclk: 200 MHz
sclk: 200 MHz
sclk_n: 200 MHz

12036 gates 0.114uW 123uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 175SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Integration Considerations

Slave Maximum Configuration:
APB_DATA_WIDTH=32
I2S_MODE_EN=0
I2S_RECEIVER_BLOCK=1
I2S_TRANSMITTER_BLOCK=1
I2S_FIFO_DEPTH_GLOBAL=16
I2S_HAS_DMA_INTERFACE=1
I2S_DMA_HS_TYPE=0
I2S_DMA_POL=1
I2S_RX_DMA=1
I2S_TX_DMA=1

pclk: 200 MHz
sclk: 200 MHz
sclk_n: 200 MHz

11954 gates 0.0368uW 34.8uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

176 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 177

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

A
Synchronizer Methods

This appendix describes the synchronizer methods (blocks of synchronizer functionality) that are used in
the DW_apb_i2s to cross clock boundaries.

This appendix contains the following sections:

■ “Synchronizers Used in DW_apb_i2s” on page 178

■ “Synchronizer 1: Simple Double Register Synchronizer (DW_apb_i2s)” on page 179

NoteNoteNoteNote The DesignWare Building Blocks (DWBB) contains several synchronizer components with
functionality similar to methods documented in this appendix. For more information about the
DWBB synchronizer components go to:
https://www.synopsys.com/dw/buildingblock.php

https://www.synopsys.com/dw/buildingblock.php
https://solvnet.synopsys.com
www.designware.com

178 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Synchronizer Methods DesignWare DW_apb_i2s Databook

A.1 Synchronizers Used in DW_apb_i2s
Each of the synchronizers and synchronizer sub-modules are comprised of verified DesignWare Basic Core
(BCM) RTL designs. The BCM synchronizer designs are identified by the synchronizer type. The
corresponding RTL files comprising the BCM synchronizers used in the DW_apb_i2s are listed and cross
referenced to the synchronizer type in Table A-1. Note that certain BCM modules are contained in other
BCM modules, as they are used in a building block fashion.

Table A-1 Synchronizers Used in DW_apb_i2s

Synchronizer Module File Synchronizer Type and Number

DW_apb_i2s_bcm21.v Synchronizer 1: Simple Multiple register synchronizer

NoteNoteNoteNote The BCM21 is a basic multiple register based synchronizer module used in the design. It can be
replaced with equivalent technology specific synchronizer cell.

Caution
Be cautious while choosing the depth (I2S_SYNC_DEPTH) for different
synchronization mechanisms as 1 (where for the first stage negative-edge flip-flop is used
and for the second stage positive-edge flip-flop is used). At higher frequencies, as the
maximum time available for meta-stability resolution is halved with respect to the available
clock period, this can lead to meta-stability - when synchronizer depth is selected as 1.
It is recommended to use the synchronizer depths that are greater than or equal to 2. The
depth of 1 will be deprecated in the future releases.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 179SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Synchronizer Methods

A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_i2s)
This is a single clock data bus synchronizer for synchronizing control signals that crosses asynchronous
clock boundaries. The synchronization scheme uses two stage synchronization process (Figure A-1) both
using positive edge of clock.

Figure A-1 Block Diagram of Synchronizer 1 with Two-Stage Synchronization (Both Positive Edges)

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

180 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Synchronizer Methods DesignWare DW_apb_i2s Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 181

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

B
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table B-1 Internal Parameters

Parameter Name Equals To

ENCODED_APB_DATA_WIDTH {[function_of: APB_DATA_WIDTH]}

ENCODED_I2S_FIFO_DEPTH_GLOBAL {[function_of: I2S_FIFO_DEPTH_GLOBAL]}

ENCODED_I2S_RX_CHANNELS {[function_of: I2S_RX_CHANNELS]}

ENCODED_I2S_RX_WORDSIZE_0 {[function_of: I2S_RX_WORDSIZE_0]}

ENCODED_I2S_RX_WORDSIZE_1 {[function_of: I2S_RX_WORDSIZE_1]}

ENCODED_I2S_RX_WORDSIZE_2 {[function_of: I2S_RX_WORDSIZE_2]}

ENCODED_I2S_RX_WORDSIZE_3 {[function_of: I2S_RX_WORDSIZE_3]}

ENCODED_I2S_TX_CHANNELS {[function_of: I2S_TX_CHANNELS]}

ENCODED_I2S_TX_WORDSIZE_0 {[function_of: I2S_TX_WORDSIZE_0]}

ENCODED_I2S_TX_WORDSIZE_1 {[function_of: I2S_TX_WORDSIZE_1]}

ENCODED_I2S_TX_WORDSIZE_2 {[function_of: I2S_TX_WORDSIZE_2]}

ENCODED_I2S_TX_WORDSIZE_3 {[function_of: I2S_TX_WORDSIZE_3]}

I2S_ADDR_SLICE_LHS 10

https://solvnet.synopsys.com
www.designware.com

182 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Internal Parameter Descriptions DesignWare DW_apb_i2s Databook

I2S_COMP_VERSION 32'h3131312a

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 183

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

C
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces (Arm® Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by Arm®
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (Arm® Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in a
word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

https://solvnet.synopsys.com
www.designware.com

184 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Glossary DesignWare DW_apb_i2s Databook

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable block
that can be instantiated as a single entity (VHDL) or module (Verilog) in a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used in
the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a big
piece of IIP. Anything that requires coreConsultant for configuration, as well as
anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in the
DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable cores
into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design views
and synthesis views you need to integrate the core into your design. Can also
synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format back
to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant or
coreAssembler to quickly build DesignWare Synthesizable Component designs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 185SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_apb_i2s Databook Glossary

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is authorized
by a single DesignWare license. Products include SmartModels, VMT model
suites, DesignWare Memory Models, Building Block IP, and the DesignWare
Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code by
non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

https://solvnet.synopsys.com
www.designware.com

186 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Glossary DesignWare DW_apb_i2s Databook

RTL Register Transfer Level. A higher level of abstraction that implies a certain gate-
level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as synthesizable
IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology through
synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component. The
files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in any
form, including a Design View.

workspace A network location that contains a personal copy of a component or subsystem.
After you configure the component or subsystem (using coreConsultant or
coreAssembler), the workspace contains the configured component/subsystem
and generated views needed for integration of the component/subsystem at the
top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing easier
interfacing. Usually requires an extra, sometimes automated, step to create the
wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 187

DesignWare DW_apb_i2s Databook

SolvNet
DesignWare.com

1.11a
July 2018

Index

A
active command queue

definition 183
activity

definition 183
AHB

definition 183
AMBA

definition 183
APB

definition 183
APB bridge

definition 183
APB Interface, and DW_apb_i2s 39
application design

definition 183
arbiter

definition 183
B
BFM

definition 183
big-endian

definition 183
Block diagram, of DW_apb_i2s 18
blocked command stream

definition 183
blocking command

definition 183
bus bridge

definition 184
C
Coherency

about 164
read 170
write 164

command channel

definition 184
command stream

definition 184
component

definition 184
configuration

definition 184
configuration intent

definition 184
core

definition 184
core developer

definition 184
core integrator

definition 184
coreAssembler

definition 184
coreConsultant

definition 184
coreKit

definition 184
Customer Support 12
cycle command

definition 184
D
decoder

definition 184
design context

definition 184
design creation

definition 184
Design View

definition 184
DesignWare cores

definition 185
DesignWare Library

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_i2s Databook

188 Synopsys, Inc.SolvNet
DesignWare.com

1.11a
July 2018

definition 185
DesignWare Synthesizable Components

definition 184
dual role device

definition 185
DW_apb

slaves
read timing operation 163
write timing operation 162

DW_apb_i2s
block diagram of 18
functional behavior 23
functional overview 17
testbench

overview of 155
E
endian

definition 185
Environment, licenses 20
F
Full-Functional Mode

definition 185
Functional behavior, of DW_apb_i2s 23
Functional overview, of DW_apb_i2s 17
G
GPIO

definition 185
GTECH

definition 185
H
hard IP

definition 185
HDL

definition 185
I
IIP

definition 185
implementation view

definition 185
instantiate

definition 185
interface

definition 185
Interfaces

APB 39
IP

definition 185
L
Licenses 20
little-endian

definition 185
M
MacroCell

definition 185
master

definition 185
model

definition 185
monitor

definition 185
N
non-blocking command

definition 185
P
peripheral

definition 185
R
Read coherency

about 170
and asynchronous clocks 172
and synchronous clocks 171

Reading, from unused locations 159
RTL

definition 186
S
SDRAM

definition 186
SDRAM controller

definition 186
Simple double register synchronizer 179
Simulation

of DW_apb_i2s 155
slave

definition 186
SoC

definition 186
SoC Platform

AHB contained in 15

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb_i2s Databook Index

Synopsys, Inc. 1891.11a
July 2018

SolvNet
DesignWare.com

APB, contained in 15
defined 15

soft IP
definition 186

static controller
definition 186

subsystem
definition 186

Synchronizer
simple double register 179

synthesis intent
definition 186

synthesizable IP
definition 186

T
technology-independent

definition 186
test_DW_apb_i2s.v 156
Testsuite Regression Environment (TRE)

definition 186
Timing

read operation of DW_apb slave 163
write operation of DW_apb slave 162

TRE
definition 186

V
Verification

of DW_apb_i2s 155
VIP

definition 186
W
workspace

definition 186
wrap

definition 186
wrapper

definition 186
Write coherency

about 164
and asynchronous clocks 169
and identical clocks 166
and synchronous clocks 167

Z
zero-cycle command

definition 186

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_i2s Databook

190 Synopsys, Inc.SolvNet
DesignWare.com

1.11a
July 2018

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_apb_i2s Features
	1.2.2 DW_apb_i2s Block Diagram
	1.2.3 I2S Terminology
	1.2.4 Overview of DW_apb_i2s

	1.3 Standards Compliance
	1.4 Verification Environment Overview
	1.5 Licenses
	1.6 Where To Go From Here

	2 Functional Description
	2.1 Overview
	2.2 DW_apb_i2s Enable
	2.3 DW_apb_i2s as Transmitter
	2.3.1 Transmitter Block Enable
	2.3.2 Transmit Channel Enable
	2.3.3 Transmit Channel Audio Data Resolution
	2.3.4 Transmit Channel FIFOs
	2.3.5 Transmit Channel Interrupts
	2.3.6 Writing to a Transmit Channel

	2.4 DW_apb_i2s as Receiver
	2.4.1 Receiver Block Enable
	2.4.2 Receive Channel Enable
	2.4.3 Receive Channel Audio Data Resolution
	2.4.4 Receive Channel FIFOs
	2.4.5 Receive Channel Interrupts
	2.4.6 Reading from a Receive Channel

	2.5 Clock Generation (Master Mode)
	2.5.1 Clock Generation Enable
	2.5.2 Word Select Generation
	2.5.3 SCLK Gating

	2.6 Transaction Example
	2.7 APB Interface
	2.8 DW_apb_i2s Registers
	2.8.1 Register Memory Map
	2.8.2 Coherency

	2.9 DMA Handshaking Interface
	2.9.1 DMA Controller Interface
	2.9.1.1 Dedicated DMA handshake Interface, I2S_DMA_HS_TYPE=0
	2.9.1.2 Single DMA Handshake Interface, I2S_DMA_HS_TYPE=1
	2.9.1.3 Overview of Operation
	2.9.1.4 Transmit Watermark Level and Transmit FIFO Underflow
	2.9.1.5 Choosing the Transmit Watermark Level
	2.9.1.6 Selecting DEST_MSIZE and Transmit FIFO Overflow
	2.9.1.7 Receive Watermark Level and Receive FIFO Overflow
	2.9.1.8 Choosing the Receive Watermark level
	2.9.1.9 Selecting SRC_MSIZE and Receive FIFO Underflow
	2.9.1.10 Handshaking Interface Operation

	3 Parameter Descriptions
	3.1 Basic Configuration Parameters
	3.2 Receiver Channel(s) Parameters
	3.3 Transmitter Channel(s) Parameters

	4 Signal Descriptions
	4.1 APB Slave Interface Signals
	4.2 I2S Clock Interface Signals
	4.3 I2S Clock Interface - Master Mode Signals
	4.4 I2S Clock Interface - Slave Mode Signals
	4.5 I2S Receiver Interface (for x = 0; x <= I2S_RX_CHANNELS-1) Signals
	4.6 I2S Transmitter Interface (for x = 0; x <= I2S_TX_CHANNELS-1) Signals
	4.7 DMA Interface Signals
	4.8 I2S Interrupts Signals

	5 Register Descriptions
	5.1 DW_apb_i2s_mem_map/DW_apb_i2s_addr_block1 Registers
	5.1.1 IER
	5.1.2 IRER
	5.1.3 ITER
	5.1.4 CER
	5.1.5 CCR
	5.1.6 RXFFR
	5.1.7 TXFFR
	5.1.8 LRBRx (for x = 0; x <= I2S_RX_CHANNELS-1)
	5.1.9 LTHRx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.10 RRBRx (for x = 0; x <= I2S_RX_CHANNELS-1)
	5.1.11 RTHRx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.12 RERx (for x = 0; x <= I2S_RX_CHANNELS-1)
	5.1.13 TERx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.14 RCRx (for x = 0; x <= I2S_RX_CHANNELS-1)
	5.1.15 TCRx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.16 ISRx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.17 IMRx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.18 RORx (for x = 0; x <= I2S_RX_CHANNELS-1)
	5.1.19 TORx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.20 RFCRx (for x = 0; x <= I2S_RX_CHANNELS-1)
	5.1.21 TFCRx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.22 RFFx (for x = 0; x <= I2S_RX_CHANNELS-1)
	5.1.23 TFFx (for x = 0; x <= I2S_TX_CHANNELS-1)
	5.1.24 RXDMA
	5.1.25 RRXDMA
	5.1.26 TXDMA
	5.1.27 RTXDMA
	5.1.28 I2S_COMP_PARAM_2
	5.1.29 I2S_COMP_PARAM_1
	5.1.30 I2S_COMP_VERSION
	5.1.31 I2S_COMP_TYPE
	5.1.32 DMACR
	5.1.33 RXDMA_CHx (for x = 0; x <= I2S_RX_CHANNELS-1)
	5.1.34 TXDMA_CHx (for x = 0; x <= I2S_TX_CHANNELS-1)

	6 Programming the DW_apb_i2s
	6.1 DW_apb_i2s as Transmitter
	6.1.1 Slave Mode
	6.1.1.1 Normal Mode
	6.1.1.2 TX DMA Mode

	6.1.2 Master Mode

	6.2 DW_apb_i2s as Receiver
	6.2.1 Slave Mode
	6.2.1.1 RX DMA Mode

	6.2.2 Master Mode
	6.2.2.1 RX DMA Mode

	6.3 DW_apb_i2s as Transmitter—With DMA Handshake Interface
	6.3.1 Slave Mode
	6.3.1.1 Dedicated DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=0)
	6.3.1.2 Combined DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=1)

	6.3.2 Master Mode

	6.4 DW_apb_i2s as Receiver—With DMA Handshake Interface
	6.4.1 Slave Mode
	6.4.1.1 Dedicated DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=0)
	6.4.1.2 Combined DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=1)

	6.4.2 Master Mode
	6.4.2.1 Dedicated DMA Handshake Interface Mode (I2S_DMA_HS_TYPE=0)
	6.4.2.2 Combined DMA Handshake Interface mode (I2S_DMA_HS_TYPE=1)

	6.5 Example Configurations
	6.5.1 Example 1
	6.5.2 Example 2
	6.5.3 Example 3

	7 Verification
	8 Integration Considerations
	8.1 Reading and Writing from an APB Slave
	8.1.1 Reading From Unused Locations
	8.1.2 32-bit Bus System
	8.1.3 16-bit Bus System
	8.1.4 8-bit Bus System

	8.2 Write Timing Operation
	8.3 Read Timing Operation
	8.4 Accessing Top-level Constraints
	8.5 Coherency
	8.5.1 Writing Coherently
	8.5.1.1 Identical Clocks
	8.5.1.2 Synchronous Clocks
	8.5.1.3 Asynchronous Clocks

	8.5.2 Reading Coherently
	8.5.2.1 Synchronous Clocks
	8.5.2.2 Asynchronous Clocks

	8.6 Performance
	8.6.1 Power Consumption, Frequency, and Area Results

	A Synchronizer Methods
	A.1 Synchronizers Used in DW_apb_i2s
	A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_i2s)

	B Internal Parameter Descriptions
	C Glossary
	Index

