
 2.02a
July 2018

DesignWare DW_apb_i2c Databook

DW_apb_i2c – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://solvnet.synopsys.com
https://www.synopsys.com/company/legal/trademarks-brands.html
www.synopsys.com
www.designware.com

Synopsys, Inc. 3SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Contents

Contents

Revision History . 9

Preface .15
Organization .15
Related Documentation .16
Web Resources .16
Customer Support .16
Product Code .17

Chapter 1
Product Overview .19

1.1 DesignWare System Overview .19
1.2 General Product Description .21

1.2.1 DW_apb_i2c Block Diagram .21
1.3 Features .22

1.3.1 I2C Features .22
1.3.2 DesignWare APB Slave Interface .23

1.4 Standards Compliance .23
1.5 Verification Environment Overview .23
1.6 Licenses .23
1.7 Where To Go From Here .23

Chapter 2
Functional Description .25

2.1 Overview .26
2.2 I2C Terminology .28

2.2.1 I2C Bus Terms .28
2.2.2 Bus Transfer Terms .29

2.3 I2C Behavior .30
2.3.1 START and STOP Generation .30
2.3.2 Combined Formats .31

2.4 I2C Protocols .31
2.4.1 START and STOP Conditions .31
2.4.2 Addressing Slave Protocol .32
2.4.3 Transmitting and Receiving Protocol .33
2.4.4 START BYTE Transfer Protocol .35

2.5 Tx FIFO Management and START, STOP and RESTART Generation .36
2.5.1 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 0 .36
2.5.2 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 1 .38

2.6 Multiple Master Arbitration .41

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Contents DesignWare DW_apb_i2c Databook

2.7 Clock Synchronization .43
2.8 Operation Modes .43

2.8.1 Slave Mode Operation .44
2.8.2 Master Mode Operation .47
2.8.3 Disabling DW_apb_i2c .50
2.8.4 Aborting I2C Transfers .51

2.9 Spike Suppression .51
2.10 Fast Mode Plus Operation .53
2.11 Bus Clear Feature .53

2.11.1 SDA Line Stuck at LOW Recovery .53
2.11.2 SCL Line is Stuck at LOW .54

2.12 Device ID .54
2.13 Ultra-Fast Speed Mode .55
2.14 SMBus/PMBus .56

2.14.1 tTimeout,MIN Parameter .56
2.14.2 Master Device Clock Extension .57
2.14.3 Slave Device Clock Extension .57
2.14.4 SMBDAT Low Timeout .57
2.14.5 Bus Protocols .57
2.14.6 SMBUS Address Resolution Protocol .59
2.14.7 SMBUS Additional Slave Address .64
2.14.8 SMBUS Optional Signals .65

2.15 IC_CLK Frequency Configuration .66
2.15.1 Minimum High and Low Counts in SS, FS, FM+ and high speed Modes With

IC_CLK_FREQ_OPTIMIZATION = 0. .67
2.15.2 Minimum High and Low Counts in SS, FS, FM+ and high speed Modes With

IC_CLK_FREQ_OPTIMIZATION = 1 .69
2.15.3 Minimum High and Low counts in Ultra-Fast mode (IC_ULTRA_FAST_MODE = 1)69
2.15.4 Minimum IC_CLK Frequency .69

2.16 SDA Hold Time .77
2.16.1 SDA Hold Timings in Receiver .78
2.16.2 SDA Hold Timings in Transmitter .79

2.17 DMA Controller Interface .80
2.17.1 Enabling the DMA Controller Interface .81
2.17.2 Overview of Operation .81
2.17.3 Transmit Watermark Level and Transmit FIFO Underflow .83
2.17.4 Choosing the Transmit Watermark Level .83
2.17.5 Selecting DEST_MSIZE and Transmit FIFO Overflow .85
2.17.6 Receive Watermark Level and Receive FIFO Overflow .85
2.17.7 Choosing the Receive Watermark level .86
2.17.8 Selecting SRC_MSIZE and Receive FIFO Underflow .86
2.17.9 Handshaking Interface Operation .86

2.18 APB Interface .90
2.18.1 APB 3.0 Support .90
2.18.2 APB 4.0 Support .91

2.19 I/O Connections .91
2.20 DW_apb_i2c Registers .92

2.20.1 Registers and Field Descriptions .92
2.20.2 Operation of Interrupt Registers .92

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Contents

2.21 UDID Feature .94

Chapter 3
Parameter Descriptions .95

3.1 Top Level Parameters .96
3.2 I2C Version 3.0 Features Parameters . 112
3.3 SMBus Features Parameters . 114
3.4 I2C Version 6.0 Features Parameters . 117

Chapter 4
Signal Descriptions . 119

4.1 Interrupts Signals . 121
4.2 I2C Interface (Master/Slave) Signals . 129
4.3 APB Slave Interface Signals . 132
4.4 DMA Interface Signals . 135
4.5 SMBus Interface Signals . 137
4.6 I2C Debug Signals . 138

Chapter 5
Register Descriptions . 141

5.1 DW_apb_i2c_mem_map/DW_apb_i2c_addr_block1 Registers . 144
5.1.1 IC_CON . 148
5.1.2 IC_TAR . 156
5.1.3 IC_SAR . 160
5.1.4 IC_HS_MADDR . 161
5.1.5 IC_DATA_CMD . 162
5.1.6 IC_SS_SCL_HCNT . 166
5.1.7 IC_UFM_SCL_HCNT . 168
5.1.8 IC_SS_SCL_LCNT . 170
5.1.9 IC_UFM_SCL_LCNT . 172
5.1.10 IC_FS_SCL_HCNT . 174
5.1.11 IC_UFM_TBUF_CNT . 176
5.1.12 IC_FS_SCL_LCNT . 178
5.1.13 IC_HS_SCL_HCNT . 180
5.1.14 IC_HS_SCL_LCNT . 182
5.1.15 IC_INTR_STAT . 184
5.1.16 IC_INTR_MASK . 189
5.1.17 IC_RAW_INTR_STAT . 193
5.1.18 IC_RX_TL . 202
5.1.19 IC_TX_TL . 203
5.1.20 IC_CLR_INTR . 204
5.1.21 IC_CLR_RX_UNDER . 205
5.1.22 IC_CLR_RX_OVER . 206
5.1.23 IC_CLR_TX_OVER . 207
5.1.24 IC_CLR_RD_REQ . 208
5.1.25 IC_CLR_TX_ABRT . 209
5.1.26 IC_CLR_RX_DONE . 210
5.1.27 IC_CLR_ACTIVITY . 211
5.1.28 IC_CLR_STOP_DET . 212
5.1.29 IC_CLR_START_DET . 213

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Contents DesignWare DW_apb_i2c Databook

5.1.30 IC_CLR_GEN_CALL . 214
5.1.31 IC_ENABLE . 215
5.1.32 IC_STATUS . 220
5.1.33 IC_TXFLR . 227
5.1.34 IC_RXFLR . 228
5.1.35 IC_SDA_HOLD . 229
5.1.36 IC_TX_ABRT_SOURCE . 231
5.1.37 IC_SLV_DATA_NACK_ONLY . 240
5.1.38 IC_DMA_CR . 242
5.1.39 IC_DMA_TDLR . 244
5.1.40 IC_DMA_RDLR . 245
5.1.41 IC_SDA_SETUP . 246
5.1.42 IC_ACK_GENERAL_CALL . 248
5.1.43 IC_ENABLE_STATUS . 249
5.1.44 IC_FS_SPKLEN . 253
5.1.45 IC_UFM_SPKLEN . 254
5.1.46 IC_HS_SPKLEN . 256
5.1.47 IC_CLR_RESTART_DET . 258
5.1.48 IC_SCL_STUCK_AT_LOW_TIMEOUT . 259
5.1.49 IC_SDA_STUCK_AT_LOW_TIMEOUT . 260
5.1.50 IC_CLR_SCL_STUCK_DET . 261
5.1.51 IC_DEVICE_ID . 262
5.1.52 IC_SMBUS_CLK_LOW_SEXT . 263
5.1.53 IC_SMBUS_CLK_LOW_MEXT . 264
5.1.54 IC_SMBUS_THIGH_MAX_IDLE_COUNT . 265
5.1.55 IC_SMBUS_INTR_STAT . 267
5.1.56 IC_SMBUS_INTR_MASK . 271
5.1.57 IC_SMBUS_RAW_INTR_STAT . 275
5.1.58 IC_CLR_SMBUS_INTR . 280
5.1.59 IC_OPTIONAL_SAR . 283
5.1.60 IC_SMBUS_UDID_LSB . 284
5.1.61 IC_SMBUS_UDID_WORD0 . 285
5.1.62 IC_SMBUS_UDID_WORD1 . 286
5.1.63 IC_SMBUS_UDID_WORD2 . 287
5.1.64 IC_SMBUS_UDID_WORD3 . 288
5.1.65 REG_TIMEOUT_RST . 289
5.1.66 IC_COMP_PARAM_1 . 291
5.1.67 IC_COMP_VERSION . 294
5.1.68 IC_COMP_TYPE . 295

Chapter 6
Programming the DW_apb_i2c . 297

6.1 Software Registers . 297
6.2 Software Drivers . 297
6.3 Programming Example . 298
6.4 Programming Flow for SCL and SDA Bus Recovery . 304
6.5 Programming Flow for Reading the Device ID . 305
6.6 Programming Flow for SMBUS Timeout in Master Mode . 306
6.7 Programming Flow for SMBUS Timeout in Slave Mode . 307

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Contents

6.8 ARP Master Programming Flow . 307
6.9 ARP Slave Programming Flow . 308
6.10 SMBus SUSPEND Programming Flow in Host Mode .311
6.11 SMBus SUSPEND Programming Flow in Device Mode . 312
6.12 SMBus ALERT Programming Flow in Host Mode .313
6.13 SMBus ALERT Programming Flow in Device Mode . 314
6.14 Programming Flow Of DW_apb_i2c in Ultra-Fast Mode . 315

6.14.1 DW_apb_i2c Master Mode . 315
6.14.2 DW_apb_i2c Slave Mode . 316

Chapter 7
Verification . 317

7.1 Vera Testbench Environment . 317
7.1.1 Overview of Vera Tests . 317
7.1.2 APB Slave Interface . 317
7.1.3 DW_apb_i2c Master Operation . 318
7.1.4 DW_apb_i2c Slave Operation . 318
7.1.5 DW_apb_i2c Interrupts . 319
7.1.6 DMA Handshaking Interface . 319
7.1.7 DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update . 319
7.1.8 Generate NACK as a Slave-Receiver . 319
7.1.9 SCL Held Low for Duration Specified in IC_SDA_SETUP . 319
7.1.10 Generate ACK/NACK for General Call . 320

Chapter 8
Integration Considerations . 321

8.1 Accessing Top-level Constraints . 321
8.2 Performance . 321

8.2.1 Power Consumption, Frequency, and Area Results . 321

Appendix A
Synchronizer Methods . 325

A.1 Synchronizers Used in DW_apb_i2c . 326
A.2 Synchronizer 1: Simple Double Register Synchronizer . 327
A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset 327

Chapter B
Internal Parameter Descriptions . 329

Appendix C
Glossary . 331

Index . 335

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Contents DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

Revision History

This table shows the revision history for the databook from release to release. This is being tracked from
version 1.08a onward.

Version Date Description

2.02a July 2018 Added:

■ “APB 3.0 Support” on page 90

■ “APB 4.0 Support” on page 91

■ “UDID Feature” on page 94

Removed:

■ Chapter 2, “Building and Verifying a Component or Subsystem” and added the
contents in the newly created user guide.

■ Section “Running Leda on Generated Code with coreConsultant”

■ Removed all instances of Leda

Updated:

■ Version number changed for 2018.07a release

■ “Performance” on page 321

■ “Parameter Descriptions” on page 95, “Signal Descriptions” on page 119, “Register
Descriptions” on page 141 and “Internal Parameter Descriptions” on page 329 are
auto extracted with change bars from the RTL.

https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Revision History DesignWare DW_apb_i2c Databook

2.01a October 2016 Added:

■ “Running VCS XPROP Analyzer”

■ Entry for the xprop directory in Table 2-1 and Table 2-4.

■ Added note in “Overview” on page 26 and “Tx FIFO Management When
IC_EMPTYFIFO_HOLD_MASTER_EN = 0” on page 36

■ Parameter Descriptions and Register Descriptions auto-extracted from the RTL

Removed:

■ Removed the “Running Leda on Generated Code with coreConsultant” section, and
reference to Leda directory in Table 2-1

■ Removed the “Running Leda on Generated Code with coreAssembler” section, and
reference to Leda directory in Table 2-4

Updated:
■ Version number changed for 2016.10a release

■ Modified Table 2-2 on page 58

■ Updated area and power numbers in sections “Area” and “Power Consumption”

■ Modified “APB Interface” on page 90

■ Updated description for SMBus

■ Updated the ic_smbalert_oe signal description

■ Moved Internal Parameter Descriptions to Appendix

2.00a June 2015 Added:

■ “Running SpyGlass® Lint and SpyGlass® CDC”

■ “Running SpyGlass on Generated Code with coreAssembler”

■ “Internal Parameter Descriptions” on page 329

■ New features:

- “Bus Clear Feature” on page 53
- “Device ID” on page 54
- “SMBus/PMBus” on page 56
- “Ultra-Fast Speed Mode” on page 55
- New parameter “IC_CLK_FREQ_OPTIMIZATION”
- Synchronizer Methods

■ Included a note regarding tBUF timing and setup/hold time.

Updated:
- “IC_CLK Frequency Configuration” on page 66 updated for

IC_CLK_FREQ_OPTIMIZATION and IC_ULTRA_FAST_MODE Configurations
- “Signal Descriptions” on page 119 auto-extracted from the RTL

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Revision History

1.22a June 2014 Added:

■ New features:

- Blocking the Tx FIFO commands using IC_TX_CMD_BLOCK field in
IC_ENABLE register

- Indication for first data byte received after the address in IC_DATA_CMD register
- Detection of STOP interrupt only if master is active

■ coreConsultant parameter (IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT)
introduced to avoid flushing of RX FIFO during TX Abort

■ New bits in IC_STATUS register for Indicating a reason for bus holding

■ Performance section in Integration considerations

Updated:

■ Width of TX_FLUSH_CNT field in the IC_TX_ABRT_SOURCE register

■ Default Input/Output Delays in Signals chapter

1.21a May 2013 Added:
■ Section on Fast Mode Plus

■ Configuration Parameters:

- IC_RX_FULL_HLD_BUS_EN
- IC_SLV_RESTART_DET_EN

■ Signals:

- ic_restart_det_intr(_n) signal to enable restart detect in slave mode

■ Registers

- RESTART_DET bit of IC_INTR_STAT, IC_INTR_MASK and
IC_RAW_INTR_STAT registers
Bit detects a repeated start when the DW_apb_i2c is the addressed slave

- IC_CLR_RESTART_DET to clear the RESTART_DET interrupt
- MST_ON_HOLD bit to the IC_INTR_STAT, IC_INTR_MASK and

IC_RAW_INTR_STAT registers. This bit indicates whether a master is holding
the bus and the Tx FIFO is empty. Added the signal ic_mst_on_hold_intr(_n)

■ Programming flow for DW_apb_i2c master with TAR update

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Revision History DesignWare DW_apb_i2c Databook

1.21a Cont’d May 2013
Cont’d

Continued
Updated:
■ References to Fast Mode Plus

■ Registers:

- TX_FLUSH_CNT field of the IC_TX_ABRT_SOURCE register
- TX_ABRT field of the IC_RAW_INTR_STAT register
- IC_CON
- IC_RAW_INTR_STAT
- IC_SDA_HOLD

Signals:
■ Active state of the ic_current_src_en signal

■ Programming flow for DW_apb_i2c as master in standard or fast mode

■ Method for deriving ic_clk values in high speed modes

■ Documentation template

Removed:

■ Text stating that Fast Mode Plus is not supported

■ Note in the IC_TX_ABRT_SOURCE register description stating DW_apb_i2c can be
a master and slave at the same time

1.20a Oct 2012 Added the product code on the cover and in Table 1-1.

1.20a June 2012 Edited calculations for driving SDA in “high speed Modes” section; updated
IC_ENABLE and IC_TX_ABRT_SOURCE registers.

1.17a Mar 2012 Enhanced DW_ahb_dmac and DW_apb_i2c programming example; updated definition
of IC_FS_SPKLEN and IC_HS_SPKLEN register descriptions; corrected programming
values for dma_tx_req and dma_rx_req signals.

1.16b Dec 2011 Enhanced description of IC_ADD_ENCODED_PARAMS parameter.

1.16b Nov 2011 Version change for 2011.11a release.

1.16a Oct 2011 Version change for 2011.10a release.

1.15a 14 June 2011 Removed “Digital/Analog Domain Functional Partitioning” section (9.1) – irrelevant now
with Spike Suppression functionality.

1.15a June 2011 Updated system diagram in Figure 1-1; enhanced description of ic_rst_n signal;
enhanced “Related Documents” section in Preface.

1.15a 21 Apr 2011 Clarified description of C_DEFAULT_SDA_HOLD parameter.

1.15a 12 Apr 2011 Corrected IC_DEFAULT_FS_SPKLEN and IC_DEFAULT_HS_SPKLEN default values.

1.15a Apr 2011 Added spike suppression material; corrected R/W locations in timing diagrams in “Tx
FIFO Management and START, STOP and RESTART Generation” section

1.14a Dec 2010 Corrected subsection numbering in Registers chapter.

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Revision History

1.13a Oct 2010 Added information on calculating maximum value for IC_DEFAULT_SDA_HOLD
parameter and IC_SDA_HOLD register; “SDA Hold Time” section, description of
IC_DEFAULT_SDA_HOLD parameter, and IC_SDA_HOLD register updated

1.12a 7 Sep 2010 Corrected DW_ahb_dmac response in “Receive Watermark Level and Receive FIFO
Overflow” section

1.12a Sep 2010 Corrected names of include files and vcs command used for simulation

1.11a Mar 2010 Corrected information regarding how DW_apb_i2c communicates with slaves when
operating in master mode; corrected default value for IC_DEFAULT_SDA_SETUP
parameter; added SDA hold time information; added IC_SDA_HOLD register
description; removed references to 300ns hold time in integration considerations;
removed DW_apb_i2c Application Notes appendix.

1.10a Jan 2010 Removed reference to I2C protocol created by Philips (NXP).

1.10a Dec 2009 Corrected dependencies for IC_SS_SCL_HIGH_COUNT, IC_SS_SCL_LOW_COUNT,
IC_FS_SCL_HIGH_COUNT, and IC_FS_SCL_LOW_COUNT parameters; corrected
IC_RESTART_EN parameter description; modified description of IC_SDA_SETUP
register; updated databook to new template for consistency with other IIP/VIP/PHY
databooks.

1.10a Jul 2009 Corrected equations for avoiding underflow when programming a source burst
transaction.

1.10a Jun 2009 Corrected name of IC_10BITADDR_SLAVE parameter in “Parameters” chapter.

1.10a May 2009 Removed references to QuickStarts, as they are no longer supported.

1.10a 24 Apr 2009 Enhanced IC_CON description with table for IC_SLAVE_DISABLE and
MASTER_MODE combinations that result in configuration errors.

1.10a 23 Apr 2009 Enhanced “Master Transmit and Master Receive” subsection to clarify reads for multiple
bytes.

1.10a Oct 2008 IC_RX_FULL_GEN_NACK parameter removed; IC_INTR_MASK is active low;
dependency changed for IC_HS_MASTER_CODE parameter; IC_SLAVE_DISABLE
default changed to 1; values for high speed mode corrected in Table 8; debug_* signal
default values corrected; version change for 2008.10a release.

1.09a Jul 2008 Removed IC_RX_FULL_GEN_NACK configuration parameter and its conditional text.
Changed reference to non-existent table for IC_*S_SCL_*CNT registers to link to
“IC_CLK Frequency Configuration” section. Removed USE_FOUNDATION parameter.

1.09a Jun 2008 Removed Synchronous value from IC_CLK_TYPE parameter; clarified that putting data
into the FIFO generates a START and emptying the FIFO generates a STOP; clarified
description of I2C_DYNAMIC_TAR_UPDATE parameter; clarification of IC_TAR
description.

1.08b 11 Feb 2008 Modified note on restriction; page 47.

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Revision History DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

Preface

This databook provides information that you need to interface the DW_apb_i2c to the Advanced Peripheral
Bus (APB). The DW_apb_i2c conforms to the AMBA Specification, Revision 2.0 from Arm®.

The information in this databook includes an overview, pin and parameter descriptions, a memory map,
and functional behavior of the component. An overview of the testbench, a description of the tests that are
run to verify the coreKit, and synthesis information for the component are also provided.

Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Functional Description” describes the functional operation of the DW_apb_i2c.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_apb_i2c.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_apb_i2c signals.

■ Chapter 5, “Register Descriptions” describes the programmable registers of the DW_apb_i2c.

■ Chapter 6, “Programming the DW_apb_i2c” provides information needed to program the configured
DW_apb_i2c.

■ Chapter 7, “Verification” provides information on verifying the configured DW_apb_i2c.

■ Chapter 8, “Integration Considerations” includes information you need to integrate the configured
DW_apb_i2c into your design.

■ Chapter A, “Synchronizer Methods” documents the synchronizer methods (blocks of synchronizer
functionality) used in DW_apb_i2c to cross clock boundaries.

■ Appendix B, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals chapter.

■ Appendix C, “Glossary” provides a glossary of general terms.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Preface DesignWare DW_apb_i2c Databook

Related Documentation
■ DW_apb_i2c Driver Kit User Guide – Contains information on the Driver Kit for the DW_apb_i2c;

requires source code license (DWC-APB-Periph-Source)

■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using
DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA 2,
AMBA 3 AXI, and AMBA 4 AXI, see the
https://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the requested
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained, your
issue is automatically routed to a support engineer who is experienced with your product. The
Sub Product entry is critical for correct routing.

http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
https://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/drivers/DW_apb_i2c/latest/doc/dw_apb_i2c_driver.pdf
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title

Synopsys, Inc. 17SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Preface

Go to http://solvnet.synopsys.com/EnterACall and click Open A Support Case to enter a call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: <product version number>
■ Problem Type:
■ Priority:
■ Title: DW_apb_i2c
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified earlier) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
https://www.synopsys.com/support/global-support-centers.html

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare APB Advanced
Peripherals.

Table 1-1 DesignWare APB Advanced Peripherals – Product Code: 3772-0

Component Name Description

DW_apb_i2c A highly configurable, programmable master or slave i2c device with an APB slave interface

DW_apb_i2s A configurable master or slave device for the three-wire interface (I2S) for streaming stereo
audio between devices

DW_apb_ssi A configurable, programmable, full-duplex, master or slave synchronous serial interface

DW_apb_uart A programmable and configurable Universal Asynchronous Receiver/Transmitter (UART)
for the AMBA 2 APB bus

http://solvnet.synopsys.com/EnterACall
mailto:support_center@synopsys.com
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Preface DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

1
Product Overview

This chapter describes the DesignWare APB I2C Interface Peripheral, referred to as DW_apb_i2c. The
DW_apb_i2c component is an AMBA 2.0-compliant Advanced Peripheral Bus (APB) slave device and is
part of the family of DesignWare Synthesizable Components.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

20 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Product Overview DesignWare DW_apb_i2c Databook

Figure 1-1 Example of DW_apb_i2c in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/DW_apb_i2s_databook.pdf
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/DW_axi_rs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf

Synopsys, Inc. 21SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Product Overview

You can connect, configure, synthesize, and verify the DW_apb_i2c within a DesignWare subsystem using
coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_apb_i2c component,
you might prefer to use coreConsultant, documentation for which is available in the coreConsultant User
Guide.

1.2 General Product Description
The DW_apb_i2c is a configurable, synthesizable, and programmable control bus that provides support for
the communications link between integrated circuits in a system. It is a simple two-wire bus with a
software-defined protocol for system control, which is used in temperature sensors and voltage level
translators to EEPROMs, general-purpose I/O, A/D and D/A converters, CODECs, and many types of
microprocessors.

1.2.1 DW_apb_i2c Block Diagram

Figure 1-2 illustrates a simple block diagram of DW_apb_i2c. For a more detailed block diagram and
description of the component, see “Functional Description” on page 25.

Figure 1-2 Block Diagram of DW_apb_i2c

.

DW_apb_i2c

Master State
Machine

Slave State
Machine

Register
File

AMBA Bus
Interface Unit

Clock
Generator

Rx
Shift

Tx
Shift

Rx
Filter

Toggle Synchronizer DMA Interface
Interrupt

Controller

RX
FIFO

TX
FIFO

https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title

22 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Product Overview DesignWare DW_apb_i2c Databook

1.3 Features
DW_apb_i2c has the following features:

1.3.1 I2C Features

■ Two-wire I2C serial interface – consists of a serial data line (SDA) and a serial clock (SCL)

■ Three speeds:

❑ Standard mode (0 to 100 Kb/s)

❑ Fast mode (≤ 400 Kb/s) or fast mode plus (≤ 1000 Κb/s)1

❑ High-speed mode (≤ 3.4 Mb/s)

■ Clock synchronization

■ Master OR slave I2C operation

■ 7- or 10-bit addressing

■ 7- or 10-bit combined format transfers

■ Bulk transmit mode

■ Ignores CBUS addresses (an older ancestor of I2C that used to share the I2C bus)

■ Transmit and receive buffers

■ Interrupt or polled-mode operation

■ Handles Bit and Byte waiting at all bus speeds

■ Simple software interface consistent with DesignWare APB peripherals

■ Component parameters for configurable software driver support

■ DMA handshaking interface compatible with the DW_ahb_dmac handshaking interface

■ Programmable SDA hold time (tHD;DAT)

■ Bus clear feature

■ Device ID feature

■ SMBus/PMBus support

■ SMBus Slave detects and responds to ARP commands.

■ Ultra-Fast mode support

■ UDID feature support

The DW_apb_i2c requires external hardware components as support in order to be compliant in an I2C
system. The descriptions are detailed later in this document.

1. In this document, references to fast mode also apply to fast mode plus, unless specifically stated otherwise.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Product Overview

It must also be noted that the DW_apb_i2c should only be operated either as (but not both):

■ A master in an I2C system and programmed only as a Master; OR

■ A slave in an I2C system and programmed only as a Slave.

1.3.2 DesignWare APB Slave Interface

■ Support for APB data bus widths of 8, 16, and 32 bits

■ Source code for this component is available on a per-project basis as a DesignWare Core; contact your
local sales office for the details.

1.4 Standards Compliance
The DW_apb_i2c component conforms to the AMBA Specification, Revision 2.0 from Arm®. Readers are
assumed to be familiar with this specification.

The DW_apb_i2c is designed for the following specifications:

■ I2C Bus Specification, Version 6.0, dated April 2014

■ SMBus specification Version 3.0, dated January 2015

■ PMBus Specification Version 1.2, dated September 2010

1.5 Verification Environment Overview
The DW_apb_i2c includes an extensive verification environment, which sets up and invokes your selected
simulation tool to execute tests that verify the functionality of the configured component. You can then
analyze the results of the simulation.

The “Verification” on page 317 chapter discusses the specific procedures for verifying the DW_apb_i2c.

1.6 Licenses
Before you begin using the DW_apb_i2c, you must have a valid license. For more information, see the
“Licenses” section in DesignWare Synthesizable Components for AMBA 2, AMBA 3 AXI, and AMBA 4 AXI
Installation Guide.

1.7 Where To Go From Here
At this point, you may want to get started working with the DW_apb_i2c component within a subsystem or
by itself. Synopsys provides several tools within its coreTools suite of products for the purposes of
configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

For more information about configuring, synthesizing, and verifying just your DW_apb_i2c component, see
“Overview of the coreConsultant Configuration and Integration Process” in DesignWare Synthesizable
Components for AMBA 2 User Guide.

For more information about implementing your DW_apb_i2c component within a DesignWare subsystem
using coreAssembler, see “Overview of the coreAssembler Configuration and Integration Process” in
DesignWare Synthesizable Components for AMBA 2 User Guide.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf

24 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Product Overview DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

2
Functional Description

This chapter describes the functional behavior of DW_apb_i2c in more detail. Following topics are covered
in tis chapter:

■ “Overview” on page 26

■ “I2C Terminology” on page 28

■ “I2C Behavior” on page 30

■ “I2C Protocols” on page 31

■ “Tx FIFO Management and START, STOP and RESTART Generation” on page 36

■ “Multiple Master Arbitration” on page 41

■ “Clock Synchronization” on page 43

■ “Operation Modes” on page 43

■ “Spike Suppression” on page 51

■ “Fast Mode Plus Operation” on page 53

■ “Bus Clear Feature” on page 53

■ “Device ID” on page 54

■ “Ultra-Fast Speed Mode” on page 55“SMBus/PMBus” on page 56

■ “IC_CLK Frequency Configuration” on page 66

■ “SDA Hold Time” on page 77

■ “DMA Controller Interface” on page 80

■ “APB Interface” on page 90

■ “I/O Connections” on page 91

■ “DW_apb_i2c Registers” on page 92

■ “UDID Feature” on page 94

https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.1 Overview
The I2C bus is a two-wire serial interface, consisting of a serial data line (SDA) and a serial clock (SCL).
These wires carry information between the devices connected to the bus. Each device is recognized by a
unique address and can operate as either a “transmitter” or “receiver,” depending on the function of the
device. Devices can also be considered as masters or slaves when performing data transfers. A master is a
device that initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that
time, any device addressed is considered a slave.

The DW_apb_i2c module can operate in standard mode (with data rates 0 to 100 Kb/s), fast mode (with
data rates less than or equal to 400 Kb/s), fast mode plus (with data rates less than or equal to 1000 Kb/s),
high speed mode (with data rates less than or equal to 3.4 Mb/s), and Ultra-Fast Speed Mode (with data
rates less than or equal to 5 Mb/s).

The DW_apb_i2c can communicate with devices only of these modes as long as they are attached to the bus.
Additionally, high speed mode and fast mode devices are downward compatible. For instance, high speed
mode devices can communicate with fast mode and standard mode devices in a mixed-speed bus system;
fast mode devices can communicate with standard mode devices in 0 to 100 Kb/s I2C bus system. However:

1. Standard mode devices are not upward compatible and should not be incorporated in a fast-mode
I2C bus system as they cannot follow the higher transfer rate and unpredictable states would occur.

2. Ultra-Fast mode devices are not downward compatible and should not be incorporated in traditional
I2C speeds (High Speed, Fast/Fast Mode Plus speed, Standard mode speed) as Ultra-Fast mode
follows the higher transfer rate (up to 5Mb/s) with only write transfers and there is no
acknowledgment from the slave.

An example of high speed mode devices are LCD displays, high-bit count ADCs, and high capacity
EEPROMs. These devices typically need to transfer large amounts of data. Most maintenance and control
applications, the common use for the I²C bus, typically operate at 100 kHz (in standard and fast modes).

An example of Ultra-Fast speed mode devices are LED controllers and other devices that do not need
feedback. These devices typically need to transfer large amounts of data greater than 1Mhz.

Any DW_apb_i2c device can be attached to an I²C-bus and every device can talk with any master, passing
information back and forth. There needs to be at least one master (such as a microcontroller or DSP) on the
bus but there can be multiple masters, which require them to arbitrate for ownership. Multiple masters and
arbitration are explained later in this chapter.

The DW_apb_i2c also supports SMBus and PMBus protocols for System Management and Power
management.

NoteNoteNoteNote The DW_apb_i2c must only be programmed to operate in either master OR slave mode only.
Operating as a master and slave simultaneously is not supported.

NoteNoteNoteNote In this document, references to fast mode also apply to fast mode plus, unless specifically
stated otherwise.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

The DW_apb_i2c is made up of an AMBA APB slave interface, an I2C interface, and FIFO logic to maintain
coherency between the two interfaces. A simplified block diagram of the component is illustrated in
Figure 2-1.

Figure 2-1 DW_apb_i2c Block Diagram

The following define the file names and functions of the blocks in Figure 2-1:

■ AMBA Bus Interface Unit—DW_apb_i2c_biu.v—Takes the APB interface signals and translates them
into a common generic interface that allows the register file to be bus protocol-agnostic.

■ Register File—DW_apb_i2c_regfile—Contains configuration registers and is the interface with
software.

■ Slave State Machine—DW_apb_i2c_slvfsm—Follows the protocol for a slave and monitors bus for
address match.

■ Master State Machine—DW_apb_i2c_mstfsm—Generates the I2C protocol for the master transfers.

■ Clock Generator—DW_apb_i2c_clk_gen.v—Calculates the required timing to do the following:

❑ Generate the SCL clock when configured as a master

❑ Check for bus idle

❑ Generate a START and a STOP

❑ Setup the data and hold the data

NoteNoteNoteNote In this databook, any reference to SMBus implicitly refers to PMBus also and vice versa.

DW_apb_i2c

Master State
Machine

Slave State
Machine

Register
File

AMBA Bus
Interface Unit

Clock
Generator

Rx
Shift

Tx
Shift

Rx
Filter

Toggle Synchronizer DMA Interface
Interrupt

Controller

RX
FIFO

TX
FIFO

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

■ Rx Shift—DW_apb_i2c_rx_shift—Takes data into the design and extracts it in byte format.

■ Tx Shift—DW_apb_i2c_tx_shift—Presents data supplied by CPU for transfer on the I2C bus.

■ Rx Filter—DW_apb_i2c_rx_filter—Detects the events in the bus; for example, start, stop and
arbitration lost.

■ Toggle—DW_apb_i2c_toggle—Generates pulses on both sides and toggles to transfer signals across
clock domains.

■ Synchronizer—DW_apb_i2c_sync—Transfers signals from one clock domain to another.

■ DMA Interface—DW_apb_i2c_dma—Generates the handshaking signals to the central DMA
controller in order to automate the data transfer without CPU intervention.

■ Interrupt Controller—DW_apb_i2c_intctl—Generates the raw interrupt and interrupt flags, allowing
them to be set and cleared.

■ RX FIFO/TX FIFO—DW_apb_i2c_fifo—Holds the RX FIFO and TX FIFO register banks and
controllers, along with their status levels.

2.2 I2C Terminology
The following terms are used throughout this manual and are defined as follows:

2.2.1 I2C Bus Terms

The following terms relate to how the role of the I2C device and how it interacts with other I2C devices on
the bus.

■ Transmitter – the device that sends data to the bus. A transmitter can either be a device that initiates
the data transmission to the bus (a master-transmitter) or responds to a request from the master to
send data to the bus (a slave-transmitter).

NoteNoteNoteNote If PCLK and IC_CLK are asynchronous (IC_CLK_TYPE=ASYNC) then the following condition
must be met for DW_apb_i2c to function properly:

■ When IC_HAS_ASYNC_FIFO = 0,

(SCL_LOW_COUNT*ic_clk_period) > (3*pclk_period + 3*ic_clk_period)))

Where,
SCL_LOW_COUNT Specifies the low count value in terms of ic_clk for the respective
speed mode.

■ When IC_HAS_ASYNC_FIFO = 1,

pclk_period < (9 * scl_period)/2

Where,
pclk_period Specifies the clock period of the application clock.
scl_period Specifies the SCL period.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

■ Receiver – the device that receives data from the bus. A receiver can either be a device that receives
data on its own request (a master-receiver) or in response to a request from the master (a slave-receiver).

■ Master -– the component that initializes a transfer (START command), generates the clock (SCL)
signal and terminates the transfer (STOP command). A master can be either a transmitter or a
receiver.

■ Slave – the device addressed by the master. A slave can be either receiver or transmitter.

These concepts are illustrated in Figure 2-2.

Figure 2-2 Master/Slave and Transmitter/Receiver Relationships

■ Multi-master – the ability for more than one master to co-exist on the bus at the same time without
collision or data loss.

■ Arbitration – the predefined procedure that authorizes only one master at a time to take control of
the bus. For more information about this behavior, see “Multiple Master Arbitration” on page 41.

■ Synchronization – the predefined procedure that synchronizes the clock signals provided by two or
more masters. For more information about this feature, see “Clock Synchronization” on page 43.

■ SDA – data signal line (Serial DAta)

■ SCL – clock signal line (Serial CLock)

2.2.2 Bus Transfer Terms

The following terms are specific to data transfers that occur to/from the I2C bus.

■ START (RESTART) – data transfer begins with a START or RESTART condition. The level of the
SDA data line changes from high to low, while the SCL clock line remains high. When this occurs, the
bus becomes busy.

■ STOP – data transfer is terminated by a STOP condition. This occurs when the level on the SDA data
line passes from the low state to the high state, while the SCL clock line remains high. When the data
transfer has been terminated, the bus is free or idle once again. The bus stays busy if a RESTART is
generated instead of a STOP condition.

NoteNoteNoteNote START and RESTART conditions are functionally identical.

Transmitter

Receiver

Receiver

Transmitter

Master

Master

Slave

Slave

SDA

SCL

SDA

SCL

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.3 I2C Behavior
The DW_apb_i2c can be controlled through software to be either:

■ An I2C master only, communicating with other I2C slaves; OR

■ An I2C slave only, communicating with one more I2C masters.

The master is responsible for generating the clock and controlling the transfer of data. The slave is
responsible for either transmitting or receiving data to/from the master. The acknowledgement of data is
sent by the device that is receiving data, which can be either a master or a slave. As mentioned previously,
the I2C protocol also allows multiple masters to reside on the I2C bus and uses an arbitration procedure to
determine bus ownership.

Each slave has a unique address that is determined by the system designer. When a master wants to
communicate with a slave, the master transmits a START/RESTART condition that is then followed by the
slave’s address and a control bit (R/W) to determine if the master wants to transmit data or receive data
from the slave. The slave then sends an acknowledge (ACK) pulse after the address.

If the master (master-transmitter) is writing to the slave (slave-receiver), the receiver gets one byte of data.
This transaction continues until the master terminates the transmission with a STOP condition. If the master
is reading from a slave (master-receiver), the slave transmits (slave-transmitter) a byte of data to the master,
and the master then acknowledges the transaction with the ACK pulse. This transaction continues until the
master terminates the transmission by not acknowledging (NACK) the transaction after the last byte is
received, and then the master issues a STOP condition or addresses another slave after issuing a RESTART
condition. This behavior is illustrated in Figure 2-3.

In Ultra-Fast Speed Mode, the master can issue only the write transfers to the slaves with always not
acknowledging (NACK) from the slaves. Read transfers are not allowed in this mode.

Figure 2-3 Data transfer on the I2C Bus

The DW_apb_i2c is a synchronous serial interface. The SDA line is a bidirectional signal and changes only
while the SCL line is low, except for STOP, START, and RESTART conditions. The output drivers are
open-drain or open-collector to perform wire-AND functions on the bus. The maximum number of devices
on the bus is limited by only the maximum capacitance specification of 400 pF. Data is transmitted in byte
packages.

The I2C protocols implemented in DW_apb_i2c are described in more details in “I2C Protocols” on page 31.

2.3.1 START and STOP Generation

When operating as an I2C master, putting data into the transmit FIFO causes the DW_apb_i2c to generate a
START condition on the I2C bus. If the IC_EMPTYFIFO_HOLD_MASTER_EN parameteris set to 0,

MSB LSB ACKACK

1 2 7 8 9 1 2 3-8 9

from slave from receiver
SDA

SCL

P or R

START or
RESTART
Condition

STOP AND
RESTART
Condition

Byte Complete
Interrupt within
Slave

SCL held low
while servicing
interrupts

S
or
R

R or P

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

allowing the transmit FIFO to empty causes the DW_apb_i2c to generate a STOP condition on the I2C bus. If
IC_EMPTYFIFO_HOLD_MASTER_EN is set to 1, then writing a 1 to IC_DATA_CMD[9] causes the
DW_apb_i2c to generate a STOP condition on the I2C bus; a STOP condition is not issued if this bit is not set,
even if the transmit FIFO is empty.

When operating as a slave, the DW_apb_i2c does not generate START and STOP conditions, as per the
protocol. However, if a read request is made to the DW_apb_i2c, it holds the SCL line low until read data
has been supplied to it. This stalls the I2C bus until read data is provided to the slave DW_apb_i2c, or the
DW_apb_i2c slave is disabled by writing a 0 to bit 0 of the IC_ENABLE register.

2.3.2 Combined Formats

The DW_apb_i2c supports mixed read and write combined format transactions in both 7-bit and 10-bit
addressing modes.

The DW_apb_i2c does not support mixed address and mixed address format—that is, a 7-bit address
transaction followed by a 10-bit address transaction or vice versa—combined format transactions.

To initiate combined format transfers, IC_CON.IC_RESTART_EN should be set to 1. With this value set and
operating as a master, when the DW_apb_i2c completes an I2C transfer, it checks the transmit FIFO and
executes the next transfer. If the direction of this transfer differs from the previous transfer, the combined
format is used to issue the transfer. If the transmit FIFO is empty when the current I2C transfer completes—
depending on the value of IC_EMPTYFIFO_HOLD_MASTER_EN:

■ Either a STOP is issued or,

■ IC_DATA_CMD[9] is checked and:

❑ If set to 1, a STOP bit is issued.

❑ If set to 0, the SCL is held low until the next command is written to the transmit FIFO.

For more details, see “Tx FIFO Management and START, STOP and RESTART Generation” on page 36.

2.4 I2C Protocols
The DW_apb_i2c has the protocols discussed in this section.

2.4.1 START and STOP Conditions

When the bus is idle, both the SCL and SDA signals are pulled high through external pull-up resistors on
the bus. When the master wants to start a transmission on the bus, the master issues a START condition.
This is defined to be a high-to-low transition of the SDA signal while SCL is 1. When the master wants to
terminate the transmission, the master issues a STOP condition. This is defined to be a low-to-high
transition of the SDA line while SCL is 1. Figure 2-4 shows the timing of the START and STOP conditions.
When data is being transmitted on the bus, the SDA line must be stable when SCL is 1.

NoteNoteNoteNote Mixed write and read transactions in both 7-bit and 10-bit addressing modes are not
applicable for Ultra-Fast Mode (IC_ULTRA_FAST_MODE=1) as read transfers are not
supported in Ultra-Fast Mode.

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Figure 2-4 START and STOP Condition

2.4.2 Addressing Slave Protocol

There are two address formats: the 7-bit address format and the 10-bit address format.

2.4.2.1 7-bit Address Format

During the 7-bit address format, the first seven bits (bits 7:1) of the first byte set the slave address and the
LSB bit (bit 0) is the R/W bit as shown in Figure 2-5. When bit 0 (R/W) is set to 0, the master writes to the
slave. When bit 0 (R/W) is set to 1, the master reads from the slave.

Figure 2-5 7-bit Address Format

2.4.2.2 10-bit Address Format

During 10-bit addressing, two bytes are transferred to set the 10-bit address. The transfer of the first byte
contains the following bit definition. The first five bits (bits 7:3) notify the slaves that this is a 10-bit transfer
followed by the next two bits (bits 2:1), which set the slaves address bits 9:8, and the LSB bit (bit 0) is the

NoteNoteNoteNote The signal transitions for the START/STOP conditions, as depicted in Figure 2-4, reflect those
observed at the output signals of the Master driving the I2C bus. Care should be taken when
observing the SDA/SCL signals at the input signals of the Slave(s), because unequal line
delays may result in an incorrect SDA/SCL timing relationship.

SDA

SCL
PS

Start Condition
Change of Data

Allowed
Change of Data

Allowed Stop Condition
Data line Stable

Data Valid

S A6 A5 A4 A3 A2 A1 A0 R/W ACK

Slave Address
sent by slave

S = START condition R/W = Read/Write PulseACK = Acknowledge

MSB LSB

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

R/W bit. The second byte transferred sets bits 7:0 of the slave address. Figure 2-6 shows the 10-bit address
format.

Figure 2-6 10-bit Address Format

Table 2-1 defines the special purpose and reserved first byte addresses.

Table 2-1 I2C/SMBus Definition of Bits in First Byte

DW_apb_i2c does not restrict you from using these reserved addresses. However, if you use these reserved
addresses, you may run into incompatibilities with other I2C components.

2.4.3 Transmitting and Receiving Protocol

The master can initiate data transmission and reception to/from the bus, acting as either a
master-transmitter or master-receiver. A slave responds to requests from the master to either transmit data
or receive data to/from the bus, acting as either a slave-transmitter or slave-receiver, respectively.

Slave Address R/W Bit Description

0000 000 0 General Call Address. DW_apb_i2c places the data in the receive buffer and issues a
General Call interrupt.

0000 000 1 START byte. For more details, see “START BYTE Transfer Protocol” on page 35.

0000 001 X CBUS address. DW_apb_i2c ignores these accesses.

0000 010 X Reserved.

0000 011 X Reserved.

0000 1XX X High-speed master code (for more information, see “Multiple Master Arbitration” on
page 41).

1111 1XX X Reserved.

1111 0XX X 10-bit slave addressing.

0001 000 X SMbus Host

0001 100 X SMBus Alert Response Address

1100 001 X SMBus Device Default Address

S A6 A5 A4 A3 A2 A1 A0R/W ACK

Reserved for 10-bit sent by slave

S = START condition

R/W = Read/Write Pulse

ACK = Acknowledge

A7ACKA9‘1’ ‘1’ ‘1’ ‘1’ ‘0’ A8

Address

sent by slave

https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.4.3.1 Master-Transmitter and Slave-Receiver

All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer.
After the master sends the address and R/W bit or the master transmits a byte of data to the slave, the
slave-receiver must respond with the acknowledge signal (ACK). When a slave-receiver does not respond
with an ACK pulse, the master aborts the transfer by issuing a STOP condition. The slave must leave the
SDA line high so that the master can abort the transfer.

If the master-transmitter is transmitting data as shown in Figure 2-7, then the slave-receiver responds to the
master-transmitter with an acknowledge pulse after every byte of data is received.

Figure 2-7 Master-Transmitter Protocol

2.4.3.2 Master-Receiver and Slave-Transmitter

If the master is receiving data as shown in Figure 2-8, then the master responds to the slave-transmitter with
an acknowledge pulse after a byte of data has been received, except for the last byte. This is the way the

NoteNoteNoteNote In Ultra-Fast Mode, the slave-receiver always responds with the No Acknowledge signal
(NACK) for the Address and the write data from the Master.

S A/A PR/W

For 7-bit Address

A DATASlave Address A DATA

‘0’ (write)
S A/A PR/W

For 10-bit Address

ASlave Address

‘0’ (write)

First 7 bits
Slave Address
Second Byte

A DATA

From Master to Slave

From Slave to Master

A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = START Condition
P = STOP Condition

‘0’ (write)‘11110xxx’

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

master-receiver notifies the slave-transmitter that this is the last byte. The slave-transmitter relinquishes the
SDA line after detecting the No Acknowledge (NACK) so that the master can issue a STOP condition.

Figure 2-8 Master-Receiver Protocol

When a master does not want to relinquish the bus with a STOP condition, the master can issue a RESTART
condition. This is identical to a START condition except it occurs after the ACK pulse. Operating in master
mode, the DW_apb_i2c can then communicate with the same slave using a transfer of a different direction.
For a description of the combined format transactions that the DW_apb_i2c supports, see “Combined
Formats” on page 31.

2.4.4 START BYTE Transfer Protocol

The START BYTE transfer protocol is set up for systems that do not have an on-board dedicated I2C
hardware module. When the DW_apb_i2c is addressed as a slave, it always samples the I2C bus at the
highest speed supported so that it never requires a START BYTE transfer. However, when DW_apb_i2c is a
master, it supports the generation of START BYTE transfers at the beginning of every transfer in case a slave
device requires it.

NoteNoteNoteNote The DW_apb_i2c must be completely disabled—if I2C_DYNAMIC_TAR_UPDATE = 0—or
inactive on the serial port—if I2C_DYNAMIC_TAR_UPDATE = 1—before the target slave
address register (IC_TAR) can be reprogrammed.

NoteNoteNoteNote The DW_apb_i2c must be completely disabled—if I2C_DYNAMIC_TAR_UPDATE = 0—or
inactive on the serial port—if I2C_DYNAMIC_TAR_UPDATE = 1—before the target slave
address register (IC_TAR) can be reprogrammed.

S A PR/W

For 7-bit Address

A DATASlave Address A DATA

‘0’ (write)
S R/W

For 10-bit Address

ASlave Address

‘1’ (read)

First 7 bits
Slave Address
Second Byte

A DATA

From Master to Slave

From Slave to Master

A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = START Condition

P = STOP Condition

Sr Slave Address
First 7 bits

R/W A A P

R = RESTART Condition

‘0’ (write) ‘1’ (read)‘11110xxx’ ‘11110xxx’

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

This protocol consists of seven zeros being transmitted followed by a 1, as illustrated in Figure 2-9. This
allows the processor that is polling the bus to under-sample the address phase until 0 is detected. Once the
microcontroller detects a 0, it switches from the under sampling rate to the correct rate of the master.

Figure 2-9 START BYTE Transfer

The START BYTE procedure is as follows:

1. Master generates a START condition.

2. Master transmits the START byte (0000 0001).

3. Master transmits the ACK clock pulse. (Present only to conform with the byte handling format used
on the bus)

4. No slave sets the ACK signal to 0.

5. Master generates a RESTART (R) condition.

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets after
the RESTART condition is generated.

2.5 Tx FIFO Management and START, STOP and RESTART Generation
When operating as a master, the DW_apb_i2c component supports two modes of Tx FIFO management.
You use the IC_EMPTYFIFO_HOLD_MASTER_EN parameter to select between these two modes:

■ IC_EMPTYFIFO_HOLD_MASTER_EN equals 0, illustrated in Figure 2-10

■ IC_EMPTYFIFO_HOLD_MASTER_EN equals 1, illustrated in Figure 2-13

2.5.1 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 0

When the value of IC_EMPTYFIFO_HOLD_MASTER_EN is 0, the component generates a STOP on the bus
whenever the Tx FIFO becomes empty. If RESTART generation capability is enabled, the component
generates a RESTART when the direction of the transfer in the Tx FIFO commands changes from Read to
Write or vice-versa; if RESTART is not enabled, a STOP followed by a START is generated in this situation.

SDA

SCL

SrS

start byte 00000001

dummy
acknowledge

1 2 7 8 9

(HIGH)

ACK

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

Figure 2-10 shows the bits in the IC_DATA_CMD register if IC_EMPTYFIFO_HOLD_MASTER_EN = 0.

Figure 2-10 IC_DATA_CMD Register if IC_EMPTYFIFO_HOLD_MASTER_EN = 0

Figure 2-11 shows a timing diagram that illustrates the behavior of the DW_apb_i2c when Tx FIFO becomes
empty while operating as a master transmitter when IC_EMPTYFIFO_HOLD_MASTER_EN=0.

Figure 2-11 Master Transmitter — Tx FIFO Becomes Empty If IC_EMPTYFIFO_HOLD_MASTER_EN = 0

Figure 2-12 shows a timing diagram that illustrates the behavior of the DW_apb_i2c when Tx FIFO becomes
empty while operating as a master receiver when IC_EMPTYFIFO_HOLD_MASTER_EN=0.

Figure 2-12 Master Receiver — Tx FIFO Becomes Empty If IC_EMPTYFIFO_HOLD_MASTER_EN = 0

NoteNoteNoteNote When IC_EMPTYFIFO_HOLD_MASTER_EN = 0, if the TX_EMPTY_CTRL bit of the IC_CON
register is set to 1 and the transmit threshold (TX_THLD) is set to 0, then one I2C frame
(consisting of multiple commands) always breaks into multiple frames based on the number of
commands in each frame. This is because DW_apb_i2c issues a TX_EMPTY interrupt after
the end of each data (TX_EMPTY_CTRL=1) is sent on the line and the data (TX_THLD=0) is
pushed based on TX_EMPTY interrupt.

CMD DATA

8 7 0

IC_DATA_CMD

DATA –Read/Write field; data retrieved from slave is read from this
field; data to be sent to slave is written to this field.
CMD –Write-only field; this bit determines whether transfer to be
carried out is Read (CMD=1) or Write (CMD=0)

SDA

SCL

FIFO_EMPTY

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

Last byte popped
from Tx FIFO

Empty Tx FIFO triggers
STOP condition on bus

S P

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

SDA

SCL

FIFO_EMPTY

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

Last command popped
from Tx FIFO

Empty Tx FIFO triggers
STOP condition on bus

S P

R Ack Ack NakA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.5.2 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 1

When the value of IC_EMPTYFIFO_HOLD_MASTER_EN is 1, the component does not generate a STOP if
the Tx FIFO becomes empty; in this situation the component holds the SCL line low, stalling the bus until a
new entry is available in the Tx FIFO. A STOP condition is generated only when you specifically request it
by setting bit 9 (Stop bit) of the command written to IC_DATA_CMD register.

Figure 2-13 shows the bits in the IC_DATA_CMD register if IC_EMPTYFIFO_HOLD_MASTER_EN = 1.

Figure 2-13 IC_DATA_CMD Register if IC_EMPTYFIFO_HOLD_MASTER_EN = 1

Figure 2-14 illustrates the behavior of the DW_apb_i2c when the Tx FIFO becomes empty while operating as
a master transmitter, as well as showing the generation of a STOP condition when
IC_EMPTYFIFO_HOLD_MASTER_EN=1.

Figure 2-14 Master Transmitter — Tx FIFO Empties/STOP Generation If IC_EMPTYFIFO_HOLD_MASTER_EN = 1

Restart DATA

8 7 0

IC_DATA_CMD

DATA –Read/Write field; data retrieved from slave is read from this
field; data to be sent to slave is written to this field
CMD –Write-only field; this bit determines whether transfer to be
carried out is Read (CMD=1) or Write (CMD=0)
Stop –Write-only field; this bit determines whether STOP is generated
after data byte is sent or received
Restart – Write-only field; this bit determines whether RESTART (or
STOP followed by START in case of restart capability is not enabled)
is generated before data byte is sent of received

Stop CMD

10 9

SDA

SCL

FIFO_

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

STOP bit enabled triggers
STOP condition on bus

S

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

P

AckD6 D5 D4 D3 D2 D1 D0D7

…

…
…

Last byte popped from Tx
FIFO, with STOP bit not set

Master releases SCL line and
resumes transmission because
new data became available

Last byte popped from Tx
FIFO with STOP bit set

Tx FIFO loaded
with new data

Because STOP bit is not set
on last byte popped from Tx
FIFO, Master holds SCL low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

Figure 2-15 illustrates the behavior of the DW_apb_i2c when the Tx FIFO becomes empty while operating as
a master receiver, as well as showing the generation of a STOP condition when
IC_EMPTYFIFO_HOLD_MASTER_EN=1.

Figure 2-15 Master Receiver — Tx FIFO Empties/STOP Generation If IC_EMPTYFIFO_HOLD_MASTER_EN = 1

Figure 2-16 and Figure 2-17 illustrate configurations where you can control the generation of RESTART
conditions on the I2C bus. If bit 10 (Restart) of the IC_DATA_CMD register is set and the restart capability is
enabled (IC_RESTART_EN=1), a RESTART is generated before the data byte is written to or read from the
slave. If the restart capability is not enabled a STOP followed by a START is generated in place of the
RESTART. Figure 2-16 illustrates this situation during operation as a master transmitter.

Figure 2-16 Master Transmitter — Restart Bit of IC_DATA_CMD Is Set (IC_EMPTYFIFO_HOLD_MASTER_EN = 1)

SDA

SCL

FIFO_

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

STOP bit enabled triggers
STOP condition on bus

S

R Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

P
NakD6 D5 D4 D3 D2 D1 D0D7

…

…
…

Last command popped from
Tx FIFO, with STOP bit not set

Master releases SCL line and
resumes transmission because
new command became available

Last command popped from
Tx FIFO with STOP bit set

Tx FIFO loaded
with new command

Because STOP bit is not set
on last command popped from
Tx FIFO, Master holds SCL low

SDA

SCL

FIFO_

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

S

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

SR

AckA6 A5 A4 A3 A2 A1 A0

Next byte in Tx FIFO
has RESTART bit set

Because next byte on Tx FIFO
has been tagged with RESTART bit,
Master issues RESTART and

D6D7 …W

…

initiates new transmission

…

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Figure 2-17 illustrates the same situation, but during operation as a master receiver.

Figure 2-17 Master Receiver — Restart Bit of IC_DATA_CMD Is Set (IC_EMPTYFIFO_HOLD_MASTER_EN = 1)

Figure 2-18 illustrates operation as a master transmitter where the Stop bit of the IC_DATA_CMD register is
set and the Tx FIFO is not empty (IC_EMPTYFIFO_HOLD_MASTER_EN=1).

Figure 2-18 Master Transmitter — Stop Bit of IC_DATA_CMD Set/Tx FIFO Not Empty
(IC_EMPTYFIFO_HOLD_MASTER_EN=1)

Figure 2-19 illustrates operation as a master transmitter where the first byte loaded into the Tx FIFO is
allowed to go empty with the Restart bit set (IC_EMPTYFIFO_HOLD_MASTER_EN=1).

Figure 2-19 Master Transmitter — First Byte Loaded Into Tx FIFO Allowed to Empty, Restart Bit Set
(IC_EMPTYFIFO_HOLD_MASTER_EN=1)

SDA

SCL

FIFO_

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

S

R Ack Ack NakA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

SR

AckA6 A5 A4 A3 A2 A1 A0

Next command in Tx FIFO
has RESTART bit set

Because next command on Tx FIFO
has been tagged with RESTART bit,
Master issues RESTART and

D6D7 …R

…

initiates new transmission

…

Master issues NOT ACK
as required before RESTART
when operating as receiver

SDA

SCL

FIFO_

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

S

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

S

AckA6 A5 A4 A3 A2 A1 A0

Because more data is available
in Tx FIFO, a new transmission is
immediately initiated (provided

D6D7 …W

…

master is granted access to bus)

…

Because STOP bit is set on
last byte popped from Tx FIFO,
Master generates STOP conditionOne byte (not last one)

is popped from Tx FIFO
with STOP bit set

P

SDA

SCL

FIFO_

Tx FIFO loaded with data
(write data in this example)

Data availability triggers
START condition on bus

S

W Ack Ack AckA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

SR

AckA6 A5 A4 A3 A2 A1 A0

Master issues RESTART
and initiates new

D6D7 …W

…

…

Because STOP bit

popped from Tx FIFO,
Master holds SCL low

Last byte popped
from Tx FIFO with
STOP bit not set

…
…

…

Tx FIFO loaded
with new data

is not set on last byte

transmission

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

Figure 2-20 illustrates operation as a master receiver where the Stop bit of the IC_DATA_CMD register is set
and the Tx FIFO is not empty (IC_EMPTYFIFO_HOLD_MASTER_EN=1).

Figure 2-20 Master Receiver — Stop Bit of IC_DATA_CMD Set/Tx FIFO Not Empty
(IC_EMPTYFIFO_HOLD_MASTER_EN=1 and IC_ULTRA_FAST_MODE=0)

Figure 2-21 illustrates operation as a master receiver where the first command loaded after the Tx FIFO is
allowed to empty and the Restart bit is set (IC_EMPTYFIFO_HOLD_MASTER_EN=1).

Figure 2-21 Master Receiver — First Command Loaded After Tx FIFO Allowed to Empty/Restart Bit Set
(IC_EMPTYFIFO_HOLD_MASTER_EN=1 and IC_ULTRA_FAST_MODE=0)

2.6 Multiple Master Arbitration
The DW_apb_i2c bus protocol allows multiple masters to reside on the same bus. If there are two masters on
the same I²C-bus, there is an arbitration procedure if both try to take control of the bus at the same time by
generating a START condition at the same time. Once a master (for example, a microcontroller) has control
of the bus, no other master can take control until the first master sends a STOP condition and places the bus
in an idle state.

Arbitration takes place on the SDA line, while the SCL line is 1. The master, which transmits a 1 while the
other master transmits 0, loses arbitration and turns off its data output stage. The master that lost arbitration
can continue to generate clocks until the end of the byte transfer. If both masters are addressing the same
slave device, the arbitration could go into the data phase.

SDA

SCL

FIFO_

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

S

R Ack Ack NakA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

S

AckA6 A5 A4 A3 A2 A1 A0

One command (not last
one) is popped from

Because more commands are
available in Tx FIFO, a new
transmission is immediately

D6D7 …R

…

initiated (provided master is

…

P

Tx FIFO with STOP
bit set

Because STOP bit is

popped from Tx FIFO,
Master generates

set on last command

STOP condition granted access to bus)

SDA

SCL

FIFO_

Tx FIFO loaded with command
(read operation in this example)

Command availability triggers
START condition on bus

S

R Ack Ack NakA6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0D7

EMPTY

SR

AckA6 A5 A4 A3 A2 A1 A0

Last command popped
from Tx FIFO with

Master issues RESTART and
initiates new transmission

D6D7 …R

…

…

STOP bit not set

Because STOP bit is

popped from Tx FIFO,
Master holds SCL low

not set on last command

…
…

…

Tx FIFO loaded
with new command

Master issues NOT ACK as
required before RESTART
when operating as receiver

Next command loaded into
Tx FIFO has RESTART bit set

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Upon detecting that it has lost arbitration to another master, the DW_apb_i2c stops generating SCL
(ic_clk_oe).

Figure 2-22 illustrates the timing of when two masters are arbitrating on the bus.

Figure 2-22 Multiple Master Arbitration

For high-speed mode, the arbitration cannot go into the data phase because each master is programmed
with a unique high-speed master code. This 8-bitcode is defined by the system designer and is set by writing
to the high speed Master Mode Code Address Register, IC_HS_MADDR. Because the codes are unique,
only one master can win arbitration, which occurs by the end of the transmission of the high-speed master
code.

Control of the bus is determined by address or master code and data sent by competing masters, so there is
no central master nor any order of priority on the bus.

Arbitration is not allowed between the following conditions:

■ A RESTART condition and a data bit

■ A STOP condition and a data bit

■ A RESTART condition and a STOP condition

Slaves are not involved in the arbitration process.

SDA lines up
with DATA1
START condition

SDA

SCL

MSB

MSB

MSB

matching data

DATA1

DATA2

DATA1 loses arbitration

‘1’

‘0’

SDA mirrors DATA2

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2.7 Clock Synchronization
When two or more masters try to transfer information on the bus at the same time, they must arbitrate and
synchronize the SCL clock. All masters generate their own clock to transfer messages. Data is valid only
during the high period of SCL clock. Clock synchronization is performed using the wired-AND connection
to the SCL signal. When the master transitions the SCL clock to 0, the master starts counting the low time of
the SCL clock and transitions the SCL clock signal to 1 at the beginning of the next clock period. However, if
another master is holding the SCL line to 0, then the master goes into a HIGH wait state until the SCL clock
line transitions to 1.

All masters then count off their high time, and the master with the shortest high time transitions the SCL
line to 0. The masters then counts out their low time and the one with the longest low time forces the other
master into a HIGH wait state. Therefore, a synchronized SCL clock is generated, which is illustrated in
Figure 2-23. Optionally, slaves may hold the SCL line low to slow down the timing on the I2C bus.

Figure 2-23 Multi-Master Clock Synchronization

2.8 Operation Modes
This section provides information on operation modes.

NoteNoteNoteNote Multi-master arbitration is not applicable in Ultra-Fast Mode (IC_ULTRA_FAST_MODE=1) as
single Master is present.

NoteNoteNoteNote Clock Synchronization is not supported in Ultra-Fast Mode (IC_ULTRA_FAST_MODE=1) as
single master is present in the Ultra-Fast Mode system.

NoteNoteNoteNote It is important to note that the DW_apb_i2c should only be set to operate as an I2C Master, or
I2C Slave, but not both simultaneously. This is achieved by ensuring that bit 6
(IC_SLAVE_DISABLE) and 0 (IC_MASTER_MODE) of the IC_CON register are never set to 0
and 1, respectively.

Wait State

Start counting HIGH period

CLKA

CLKB

SCL

SCL LOW transition
Resets all CLKs to start
counting their LOW periods

SCL transitions HIGH
when all CLKs are in HIGH state

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.8.1 Slave Mode Operation

This section discusses slave mode procedures.

2.8.1.1 Initial Configuration

To use the DW_apb_i2c as a slave, perform the following steps:

1. Disable the DW_apb_i2c by writing a ‘0’ to bit 0 of the IC_ENABLE register.

2. Write to the IC_SAR register (bits 9:0) to set the slave address. This is the address to which the
DW_apb_i2c responds.

3. Write to the IC_CON register to specify which type of addressing is supported (7- or 10-bit by setting
bit 3). Enable the DW_apb_i2c in slave-only mode by writing a ‘0’ into bit 6 (IC_SLAVE_DISABLE)
and a ‘0’ to bit 0 (MASTER_MODE).

4. Enable the DW_apb_i2c by writing a ‘1’ in bit 0 of the IC_ENABLE register.

2.8.1.2 Slave-Transmitter Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and requests data, the DW_apb_i2c
acts as a slave-transmitter and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the slave address in
the IC_SAR register of the DW_apb_i2c.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to
indicate that it is acting as a slave-transmitter.

NoteNoteNoteNote Slaves and masters do not have to be programmed with the same type of addressing 7- or 10-
bit address. For instance, a slave can be programmed with 7-bit addressing and a master with
10-bit addressing, and vice versa.

NoteNoteNoteNote Depending on the reset values chosen, steps 2 and 3 may not be necessary because the
reset values can be configured. For instance, if the device is only going to be a master, there
would be no need to set the slave address because you can configure DW_apb_i2c to have
the slave disabled after reset and to enable the master after reset. The values stored are static
and do not need to be reprogrammed if the DW_apb_i2c is disabled.

Attention
It is recommended that the DW_apb_i2c Slave be brought out of reset only when the I2C
bus is IDLE. De-asserting the reset when a transfer is ongoing on the bus causes internal
synchronization flip-flops used to synchronize SDA and SCL to toggle from a reset value
of 1 to the actual value on the bus. This can result in SDA toggling from 1 to 0 while SCL
is 1, thereby causing a false START condition to be detected by the DW_apb_i2c Slave.
This scenario can also be avoided by configuring the DW_apb_i2c with
IC_SLAVE_DISABLE = 1 and IC_MASTER_MODE = 1 so that the Slave interface is
disabled after reset. It can then be enabled by programming IC_CON[0] = 0 and
IC_CON[6] = 0 after the internal SDA and SCL have synchronized to the value on the
bus; this takes approximately 6 ic_clk cycles after reset de-assertion.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

3. The DW_apb_i2c asserts the RD_REQ interrupt (bit 5 of the IC_RAW_INTR_STAT register) and
holds the SCL line low. It is in a wait state until software responds.

If the RD_REQ interrupt has been masked, due to IC_INTR_MASK[5] register (M_RD_REQ bit field)
being set to 0, then it is recommended that a hardware and/or software timing routine be used to
instruct the CPU to perform periodic reads of the IC_RAW_INTR_STAT register.

a. Reads that indicate IC_RAW_INTR_STAT[5] (R_RD_REQ bit field) being set to 1 must be treated
as the equivalent of the RD_REQ interrupt being asserted.

b. Software must then act to satisfy the I2C transfer.

c. The timing interval used should be in the order of 10 times the fastest SCL clock period the
DW_apb_i2c can handle. For example, for 400 kb/s, the timing interval is 25us.

4. If there is any data remaining in the Tx FIFO before receiving the read request, then the DW_apb_i2c
asserts a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register) to flush the old data from
the TX FIFO.

If the TX_ABRT interrupt has been masked, due to of IC_INTR_MASK[6] register (M_TX_ABRT bit
field) being set to 0, then it is recommended that re-using the timing routine (described in the
previous step), or a similar one, be used to read the IC_RAW_INTR_STAT register.

a. Reads that indicate bit 6 (R_TX_ABRT) being set to 1 must be treated as the equivalent of the
TX_ABRT interrupt being asserted.

b. There is no further action required from software.

c. The timing interval used should be similar to that described in the previous step for the
IC_RAW_INTR_STAT[5] register.

5. Software writes to the IC_DATA_CMD register with the data to be written (by writing a ‘0’ in bit 8).

6. Software must clear the RD_REQ and TX_ABRT interrupts (bits 5 and 6, respectively) of the
IC_RAW_INTR_STAT register before proceeding.

If the RD_REQ and/or TX_ABRT interrupts have been masked, then clearing of the
IC_RAW_INTR_STAT register is already been performed when either the R_RD_REQ or
R_TX_ABRT bit has been read as 1.

7. The DW_apb_i2c releases the SCL and transmits the byte.

8. The master may hold the I2C bus by issuing a RESTART condition or release the bus by issuing a
STOP condition.

NoteNoteNoteNote The value of 10 is recommended here because this is approximately the amount of time
required for a single byte of data transferred on the I2C bus.

NoteNoteNoteNote Because the DW_apb_i2c’s Tx FIFO is forced into a flushed/reset state whenever a TX_ABRT
event occurs, it is necessary for software to release the DW_apb_i2c from this state by
reading the IC_CLR_TX_ABRT register before attempting to write into the Tx FIFO. See
register IC_RAW_INTR_STAT for more details.

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.8.1.3 Slave-Receiver Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and is sending data, the
DW_apb_i2c acts as a slave-receiver and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the DW_apb_i2c’s
slave address in the IC_SAR register.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to
indicate that the DW_apb_i2c is acting as a slave-receiver.

3. DW_apb_i2c receives the transmitted byte and places it in the receive buffer.

4. DW_apb_i2c asserts the RX_FULL interrupt (IC_RAW_INTR_STAT[2] register).

If the RX_FULL interrupt has been masked, due to setting IC_INTR_MASK[2] register to 0 or setting
IC_TX_TL to a value larger than 0, then it is recommended that a timing routine (described in
“Slave-Transmitter Operation for a Single Byte” on page 44) be implemented for periodic reads of the
IC_STATUS register. Reads of the IC_STATUS register, with bit 3 (RFNE) set at 1, must then be
treated by software as the equivalent of the RX_FULL interrupt being asserted.

5. Software may read the byte from the IC_DATA_CMD register (bits 7:0).

6. The other master device may hold the I2C bus by issuing a RESTART condition, or release the bus by
issuing a STOP condition.

2.8.1.4 Slave-Transfer Operation For Bulk Transfers

In the standard I2C protocol, all transactions are single byte transactions and the programmer responds to a
remote master read request by writing one byte into the slave’s TX FIFO. When a slave (slave-transmitter) is
issued with a read request (RD_REQ) from the remote master (master-receiver), at a minimum there should
be at least one entry placed into the slave-transmitter’s TX FIFO. DW_apb_i2c is designed to handle more
data in the TX FIFO so that subsequent read requests can take that data without raising an interrupt to get
more data. Ultimately, this eliminates the possibility of significant latencies being incurred between raising
the interrupt for data each time had there been a restriction of having only one entry placed in the TX FIFO.

NoteNoteNoteNote Slave-Transmitter Operation for a Single Byte is not applicable in Ultra-Fast Mode
as Read transfers are not supported.

NoteNoteNoteNote If the Rx FIFO is completely filled with data when a byte is pushed, and
IC_RX_FULL_HLD_BUS_EN = 0, then an overflow occurs and the DW_apb_i2c continues
with subsequent I2C transfers. Because a NACK is not generated, software must recognize
the overflow when indicated by the DW_apb_i2c (by the R_RX_OVER bit in the
IC_INTR_STAT register) and take appropriate actions to recover from lost data. Hence, there
is a real time constraint on software to service the Rx FIFO before the latter overflows, as
there is no way to re-apply pressure to the remote transmitting master. You must select a deep
enough Rx FIFO depth to satisfy the interrupt service interval of the system.
If the Rx FIFO is completely filled with data when a byte is pushed, and
IC_RX_FULL_HLD_BUS_EN = 1, then the DW_apb_i2c slave holds the I2C SCL line low until
the Rx FIFO has some space, and then continues with the next read request.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

This mode only occurs when DW_apb_i2c is acting as a slave-transmitter. If the remote master
acknowledges the data sent by the slave-transmitter and there is no data in the slave’s TX FIFO, the
DW_apb_i2c holds the I2C SCL line low while it raises the read request interrupt (RD_REQ) and waits for
data to be written into the TX FIFO before it can be sent to the remote master.

If the RD_REQ interrupt is masked, due to bit 5 (M_RD_REQ) of the IC_INTR_STAT register being set to 0,
then it is recommended that a timing routine be used to activate periodic reads of the IC_RAW_INTR_STAT
register. Reads of IC_RAW_INTR_STAT that return bit 5 (R_RD_REQ) set to 1 must be treated as the
equivalent of the RD_REQ interrupt referred to in this section. This timing routine is similar to that
described in “Slave-Transmitter Operation for a Single Byte” on page 44.

The RD_REQ interrupt is raised upon a read request, and like interrupts, must be cleared when exiting the
interrupt service handling routine (ISR). The ISR allows you to either write 1 byte or more than 1 byte into
the Tx FIFO. During the transmission of these bytes to the master, if the master acknowledges the last byte.
then the slave must raise the RD_REQ again because the master is requesting for more data.

If the programmer knows in advance that the remote master is requesting a packet of n bytes, then when
another master addresses DW_apb_i2c and requests data, the Tx FIFO could be written with n number
bytes and the remote master receives it as a continuous stream of data. For example, the DW_apb_i2c slave
continues to send data to the remote master as long as the remote master is acknowledging the data sent
and there is data available in the Tx FIFO. There is no need to hold the SCL line low or to issue RD_REQ
again.

If the remote master is to receive n bytes from the DW_apb_i2c but the programmer wrote a number of
bytes larger than n to the Tx FIFO, then when the slave finishes sending the requested n bytes, it clears the
Tx FIFO and ignores any excess bytes.

The DW_apb_i2c generates a transmit abort (TX_ABRT) event to indicate the clearing of the Tx FIFO in this
example. At the time an ACK/NACK is expected, if a NACK is received, then the remote master has all the
data it wants. At this time, a flag is raised within the slave’s state machine to clear the leftover data in the Tx
FIFO. This flag is transferred to the processor bus clock domain where the FIFO exists and the contents of
the Tx FIFO is cleared at that time.

2.8.2 Master Mode Operation

This section discusses master mode procedures.

2.8.2.1 Initial Configuration

The initial configuration procedure for Master Mode Operation depends on the configuration parameter
I2C_DYNAMIC_TAR_UPDATE. When set to “Yes” (1), the target address and address format can be
changed dynamically without having to disable DW_apb_i2c. This parameter only applies to when
DW_apb_i2c is acting as a master because the slave requires the component to be disabled before any
changes can be made to the address. For more information about this parameter, see “Parameter
Descriptions” on page 95. For more information about how this parameter affects the IC_TAR register, see
“Register Descriptions” on page 141.

NoteNoteNoteNote Slave Transmitter Operation for Bulk Transfers is not applicable in Ultra-Fast Mode
(IC_ULTRA_FAST_MODE=1) as Master Read Transfers are not supported.

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

The procedures are very similar and are only different with regard to where the IC_10BITADDR_MASTER
bit is set (either bit 4 of IC_CON register or bit 12 of IC_TAR register).

2.8.2.1.1 I2C_DYNAMIC_TAR_UPDATE = 0

To use the DW_apb_i2c as a master when the I2C_DYNAMIC_TAR_UPDATE configuration parameter is
set to “No” (0), perform the following steps:

1. Disable the DW_apb_i2c by writing 0 to bit 0 of the IC_ENABLE register.

2. Write to the IC_CON register to set the maximum speed mode supported (bits 2:1) and the desired
speed of the DW_apb_i2c master-initiated transfers, either 7-bit or 10-bit addressing (bit 4). Ensure
that bit 6 (IC_SLAVE_DISABLE) is written with a ‘1’ and bit 0 (MASTER_MODE) is written with
a ‘1’.

3. Write to the IC_TAR register the address of the I2C device to be addressed (bits 9:0). This register also
indicates whether a General Call or a START BYTE command is going to be performed by I2C.

4. Only applicable for high-speed mode transfers. Write to the IC_HS_MADDR register the desired master
code for the DW_apb_i2c. The master code is programmer-defined.

5. Enable the DW_apb_i2c by writing a 1 to bit 0 of the IC_ENABLE register.

6. Now write transfer direction and data to be sent to the IC_DATA_CMD register. If the
IC_DATA_CMD register is written before the DW_apb_i2c is enabled, the data and commands are
lost as the buffers are kept cleared when DW_apb_i2c is disabled.

This step generates the START condition and the address byte on the DW_apb_i2c. Once
DW_apb_i2c is enabled and there is data in the TX FIFO, DW_apb_i2c starts reading the data.

2.8.2.1.2 I2C_DYNAMIC_TAR_UPDATE = 1

To use the DW_apb_i2c as a master when the I2C_DYNAMIC_TAR_UPDATE configuration parameter is
set to “Yes” (1), perform the following steps:

1. Disable the DW_apb_i2c by writing 0 to bit 0 of the IC_ENABLE register.

2. Write to the IC_CON register to set the maximum speed mode supported for slave operation (bits
2:1) and to specify whether the DW_apb_i2c starts its transfers in 7/10 bit addressing mode when the
device is a slave (bit 3).

3. Write to the IC_TAR register the address of the I2C device to be addressed. It also indicates whether a
General Call or a START BYTE command is going to be performed by I2C. The desired speed of the

NoteNoteNoteNote Slaves and masters do not have to be programmed with the same type of addressing 7- or 10-
bit address. For instance, a slave can be programmed with 7-bit addressing and a master with
10-bit addressing, and vice versa.

NoteNoteNoteNote Depending on the reset values chosen, steps 2, 3, 4, and 5 may not be necessary because
the reset values can be configured. The values stored are static and do not need to be
reprogrammed if the DW_apb_i2c is disabled, with the exception of the transfer direction and
data.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

DW_apb_i2c master-initiated transfers, either 7-bit or 10-bit addressing, is controlled by the
IC_10BITADDR_MASTER bit field (bit 12).

4. Only applicable for high-speed mode transfers. Write to the IC_HS_MADDR register the desired master
code for the DW_apb_i2c. The master code is programmer-defined.

5. Enable the DW_apb_i2c by writing a 1 to bit 0 of the IC_ENABLE register.

6. Now write the transfer direction and data to be sent to the IC_DATA_CMD register. If the
IC_DATA_CMD register is written before the DW_apb_i2c is enabled, the data and commands are
lost as the buffers are kept cleared when DW_apb_i2c is not enabled.

2.8.2.2 Dynamic IC_TAR or IC_10BITADDR_MASTER Update

The DW_apb_i2c supports dynamic updating of the IC_TAR (bits 9:0) and IC_10BITADDR_MASTER (bit
12) bit fields of the IC_TAR register. In order to perform a dynamic update of the IC_TAR register, the
I2C_DYNAMIC_TAR_UPDATE configuration parameter must be set to Yes (1). You can dynamically write
to the IC_TAR register provided the software ensures that there are no other commands in the Tx FIFO that
use the existing TAR address. If the software does not ensure this, then IC_TAR should be re-programmed
only if the following conditions are met:

■ DW_apb_i2c is not enabled (IC_ENABLE[0]=0);

OR

DW_apb_i2c is enabled (IC_ENABLE[0]=1); AND
DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND
DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND
there are NO entries in the Tx FIFO (IC_STATUS[2]=1);1

You can change the TAR address dynamically without losing the bus, only if the following conditions are
met.

■ DW_apb_i2c is enabled (IC_ENABLE[0]=1); AND
IC_EMPTYFIFO_HOLD_MASTER_EN configuration parameter is set to 1; AND
DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND
there are NO entries in the Tx FIFO and the master is in HOLD state (IC_INTR_STAT[13]=1);1

NoteNoteNoteNote When a DW_apb_i2c Master is configured with IC_EMPTYFIFO_HOLD_MASTER_EN = 0,
then for multiple I2C transfers, perform additional writes to the Tx FIFO such that the Tx FIFO
does not become empty during the I2C transaction. If the Tx FIFO is completely emptied at
any stage, then further writes to the Tx FIFO results in an independent I2C transaction.

1. If the software or application is aware the DW_apb_i2c is not using the TAR address for the pending commands in the Tx
FIFO, then it is possible to update the TAR address even while the Tx FIFO has entries (IC_STATUS[2]= 0).

NoteNoteNoteNote DW_apb_i2c uses the TAR address if either of the following conditions is true:

■ The command has either RESTART or STOP bit set.

■ The direction is changed in commands with a read command following a write command or
vice versa

The updated TAR address comes into effect only when the next START or RESTART occurs
on the bus.

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.8.2.3 Master Transmit and Master Receive

The DW_apb_i2c supports switching back and forth between reading and writing dynamically. To transmit
data, write the data to be written to the lower byte of the I2C Rx/Tx Data Buffer and Command Register
(IC_DATA_CMD). The CMD bit [8] should be written to 0 for I2C write operations. Subsequently, a read
command may be issued by writing “don’t cares” to the lower byte of the IC_DATA_CMD register, and a 1
should be written to the CMD bit. The DW_apb_i2c master continues to initiate transfers as long as there are
commands present in the transmit FIFO. If the transmit FIFO becomes empty—depending on the value of
IC_EMPTYFIFO_HOLD_MASTER_EN, the master either inserts a STOP condition after completing the
current transfers, or it checks to see if IC_DATA_CMD[9] is set to 1.

■ If set to 1, it issues a STOP condition after completing the current transfer.

■ If set to 0, it holds SCL low until next command is written to the transmit FIFO.

For more details, see “Tx FIFO Management and START, STOP and RESTART Generation” on page 36.

2.8.3 Disabling DW_apb_i2c

The register IC_ENABLE_STATUS is added to allow software to unambiguously determine when the
hardware has completely shutdown in response to bit 0 of the IC_ENABLE register being set from 1 to 0.
Only one register is required to be monitored, as opposed to monitoring two registers (IC_STATUS and
IC_RAW_INTR_STAT) which is a requirement for DW_apb_i2c versions 1.05a or earlier.

2.8.3.1 Procedure

1. Define a timer interval (ti2c_poll) equal to the 10 times the signaling period for the highest I2C transfer
speed used in the system and supported by DW_apb_i2c. For example, if the highest I2C transfer
mode is 400 kb/s, then this ti2c_poll is 25us.

2. Define a maximum time-out parameter, MAX_T_POLL_COUNT, such that if any repeated polling
operation exceeds this maximum value, an error is reported.

3. Execute a blocking thread/process/function that prevents any further I2C master transactions to be
started by software, but allows any pending transfers to be completed.

NoteNoteNoteNote Master Receiver Mode is not supported in Ultra-Fast Mode (IC_ULTRA_FAST_MODE=1) as
Master Read transfers are not supported.

NoteNoteNoteNote When IC_EMPTYFIFO_HOLD_MASTER_EN = 1, the DW_apb_i2c Master can be disabled
only if the current command being processed—when the ic_enable de-assertion occurs—has
the STOP bit set to 1.
When an attempt is made to disable the DW_apb_i2c Master while processing a command
without the STOP bit set, the DW_apb_i2c Master continues to remain active, holding the SCL
line low until a new command is received in the Tx FIFO.
When IC_EMPTYFIFO_HOLD_MASTER_EN =1 and the DW_apb_i2c Master is processing a
command without the STOP bit set, you can issue the ABORT (IC_ENABLE[1]) to relinquish
the I2C bus and then disable DW_apb_i2c.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

4. The variable POLL_COUNT is initialized to zero.

5. Set bit 0 of the IC_ENABLE register to 0.

6. Read the IC_ENABLE_STATUS register and test the IC_EN bit (bit 0). Increment POLL_COUNT by
one. If POLL_COUNT >= MAX_T_POLL_COUNT, exit with the relevant error code.

7. If IC_ENABLE_STATUS[0] is 1, then sleep for ti2c_poll and proceed to the previous step. Otherwise,
exit with a relevant success code.

2.8.4 Aborting I2C Transfers

The ABORT control bit of the IC_ENABLE register allows the software to relinquish the I2C bus before
completing the issued transfer commands from the Tx FIFO. In response to an ABORT request, the
controller issues the STOP condition over the I2C bus, followed by Tx FIFO flush. Aborting the transfer is
allowed only in master mode of operation.

2.8.4.1 Procedure

1. Stop filling the Tx FIFO (IC_DATA_CMD) with new commands.

2. When operating in DMA mode, disable the transmit DMA by setting TDMAE to 0.

3. Set bit 1 of the IC_ENABLE register (ABORT) to 1.

4. Wait for the M_TX_ABRT interrupt.

5. Read the IC_TX_ABRT_SOURCE register to identify the source as ABRT_USER_ABRT.

2.9 Spike Suppression
The DW_apb_i2c contains programmable spike suppression logic that match requirements imposed by the
I2C Bus Specification for SS/FS (tSP, Table 9), high speed (tSP, Table 11), and UFm (tSP, Table 13) modes.

This logic is based on counters that monitor the input signals (SCL and SDA), checking if they remain stable
for a predetermined amount of ic_clk cycles before they are sampled internally. There is one separate
counter for each signal (SCL and SDA). The number of ic_clk cycles can be programmed and should be
calculated taking into account the frequency of ic_clk and the relevant spike length specification.

Each counter is started whenever its input signal changes its value. Depending on the behavior of the input
signal, one of the following scenarios occurs:

■ The input signal remains unchanged until the counter reaches its count limit value. When this
happens, the internal version of the signal is updated with the input value, and the counter is reset
and stopped. The counter is not restarted until a new change on the input signal is detected.

■ The input signal changes again before the counter reaches its count limit value. When this happens,
the counter is reset and stopped, but the internal version of the signal is not updated. The counter
remains stopped until a new change on the input signal is detected.

NoteNoteNoteNote This step can be ignored if DW_apb_i2c is programmed to operate as an I2C slave only.

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

The timing diagram in Figure 2-24 illustrates the behavior described earlier.

Figure 2-24 Spike Suppression Example

The count limit value used in this example is 5 and is calculated for a 10 ns ic_clk period and for SS/FS
operation (50 ns spike suppression).

The I2C Bus Specification calls for different maximum spike lengths according to the operating mode—50 ns
for SS and FS; 10 ns for high speed, 10 ns for UFm, so three registers are required to store the values needed
for each case:

■ Register IC_FS_SPKLEN holds the maximum spike length for SS and FS modes

■ Register IC_HS_SPKLEN holds the maximum spike value for high speed mode.

■ Register IC_UFM_SPKLEN holds the maximum spike value for UFm.

These registers are 8 bits wide and accessible through the APB interface for read and write purposes;
however, they can be written to only when the DW_apb_i2c is disabled. The minimum value that can be
programmed into these registers is 1; attempting to program a value smaller than 1 results in the value 1
being written.

The default value for these registers is automatically calculated in coreConsultant based on the value of
ic_clk period, but this value can be overridden when configuring the component.

NoteNoteNoteNote There is a 2-stage synchronizer on the SCL input, but for the sake of simplicity this
synchronization delay is not included in the timing diagram in Figure 2-24.

NoteNoteNoteNote
■ IC_HS_SPKLEN is implemented only if the component is configured for high speed

operation; that is, (IC_MAX_SPEED = High).

■ IC_UFM_SPKLEN is implemented only if the component is configured for Ultra-Fast mode;
that is, (IC_ULTRA_FAST_MODE=1).

■ IC_FS_SPKLEN and IC_HS_SPKLEN are not implemented when configured for Ultra-Fast
mode; that is, (IC_ULTRA_FAST_MODE=1).

0 1 2 3 0 1 2 3 4 0

ic_clk

SCL

Spike length counter

Internal filtered SCL

5

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2.10 Fast Mode Plus Operation
In fast mode plus, the DW_apb_i2c allows the fast mode operation to be extended to support speeds up to
1000 Kb/s. To enable the DW_apb_i2c for fast mode plus operation, perform the following steps before
initiating any data transfer:

1. Configure the Maximum Speed mode of DW_apb_i2c Master or Slave to Fast Mode or High Speed
mode (IC_MAX_SPEED_MODE> = 2).

2. Set ic_clk frequency greater than or equal to 32 MHz (see “Standard Mode (SM), Fast Mode (FM), and
Fast Mode Plus (FM+) with IC_CLK_FREQ_OPTIMIZATION = 0” on page 69).

3. Program the IC_CON register [2:1] = 2’b10 for fast mode or fast mode plus.

4. Program IC_FS_SCL_LCNT and IC_FS_SCL_HCNT registers to meet the fast mode plus SCL (see
“IC_CLK Frequency Configuration” on page 66).

5. Program the IC_FS_SPKLEN register to suppress the maximum spike of 50ns.

6. Program the IC_SDA_SETUP register to meet the minimum data setup time (tSU; DAT).

2.11 Bus Clear Feature
DWC_apb_i2c supports the bus clear feature that provides graceful recovery of data (SDA) and clock (SCL)
lines during unlikely events in which either the clock or data line is stuck at LOW.

The following sections describes the SDA and SCL lines stuck at LOW recovery mechanisms:

■ “SDA Line Stuck at LOW Recovery” on page 53

■ “SCL Line is Stuck at LOW” on page 54

2.11.1 SDA Line Stuck at LOW Recovery

In case of SDA line stuck at LOW, the master performs the following actions to recover as shown in
Figure 2-25 and Figure 2-26:

NoteNoteNoteNote
■ Because the minimum value that can be programmed into the IC_FS_SPKLEN,

IC_HS_SPKLEN, and IC_UFM_SPKLEN registers is 1, the spike length specification can
be exceeded for low frequencies of ic_clk. Consider the simple example of a 10 MHz
(100 ns period) ic_clk; in this case, the minimum spike length that can be programmed is
100 ns, which means that spikes up to this length are suppressed.

■ Standard synchronization logic (two flip-flops in series) is implemented upstream of the
spike suppression logic and is not affected in any way by the contents of the spike length
registers or the operation of the spike suppression logic; the two operations
(synchronization and spike suppression) are completely independent.

Because the SCL and SDA inputs are asynchronous to ic_clk, there is one ic_clk cycle
uncertainty in the sampling of these signals; that is, depending on when they occur relative
to the rising edge of ic_clk, spikes of the same original length might show a difference of
one ic_clk cycle after being sampled.

■ Spike suppression is symmetrical; that is, the behavior is exactly the same for transitions
from 0 to 1 and from 1 to 0.

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

1. Master sends a maximum of 9 clock pulses to recover the bus LOW within those 9 clocks.

❑ The number of clock pulses varies with the number of bits that remain to be sent by the slave. As
the maximum number of bits is 9, master sends up to 9 clock pluses and allows the slave to
recover it.

❑ The master attempts to assert a Logic 1 on the SDA line and check whether SDA is recovered. If
the SDA is not recovered, it continues to send a maximum of 9 SCL clocks.

2. If SDA line is recovered within 9 clock pulses then the master sends the STOP to release the bus.

3. If SDA line is not recovered even after the 9th clock pulse then system needs a hardware reset.

The detailed flow to recover the SDA stuck at LOW is explained in the section “Programming Flow for SCL
and SDA Bus Recovery” on page 304.

Figure 2-25 SDA Recovery with 9 SCL Clocks

Figure 2-26 SDA Recovery with 6 SCL Clocks

2.11.2 SCL Line is Stuck at LOW

In the unlikely event (due to an electric failure of a circuit) where the clock (SCL) is stuck to LOW, there is no
effective method to overcome this problem but to reset the bus using the hardware reset signal. The detailed
flow to recover the SCL stuck at LOW is explained in “Programming Flow for SCL and SDA Bus Recovery”
on page 304.

2.12 Device ID
A Device ID field is an optional 3-byte read-only (24 bits) word, which provides the following information:

■ Twelve bits with the manufacturer’s name, which is unique for every manufacturer.

■ Nine bits with the part identification, which is assigned by the manufacturer.

 0Recovery Clocks

SDA

SCL

1 2 3 4 5 6 7 8 9 10

MST_SDA

Master drives 9 clocks to recover SDA stuck at low

 0Recovery Clocks

SDA

SCL

1 2 3 4 5 6 7

MST_SDA

Master drives 6 clocks to recover SDA stuck at low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

■ Three bits with the die revision, which is assigned by the manufacturer.

Figure 2-27 shows the Device ID field structure.

Figure 2-27 Device ID Field Structure

For reading the Device ID of a particular slave, the master can follow the procedure in “Programming Flow
for Reading the Device ID” on page 305. The Device ID that is read is available in RX FIFO, which can be
read using IC_DATA_CMD register.

In case of a slave, you have to configure the Device ID using the IC_DEVICE_ID_VALUE coreConsultant
parameter and you can read the Device ID of the slave using IC_DEVICE_ID register.

2.13 Ultra-Fast Speed Mode
The Ultra-Fast Speed mode is a variant of I2C Bus Speed mode that operates from DC (0) to 5 MHz
transmitting data in one direction. It is useful for speeds greater than 1 MHz to drive LED controllers and
other gaming systems that do not need feedback.

Ultra-Fast speed mode is based on the standard I2C Protocol, which consists of START, slave address,
command bit, ninth clock (ACK cycle) and a STOP bit. The command bit should be always 'write' (0) only
since it is a unidirectional bus (except for the START byte). The data bit on the ninth (ACK) cycle is driven
high by the master, ignoring the ACK cycle due to unidirectional nature of bus. The driver used for Ultra-
Fast Mode is push-pull driver.

The Master consists of serial clock (ic_clk_oe, USCL) and a serial data (ic_data_oe, USDA) output signals.
The Output signals are Active-Low in nature.

The Slave consists of serial clock (ic_clk_in_a, USCL) and serial data (ic_data_in_a, USDA) input signals.
The input signals are Active-High in nature.

The UFm I2C-bus does not have the multi-master capability and hence, it does not consist of wired-AND
open-drain driver. In the UFm I2C bus, the master is the only device that initiates a data transfer (write
transfer) on the bus and provides the clock signals to support that transfer. All other devices are considered
as slaves. Because of single master support, the arbitration, synchronization, clock stretching mechanisms
are not applicable.

The Byte format, START and STOP generation are same as in other modes of the I2C Protocol except for the
ignorance of ACK cycle. The Slave never drives anything on the bus hence, the master always drives NACK
during the ninth cycle of the transfer as shown in Figure 2-28.

NoteNoteNoteNote Device ID is not supported for 10-bit addressing and High Speed transfers (high speed mode).

manufacturer s name

part identification

revision

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Figure 2-28 UFm-l2C Byte Transfer

In UFm-I2C mode, the slave is not allowed to hold the clock LOW if it cannot receive another complete byte
of data or while it is performing some other function, for example, servicing an internal interrupt. The ninth
clock cycle that represents ACK/NACK of the byte is not applicable because slave does not respond and it
is preserved in UFm to be compatible with the I2C Protocol. The 8th bit of the address that represents Read
or write transfer should be always set to write (0), since Read is not supported in UFm (except for the
START Byte).

The Combined format of I2C Protocol is not supported in UFm-I2C mode. The 10-bit addressing that
expands the number of possible devices is supported in UFm-I2C mode and it behaves similar to other
modes as shown in Figure 2-29 (Only write transfer is supported).

Figure 2-29 10-bit addressing write transfer

The UFm-I2C mode supports START byte and general call features similar to other I2C modes. If the slave is
not responsive (determined through external feedback and not through UFm I2C-bus), then the slave can
reset through software reset or external hardware reset.

2.14 SMBus/PMBus
The SMBus is designed to provide a predictable communication line between a system and its devices. It
describes the Device timeout definitions and their conditions.

2.14.1 tTimeout,MIN Parameter

This Parameter allows a master or slave to conclude that a defective device is holding the clock low
indefinitely or a master is intentionally trying to drive devices off the bus. It is highly recommended that a
slave device release the bus (stop driving the bus and let SMBCLK and SMBDAT float high) when it detects
any single clock held low longer than tTIMEOUT,MIN. Devices that have detected this condition must reset
their communication interface and be able to receive a new START condition in no later than
tTIMEOUT,MAX.

S
1 1 1 1 0 X X
SLAVE ADDRESS

1st 7 BITS

0

W

write

A SLAVE ADDRESS
2nd BYTE

A DATA A DATA NA P

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

The DW_apb_i2c enables the Bus clear feature in SMBus mode and the you can use the
IC_SCL_STUCK_AT_LOW_TIMEOUT Register to program the tTIMEOUT,MIN Value to detect the
SMBCLK low timeout.

The DW_apb_i2c slave device resets its communication interface and release both SCL and SDA lines after
detecting the SCL_STUCK_TIMEOUT interrupt.

The DW_apb_i2c master has a provision to generate the Abort which completes the current transfer and
generate STOP condition on the bus through programming the IC_ENABLE[1] register bit.

2.14.2 Master Device Clock Extension

The interval tLOW: MEXT is defined as the cumulative time a master device is allowed to extend its clock
cycles within one byte in a message as measured from:

■ START to ACK

■ ACK to ACK

■ ACK to STOP.

The DW_apb_i2c Master uses the IC_SMBUS_CLOCK_LOW_MEXT register to detect the Master device
clock extension timeout and generates SMBUS_CLK_LOW_MEXT interrupt.

2.14.3 Slave Device Clock Extension

The interval tLOW:SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in
one message from the initial START to the STOP.

The DW_apb_i2c Master uses the IC_SMBUS_CLOCK_LOW_SEXT register to detect the Slave device clock
extension timeout and generates SMBUS_CLK_LOW_SEXT interrupt.

A Master is allowed to abort the transaction in progress to any slave that violates the tLOW:SEXT or
tTIMEOUT,MIN specifications through the enabling the user abort (IC_ENABLE[1]).

2.14.4 SMBDAT Low Timeout

A malfunctioning device holds the SMBDAT line low indefinitely. This would prevent the master from
issuing a STOP condition and ending a transaction. If SMBDAT is still low tTIMEOUT,MAX after SMBCLK
has gone high at the end of a transaction the master should hold SMBCLK low for at least tTIMEOUT,MAX
in an attempt to reset the SMBus interface of all of the devices on the bus.

The DW_apb_i2c enables the Bus clear feature in SMBus mode and you can use the
IC_SDA_STUCK_AT_LOW_TIMEOUT Register to program the SMBDAT timeout value to detect the
SMBDAT low timeout. If SMBDAT line is stuck at low, the SDA_STUCK_TIMEOUT abort is generated and
software can enable the SMBUS_CLK_RESET register bit of IC_ENABLE register to hold the SCL low for
IC_SCL_STUCK_AT_LOW_TIMEOUT which in turn resets the SMBus interface of all devices on the bus.

2.14.5 Bus Protocols

A typical SMBus device has a set of commands by which data can be read and written. All commands are
one byte long while their arguments and return values can vary in length. In accordance with the SMBus
specification, the most significant bit (MSB) is transferred first. There are eleven possible command
protocols for any given device. These commands are Quick Command, Send Byte, Receive Byte, Write Byte,

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Write Word, Read Byte, Read Word, Process Call, Block Read, Block Write, and Block Write-Block Read
Process Call.

SMBus protocols for message transactions are generally different from I2C data transfer commands. It is still
possible to program an SMBus master to deliver I2C data transfer commands. The following table describes
the derivation of SMBus Bus Protocols through Tx-FIFO commands in DW_apb_i2c.

In the SMBus Master mode, all the receive data bytes are available in Rx-FIFO. In the SMBus Slave mode, all
the bus protocol command codes and data bytes are received in the Rx-FIF0 and read request data bytes
must be sent using Tx-FIFO, similar to the I2C mode.

Table 2-2 SMBus Bus Protocols Usage in DW_apb_i2c

Protocol
Required TxFIFO
Commands

Command/Data
(IC_DATA_CMD[7:0])

CMD bit
(IC_DATA_CMD[8])

STOP bit
(IC_DATA_CM
D[9]) Remarks

Quick
Command

1 Not Applicable Set the command
[R/W]

Set to 1 Set IC_TAR[11]
and IC_TAR[16] to
1

Send Byte 1 Data Byte Set to 0 Set to 1

Receive Byte 1 Not Applicable Set to 1 Set to 1

Write Byte 2
Command Code Set to 0 Set to 0

Data Byte Set to 0 Set to 1

Write Word 3

Command Code Set to 0 Set to 0

Data Byte Low Set to 0 Set to 0

Data Byte High Set to 0 Set to 1

Read Byte 2
Command Code Set to 0 Set to 0

Not Applicable Set to 1 Set to 1

Read Word 3

Command Code Set to 0 Set to 0

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 1

Process Call 5

Command Code Set to 0 Set to 0

Data Byte Low Set to 0 Set to 0

Data Byte High Set to 0 Set to 0

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

DW_apb_i2c Slave can be enabled to receive only Quick command through enabling the
SLAVE_QUICK_CMD_EN bit in the IC_CON Register. Whenever this bit is selected the slave only receives
quick commands and are not accept other Bus Protocols. The DW_apb_i2c slave issues the
SMBUS_QUICK_DET interrupt upon receiving the QUICK command.

SMBus introduces a Packet Error checking Mechanism through appending PEC Byte at the end of the Bus
Protocol. This can be achieved through adding an extra command (PEC byte) while transferring and
decoding it while receiving by the software.

2.14.6 SMBUS Address Resolution Protocol

SMBus slave address conflicts can be resolved by dynamically assigning a new unique address to each slave
device by the Host. This feature allows the devices to be 'hot-plugged' in to the system.

SMBus introduces a 128-bit Unique Device ID (UDID) for each device in the system to isolate each device for
the purpose of address assignment. DW_apb_i2c uses the IC_SMBUS_UDID_MSB parameter for upper
constant 96 bits and 'IC_SMBUS_ARP_UDID_LSB' register for lower variable 32 bits of the UDID.

DW_apb_i2c uses the PERSISTANT_SLV_ADDR_EN register bit in IC_CON register to indicate whether
the DW_apb_i2c supports persistent slave address.

Block Write N+2

Command Code Set to 0 Set to 0

Data Byte Set to 0 Set to 0

N+1) Data Byte N Set to 0 Set to 1

Block Read N+2

Command Code Set to 0 Set to 0

Not Applicable Set to 0 Set to 0

N+1) Not Applicable Set to 0 Set to 1

Block Write-
Block Read
Process Call

M+N+2

Command Code Set to 0 Set to 0

Data Byte 1 Set to 0 Set to 0

M+1) Data Byte M Set to 0 Set to 0

M+2) Not Applicable Set to 1 Set to 0

M+3) Not Applicable Set to 1 Set to 0

M+N+1) Not
Applicable

Set to 1 Set to 1

SMBUS Host
Notify
Protocol

3

Device-Address Set to 0 Set to 0 Set IC_TAR[6:0] to
SMB Host
Address (0001
000)

Data Byte Low Set to 0 Set to 0

Data Byte High Set to 0 Set to 1

Protocol
Required TxFIFO
Commands

Command/Data
(IC_DATA_CMD[7:0])

CMD bit
(IC_DATA_CMD[8])

STOP bit
(IC_DATA_CM
D[9]) Remarks

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

DW_apb_i2c master can issue general and directed Address Resolution Protocol (ARP) commands to assign
the dynamic address for the slaves in the SMBus system.

Table 2-3 describes the derivation of SMBus ARP commands through Tx-FIFO commands in DW_apb_i2c.

Table 2-3 Derivation of SMBus ARP Command Through TxFIFO Commands in DW_apb_i2c

ARP
Command

Required
Tx_FIFO
Commands

Command/Data
(IC_DATA_CMD[7
:0])

CMD Bit
(IC_DATA_CMD[8])

STOP bit
(IC_DATA_CMD[9]) Remarks

Prepare for
ARP

2

Command = '0000
0001'

Set to 0 Set to 0 Set IC_TAR[6:0] to
SMB Default
Address (1100 001)PEC Byte Set to 0 Set to 1

Reset
Device
(General)

2

Command = '0000
0010'

Set to 0 Set to 0 Set IC_TAR[6:0] to
SMB Default
Address (1100 001)PEC Byte Set to 0 Set to 1

Get UDID
(General)

20 Command = '0000
0011'

Set to 0 Set to 0 1. Set IC_TAR[6:0]
to SMB Default
Address (1100
001).

2. 16 Reads to be
performed for the
128 UDID bytes.

3. Last read
command for the
slave address.

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 0

PEC Byte Set to 1 Set to 1

Assign
Address

20

Command = '0000
0011'

Set to 0 Set to 0 1. Set IC_TAR[6:0]
to SMB Default
Address (1100
001).

2. 16 Writes to be
performed for the
128 UDID byte.

3. Last Write
command for the
Assigned slave
address.

Byte Count = 17 Set to 0 Set to 0

UDID Byte 15 Set to 0 Set to 0

UDID Byte 14 Set to 0 Set to 0

Assigned Address Set to 0 Set to 0

PEC Byte Set to 01 Set to 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2.14.6.1 Procedure to Perform ARP in Master Mode

To use the DW_apb_i2c as a SMBus Master/Host for assigning the unique address to each slave device to
resolve the slave address conflicts, perform the following steps:

1. After a reset or a cold power up, the SMBus host or master issues a "Prepare to ARP" command to
indicate that the master is carrying an ARP to assign dynamic addresses to all devices. Slave must
flush any pending host notify commands.

2. An acknowledgement received for the "Prepare to ARP" command indicates that ARP-capable
devices exist in the system and hte "Get UDID" command must be issued. A NACK indicates that
ARP-capable devices do not exist or currently all slaves have their addresses resoved. In this case, the
master must complete steps outlined from Step 8 onwards. The DW_apb_i2c master indicates NACK
reception through 'ABRT_7B_ADDR_NOACK' and ‘ABRT_TXDATA_NOACK’ bits of
IC_TX_ABRT_SOURCE register.

Get UDID
(Directed)

19

Command = '0000
0011'

Set to 0 Set to 0 1. Set IC_TAR[6:0]
to SMB Default
Address (1100
001).

2. 16 Reads to be
performed for the
128 UDID byte.

3. Last Read
command for the
slave address.

Slave
address[6:0],1}

Set to 1 Set to 0

Not Applicable Set to 1 Set to 0

Not Applicable Set to 1 Set to 0

PEC Byte Set to 1 Set to 1

Reset
Device
(Directed)

2

command = {slave
address[6:0],0}

Set to 0 Set to 0 Set IC_TAR[6:0] to
SMB Default
Address (1100 001)PEC byte Set to 0 Set to 1

Notify ARP
Master

3

Device Address =
'1100 0010'

Set to 0 Set to 0

Set IC_TAR[6:0] to
SMB Host Address
(0001 000)

Data Byte Low =
'0000 0000'

Set to 0 Set to 0

Data Byte High =
'0000 0000'

Set to 0 Set to 1

NoteNoteNoteNote
■ DW_apb_i2c slave hardware:

- Handles the generation, detection, and NACKing of the wrong PEC (CRC8
C(X)=X8+X2+X1+1) for the ARP Commands.

- Does not handle the PEC for Non-ARP commands.

■ DW_apb_i2c master hardware does not handle PEC for both APR and non-ARP
commands.

ARP
Command

Required
Tx_FIFO
Commands

Command/Data
(IC_DATA_CMD[7
:0])

CMD Bit
(IC_DATA_CMD[8])

STOP bit
(IC_DATA_CMD[9]) Remarks

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

3. DW_apb_i2c Master issues ‘Get UDID’ to receive the UDID information of the slave for assigning the
dynamic address.

4. If the first three bytes of the "Get UDID" command are ACK'ed and the receive byte count is 0x11,
then the master issues the "Assign Address" command. Else, the master must complete steps outlined
in step 8 onwards to indicate that the ARP is complete. DW_apb_i2c Master indicates NACK
reception through ABRT_7B_ADDR_NOACK and ABRT_TXDATA_NOACK bits of the
IC_TX_ABRT_SOURCE register.

5. The Master issues the "Assign Address" command to assign the Dynamic address to the slave whose
UDID is received through "Get UDID command".

6. If the assigned address packet is ACK'ed, then Master removes the assigned address from the
address pool and moves to Step 3 to get UDID of another slave. If the packet is not ACK'ed, then
master does not remove the address from the address pool and moves to Step 3 to get UDID of same
slave or another slave.

7. If the Assign Address is ACK'ed, then Master stores the assigned address in the used address pool
with the UDID characteristics of the device.

8. The Master moves to Step 3 to issue a 'Get UDID' command again to receive the UDID of another
slave. If it receives NACK for 'Get UDID', the Master moves to Step 9.

9. The DW_apb_i2c can be switched to Slave mode to detect device requests for Host Notify Protocol.

10. If the DW_apb_i2c switched to slave mode and DW_apb_i2c detects the Host Notify Protocol, then
this indicates that a slave is requesting for the dynamic address and the Master has to undergo the
ARP as outlined in Step 11.

11. If the DW_apb_i2c is in Master mode, then move to Step 3 for performing ARP procedure, otherwise
move to Step 12.

12. The DW_apb_i2c is switched to Master Mode and moves to Step 3 to perform ARP procedure.

The detailed flow diagram is explained in Figure 6-10.

2.14.6.2 Procedure to Perform ARP in Slave Mode

The DW_apb_i2c as a SMBus Slave performs the following tasks:

■ Decodes the ARP commands and responds based on internal state flags
SMBUS_SLAVE_ADDR_VALID and 'SMBUS_SLAVE_ADDR_RESOLVED' of the IC_STATUS
register.

■ Generates and Validates the PEC byte of ARP commands

■ Generates ACK for the PEC byte only if it matches the CRC value calculated on data it received. If
not, NACK the PEC byte.

When another SMBus Master/Host device on the bus generates the ARP commands and requests to
participate in the ARP, the DW_apb_i2c acts as a SMBus slave and performs the following steps:

1. After a reset or a cold power up, the DW_apb_i2c slave device checks whether it supports a persistent
slave address.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2. If DW_apb_i2c has a persistent slave address (PSA), which is indicated by the Address Valid flag
being set, then PSA is set in the Slave Address Register (IC_SAR) register. If the flag is not set, then
proceed to Step 4.

3. DW_apb_i2c persistent slave stores the persistent address in IC_SAR and sets Address Valid flag to 1
and Address Resolved Flag to 0.

4. DW_apb_i2c Non Persistent slave (non-PSA) clears both Address Valid and Address Resolved Flags.

5. DW_apb_i2c Checks whether any Packet received has ARP Default address in the slave address field
of the packet to decide on ARP command or normal command. If there is a match then DW_apb_i2c
slave proceeds to Step 6, otherwise to Step 25.

6. If DW_apb_i2c detects a packet addressed to the SMBus Device Default Address, it checks the
command field to determine if this is the "Prepare to ARP" command. If so, then it proceeds to Step 7,
otherwise it proceeds to Step 8.

7. Upon receipt of the "Prepare to ARP" command, the DW_apb_i2c acknowledges the packet and
clears the Address Resolved flag in order to participate in the ARP Process. DW_apb_i2c proceeds to
Step 5 and waits for another SMBus Packet.

8. The DW_apb_i2c checks the command field to verify if the "Reset Device" command is issued. If yes,
the DW_apb_i2c proceeds to Step 9, otherwise it proceeds to Step 10.

9. Upon receipt of the "Reset Device" command, the DW_apb_i2c acknowledges the packet and clears
the Address Resolved and Address Valid (If non-PSA and ic_con[19]=0) flags. DW_apb_i2c procceds
to Step 5 and waits for another SMBus Packet.

10. The device checks the command to verify if the "Assign Address" command is issued. If yes, then it
proceeds to Step 11, otherwise proceeds to Step 13.

11. Upon receipt of the "Assign Address" command, the DW_apb_i2c compares its UDID with one its
received bytes. If any byte does not match, then DW_apb_i2c does not acknowledge that byte and
subsequent bytes also. If all bytes in the UDID matches, then the DEVICE proceeds to Step 12,
otherwise it proceeds to Step 5 and waits for another SMBus packet.

12. After the UDID is matched in Step 11, the DW_apb_i2c receives the slave address and sets the
IC_SAR register with this slave address. The DW-apb_i2c sets its Address Valid and Address
Resolved flags, which means it has received the dynamic address and is no longer respond to the
"Get UDID" command unless it receives the "Prepare to ARP" or "Reset Device" commands.
DW_apb_i2c now proceeds to Step 5 and waits for another SMBus packet.

13. The DW_apb_i2c checks the command field to verify if the "Get UDID" command is issued. If yes,
then it proceeds to Step 14, otherwise to Step 19.

14. Upon receipt of the "Get UDID" command, the DW_apb_i2c checks its Address Resolved flag to
determine whether it must participate in an ARP process. If set, then its address has already been
resolved by the ARP Master, so the device proceeds to Step 5 and waits for another SMBus packet. If
the ARP Flag is cleared, then it proceeds to Step 15.

15. The DW_apb_i2c returns its UDID and monitors the SMBus data line for collisions. If a collision is
detected at any time, DW_apb_i2c generates the SLV_ARB_LOST bit and stops transmitting. Further,
it proceeds to Step 5 and waits for another SMBus packet. If collisions are not detected, then
DW_apb_i2c proceeds to Step 16.

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

16. The DW_apb_i2c check its Address Valid (AV) flag to determine the value to return for the Device
Slave Address field. If the AV flag is set, then it proceeds to Step 17, otherwise it proceeds to Step 18.

17. When the AV flag is set, the current IC_SAR is valid, therefore the device returns this for the Device
Slave Address field (with bit 0 set) and monitors the SMBus data line for collisions. DW_apb_i2c
proceeds to Step 5 and waits for another SMBus Packet.

18. When the AV flag is not set, the current slave address (IC_SAR) is invalid. Therefore, the
DW_apb_i2c returns a value of FFh and monitors the SMBus data line for collisions. The device
requires an address assignment if the ARP master receives the FFH value. DW_apb_i2c proceeds to
Step 5 and waits for another SMBus packet.

19. The DW_apb_i2c may be receiving a directed command. If the Address Valid flag is set and address
is the same as in IC_SAR, then proceed to Step 20 otherwise, proceed to Step 5 to wait for another
SMBus packet.

20. If the Address Valid flag is set, check if the command is a directed "Reset Device" command. If yes,
then proceed to Step 21, otherwise proceed to Step 22.

21. Upon receipt of the "Reset Device" command, the DW_apb_i2c acknowledges the packet and clears
the Address Resolved and Address Valid (If non-PSA and ic_con[19]=0) flags. DW_apb_i2c procceds
to Step 5 and waits for another SMBus Packet.

22. DW_apb_i2c checks whether the received command is a "Directed Get UDID" command. If yes, then
proceed to Step 23 and return the UDID information. If not, then proceed to Step 24.

23. If the received command is a "Directed Get UDID" command, then return the UDID information and
current slave address, proceed to Step 5 and wait for another SMBus Packet.

24. If the received command is a "Directed Get UDID" command, the DW_apb_i2c has not received a
valid ARP command and hence DW_apb_i2c NACKs the command and proceeds to Step 5 and wait
for another SMBus Packet.

25. If the Address Valid bit is set then it proceeds to Step 26, otherwise it proceeds to Step 5 and waits for
another SMBus Packet. The received address is not the SMBus Device Default Address and the
packet may be addresses to the DW_apb_i2c's core function. The device checks its Address Valid bit
to determine whether to respond.

26. When the address valid bit is set, DW_apb_i2c has a valid slave address. It compares the received
slave address to its slave address, and if there is s a match, DW_apb_i2c proceeds to Step 27,
otherwise it proceeds to Step 5 and waits for another SMBus Packet.

27. The DW_apb_i2c receives a packet addresses to its core function and hence it acknowledges the
packet and processes it accordingly. DW_apb_i2c proceeds to step 5 and waits for another SMBus
Packet.

The detailed flow diagram is explained in Figure 6-11.

2.14.7 SMBUS Additional Slave Address

DW_apb_i2c supports second optional slave address decode capability. It can be configured to contain an
extra slave address register IC_OPTIONAL_SAR. If configured with this additional register, you can write
any valid slave address to this register which is matched against an incoming slave address on SMBus. A
match of incoming address with either IC_SAR register or IC_OPTIONAL_SAR register causes
DW_apb_i2c to acknowledge the transaction and respond to it accordingly. Use of this additional slave

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

address register is controlled by OPTIONAL_SAR_CTRL (IC_CON[17]) bit. If OPTIONAL_SAR_CTRL bit
is programmed to be 1, then IC_OPTIONAL_SAR register is used to match the incoming address. All
restrictions of IC_SAR register applies to IC_OPTIONAL_SAR register as well.

The default value that IC_OPTIONAL_SAR register obtains after reset can be configured by the
IC_OPTIONAL_SAR_DEFAULT parameter.

2.14.8 SMBUS Optional Signals

The SMBus standard supports these optional signals:

■ SMBus Suspend Signal

■ SMBus Alert Signal

As these signals are optional, DW_apb_i2c can be configured to include these signals through
IC_SMBUS_SUSPEND_ALERT parameter.

2.14.8.1 SMBus Suspend Signal

The SMBus suspend signal (SMBSUS#) is an optional signal which is asserted by the system controller
(mostly the Host) to indicate that the system should enter in low power suspend mode. It is output from the
system controller and input to all other devices. This signal is an active low signal. DW_apb_i2c implements
this functionality using following signals:

■ ic_smbsus_in_n

■ ic_smbsus_out_n

Output signal ic_smbsus_out_n is controlled directly by the SMBUS_SUS_CTRL bit (IC_ENABLE[17]). If
this bit is programmed to 1, ic_smbsus_out_n signal goes to 0 as soon as master finishes any ongoing
transfer. For coming out of the suspend mode, you need to clear this bit, which de-asserts the
ic_smbus_out_n signal.

Input signal ic_smbsus_in_n generates interrupt ic_smbsus_det_intr (or ic_smbsus_det_intr_n) on the
falling edge. This interrupt can be used by the software to enter the Low Power Mode. Current status of this
ic_smbsus_in_n can be read from SMBUS_SUSPEND_STATUS bit of IC_STATUS (19) register.

2.14.8.2 SMBus Alert Signal

The SMBus alter signal (SMBALERT#) is other optional signal specified by the SMBus standard. It can be
used by simple devices to request the attention of the host. Devices can use the SMBALERT# signal to
request the attention of the host with master functionality. This signal is input to host device and output
from all other devices. Since multiple devices may implement SMBALERT#, it is required to be a wired-
AND signal. Upon detecting a SMBALERT# signal, a host must send an alert response address which is
acknowledge by alerting the device and it sends the address to the host and de-asserts the alert signal. If
host still detects an asserted alert signal, it repeats sending alert response address. DW_apb_i2c implements
this functionality using following signals:

■ ic_smbalert_in_n

■ ic_smbalert_oe

Output signal ic_smbalert_oe is open drain/open collector pull down driver and should be used similar to
ic_clk_oe and ic_data_oe on a system implementation. Assertion of ic_smbalert_oe is controlled by
SMBUS_ALERT_CTRL bit (IC_ENABLE[18]). Once asserted, DW_apb_i2c waits for alert response address

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

to be sent by master. Upon receiving it, contents of IC_SAR[7:0] register are sent to the master. When
successful, DW_apb_i2c clears the SMBUS_ALERT_CTRL bit and de-asserts the ic_smbalert_oe signal.

Input signal ic_smbalert_in_n generates interrupt ic_smbalert_det_intr (or ic_smbalert_det_intr_n) on
falling edge. If working as host, you need to service this interrupt by sending read byte command with Alert
Response Address. Current status of ic_smbalert_in_n can be read from SMBUS_ALERT_STATUS bit
(IC_STATUS[20])

2.15 IC_CLK Frequency Configuration
When the DW_apb_i2c is configured as a Standard (SS), Fast (FS)/Fast-Mode Plus (FM+), or High Speed
(HS) master, the *CNT registers must be set before any I2C bus transaction can take place in order to ensure
proper I/O timing. The *CNT registers are:

■ IC_SS_SCL_HCNT

■ IC_SS_SCL_LCNT

■ IC_FS_SCL_HCNT

■ IC_FS_SCL_LCNT

■ IC_HS_SCL_HCNT

■ IC_HS_SCL_LCNT

When the DW_apb_i2c is configured as a Ultra-Fast Mode master, the *CNT registers must be set before any
I2C bus transaction can take place in order to ensure proper I/O timing. The *CNT registers for this mode
are:

■ IC_UFM_SCL_HCNT

■ IC_UFM_SCL_LCNT

Table 2-4 lists the derivation of I2C timing parameters from the *CNT programming registers.

Table 2-4 Derivation of I2C Timing Parameters from *CNT Registers

NoteNoteNoteNote The tBUF timing and setup/hold time of START, STOP and RESTART registers uses *HCNT/
*LCNT register settings for the corresponding speed mode.

NoteNoteNoteNote It is not necessary to program any of the *CNT registers if the DW_apb_i2c is enabled to
operate only as an I2C slave, since these registers are used only to determine the SCL timing
requirements for operation as an I2C master.

Timing
Parameter Symbol Standard Speed

Fast Speed / Fast
Speed Plus High Speed (100 pf) High Speed (400 pf)

LOW period of
the SCL clock

tLOW IC_SS_SCL_LCNT IC_FS_SCL_LCNT IC_HS_SCL_LCNT IC_HS_SCL_LCNT

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2.15.1 Minimum High and Low Counts in SS, FS, FM+ and high speed Modes With
IC_CLK_FREQ_OPTIMIZATION = 0.

When the DW_apb_i2c operates as an I2C master, in both transmit and receive transfers:

■ IC_SS_SCL_LCNT and IC_FS_SCL_LCNT register values must be larger than IC_FS_SPKLEN + 7.

■ IC_SS_SCL_HCNT and IC_FS_SCL_HCNT register values must be larger than IC_FS_SPKLEN + 5.

■ If the component is programmed to support high speed, IC_HS_SCL_LCNT register value must be
larger than IC_HS_SPKLEN + 7.

■ If the component is programmed to support high speed, IC_HS_SCL_HCNT register value must be
larger than IC_HS_SPKLEN + 5.

Details regarding the DW_apb_i2c high and low counts are as follows:

■ The minimum value of IC_*_SPKLEN + 7 for the *_LCNT registers is due to the time required for the
DW_apb_i2c to drive SDA after a negative edge of SCL.

■ The minimum value of IC_*_SPKLEN + 5 for the *_HCNT registers is due to the time required for the
DW_apb_i2c to sample SDA during the high period of SCL.

■ The DW_apb_i2c adds one cycle to the programmed *_LCNT value in order to generate the low
period of the SCL clock; this is due to the counting logic for SCL low counting to (*_LCNT + 1).

HIGH period of
the SCL clock

tHIGH IC_SS_SCL_HCNT IC_FS_SCL_HCNT IC_HS_SCL_HCNT IC_HS_SCL_HCNT

Setup time for a
repeated START
condition

tSU;STA IC_SS_SCL_LCNT IC_FS_SCL_HCNT IC_HS_SCL_LCNT (IC_HS_SCL_LCNT)/
2

Hold time
(repeated)
START
condition*

tHD;STA IC_SS_SCL_HCNT IC_FS_SCL_HCNT IC_HS_SCL_LCNT (IC_HS_SCL_LCNT)/
2

Setup time for
STOP condition

tSU;STO IC_SS_SCL_HCNT IC_FS_SCL_HCNT IC_HS_SCL_LCNT (IC_HS_SCL_LCNT)/
2

Bus free time
between a STOP
and a START
condition

tBUF IC_SS_SCL_LCNT IC_FS_SCL_LCNT NA NA

Spike length tSP IC_FS_SPKLEN IC_FS_SPKLEN IC_HS_SPKLEN IC_HS_SPKLEN

Data hold time tHD;DAT IC_SDA_HOLD IC_SDA_HOLD IC_SDA_HOLD IC_SDA_HOLD

Data setup time tSU;DAT IC_SDA_SETUP IC_SDA_SETUP IC_SDA_SETUP IC_SDA_SETUP

Timing
Parameter Symbol Standard Speed

Fast Speed / Fast
Speed Plus High Speed (100 pf) High Speed (400 pf)

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

■ The DW_apb_i2c adds IC_*_SPKLEN + 7 cycles to the programmed *_HCNT value in order to
generate the high period of the SCL clock; this is due to the following factors:

❑ The counting logic for SCL high counts to (*_HCNT+1).

❑ The digital filtering applied to the SCL line incurs a delay of SPKLEN + 2 ic_clk cycles, where
SPKLEN is:

■ IC_FS_SPKLEN if the component is operating in SS or FS
■ IC_HS_SPKLEN if the component is operating in high speed.

This filtering includes metastability removal and the programmable spike suppression on SDA
and SCL edges.

❑ Whenever SCL is driven 1 to 0 by the DW_apb_i2c—that is, completing the SCL high time—an
internal logic latency of three ic_clk cycles is incurred. Consequently, the minimum SCL low time
of which the DW_apb_i2c is capable is nine (9) ic_clk periods (7 + 1 + 1), while the minimum SCL
high time is thirteen (13) ic_clk periods (6 + 1 + 3 + 3).

Figure 2-30 Impact of SCL Rise Time and Fall Time on Generated SCL

NoteNoteNoteNote The total high time and low time of SCL generated by the DW_apb_i2c master is also
influenced by the rise time and fall time of the SCL line, as shown in the illustration and
equations in
Figure 2-30. It should be noted that the SCL rise and fall time parameters vary, depending on
external factors such as:

■ Characteristics of IO driver

■ Pull-up resister value

■ Total capacitance on SCL line, and so on

These characteristics are beyond the control of the DW_apb_i2c.

ic_clk

ic_clk_in_a/SCL

SCL
rise time

HCNT + IC_*_SPKLEN + 7

SCL
fall time

SCL
rise time

LCNT + 1

SCL_High_time = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time
SCL_Low_time = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2.15.2 Minimum High and Low Counts in SS, FS, FM+ and high speed Modes With
IC_CLK_FREQ_OPTIMIZATION = 1

The minimum high and low counts in SS, FS, FM+ and high speed Modes with the
IC_CLK_FREQ_OPTIMIZATION parameter set to one is such that:

■ The total SCL LOW period is driven by DW_apb_i2c is IC_*_LCNT register value. The hardware
does not support a value less than 6 to be written to the IC_*_LCNT register. Additionally, the
minimum SCL low time of which the DW_apb_i2c is capable is 6 ic_clk periods.

■ The total SCL HIGH period driven by DW_apb_i2c is IC_*_HCNT register value + SPKLEN + 3.
Additionally, the minimum SCL high time of which the DW_apb_i2c is capable is 5 ic_clk periods
[1+1+3].

The total high time and low time of SCL generated by the DW_apb_i2c master is also influenced by the rise
time and fall time of the SCL line. The SCL rise and fall time parameters vary depending on external factors
such as:

■ Characteristics of IO driver

■ Pull-up resister value

■ Total capacitance on SCL line, and so on

These characteristics are beyond the control of the DW_apb_i2c.

2.15.3 Minimum High and Low counts in Ultra-Fast mode (IC_ULTRA_FAST_MODE = 1)

When the DW_apb_i2c operates as an I2C master:

■ The IC_UFM_SCL_HCNT register value must be equal or larger than 3.

■ The IC_UFM_SCL_LCNT register Value must be equal or larger than 5.

2.15.4 Minimum IC_CLK Frequency

This section describes the minimum ic_clk frequencies that the DW_apb_i2c supports for each speed mode,
and the associated high and low count values. In Slave mode, IC_SDA_HOLD (Thd;dat) and
IC_SDA_SETUP (Tsu:dat) need to be programmed to satisfy the I2C protocol timing requirements.

The following examples are for the case where IC_FS_SPKLEN and IC_HS_SPKLEN are programmed to 2.

2.15.4.1 Standard Mode (SM), Fast Mode (FM), and Fast Mode Plus (FM+) with
IC_CLK_FREQ_OPTIMIZATION = 0

This section details how to derive a minimum ic_clk value for standard and fast modes of the DW_apb_i2c.
Although the following method shows how to do fast mode calculations, you can also use the same method
in order to do calculations for standard mode and fast mode plus.

NoteNoteNoteNote The following computations do not consider the SCL_Rise_time and SCL_Fall_time.

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Given conditions and calculations for the minimum DW_apb_i2c ic_clk value in fast mode:

■ Fast mode has data rate of 400kb/s; implies SCL period of 1/400khz = 2.5us

■ Minimum hcnt value of 14 as a seed value; IC_HCNT_FS = 14

■ Protocol minimum SCL high and low times:

❑ MIN_SCL_LOWtime_FS = 1300ns

❑ MIN_SCL_HIGHtime_FS = 600ns

Derived equations:

Combined, the previous equations produce the following:

Solving for IC_LCNT_FS:

The previous equation gives:

These calculations produce IC_LCNT_FS = 16 and IC_HCNT_FS = 14, giving an ic_clk value of:

Testing these results shows that protocol requirements are satisfied.

2.15.4.2 High-Speed (HS) Mode With IC_CLK_FREQ_OPTIMIZATION = 0

The method used for standard and fast modes can also be used to derive ic_clk values for high speed
modes. For example, given a high speed mode with a 100pf bus loading, using the standard and fast modes
method produces the following:

■ IC_LCNT_HS = 17

■ IC_HCNT_HS = 14

■ ic_clk = 105.4 Mhz

Table 2-5 lists the minimum ic_clk values for all modes with high and low count values.

Table 2-5 ic_clk in Relation to High and Low Counts When IC_CLK_FREQ_OPTIMIZATION = 0

SCL_PERIOD_FS
IC_HCNT_FS IC_LCNT_FS+
--- IC_CLK_PERIOD=

IC_LCNT_FS IC_CLK_PERIOD× MIN_SCL_LOWtime_FS=

IC_LCNT_FS SCL_PERIOD_FS
IC_LCNT_FS IC_HCNT_FS+
---× MIN_SCL_LOWtime_FS=

IC_LCNT_FS 2.5μs
IC_LCNT_FS 14+
--× 1.3μs=

IC_LCNT_FS roundup(15.166) 16= =

2.5 μs
16 14+
------------------ 83.3ns 12Mhz= =

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2.15.4.3 SM, FM, FM+ and high speed Modes With IC_CLK_FREQ_OPTIMIZATION = 1

2.15.4.3.1 Master Mode

This section describes the minimum ic_clk frequencies that the DW_apb_i2c supports for each speed mode
and the associated high and low count values. The following examples are for the case where
IC_FS_SPKLEN = 1, IC_HS_SPKLEN = 1 and IC_CLK_FREQ_OPTIMIZATION = 1.

Following calculations show how to derive a minimum ic_clk value for fast mode of the DW_apb_i2c.
Although the following method shows how to do fast mode calculations, you can also use the same method
in order to do calculations for any speed mode.

Following are the conditions and calculations for the minimum DW_apb_i2c ic_clk value in fast mode:

■ Fast mode has data rate of 400kb/s; implies SCL period of 1/400KHz = 2.5 us

■ Minimum hcnt value of 5 as a seed value; IC_HCNT_FS = 5

■ Protocol minimum SCL high and low times:

Speed Mode
ic_clkfreq
(MHz)

Minimum
Value of
IC_*_SPKL
EN

SCL Low
Time in
ic_clks

SCL Low
Program
Value

SCL Low
Time

SCL High
Time in
ic_clks

SCL High
Program
Value

SCL High
Time

SS 2.7 1 13 12 4.7 μs 14 6 5.2 μs

FS 12.0 1 16 15 1.33 μs 14 6 1.16 μs

FM+ 32 2 16 15 500 ns 16 7 500 ns

HS (400pf) 51 1 17 16 333 ns 14 6 274 ns

HS (100pf) 105.4 1 17 16 161 ns 14 6 132 ns

NoteNoteNoteNote
■ The IC_*_SCL_LCNT and IC_*_SCL_HCNT registers are programmed using the SCL low

and high program values in Table 2-5, which are calculated using SCL low count minus 1,
and SCL high counts minus 8, respectively.

The values in Table 2-5 are based on IC_SDA_RX_HOLD = 0. The maximum
IC_SDA_RX_HOLD value depends on the IC_*CNT registers in Master mode, as
described in “SDA Hold Timings in Receiver” on page 78.

■ In order to compute the HCNT and LCNT considering RC timings, use the following
equations:

IC_HCNT_* = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time
IC_LCNT_* = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time

NoteNoteNoteNote The computation in this section does not consider SCL_Rise_time and SCL_Fall_time.

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

❑ MIN_SCL_LOWtime_FS = 1300 ns

❑ MIN_SCL_HIGHtime_FS = 600 ns

Following are the derived equations:

SCL_PERIOD_FS/(IC_HCNT_FS + IC_LCNT_FS) = IC_CLK_PERIOD

IC_LCNT_FS × IC_CLK_PERIOD = MIN_SCL_LOWtime_FS

Following is the result of combining previous equations:

IC_LCNT_FS × SCL_PERIOD_FS /(IC_LCNT_FS + IC_HCNT_FS) = MIN_SCL_LOWtime_FS

By solving for IC_LCNT_FS:

IC_LCNT_FS × 2.5 µs /(IC_LCNT_FS + 5) = 1.3 µs

The previous equation provides:

IC_LCNT_FS = roundup(5.417) = 6

These calculations produce IC_LCNT_FS = 6 and IC_HCNT_FS = 5, providing an ic_clk value of:

2.5 µs/(6 + 5) = 227.27ns = 4.4 MHz

Testing these results shows that the protocol requirements are satisfied.

Table 2-6 lists the minimum ic_clk values for all modes with high and low count values.

Table 2-6 ic_clk in Relation to High and Low Counts When IC_CLK_FREQ_OPTIMIZATION = 1

NoteNoteNoteNote Minimum IC_*_LCNT value should be equal 6. If derived value is less than 6,
consider IC_LCNT_FS as 6 only.

Speed
Mode

ic_clk
Frequency
(MHz)

Minimum
Value of
IC_*_SPK
LEN

SCL Low
Time in
ic_clks

SCL Low
Program
Value

SCL Low
Time in ns

SCL High
Time in
ic_clks

SCL High
Program
Value

SCL High
Time in ns

SS 1.1 1 6 6 5454.545 5 1 4545.455

FS 4.4 1 6 6 1363.636 5 1 1136.364

FM+ 11 1 6 6 545.4545 5 1 454.5455

HS (400pf) 18.7 1 6 6 320.8527 5 1 267.3773

HS (100pf) 37.4 1 6 6 160.4236 5 1 133.6864

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2.15.4.3.2 Slave Mode

DW_apb_i2c in slave mode requires minimum 5 ic_clk cycles [SPKLEN + 3 (Metastability removal, worst
case) + 1] to drive SDA after a falling edge of SCL. Therefore, the ic_clk frequency must be selected such that
the maximum data hold time (thd;dat)/data valid time (tVD;DAT) is not violated.

For example, in high speed mode with a 100pf bus loading (SCLH clock frequency upto 3.4 MHz), the
maximum data hold time is 70 ns. Therefore, the minimum frequency in which DW_apb_i2c can operate in
slave mode without violating thd;dat is 70ns/5 = 14ns = 71.42 MHz.

Table 2-7 lists the minimum IC_CLK frequency in slave mode when IC_CLK_FREQ_OPTIMIZATION is set
to 1.

Table 2-7 Minimum IC_CLK Frequency in Slave Mode When IC_CLK_FREQ_OPTIMIZATION=1

2.15.4.4 ULTRA-FAST Mode

2.15.4.4.1 Master Mode

This section describes the minimum ic_clk frequency that the DW_apb_i2c supports for Ultra-Fast speed
mode and the associated high and low count values.

The following calculations show how to derive a minimum ic_clk value.

NoteNoteNoteNote
■ The IC_*_SCL_LCNT and IC_*_SCL_HCNT registers are programmed using the SCL low

and high program values in Table 2-6, which are calculated as SCL low count, and SCL
high count minus 4, respectively. The values in Table 2-6 are based on
IC_SDA_RX_HOLD = 0. The maximum IC_SDA_RX_HOLD value depends on the
IC_*CNT registers in master mode, as described in “SDA Hold Timings in Receiver” on
page 78.

■ To compute the HCNT and LCNT considering RC timings, use the following equations:

IC_HCNT_* = [(HCNT + IC_*_SPKLEN + 3) * ic_clk] + SCL_Fall_time
IC_LCNT_* = [LCNT * ic_clk] - SCL_Fall_time + SCL_Rise_time

Speed Mode
ic_clk Frequency
(MHz)

Minimum Value of
IC_*_SPKLEN

Minimum data hold
time in ic_clks

Maximum data hold
time

SS 1.45 1 5 3.45 µs

FS 5.56 1 5 0.9 µs

FM+ 11.11 1 5 0.45 µs

HS (400pf) 35.71 1 5 140 ns

HS (100pf) 71.42 1 5 70 ns

NoteNoteNoteNote The following computations do not consider the SCL_Rise_time and SCL_Fall_time.

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Given conditions and calculations for the minimum DW_apb_i2c ic_clk value in Ultra-Fast mode:

■ Fast mode has data rate of 5000kb/s; implies SCL period of 1/5000khz = 200ns

■ Minimum hcnt value of 3 as a seed value; IC_UFM_SCL_HCNT = 3

■ Protocol minimum SCL high and low times:

❑ MIN_SCL_LOWtime_UFm = 50 ns

❑ MIN_SCL_HIGHtime_UFm = 50ns

Derived equations:

■ SCL_PERIOD_UFm/(IC_HCNT_UFm + IC_LCNT_UFm) = IC_CLK_PERIOD

■ IC_LCNT_UFm × IC_CLK_PERIOD = MIN_SCL_LOWtime_UFm

Combined, the previous equations produce the following:

IC_LCNT_UFm × SCL_PERIOD_UFm /(IC_LCNT_UFm + IC_HCNT_UFm) =
MIN_SCL_LOWtime_UFm

Solving for IC_LCNT_UFm:

IC_LCNT_UFm × 200ns /(IC_LCNT_UFm + 3) = 50ns

The previous equation gives:

IC_LCNT_UFm = 1

These calculations produce IC_LCNT_UFm = 5 and IC_HCNT_UFm = 3, giving an ic_clk value of:

200 ns/(5 + 3) = 25ns = 40Mhz

Testing these results shows that protocol requirements are satisfied.

Table 2-8 describes the relation between the High and Low counts with ic_clk frequency

Table 2-8 ic_clk in relation to High and Low Counts when IC_ULTRA_FAST_MODE=1

NoteNoteNoteNote Minimum IC_SCL_UFM_LCNT value should be equal 5. If derived value is less than
5, consider IC_LCNT_UFm as 5 only.

Speed

ic_clk
(freq)

(Mhz)

SCL Low
Program
Value

SCL Low
Time in
ic_clks

SCL Low
Time

SCL High
Program
Value

SCL
HighTime
in ic_clks

SCL
HighTime

UltraFast
Mode

40 5 5 125 ns 3 3 75 ns

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

2.15.4.4.2 Slave mode

DW_apb_i2c in slave mode requires minimum of 2 ic_clk cycles for SCL High period and SCL Low Period.
Therefore, the minimum ic_clk frequency for the slave mode is 40 MHz.

2.15.4.5 Calculating High and Low Counts with IC_CLK_FREQ_OPTIMIZATION = 0

The following calculations show how to calculate SCL high and low counts for each speed mode in the
DW_apb_i2c. For the calculations to work, the ic_clk frequencies used must not be less than the minimum
ic_clk frequencies specified in Table 2-5.

The DW_apb_i2c coreConsultant GUI can automatically calculate SCL high and low count values. By
specifying an integer ic_clk period value in nanoseconds for the IC_CLK_PERIOD parameter, SCL high and
low count values are automatically calculated for each speed mode. The ic_clk period must not specify a
clock of a lower frequency than required for all supported speed modes. It is possible that the automatically
calculated values may result in a baud rate higher than the maximum rate specified by the protocol. If this
happens, either the low or high count values can be scaled up to reduce the baud rate.

The equation to calculate the proper number of ic_clk signals required for setting the proper SCL clocks
high and low times is as follows:

IC_xCNT = (ROUNDUP(MIN_SCL_xxxtime*OSCFREQ,0))
 ROUNDUP is an explicit Excel function call that is used to convert a real number to its
equivalent integer number.
 MIN_SCL_HIGHtime = Minimum High Period
 MIN_SCL_HIGHtime = 4000 ns for 100 kbps
 600 ns for 400 kbps
 260 ns for 1000 kbps
 60 ns for 3.4 Mbs, bus loading = 100pF
 120 ns for 3.4 Mbs, bus loading = 400pF

 MIN_SCL_LOWtime = Minimum Low Period
 MIN_SCL_LOWtime = 4700 ns for 100 kbps
 1300 ns for 400 kbps
 500 ns for 1000 kbps
 160 ns for 3.4Mbs, bus loading = 100pF
 320 ns for 3.4Mbs, bus loading = 400pF

OSCFREQ = ic_clk Clock Frequency (Hz).

NoteNoteNoteNote
■ The IC_UFM_SCL_LCNT and IC_UFM_SCL_HCNT registers are programmed

using the SCL low and high program values in Table 2-8, which are calculated as
SCL low count, and SCL high count, respectively. The values in Table 2-8 are
based on IC_SDA_RX_HOLD = 0. The maximum IC_SDA_RX_HOLD value
depends on the IC_UFM_SCL_LCNT registers in Master mode, as described in
“SDA Hold Timings in Receiver” on page 78.

■ In order to compute the HCNT and LCNT considering RC timings, use the following
equations:

IC_UFM_SCL_HCNT = [HCNT * ic_clk] + SCL_Fall_time
IC_UFM_SCL_LCNT = [LCNT * ic_clk] - SCL_Fall_time + SCL_Rise_time

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

For example:

 OSCFREQ = 100 MHz
 I2Cmode = fast, 400 kbit/s
 MIN_SCL_HIGHtime = 600 ns.
 MIN_SCL_LOWtime = 1300 ns.

IC_xCNT = (ROUNDUP(MIN_SCL_HIGH_LOWtime*OSCFREQ,0))

IC_HCNT = (ROUNDUP(600 ns * 100 MHz,0))
IC_HCNTSCL PERIOD = 60
IC_LCNT = (ROUNDUP(1300 ns * 100 MHz,0))
IC_LCNTSCL PERIOD = 130
Actual MIN_SCL_HIGHtime = 60*(1/100 MHz) = 600 ns
Actual MIN_SCL_LOWtime = 130*(1/100 MHz) = 1300 ns

2.15.4.6 Calculating High and Low counts with IC_CLK_FREQ_OPTIMIZATION = 1

The following calculations show how to calculate SCL high and low counts for each speed mode in the
DW_apb_i2c. For the calculations to work, the ic_clk frequencies used must not be less than the minimum
ic_clk frequencies specified in Table 2-6.

The DW_apb_i2c coreConsultant GUI can automatically calculate SCL high and low count values. By
specifying an integer ic_clk period value in nanoseconds for the IC_CLK_PERIOD parameter, SCL high and
low count values are automatically calculated for each speed mode. The ic_clk period must not specify a
clock of a lower frequency than required for all supported speed modes. It is possible that the automatically
calculated values may result in a baud rate higher than the maximum rate specified by the protocol. If this
happens, either the low or high count values can be scaled up to reduce the baud rate. For more
information, see “Master Mode” on page 71.

The equation to calculate the proper number of ic_clk signals required for setting the proper SCL clocks
high and low times is as follows:

IC_xCNT = (ROUNDUP(MIN_SCL_xxxtime*OSCFREQ,0))
 ROUNDUP is an explicit Excel function call that is used to convert a real number to its
equivalent integer number.
 MIN_SCL_HIGHtime = Minimum High Period
 MIN_SCL_HIGHtime = 4000 ns for 100 kbps
 600 ns for 400 kbps
 260 ns for 1000 kbps
 60 ns for 3.4 Mbps, bus loading = 100pF
 160 ns for 3.4 Mbps, bus loading = 400pF
 MIN_SCL_LOWtime = Minimum Low Period
 MIN_SCL_LOWtime = 4700 ns for 100 kbps
 1300 ns for 400 kbps
 500 ns for 1000 kbps
 120 ns for 3.4Mbps, bus loading = 100pF
 320 ns for 3.4Mbps, bus loading = 400pF
OSCFREQ = ic_clk Clock Frequency (Hz).

NoteNoteNoteNote Once the default values for SCL HighCount and LowCount are computed by the
coreConsultant GUI, check that the values are consistent with the required baud rate. In case
the computed values do not match with the required values, you can manually scale the
values, as described in the section “High-Speed (HS) Mode With
IC_CLK_FREQ_OPTIMIZATION = 0” on page 70.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

For example:

 OSCFREQ = 100 MHz
 I2Cmode = fast, 400 kbit/s
 MIN_SCL_HIGHtime = 600 ns.
 MIN_SCL_LOWtime = 1300 ns.

IC_xCNT = (ROUNDUP(MIN_SCL_HIGH_LOWtime*OSCFREQ,0))

IC_HCNT = (ROUNDUP(600 ns * 100 MHz,0))
IC_HCNTSCL PERIOD = 60
IC_LCNT = (ROUNDUP(1300 ns * 100 MHz,0))
IC_LCNTSCL PERIOD = 130
Actual MIN_SCL_HIGHtime = 60*(1/100 MHz) = 600 ns
Actual MIN_SCL_LOWtime = 130*(1/100 MHz) = 1300 ns

2.16 SDA Hold Time
The I2C protocol specification requires 300ns of hold time on the SDA signal (tHD;DAT) in standard mode
and fast mode, and a hold time long enough to bridge the undefined part between logic 1 and logic 0 of the
falling edge of SCL in high speed mode and fast mode plus.

Board delays on the SCL and SDA signals can mean that the hold-time requirement is met at the I2C master,
but not at the I2C slave (or vice-versa). As each application encounters differing board delays, the
DW_apb_i2c contains a software programmable register (IC_SDA_HOLD) to enable dynamic adjustment of
the SDA hold-time.

The bits [15:0] are used to control the hold time of SDA during transmit in both slave and master mode
(after SCL goes from HIGH to LOW).

The bits [23:16] are used to extend the SDA transition (if any) whenever SCL is HIGH in the receiver (in
either master or slave mode).

Figure 2-31 IC_SDA_HOLD Register

If different SDA hold times are required for different speed modes, the IC_SDA_HOLD register must be
reprogrammed when the speed mode is being changed. The IC_SDA_HOLD register can be programmed
only when the DW_apb_i2c is disabled (IC_ENABLE[0] = 0).

NoteNoteNoteNote When the default values for SCL HighCount and LowCount are computed by the
coreConsultant GUI, check that the values are consistent with the required baud rate.
In case the computed values do not match with the required values, you can
manually scale the values, as described in “Master Mode” on page 73.

31:24

Reserved
IC_SDA_RX_HOLD
IC_SDA_TX_HOLD

23:16 15:0

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

The reset value of the IC_SDA_HOLD register can be set through the coreConsultant parameter
IC_DEFAULT_SDA_HOLD

2.16.1 SDA Hold Timings in Receiver

When DW_apb_i2c acts as a receiver, according to the I2C protocol, the device should internally hold the
SDA line to bridge undefined gap between logic 1 and logic 0 of SCL.

IC_SDA_RX_HOLD can be used to alter the internal hold time which DW_apb_i2c applies to the incoming
SDA line. Each value in the IC_SDA_RX_HOLD register represents a unit of one ic_clk period. The
minimum value of IC_SDA_RX_HOLD is 0. This hold time is applicable only when SCL is HIGH. The
receiver does not extend the SDA after SCL goes LOW internally.

Figure 2-32 shows the DW_apb_i2c as receiver with IC_SDA_RX_HOLD programmed to greater than or
equal to 3.

Figure 2-32 DW_apb_i2c as Receiver With IC_SDA_RX_HOLD Programmed to Greater Than or Equal to 3

If IC_SDA_RX_HOLD is greater than 3, DW_apb_i2c does not hold SDA beyond 3 ic_clk cycles, because
SCL goes LOW internally.

Figure 2-33 shows the DW_apb_i2c as receiver with IC_SDA_RX_HOLD programmed to 2.

IC_SDA_RX_HOLD >= 3

ic_clk

scl_int
(Internal SCL after filter logic)

sda_post_spk_suppression
(Internal signal after filter logic)

sda_int
(SDA signal after filter and hold)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

Figure 2-33 DW_apb_i2c as Receiver With IC_SDA_RX_HOLD Programmed to 2

The maximum values of IC_SDA_RX_HOLD that can be programmed in the register for the respective
speed modes are derived from the equations show in Table 2-9.

Table 2-9 Maximum Values for IC_SDA_RX_HOLD

2.16.2 SDA Hold Timings in Transmitter

The IC_SDA_TX_HOLD register can be used to alter the timing of the generated SDA (ic_data_oe) signal by
the DW_apb_i2c. Each value in the IC_SDA_TX_HOLD register represents a unit of one ic_clk period.

When the DW_apb_i2c is operating in Master Mode, the minimum tHD:DAT timing is one ic_clk period.
Therefore even when IC_SDA_TX_HOLD has a value of zero, the DW_apb_i2c drives SDA (ic_data_oe) one
ic_clk cycle after driving SCL (ic_clk_oe) to logic 0. For all other values of IC_SDA_TX_HOLD, the following
is true:

■ Drive on SDA (ic_data_oe) occurs IC_SDA_TX_HOLD ic_clk cycles after driving SCL (ic_clk_oe) to
logic 0

Speed Mode Maximum IC_SDA_RX_HOLD Value

Standard Mode IC_SS_SCL_HCNT – IC_FS_SPKLEN – 3

Fast Mode or Fast Mode
Plus

IC_FS_SCL_HCNT – IC_FS_SPKLEN – 3

High Speed
(IC_CAP_LOADING =100)

Min {IC_FS_SCL_HCNT – IC_FS_SPKLEN – 3, IC_HS_SCL_LCNT – IC_HS_SPKLEN – 3}

High Speed
(IC_CAP_LOADING =400)

Min {IC_FS_SCL_HCNT – IC_FS_SPKLEN – 3, (IC_HS_SCL_LCNT/2) – IC_HS_SPKLEN – 3}

NoteNoteNoteNote The maximum values in Table 2-9 is applicable in Master mode. In Slave mode, make sure the
IC_SDA_RX_HOLD does not exceed the maximum SCL fall time (tf in SS and FS mode or tfcl
in HS Mode).

IC_SDA_RX_HOLD = 2

ic_clk

scl_int
(Internal SCL after filter logic)

sda_post_spk_suppression
(Internal signal after filter logic)

sda_int
(SDA signal after filter and hold)

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

When the DW_apb_i2c is operating in Slave Mode, the minimum tHD:DAT timing is SPKLEN + 7 ic_clk
periods, where SPKLEN is:

■ IC_FS_SPKLEN if the component is operating in standard mode, fast mode, or fast mode plus

■ IC_HS_SPKLEN if the component is operating in high speed mode

This delay allows for synchronization and spike suppression on the SCL (ic_clk_in_a) sample. Therefore,
even when IC_SDA_TX_HOLD has a value less than SPKLEN + 7, the DW_apb_i2c drives SDA (ic_data_oe)
SPKLEN + 7 ic_clk cycles after SCL (ic_clk_in) has transitioned to logic 0. For all other values of
IC_SDA_TX_HOLD, the following is true:

■ Drive on SDA (ic_data_oe) occurs IC_SDA_TX_HOLD ic_clk cycles after SCL (ic_clk_in_a) has
transitioned to logic 0.

Figure 2-34 shows the tHD:DAT timing generated by the DW_apb_i2c operating in Master Mode when
IC_SDA_TX_HOLD = 3.

Figure 2-34 DW_apb_i2c Master Implementing tHD;DAT with IC_SDA_HOLD = 3

2.17 DMA Controller Interface
The DW_apb_i2c has an optional built-in DMA capability that can be selected at configuration time; it has a
handshaking interface to a DMA Controller to request and control transfers. The APB bus is used to perform
the data transfer to or from the DMA. While the DW_apb_i2c DMA operation is designed in a generic way
to fit any DMA controller as easily as possible, it is designed to work seamlessly, and best used, with the
DesignWare DMA Controller, the DW_ahb_dmac. The settings of the DW_ahb_dmac that are relevant to
the operation of the DW_apb_i2c are discussed here, mainly bit fields in the DW_ahb_dmac channel control
register, CTLx, where x is the channel number.

NoteNoteNoteNote The programmed SDA hold time cannot exceed at any time the duration of the low part of
scl. Therefore the programmed value cannot be larger than N_SCL_LOW-2, where
N_SCL_LOW is the duration of the low part of the scl period measured in ic_clk cycles.

IC_SDA_TX_HOLD = 3

ic_clk

ic_data_oe

ic_clk_oe

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

The relevant DMA settings are discussed in the following sections.

2.17.1 Enabling the DMA Controller Interface

To enable the DMA Controller interface on the DW_apb_i2c, you must write the DMA Control Register
(IC_DMA_CR). Writing a 1 into the TDMAE bit field of IC_DMA_CR register enables the DW_apb_i2c
transmit handshaking interface. Writing a 1 into the RDMAE bit field of the IC_DMA_CR register enables
the DW_apb_i2c receive handshaking interface.

2.17.2 Overview of Operation

As a block flow control device, the DMA Controller is programmed by the processor with the number of
data items (block size) that are to be transmitted or received by DW_apb_i2c; this is programmed into the
BLOCK_TS field of the DW_ahb_dmac CTLx register.

The block is broken into a number of transactions, each initiated by a request from the DW_apb_i2c. The
DMA Controller must also be programmed with the number of data items (in this case, DW_apb_i2c FIFO
entries) to be transferred for each DMA request. This is also known as the burst transaction length and is
programmed into the SRC_MSIZE/DEST_MSIZE fields of the DW_ahb_dmac CTLx register for source and
destination, respectively.

Figure 2-35 shows a single block transfer, where the block size programmed into the DMA Controller is 12
and the burst transaction length is set to 4. In this case, the block size is a multiple of the burst transaction
length. Therefore, the DMA block transfer consists of a series of burst transactions. If the DW_apb_i2c
makes a transmit request to this channel, four data items are written to the DW_apb_i2c TX FIFO. Similarly,
if the DW_apb_i2c makes a receive request to this channel, four data items are read from the DW_apb_i2c

NoteNoteNoteNote When the DW_apb_i2c interfaces to the DW_ahb_dmac, the DW_ahb_dmac is always a flow
controller; that is, it controls the block size. This must be programmed by software in the
DW_ahb_dmac. The DW_ahb_dmac always transfers data using DMA burst transactions if
possible, for efficiency. For more information, see the DesignWare DW_ahb_dmac Databook.
Other DMA controllers act in a similar manner.

NoteNoteNoteNote The DMA output dma_finish is a status signal to indicate that the DMA block transfer is
complete. DW_apb_i2c does not use this status signal, and therefore does not appear in the
I/O port list.

http://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf
https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

RX FIFO. Three separate requests must be made to this DMA channel before all 12 data items are written or
read.

Figure 2-35 Breakdown of DMA Transfer into Burst Transactions

DMA Burst DMA Burst DMA Burst

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

Transaction 1 Transaction 2 Transaction 3

12 Data Items

DMA
Multi-block Transfer

Level

12 Data Items

Block Size: DMA.CTLx.BLOCK_TS=12
Number of data items per source burst transaction: DMA.CTLx.SRC_MSIZE = 4
I2C receive FIFO watermark level: I2C.DMARDLR + 1 = DMA.CTLx.SRC_MSIZE = 4
 (for more information, see discussion on page 86)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

When the block size programmed into the DMA Controller is not a multiple of the burst transaction length,
as shown in Figure 2-36, a series of burst transactions followed by single transactions are needed to
complete the block transfer.

Figure 2-36 Breakdown of DMA Transfer into Single and Burst Transactions

2.17.3 Transmit Watermark Level and Transmit FIFO Underflow

During DW_apb_i2c serial transfers, transmit FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the transmit FIFO is less than or equal to the DMA Transmit Data Level Register
(IC_DMA_TDLR) value; this is known as the watermark level. The DW_ahb_dmac responds by writing a
burst of data to the transmit FIFO buffer, of length CTLx.DEST_MSIZE.

If IC_EMPTYFIFO_HOLD_MASTER_EN parameter is set to 0, data should be fetched from the DMA often
enough for the transmit FIFO to perform serial transfers continuously; that is, when the FIFO begins to
empty another DMA request should be triggered. Otherwise, the FIFO runs out of data causing a STOP to
be inserted on the I2C bus. To prevent this condition, you must set the watermark level correctly.

2.17.4 Choosing the Transmit Watermark Level

Consider the example where the assumption is made:

DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR

Here the number of data items to be transferred in a DMA burst is equal to the empty space in the Transmit
FIFO. Consider two different watermark level settings.

15 Data Items

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

DMA Burst DMA SingleDMA SingleDMA Single
Transaction 1

DMA Burst
Transaction2

DMA Burst
Transaction 3

1 Data Item 1 Data Item 1 Data Item

Transaction 1 Transaction 2 Transaction 3

15 Data Items

DMA
Multi-Block Transfer

Level

Block Size: DMA.CTLx.BLOCK_TS=15
Number of data items per burst transaction: DMA.CTLx.DEST_MSIZE = 4
I2C transmit FIFO watermark level: I2C.IC_DMA_TDLR = DMA.CTLx.DEST_MSIZE = 4
 (for more information, see discussion on page 85)

https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.17.4.1 Case 1: IC_DMA_TDLR = 2

■ Transmit FIFO watermark level = I2C.IC_DMA_TDLR = 2

■ DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR = 6

■ I2C transmit FIFO_DEPTH = 8

■ DMA.CTLx.BLOCK_TS = 30

Figure 2-37 Case 1 Watermark Levels

Therefore, the number of burst transactions needed equals the block size divided by the number of data
items per burst:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/6 = 5

The number of burst transactions in the DMA block transfer is 5. But the watermark level,
I2C.IC_DMA_TDLR, is quite low. Therefore, the probability of an I2C underflow is high where the I2C serial
transmit line needs to transmit data, but where there is no data left in the transmit FIFO. This occurs because
the DMA has not had time to service the DMA request before the transmit FIFO becomes empty.

2.17.4.2 Case 2: IC_DMA_TDLR = 6

■ Transmit FIFO watermark level = I2C.IC_DMA_TDLR = 6

■ DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR = 2

■ I2C transmit FIFO_DEPTH = 8

■ DMA.CTLx.BLOCK_TS = 30

Figure 2-38 Case 2 Watermark Levels

Number of burst transactions in Block:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/2 = 15

FIFO_DEPTH = 8

I2C.IC_DMA_TDLR = 2

FIFO_DEPTH - I2C.IC_DMA_TDLR = 6

FULL

EMPTY

I2C Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

FIFO_DEPTH = 8 I2C.IC_DMA_TDLR = 6

FIFO_DEPTH - I2C.iC_DMA_TDLR = 2

FULL

EMPTY

I2C Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

In this block transfer, there are 15 destination burst transactions in a DMA block transfer. But the watermark
level, I2C.IC_DMA_TDLR, is high. Therefore, the probability of an I2C underflow is low because the DMA
controller has plenty of time to service the destination burst transaction request before the I2C transmit FIFO
becomes empty.

Thus, the second case has a lower probability of underflow at the expense of more burst transactions per
block. This provides a potentially greater amount of AMBA bursts per block and worse bus utilization than
the former case.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while
at the same time keeping the probability of an underflow condition to an acceptable level. In practice, this is
a function of the ratio of the rate at which the I2C transmits data to the rate at which the DMA can respond
to destination burst requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the DMA
master interface to the highest priority master in the AMBA layer, increases the rate at which the DMA
controller can respond to burst transaction requests. This in turn allows you to decrease the watermark
level, which improves bus utilization without compromising the probability of an underflow occurring.

2.17.5 Selecting DEST_MSIZE and Transmit FIFO Overflow

As can be seen from Figure 2-38, programming DMA.CTLx.DEST_MSIZE to a value greater than the
watermark level that triggers the DMA request may cause overflow when there is not enough space in the
I2C transmit FIFO to service the destination burst request. Therefore, the following equation must be
adhered to in order to avoid overflow:

DMA.CTLx.DEST_MSIZE <= I2C.FIFO_DEPTH - I2C.IC_DMA_TDLR (1)

In Case 2: IC_DMA_TDLR = 6, the amount of space in the transmit FIFO at the time the burst request is
made is equal to the destination burst length, DMA.CTLx.DEST_MSIZE. Thus, the transmit FIFO may be
full, but not overflowed, at the completion of the burst transaction.

Therefore, for optimal operation, DMA.CTLx.DEST_MSIZE should be set at the FIFO level that triggers a
transmit DMA request; that is:

DMA.CTLx.DEST_MSIZE = I2C.FIFO_DEPTH - I2C.IC_DMA_TDLR (2)

This is the setting used in Figure 2-36.

Adhering to equation (2) reduces the number of DMA bursts needed for a block transfer, and this in turn
improves AMBA bus utilization.

2.17.6 Receive Watermark Level and Receive FIFO Overflow

During DW_apb_i2c serial transfers, receive FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the receive FIFO is at or above the DMA Receive Data Level Register; that is,
IC_DMA_RDLR+1. This is known as the watermark level. The DW_ahb_dmac responds by fetching a burst
of data from the receive FIFO buffer of length CTLx.SRC_MSIZE.

NoteNoteNoteNote The transmit FIFO is not full at the end of a DMA burst transfer if the I2C has successfully
transmitted one data item or more on the I2C serial transmit line during the transfer.

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Data should be fetched by the DMA often enough for the receive FIFO to accept serial transfers
continuously; that is, when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the FIFO
fills with data (overflow). To prevent this condition, you must correctly set the watermark level.

2.17.7 Choosing the Receive Watermark level

Similar to choosing the transmit watermark level described earlier, the receive watermark level,
IC_DMA_RDLR+1, should be set to minimize the probability of overflow, as shown in Figure 2-39. It is a
trade-off between the number of DMA burst transactions required per block versus the probability of an
overflow occurring.

2.17.8 Selecting SRC_MSIZE and Receive FIFO Underflow

As can be seen in Figure 2-39, programming a source burst transaction length greater than the watermark
level may cause underflow when there is not enough data to service the source burst request. Therefore,
equation 3 following must be adhered to avoid underflow.

If the number of data items in the receive FIFO is equal to the source burst length at the time the burst
request is made – DMA.CTLx.SRC_MSIZE – the receive FIFO may be emptied, but not underflowed, at the
completion of the burst transaction. For optimal operation, DMA.CTLx.SRC_MSIZE should be set at the
watermark level; that is:

DMA.CTLx.SRC_MSIZE = I2C.IC_DMA_RDLR + 1 (3)

Adhering to equation (3) reduces the number of DMA bursts in a block transfer, which in turn can avoid
underflow and improve AMBA bus utilization.

Figure 2-39 I2C Receive FIFO

2.17.9 Handshaking Interface Operation

The following sections discuss the handshaking interface.

2.17.9.1 dma_tx_req, dma_rx_req

The request signals for source and destination, dma_tx_req and dma_rx_req, are activated when their
corresponding FIFOs reach the watermark levels as discussed earlier.

NoteNoteNoteNote The receive FIFO is not empty at the end of the source burst transaction if the I2C has
successfully received one data item or more on the I2C serial receive line during the burst.

I2C.IC_DMA_RDLR + 1FULL

EMPTY

I2C Receive FIFO

DMA
Controller

Data In

Data Out

Receive FIFO
Watermark level

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

The DW_ahb_dmac uses rising-edge detection of the dma_tx_req signal/dma_rx_req to identify a request
on the channel. Upon reception of the dma_tx_ack/dma_rx_ack signal from the DW_ahb_dmac to indicate
the burst transaction is complete, the DW_apb_i2c de-asserts the burst request signals,
dma_tx_req/dma_rx_req, until dma_tx_ack/dma_rx_ack is de-asserted by the DW_ahb_dmac.

When the DW_apb_i2c samples that dma_tx_ack/dma_rx_ack is de-asserted, it can re-assert the
dma_tx_req/dma_rx_req of the request line if their corresponding FIFOs exceed their watermark levels
(back-to-back burst transaction). If this is not the case, the DMA request lines remain de-asserted.
Figure 2-40 shows a timing diagram of a burst transaction where pclk = hclk.

Figure 2-40 Burst Transaction – pclk = hclk

Figure 2-41 shows two back-to-back burst transactions where the hclk frequency is twice the pclk frequency.

Figure 2-41 Back-to-Back Burst Transactions – hclk = 2*pclk

The handshaking loop is as follows:

dma_tx_req/dma_rx_req asserted by DW_apb_i2c

-> dma_tx_ack/dma_rx_ack asserted by DW_ahb_dmac

-> dma_tx_req/dma_rx_req de-asserted by DW_apb_i2c

-> dma_tx_ack/dma_rx_ack de-asserted by DW_ahb_dmac

-> dma_tx_req/dma_rx_req reasserted by DW_apb_i2c, if back-to-back transaction is required

burst transaction request

burst transaction complete

pclk

hclk

dma_tx_req

dma_tx_ack

dma_tx_single not sampled by the DW_ahb_dmac for burst transactions

burst transaction request

burst transaction complete

burst transaction request

burst transaction complete

hclk

pclk

dma_rx_req

dma_rx_ack

dma_rx_single not sampled by the DW_ahb_dmac for burst transactions

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Two things to note here:

1. The burst request lines, dma_tx_req signal/dma_rx_req, once asserted remain asserted until their
corresponding dma_tx_ack/dma_rx_ack signal is received even if the respective FIFO’s drop below
their watermark levels during the burst transaction.

2. The dma_tx_req/dma_rx_req signals are de-asserted when their corresponding
dma_tx_ack/dma_rx_ack signals are asserted, even if the respective FIFOs exceed their watermark
levels.

2.17.9.2 dma_tx_single, dma_rx_single

The dma_tx_single signal is a status signal. It is asserted when there is at least one free entry in the transmit
FIFO and cleared when the transmit FIFO is full. The dma_rx_single signal is a status signal. It is asserted
when there is at least one valid data entry in the receive FIFO and cleared when the receive FIFO is empty.

These signals are needed by only the DW_ahb_dmac for the case where the block size, CTLx.BLOCK_TS,
that is programmed into the DW_ahb_dmac is not a multiple of the burst transaction length,
CTLx.SRC_MSIZE, CTLx.DEST_MSIZE, as shown in Figure 2-36. In this case, the DMA single outputs
inform the DW_ahb_dmac that it is still possible to perform single data item transfers, so it can access all
data items in the transmit/receive FIFO and complete the DMA block transfer. The DMA single outputs
from the DW_apb_i2c are not sampled by the DW_ahb_dmac otherwise. This is illustrated in the following
example.

Consider first an example where the receive FIFO channel of the DW_apb_i2c is as follows:

DMA.CTLx.SRC_MSIZE = I2C.iC_DMA_RDLR + 1 = 4

DMA.CTLx.BLOCK_TS = 12

For the example in Figure 2-35, with the block size set to 12, the dma_rx_req signal is asserted when four
data items are present in the receive FIFO. The dma_rx_req signal is asserted three times during the
DW_apb_i2c serial transfer, ensuring that all 12 data items are read by the DW_ahb_dmac. All DMA
requests read a block of data items and no single DMA transactions are required. This block transfer is made
up of three burst transactions.

Now, for the following block transfer:

DMA.CTLx.SRC_MSIZE = I2C.IC_DMA_RDLR + 1 = 4

DMA.CTLx.BLOCK_TS = 15

The first 12 data items are transferred as already described using three burst transactions. But when the last
three data frames enter the receive FIFO, the dma_rx_req signal is not activated because the FIFO level is
below the watermark level. The DW_ahb_dmac samples dma_rx_single and completes the DMA block

NoteNoteNoteNote The burst transaction request signals, dma_tx_req and dma_rx_req, are generated in the
DW_apb_i2c off pclk and sampled in the DW_ahb_dmac by hclk. The acknowledge signals,
dma_tx_ack and dma_rx_ack, are generated in the DW_ahb_dmac off hclk and sampled in
the DW_apb_i2c of pclk. The handshaking mechanism between the DW_ahb_dmac and the
DW_apb_i2c supports quasi-synchronous clocks; that is, hclk and pclk must be
phase-aligned, and the hclk frequency must be a multiple of the pclk frequency.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

transfer using three single transactions. The block transfer is made up of three burst transactions followed
by three single transactions.

Figure 2-42 shows a single transaction. The handshaking loop is as follows:

dma_tx_single/dma_rx_single asserted by DW_apb_i2c

-> dma_tx_ack/dma_rx_ack asserted by DW_ahb_dmac

-> dma_tx_single/dma_rx_single de-asserted by DW_apb_i2c

-> dma_tx_ack/dma_rx_ack de-asserted by DW_ahb_dmac.

Figure 2-42 Single Transaction

Figure 2-43 shows a burst transaction, followed by three back-to-back single transactions, where the hclk
frequency is twice the pclk frequency.

Figure 2-43 Burst Transaction + 3 Back-to-Back Singles – hclk = 2*pclk

NoteNoteNoteNote The single transaction request signals, dma_tx_single and dma_rx_single, are generated in
the DW_apb_i2c on the pclk edge and sampled in DW_ahb_dmac on hclk. The acknowledge
signals, dma_tx_ack and dma_rx_ack, are generated in the DW_ahb_dmac on the hclk edge
hclk and sampled in the DW_apb_i2c on pclk. The handshaking mechanism between the
DW_ahb_dmac and the DW_apb_i2c supports quasi-synchronous clocks; that is, hclk and
pclk must be phase aligned and the hclk frequency must be a multiple of pclk frequency.

m0 m1 m2 n0 n1 n2 n3 n4

single transaction complete

pclk

hclk

dma_rx_req

dma_rx_ack

dma_rx_single

hclk

pclk

dma_tx_req

dma_tx_ack

dma_tx_single

burst transaction request

burst transaction complete
Single transaction complete

Single transaction complete
Single transaction complete

https://solvnet.synopsys.com
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.18 APB Interface
The host processor accesses data, control, and status information on the DW_apb_i2c peripheral through the
AMBA APB 2.0 interface. This peripheral supports APB data bus widths of 8, 16, or 32 bits, which is set with
the APB_DATA_WIDTH parameter.

Figure 2-44 shows the read/write buses between the DW_apb and the APB slave.

Figure 2-44 Read/Write Buses Between the DW_apb and an APB Slave

The register interface of DW_apb_i2c is compliant to APB 2.0, APB 3.0, and APB 4.0 specifications. The
SLAVE_INTERFACE_TYPE parameter is used to select the APB interface type of the register interface.

2.18.1 APB 3.0 Support

The following signals are included as part of APB 3.0 interface.

The PREADY signal should always be kept to its default value that is high for all APB accesses except for the
IC_DATA_CMD register access. During the IC_DATA_CMD access, the PREADY signal is de-asserted to
stall the APB transaction under the following conditions:

■ Tx FIFO is empty: The APB transaction completes and PREADY is asserted if the data is received in
the Rx FIFO before the register read/write timeout happens.

■ Tx FIFO is full: The APB transaction completes and PREADY is asserted if the data is read out of the
Tx FIFO before the register read/write timeout happens.

If timeout happens, then the APB transaction is unsuccessful that is the RX FIFO is not read or the TX FIFO
is not written. The APB transaction must be re-initiated by application for successful completion.

The PSLVERR signal functionality is enabled when the SLVERR_RESP_EN parameter is set to 1, so that
DW_apb_i2c register interface can provide slave error response (if required). The DW_apb_i2c generates the
error response under the following conditions:

■ Enabling both master mode and slave mode in IC_CON register, which is an invalid programming.

■ Writing high into CMD bit of the IC_DATA_CMD register, when IC_SLV_DISABLE bit of IC_CON
register is low.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

■ The DW_apb_i2c stalls the APB transaction by pulling PREADY signal low, because the Rx FIFO is
empty or the Tx FIFO is full. To avoid locking of the bus for the large number of clock cycles, a
timeout option is provided through configuration parameter REG_TIMEOUT_VALUE. The timeout
is triggered under the following conditions:

❑ Rx FIFO remains empty or

❑ TX FIFO remains full

If the duration is equal to the timeout period that is REG_TIMEOUT_VALUE, then APB interface
asserts PSLVERR signal to indicate the register read/write timeout.

2.18.2 APB 4.0 Support

The DW_apb_i2c register interface is compliant to the APB 4.0 specification and to adhere to this
compliance, the PSTRB and PPROT signals are added to the APB interface.

In the write transaction to this interface, the PSTRB signal indicates validity of PWDATA bytes.
DW_apb_i2c component selectively writes to the bytes of the addressed register whose corresponding bit in
the PSTRB signal is high. Bytes strobed low by the corresponding PSTRB bits are not modified. The
incoming strobe bits for a read transaction is always zero as per the protocol.

Following figure shows the byte lane mapping of the PSTRB signal.

2.19 I/O Connections
As illustrated in Figure 2-45, the I2C interface consists of two wires, a clock (SCL) and data (SDA). For high
speed systems, the names are SCLH and SDAH. For high speed mode, a current source pull-up may be used
on the SCLH line. It is enabled during some active master transactions. The SDA and SDAH connections are
the same at any speed. There are no special connections required for the DesignWare APB slave interface
side of the DW_apb_i2c.

NoteNoteNoteNote
■ The PSTRB is not supported for write transaction on the IC_DATA_CMD register.

■ The PPROT signal is added for interface consistency and PPROT signal is not used
internally.

PSTRB[3] PSTRB[2] PSTRB[1] PSTRB[0]

31 24 23 16 15 8 7 0

https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

Figure 2-45 I/O Connection to I2C Interface

2.20 DW_apb_i2c Registers
The “Register Descriptions” on page 141 list all the registers available in DW_apb_i2c. Note that there are
references to both hardware parameters and software registers throughout the chapter “Register
Descriptions” on page 141. Parameters and many of the register bits are prefixed with an IC_*. However, the
software register bits are distinguished in “Register Descriptions” on page 141 by italics. For instance,
IC_MAX_SPEED_MODE is a hardware parameter and configured once using Synopsys coreConsultant,
whereas the IC_SLAVE_DISABLE bit in the IC_CON register controls whether I2C has its slave disabled.

An address definition (memory map) C header file is shipped with the DW_apb_i2c component. You can
use this header file when the DW_apb_i2c is programmed in a C environment.

2.20.1 Registers and Field Descriptions

Registers in DW_apb_i2c are on the pclk domain, but status bits reflect actions that occur in the ic_clk
domain. Therefore, there is delay when the pclk register reflects the activity that occurred on the ic_clk side.

Some registers may be written only when the DW_apb_i2c is disabled, programmed by the IC_ENABLE
register. Software should not disable the DW_apb_i2c while it is active. If the DW_apb_i2c is in the process
of transmitting when it is disabled, it stops as well as deletes the contents of the transmit buffer after the
current transfer is complete. The slave continues receiving until the remote master aborts the transfer, in
which case the DW_apb_i2c could be disabled. Registers that cannot be written to when the DW_apb_i2c is
enabled are indicated in their descriptions.

Unless the clocks pclk and ic_clk are identical (IC_CLK_TYPE = 0), there is a two-register delay for
synchronous and asynchronous modes.

2.20.2 Operation of Interrupt Registers

Table 2-10 lists the operation of the DW_apb_i2c interrupt registers and how they are set and cleared. Some
bits are set by hardware and cleared by software, whereas other bits are set and cleared by hardware.

Table 2-10 Clearing and Setting of Interrupt Registers

NoteNoteNoteNote A read operation to an address location that contains unused bits results in a 0 value being
returned on each of the unused bits.

SCL(H)

ic_clk_in_a

VDD

ic_current_src_en

ic_clk_oe

SDA(H)

ic_data_oe

CLK GENERATOR

ic_data_in_a

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Functional Description

Figure 2-46 shows the operation of the interrupt registers where the bits are set by hardware and cleared by
software.

Figure 2-46 Interrupt Scheme

Interrupt Bit Fields
Set by Hardware/
Cleared by Software Set and Cleared by Hardware

MST_ON_HOLD ✘ ✓

RESTART_DET ✓ ✘

GEN_CALL ✓ ✘

START_DET ✓ ✘

STOP_DET ✓ ✘

ACTIVITY ✓ ✘

RX_DONE ✓ ✘

TX_ABRT ✓ ✘

RD_REQ ✓ ✘

TX_EMPTY ✘ ✓

TX_OVER ✓ ✘

RX_FULL ✘ ✓

RX_OVER ✓ ✘

RX_UNDER ✓ ✘

IC_RAW_INTR_STATUS

pwdata[i]

register_en

i = register bit field

(decoded from paddr)

S/W Access

i2c_en

0

1

0

1

0
1

0

1clr_read_en

0

H/W set

{to Register
IC_INTR_MASK

ic_intr_stat

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Functional Description DesignWare DW_apb_i2c Databook

2.21 UDID Feature
SMBus slave address conflicts can be resolved by dynamically assigning a new unique address to each slave
device through the SMBus Host Controller. The SMBus Host controller makes use of SMBus Address
Resolution Protocol to assign unique dynamic address for the slaves in the SMBus system. This SMBus
Address Resolution protocol uses the unique 128-bit Unique Device ID (UDID), which helps to isolate each
device in the SMBus system for address assignment. The DW_apb_i2c supports the 128-bit SMBus UDID
through the configuration parameter IC_SMBUS_UDID_HC.

When IC_SMBUS_UDID_HC=1, the SMBus UDID is partially configurable and programmable that is
Upper 96-bits of the UDID is configurable through the parameter IC_SMBUS_UDID_MSB and lower 32-bits
are programmable through the register IC_SMBUS_UDID_LSB. The register default value is configurable
through the parameter IC_SMBUS_UDID_LSB_DEFAULT.

When IC_SMBUS_UDID_HC=0, the SMBus UDID is completely software programmable through the
registers IC_SMBUS_UDID_WORD0/1/2/3. This feature is useful when you want to update the SMBus
UDID through the software. The register IC_SMBUS_UDID_WORD0 default value is configurable through
the parameter IC_SMBUS_UDID_LSB_DEFAULT. The IC_SMBUS_UDID_WORD1/2/3 register, default
value is derived based on the configurable parameter IC_SMBUS_UDID_MSB.

Software programmable UDID feature helps you to update the UDID quickly using the application
software.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

■ Top Level Parameters on page 96

■ I2C Version 3.0 Features on page 112

■ SMBus Features on page 114

■ I2C Version 6.0 Features on page 117

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

3.1 Top Level Parameters

Table 3-1 Top Level Parameters

Label Description

 System Configuration

Register Interface Type Select Register Interface type as APB2, APB3 or APB4. By default, DW_apb_i2c
supports APB2 interface.
Values:

■ APB2 (0)

■ APB3 (1)

■ APB4 (2)

Default Value: APB2
Enabled: DWC-APB-Advanced-Source source license exists.
Parameter Name: SLAVE_INTERFACE_TYPE

Slave Error Response Enable Enable Slave Error response signaling:The component will refrain From signaling an
error response if this parameter is disabled.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: SLAVE_INTERFACE_TYPE>0
Parameter Name: SLVERR_RESP_EN

APB data bus width Width of the APB data bus.
Values: 8, 16, 32
Default Value: 8
Enabled: Always
Parameter Name: APB_DATA_WIDTH

Width of Register timeout
counter

Defines the width of Register timeout counter. If set to zero, the timeout counter
register is disabled, and timeout is triggered as soon as the transaction tries to read
an empty RX_FIFO or write to a full TX_FIFO. As these are the only cases where
PREADY signal goes low , it ensures that PREADY is tied high throughout. Setting
values from 4 through 32 for this parameter configures the timeout period from 2^4
to 2^8 pclk cycles.
Values: 0, 4, 5, 6, 7, 8
Default Value: 4
Enabled: SLAVE_INTERFACE_TYPE>0 && SLVERR_RESP_EN==1
Parameter Name: REG_TIMEOUT_WIDTH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

Hardcode Register timeout
counter value

Checking this parameter makes Register timeout counter a read-only register. The
register can be programmed by user if the hardcode option is turned off.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: SLAVE_INTERFACE_TYPE>0 && SLVERR_RESP_EN==1 &&
REG_TIMEOUT_WIDTH>0
Parameter Name: HC_REG_TIMEOUT_VALUE

Register Timeout counter
default value

Defines the reset value of Register timeout counter register. This value can be over
- ridden by programming the timeout counter register before enabling the
component , if the HC_REG_TIMEOUT_VALUE is left un-checked
Values: 1, ..., POW_2_REG_TIMEOUT_WIDTH
Default Value: 8
Enabled: SLAVE_INTERFACE_TYPE>0 && SLVERR_RESP_EN==1 &&
REG_TIMEOUT_WIDTH>0
Parameter Name: REG_TIMEOUT_VALUE

 Device Configuration

Highest speed I2C mode
supported

Maximum I2C mode supported. Controls the reset value of the SPEED bit field [2:1]
of the I2C Control Register (IC_CON). Count registers are used to generate the
outgoing clock SCL on the I2C interface. For speed modes faster than the
configured maximum speed mode, the corresponding registers are not present in
the top-level RTL.
For unsupported speed modes those registers are not present as described below.

■ If this parameter is set to "Standard Mode" then the IC_FS_SCL_*,
IC_HS_MADDR, and IC_HS_SCL_* registers are not present.

■ If this parameter is set to "Fast Mode" then the IC_HS_MADDR, and
IC_HS_SCL_* registers are not present.

Values:

■ Standard Mode (0x1)

■ Fast Mode or Fast Mode Plus (0x2)

■ High Speed Mode (0x3)

Default Value: (IC_ULTRA_FAST_MODE ==1)? 1 : (IC_SMBUS == 1 ? 2 : 3)
Enabled: IC_ULTRA_FAST_MODE == 0
Parameter Name: IC_MAX_SPEED_MODE

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

Has I2C default slave address
of?

Reset Value of DW_apb_i2c Slave Address. Controls the reset value of Register
(IC_SAR). The default values cannot be any of the reserved address locations:
0x00 to 0x07 or 0x78 to 0x7f.
Values: 0x000, ..., 0x3ff
Default Value: 0x055
Enabled: Always
Parameter Name: IC_DEFAULT_SLAVE_ADDR

Has I2C default target slave
address of?

Reset value of DW_apb_i2c target slave address. Controls the reset value of the
IC_TAR bit field (9:0) of the I2C Target Address Register (IC_TAR). The default
values cannot be any of the reserved address locations: 0x00 to 0x07 or 0x78 to
0x7f.
Values: 0x000, ..., 0x3ff
Default Value: 0x055
Enabled: Always
Parameter Name: IC_DEFAULT_TAR_SLAVE_ADDR

Has High Speed mode master
code of?

High Speed mode master code of the DW_apb_i2c block. Controls the reset value
of I2C HS Master Mode Code Address Register (IC_HS_MADDR). This is a unique
code that alerts other masters on the I2C bus that a high-speed mode transfer is
going to begin. For more information about this code, refer to "Multiple Master
Arbitration" section in data book.
Values: 0x0, ..., 0x7
Default Value: 0x1
Enabled: (IC_MAX_SPEED_MODE == 3) && (IC_ULTRA_FAST_MODE ==0)
Parameter Name: IC_HS_MASTER_CODE

Is an I2C Master? Controls whether DW_apb_i2c has its master enabled to be a master after reset.
This parameter controls the reset value of bit 0 of the I2C Control Register
(IC_CON). To enable the component to be a master, you must write a 1 in bit 0 of
the IC_CON register.
Note: If this parameter is checked (1), then you must ensure that the parameter
IC_SLAVE_DISABLE is checked (1) as well.
Values:

■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: IC_MASTER_MODE

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

Disable Slave after reset? Controls whether DW_apb_i2c has its slave enabled or disabled after reset. If
checked, the DW_apb_i2c slave interface is disabled after reset. The slave also can
be disabled by programming a 1 into IC_CON[6]. By default the slave is enabled.
Note: If this parameter is unchecked (0), then you must ensure that the parameter
IC_MASTER_MODE is unchecked (0) as well.
Values:

■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: IC_SLAVE_DISABLE

Supports 10-bit addressing in
slave mode?

Controls whether DW_apb_i2c slave supports 7 or 10 bit addressing on the I2C
interface after reset when acting as a slave. Controls reset value of part of Register
IC_CON. The DW_apb_i2c module will respond to this number of address bits
when acting as a slave; it can be reprogrammed by software.
Values:

■ false (0x0)

■ true (0x1)

Default Value: IC_SMBUS == 1 ? 0 : 1
Enabled: Always
Parameter Name: IC_10BITADDR_SLAVE

Supports 10-bit addressing in
master mode?

Controls whether DW_apb_i2c supports 7 or 10 bit addressing on the I2C interface
after reset when acting as a master. Controls reset value of part of Register
IC_CON. Master generated transfers will use this number of address bits.
Additionally, it can be reprogrammed by software by writing to the IC_CON register.
Values:

■ false (0x0)

■ true (0x1)

Default Value: IC_SMBUS == 1 ? 0 : 1
Enabled: Always
Parameter Name: IC_10BITADDR_MASTER

Depth of transmit buffer is? Depth of transmit buffer. The buffer is 9 bits wide; 8 bits for the data, and 1 bit for the
read or write command.
Values: 2, ..., 256
Default Value: 8
Enabled: Always
Parameter Name: IC_TX_BUFFER_DEPTH

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

Depth of receive buffer is? Depth of receive buffer, the buffer is 8 bits wide.
Values: 2, ..., 256
Default Value: 8
Enabled: Always
Parameter Name: IC_RX_BUFFER_DEPTH

Transmit buffer threshold value
is?

Reset value for threshold level of transmit buffer. This parameter controls the reset
value of the I2C Transmit FIFO Threshold Level Register (IC_TX_TL).
Values: 0x0, ..., IC_TX_BUFFER_DEPTH-1
Default Value: 0x0
Enabled: Always
Parameter Name: IC_TX_TL

Receive buffer threshold value
is?

Reset value for threshold level of receive buffer. This parameter controls the reset
value of the I2C Receive FIFO Threshold Level Register (IC_RX_TL).
Values: 0x0, ..., IC_RX_BUFFER_DEPTH-1
Default Value: 0x0
Enabled: Always
Parameter Name: IC_RX_TL

Allow re-start conditions to be
sent when acting as a master?

Controls the reset value of bit 5 (IC_RESTART_EN) in the IC_CON register. By
default, this parameter is checked, which allows RESTART conditions to be sent
when DW_apb_i2c is acting as a master. Some older slaves do not support
handling RESTART conditions; however, RESTART conditions are used in several
I2C operations. When the RESTART is disabled, the DW_apb_i2c master is
incapable of performing the following functions:

■ Sending a START BYTE

■ Performing any high-speed mode operation

■ Performing direction changes in combined format mode

■ Performing a read operation with a 10-bit address

Values:

■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: IC_RESTART_EN

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

Hardware reset value for
IC_SDA_SETUP register

Determines the reset value for the register IC_SDA_SETUP, which in turn controls
the time delay - in terms of number of ic_clk clock periods - introduced in the rising
edge of SCL, relative to SDA changing when a read-request is serviced. The
relevant I2C requirement is t[su:DAT] as detailed in the I2C Bus Specifications.
Values: 0x02, ..., 0xff
Default Value: 0x64
Enabled: IC_ULTRA_FAST_MODE ==0
Parameter Name: IC_DEFAULT_SDA_SETUP

Hardware reset value for
IC_SDA_HOLD register

Determines the reset value for the register IC_SDA_HOLD, which in turn controls
the SDA hold time implemented by DW_apb_i2c (when transmitting or receiving, as
either master or slave) as a master/slave transmitter or Master/Slave Reciever). The
relevant I2C requirement is t[HD:DAT] as detailed in the I2C Bus Specifications.
The programmed SDA hold time as transmitter cannot exceed at any time the
duration of the low part of scl. Therefore it is recommended that the configured
default value should not be larger than N_SCL_LOW-2, where N_SCL_LOW is the
duration of the low part of the scl period measured in ic_clk cycles, for the maximum
speed mode the component is configured for.
Values: 0x000001, ..., 0xffffff
Default Value: [<functionof> IC_USE_COUNTS IC_CLOCK_PERIOD
IC_ULTRA_FAST_MODE]
Enabled: Always
Parameter Name: IC_DEFAULT_SDA_HOLD

IC_ACK_GENERAL_CALL set
to acknowledge I2C general
calls on reset

This parameter determines the reset value for the register
IC_ACK_GENERAL_CALL, which in turn controls whether I2C general call
addresses are to responded or not.
Values:
■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: IC_ULTRA_FAST_MODE == 0
Parameter Name: IC_DEFAULT_ACK_GENERAL_CALL

 External Configuration

Include DMA handshaking
interface signals?

Configures the inclusion of DMA handshaking interface signals. When checked,
includes the DMA handshaking interface signals at the top-level I/O. For more
information about these signals, see "Signal Descriptions" in data book.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: IC_HAS_DMA

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

102 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

Single Interrupt output port
present?

If unchecked, each interrupt source has its own output. If checked, all interrupt
sources are combined into a single output.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: IC_INTR_IO

Polarity of Interrupts is active
high?

Configures the active level of the output interrupt lines.
Values:
■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: IC_INTR_POL

 Internal Configuration

Add Encoded Parameters Adding the encoded parameters gives firmware an easy and quick way of
identifying the DesignWare component within an I/O memory map. Some critical
design-time options determine how a driver should interact with the peripheral.
There is a minimal area overhead by including these parameters. Allows a single
driver to be developed for each component which will be self-configurable.
When bit 7 of the IC_COMP_PARAM_1 is read and contains a '1' the encoded
parameters can be read via software. If this bit is a '0' then the entire register is '0'
regardless of the setting of any of the other parameters that are encoded in the
register's bits. For details about this register, see the IC_COMP_PARAM_1 register.
Note: Unique drivers must be developed for each configuration of the DW_apb_i2c.
Based on the configuration, the registers in the IP can differ; thus the same driver
cannot be used with different configurations of the IP.
Values:
■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: IC_ADD_ENCODED_PARAMS

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 103SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

Specify clock counts directly
instead of supplying clock
frequency?

Determines whether *CNT values are provided directly or by specifying the ic_clk
clock frequency and letting coreConsultant (or coreAssembler) calculate the count
values.
When this parameter is checked, the reset values of the *CNT registers are
specified by the corresponding *COUNT configuration parameters which may be
user-defined or derived (see standard, fast, fast mode plus, and high speed mode
parameters later in this table).
When unchecked (default setting), the reset values of the *CNT registers are
calculated from the configuration parameter IC_CLOCK_PERIOD.
Note: For fast mode plus, reprogram the IC_FS_SCL_*CNT register to achieve the
required data rate when unchecked.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: IC_USE_COUNTS

Hard code the count values for
each mode?

By checking this parameter, the *CNT registers are set to read only. Unchecking this
parameter (default setting) allows the *CNT registers to be writable.
Regardless of the setting, the *CNT registers are always readable and have reset
values from the corresponding *COUNT configuration parameters, which may be
user defined or derived (see standard, fast, fast mode plus, or high speed mode
parameters later in this table).
Note: Since the DW_apb_i2c uses the same high and low count registers for fast
mode and fast mode plus operation, if this parameter is checked (1) the
IC_FS_SCL_*CNT registers are hard coded to either one of the fast mode and fast
mode plus. Consequently, DW_apb_i2c can operate in either fast mode or fast
mode plus, but not in both modes simultaneously.
For fast mode plus, it is recommended that this parameter be Unchecked (0).
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: IC_HC_COUNT_VALUES

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

104 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

ic_clk has a period of? (ns
integers only)

Specifies the period of incoming ic_clk, used to generate outgoing I2C interface
SCL clock. (ns integers only)
When the count values are used to generate the IC_CLOCK_PERIOD then the
IC_MAX_SPEED_MODE setting determines the actual period
 IC_MAX_SPEED_MODE = Standard => 500ns
 IC_MAX_SPEED_MODE = Fast => 100ns
 IC_MAX_SPEED_MODE = High => 10ns
 IC_ULTRA_FAST_MODE = 1 => 25ns
Note: For fast mode plus, user has to reprogram the IC_FS_SCL_*CNT register to
achieve required data rate.
Values: 2, ..., 2147483647
Default Value: [<functionof> IC_MAX_SPEED_MODE IC_ULTRA_FAST_MODE]
Enabled: IC_USE_COUNTS == 0
Parameter Name: IC_CLOCK_PERIOD

Relationship between pclk and
ic_clk is?

Specifies the relationship between pclk and ic_clk
Identical (0): clocks are identical; no meta-stability flops used for data passing
between clock domains.
Asynchronous (1): clocks may be completely asynchronous to each other, meta-
stability flops are required for data passing between clock domains.
Values:
■ Identical (0x0)

■ Asynchronous (0x1)

Default Value: 0x1
Enabled: Always
Parameter Name: IC_CLK_TYPE

Enable Async FIFO Mode? This parameter controls whether DW_apb_i2c consist of Asynchronous or
Synchronous FIFO's for the Transmit and Receive Data Buffers.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_CLK_TYPE==ASYNC
Parameter Name: IC_HAS_ASYNC_FIFO

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 105SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

 Standard Speed Mode Configuration

Std speed SCL high count is? Reset value of Standard Speed I2C Clock SCL High Count register
(IC_SS_SCL_HCNT). The value must be calculated based on the I2C data rate
desired and I2C clock frequency. When parameter IC_USE_COUNTS = 0, this
parameter is automatically calculated using the IC_CLOCK_PERIOD parameter.
For more information, see the IC_SS_SCL_HCNT register.
Values: IC_HCNT_LO_LIMIT, ..., 0xffff
Default Value: [<functionof> IC_USE_COUNTS IC_HCNT_LO_LIMIT
IC_CLOCK_PERIOD]
Enabled: (IC_USE_COUNTS==1) && (IC_ULTRA_FAST_MODE ==0)
Parameter Name: IC_SS_SCL_HIGH_COUNT

Std speed SCL low count is? Reset value of Standard Speed I2C Clock SCL High Count register
(IC_SS_SCL_HCNT). Value must be calculated based on I2C data rate desired and
I2C clock frequency. When parameter IC_USE_COUNTS = 0, this parameter is
automatically calculated using the IC_CLOCK_PERIOD parameter. For more
information, see IC_SS_SCL_LCNT register.
Values: IC_LCNT_LO_LIMIT, ..., 0xffff
Default Value: [<functionof> IC_USE_COUNTS IC_LCNT_LO_LIMIT
IC_CLOCK_PERIOD]
Enabled: (IC_USE_COUNTS==1) && (IC_ULTRA_FAST_MODE ==0)
Parameter Name: IC_SS_SCL_LOW_COUNT

 Fast Mode or Fast Mode Plus Configuration

Fast speed SCL high count is? Reset value of Fast Mode or Fast Mode Plus I2C Clock SCL High Count register
(IC_FS_SCL_HCNT). The value must be calculated based on I2C data rate desired
and I2C clock frequency. When parameter IC_USE_COUNTS = 0, this parameter is
automatically calculated using the IC_CLOCK_PERIOD parameter. For more
information, see IC_FS_SCL_HCNT register.
Values: IC_HCNT_LO_LIMIT, ..., 0xffff
Default Value: [<functionof> IC_MAX_SPEED_MODE IC_USE_COUNTS
IC_HCNT_LO_LIMIT IC_CLOCK_PERIOD]
Enabled: (IC_MAX_SPEED_MODE>=2 && IC_USE_COUNTS==1) &&
(IC_ULTRA_FAST_MODE==0)
Parameter Name: IC_FS_SCL_HIGH_COUNT

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

106 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

Fast speed SCL low count is? Reset value of Fast Mode or Fast Mode Plus I2C Clock SCL Low Count register
(IC_FS_SCL_LCNT). The value must be calculated based on I2C data rate desired
and I2C clock frequency. When parameter IC_USE_COUNTS = 0, this parameter is
automatically calculated using the IC_CLOCK_PERIOD parameter. For more
information, see the IC_FS_SCL_LCNT register
Values: IC_LCNT_LO_LIMIT, ..., 0xffff
Default Value: [<functionof> IC_MAX_SPEED_MODE IC_USE_COUNTS
IC_LCNT_LO_LIMIT IC_CLOCK_PERIOD]
Enabled: (IC_MAX_SPEED_MODE>=2 && IC_USE_COUNTS==1) &&
(IC_ULTRA_FAST_MODE==0)
Parameter Name: IC_FS_SCL_LOW_COUNT

 High Speed Mode Configuration

For high speed mode systems
the I2C bus loading is? (pF)

For high speed mode, the bus loading affects the high and low pulse width of SCL.
Values:

■ 100 (100)

■ 400 (400)

Default Value: 100
Enabled: (IC_MAX_SPEED_MODE==3) && (IC_ULTRA_FAST_MODE ==0)
Parameter Name: IC_CAP_LOADING

High speed SCL high count is? Reset value of High Speed I2C Clock SCL High Count register
(IC_HS_SCL_HCNT). The value must be calculated based on I2C data rate desired
and high speed I2C clock frequency. When parameter IC_USE_COUNTS = 0, this
parameter is automatically calculated using the IC_CLOCK_PERIOD parameter.
For more information, see IC_HS_SCL_HCNT register.
Values: IC_HCNT_LO_LIMIT, ..., 0xffff
Default Value: [<functionof> IC_MAX_SPEED_MODE IC_USE_COUNTS
IC_HCNT_LO_LIMIT IC_CLOCK_PERIOD IC_CAP_LOADING]
Enabled: (IC_MAX_SPEED_MODE==3 && IC_USE_COUNTS==1) &&
(IC_ULTRA_FAST_MODE==0)
Parameter Name: IC_HS_SCL_HIGH_COUNT

High speed SCL low count is? Reset value of High Speed I2C Clock SCL Low Count register
(IC_HS_SCL_LCNT). The value must be calculated based on I2C data rate and I2C
clock frequency. When parameter IC_USE_COUNTS = 0, this parameter is
automatically calculated using the IC_CLOCK_PERIOD parameter. For more
information, see IC_HS_SCL_LCNT register.
Values: IC_LCNT_LO_LIMIT, ..., 0xffff
Default Value: [<functionof> IC_MAX_SPEED_MODE IC_USE_COUNTS
IC_LCNT_LO_LIMIT IC_CLOCK_PERIOD IC_CAP_LOADING]
Enabled: (IC_MAX_SPEED_MODE==3 && IC_USE_COUNTS==1) &&
(IC_ULTRA_FAST_MODE==0)
Parameter Name: IC_HS_SCL_LOW_COUNT

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 107SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

 Spike Suppression Configuration

Maximum length (in ic_clk
cycles) of suppressed spikes in
Standard Mode, Fast Mode,
and Fast Mode Plus

Reset value of maximum suppressed spike length register in Standard Mode, Fast
Mode, and Fast Mode Plus modes (IC_FS_SPKLEN Register). Spike length is
expressed in ic_clk cycles and this value is calculated based on the value of
IC_CLOCK_PERIOD.
Values: 0x1, ..., 0xff
Default Value: [<functionof> IC_CLOCK_PERIOD IC_FS_MAX_SPKLEN]
Enabled: IC_ULTRA_FAST_MODE==0
Parameter Name: IC_DEFAULT_FS_SPKLEN

Maximum length (in ic_clk
cycles) of suppressed spikes in
HS mode

Reset value of maximum suppressed spike length register in HS modes (Register
IC_HS_SPKLEN). Spike length is expressed in ic_clk cycles and this value is
calculated based on the value of IC_CLOCK_PERIOD.
Values: 0x1, ..., 0xff
Default Value: [<functionof> IC_CLOCK_PERIOD IC_HS_MAX_SPKLEN]
Enabled: (IC_MAX_SPEED_MODE==3) && (IC_ULTRA_FAST_MODE ==0)
Parameter Name: IC_DEFAULT_HS_SPKLEN

 Additional Features

Allow dynamic updating of the
TAR address?

When checked, allows the IC_TAR register to be updated dynamically. Setting this
parameter affects the operation of DW_apb_i2c when it is in master mode. For
more details, see "Master Mode Operation".
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: I2C_DYNAMIC_TAR_UPDATE

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

108 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

Enable register to generate
NACKs for data received by
Slave?

Enables an additional register which controls whether the DW_apb_i2c generates a
NACK after a data byte has been transferred to it. This NACK generation only
occurs when the DW_apb_i2c is a Slave-Receiver. If this register is set to a value of
1, it can only generate a NACK after a data byte is received; hence, the data transfer
is aborted. Also, the data received is not pushed to the receive buffer.
When the register is set to a value of 0, it generates NACK/ACK depending on
normal criteria. If this option is selected, the default value of the register
IC_SLV_DATA_NACK_ONLY is always 0. The register must be explicitly
programmed to a value of 1 if NACKs are to be generated. The register can only be
written to successfully if DW_apb_i2c is disabled (IC_ENABLE[0] = 0) or the slave
part is inactive (IC_STATUS[6] = 0).
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_ULTRA_FAST_MODE ==0
Parameter Name: IC_SLV_DATA_NACK_ONLY

When Receive Fifo is
Physically full, Generate NACK
for data received by slave?

This parameter enables DW_apb_i2c in Slave mode to generate NACK for a data
byte recieved when Receive FIFO is physically full. The new data byte will not be
pushed to the Receive FIFO, hence no overflow happens and rx_over interrupt will
not be set. This works only when DW_apb_i2c is in Slave/Receiver mode (data
being written to the slave) and is not applicable in Master mode.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: (IC_ULTRA_FAST_MODE ==0) && (IC_SLV_DATA_NACK_ONLY ==0)
Parameter Name: IC_RX_FULL_GEN_NACK

Hold transfer when Tx FIFO is
empty

If this parameter is set, the master will only complete a transfer - that is issues a
STOP - when it finds a Tx FIFO entry tagged with a Stop bit. If the Tx FIFO
becomes empty and the last byte does not have the Stop bit set, the master stalls
the transfer by holding the SCL line low.
If this parameter is not set, the master completes a transfer when the Tx FIFO is
empty. In SMbus Mode (IC_SMBUS=1), IC_EMPTYFIFO_HOLD_MASTER_EN
should be always enabled.
Values:
■ false (0)

■ true (1)

Default Value: IC_SMBUS == 1 ? 1 : 0
Enabled: Always
Parameter Name: IC_EMPTYFIFO_HOLD_MASTER_EN

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 109SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

When Receive Fifo is
physically full, Hold the bus till
Receive fifo has space
avialable?

When the Rx FIFO is physically full to its RX_BUFFER_DEPTH, this parameter
provides a hardware method to hold the bus till Rx FIFO data is read out and there
is a space available in the FIFO. This parameter can be used when DW_apb_i2c is
either a slave-receiver (that is, data is written to the device) or a master-receiver
(that is, the device reads data from a slave).
Note: If parameter "IC_RX_FULL_GEN_NACK" is enabled, then setting this
parameter has no impact in slave-receiver mode since, the controller NACK's the
Data byte if Rx-FIFO has no empty space.Note: If this parameter is checked, then
the RX_OVER interrupt is never set to 1 as the criteria to set this interrupt is never
met. The RX_OVER interrupt can be found in IC_INTR_STAT and
IC_RAW_INTR_STAT registers. It is also an optional output signal,
ic_rx_over_intr(_n).
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_ULTRA_FAST_MODE ==0
Parameter Name: IC_RX_FULL_HLD_BUS_EN

Enable restart detect interrupt
in slave mode?

When checked, allows the slave to detect and issue the restart interrupt when slave
is addressed. Setting this parameter affects the operation of DW_apb_i2c only
when it is in slave mode. This controls the "RESTART_DET" bit in the
IC_RAW_INTR_STAT, IC_INTR_MASK, IC_INTR_STAT, and
IC_CLR_RESTART_DET registers.This also controls the ic_restart_det_intr(_n)
and ic_intr(_n) signals.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: IC_SLV_RESTART_DET_EN

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

110 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

Generate STOP_DET interrupt
only if Master is active?

Controls whether DW_apb_i2c generates STOP_DET interrupt when master is
active:

■ Checked (1): Allows the master to detect and issue the stop interrupt when
master is active.

■ Unchecked (0): The master always detects and issues the stop interrupt
irrespective of whether it is active.

This parameter affects the operation of DW_apb_i2c when it is in master mode.
This controls the STOP_DET bit of the IC_RAW_INTR_STAT, IC_INTR_MASK,
IC_INTR_STAT and IC_CLR_STOP_DET registers. This also controls the
ic_stop_det_intr(_n) and ic_intr(_n) signals.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_ULTRA_FAST_MODE ==0
Parameter Name: IC_STOP_DET_IF_MASTER_ACTIVE

Include Status bits to indicate
the reason for clock stretching?

If this parameter is set, the DW_apb_i2c consists of status bits indicating the reason
for clock stretching in the IC_STATUS Register.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_ULTRA_FAST_MODE ==0
Parameter Name: IC_STAT_FOR_CLK_STRETCH

Include programmable bit for
blocking Master commands?

Controls whether DW_apb_i2c transmits data on I2C bus as soon as data is
available in Tx FIFO. When checked, allows the master to hold the transmission of
data on I2C bus when Tx FIFO has data to transmit.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: IC_TX_CMD_BLOCK

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 111SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

Enable blocking Master
commands after reset?

Controls whether DW_apb_i2c has its transmit command block enabled or disabled
after reset. If checked, the DW_apb_i2c blocks the transmission of data on I2C bus.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_TX_CMD_BLOCK==1
Parameter Name: IC_TX_CMD_BLOCK_DEFAULT

Include First data byte
indication in IC_DATA_CMD
register?

Controls whether DW_apb_i2c generates FIRST_DATA_BYTE status bit in
IC_DATA_CMD register. When checked, the master/slave receiver to set the
FIRST_DATA_BYTE status bit in IC_DATA_CMD register to indicate whether the
data present in IC_DATA_CMD register is first data byte after the address phase of
a receive transfer.
Note: In the case when APB_DATA_WIDTH is set to 8, you must perform two APB
reads to the IC_DATA_CMD register to get status on bit 11.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: Always
Parameter Name: IC_FIRST_DATA_BYTE_STATUS

Avoid Rx FIFO Flush on
Tranmsit Abort?

This Parameter controls the Rx FIFO Flush during the Transmit Abort. If this
parameter is checked(1), only the Tx FIFO is flushed (not the Rx FIFO) Flush on the
Transmit Abort. If this parameter is unchecked(0), both Tx FIFO and Rx FIFO are
flushed on Transmit Abort.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_ULTRA_FAST_MODE ==0
Parameter Name: IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT

Enable IC_CLK Frequency
Reduction?

This parameter is used to reduce the system clock frequency (ic_clk) by reducing
the internal latency required to generate the high period and low period of the SCL
line.
Values:

■ false (0x0)

■ true (0x1)

Default Value: IC_ULTRA_FAST_MODE == 1 ? 1 : 0
Enabled: DWC-APB-Advanced-Source License Required and
IC_ULTRA_FAST_MODE=0
Parameter Name: IC_CLK_FREQ_OPTIMIZATION

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

112 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

3.2 I2C Version 3.0 Features Parameters

Table 3-2 I2C Version 3.0 Features Parameters

Label Description

 I2C 3.0 Features

Include Bus Clear feature? This parameter will enable the Bus clear feature for the DW_apb_i2c core.
If this parameter is set:

■ If an SDA line is stuck at low for IC_SDA_STUCK_LOW_TIMEOUT period of
ic_clk, DW_apb_i2c master generates a master transmit abort
(IC_TX_ABRT_SOURCE[17]: ABRT_SDA_STUCK_AT_LOW) to indicate SDA
stuck at low.

User can enable the SDA_STUCK_RECOVERY_EN (IC_ENABLE[3]) register
bit to recover the SDA by sending at most 9 SCL clocks.
If SDA line is recovered, then the master generates a STOP and auto clear the
'SDA_STUCK_RECOVERY_EN' register bit and resume the normal I2C
transfers.
If an SDA line is not recovered, then the master auto clears the
SDA_STUCK_RECOVERY_EN register bit and asserts the
SDA_STUCK_NOT_RECOVERED (IC_STATUS[12]) status bit to indicate the
SDA is not recovered after sending 9 SCL clocks which intimate the user for
system reset.

■ If SCL line is stuck at low for IC_SCL_STUCK_LOW_TIMEOUT period of ic_clk,
DW_apb_i2c Master will generate an SCL_STUCK_AT_LOW
(IC_INTR_RAW_STATUS[14]) interrupt to intimate the user for system reset.

Values:
■ false (0x0)

■ true (0x1)

Default Value: IC_SMBUS==1 ? 1 : 0
Enabled: IC_ULTRA_FAST_MODE ==0
Parameter Name: IC_BUS_CLEAR_FEATURE

Has SCL Stuck Timeout value
of ?

Default value of the IC_SCL_STUCK_LOW_TIMEOUT Register.
Values: 0x0, ..., 0xffffffff
Default Value: 0xffffffff
Enabled: IC_BUS_CLEAR_FEATURE==1
Parameter Name: IC_SCL_STUCK_TIMEOUT_DEFAULT

Has SDA Stuck Timeout value
of ?

Default value of the IC_SDA_STUCK_LOW_TIMEOUT Register.
Values: 0x0, ..., 0xffffffff
Default Value: 0xffffffff
Enabled: IC_BUS_CLEAR_FEATURE==1
Parameter Name: IC_SDA_STUCK_TIMEOUT_DEFAULT

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 113SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

Enable DEVICE-ID feature? If this Parameter is enabled, the DW_apb_i2c slave includes a 24-bit
IC_DEVICE_ID Register to store the value of Device-ID and transmits whenever
master is requested.
The Master mode includes a DEVICE_ID bit 13 in IC_TAR register to initiate the
Device ID read for a particular slave address mentioned in IC_TAR[6:0] register.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_ULTRA_FAST_MODE ==0
Parameter Name: IC_DEVICE_ID

Has I2C Slave DEVICE ID
value of?

Device ID Value of the I2C Slave stored in the IC_DEVICE_ID Register (24 bit, MSB
is transferred first on the Device ID read from the master).
Values: 0x0, ..., 0xffffff
Default Value: 0x0
Enabled: IC_DEVICE_ID==1
Parameter Name: IC_DEVICE_ID_VALUE

Table 3-2 I2C Version 3.0 Features Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

114 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

3.3 SMBus Features Parameters

Table 3-3 SMBus Features Parameters

Label Description

 I2C System Management Bus Features

Enable SMBus Mode? Controls whether DW_apb_i2c Master/Slave supports SMBus mode. If checked, the
DW_apb_i2c includes the SMBus mode related registers, real-time checks, timeout
interrupts, and SMBus optional signals.
Note: If this parameter is selected (1), then the user can set the parameter
IC_MAX_SPEED_MODE to Standard mode(1) or Fast Mode/Fast Mode Plus (2).
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: DWC-APB-Advanced-Source License Required and
IC_ULTRA_FAST_MODE=0
Parameter Name: IC_SMBUS

Has SMBus clock low Slave
extend default Timeout value of
?

Default value of the IC_SMBUS_CLK_LOW_SEXT Register.
Values: 0x0, ..., 0xffffffff
Default Value: 0xffffffff
Enabled: IC_SMBUS==1
Parameter Name: IC_SMBUS_CLK_LOW_SEXT_DEFAULT

Has SMBus clock low Master
extend default Timeout value of
?

Default value of the IC_SMBUS_CLK_LOW_MEXT Register.
Values: 0x0, ..., 0xffffffff
Default Value: 0xffffffff
Enabled: IC_SMBUS==1
Parameter Name: IC_SMBUS_CLK_LOW_MEXT_DEFAULT

Has SMBus Thigh:Max Idle
count Value of ?

Default value of the IC_SMBUS_THIGH_MAX_IDLE_COUNT Register.
Values: 0x0, ..., 0xffff
Default Value: 0xffff
Enabled: IC_SMBUS==1
Parameter Name: IC_SMBUS_RST_IDLE_CNT_DEFAULT

Enable SMBus Optional
Signals?

This parameter controls whether DW_apb_i2c includes Optional SMBus Suspend
and Alert signals on the interface.
Values:

■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_SMBUS==1
Parameter Name: IC_SMBUS_SUSPEND_ALERT

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 115SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

Include Optional slave address
register?

This parameter controls whether to include optional Slave Address Register in
SMBus Mode.
Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: IC_SMBUS==1
Parameter Name: IC_OPTIONAL_SAR

Has I2C default optional slave
address of?

Controls whether to include Optional Slave Address Register in SMBus Mode. A
user is not allowed to assign any reserved addresses. The reserved address are as
follows:
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x78 0x79 0x7a 0x7b 0x7c 0x7d 0x7e 0x7f
Values: 0x0, ..., 0x7f
Default Value: 0x0
Enabled: IC_OPTIONAL_SAR==1
Parameter Name: IC_OPTIONAL_SAR_DEFAULT

Enable Address Resolution
Protocol in SMBus Mode?

Controls whether DW_apb_i2c includes logic to detect and respond ARP
commands in Slave mode. It also includes logic to generate/validate the PEC byte
at the end of the transfer in Slave mode only.
Values: 0x0, 0x1
Default Value: 0x0
Enabled: IC_SMBUS==1
Parameter Name: IC_SMBUS_ARP

SMBus Unique Device
Identifier (UDID) Hardcode?

Controls whether Unique Device Identifier (UDID) used for Dynamic Address
Resolution process in SMBus ARP Mode is Hardcoded (Upper 96-bits) or
Complete UDID is Software Programmable.
Values: 0x0, 0x1
Default Value: 0x1
Enabled: IC_SMBUS_ARP==1
Parameter Name: IC_SMBUS_UDID_HC

Has SMBUS Unique device
identifier (MSB 96 bits) value
of?

If the parameter IC_SMBUS_UDID_HC is 1, stores the Static Unique Device
Identifier used for Dynamic Address Resolution process in SMBus ARP Mode
(Upper 96bits of UDID). If the parameter IC_SMBUS_UDID_HC is 0, then this field
is used as the default value of the upper 96bits of the UDID Registers
{IC_SMBUS_UDID_WORD3, IC_SMBUS_UDID_WORD2,
IC_SMBUS_UDID_WORD1}
Values: 0x0, ..., 0xffffffffffffffffffffffff
Default Value: 0x0
Enabled: IC_SMBUS_ARP==1
Parameter Name: IC_SMBUS_UDID_MSB

Table 3-3 SMBus Features Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

116 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

Has Default SMBus Unique
device identifier (LSB 32 bits)
value of?

If the parameter IC_SMBUS_UDID_HC is 1, specifies default value of the
IC_SMBUS_UDID_LSB register used for Dynamic Address Resolution process in
SMBus ARP mode (Lower 32bits of UDID). If the parameter IC_SMBUS_UDID_HC
is 0, specifies default value of the IC_SMBUS_UDID_WORD0 register used for
Dynamic Address Resolution process in SMBus ARP mode (Lower 32bits of
UDID).
Values: 0x0, ..., 0xffffffff
Default Value: 0xffffffff
Enabled: IC_SMBUS_ARP==1
Parameter Name: IC_SMBUS_UDID_LSB_DEFAULT

Has Default Persistent Slave
Address register bit Value of ?

Default value of the Persistent Slave Address register bit in IC_CON Register.
Values: 0x0, 0x1
Default Value: 0x0
Enabled: IC_SMBUS_ARP==1
Parameter Name: IC_PERSISTANT_SLV_ADDR_DEFAULT

Table 3-3 SMBus Features Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 117SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Parameter Descriptions

3.4 I2C Version 6.0 Features Parameters

Table 3-4 I2C Version 6.0 Features Parameters

Label Description

 I2C 6.0 Features

Enable Ultra-Fast Mode? This parameter is used to control whether DW_apb_i2c supports Ultra-Fast speed
mode or not.
If this Parameter is enabled, the Master

■ Disables the Arbitration, clock synchronization features.

■ Support only write transfers.

■ Does not check the validity of ACK/NACK for each byte.

The Slave

■ Supports only write transfers.

■ Disables the logic to generate ACK/NACK after the end of each byte.

■ Disables the logic to stretch the clock if RX-FIFO is full.

Values:
■ false (0x0)

■ true (0x1)

Default Value: false
Enabled: DWC-APB-Advanced-Source License Required
Parameter Name: IC_ULTRA_FAST_MODE

Ultra Fast speed SCL high
count is?

Reset value of Ultra-Fast Speed I2C Clock SCL High Count register
(IC_UFM_SCL_HCNT). The value must be calculated based on the I2C data rate
desired and I2C clock frequency. When parameter IC_USE_COUNTS = 0, this
parameter is automatically calculated using the IC_CLOCK_PERIOD parameter.
Values: IC_HCNT_LO_LIMIT, ..., 0xffff
Default Value: [<functionof> IC_USE_COUNTS IC_HCNT_LO_LIMIT
IC_CLOCK_PERIOD IC_ULTRA_FAST_MODE]
Enabled: (IC_USE_COUNTS==1) && (IC_ULTRA_FAST_MODE==1)
Parameter Name: IC_UFM_SCL_HIGH_COUNT

Ultra Fast speed SCL low
count is?

Reset value of Ultra-Fast Speed I2C Clock SCL Low Count register
(IC_UFM_SCL_LCNT). The value must be calculated based on the I2C data rate
desired and I2C clock frequency. When parameter IC_USE_COUNTS = 0, this
parameter is automatically calculated using the IC_CLOCK_PERIOD parameter.
Values: IC_LCNT_LO_LIMIT, ..., 0xffff
Default Value: [<functionof> IC_USE_COUNTS IC_LCNT_LO_LIMIT
IC_CLOCK_PERIOD IC_ULTRA_FAST_MODE]
Enabled: (IC_USE_COUNTS==1) && (IC_ULTRA_FAST_MODE==1)
Parameter Name: IC_UFM_SCL_LOW_COUNT

https://solvnet.synopsys.com
www.designware.com

118 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Parameter Descriptions DesignWare DW_apb_i2c Databook

Maximum length (in ic_clk
cycles) of suppressed spikes in
Ultra Fast mode

Reset value of maximum suppressed spike length register in Ultra-Fast Mode
(IC_UFM_SPKLEN Register). Spike length is expressed in ic_clk cycles and this
value is calculated based on the value of IC_CLOCK_PERIOD.
Values: 0x1, ..., 0xff
Default Value: [<functionof> IC_CLOCK_PERIOD IC_HS_MAX_SPKLEN]
Enabled: IC_ULTRA_FAST_MODE ==1
Parameter Name: IC_DEFAULT_UFM_SPKLEN

Has Ultra Fast mode tBuf count
Value of ?

Default value of the IC_UFM_TBUF_CNT Register. This parameter is active when
the IC_USE_COUNTS and IC_ULTRA_FAST_MODE parameters are checked (1);
otherwise, this value is automatically calculated using the IC_CLK_PERIOD
parameter.
Values: 0x0, ..., 0xffff
Default Value: [<functionof> IC_USE_COUNTS IC_CLOCK_PERIOD]
Enabled: (IC_USE_COUNTS==1) && (IC_ULTRA_FAST_MODE==1)
Parameter Name: IC_UFM_TBUF_CNT_DEFAULT

Table 3-4 I2C Version 6.0 Features Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 119

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the controller. For configurable IP titles, your actual
configuration might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
controller. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the inactive state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

120 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ Interrupts on page 121

■ I2C Interface (Master/Slave) on page 129

■ APB Slave Interface on page 132

■ DMA Interface on page 135

■ SMBus Interface on page 137

■ I2C Debug on page 138

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 121SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

4.1 Interrupts Signals

- ic_intr(_n)
- ic_mst_on_hold_intr(_n)
- ic_start_det_intr(_n)
- ic_stop_det_intr(_n)
- ic_restart_det_intr(_n)
- ic_scl_stuck_at_low_intr(_n)
- ic_smbus_clk_sext_intr(_n)
- ic_smbus_clk_mext_intr(_n)
- ic_smbus_quick_cmd_det_intr(_n)
- ic_smbus_arp_prepare_intr(_n)
- ic_smbus_arp_reset_intr(_n)
- ic_smbus_arp_get_udid_intr(_n)
- ic_smbus_arp_assign_address_intr(_n)
- ic_smbus_host_notify_intr(_n)
- ic_smbus_slv_rx_pec_nack_intr(_n)
- ic_smbalert_det_intr(_n)
- ic_smbsus_det_intr(_n)
- ic_activity_intr(_n)
- ic_rx_done_intr(_n)
- ic_tx_abrt_intr(_n)
- ic_rd_req_intr(_n)
- ic_tx_empty_intr(_n)
- ic_tx_over_intr(_n)
- ic_rx_full_intr(_n)
- ic_rx_over_intr(_n)
- ic_rx_under_intr(_n)
- ic_gen_call_intr(_n)

Table 4-1 Interrupts Signals

Port Name I/O Description

ic_intr(_n) O Optional. Combined interrupt. This signal is included on the interface
when the configuration parameter IC_INTR_IO is unchecked (0) to
indicate that only one interrupt line appears on the I/O (as opposed to
individual interrupt signals).
Exists: IC_INTR_IO == 1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

https://solvnet.synopsys.com
www.designware.com

122 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_mst_on_hold_intr(_n) O Optional. Optional. Master on hold I2C interrupt. This signal is
included on the interface when the configuration parameters
I2C_DYNAMIC_TAR_UPDATE and
IC_EMPTYFIFO_HOLD_MASTER_EN are checked (1) and the
configuration parameter IC_INTR_IO is unchecked (0), indicating
that individual interrupt lines appear on the I/O.
Exists: IC_INTR_IO==0 & I2C_DYNAMIC_TAR_UPDATE==1 &
IC_EMPTYFIFO_HOLD_MASTER_EN==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_start_det_intr(_n) O Optional. Start condition detect on I2C interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_stop_det_intr(_n) O Optional. Stop condition detect on I2C interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_restart_det_intr(_n) O Optional. Restart condition detect on I2C interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SLV_RESTART_DET_EN==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

Table 4-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 123SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_scl_stuck_at_low_intr(_n) O Optional. SCL Stuck condition detect on I2C interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_BUS_CLEAR_FEATURE==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbus_clk_sext_intr(_n) O Optional. SMBUS Slave clock extend timeout detect interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbus_clk_mext_intr(_n) O Optional. SMBUS Master clock extend timeout detect interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbus_quick_cmd_det_intr(_n) O Optional. SMBUS ARP Quick Command detect interrupt. This signal
is included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

Table 4-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

124 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_smbus_arp_prepare_intr(_n) O Optional. SMBUS ARP Prepare Command detect interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS_ARP==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbus_arp_reset_intr(_n) O Optional. SMBUS ARP Reset Command detect interrupt. This signal
is included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS_ARP==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbus_arp_get_udid_intr(_n) O Optional. SMBUS ARP Get UDID Command detect interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS_ARP==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbus_arp_assign_address_intr(_n) O Optional. SMBUS ARP Assign Command detect interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS_ARP==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

Table 4-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 125SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_smbus_host_notify_intr(_n) O Optional. SMBUS ARP Host Notify Command detect interrupt. This
signal is included on the interface when the configuration
IC_INTR_IO parameter is unchecked (0), which indicates that
individual interrupt lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbus_slv_rx_pec_nack_intr(_n) O Optional. SMBUS ARP Slave Received incorrect PEC Byte and
generated Nack interrupt. This signal is included on the interface
when the configuration IC_INTR_IO parameter is unchecked (0),
which indicates that individual interrupt lines appear on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS_ARP==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbalert_det_intr(_n) O Optional. SMBUS Alert detect interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS_SUSPEND_ALERT==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_smbsus_det_intr(_n) O Optional. SMBUS Suspend detect interrupt. This signal is included
on the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: IC_INTR_IO==0 & IC_SMBUS_SUSPEND_ALERT==1
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

Table 4-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

126 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_activity_intr(_n) O Optional. I2C activity interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_rx_done_intr(_n) O Optional. Receive done interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: IC_INTR_IO==0 & IC_ULTRA_FAST_MODE==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_tx_abrt_intr(_n) O Optional. Transmit abort interrupt.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_rd_req_intr(_n) O Optional. Slave read request interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: IC_INTR_IO==0 & IC_ULTRA_FAST_MODE==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

Table 4-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 127SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_tx_empty_intr(_n) O Optional. Transmit buffer empty interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
 When bit 0 of the IC_ENABLE register is 0, the TX FIFO is flushed
and held in reset, where it looks like it has no data within it. The
ic_tx_empty_intr_n bit is raised when bit 0 of the IC_ENABLE
register is 0, provided there is activity in the master or slave state
machines. When there is no longer activity, then this interrupt bit is
masked with ic_en.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_tx_over_intr(_n) O Optional. Transmit buffer overflow interrupt. This signal is included
on the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_rx_full_intr(_n) O Optional. Receive buffer full interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
 When bit 0 of the IC_ENABLE register is 0, the RX FIFO is flushed
and held in resetthe RX FIFO is not fullso this ic_rx_full_intr_n bit is
cleared once the ic_enable bit is programmed with a 0, regardless of
the activity that continues.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

Table 4-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

128 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_rx_over_intr(_n) O Optional. Receive buffer overflow interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_rx_under_intr(_n) O Optional. Receive buffer underflow interrupt. This signal is included
on the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
 When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

ic_gen_call_intr(_n) O Optional. General Call received interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
Exists: IC_INTR_IO==0
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High when IC_INTR_POL=1 otherwise Low

Table 4-1 Interrupts Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 129SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

4.2 I2C Interface (Master/Slave) Signals

ic_clk - - ic_current_src_en
ic_clk_in_a - - ic_clk_oe

ic_data_in_a - - ic_data_oe
ic_rst_n - - ic_en

Table 4-2 I2C Interface (Master/Slave) Signals

Port Name I/O Description

ic_current_src_en O Optional. Current source pull-up. Controls the polarity of the current
source pull-up on the SCLH. This pull-up is used to shorten the rise
time on SCLH by activating an user-supplied external current source
pull-up circuit. It is disabled after a RESTART condition and after
each A/A bit when acting as the active master.
 This signal enables other devices to delay the serial transfer by
stretching the LOW period of the SCLH signal. The active master re-
enables its current source pull-up circuit again when all devices have
released and the SCLH signal reaches high level, therefore,
shortening the last part of the SCLH signal's rise time.
Exists: (IC_MAX_SPEED_MODE==3)
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

ic_clk I Peripheral clock. DW_apb_i2c runs on this clock and is used to clock
transfers in standard, fast, and high-speed mode.
Note: ic_clk frequency must be greater than or equal to pclk
frequency. The configuration parameter IC_CLK_TYPE indicates the
relationship between pclk and ic_clk. It can be asynchronous (1) or
identical (0).
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

130 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

ic_clk_in_a I In (IC_ULTRA_FAST_MODE = 0) mode - Incoming I2C clock. This is
the input SCL signal. Double-registered for metastability
synchronization.
Note: DW_apb_i2c provides filtering on the SDA (ic_data_in_a) and
SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes with
durations less than one ic_clk period.
 In Ultra-Fast(IC_ULTRA_FAST_MODE = 1) mode - Incoming I2C
clock. This is the input SCL signal. Double-registered for
metastability synchronization.
Note: DW_apb_i2c provides filtering on the SDA (ic_data_in_a) and
SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes with
durations less than one ic_clk period. This signal is used as USCL
input for slave device. This signal is asynchronous to ic_clk.
Exists: Always
Synchronous To: Asynchronous
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

ic_data_in_a I In (IC_ULTRA_FAST_MODE = 0) mode - Incoming I2C Data. It is the
input SDA signal. Double-registered for metastability
synchronization.
Note: DW_apb_i2c provides filtering on the SDA (ic_data_in_a) and
SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes with
durations less than one ic_clk period.
 In Ultra-Fast(IC_ULTRA_FAST_MODE = 1) mode - Incoming I2C
Data. It is the input SDA signal. Double-registered for metastability
synchronization.
Note: DW_apb_i2c provides filtering on the SDA (ic_data_in_a) and
SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes with
durations less than one ic_clk period.This signal is used as USDA
input for slave device. This signal is asynchronous to ic_clk.
Exists: Always
Synchronous To: Asynchronous
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-2 I2C Interface (Master/Slave) Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 131SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

ic_rst_n I I2C reset. Used to reset flip-flops that are clocked by the ic_clk clock.
Note: This signal does not reset DW_apb_i2c control, configuration,
and status registers. The signal is asserted asynchronously, but is
deasserted synchronously after the rising edge of ic_clk. The
synchronization must be provided external to this component.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

ic_clk_oe O In (IC_ULTRA_FAST_MODE = 0) mode - Outgoing I2C clock. Open
drain synchronous with ic_clk.
 In Ultra-Fast(IC_ULTRA_FAST_MODE = 1) mode - Outgoing I2C
clock, inverted. This signal is used as USCL out from master device.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

ic_data_oe O In (IC_ULTRA_FAST_MODE = 0) mode - Outgoing I2C Data. Open
Drain Synchronous to ic_clk.
 In Ultra-Fast(IC_ULTRA_FAST_MODE = 1) mode - Outgoing I2C
Data, inverted. This signal is used as USDA out from master device.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

ic_en O I2C interface enable. Indicates whether DW_apb_i2c is enabled; this
signal is set to 0 when IC_ENABLE[0] is set to 0 (disabled). Because
DW_apb_i2c always finishes its current transfer before turning off
ic_en, this signal may be used by a clock generator to control
whether the DW_apb_i2c ic_clk is active or inactive.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-2 I2C Interface (Master/Slave) Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

132 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

4.3 APB Slave Interface Signals

pclk - - prdata
presetn - - pready

psel - - pslverr
penable -

pwrite -
paddr -

pwdata -
pstrb -
pprot -

Table 4-3 APB Slave Interface Signals

Port Name I/O Description

pclk I APB clock for the bus interface unit.
Note: ic_clk frequency must be greater than or equal to pclk
frequency. The configuration parameter IC_CLK_TYPE indicates the
relationship between pclk and ic_clk. It can be asynchronous (1) or
identical (0).
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

presetn I An APB interface domain reset. The signal is asserted
asynchronously, but is deasserted synchronously after the rising
edge of pclk. The synchronization must be provided external to this
component.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

psel I APB peripheral select that lasts for two pclk cycles. When asserted,
indicates that the peripheral has been selected for a read/write
operation.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 133SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

penable I APB enable control. Asserted for a single pclk cycle and used for
timing read/write operations.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pwrite I APB write control. When high, indicates a write access to the
peripheral; when low, indicates a read access.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

paddr[IC_ADDR_SLICE_LHS:0] I APB address bus. Uses lower 7 bits of the address bus for register
decode.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

pwdata[(APB_DATA_WIDTH-1):0] I APB write data bus. Driven by the bus master (DW_ahb to DW_apb
bridge) during write cycles. Can be 8, 16, or 32 bits wide depending
on APB_DATA_WIDTH parameter.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

prdata[(APB_DATA_WIDTH-1):0] O APB readback data. Driven by the selected peripheral during read
cycles. Can be 8, 16, or 32 bits wide depending on
APB_DATA_WIDTH parameter.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-3 APB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

134 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

pready O The APB ready signal, used to extend the APB transfer and it is also
used to indicate the end of a transaction when there is a high in the
access phase of a transaction.
Exists: (SLAVE_INTERFACE_TYPE>0)
Synchronous To: pclk
Registered: (SLAVE_INTERFACE_TYPE>0 &&
SLVERR_RESP_EN==1) ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: High

pslverr O APB slave error response signal. The signal issues an error when
some error condition occurs, as specified in databook.
Exists: (SLAVE_INTERFACE_TYPE>0)
Synchronous To: pclk
Registered: (SLAVE_INTERFACE_TYPE>0 &&
SLVERR_RESP_EN==1) ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: High

pstrb[((APB_DATA_WIDTH/8)-1):0] I APB4 Write strobe bus. A high on individual bits in the pstrb bus
indicate that the corresponding incoming write data byte on APB bus
is to be updated in the addressed register.
Exists: (SLAVE_INTERFACE_TYPE>1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pprot[2:0] I APB4 Protection type. This signal is ignored internally in
DW_apb_i2c.
Exists: (SLAVE_INTERFACE_TYPE>1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-3 APB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 135SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

4.4 DMA Interface Signals

dma_tx_ack - - dma_tx_req
dma_rx_ack - - dma_tx_single

- dma_rx_req
- dma_rx_single

Table 4-4 DMA Interface Signals

Port Name I/O Description

dma_tx_ack I Optional. DMA Transmit Acknowledgement. Sent by the DMA
Controller to acknowledge the end of each APB transfer burst to the
transmit FIFO.
Exists: (IC_HAS_DMA==1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

dma_tx_req O Optional. Transmit FIFO DMA Request. Asserted when the transmit
FIFO requires service from the DMA Controller; that is, the transmit
FIFO is at or below the watermark level.
 - 0 not requesting
 - 1 requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the DEST_MSIZE field
of the CTLx register.
Exists: (IC_HAS_DMA==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

dma_tx_single O Optional. DMA Transmit FIFO Single Signal. This DMA status output
informs the DMA Controller that there is at least one free entry in the
transmit FIFO. This output does not request a DMA transfer.
 - 0: Transmit FIFO is full
 - 1: Transmit FIFO is not full
Exists: (IC_HAS_DMA==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

136 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

dma_rx_ack I Optional. DMA Receive Acknowledgement. Sent by the
DMAcontroller to acknowledge the end of each APB transfer burst
from the receive FIFO.
Exists: (IC_HAS_DMA==1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

dma_rx_req O Optional. Receive FIFO DMA Request. Asserted when the receive
FIFO requires service from the DMA Controller; that is, the receive
FIFO is at or above the watermark level.
 - 0 not requesting
 - 1 requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the SRC_MSIZE field of
the CTLx register.
Exists: (IC_HAS_DMA==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

dma_rx_single O Optional. DMA Receive FIFO Single Signal. This DMA status output
informs the DMA Controller that there is at least one valid data entry
in the receive FIFO. This output does not request a DMA transfer.
 - 0: Receive FIFO is empty
 - 1: Receive FIFO is not empty
Exists: (IC_HAS_DMA==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-4 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 137SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

4.5 SMBus Interface Signals

ic_smbsus_in_n - - ic_smbsus_out_n
ic_smbalert_in_n - - ic_smbalert_oe

Table 4-5 SMBus Interface Signals

Port Name I/O Description

ic_smbsus_in_n I Incoming SMBus Suspend signal. This is the input SMBSUS signal.
Double-registered for metastability synchronization. This signal is
asynchronous to pclk.
Exists: (IC_SMBUS_SUSPEND_ALERT==1)
Synchronous To: Asynchronous
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

ic_smbalert_in_n I Incoming SMBus Alert signal. This is the input SMBALERT signal.
Double-registered for metastability synchronization. This signal is
asynchronous to pclk.
Exists: (IC_SMBUS_SUSPEND_ALERT==1)
Synchronous To: Asynchronous
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

ic_smbsus_out_n O Outgoing SMBus Suspend Signal. This signal is used to suspend the
SMBus system, if DW_apb_i2c is used as SMBus Host.
Exists: (IC_SMBUS_SUSPEND_ALERT==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

ic_smbalert_oe O Outgoing SMBus Alert Signal. This signal is used to intimate the Host
that slave wants to talk, if DW_apb_i2c is used as SMBus Slave.
Exists: (IC_SMBUS_SUSPEND_ALERT==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

https://solvnet.synopsys.com
www.designware.com

138 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

4.6 I2C Debug Signals

- debug_s_gen
- debug_p_gen
- debug_data
- debug_addr
- debug_rd
- debug_wr
- debug_hs
- debug_master_act
- debug_slave_act
- debug_addr_10bit
- debug_mst_cstate
- debug_slv_cstate

Table 4-6 I2C Debug Signals

Port Name I/O Description

debug_s_gen O In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is driving a START condition on the bus.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

debug_p_gen O In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is driving a STOP condition on the bus.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

debug_data O In the master or slave mode of operation, this signal is set to 1 when
a byte of data is actively being read or written by DW_apb_i2c. This
bit remains 1 until the transaction has completed.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 139SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Signal Descriptions

debug_addr O In the master or slave mode of operation, this signal is set to 1 when
the addressing phase is active on the I2C bus.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

debug_rd O In the master mode of operation, this signal is set to 1 whenever the
master is receiving data. This bit remains 1 until the transfer is
complete or until the direction changes.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

debug_wr O In the master mode of operation, this signal is set to 1 whenever the
master is transmitting data. This bit remains 1 until the transfer is
complete or the direction changes.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

debug_hs O In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is performing high-speed mode transfers. This bit is set
after the high-speed master code is transmitted and remains 1 until
the master leaves high-speed mode.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

debug_master_act O This bit is set to 1 when the master module is active.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-6 I2C Debug Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

140 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Signal Descriptions DesignWare DW_apb_i2c Databook

debug_slave_act O This bit is set to 1 when the slave module is active.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

debug_addr_10bit O In the Slave mode of operation, this signal is set if 10-bit addressing
is enabled and if the slave has received a matching 10-bit address
with respect to IC_SAR register.
 This signal is not applicable in Master Mode.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

debug_mst_cstate[4:0] O Master FSM state vector.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_slv_cstate[3:0] O Slave FSM state vector.
Exists: Always
Synchronous To: ic_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-6 I2C Debug Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 141

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

5
Register Descriptions

This chapter details all possible registers in the controller. They are arranged hierarchically into maps and
blocks (banks). For configurable IP titles, your actual configuration might not contain all of these registers.

Attention: For configurable IP titles, do not use this document to determine the exact attributes of your
register map. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the register attributes for your actual
configuration at workspace/report/ComponentRegisters.html or
workspace/report/ComponentRegisters.xml after you have completed the report creation activity. That
report comes from the exact same source as this chapter but removes all the registers that are not in your
actual configuration. This does not apply to non-configurable IP titles. In addition, all parameter
expressions are evaluated to actual values. Therefore, the Offset and Memory Access values might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

Exists Expressions

These expressions indicate the combination of configuration parameters required for a register, field, or
block to exist in the memory map. The expression is only valid in the local context and does not indicate the
conditions for existence of the parent. For example, the expression for a bit field in a register assumes that
the register exists and does not include the conditions for existence of the register.

Offset

The term Offset is synonymous with Address.

Memory Access Attributes

The Memory Access attribute is defined as <ReadBehavior>/<WriteBehavior> which are defined in the
following table.

https://solvnet.synopsys.com
www.designware.com

142 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

Special Optional Attributes

Some register fields might use the following optional attributes.

Table 5-1 Possible Read and Write Behaviors

Read (or Write) Behavior Description

RC A read clears this register field.

RS A read sets this register field.

RM A read modifies the contents of this register field.

Wo You can only write to this register once field.

W1C A write of 1 clears this register field.

W1S A write of 1 sets this register field.

W1T A write of 1 toggles this register field.

W0C A write of 0 clears this register field.

W0S A write of 0 sets this register field.

W0T A write of 0 toggles this register field.

WC Any write clears this register field.

WS Any write sets this register field.

WM Any write toggles this register field.

no Read Behavior attribute You cannot read this register. It is Write-Only.

no Write Behavior attribute You cannot write to this register. It is Read-Only.

Table 5-2 Memory Access Examples

Memory Access Description

R Read-only register field.

W Write-only register field.

R/W Read/write register field.

R/W1C You can read this register field. Writing 1 clears it.

RC/W1C Reading this register field clears it. Writing 1 clears it.

R/Wo You can read this register field. You can only write to it once.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 143SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

Component Banks/Blocks

The following table shows the address blocks for each memory map. Follow the link for an address block to
see a table of its registers.

Table 5-3 Optional Attributes

Attribute Description

Volatile As defined by the IP-XACT specification. If true, indicates in the
case of a write followed by read, or in the case of two consecutive
reads, there is no guarantee as to what is returned by the read on
the second transaction or that this return value is consistent with the
write or read of the first transaction. The element implies there is
some additional mechanism by which this field can acquire new
values other than by reads/writes/resets and other access methods
known to IP-XACT. For example, when the core updates the register
field contents.

Testable As defined by the IP-XACT specification. Possible values are
unconstrained, untestable, readOnly, writeAsRead, restore.
Untestable means that this field is untestable by a simple automated
register test. For example, the read-write access of the register is
controlled by a pin or another register. readOnly means that you
should not write to this register; only read from it. This might apply
for a register that modifies the contents of another register.

Reset Mask As defined by the IP-XACT specification. Indicates that this register
field has an unknown reset value. For example, the reset value is set
by another register or an input pin; or the register is implemented
using RAM.

* Varies Indicates that the memory access (or reset) attribute (read, write
behavior) is not fixed. For example, the read-write access of the
register is controlled by a pin or another register. Or when the
access depends on some configuration parameter; in this case the
post-configuration report in coreConsultant gives the actual access
value.

Table 5-4 Address Banks/Blocks for Memory Map: DW_apb_i2c_mem_map

Address Block Description

DW_apb_i2c_addr_block1 on page 144 DW_apb_i2c address block
Exists: Always

https://solvnet.synopsys.com
www.designware.com

144 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1 DW_apb_i2c_mem_map/DW_apb_i2c_addr_block1 Registers
DW_apb_i2c address block. Follow the link for the register to see a detailed description of the register.

Table 5-5 Registers for Address Block: DW_apb_i2c_mem_map/DW_apb_i2c_addr_block1

Register Offset Description

IC_CON on page 148 0x0 I2C Control Register. This register can be written only when
the DW_apb_i2c is disabled, which corresponds...

IC_TAR on page 156 0x4 I2C Target Address Register If the configuration parameter
I2C_DYNAMIC_TAR_UPDATE is set to 'No'...

IC_SAR on page 160 0x8 I2C Slave Address Register

IC_HS_MADDR on page 161 0xc I2C High Speed Master Mode Code Address Register

IC_DATA_CMD on page 162 0x10 I2C Rx/Tx Data Buffer and Command Register; this is the
register the CPU writes to when filling...

IC_SS_SCL_HCNT on page 166 0x14 Standard Speed I2C Clock SCL High Count Register

IC_UFM_SCL_HCNT on page 168 0x14 Ultra-Fast Speed I2C Clock SCL High Count Register

IC_SS_SCL_LCNT on page 170 0x18 Standard Speed I2C Clock SCL Low Count Register

IC_UFM_SCL_LCNT on page 172 0x18 Ultra-Fast Speed I2C Clock SCL Low Count Register

IC_FS_SCL_HCNT on page 174 0x1c Fast Mode or Fast Mode Plus I2C Clock SCL High Count
Register

IC_UFM_TBUF_CNT on page 176 0x1c Ultra-Fast Speed mode TBuf Idle Count Register

IC_FS_SCL_LCNT on page 178 0x20 Fast Mode or Fast Mode Plus I2C Clock SCL Low Count
Register

IC_HS_SCL_HCNT on page 180 0x24 High Speed I2C Clock SCL High Count Register

IC_HS_SCL_LCNT on page 182 0x28 High Speed I2C Clock SCL Low Count Register

IC_INTR_STAT on page 184 0x2c I2C Interrupt Status Register Each bit in this register has a
corresponding mask bit in the IC_INTR_MASK...

IC_INTR_MASK on page 189 0x30 I2C Interrupt Mask Register. These bits mask their
corresponding interrupt status bits. This register...

IC_RAW_INTR_STAT on page 193 0x34 I2C Raw Interrupt Status Register Unlike the IC_INTR_STAT
register, these bits are not masked so...

IC_RX_TL on page 202 0x38 I2C Receive FIFO Threshold Register

IC_TX_TL on page 203 0x3c I2C Transmit FIFO Threshold Register

IC_CLR_INTR on page 204 0x40 Clear Combined and Individual Interrupt Register

IC_CLR_RX_UNDER on page 205 0x44 Clear RX_UNDER Interrupt Register

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 145SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

IC_CLR_RX_OVER on page 206 0x48 Clear RX_OVER Interrupt Register

IC_CLR_TX_OVER on page 207 0x4c Clear TX_OVER Interrupt Register

IC_CLR_RD_REQ on page 208 0x50 Clear RD_REQ Interrupt Register

IC_CLR_TX_ABRT on page 209 0x54 Clear TX_ABRT Interrupt Register

IC_CLR_RX_DONE on page 210 0x58 Clear RX_DONE Interrupt Register

IC_CLR_ACTIVITY on page 211 0x5c Clear ACTIVITY Interrupt Register

IC_CLR_STOP_DET on page 212 0x60 Clear STOP_DET Interrupt Register

IC_CLR_START_DET on page 213 0x64 Clear START_DET Interrupt Register

IC_CLR_GEN_CALL on page 214 0x68 Clear GEN_CALL Interrupt Register

IC_ENABLE on page 215 0x6c I2C Enable Register

IC_STATUS on page 220 0x70 I2C Status Register This is a read-only register used to
indicate the current transfer status...

IC_TXFLR on page 227 0x74 I2C Transmit FIFO Level Register This register contains the
number of valid data entries in the...

IC_RXFLR on page 228 0x78 I2C Receive FIFO Level Register This register contains the
number of valid data entries in the receive...

IC_SDA_HOLD on page 229 0x7c I2C SDA Hold Time Length Register The bits [15:0] of this
register are used to control the hold...

IC_TX_ABRT_SOURCE on page 231 0x80 I2C Transmit Abort Source Register This register has 32 bits
that indicate the source of the TX_ABRT...

IC_SLV_DATA_NACK_ONLY on page 240 0x84 Generate Slave Data NACK Register The register is used to
generate a NACK for the data part of...

IC_DMA_CR on page 242 0x88 DMA Control Register This register is only valid when
DW_apb_i2c is configured with a set of DMA...

IC_DMA_TDLR on page 244 0x8c DMA Transmit Data Level Register This register is only valid
when the DW_apb_i2c is configured...

IC_DMA_RDLR on page 245 0x90 I2C Receive Data Level Register This register is only valid
when DW_apb_i2c is configured with...

IC_SDA_SETUP on page 246 0x94 I2C SDA Setup Register This register controls the amount of
time delay (in terms of number of ic_clk...

IC_ACK_GENERAL_CALL on page 248 0x98 I2C ACK General Call Register The register controls whether
DW_apb_i2c responds with a ACK or NACK...

Table 5-5 Registers for Address Block: DW_apb_i2c_mem_map/DW_apb_i2c_addr_block1 (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

146 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

IC_ENABLE_STATUS on page 249 0x9c I2C Enable Status Register The register is used to report the
DW_apb_i2c hardware status when the...

IC_FS_SPKLEN on page 253 0xa0 I2C SS, FS or FM+ spike suppression limit This register is
used to store the duration, measured...

IC_UFM_SPKLEN on page 254 0xa0 I2C UFM spike suppression limit This register is used to
store the duration, measured in ic_clk...

IC_HS_SPKLEN on page 256 0xa4 I2C HS spike suppression limit register This register is used
to store the duration, measured in...

IC_CLR_RESTART_DET on page 258 0xa8 Clear RESTART_DET Interrupt Register

IC_SCL_STUCK_AT_LOW_TIMEOUT on
page 259

0xac I2C SCL Stuck at Low Timeout This register is used to store
the duration, measured in ic_clk cycles,...

IC_SDA_STUCK_AT_LOW_TIMEOUT on
page 260

0xb0 I2C SDA Stuck at Low Timeout This register is used to store
the duration, measured in ic_clk cycles,...

IC_CLR_SCL_STUCK_DET on page 261 0xb4 Clear SCL Stuck at Low Detect Interrupt Register

IC_DEVICE_ID on page 262 0xb8 I2C Device-ID Register This Register contains the Device-ID
of the component which includes 12-bits...

IC_SMBUS_CLK_LOW_SEXT on
page 263

0xbc SMBus Slave Clock Extend Timeout Register This Register
contains the Timeout value used to determine...

IC_SMBUS_CLK_LOW_MEXT on
page 264

0xc0 SMBus Master Clock Extend Timeout Register This Register
contains the Timeout value used to determine...

IC_SMBUS_THIGH_MAX_IDLE_COUNT
on page 265

0xc4 SMBus Master THigh MAX Bus-idle count Register This
register programs the Bus-idle time period...

IC_SMBUS_INTR_STAT on page 267 0xc8 SMBUS Interrupt Status Register Each bit in this register has
a corresponding mask bit in the IC_SMBUS_INTR_MASK...

IC_SMBUS_INTR_MASK on page 271 0xcc SMBus Interrupt Mask Register

IC_SMBUS_RAW_INTR_STAT on
page 275

0xd0 SMBus Raw Interrupt Status Register Unlike the
IC_SMBUS_INTR_STAT register, these bits are not...

IC_CLR_SMBUS_INTR on page 280 0xd4 SMBus Clear Interrupt Register

IC_OPTIONAL_SAR on page 283 0xd8 I2C Optional Slave Address Register Optional Slave address
for I2C in SMBus Mode. A same restriction...

IC_SMBUS_UDID_LSB on page 284 0xdc SMBUS ARP UDID LSB Register This Register can be
written only when the DW_apb_i2c is disabled,...

IC_SMBUS_UDID_WORD0 on page 285 0xdc SMBUS UDID WORD0 Register This Register can be written
only when the DW_apb_i2c is disabled, which...

Table 5-5 Registers for Address Block: DW_apb_i2c_mem_map/DW_apb_i2c_addr_block1 (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 147SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

IC_SMBUS_UDID_WORD1 on page 286 0xe0 SMBUS UDID WORD1 Register This Register can be written
only when the DW_apb_i2c is disabled, which...

IC_SMBUS_UDID_WORD2 on page 287 0xe4 SMBUS UDID WORD2 Register This Register can be written
only when the DW_apb_i2c is disabled, which...

IC_SMBUS_UDID_WORD3 on page 288 0xe8 SMBUS UDID WORD3 Register This Register can be written
only when the DW_apb_i2c is disabled, which...

REG_TIMEOUT_RST on page 289 0xf0 Name: Register timeout counter reset register Size:
REG_TIMEOUT_WIDTH bits Address: 0xF0 Read/Write...

IC_COMP_PARAM_1 on page 291 0xf4 Component Parameter Register 1 Note This is a constant
read-only register that contains encoded...

IC_COMP_VERSION on page 294 0xf8 I2C Component Version Register

IC_COMP_TYPE on page 295 0xfc I2C Component Type Register

Table 5-5 Registers for Address Block: DW_apb_i2c_mem_map/DW_apb_i2c_addr_block1 (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

148 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.1 IC_CON

■ Name: I2C Control Register

■ Description: I2C Control Register. This register can be written only when the DW_apb_i2c is
disabled, which corresponds to the IC_ENABLE[0] register being set to 0. Writes at other times have
no effect.

Read/Write Access:

❑ If configuration parameter I2C_DYNAMIC_TAR_UPDATE=1, bit 4 is read only.

❑ If configuration parameter IC_RX_FULL_HLD_BUS_EN =0, bit 9 is read only.

❑ If configuration parameter IC_STOP_DET_IF_MASTER_ACTIVE =0, bit 10 is read only.

❑ If configuration parameter IC_BUS_CLEAR_FEATURE=0, bit 11 is read only

❑ If configuration parameter IC_OPTIONAL_SAR=0, bit 16 is read only

❑ If configuration parameter IC_SMBUS=0, bit 17 is read only

❑ If configuration parameter IC_SMBUS_ARP=0, bits 18 and 19 are read only.

■ Size: 32 bits

■ Offset: 0x0

■ Exists: Always

31
:2

0

19 18 17 16 15
:1

2

11 10 9 8 7 6 5 4 3 2:
1

0

R
S

V
D

_I
C

_C
O

N
_2

S
M

B
U

S
_P

E
R

S
IS

T
E

N
T

_S
LV

_A
D

D
R

_E
N

S
M

B
U

S
_A

R
P

_E
N

S
M

B
U

S
_S

LA
V

E
_Q

U
IC

K
_E

N

O
P

T
IO

N
A

L_
S

A
R

_C
T

R
L

R
S

V
D

_I
C

_C
O

N
_1

B
U

S
_C

LE
A

R
_F

E
A

T
U

R
E

_C
T

R
L

S
T

O
P

_D
E

T
_I

F
_M

A
S

T
E

R
_A

C
T

IV
E

R
X

_F
IF

O
_F

U
LL

_H
LD

_C
T

R
L

T
X

_E
M

P
T

Y
_C

T
R

L

S
T

O
P

_D
E

T
_I

F
A

D
D

R
E

S
S

E
D

IC
_S

LA
V

E
_D

IS
A

B
LE

IC
_R

E
S

T
A

R
T

_E
N

IC
_1

0B
IT

A
D

D
R

_M
A

S
T

E
R

IC
_1

0B
IT

A
D

D
R

_S
LA

V
E

S
P

E
E

D

M
A

S
T

E
R

_M
O

D
E

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 149SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

Table 5-6 Fields for Register: IC_CON

Bits Name
Memory
Access Description

31:20 RSVD_IC_CON_2 R IC_CON_2 Reserved bits - Read Only
Exists: Always

19 SMBUS_PERSISTENT_SLV_AD
DR_EN

R/W The bit controls to enable DW_apb_i2c slave as persistent
or non persistent slave.
If the slave is non-PSA then DW_apb_i2c slave device clears
the Address valid flag for both General and Directed Reset
ARP command else the address valid flag will always set to
1.
This bit is applicable only in Slave mode.
Values:

■ 0x1 (ENABLED): SMBus Persistent Slave address
control is enabled.

■ 0x0 (DISABLED): SMBus Persistent Slave address
control is disabled.

Value After Reset:
IC_PERSISTANT_SLV_ADDR_DEFAULT
Exists: IC_SMBUS_ARP==1

18 SMBUS_ARP_EN R/W This bit controls whether DW_apb_i2c should enable
Address Resolution Logic in SMBus Mode. The Slave mode
will decode the Address Resolution Protocol commands and
respond to it. The DW_apb_i2c slave also includes the
generation/validity of PEC byte for Address Resolution
Protocol commands. This bit is applicable only in Slave
mode.

Values:
■ 0x1 (ENABLED): SMBus ARP control is enabled.

■ 0x0 (DISABLED): SMBus ARP control is disabled.

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1

https://solvnet.synopsys.com
www.designware.com

150 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

17 SMBUS_SLAVE_QUICK_EN R/W If this bit is set to 1, DW_apb_i2c slave only receives Quick
commands in SMBus Mode.
If this bit is set to 0, DW_apb_i2c slave receives all bus
protocols but not Quick commands.
This bit is applicable only in slave mode.
Values:

■ 0x1 (ENABLED): SMBus SLave is enabled to receive
Quick command.

■ 0x0 (DISABLED): SMBus SLave is disabled to receive
Quick command.

Value After Reset: 0x0
Exists: IC_SMBUS==1

16 OPTIONAL_SAR_CTRL R/W Enables the usage of IC_OPTIONAL_SAR register.
If IC_OPTIONAL_SAR =1, IC_OPTIONAL_SAR value is
used as additional slave address. User must program a valid
address in IC_OPTIONAL_SAR before writing 1 to this field.
If IC_OPTIONAL_SAR =0, IC_OPTIONAL_SAR value is not
used as additional slave address. In this mode only one I2C
slave address is used.

Values:
■ 0x1 (ENABLED): Optional SAR Address Register is

enabled.

■ 0x0 (DISABLED): Optional SAR Address Register is
disabled.

Value After Reset: 0x0
Exists: IC_OPTIONAL_SAR==1

15:12 RSVD_IC_CON_1 R IC_CON_1 Reserved bits - Read Only
Exists: Always

11 BUS_CLEAR_FEATURE_CTRL R/W In Master mode:

■ 1'b1: Bus Clear Feature is enabled.

■ 1'b0: Bus Clear Feature is Disabled.

In Slave mode, this register bit is not applicable.

Values:

■ 0x1 (ENABLED): Bus Clear Feature ois enabled.

■ 0x0 (DISABLED): Bus Clear Feature is disabled.

Value After Reset: 0x0
Exists: IC_BUS_CLEAR_FEATURE==1

Table 5-6 Fields for Register: IC_CON (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 151SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

10 STOP_DET_IF_MASTER_ACTIV
E

* Varies In Master mode:

■ 1'b1: issues the STOP_DET interrupt only when master is
active.

■ 1'b0: issues the STOP_DET irrespective of whether
master is active or not.

Values:
■ 0x1 (ENABLED): Master issues the STOP_DET interrupt

only when master is active

■ 0x0 (DISABLED): Master issues the STOP_DET interrupt
irrespective of whether master is active or not

Value After Reset: 0x0
Exists: Always
Memory Access:
"(IC_STOP_DET_IF_MASTER_ACTIVE==1) ? \"read-write\"
: \"read-only\""

9 RX_FIFO_FULL_HLD_CTRL * Varies This bit controls whether DW_apb_i2c should hold the bus
when the Rx FIFO is physically full to its
RX_BUFFER_DEPTH, as described in the
IC_RX_FULL_HLD_BUS_EN parameter.

Values:

■ 0x1 (ENABLED): Hold bus when RX_FIFO is full

■ 0x0 (DISABLED): Overflow when RX_FIFO is full

Value After Reset: 0x0
Exists: Always
Memory Access: "(IC_RX_FULL_HLD_BUS_EN==1) ?
\"read-write\" : \"read-only\""

8 TX_EMPTY_CTRL R/W This bit controls the generation of the TX_EMPTY interrupt,
as described in the IC_RAW_INTR_STAT register.

Values:
■ 0x1 (ENABLED): Controlled generation of TX_EMPTY

interrupt

■ 0x0 (DISABLED): Default behaviour of TX_EMPTY
interrupt

Value After Reset: 0x0
Exists: Always

Table 5-6 Fields for Register: IC_CON (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

152 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

7 STOP_DET_IFADDRESSED R/W In slave mode:

■ 1'b1: issues the STOP_DET interrrupt only when it is
addressed.

■ 0'b0: issues the STOP_DET irrespective of whether it's
addressed or not.

NOTE: During a general call address, this slave does not
issue the STOP_DET interrupt if
STOP_DET_IF_ADDRESSED = 1'b1, even if the slave
responds to the general call address by generating ACK. The
STOP_DET interrupt is generated only when the transmitted
address matches the slave address (SAR).
Values:
■ 0x1 (ENABLED): slave issues STOP_DET intr only if

addressed

■ 0x0 (DISABLED): slave issues STOP_DET intr always

Value After Reset: 0x0
Exists: Always

6 IC_SLAVE_DISABLE R/W This bit controls whether I2C has its slave disabled, which
means once the presetn signal is applied, then this bit takes
on the value of the configuration parameter
IC_SLAVE_DISABLE. You have the choice of having the
slave enabled or disabled after reset is applied, which means
software does not have to configure the slave. By default, the
slave is always enabled (in reset state as well). If you need to
disable it after reset, set this bit to 1.
If this bit is set (slave is disabled), DW_apb_i2c functions
only as a master and does not perform any action that
requires a slave.
NOTE: Software should ensure that if this bit is written with
0, then bit 0 should also be written with a 0.
Values:

■ 0x1 (SLAVE_DISABLED): Slave mode is disabled

■ 0x0 (SLAVE_ENABLED): Slave mode is enabled

Value After Reset: IC_SLAVE_DISABLE
Exists: Always

Table 5-6 Fields for Register: IC_CON (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 153SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5 IC_RESTART_EN R/W Determines whether RESTART conditions may be sent when
acting as a master. Some older slaves do not support
handling RESTART conditions; however, RESTART
conditions are used in several DW_apb_i2c operations.
When RESTART is disabled, the master is prohibited from
performing the following functions:

■ Sending a START BYTE

■ Performing any high-speed mode operation

■ High-speed mode operation

■ Performing direction changes in combined format mode

■ Performing a read operation with a 10-bit address

By replacing RESTART condition followed by a STOP and a
subsequent START condition, split operations are broken
down into multiple DW_apb_i2c transfers. If the above
operations are performed, it will result in setting bit 6
(TX_ABRT) of the IC_RAW_INTR_STAT register.
.
Values:
■ 0x1 (ENABLED): Master restart enabled

■ 0x0 (DISABLED): Master restart disabled

Value After Reset: IC_RESTART_EN
Exists: Always

4 IC_10BITADDR_MASTER R/W If the I2C_DYNAMIC_TAR_UPDATE configuration parameter
is set to 'No' (0), this bit is named IC_10BITADDR_MASTER
and controls whether the DW_apb_i2c starts its transfers in
7- or 10-bit addressing mode when acting as a master. If
I2C_DYNAMIC_TAR_UPDATE is set to 'Yes' (1), the function
of this bit is handled by bit 12 of IC_TAR register, and
becomes a read-only copy called
IC_10BITADDR_MASTER_rd_only.

■ 0: 7-bit addressing

■ 1: 10-bit addressing

Values:
■ 0x1 (ADDR_10BITS): Master 10Bit addressing mode

■ 0x0 (ADDR_7BITS): Master 7Bit addressing mode

Value After Reset: IC_10BITADDR_MASTER
Exists: I2C_DYNAMIC_TAR_UPDATE == 0

Table 5-6 Fields for Register: IC_CON (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

154 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

3 IC_10BITADDR_SLAVE R/W When acting as a slave, this bit controls whether the
DW_apb_i2c responds to 7- or 10-bit addresses.

■ 0: 7-bit addressing. The DW_apb_i2c ignores
transactions that involve 10-bit addressing; for 7-bit
addressing, only the lower 7 bits of the IC_SAR register
are compared.

■ 1: 10-bit addressing. The DW_apb_i2c responds to only
10-bit addressing transfers that match the full 10 bits of
the IC_SAR register.

Values:

■ 0x1 (ADDR_10BITS): Slave 10Bit addressing

■ 0x0 (ADDR_7BITS): Slave 7Bit addressing

Value After Reset: IC_10BITADDR_SLAVE
Exists: Always

2:1 SPEED R/W These bits control at which speed the DW_apb_i2c operates;
its setting is relevant only if one is operating the DW_apb_i2c
in master mode. Hardware protects against illegal values
being programmed by software. These bits must be
programmed appropriately for slave mode also, as it is used
to capture correct value of spike filter as per the speed mode.
This register should be programmed only with a value in the
range of 1 to IC_MAX_SPEED_MODE; otherwise, hardware
updates this register with the value of
IC_MAX_SPEED_MODE.
1: standard mode (100 kbit/s)
2: fast mode (<=400 kbit/s) or fast mode plus (<=1000Kbit/s)
3: high speed mode (3.4 Mbit/s)
Note: This field is not applicable when
IC_ULTRA_FAST_MODE=1
Values:

■ 0x1 (STANDARD): Standard Speed mode of operation

■ 0x2 (FAST): Fast or Fast Plus mode of operation

■ 0x3 (HIGH): High Speed mode of operation

Value After Reset: IC_MAX_SPEED_MODE
Exists: Always

Table 5-6 Fields for Register: IC_CON (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 155SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

0 MASTER_MODE R/W This bit controls whether the DW_apb_i2c master is enabled.
NOTE: Software should ensure that if this bit is written with
'1' then bit 6 should also be written with a '1'.
Values:
■ 0x1 (ENABLED): Master mode is enabled

■ 0x0 (DISABLED): Master mode is disabled

Value After Reset: IC_MASTER_MODE
Exists: Always

Table 5-6 Fields for Register: IC_CON (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

156 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.2 IC_TAR

■ Name: I2C Target Address Register

■ Description: I2C Target Address Register

If the configuration parameter I2C_DYNAMIC_TAR_UPDATE is set to 'No' (0), this register is 12 bits
wide, and bits 31:12 are reserved. This register can be written to only when IC_ENABLE[0] is set to 0.

However, if I2C_DYNAMIC_TAR_UPDATE = 1, then the register becomes 13 bits wide. In this case,
writes to IC_TAR succeed when one of the following conditions are true:

❑ DW_apb_i2c is NOT enabled (IC_ENABLE[0] is set to 0); or

❑ DW_apb_i2c is enabled (IC_ENABLE[0]=1); AND DW_apb_i2c is NOT engaged in any Master
(tx, rx) operation (IC_STATUS[5]=0); AND DW_apb_i2c is enabled to operate in Master mode
(IC_CON[0]=1); AND there are NO entries in the TX FIFO (IC_STATUS[2]=1)

You can change the TAR address dynamically without losing the bus, only if the following
conditions are met.

❑ DW_apb_i2c is enabled (IC_ENABLE[0]=1); AND IC_EMPTYFIFO_HOLD_MASTER_EN
configuration parameter is set to 1; AND DW_apb_i2c is enabled to operate in Master mode
(IC_CON[0]=1); AND there are NO entries in the Tx FIFO and the master is in HOLD state
(IC_INTR_STAT[13]=1).

Note: If the software or application is aware that the DW_apb_i2c is not using the TAR address for
the pending commands in the Tx FIFO, then it is possible to update the TAR address even while the
Tx FIFO has entries (IC_STATUS[2]= 0).

❑ It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C slave
only.

■ Size: 32 bits

■ Offset: 0x4

■ Exists: Always

31
:1

7

16 15
:1

4

13 12 11 10 9:
0

R
S

V
D

_I
C

_T
A

R
_2

S
M

B
U

S
_Q

U
IC

K
_C

M
D

R
S

V
D

_I
C

_T
A

R
_1

D
E

V
IC

E
_I

D

IC
_1

0B
IT

A
D

D
R

_M
A

S
T

E
R

S
P

E
C

IA
L

G
C

_O
R

_S
T

A
R

T

IC
_T

A
R

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 157SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

Table 5-7 Fields for Register: IC_TAR

Bits Name
Memory
Access Description

31:17 RSVD_IC_TAR_2 R IC_TAR_2 Reserved bits - Read Only
Exists: Always

16 SMBUS_QUICK_CMD R/W If bit 11 (SPECIAL) is set to 1, then this bit indicates whether
a Quick command is to be performed by the DW_apb_i2c.

Values:

■ 0x1 (ENABLED): Enables programming of QUICK-CMD
transmission

■ 0x0 (DISABLED): Disables programming of QUICK-CMD
transmission

Value After Reset: 0x0
Exists: IC_SMBUS == 1

15:14 RSVD_IC_TAR_1 R IC_TAR_1 Reserved bits - Read Only
Exists: Always

13 DEVICE_ID R/W If bit 11 (SPECIAL) is set to 1, then this bit indicates whether
a Device-ID of a particular slave mentioned in IC_TAR[9:0] is
to be performed by the DW_apb_i2c Master.

■ 0: Device-ID is not performed and checks ic_tar[10] to
perform either general call or START byte command

■ 1: Device-ID transfer is performed and bytes based on the
number of read commands in the Tx-FIFO are received
from the targeted slave and put in the Rx-FIFO.

Values:

■ 0x1 (ENABLED): Enables programming of DEVICE-ID
transmission

■ 0x0 (DISABLED): Disables programming of DEVICE-ID
transmission

Value After Reset: 0x0
Exists: IC_DEVICE_ID == 1

https://solvnet.synopsys.com
www.designware.com

158 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

12 IC_10BITADDR_MASTER R/W This bit controls whether the DW_apb_i2c starts its transfers
in 7- or 10-bit addressing mode when acting as a master.

■ 0: 7-bit addressing

■ 1: 10-bit addressing

Values:

■ 0x1 (ADDR_10BITS): Address 10Bit transmission format

■ 0x0 (ADDR_7BITS): Address 7Bit transmission format

Value After Reset: IC_10BITADDR_MASTER
Exists: I2C_DYNAMIC_TAR_UPDATE

11 SPECIAL R/W This bit indicates whether software performs a Device-ID or
General Call or START BYTE command.

■ 0: ignore bit 10 GC_OR_START and use IC_TAR
normally

■ 1: perform special I2C command as specified in
Device_ID or GC_OR_START bit

Values:

■ 0x1 (ENABLED): Enables programming of
GENERAL_CALL or START_BYTE transmission

■ 0x0 (DISABLED): Disables programming of
GENERAL_CALL or START_BYTE transmission

Value After Reset: 0x0
Exists: Always

Table 5-7 Fields for Register: IC_TAR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 159SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

10 GC_OR_START R/W If bit 11 (SPECIAL) is set to 1 and bit 13(Device-ID) is set to
0, then this bit indicates whether a General Call or START
byte command is to be performed by the DW_apb_i2c.

■ 0: General Call Address - after issuing a General Call,
only writes may be performed. Attempting to issue a read
command results in setting bit 6 (TX_ABRT) of the
IC_RAW_INTR_STAT register. The DW_apb_i2c remains
in General Call mode until the SPECIAL bit value (bit 11)
is cleared.

■ 1: START BYTE

Values:

■ 0x1 (START_BYTE): START byte transmission

■ 0x0 (GENERAL_CALL): GENERAL_CALL byte
transmission

Value After Reset: 0x0
Exists: Always

9:0 IC_TAR R/W This is the target address for any master transaction. When
transmitting a General Call, these bits are ignored. To
generate a START BYTE, the CPU needs to write only once
into these bits.
If the IC_TAR and IC_SAR are the same, loopback exists but
the FIFOs are shared between master and slave, so full
loopback is not feasible. Only one direction loopback mode is
supported (simplex), not duplex. A master cannot transmit to
itself; it can transmit to only a slave.

Value After Reset: IC_DEFAULT_TAR_SLAVE_ADDR
Exists: Always

Table 5-7 Fields for Register: IC_TAR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

160 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.3 IC_SAR

■ Name: I2C Slave Address Register

■ Description: I2C Slave Address Register

■ Size: 32 bits

■ Offset: 0x8

■ Exists: Always

31
:1

0

9:
0

R
S

V
D

_I
C

_S
A

R

IC
_S

A
R

Table 5-8 Fields for Register: IC_SAR

Bits Name
Memory
Access Description

31:10 RSVD_IC_SAR R IC_SAR Reserved bits - Read Only
Exists: Always

9:0 IC_SAR R/W The IC_SAR holds the slave address when the I2C is
operating as a slave. For 7-bit addressing, only IC_SAR[6:0]
is used.
This register can be written only when the I2C interface is
disabled, which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
Note: The default values cannot be any of the reserved
address locations: that is, 0x00 to 0x07, or 0x78 to 0x7f. The
correct operation of the device is not guaranteed if you
program the IC_SAR or IC_TAR to a reserved value. Refer to
Table "I2C/SMBus Definition of Bits in First Byte" for a
complete list of these reserved values.

Value After Reset: IC_DEFAULT_SLAVE_ADDR
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 161SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.4 IC_HS_MADDR

■ Name: I2C High Speed Master Mode Code Address Register

■ Description: I2C High Speed Master Mode Code Address Register

■ Size: 32 bits

■ Offset: 0xc

■ Exists: IC_MAX_SPEED_MODE==3

31
:3

2:
0

R
S

V
D

_I
C

_H
S

_M
A

R

IC
_H

S
_M

A
R

Table 5-9 Fields for Register: IC_HS_MADDR

Bits Name
Memory
Access Description

31:3 RSVD_IC_HS_MAR R IC_HS_MAR Reserved bits - Read Only
Exists: Always

2:0 IC_HS_MAR R/W This bit field holds the value of the I2C HS mode master
code. HS-mode master codes are reserved 8-bit codes
(00001xxx) that are not used for slave addressing or other
purposes. Each master has its unique master code; up to
eight high-speed mode masters can be present on the same
I2C bus system. Valid values are from 0 to 7. This register
goes away and becomes read-only returning 0's if the
IC_MAX_SPEED_MODE configuration parameter is set to
either Standard (1) or Fast (2).
This register can be written only when the I2C interface is
disabled, which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.

Value After Reset: IC_HS_MASTER_CODE
Exists: Always

https://solvnet.synopsys.com
www.designware.com

162 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.5 IC_DATA_CMD

■ Name: I2C Rx/Tx Data Buffer and Command Register

■ Description: I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to
when filling the TX FIFO and the CPU reads from when retrieving bytes from RX FIFO.

The size of the register changes as follows:

Write:

❑ 11 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=1

❑ 9 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=0

Read:

❑ 12 bits when IC_FIRST_DATA_BYTE_STATUS = 1

❑ 8 bits when IC_FIRST_DATA_BYTE_STATUS = 0

Note: In order for the DW_apb_i2c to continue acknowledging reads, a read command should be
written for every byte that is to be received; otherwise the DW_apb_i2c will stop acknowledging.

■ Size: 32 bits

■ Offset: 0x10

■ Exists: Always

31
:1

2

11 10 9 8 7:
0

R
S

V
D

_I
C

_D
A

T
A

_C
M

D

F
IR

S
T

_D
A

T
A

_B
Y

T
E

R
E

S
T

A
R

T

S
T

O
P

C
M

D

D
A

T

Table 5-10 Fields for Register: IC_DATA_CMD

Bits Name
Memory
Access Description

31:12 RSVD_IC_DATA_CMD R IC_DATA_CMD Reserved bits - Read Only
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 163SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

11 FIRST_DATA_BYTE R Indicates the first data byte received after the address phase
for receive transfer in Master receiver or Slave receiver
mode.
NOTE: In case of APB_DATA_WIDTH=8,
 1. The user has to perform two APB Reads to
IC_DATA_CMD in order to get status on 11 bit.
 2. Inorder to read the 11 bit, the user has to perform the first
data byte read [7:0] (offset 0x10) and then perform the
second read[15:8](offset 0x11) in order to know the status of
11 bit (whether the data received in previous read is a first
data byte or not).
 3. The 11th bit is an optional read field, user can ignore 2nd
byte read [15:8] (offset 0x11) if not interested in
FIRST_DATA_BYTE status.
Values:
■ 0x1 (ACTIVE): Non sequential data byte received

■ 0x0 (INACTIVE): Sequential data byte received

Value After Reset: 0x0
Exists: IC_FIRST_DATA_BYTE_STATUS == 1
Volatile: true

10 RESTART W This bit controls whether a RESTART is issued before the
byte is sent or received. This bit is available only if
IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1.
1 - If IC_RESTART_EN is 1, a RESTART is issued before the
data is sent/received (according to the value of CMD),
regardless of whether or not the transfer direction is
changing from the previous command; if IC_RESTART_EN
is 0, a STOP followed by a START is issued instead.
0 - If IC_RESTART_EN is 1, a RESTART is issued only if the
transfer direction is changing from the previous command; if
IC_RESTART_EN is 0, a STOP followed by a START is
issued instead.

Values:

■ 0x1 (ENABLE): Issue RESTART before this command

■ 0x0 (DISABLE): Donot Issue RESTART before this
command

Value After Reset: 0x0
Exists: IC_EMPTYFIFO_HOLD_MASTER_EN
Volatile: true

Table 5-10 Fields for Register: IC_DATA_CMD (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

164 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

9 STOP W This bit controls whether a STOP is issued after the byte is
sent or received. This bit is available only if
IC_EMPTYFIFO_HOLD_MASTER_EN is configured to 1.

■ 1 - STOP is issued after this byte, regardless of whether
or not the Tx FIFO is empty. If the Tx FIFO is not empty,
the master immediately tries to start a new transfer by
issuing a START and arbitrating for the bus.

■ 0 - STOP is not issued after this byte, regardless of
whether or not the Tx FIFO is empty. If the Tx FIFO is not
empty, the master continues the current transfer by
sending/receiving data bytes according to the value of the
CMD bit. If the Tx FIFO is empty, the master holds the
SCL line low and stalls the bus until a new command is
available in the Tx FIFO.

Values:

■ 0x1 (ENABLE): Issue STOP after this command

■ 0x0 (DISABLE): Donot Issue STOP after this command

Value After Reset: 0x0
Exists: IC_EMPTYFIFO_HOLD_MASTER_EN
Volatile: true

Table 5-10 Fields for Register: IC_DATA_CMD (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 165SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

8 CMD W This bit controls whether a read or a write is performed. This
bit does not control the direction when the DW_apb_i2c acts
as a slave. It controls only the direction when it acts as a
master.
When a command is entered in the TX FIFO, this bit
distinguishes the write and read commands. In slave-
receiver mode, this bit is a "don't care" because writes to this
register are not required. In slave-transmitter mode, a "0"
indicates that the data in IC_DATA_CMD is to be transmitted.
When programming this bit, you should remember the
following: attempting to perform a read operation after a
General Call command has been sent results in a TX_ABRT
interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless
bit 11 (SPECIAL) in the IC_TAR register has been cleared. If
a "1" is written to this bit after receiving a RD_REQ interrupt,
then a TX_ABRT interrupt occurs.

Values:

■ 0x1 (READ): Master Read Command

■ 0x0 (WRITE): Master Write Command

Value After Reset: 0x0
Exists: Always
Volatile: true

7:0 DAT R/W This register contains the data to be transmitted or received
on the I2C bus. If you are writing to this register and want to
perform a read, bits 7:0 (DAT) are ignored by the
DW_apb_i2c. However, when you read this register, these
bits return the value of data received on the DW_apb_i2c
interface.

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-10 Fields for Register: IC_DATA_CMD (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

166 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.6 IC_SS_SCL_HCNT

■ Name: Standard Speed I2C Clock SCL High Count Register

■ Description: Standard Speed I2C Clock SCL High Count Register

■ Size: 32 bits

■ Offset: 0x14

■ Exists: IC_ULTRA_FAST_MODE==0

31
:1

6

15
:0

R
S

V
D

_I
C

_S
S

_S
C

L_
H

IG
H

_C
O

U
N

T

IC
_S

S
_S

C
L_

H
C

N
T

Table 5-11 Fields for Register: IC_SS_SCL_HCNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_SS_SCL_HIGH_COU
NT

R IC_SS_SCL_HCNT Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 167SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_SS_SCL_HCNT * Varies This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
SCL clock high-period count for standard speed. For more
information, refer to "IC_CLK Frequency Configuration".
This register can be written only when the I2C interface is
disabled which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 6; hardware prevents values less
than this being written, and if attempted results in 6 being
set. For designs with APB_DATA_WIDTH = 8, the order of
programming is important to ensure the correct operation of
the DW_apb_i2c. The lower byte must be programmed first.
Then the upper byte is programmed.
When the configuration parameter
IC_HC_COUNT_VALUES is set to 1, this register is read
only.
NOTE: This register must not be programmed to a value
higher than 65525, because DW_apb_i2c uses a 16-bit
counter to flag an I2C bus idle condition when this counter
reaches a value of IC_SS_SCL_HCNT + 10.

Value After Reset: IC_SS_SCL_HIGH_COUNT
Exists: Always
Memory Access: "(IC_HC_COUNT_VALUES==1) ? \"read-
only\" : \"read-write\""

Table 5-11 Fields for Register: IC_SS_SCL_HCNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

168 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.7 IC_UFM_SCL_HCNT

■ Name: Ultra-Fast Speed I2C Clock SCL High Count Register

■ Description: Ultra-Fast Speed I2C Clock SCL High Count Register

■ Size: 32 bits

■ Offset: 0x14

■ Exists: IC_ULTRA_FAST_MODE==1

31
:1

6

15
:0

R
S

V
D

_I
C

_U
F

M
_S

C
L_

H
C

N
T

IC
_U

F
M

_S
C

L_
H

C
N

T

Table 5-12 Fields for Register: IC_UFM_SCL_HCNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_UFM_SCL_HCNT R IC_UFM_SCL_HCNT Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 169SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_UFM_SCL_HCNT * Varies This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
SCL clock high-period count for Ultra-Fast speed. For more
information, refer to "IC_CLK Frequency Configuration".
This register can be written only when the I2C interface is
disabled which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 3; hardware prevents values less
than this being written, and if attempted results in 3 being
set. For designs with APB_DATA_WIDTH = 8, the order of
programming is important to ensure the correct operation of
the DW_apb_i2c. The lower byte must be programmed first.
Then the upper byte is programmed. When the configuration
parameter IC_HC_COUNT_VALUES is set to 1, this register
is read only.

Value After Reset: IC_UFM_SCL_HIGH_COUNT
Exists: Always
Memory Access: "(IC_HC_COUNT_VALUES==1) ? \"read-
only\" : \"read-write\""

Table 5-12 Fields for Register: IC_UFM_SCL_HCNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

170 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.8 IC_SS_SCL_LCNT

■ Name: Standard Speed I2C Clock SCL Low Count Register

■ Description: Standard Speed I2C Clock SCL Low Count Register

■ Size: 32 bits

■ Offset: 0x18

■ Exists: IC_ULTRA_FAST_MODE==0

31
:1

6

15
:0

R
S

V
D

_I
C

_S
S

_S
C

L_
LO

W
_C

O
U

N
T

IC
_S

S
_S

C
L_

LC
N

T

Table 5-13 Fields for Register: IC_SS_SCL_LCNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_SS_SCL_LOW_COUN
T

R RSVD_IC_SS_SCL_LOW_COUNT Reserved bits - Read
Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 171SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_SS_SCL_LCNT * Varies This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
SCL clock low period count for standard speed. For more
information, refer to "IC_CLK Frequency Configuration"
This register can be written only when the I2C interface is
disabled which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 8; hardware prevents values less
than this being written, and if attempted, results in 8 being
set. For designs with APB_DATA_WIDTH = 8, the order of
programming is important to ensure the correct operation of
DW_apb_i2c. The lower byte must be programmed first, and
then the upper byte is programmed.
When the configuration parameter
IC_HC_COUNT_VALUES is set to 1, this register is read
only.

Value After Reset: IC_SS_SCL_LOW_COUNT
Exists: Always
Memory Access: "(IC_HC_COUNT_VALUES==1) ? \"read-
only\" : \"read-write\""

Table 5-13 Fields for Register: IC_SS_SCL_LCNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

172 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.9 IC_UFM_SCL_LCNT

■ Name: Ultra-Fast Speed I2C Clock SCL Low Count Register

■ Description: Ultra-Fast Speed I2C Clock SCL Low Count Register

■ Size: 32 bits

■ Offset: 0x18

■ Exists: IC_ULTRA_FAST_MODE==1

31
:1

6

15
:0

R
S

V
D

_I
C

_U
F

M
_S

C
L_

LC
N

T

IC
_U

F
M

_S
C

L_
LC

N
T

Table 5-14 Fields for Register: IC_UFM_SCL_LCNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_UFM_SCL_LCNT R IC_UFM_SCL_LCNT Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 173SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_UFM_SCL_LCNT * Varies This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
SCL clock low period count for Ultra-Fast speed.
This register can be written only when the I2C interface is
disabled which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 5; hardware prevents values less
than this being written, and if attempted, results in 5 being
set. For designs with APB_DATA_WIDTH = 8, the order of
programming is important to ensure the correct operation of
DW_apb_i2c. The lower byte must be programmed first, and
then the upper byte is programmed. When the configuration
parameter IC_HC_COUNT_VALUES is set to 1, this register
is read only.

Value After Reset: IC_UFM_SCL_LOW_COUNT
Exists: Always
Memory Access: "(IC_HC_COUNT_VALUES==1) ? \"read-
only\" : \"read-write\""

Table 5-14 Fields for Register: IC_UFM_SCL_LCNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

174 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.10 IC_FS_SCL_HCNT

■ Name: Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register

■ Description: Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register

■ Size: 32 bits

■ Offset: 0x1c

■ Exists: IC_MAX_SPEED_MODE!=1

31
:1

6

15
:0

R
S

V
D

_I
C

_F
S

_S
C

L_
H

C
N

T

IC
_F

S
_S

C
L_

H
C

N
T

Table 5-15 Fields for Register: IC_FS_SCL_HCNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_FS_SCL_HCNT R IC_FS_SCL_HCNT Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 175SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_FS_SCL_HCNT * Varies This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
SCL clock high-period count for fast mode or fast mode plus.
It is used in high-speed mode to send the Master Code and
START BYTE or General CALL. For more information, refer
to "IC_CLK Frequency Configuration".
This register goes away and becomes read-only returning 0s
if IC_MAX_SPEED_MODE = standard.
This register can be written only when the I2C interface is
disabled, which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 6; hardware prevents values less
than this being written, and if attempted results in 6 being
set. For designs with APB_DATA_WIDTH == 8 the order of
programming is important to ensure the correct operation of
the DW_apb_i2c. The lower byte must be programmed first.
Then the upper byte is programmed.
Value After Reset: IC_FS_SCL_HIGH_COUNT
Exists: Always
Memory Access: "(IC_HC_COUNT_VALUES==1) ? \"read-
only\" : \"read-write\""

Table 5-15 Fields for Register: IC_FS_SCL_HCNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

176 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.11 IC_UFM_TBUF_CNT

■ Name: Ultra-Fast Speed mode TBuf Idle Count Register

■ Description: Ultra-Fast Speed mode TBuf Idle Count Register

■ Size: 32 bits

■ Offset: 0x1c

■ Exists: IC_ULTRA_FAST_MODE==1

31
:1

6

15
:0

R
S

V
D

_I
C

_U
F

M
_T

B
U

F
_C

N
T

IC
_U

F
M

_T
B

U
F

_C
N

T

Table 5-16 Fields for Register: IC_UFM_TBUF_CNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_UFM_TBUF_CNT R IC_UFM_TBUF_CNT Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 177SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_UFM_TBUF_CNT R/W This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
Bus-Free time between a STOP and STOP condition count
for Ultra-Fast speed.
This register can be written only when the I2C interface is
disabled which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
For designs with APB_DATA_WIDTH = 8, the order of
programming is important to ensure the correct operation of
the DW_apb_i2c. The lower byte must be programmed first
and then the upper byte is programmed. When the
configuration parameter.
NOTE: The DW_apb_i2c will add 9 ic_clks after tBuf time is
expired to generate START on the Bus.
Value After Reset: IC_UFM_TBUF_CNT_DEFAULT
Exists: Always

Table 5-16 Fields for Register: IC_UFM_TBUF_CNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

178 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.12 IC_FS_SCL_LCNT

■ Name: Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register

■ Description: Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register

■ Size: 32 bits

■ Offset: 0x20

■ Exists: IC_MAX_SPEED_MODE!=1

31
:1

6

15
:0

R
S

V
D

_I
C

_F
S

_S
C

L_
LC

N
T

IC
_F

S
_S

C
L_

LC
N

T

Table 5-17 Fields for Register: IC_FS_SCL_LCNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_FS_SCL_LCNT R IC_FS_SCL_LCNT Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 179SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_FS_SCL_LCNT * Varies This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
SCL clock low period count for fast speed. It is used in high-
speed mode to send the Master Code and START BYTE or
General CALL. For more information, refer to "IC_CLK
Frequency Configuration".
This register goes away and becomes read-only returning 0s
if IC_MAX_SPEED_MODE = standard.
This register can be written only when the I2C interface is
disabled, which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 8; hardware prevents values less
than this being written, and if attempted results in 8 being
set. For designs with APB_DATA_WIDTH = 8 the order of
programming is important to ensure the correct operation of
the DW_apb_i2c. The lower byte must be programmed first.
Then the upper byte is programmed. If the value is less than
8 then the count value gets changed to 8.
When the configuration parameter
IC_HC_COUNT_VALUES is set to 1, this register is read
only.
Value After Reset: IC_FS_SCL_LOW_COUNT
Exists: Always
Memory Access: "(IC_HC_COUNT_VALUES==1) ? \"read-
only\" : \"read-write\""

Table 5-17 Fields for Register: IC_FS_SCL_LCNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

180 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.13 IC_HS_SCL_HCNT

■ Name: High Speed I2C Clock SCL High Count Register

■ Description: High Speed I2C Clock SCL High Count Register

■ Size: 32 bits

■ Offset: 0x24

■ Exists: IC_MAX_SPEED_MODE==3

31
:1

6

15
:0

R
S

V
D

_I
C

_H
S

_S
C

L_
H

C
N

T

IC
_H

S
_S

C
L_

H
C

N
T

Table 5-18 Fields for Register: IC_HS_SCL_HCNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_HS_SCL_HCNT R IC_HS_SCL_HCNT Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 181SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_HS_SCL_HCNT * Varies This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
SCL clock high period count for high speed.refer to "IC_CLK
Frequency Configuration".
The SCL High time depends on the loading of the bus. For
100pF loading, the SCL High time is 60ns; for 400pF loading,
the SCL High time is 120ns. This register goes away and
becomes read-only returning 0s if IC_MAX_SPEED_MODE
!= high.
This register can be written only when the I2C interface is
disabled, which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 6; hardware prevents values less
than this being written, and if attempted results in 6 being
set. For designs with APB_DATA_WIDTH = 8 the order of
programming is important to ensure the correct operation of
the DW_apb_i2c. The lower byte must be programmed first.
Then the upper byte is programmed.
Value After Reset: IC_HS_SCL_HIGH_COUNT
Exists: Always
Memory Access: "(IC_HC_COUNT_VALUES==1) ? \"read-
only\" : \"read-write\""

Table 5-18 Fields for Register: IC_HS_SCL_HCNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

182 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.14 IC_HS_SCL_LCNT

■ Name: High Speed I2C Clock SCL Low Count Register

■ Description: High Speed I2C Clock SCL Low Count Register

■ Size: 32 bits

■ Offset: 0x28

■ Exists: IC_MAX_SPEED_MODE==3

31
:1

6

15
:0

R
S

V
D

_I
C

_H
S

_S
C

L_
LO

W
_C

N
T

IC
_H

S
_S

C
L_

LC
N

T

Table 5-19 Fields for Register: IC_HS_SCL_LCNT

Bits Name
Memory
Access Description

31:16 RSVD_IC_HS_SCL_LOW_CNT R IC_HS_SCL_LCNT Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 183SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

15:0 IC_HS_SCL_LCNT * Varies This register must be set before any I2C bus transaction can
take place to ensure proper I/O timing. This register sets the
SCL clock low period count for high speed. For more
information, refer to "IC_CLK Frequency Configuration".
The SCL low time depends on the loading of the bus. For
100pF loading, the SCL low time is 160ns; for 400pF loading,
the SCL low time is 320ns. This register goes away and
becomes read-only returning 0s if IC_MAX_SPEED_MODE
!= high.
This register can be written only when the I2C interface is
disabled, which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 8; hardware prevents values less
than this being written, and if attempted results in 8 being
set. For designs with APB_DATA_WIDTH == 8 the order of
programming is important to ensure the correct operation of
the DW_apb_i2c. The lower byte must be programmed first.
Then the upper byte is programmed. If the value is less than
8 then the count value gets changed to 8.
Value After Reset: IC_HS_SCL_LOW_COUNT
Exists: Always
Memory Access: "(IC_HC_COUNT_VALUES==1) ? \"read-
only\" : \"read-write\""

Table 5-19 Fields for Register: IC_HS_SCL_LCNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

184 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.15 IC_INTR_STAT

■ Name: I2C Interrupt Status Register

■ Description: I2C Interrupt Status Register

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are
cleared by reading the matching interrupt clear register. The unmasked raw versions of these bits are
available in the IC_RAW_INTR_STAT register.

■ Size: 32 bits

■ Offset: 0x2c

■ Exists: Always

31
:1

5

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
S

V
D

_I
C

_I
N

T
R

_S
T

A
T

R
_S

C
L_

S
T

U
C

K
_A

T
_L

O
W

R
_M

A
S

T
E

R
_O

N
_H

O
LD

R
_R

E
S

T
A

R
T

_D
E

T

R
_G

E
N

_C
A

LL

R
_S

T
A

R
T

_D
E

T

R
_S

T
O

P
_D

E
T

R
_A

C
T

IV
IT

Y

R
_R

X
_D

O
N

E

R
_T

X
_A

B
R

T

R
_R

D
_R

E
Q

R
_T

X
_E

M
P

T
Y

R
_T

X
_O

V
E

R

R
_R

X
_F

U
LL

R
_R

X
_O

V
E

R

R
_R

X
_U

N
D

E
R

Table 5-20 Fields for Register: IC_INTR_STAT

Bits Name
Memory
Access Description

31:15 RSVD_IC_INTR_STAT R IC_INTR_STAT Reserved bits - Read Only
Exists: Always
Volatile: true

14 R_SCL_STUCK_AT_LOW R See IC_RAW_INTR_STAT for a detailed description of
R_SCL_STUCK_AT_LOW bit.
Values:

■ 0x1 (ACTIVE): R_SCL_STUCK_AT_LOW interrupt is
active

■ 0x0 (INACTIVE): R_SCL_STUCK_AT_LOW interrupt is
inactive

Value After Reset: 0x0
Exists: IC_BUS_CLEAR_FEATURE==1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 185SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

13 R_MASTER_ON_HOLD R See IC_RAW_INTR_STAT for a detailed description of
R_MASTER_ON_HOLD bit.
Values:

■ 0x1 (ACTIVE): R_MASTER_ON_HOLD interrupt is active

■ 0x0 (INACTIVE): R_MASTER_ON_HOLD interrupt is
inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

12 R_RESTART_DET R See IC_RAW_INTR_STAT for a detailed description of
R_RESTART_DET bit.
Values:

■ 0x1 (ACTIVE): R_RESTART_DET interrupt is active

■ 0x0 (INACTIVE): R_RESTART_DET interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

11 R_GEN_CALL R See IC_RAW_INTR_STAT for a detailed description of
R_GEN_CALL bit.
Values:

■ 0x1 (ACTIVE): R_GEN_CALL interrupt is active

■ 0x0 (INACTIVE): R_GEN_CALL interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

10 R_START_DET R See IC_RAW_INTR_STAT for a detailed description of
R_START_DET bit.
Values:
■ 0x1 (ACTIVE): R_START_DET interrupt is active

■ 0x0 (INACTIVE): R_START_DET interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-20 Fields for Register: IC_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

186 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

9 R_STOP_DET R See IC_RAW_INTR_STAT for a detailed description of
R_STOP_DET bit.
Values:

■ 0x1 (ACTIVE): R_STOP_DET interrupt is active

■ 0x0 (INACTIVE): R_STOP_DET interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

8 R_ACTIVITY R See IC_RAW_INTR_STAT for a detailed description of
R_ACTIVITY bit.
Values:

■ 0x1 (ACTIVE): R_ACTIVITY interrupt is active

■ 0x0 (INACTIVE): R_ACTIVITY interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

7 R_RX_DONE R See IC_RAW_INTR_STAT for a detailed description of
R_RX_DONE bit.
Values:

■ 0x1 (ACTIVE): R_RX_DONE interrupt is active

■ 0x0 (INACTIVE): R_RX_DONE interrupt is inactive

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

6 R_TX_ABRT R See IC_RAW_INTR_STAT for a detailed description of
R_TX_ABRT bit.
Values:
■ 0x1 (ACTIVE): R_TX_ABRT interrupt is active

■ 0x0 (INACTIVE): R_TX_ABRT interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-20 Fields for Register: IC_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 187SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5 R_RD_REQ R See IC_RAW_INTR_STAT for a detailed description of
R_RD_REQ bit.
Values:

■ 0x1 (ACTIVE): R_RD_REQ interrupt is active

■ 0x0 (INACTIVE): R_RD_REQ interrupt is inactive

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

4 R_TX_EMPTY R See IC_RAW_INTR_STAT for a detailed description of
R_TX_EMPTY bit.
Values:

■ 0x1 (ACTIVE): R_TX_EMPTY interrupt is active

■ 0x0 (INACTIVE): R_TX_EMPTY interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

3 R_TX_OVER R See IC_RAW_INTR_STAT for a detailed description of
R_TX_OVER bit.
Values:

■ 0x1 (ACTIVE): R_TX_OVER interrupt is active

■ 0x0 (INACTIVE): R_TX_OVER interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

2 R_RX_FULL R See IC_RAW_INTR_STAT for a detailed description of
R_RX_FULL bit.
Values:
■ 0x1 (ACTIVE): R_RX_FULL interrupt is active

■ 0x0 (INACTIVE): R_RX_FULL interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-20 Fields for Register: IC_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

188 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

1 R_RX_OVER R See IC_RAW_INTR_STAT for a detailed description of
R_RX_OVER bit.
Values:

■ 0x1 (ACTIVE): R_RX_OVER interrupt is active

■ 0x0 (INACTIVE): R_RX_OVER interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

0 R_RX_UNDER R See IC_RAW_INTR_STAT for a detailed description of
R_RX_UNDER bit.
Values:

■ 0x1 (ACTIVE): RX_UNDER interrupt is active

■ 0x0 (INACTIVE): RX_UNDER interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-20 Fields for Register: IC_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 189SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.16 IC_INTR_MASK

■ Name: I2C Interrupt Mask Register

■ Description: I2C Interrupt Mask Register.

These bits mask their corresponding interrupt status bits. This register is active low; a value of 0
masks the interrupt, whereas a value of 1 unmasks the interrupt.

■ Size: 32 bits

■ Offset: 0x30

■ Exists: Always

31
:1

5

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
S

V
D

_I
C

_I
N

T
R

_S
T

A
T

M
_S

C
L_

S
T

U
C

K
_A

T
_L

O
W

M
_M

A
S

T
E

R
_O

N
_H

O
LD

M
_R

E
S

T
A

R
T

_D
E

T

M
_G

E
N

_C
A

LL

M
_S

T
A

R
T

_D
E

T

M
_S

T
O

P
_D

E
T

M
_A

C
T

IV
IT

Y

M
_R

X
_D

O
N

E

M
_T

X
_A

B
R

T

M
_R

D
_R

E
Q

M
_T

X
_E

M
P

T
Y

M
_T

X
_O

V
E

R

M
_R

X
_F

U
LL

M
_R

X
_O

V
E

R

M
_R

X
_U

N
D

E
R

Table 5-21 Fields for Register: IC_INTR_MASK

Bits Name
Memory
Access Description

31:15 RSVD_IC_INTR_STAT R IC_INTR_STAT Reserved bits - Read Only
Exists: Always

14 M_SCL_STUCK_AT_LOW R/W This bit masks the R_SCL_STUCK_AT_LOW interrupt in
IC_INTR_STAT register.
Values:

■ 0x1 (DISABLED): SCL_STUCK_AT_LOW interrupt is
unmasked

■ 0x0 (ENABLED): SCL_STUCK_AT_LOW interrupt is
masked

Value After Reset: "(IC_BUS_CLEAR_FEATURE_EN) ?
\"0x1\" : \"0x0\""
Exists: IC_BUS_CLEAR_FEATURE==1

https://solvnet.synopsys.com
www.designware.com

190 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

13 M_MASTER_ON_HOLD R/W This bit masks the R_MASTER_ON_HOLD interrupt in
IC_INTR_STAT register.
Values:

■ 0x1 (DISABLED): MASTER_ON_HOLD interrupt is
unmasked

■ 0x0 (ENABLED): MASTER_ON_HOLD interrupt is
masked

Value After Reset: 0x0
Exists: I2C_DYNAMIC_TAR_UPDATE == 1 &&
IC_EMPTYFIFO_HOLD_MASTER_EN == 1

12 M_RESTART_DET R/W This bit masks the R_RESTART_DET interrupt in
IC_INTR_STAT register.
Values:

■ 0x1 (DISABLED): RESTART_DET interrupt is unmasked

■ 0x0 (ENABLED): RESTART_DET interrupt is masked

Value After Reset: 0x0
Exists: IC_SLV_RESTART_DET_EN == 1

11 M_GEN_CALL R/W This bit masks the R_GEN_CALL interrupt in IC_INTR_STAT
register.
Values:
■ 0x1 (DISABLED): GEN_CALL interrupt is unmasked

■ 0x0 (ENABLED): GEN_CALL interrupt is masked

Value After Reset: 0x1
Exists: Always

10 M_START_DET R/W This bit masks the R_START_DET interrupt in
IC_INTR_STAT register.
Values:
■ 0x1 (DISABLED): START_DET interrupt is unmasked

■ 0x0 (ENABLED): START_DET interrupt is masked

Value After Reset: 0x0
Exists: Always

9 M_STOP_DET R/W This bit masks the R_STOP_DET interrupt in IC_INTR_STAT
register.
Values:

■ 0x1 (DISABLED): STOP_DET interrupt is unmasked

■ 0x0 (ENABLED): STOP_DET interrupt is masked

Value After Reset: 0x0
Exists: Always

Table 5-21 Fields for Register: IC_INTR_MASK (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 191SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

8 M_ACTIVITY R/W This bit masks the R_ACTIVITY interrupt in IC_INTR_STAT
register.
Values:

■ 0x1 (DISABLED): ACTIVITY interrupt is unmasked

■ 0x0 (ENABLED): ACTIVITY interrupt is masked

Value After Reset: 0x0
Exists: Always

7 M_RX_DONE R/W This bit masks the R_RX_DONE interrupt in IC_INTR_STAT
register.
Values:

■ 0x1 (DISABLED): RX_DONE interrupt is unmasked

■ 0x0 (ENABLED): RX_DONE interrupt is masked

Value After Reset: 0x1
Exists: IC_ULTRA_FAST_MODE == 0

6 M_TX_ABRT R/W This bit masks the R_TX_ABRT interrupt in IC_INTR_STAT
register.
Values:
■ 0x1 (DISABLED): TX_ABORT interrupt is unmasked

■ 0x0 (ENABLED): TX_ABORT interrupt is masked

Value After Reset: 0x1
Exists: Always

5 M_RD_REQ R/W This bit masks the R_RD_REQ interrupt in IC_INTR_STAT
register.
Values:

■ 0x1 (DISABLED): RD_REQ interrupt is unmasked

■ 0x0 (ENABLED): RD_REQ interrupt is masked

Value After Reset: 0x1
Exists: IC_ULTRA_FAST_MODE == 0

4 M_TX_EMPTY R/W This bit masks the R_TX_EMPTY interrupt in IC_INTR_STAT
register.
Values:

■ 0x1 (DISABLED): TX_EMPTY interrupt is unmasked

■ 0x0 (ENABLED): TX_EMPTY interrupt is masked

Value After Reset: 0x1
Exists: Always

Table 5-21 Fields for Register: IC_INTR_MASK (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

192 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

3 M_TX_OVER R/W This bit masks the R_TX_OVER interrupt in IC_INTR_STAT
register.
Values:

■ 0x1 (DISABLED): TX_OVER interrupt is unmasked

■ 0x0 (ENABLED): TX_OVER interrupt is masked

Value After Reset: 0x1
Exists: Always

2 M_RX_FULL R/W This bit masks the R_RX_FULL interrupt in IC_INTR_STAT
register.
Values:

■ 0x1 (DISABLED): RX_FULL interrupt is unmasked

■ 0x0 (ENABLED): RX_FULL interrupt is masked

Value After Reset: 0x1
Exists: Always

1 M_RX_OVER R/W This bit masks the R_RX_OVER interrupt in IC_INTR_STAT
register.
Values:
■ 0x1 (DISABLED): RX_OVER interrupt is unmasked

■ 0x0 (ENABLED): RX_OVER interrupt is masked

Value After Reset: 0x1
Exists: Always

0 M_RX_UNDER R/W This bit masks the R_RX_UNDER interrupt in
IC_INTR_STAT register.
Values:

■ 0x1 (DISABLED): RX_UNDER interrupt is unmasked

■ 0x0 (ENABLED): RX_UNDER interrupt is masked

Value After Reset: 0x1
Exists: Always

Table 5-21 Fields for Register: IC_INTR_MASK (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 193SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.17 IC_RAW_INTR_STAT

■ Name: I2C Raw Interrupt Status Register

■ Description: I2C Raw Interrupt Status Register

Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of
the DW_apb_i2c.

■ Size: 32 bits

■ Offset: 0x34

■ Exists: Always

31
:1

5

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
S

V
D

_I
C

_R
A

W
_I

N
T

R
_S

T
A

T

S
C

L_
S

T
U

C
K

_A
T

_L
O

W

M
A

S
T

E
R

_O
N

_H
O

LD

R
E

S
T

A
R

T
_D

E
T

G
E

N
_C

A
LL

S
T

A
R

T
_D

E
T

S
T

O
P

_D
E

T

A
C

T
IV

IT
Y

R
X

_D
O

N
E

T
X

_A
B

R
T

R
D

_R
E

Q

T
X

_E
M

P
T

Y

T
X

_O
V

E
R

R
X

_F
U

LL

R
X

_O
V

E
R

R
X

_U
N

D
E

R

Table 5-22 Fields for Register: IC_RAW_INTR_STAT

Bits Name
Memory
Access Description

31:15 RSVD_IC_RAW_INTR_STAT R IC_RAW_INTR_STAT Reserved bits - Read Only
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

194 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

14 SCL_STUCK_AT_LOW R Indicates whether the SCL Line is stuck at low for the
IC_SCL_STUCK_LOW_TIMEOUT number of ic_clk periods.
Enabled only when IC_BUS_CLEAR_FEATURE=1 and
IC_ULTRA_FAST_MODE=0.

Values:

■ 0x1 (ACTIVE): SCL_STUCK_AT_LOW interrupt is active

■ 0x0 (INACTIVE): SCL_STUCK_AT_LOW interrupt is
inactive.

Value After Reset: 0x0
Exists: IC_BUS_CLEAR_FEATURE==1
Volatile: true

13 MASTER_ON_HOLD R Indicates whether master is holding the bus and TX FIFO is
empty. Enabled only when I2C_DYNAMIC_TAR_UPDATE=1
and IC_EMPTYFIFO_HOLD_MASTER_EN=1.
Values:

■ 0x1 (ACTIVE): MASTER_ON_HOLD interrupt is active

■ 0x0 (INACTIVE): MASTER_ON_HOLD interrupt is
inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

12 RESTART_DET R Indicates whether a RESTART condition has occurred on the
I2C interface when DW_apb_i2c is operating in Slave mode
and the slave is being addressed.
 Enabled only when IC_SLV_RESTART_DET_EN=1.
Note: However, in high-speed mode or during a START
BYTE transfer, the RESTART comes before the address field
as per the I2C protocol. In this case, the slave is not the
addressed slave when the RESTART is issued, therefore
DW_apb_i2c does not generate the RESTART_DET
interrupt.
Values:

■ 0x1 (ACTIVE): RESTART_DET interrupt is active

■ 0x0 (INACTIVE): RESTART_DET interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-22 Fields for Register: IC_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 195SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

11 GEN_CALL R Set only when a General Call address is received and it is
acknowledged. It stays set until it is cleared either by
disabling DW_apb_i2c or when the CPU reads bit 0 of the
IC_CLR_GEN_CALL register. DW_apb_i2c stores the
received data in the Rx buffer.
Values:

■ 0x1 (ACTIVE): GEN_CALL interrupt is active

■ 0x0 (INACTIVE): GEN_CALL interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

10 START_DET R Indicates whether a START or RESTART condition has
occurred on the I2C interface regardless of whether
DW_apb_i2c is operating in slave or master mode.
Values:

■ 0x1 (ACTIVE): START_DET interrupt is active

■ 0x0 (INACTIVE): START_DET interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-22 Fields for Register: IC_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

196 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

9 STOP_DET R Indicates whether a STOP condition has occurred on the I2C
interface regardless of whether DW_apb_i2c is operating in
slave or master mode.
In Slave Mode:

■ If IC_CON[7]=1'b1 (STOP_DET_IFADDRESSED), the
STOP_DET interrupt will be issued only if slave is
addressed.

Note: During a general call address, this slave does not
issue a STOP_DET interrupt if
STOP_DET_IF_ADDRESSED=1'b1, even if the slave
responds to the general call address by generating ACK. The
STOP_DET interrupt is generated only when the transmitted
address matches the slave address (SAR).

■ If IC_CON[7]=1'b0 (STOP_DET_IFADDRESSED), the
STOP_DET interrupt is issued irrespective of whether it is
being addressed.

In Master Mode:

■ If IC_CON[10]=1'b1
(STOP_DET_IF_MASTER_ACTIVE),the STOP_DET
interrupt will be issued only if Master is active.

■ If IC_CON[10]=1'b0 (STOP_DET_IFADDRESSED),the
STOP_DET interrupt will be issued irrespective of
whether master is active or not.

Values:

■ 0x1 (ACTIVE): STOP_DET interrupt is active

■ 0x0 (INACTIVE): STOP_DET interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-22 Fields for Register: IC_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 197SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

8 ACTIVITY R This bit captures DW_apb_i2c activity and stays set until it is
cleared. There are four ways to clear it:

■ Disabling the DW_apb_i2c

■ Reading the IC_CLR_ACTIVITY register

■ Reading the IC_CLR_INTR register

■ System reset

Once this bit is set, it stays set unless one of the four
methods is used to clear it. Even if the DW_apb_i2c module
is idle, this bit remains set until cleared, indicating that there
was activity on the bus.
Values:
■ 0x1 (ACTIVE): RAW_INTR_ACTIVITY interrupt is active

■ 0x0 (INACTIVE): RAW_INTR_ACTIVITY interrupt is
inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

7 RX_DONE R When the DW_apb_i2c is acting as a slave-transmitter, this
bit is set to 1 if the master does not acknowledge a
transmitted byte. This occurs on the last byte of the
transmission, indicating that the transmission is done.
Values:
■ 0x1 (ACTIVE): RX_DONE interrupt is active

■ 0x0 (INACTIVE): RX_DONE interrupt is inactive

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

Table 5-22 Fields for Register: IC_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

198 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

6 TX_ABRT R This bit indicates if DW_apb_i2c, as an I2C transmitter, is
unable to complete the intended actions on the contents of
the transmit FIFO. This situation can occur both as an I2C
master or an I2C slave, and is referred to as a 'transmit
abort'. When this bit is set to 1, the IC_TX_ABRT_SOURCE
register indicates the reason why the transmit abort takes
places.
Note: The DW_apb_i2c flushes/resets/empties only the
TX_FIFO whenever there is a transmit abort caused by any
of the events tracked by the IC_TX_ABRT_SOURCE
register. The Tx FIFO remains in this flushed state until the
register IC_CLR_TX_ABRT is read. Once this read is
performed, the Tx FIFO is then ready to accept more data
bytes from the APB interface. RX FIFO flush because of
TX_ABRT is controlled by the coreConsultant parameter
IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT.
Values:
■ 0x1 (ACTIVE): TX_ABRT interrupt is active

■ 0x0 (INACTIVE): TX_ABRT interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

5 RD_REQ R This bit is set to 1 when DW_apb_i2c is acting as a slave and
another I2C master is attempting to read data from
DW_apb_i2c. The DW_apb_i2c holds the I2C bus in a wait
state (SCL=0) until this interrupt is serviced, which means
that the slave has been addressed by a remote master that is
asking for data to be transferred. The processor must
respond to this interrupt and then write the requested data to
the IC_DATA_CMD register. This bit is set to 0 just after the
processor reads the IC_CLR_RD_REQ register.
Values:

■ 0x1 (ACTIVE): RD_REQ interrupt is active

■ 0x0 (INACTIVE): RD_REQ interrupt is inactive

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

Table 5-22 Fields for Register: IC_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 199SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

4 TX_EMPTY R The behavior of the TX_EMPTY interrupt status differs
based on the TX_EMPTY_CTRL selection in the IC_CON
register.

■ When TX_EMPTY_CTRL = 0:

This bit is set to 1 when the transmit buffer is at or below
the threshold value set in the IC_TX_TL register.

■ When TX_EMPTY_CTRL = 1:

This bit is set to 1 when the transmit buffer is at or below
the threshold value set in the IC_TX_TL register and the
transmission of the address/data from the internal shift
register for the most recently popped command is
completed.

It is automatically cleared by hardware when the buffer level
goes above the threshold. When IC_ENABLE[0] is set to 0,
the TX FIFO is flushed and held in reset. There the TX FIFO
looks like it has no data within it, so this bit is set to 1,
provided there is activity in the master or slave state
machines. When there is no longer any activity, then with
ic_en=0, this bit is set to 0.
Values:

■ 0x1 (ACTIVE): TX_EMPTY interrupt is active

■ 0x0 (INACTIVE): TX_EMPTY interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

3 TX_OVER R Set during transmit if the transmit buffer is filled to
IC_TX_BUFFER_DEPTH and the processor attempts to
issue another I2C command by writing to the IC_DATA_CMD
register. When the module is disabled, this bit keeps its level
until the master or slave state machines go into idle, and
when ic_en goes to 0, this interrupt is cleared.
Values:
■ 0x1 (ACTIVE): TX_OVER interrupt is active

■ 0x0 (INACTIVE): TX_OVER interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-22 Fields for Register: IC_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

200 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

2 RX_FULL R Set when the receive buffer reaches or goes above the
RX_TL threshold in the IC_RX_TL register. It is automatically
cleared by hardware when buffer level goes below the
threshold. If the module is disabled (IC_ENABLE[0]=0), the
RX FIFO is flushed and held in reset; therefore the RX FIFO
is not full. So this bit is cleared once the IC_ENABLE bit 0 is
programmed with a 0, regardless of the activity that
continues.
Values:

■ 0x1 (ACTIVE): RX_FULL interrupt is active

■ 0x0 (INACTIVE): RX_FULL interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

1 RX_OVER R Set if the receive buffer is completely filled to
IC_RX_BUFFER_DEPTH and an additional byte is received
from an external I2C device. The DW_apb_i2c
acknowledges this, but any data bytes received after the
FIFO is full are lost. If the module is disabled
(IC_ENABLE[0]=0), this bit keeps its level until the master or
slave state machines go into idle, and when ic_en goes to 0,
this interrupt is cleared.
Note: If the configuration parameter
IC_RX_FULL_HLD_BUS_EN is enabled and bit 9 of the
IC_CON register (RX_FIFO_FULL_HLD_CTRL) is
programmed to HIGH, then the RX_OVER interrupt never
occurs, because the Rx FIFO never overflows.
Values:

■ 0x1 (ACTIVE): RX_OVER interrupt is active

■ 0x0 (INACTIVE): RX_OVER interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-22 Fields for Register: IC_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 201SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

0 RX_UNDER R Set if the processor attempts to read the receive buffer when
it is empty by reading from the IC_DATA_CMD register. If the
module is disabled (IC_ENABLE[0]=0), this bit keeps its level
until the master or slave state machines go into idle, and
when ic_en goes to 0, this interrupt is cleared.
Values:

■ 0x1 (ACTIVE): RX_UNDER interrupt is active

■ 0x0 (INACTIVE): RX_UNDER interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-22 Fields for Register: IC_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

202 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.18 IC_RX_TL

■ Name: I2C Receive FIFO Threshold Register

■ Description: I2C Receive FIFO Threshold Register

■ Size: 32 bits

■ Offset: 0x38

■ Exists: Always

31
:8

7:
0

R
S

V
D

_I
C

_R
X

_T
L

R
X

_T
L

Table 5-23 Fields for Register: IC_RX_TL

Bits Name
Memory
Access Description

31:8 RSVD_IC_RX_TL R IC_RX_TL Reserved bits - Read Only
Exists: Always

7:0 RX_TL R/W Receive FIFO Threshold Level.
Controls the level of entries (or above) that triggers the
RX_FULL interrupt (bit 2 in IC_RAW_INTR_STAT register).
The valid range is 0-255, with the additional restriction that
hardware does not allow this value to be set to a value larger
than the depth of the buffer. If an attempt is made to do that,
the actual value set will be the maximum depth of the buffer.
A value of 0 sets the threshold for 1 entry, and a value of 255
sets the threshold for 256 entries.
Value After Reset: IC_RX_TL
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 203SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.19 IC_TX_TL

■ Name: I2C Transmit FIFO Threshold Register

■ Description: I2C Transmit FIFO Threshold Register

■ Size: 32 bits

■ Offset: 0x3c

■ Exists: Always

31
:8

7:
0

R
S

V
D

_I
C

_T
X

_T
L

T
X

_T
L

Table 5-24 Fields for Register: IC_TX_TL

Bits Name
Memory
Access Description

31:8 RSVD_IC_TX_TL R IC_TX_TL Reserved bits - Read Only
Exists: Always

7:0 TX_TL R/W Transmit FIFO Threshold Level.
Controls the level of entries (or below) that trigger the
TX_EMPTY interrupt (bit 4 in IC_RAW_INTR_STAT register).
The valid range is 0-255, with the additional restriction that it
may not be set to value larger than the depth of the buffer. If
an attempt is made to do that, the actual value set will be the
maximum depth of the buffer. A value of 0 sets the threshold
for 0 entries, and a value of 255 sets the threshold for 255
entries.
Value After Reset: IC_TX_TL
Exists: Always

https://solvnet.synopsys.com
www.designware.com

204 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.20 IC_CLR_INTR

■ Name: Clear Combined and Individual Interrupt Register

■ Description: Clear Combined and Individual Interrupt Register

■ Size: 32 bits

■ Offset: 0x40

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_I
N

T
R

C
LR

_I
N

T
R

Table 5-25 Fields for Register: IC_CLR_INTR

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_INTR R CLR_INTR Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_INTR R Read this register to clear the combined interrupt, all
individual interrupts, and the IC_TX_ABRT_SOURCE
register. This bit does not clear hardware clearable interrupts
but software clearable interrupts. Refer to Bit 9 of the
IC_TX_ABRT_SOURCE register for an exception to clearing
IC_TX_ABRT_SOURCE.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 205SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.21 IC_CLR_RX_UNDER

■ Name: Clear RX_UNDER Interrupt Register

■ Description: Clear RX_UNDER Interrupt Register

■ Size: 32 bits

■ Offset: 0x44

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_R
X

_U
N

D
E

R

C
LR

_R
X

_U
N

D
E

R

Table 5-26 Fields for Register: IC_CLR_RX_UNDER

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_RX_UNDER R IC_CLR_RX_UNDER Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_RX_UNDER R Read this register to clear the RX_UNDER interrupt (bit 0) of
the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

206 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.22 IC_CLR_RX_OVER

■ Name: Clear RX_OVER Interrupt Register

■ Description: Clear RX_OVER Interrupt Register

■ Size: 32 bits

■ Offset: 0x48

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_R
X

_O
V

E
R

C
LR

_R
X

_O
V

E
R

Table 5-27 Fields for Register: IC_CLR_RX_OVER

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_RX_OVER R IC_CLR_RX_OVER Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_RX_OVER R Read this register to clear the RX_OVER interrupt (bit 1) of
the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 207SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.23 IC_CLR_TX_OVER

■ Name: Clear TX_OVER Interrupt Register

■ Description: Clear TX_OVER Interrupt Register

■ Size: 32 bits

■ Offset: 0x4c

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_T
X

_O
V

E
R

C
LR

_T
X

_O
V

E
R

Table 5-28 Fields for Register: IC_CLR_TX_OVER

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_TX_OVER R IC_CLR_TX_OVER Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_TX_OVER R Read this register to clear the TX_OVER interrupt (bit 3) of
the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

208 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.24 IC_CLR_RD_REQ

■ Name: Clear RD_REQ Interrupt Register

■ Description: Clear RD_REQ Interrupt Register

■ Size: 32 bits

■ Offset: 0x50

■ Exists: IC_ULTRA_FAST_MODE==0

31
:1

0

R
S

V
D

_I
C

_C
LR

_R
D

_R
E

Q

C
LR

_R
D

_R
E

Q

Table 5-29 Fields for Register: IC_CLR_RD_REQ

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_RD_REQ R IC_CLR_RD_REQ Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_RD_REQ R Read this register to clear the RD_REQ interrupt (bit 5) of
the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 209SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.25 IC_CLR_TX_ABRT

■ Name: Clear TX_ABRT Interrupt Register

■ Description: Clear TX_ABRT Interrupt Register

■ Size: 32 bits

■ Offset: 0x54

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_T
X

_A
B

R
T

C
LR

_T
X

_A
B

R
T

Table 5-30 Fields for Register: IC_CLR_TX_ABRT

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_TX_ABRT R IC_CLR_TX_ABRT Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_TX_ABRT R Read this register to clear the TX_ABRT interrupt (bit 6) of
the IC_RAW_INTR_STAT register, and the
IC_TX_ABRT_SOURCE register. This also releases the TX
FIFO from the flushed/reset state, allowing more writes to
the TX FIFO. Refer to Bit 9 of the IC_TX_ABRT_SOURCE
register for an exception to clearing
IC_TX_ABRT_SOURCE.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

210 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.26 IC_CLR_RX_DONE

■ Name: Clear RX_DONE Interrupt Register

■ Description: Clear RX_DONE Interrupt Register

■ Size: 32 bits

■ Offset: 0x58

■ Exists: IC_ULTRA_FAST_MODE==0

31
:1

0

R
S

V
D

_I
C

_C
LR

_R
X

_D
O

N
E

C
LR

_R
X

_D
O

N
E

Table 5-31 Fields for Register: IC_CLR_RX_DONE

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_RX_DONE R IC_CLR_RX_DONE Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_RX_DONE R Read this register to clear the RX_DONE interrupt (bit 7) of
the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 211SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.27 IC_CLR_ACTIVITY

■ Name: Clear ACTIVITY Interrupt Register

■ Description: Clear ACTIVITY Interrupt Register

■ Size: 32 bits

■ Offset: 0x5c

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_A
C

T
IV

IT
Y

C
LR

_A
C

T
IV

IT
Y

Table 5-32 Fields for Register: IC_CLR_ACTIVITY

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_ACTIVITY R IC_CLR_ACTIVITY Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_ACTIVITY R Reading this register clears the ACTIVITY interrupt if the I2C
is not active anymore. If the I2C module is still active on the
bus, the ACTIVITY interrupt bit continues to be set. It is
automatically cleared by hardware if the module is disabled
and if there is no further activity on the bus. The value read
from this register to get status of the ACTIVITY interrupt (bit
8) of the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

212 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.28 IC_CLR_STOP_DET

■ Name: Clear STOP_DET Interrupt Register

■ Description: Clear STOP_DET Interrupt Register

■ Size: 32 bits

■ Offset: 0x60

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_S
T

O
P

_D
E

T

C
LR

_S
T

O
P

_D
E

T

Table 5-33 Fields for Register: IC_CLR_STOP_DET

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_STOP_DET R IC_CLR_STOP_DET Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_STOP_DET R Read this register to clear the STOP_DET interrupt (bit 9) of
the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 213SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.29 IC_CLR_START_DET

■ Name: Clear START_DET Interrupt Register

■ Description: Clear START_DET Interrupt Register

■ Size: 32 bits

■ Offset: 0x64

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_S
T

A
R

T
_D

E
T

C
LR

_S
T

A
R

T
_D

E
T

Table 5-34 Fields for Register: IC_CLR_START_DET

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_START_DET R IC_CLR_START_DET Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_START_DET R Read this register to clear the START_DET interrupt (bit 10)
of the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

214 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.30 IC_CLR_GEN_CALL

■ Name: Clear GEN_CALL Interrupt Register

■ Description: Clear GEN_CALL Interrupt Register

■ Size: 32 bits

■ Offset: 0x68

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

_C
LR

_G
E

N
_C

A
LL

C
LR

_G
E

N
_C

A
LL

Table 5-35 Fields for Register: IC_CLR_GEN_CALL

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_GEN_CALL R IC_CLR_GEN_CALL Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_GEN_CALL R Read this register to clear the GEN_CALL interrupt (bit 11) of
IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 215SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.31 IC_ENABLE

■ Name: I2C ENABLE Register

■ Description: I2C Enable Register

■ Size: 32 bits

■ Offset: 0x6c

■ Exists: Always

31
:1

9

18 17 16 15
:4

3 2 1 0

R
S

V
D

_I
C

_E
N

A
B

LE
_2

S
M

B
U

S
_A

LE
R

T
_E

N

S
M

B
U

S
_S

U
S

P
E

N
D

_E
N

S
M

B
U

S
_C

LK
_R

E
S

E
T

R
S

V
D

_I
C

_E
N

A
B

LE
_1

S
D

A
_S

T
U

C
K

_R
E

C
O

V
E

R
Y

_E
N

A
B

LE

T
X

_C
M

D
_B

LO
C

K

A
B

O
R

T

E
N

A
B

LE

Table 5-36 Fields for Register: IC_ENABLE

Bits Name
Memory
Access Description

31:19 RSVD_IC_ENABLE_2 R IC_ENABLE Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

216 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

18 SMBUS_ALERT_EN R/W The SMBUS_ALERT_CTRL register bit is used to control
assertion of SMBALERT signal.
- 1: Assert SMBALERT signal
This register bit is auto-cleared after detection of
Acknowledgement from master for Alert Response address.
Values:

■ 0x1 (ALERT_ENABLED): Slave initates the Alert signal to
indicate SMBus Host

■ 0x0 (SUSPEND_DISABLED): Slave will not initates the
Alert signal to indicate SMBus Host.

Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1

17 SMBUS_SUSPEND_EN R/W The SMBUS_SUSPEND_EN register bit is used to control
assertion and de-assertion of SMBSUS signal.

■ 0: De-assert SMBSUS signal

■ 1: Assert SMBSUS signal

Values:
■ 0x1 (ENABLED): Host/Master initates the SMBUS

system to enter Suspend Mode.

■ 0x0 (DISABLED): Host/Master will not initates the
SMBUS system to enter Suspend Mode.

Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1

16 SMBUS_CLK_RESET R/W This bit is used in SMBus Host mode to initiate the SMBus
Master Clock Reset. This bit should be enabled only when
Master is in idle. Whenever this bit is enabled, the SMBCLK
is held low for the IC_SCL_STUCK_TIMEOUT ic_clk cycles
to reset the SMBus slave devices.
Values:
■ 0x1 (ENABLED): Master initates the SMBUS Clock Reset

Mechanism.

■ 0x0 (DISABLED): Master will not initates SMBUS Clock
Reset Mechanism.

Value After Reset: 0x0
Exists: IC_SMBUS==1

15:4 RSVD_IC_ENABLE_1 R RSVD_IC_ENABLE_1 Reserved bits - Read Only
Exists: Always

Table 5-36 Fields for Register: IC_ENABLE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 217SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

3 SDA_STUCK_RECOVERY_ENA
BLE

R/W If SDA is stuck at low indicated through the TX_ABORT
interrupt (IC_TX_ABRT_SOURCE[17]), then this bit is used
as a control knob to initiate the SDA Recovery Mechanism
(that is, send at most 9 SCL clocks and STOP to release the
SDA line) and then this bit gets auto clear
Values:

■ 0x1 (SDA_STUCK_RECOVERY_ENABLED): Master
initates the SDA stuck at low recovery mechanism.

■ 0x0 (SDA_STUCK_RECOVERY_DISABLED): Master
disabled the SDA stuck at low recovery mechanism.

Value After Reset: 0x0
Exists: IC_BUS_CLEAR_FEATURE==1

2 TX_CMD_BLOCK R/W In Master mode:

■ 1'b1: Blocks the transmission of data on I2C bus even if
Tx FIFO has data to transmit.

■ 1'b0: The transmission of data starts on I2C bus
automatically, as soon as the first data is available in the
Tx FIFO.

Note: To block the execution of Master commands, set the
TX_CMD_BLOCK bit only when Tx FIFO is empty
(IC_STATUS[2]==1) and Master is in Idle state
(IC_STATUS[5] == 0). Any further commands put in the Tx
FIFO are not executed until TX_CMD_BLOCK bit is unset.
Values:

■ 0x1 (BLOCKED): Tx Command execution blocked

■ 0x0 (NOT_BLOCKED): Tx Command execution not
blocked

Value After Reset: IC_TX_CMD_BLOCK_DEFAULT
Exists: Always

Table 5-36 Fields for Register: IC_ENABLE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

218 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

1 ABORT R/W When set, the controller initiates the transfer abort.

■ 0: ABORT not initiated or ABORT done

■ 1: ABORT operation in progress

The software can abort the I2C transfer in master mode by
setting this bit. The software can set this bit only when
ENABLE is already set; otherwise, the controller ignores any
write to ABORT bit. The software cannot clear the ABORT bit
once set. In response to an ABORT, the controller issues a
STOP and flushes the Tx FIFO after completing the current
transfer, then sets the TX_ABORT interrupt after the abort
operation. The ABORT bit is cleared automatically after the
abort operation.
For a detailed description on how to abort I2C transfers, refer
to "Aborting I2C Transfers".
Values:
■ 0x1 (ENABLED): ABORT operation in progress

■ 0x0 (DISABLE): ABORT operation not in progress

Value After Reset: 0x0
Exists: Always

Table 5-36 Fields for Register: IC_ENABLE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 219SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

0 ENABLE R/W Controls whether the DW_apb_i2c is enabled.

■ 0: Disables DW_apb_i2c (TX and RX FIFOs are held in
an erased state)

■ 1: Enables DW_apb_i2c

Software can disable DW_apb_i2c while it is active.
However, it is important that care be taken to ensure that
DW_apb_i2c is disabled properly. A recommended
procedure is described in "Disabling DW_apb_i2c".
When DW_apb_i2c is disabled, the following occurs:

■ The TX FIFO and RX FIFO get flushed.

■ Status bits in the IC_INTR_STAT register are still active
until DW_apb_i2c goes into IDLE state.

If the module is transmitting, it stops as well as deletes the
contents of the transmit buffer after the current transfer is
complete. If the module is receiving, the DW_apb_i2c stops
the current transfer at the end of the current byte and does
not acknowledge the transfer.
In systems with asynchronous pclk and ic_clk when
IC_CLK_TYPE parameter set to asynchronous (1), there is a
two ic_clk delay when enabling or disabling the DW_apb_i2c.
For a detailed description on how to disable DW_apb_i2c,
refer to "Disabling DW_apb_i2c"
Values:

■ 0x1 (ENABLED): I2C is enabled

■ 0x0 (DISABLED): I2C is disabled

Value After Reset: 0x0
Exists: Always

Table 5-36 Fields for Register: IC_ENABLE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

220 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.32 IC_STATUS

■ Name: I2C STATUS Register

■ Description: I2C Status Register

This is a read-only register used to indicate the current transfer status and FIFO status. The status
register may be read at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register:

❑ Bits 1 and 2 are set to 1

❑ Bits 3 and 10 are set to 0

When the master or slave state machines goes to idle and ic_en=0:

❑ Bits 5 and 6 are set to 0

■ Size: 32 bits

■ Offset: 0x70

■ Exists: Always

31
:2

1

20 19 18 17 16 15
:1

2

11 10 9 8 7 6 5 4 3 2 1 0

R
S

V
D

_I
C

_S
T

A
T

U
S

_2

S
M

B
U

S
_A

LE
R

T
_S

T
A

T
U

S

S
M

B
U

S
_S

U
S

P
E

N
D

_S
T

A
T

U
S

S
M

B
U

S
_S

LA
V

E
_A

D
D

R
_R

E
S

O
LV

E
D

S
M

B
U

S
_S

LA
V

E
_A

D
D

R
_V

A
LI

D

S
M

B
U

S
_Q

U
IC

K
_C

M
D

_B
IT

R
S

V
D

_I
C

_S
T

A
T

U
S

_1

S
D

A
_S

T
U

C
K

_N
O

T
_R

E
C

O
V

E
R

E
D

S
LV

_H
O

LD
_R

X
_F

IF
O

_F
U

LL

S
LV

_H
O

LD
_T

X
_F

IF
O

_E
M

P
T

Y

M
S

T
_H

O
LD

_R
X

_F
IF

O
_F

U
LL

M
S

T
_H

O
LD

_T
X

_F
IF

O
_E

M
P

T
Y

S
LV

_A
C

T
IV

IT
Y

M
S

T
_A

C
T

IV
IT

Y

R
F

F

R
F

N
E

T
F

E

T
F

N
F

A
C

T
IV

IT
Y

Table 5-37 Fields for Register: IC_STATUS

Bits Name
Memory
Access Description

31:21 RSVD_IC_STATUS_2 R IC_STATUS Reserved bits - Read Only
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 221SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

20 SMBUS_ALERT_STATUS R This bit indicates the status of the SMBus Alert signal
(ic_smbalert_in_n). This signal is asserted when the SMBus
Alert signal is asserted by the SMBus Device.
Values:

■ 0x1 (ACTIVE): SMBUS Alert is asserted.

■ 0x0 (INACTIVE): SMBUS Alert is not asserted.

Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1
Volatile: true

19 SMBUS_SUSPEND_STATUS R This bit indicates the status of the SMBus Suspend signal
(ic_smbsus_in_n). This signal is asserted when the SMBus
Suspend signal is asserted by the SMBus Host.
Values:

■ 0x1 (ACTIVE): SMBUS System is in Suspended mode.

■ 0x0 (INACTIVE): SMBUS System is not in Suspended
mode.

Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1
Volatile: true

18 SMBUS_SLAVE_ADDR_RESOLV
ED

R This bit indicates whether the slave address (ic_sar) is
resolved by the ARP Master.
Values:

■ 0x1 (ACTIVE): SMBUS Slave Address is Resolved.

■ 0x0 (INACTIVE): SMBUS Slave Address is not Resolved.

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

17 SMBUS_SLAVE_ADDR_VALID R This bit indicates whether the slave address (ic_sar) is valid
or not.
Values:
■ 0x1 (ACTIVE): SMBUS Slave Address is Valid.

■ 0x0 (INACTIVE): SMBUS SLave Address is not valid.

Value After Reset:
IC_PERSISTANT_SLV_ADDR_DEFAULT
Exists: IC_SMBUS_ARP==1
Volatile: true

Table 5-37 Fields for Register: IC_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

222 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

16 SMBUS_QUICK_CMD_BIT R This bit indicates the R/W bit of the Quick command
received. This bit will be cleared after the user has read this
bit.

Values:
■ 0x1 (ACTIVE): SMBUS QUICK CMD Read/write is set to

1.

■ 0x0 (INACTIVE): SMBUS QUICK CMD Read/write is set
to 0.

Value After Reset: 0x0
Exists: IC_SMBUS==1
Volatile: true

15:12 RSVD_IC_STATUS_1 R RSVD_IC_STATUS_1 Reserved bits - Read Only
Exists: Always
Volatile: true

11 SDA_STUCK_NOT_RECOVERE
D

R This bit indicates that SDA stuck at low is not recovered after
the recovery mechanism. In Slave mode, this register bit is
not applicable.
Values:

■ 0x1 (ACTIVE): SDA Stuck at low is recovered after
recovery mechanism.

■ 0x0 (INACTIVE): SDA Stuck at low is not recovered after
recovery mechanism.

Value After Reset: 0x0
Exists: IC_BUS_CLEAR_FEATURE==1
Volatile: true

10 SLV_HOLD_RX_FIFO_FULL R This bit indicates the BUS Hold in Slave mode due to Rx
FIFO is Full and an additional byte has been received (This
kind of Bus hold is applicable if
IC_RX_FULL_HLD_BUS_EN is set to 1).
Values:
■ 0x1 (ACTIVE): Slave holds the bus due to Rx FIFO is full

■ 0x0 (INACTIVE): Slave is not holding the bus or Bus hold
is not due to Rx FIFO is full

Value After Reset: 0x0
Exists: IC_STAT_FOR_CLK_STRETCH == 1
Volatile: true

Table 5-37 Fields for Register: IC_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 223SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

9 SLV_HOLD_TX_FIFO_EMPTY R This bit indicates the BUS Hold in Slave mode for the Read
request when the Tx FIFO is empty. The Bus is in hold until
the Tx FIFO has data to Transmit for the read request.
Values:

■ 0x1 (ACTIVE): Slave holds the bus due to Tx FIFO is
empty

■ 0x0 (INACTIVE): Slave is not holding the bus or Bus hold
is not due to Tx FIFO is empty

Value After Reset: 0x0
Exists: IC_STAT_FOR_CLK_STRETCH == 1
Volatile: true

8 MST_HOLD_RX_FIFO_FULL R This bit indicates the BUS Hold in Master mode due to Rx
FIFO is Full and additional byte has been received (This
kind of Bus hold is applicable if
IC_RX_FULL_HLD_BUS_EN is set to 1).
Values:

■ 0x1 (ACTIVE): Master holds the bus due to Rx FIFO is full

■ 0x0 (INACTIVE): Master is not holding the bus or Bus
hold is not due to Rx FIFO is full

Value After Reset: 0x0
Exists: IC_STAT_FOR_CLK_STRETCH == 1
Volatile: true

7 MST_HOLD_TX_FIFO_EMPTY R If the IC_EMPTYFIFO_HOLD_MASTER_EN parameter is
set to 1, the DW_apb_i2c master stalls the write transfer
when Tx FIFO is empty, and the the last byte does not have
the Stop bit set. This bit indicates the BUS hold when the
master holds the bus because of the Tx FIFO being empty,
and the the previous transferred command does not have the
Stop bit set. (This kind of Bus hold is applicable if
IC_EMPTYFIFO_HOLD_MASTER_EN is set to 1).
Values:
■ 0x1 (ACTIVE): Master holds the bus due to Tx FIFO is

empty

■ 0x0 (INACTIVE): Master is not holding the bus or Bus
hold is not due to Tx FIFO is empty

Value After Reset: 0x0
Exists: IC_STAT_FOR_CLK_STRETCH == 1
Volatile: true

Table 5-37 Fields for Register: IC_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

224 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

6 SLV_ACTIVITY R Slave FSM Activity Status. When the Slave Finite State
Machine (FSM) is not in the IDLE state, this bit is set.

■ 0: Slave FSM is in IDLE state so the Slave part of
DW_apb_i2c is not Active

■ 1: Slave FSM is not in IDLE state so the Slave part of
DW_apb_i2c is Active

Values:

■ 0x1 (ACTIVE): Slave not idle

■ 0x0 (IDLE): Slave is idle

Value After Reset: 0x0
Exists: Always
Volatile: true

5 MST_ACTIVITY R Master FSM Activity Status. When the Master Finite State
Machine (FSM) is not in the IDLE state, this bit is set.

■ 0: Master FSM is in IDLE state so the Master part of
DW_apb_i2c is not Active

■ 1: Master FSM is not in IDLE state so the Master part of
DW_apb_i2c is Active

Note: IC_STATUS[0]-that is, ACTIVITY bit-is the OR of
SLV_ACTIVITY and MST_ACTIVITY bits.
Values:

■ 0x1 (ACTIVE): Master not idle

■ 0x0 (IDLE): Master is idle

Value After Reset: 0x0
Exists: Always
Volatile: true

4 RFF R Receive FIFO Completely Full. When the receive FIFO is
completely full, this bit is set. When the receive FIFO
contains one or more empty location, this bit is cleared.

■ 0: Receive FIFO is not full

■ 1: Receive FIFO is full

Values:
■ 0x1 (FULL): Rx FIFO is full

■ 0x0 (NOT_FULL): Rx FIFO not full

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-37 Fields for Register: IC_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 225SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

3 RFNE R Receive FIFO Not Empty. This bit is set when the receive
FIFO contains one or more entries; it is cleared when the
receive FIFO is empty.

■ 0: Receive FIFO is empty

■ 1: Receive FIFO is not empty

Values:

■ 0x1 (NOT_EMPTY): Rx FIFO not empty

■ 0x0 (EMPTY): Rx FIFO is empty

Value After Reset: 0x0
Exists: Always
Volatile: true

2 TFE R Transmit FIFO Completely Empty. When the transmit FIFO is
completely empty, this bit is set. When it contains one or
more valid entries, this bit is cleared. This bit field does not
request an interrupt.

■ 0: Transmit FIFO is not empty

■ 1: Transmit FIFO is empty

Values:

■ 0x1 (EMPTY): Tx FIFO is empty

■ 0x0 (NON_EMPTY): Tx FIFO not empty

Value After Reset: 0x1
Exists: Always
Volatile: true

1 TFNF R Transmit FIFO Not Full. Set when the transmit FIFO contains
one or more empty locations, and is cleared when the FIFO
is full.

■ 0: Transmit FIFO is full

■ 1: Transmit FIFO is not full

Values:
■ 0x1 (NOT_FULL): Tx FIFO not full

■ 0x0 (FULL): Tx FIFO is full

Value After Reset: 0x1
Exists: Always
Volatile: true

Table 5-37 Fields for Register: IC_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

226 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

0 ACTIVITY R I2C Activity Status.
Values:

■ 0x1 (ACTIVE): I2C is active

■ 0x0 (INACTIVE): I2C is idle

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-37 Fields for Register: IC_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 227SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.33 IC_TXFLR

■ Name: I2C Transmit FIFO Level Register

■ Description: I2C Transmit FIFO Level Register

This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared
whenever:

❑ The I2C is disabled

❑ There is a transmit abort - that is, TX_ABRT bit is set in the IC_RAW_INTR_STAT register

❑ The slave bulk transmit mode is aborted

The register increments whenever data is placed into the transmit FIFO and decrements when data is
taken from the transmit FIFO.

■ Size: 32 bits

■ Offset: 0x74

■ Exists: Always
31

:y

x:
0

R
S

V
D

_T
X

F
LR

T
X

F
LR

Table 5-38 Fields for Register: IC_TXFLR

Bits Name
Memory
Access Description

31:y RSVD_TXFLR R TXFLR Register field Reserved bits - Read Only
Exists: Always
Volatile: true
Range Variable[y]: TX_ABW_P1

x:0 TXFLR R Transmit FIFO Level. Contains the number of valid data
entries in the transmit FIFO.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: TX_ABW_P1 - 1

https://solvnet.synopsys.com
www.designware.com

228 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.34 IC_RXFLR

■ Name: I2C Receive FIFO Level Register

■ Description: I2C Receive FIFO Level Register

This register contains the number of valid data entries in the receive FIFO buffer. It is cleared
whenever:

❑ The I2C is disabled

❑ Whenever there is a transmit abort caused by any of the events tracked in IC_TX_ABRT_SOURCE

The register increments whenever data is placed into the receive FIFO and decrements when data is
taken from the receive FIFO.

■ Size: 32 bits

■ Offset: 0x78

■ Exists: Always
31

:y

x:
0

R
S

V
D

_R
X

F
LR

R
X

F
LR

Table 5-39 Fields for Register: IC_RXFLR

Bits Name
Memory
Access Description

31:y RSVD_RXFLR R RXFLR Reserved bits - Read Only
Exists: Always
Volatile: true
Range Variable[y]: RX_ABW_P1

x:0 RXFLR R Receive FIFO Level. Contains the number of valid data
entries in the receive FIFO.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: RX_ABW_P1 - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 229SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.35 IC_SDA_HOLD

■ Name: I2C SDA Hold Time Length Register

■ Description: I2C SDA Hold Time Length Register

The bits [15:0] of this register are used to control the hold time of SDA during transmit in both slave
and master mode (after SCL goes from HIGH to LOW).

The bits [23:16] of this register are used to extend the SDA transition (if any) whenever SCL is HIGH
in the receiver in either master or slave mode.

Writes to this register succeed only when IC_ENABLE[0]=0.

The values in this register are in units of ic_clk period. The value programmed in
IC_SDA_TX_HOLD must be greater than the minimum hold time in each mode one cycle in master
mode, seven cycles in slave mode for the value to be implemented.

The programmed SDA hold time during transmit (IC_SDA_TX_HOLD) cannot exceed at any time
the duration of the low part of scl. Therefore the programmed value cannot be larger than
N_SCL_LOW-2, where N_SCL_LOW is the duration of the low part of the scl period measured in
ic_clk cycles.

■ Size: 32 bits

■ Offset: 0x7c

■ Exists: Always

31
:2

4

23
:1

6

15
:0

R
S

V
D

_I
C

_S
D

A
_H

O
LD

IC
_S

D
A

_R
X

_H
O

LD

IC
_S

D
A

_T
X

_H
O

LD

Table 5-40 Fields for Register: IC_SDA_HOLD

Bits Name
Memory
Access Description

31:24 RSVD_IC_SDA_HOLD R IC_SDA_HOLD Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

230 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

23:16 IC_SDA_RX_HOLD R/W Sets the required SDA hold time in units of ic_clk period,
when DW_apb_i2c acts as a receiver.
Value After Reset: IC_DEFAULT_SDA_RX_HOLD
Exists: Always

15:0 IC_SDA_TX_HOLD R/W Sets the required SDA hold time in units of ic_clk period,
when DW_apb_i2c acts as a transmitter.
Value After Reset: IC_DEFAULT_SDA_TX_HOLD
Exists: Always

Table 5-40 Fields for Register: IC_SDA_HOLD (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 231SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.36 IC_TX_ABRT_SOURCE

■ Name: I2C Transmit Abort Source Register

■ Description: I2C Transmit Abort Source Register

This register has 32 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is
cleared whenever the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9,
the source of the ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled
(IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be
cleared (IC_TAR[10]).

Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same
manner as other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before
attempting to clear this bit, Bit 9 clears for one cycle and is then re-asserted.

■ Size: 32 bits

■ Offset: 0x80

■ Exists: Always

31
:2

3

22
:2

1

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
X

_F
LU

S
H

_C
N

T

R
S

V
D

_I
C

_T
X

_A
B

R
T

_S
O

U
R

C
E

A
B

R
T

_D
E

V
IC

E
_W

R
IT

E

A
B

R
T

_D
E

V
IC

E
_S

LV
A

D
D

R
_N

O
A

C
K

A
B

R
T

_D
E

V
IC

E
_N

O
A

C
K

A
B

R
T

_S
D

A
_S

T
U

C
K

_A
T

_L
O

W

A
B

R
T

_U
S

E
R

_A
B

R
T

A
B

R
T

_S
LV

R
D

_I
N

T
X

A
B

R
T

_S
LV

_A
R

B
LO

S
T

A
B

R
T

_S
LV

F
LU

S
H

_T
X

F
IF

O

A
R

B
_L

O
S

T

A
B

R
T

_M
A

S
T

E
R

_D
IS

A
B

R
T

_1
0B

_R
D

_N
O

R
S

T
R

T

A
B

R
T

_S
B

Y
T

E
_N

O
R

S
T

R
T

A
B

R
T

_H
S

_N
O

R
S

T
R

T

A
B

R
T

_S
B

Y
T

E
_A

C
K

D
E

T

A
B

R
T

_H
S

_A
C

K
D

E
T

A
B

R
T

_G
C

A
LL

_R
E

A
D

A
B

R
T

_G
C

A
LL

_N
O

A
C

K

A
B

R
T

_T
X

D
A

T
A

_N
O

A
C

K

A
B

R
T

_1
0A

D
D

R
2_

N
O

A
C

K

A
B

R
T

_1
0A

D
D

R
1_

N
O

A
C

K

A
B

R
T

_7
B

_A
D

D
R

_N
O

A
C

K

https://solvnet.synopsys.com
www.designware.com

232 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

Table 5-41 Fields for Register: IC_TX_ABRT_SOURCE

Bits Name
Memory
Access Description

31:23 TX_FLUSH_CNT R This field indicates the number of Tx FIFO Data Commands
which are flushed due to TX_ABRT interrupt. It is cleared
whenever I2C is disabled.
Role of DW_apb_i2c: Master-Transmitter or Slave-
Transmitter
Value After Reset: 0x0
Exists: Always
Volatile: true

22:21 RSVD_IC_TX_ABRT_SOURCE R IC_TX_ABRT_SOURCE Reserved bits - Read Only
Exists: Always
Volatile: true

20 ABRT_DEVICE_WRITE R This is a master-mode-only bit. Master is initiating the
DEVICE_ID transfer and the Tx-FIFO consists of write
commands.
Role of DW_apb_i2c: Master
Values:
■ 0x1 (ACTIVE): This abort is generated because of

NOACK for Slave address

■ 0x0 (INACTIVE): This abort is not generated

Value After Reset: 0x0
Exists: IC_DEVICE_ID == 1
Volatile: true

19 ABRT_DEVICE_SLVADDR_NOA
CK

R This is a master-mode-only bit. Master is initiating the
DEVICE_ID transfer and the slave address sent was not
acknowledged by any slave.
Role of DW_apb_i2c: Master
Values:

■ 0x1 (ACTIVE): This abort is generated because of
NOACK for Slave address

■ 0x0 (INACTIVE): This abort is not generated

Value After Reset: 0x0
Exists: IC_DEVICE_ID == 1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 233SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

18 ABRT_DEVICE_NOACK R This is a master-mode-only bit. Master is initiating the
DEVICE_ID transfer and the device id sent was not
acknowledged by any slave.
Role of DW_apb_i2c: Master
Values:
■ 0x1 (ACTIVE): This abort is generated because of

NOACK for DEVICE-ID

■ 0x0 (INACTIVE): This abort is not generated

Value After Reset: 0x0
Exists: IC_DEVICE_ID == 1
Volatile: true

17 ABRT_SDA_STUCK_AT_LOW R This is a master-mode-only bit. Master detects the SDA
Stuck at low for the IC_SDA_STUCK_AT_LOW_TIMEOUT
value of ic_clks.
Role of DW_apb_i2c: Master
Values:

■ 0x1 (ACTIVE): This abort is generated because of Sda
stuck at low for IC_SDA_STUCK_AT_LOW_TIMEOUT
value of ic_clks

■ 0x0 (INACTIVE): This abort is not generated

Value After Reset: 0x0
Exists: IC_BUS_CLEAR_FEATURE == 1
Volatile: true

16 ABRT_USER_ABRT R This is a master-mode-only bit. Master has detected the
transfer abort (IC_ENABLE[1])
Role of DW_apb_i2c: Master-Transmitter
Values:
■ 0x1 (ABRT_USER_ABRT_GENERATED): Transfer abort

detected by master

■ 0x0 (ABRT_USER_ABRT_VOID): Transfer abort
detected by master- scenario not present

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-41 Fields for Register: IC_TX_ABRT_SOURCE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

234 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

15 ABRT_SLVRD_INTX R 1: When the processor side responds to a slave mode
request for data to be transmitted to a remote master and
user writes a 1 in CMD (bit 8) of IC_DATA_CMD register.
Role of DW_apb_i2c: Slave-Transmitter
Values:
■ 0x1 (ABRT_SLVRD_INTX_GENERATED): Slave trying to

transmit to remote master in read mode

■ 0x0 (ABRT_SLVRD_INTX_VOID): Slave trying to transmit
to remote master in read mode- scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

14 ABRT_SLV_ARBLOST R This field indicates that a Slave has lost the bus while
transmitting data to a remote master.
IC_TX_ABRT_SOURCE[12] is set at the same time.
Note: Even though the slave never 'owns' the bus,
something could go wrong on the bus. This is a fail safe
check. For instance, during a data transmission at the low-to-
high transition of SCL, if what is on the data bus is not what
is supposed to be transmitted, then DW_apb_i2c no longer
own the bus.
Role of DW_apb_i2c: Slave-Transmitter
Values:

■ 0x1 (ABRT_SLV_ARBLOST_GENERATED): Slave lost
arbitration to remote master

■ 0x0 (ABRT_SLV_ARBLOST_VOID): Slave lost arbitration
to remote master- scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

Table 5-41 Fields for Register: IC_TX_ABRT_SOURCE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 235SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

13 ABRT_SLVFLUSH_TXFIFO R This field specifies that the Slave has received a read
command and some data exists in the TX FIFO, so the slave
issues a TX_ABRT interrupt to flush old data in TX FIFO.
Role of DW_apb_i2c: Slave-Transmitter
Values:
■ 0x1 (ABRT_SLVFLUSH_TXFIFO_GENERATED): Slave

flushes existing data in TX-FIFO upon getting read
command

■ 0x0 (ABRT_SLVFLUSH_TXFIFO_VOID): Slave flushes
existing data in TX-FIFO upon getting read command-
scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

12 ARB_LOST R This field specifies that the Master has lost arbitration, or if
IC_TX_ABRT_SOURCE[14] is also set, then the slave
transmitter has lost arbitration.
Role of DW_apb_i2c: Master-Transmitter or Slave-
Transmitter
Values:

■ 0x1 (ABRT_LOST_GENERATED): Master or Slave-
Transmitter lost arbitration

■ 0x0 (ABRT_LOST_VOID): Master or Slave-Transmitter
lost arbitration- scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

11 ABRT_MASTER_DIS R This field indicates that the User tries to initiate a Master
operation with the Master mode disabled.
Role of DW_apb_i2c: Master-Transmitter or Master-
Receiver
Values:
■ 0x1 (ABRT_MASTER_DIS_GENERATED): User

intitating master operation when MASTER disabled

■ 0x0 (ABRT_MASTER_DIS_VOID): User initiating master
operation when MASTER disabled- scenario not present

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-41 Fields for Register: IC_TX_ABRT_SOURCE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

236 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

10 ABRT_10B_RD_NORSTRT R This field indicates that the restart is disabled
(IC_RESTART_EN bit (IC_CON[5]) =0) and the master
sends a read command in 10-bit addressing mode.
Role of DW_apb_i2c: Master-Receiver
Values:
■ 0x1 (ABRT_10B_RD_GENERATED): Master trying to

read in 10Bit addressing mode when RESTART disabled

■ 0x0 (ABRT_10B_RD_VOID): Master not trying to read in
10Bit addressing mode when RESTART disabled

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

9 ABRT_SBYTE_NORSTRT R To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT
must be fixed first; restart must be enabled (IC_CON[5]=1),
the SPECIAL bit must be cleared (IC_TAR[11]), or the
GC_OR_START bit must be cleared (IC_TAR[10]). Once the
source of the ABRT_SBYTE_NORSTRT is fixed, then this bit
can be cleared in the same manner as other bits in this
register. If the source of the ABRT_SBYTE_NORSTRT is not
fixed before attempting to clear this bit, bit 9 clears for one
cycle and then gets reasserted. When this field is set to 1,
the restart is disabled (IC_RESTART_EN bit (IC_CON[5])
=0) and the user is trying to send a START Byte.
Role of DW_apb_i2c: Master
Values:

■ 0x1 (ABRT_SBYTE_NORSTRT_GENERATED): User
trying to send START byte when RESTART disabled

■ 0x0 (ABRT_SBYTE_NORSTRT_VOID): User trying to
send START byte when RESTART disabled- scenario not
present

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-41 Fields for Register: IC_TX_ABRT_SOURCE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 237SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

8 ABRT_HS_NORSTRT R This field indicates that the restart is disabled
(IC_RESTART_EN bit (IC_CON[5]) =0) and the user is trying
to use the master to transfer data in High Speed mode.
Role of DW_apb_i2c: Master-Transmitter or Master-
Receiver
Values:
■ 0x1 (ABRT_HS_NORSTRT_GENERATED): User trying

to switch Master to HS mode when RESTART disabled

■ 0x0 (ABRT_HS_NORSTRT_VOID): User trying to switch
Master to HS mode when RESTART disabled- scenario
not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

7 ABRT_SBYTE_ACKDET R This field indicates that the Master has sent a START Byte
and the START Byte was acknowledged (wrong behavior).
Role of DW_apb_i2c: Master
Values:

■ 0x1 (ABRT_SBYTE_ACKDET_GENERATED): ACK
detected for START byte

■ 0x0 (ABRT_SBYTE_ACKDET_VOID): ACK detected for
START byte- scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

6 ABRT_HS_ACKDET R This field indicates that the Master is in High Speed mode
and the High Speed Master code was acknowledged (wrong
behavior).

Role of DW_apb_i2c: Master
Values:

■ 0x1 (ABRT_HS_ACK_GENERATED): HS Master code
ACKed in HS Mode

■ 0x0 (ABRT_HS_ACK_VOID): HS Master code ACKed in
HS Mode- scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

Table 5-41 Fields for Register: IC_TX_ABRT_SOURCE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

238 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5 ABRT_GCALL_READ R This field indicates that DW_apb_i2c in the master mode has
sent a General Call but the user programmed the byte
following the General Call to be a read from the bus
(IC_DATA_CMD[9] is set to 1).

Role of DW_apb_i2c: Master-Transmitter
Values:

■ 0x1 (ABRT_GCALL_READ_GENERATED): GCALL is
followed by read from bus

■ 0x0 (ABRT_GCALL_READ_VOID): GCALL is followed by
read from bus-scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

4 ABRT_GCALL_NOACK R This field indicates that DW_apb_i2c in master mode has
sent a General Call and no slave on the bus acknowledged
the General Call.

Role of DW_apb_i2c: Master-Transmitter
Values:
■ 0x1 (ABRT_GCALL_NOACK_GENERATED): GCALL not

ACKed by any slave

■ 0x0 (ABRT_GCALL_NOACK_VOID): GCALL not ACKed
by any slave-scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

3 ABRT_TXDATA_NOACK R This field indicates the master-mode only bit. When the
master receives an acknowledgement for the address, but
when it sends data byte(s) following the address, it did not
receive an acknowledge from the remote slave(s).

Role of DW_apb_i2c: Master-Transmitter
Values:
■ 0x1 (ABRT_TXDATA_NOACK_GENERATED):

Transmitted data not ACKed by addressed slave

■ 0x0 (ABRT_TXDATA_NOACK_VOID): Transmitted data
non-ACKed by addressed slave-scenario not present

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

Table 5-41 Fields for Register: IC_TX_ABRT_SOURCE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 239SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

2 ABRT_10ADDR2_NOACK R This field indicates that the Master is in 10-bit address mode
and that the second address byte of the 10-bit address was
not acknowledged by any slave.
Role of DW_apb_i2c: Master-Transmitter or Master-
Receiver
Values:
■ 0x1 (ACTIVE): Byte 2 of 10Bit Address not ACKed by any

slave

■ 0x0 (INACTIVE): This abort is not generated

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

1 ABRT_10ADDR1_NOACK R This field indicates that the Master is in 10-bit address mode
and the first 10-bit address byte was not acknowledged by
any slave.
Reset value: 0x0
Role of DW_apb_i2c: Master-Transmitter or Master-
Receiver
Values:

■ 0x1 (ACTIVE): Byte 1 of 10Bit Address not ACKed by any
slave

■ 0x0 (INACTIVE): This abort is not generated

Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

0 ABRT_7B_ADDR_NOACK R This field indicates that the Master is in 7-bit addressing
mode and the address sent was not acknowledged by any
slave.
Role of DW_apb_i2c: Master-Transmitter or Master-
Receiver
Values:
■ 0x1 (ACTIVE): This abort is generated because of

NOACK for 7-bit address

■ 0x0 (INACTIVE): This abort is not generated

Value After Reset: 0x0
Exists: IC_ULTRA_FAST_MODE==0
Volatile: true

Table 5-41 Fields for Register: IC_TX_ABRT_SOURCE (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

240 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.37 IC_SLV_DATA_NACK_ONLY

■ Name: Generate Slave Data NACK Register

■ Description: Generate Slave Data NACK Register

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as
a slave-receiver. This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to
1. When this parameter disabled, this register does not exist and writing to the register's address has
no effect.

A write can occur on this register if both of the following conditions are met:

❑ DW_apb_i2c is disabled (IC_ENABLE[0] = 0)

❑ Slave part is inactive (IC_STATUS[6] = 0)

Note: The IC_STATUS[6] is a register read-back location for the internal slv_activity signal; the user
should poll this before writing the ic_slv_data_nack_only bit.

■ Size: 32 bits

■ Offset: 0x84

■ Exists: [<functionof> "(IC_SLV_DATA_NACK_ONLY==0) ? 0 : 1"]

31
:1

0

R
S

V
D

_I
C

_S
LV

_D
A

T
A

_N
A

C
K

_O
N

LY

N
A

C
K

Table 5-42 Fields for Register: IC_SLV_DATA_NACK_ONLY

Bits Name
Memory
Access Description

31:1 RSVD_IC_SLV_DATA_NACK_ON
LY

R IC_SLV_DATA_NACK_ONLY Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 241SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

0 NACK R/W Generate NACK. This NACK generation only occurs when
DW_apb_i2c is a slave-receiver. If this register is set to a
value of 1, it can only generate a NACK after a data byte is
received; hence, the data transfer is aborted and the data
received is not pushed to the receive buffer.
When the register is set to a value of 0, it generates
NACK/ACK, depending on normal criteria.

■ 1: generate NACK after data byte received

■ 0: generate NACK/ACK normally

Values:
■ 0x1 (ENABLED): Slave reciever generates NACK upon

data reception only

■ 0x0 (DISABLED): Slave reciever generates NACK
normally

Value After Reset: 0x0
Exists: Always

Table 5-42 Fields for Register: IC_SLV_DATA_NACK_ONLY (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

242 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.38 IC_DMA_CR

■ Name: DMA Control Register

■ Description: DMA Control Register

This register is only valid when DW_apb_i2c is configured with a set of DMA Controller interface
signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register
does not exist and writing to the register's address has no effect and reading from this register
address will return zero. The register is used to enable the DMA Controller interface operation. There
is a separate bit for transmit and receive. This can be programmed regardless of the state of
IC_ENABLE.

■ Size: 32 bits

■ Offset: 0x88

■ Exists: [<functionof> "(IC_HAS_DMA==1) ? 1 : 0"]

31
:2

1 0

R
S

V
D

_I
C

_D
M

A
_C

R
_2

_3
1

T
D

M
A

E

R
D

M
A

E

Table 5-43 Fields for Register: IC_DMA_CR

Bits Name
Memory
Access Description

31:2 RSVD_IC_DMA_CR_2_31 R RSVD_IC_DMA_CR_2_31 Reserved bits - Read Only
Exists: Always

1 TDMAE R/W Transmit DMA Enable. This bit enables/disables the transmit
FIFO DMA channel.
Values:

■ 0x1 (ENABLED): Transmit FIFO DMA channel enabled

■ 0x0 (DISABLED): transmit FIFO DMA channel disabled

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 243SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

0 RDMAE R/W Receive DMA Enable. This bit enables/disables the receive
FIFO DMA channel.
Values:

■ 0x1 (ENABLED): Receive FIFO DMA channel enabled

■ 0x0 (DISABLED): Receive FIFO DMA channel disabled

Value After Reset: 0x0
Exists: Always

Table 5-43 Fields for Register: IC_DMA_CR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

244 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.39 IC_DMA_TDLR

■ Name: DMA Transmit Data Level Register

■ Description: DMA Transmit Data Level Register

This register is only valid when the DW_apb_i2c is configured with a set of DMA interface signals
(IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not
exist; writing to its address has no effect; reading from its address returns zero.

■ Size: 32 bits

■ Offset: 0x8c

■ Exists: IC_HAS_DMA==1

31
:y

x:
0

R
S

V
D

_D
M

A
_T

D
LR

D
M

A
T

D
L

Table 5-44 Fields for Register: IC_DMA_TDLR

Bits Name
Memory
Access Description

31:y RSVD_DMA_TDLR R DMA_TDLR Reserved bits - Read Only
Exists: Always
Range Variable[y]: TX_ABW

x:0 DMATDL R/W Transmit Data Level. This bit field controls the level at which
a DMA request is made by the transmit logic. It is equal to
the watermark level; that is, the dma_tx_req signal is
generated when the number of valid data entries in the
transmit FIFO is equal to or below this field value, and
TDMAE = 1.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: TX_ABW - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 245SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.40 IC_DMA_RDLR

■ Name: DMA Transmit Data Level Register

■ Description: I2C Receive Data Level Register

This register is only valid when DW_apb_i2c is configured with a set of DMA interface signals
(IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not
exist; writing to its address has no effect; reading from its address returns zero.

■ Size: 32 bits

■ Offset: 0x90

■ Exists: [<functionof> "(IC_HAS_DMA==1) ? 1 : 0"]

31
:y

x:
0

R
S

V
D

_D
M

A
_R

D
LR

D
M

A
R

D
L

Table 5-45 Fields for Register: IC_DMA_RDLR

Bits Name
Memory
Access Description

31:y RSVD_DMA_RDLR R DMA_RDLR Reserved bits - Read Only
Exists: Always
Range Variable[y]: RX_ABW

x:0 DMARDL R/W Receive Data Level. This bit field controls the level at which a
DMA request is made by the receive logic. The watermark
level = DMARDL+1; that is, dma_rx_req is generated when
the number of valid data entries in the receive FIFO is equal
to or more than this field value + 1, and RDMAE =1. For
instance, when DMARDL is 0, then dma_rx_req is asserted
when 1 or more data entries are present in the receive FIFO.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: RX_ABW - 1

https://solvnet.synopsys.com
www.designware.com

246 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.41 IC_SDA_SETUP

■ Name: I2C SDA Setup Register

■ Description: I2C SDA Setup Register

This register controls the amount of time delay (in terms of number of ic_clk clock periods)
introduced in the rising edge of SCL - relative to SDA changing - when DW_apb_i2c services a read
request in a slave-transmitter operation. The relevant I2C requirement is tSU:DAT (note 4) as detailed
in the I2C Bus Specification. This register must be programmed with a value equal to or greater than
2.

Writes to this register succeed only when IC_ENABLE[0] = 0.

Note: The length of setup time is calculated using [(IC_SDA_SETUP - 1) * (ic_clk_period)], so if the
user requires 10 ic_clk periods of setup time, they should program a value of 11. The IC_SDA_SETUP
register is only used by the DW_apb_i2c when operating as a slave transmitter.

■ Size: 32 bits

■ Offset: 0x94

■ Exists: IC_ULTRA_FAST_MODE==0

31
:8

7:
0

R
S

V
D

_I
C

_S
D

A
_S

E
T

U
P

S
D

A
_S

E
T

U
P

Table 5-46 Fields for Register: IC_SDA_SETUP

Bits Name
Memory
Access Description

31:8 RSVD_IC_SDA_SETUP R IC_SDA_SETUP Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 247SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

7:0 SDA_SETUP R/W SDA Setup. It is recommended that if the required delay is
1000ns, then for an ic_clk frequency of 10 MHz,
IC_SDA_SETUP should be programmed to a value of 11.
IC_SDA_SETUP must be programmed with a minimum
value of 2.
Value After Reset: IC_DEFAULT_SDA_SETUP
Exists: Always

Table 5-46 Fields for Register: IC_SDA_SETUP (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

248 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.42 IC_ACK_GENERAL_CALL

■ Name: I2C ACK General Call Register

■ Description: I2C ACK General Call Register

The register controls whether DW_apb_i2c responds with a ACK or NACK when it receives an I2C
General Call address.

This register is applicable only when the DW_apb_i2c is in slave mode.

■ Size: 32 bits

■ Offset: 0x98

■ Exists: IC_ULTRA_FAST_MODE==0

31
:1

0

R
S

V
D

_I
C

_A
C

K
_G

E
N

_1
_3

1

A
C

K
_G

E
N

_C
A

LL

Table 5-47 Fields for Register: IC_ACK_GENERAL_CALL

Bits Name
Memory
Access Description

31:1 RSVD_IC_ACK_GEN_1_31 R RSVD_IC_ACK_GEN_1_31 Reserved bits - Read Only
Exists: Always

0 ACK_GEN_CALL R/W ACK General Call. When set to 1, DW_apb_i2c responds
with a ACK (by asserting ic_data_oe) when it receives a
General Call. Otherwise, DW_apb_i2c responds with a
NACK (by negating ic_data_oe).
Values:
■ 0x1 (ENABLED): Generate ACK for a General Call

■ 0x0 (DISABLED): Generate NACK for General Call

Value After Reset: IC_DEFAULT_ACK_GENERAL_CALL
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 249SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.43 IC_ENABLE_STATUS

■ Name: I2C Enable Status Register

■ Description: I2C Enable Status Register

The register is used to report the DW_apb_i2c hardware status when the IC_ENABLE[0] register is
set from 1 to 0; that is, when DW_apb_i2c is disabled.

If IC_ENABLE[0] has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC_ENABLE[0] has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as '0'.

Note: When IC_ENABLE[0] has been set to 0, a delay occurs for bit 0 to be read as 0 because disabling
the DW_apb_i2c depends on I2C bus activities.

■ Size: 32 bits

■ Offset: 0x9c

■ Exists: Always
31

:3

2 1 0

R
S

V
D

_I
C

_E
N

A
B

LE
_S

T
A

T
U

S

S
LV

_R
X

_D
A

T
A

_L
O

S
T

S
LV

_D
IS

A
B

LE
D

_W
H

IL
E

_B
U

S
Y

IC
_E

N

Table 5-48 Fields for Register: IC_ENABLE_STATUS

Bits Name
Memory
Access Description

31:3 RSVD_IC_ENABLE_STATUS R IC_ENABLE_STATUS Reserved bits - Read Only
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

250 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

2 SLV_RX_DATA_LOST R Slave Received Data Lost. This bit indicates if a Slave-
Receiver operation has been aborted with at least one data
byte received from an I2C transfer due to the setting bit 0 of
IC_ENABLE from 1 to 0. When read as 1, DW_apb_i2c is
deemed to have been actively engaged in an aborted I2C
transfer (with matching address) and the data phase of the
I2C transfer has been entered, even though a data byte has
been responded with a NACK.
Note: If the remote I2C master terminates the transfer with a
STOP condition before the DW_apb_i2c has a chance to
NACK a transfer, and IC_ENABLE[0] has been set to 0, then
this bit is also set to 1.
When read as 0, DW_apb_i2c is deemed to have been
disabled without being actively involved in the data phase of
a Slave-Receiver transfer.
Note: The CPU can safely read this bit when IC_EN (bit 0)
is read as 0.
Values:

■ 0x1 (ACTIVE): Slave RX Data is lost

■ 0x0 (INACTIVE): Slave RX Data is not lost

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-48 Fields for Register: IC_ENABLE_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 251SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

1 SLV_DISABLED_WHILE_BUSY R Slave Disabled While Busy (Transmit, Receive). This bit
indicates if a potential or active Slave operation has been
aborted due to the setting bit 0 of the IC_ENABLE register
from 1 to 0. This bit is set when the CPU writes a 0 to the
IC_ENABLE register while:
(a) DW_apb_i2c is receiving the address byte of the Slave-
Transmitter operation from a remote master;
OR,
(b) address and data bytes of the Slave-Receiver operation
from a remote master.
When read as 1, DW_apb_i2c is deemed to have forced a
NACK during any part of an I2C transfer, irrespective of
whether the I2C address matches the slave address set in
DW_apb_i2c (IC_SAR register) OR if the transfer is
completed before IC_ENABLE is set to 0 but has not taken
effect.
Note: If the remote I2C master terminates the transfer with a
STOP condition before the DW_apb_i2c has a chance to
NACK a transfer, and IC_ENABLE[0] has been set to 0, then
this bit will also be set to 1.
When read as 0, DW_apb_i2c is deemed to have been
disabled when there is master activity, or when the I2C bus is
idle.
Note: The CPU can safely read this bit when IC_EN (bit 0)
is read as 0.
Values:
■ 0x1 (ACTIVE): Slave is disabled when it is active

■ 0x0 (INACTIVE): Slave is disabled when it is idle

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-48 Fields for Register: IC_ENABLE_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

252 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

0 IC_EN R ic_en Status. This bit always reflects the value driven on the
output port ic_en.

■ When read as 1, DW_apb_i2c is deemed to be in an
enabled state.

■ When read as 0, DW_apb_i2c is deemed completely
inactive.

Note: The CPU can safely read this bit anytime. When this
bit is read as 0, the CPU can safely read
SLV_RX_DATA_LOST (bit 2) and
SLV_DISABLED_WHILE_BUSY (bit 1).
Values:

■ 0x1 (ENABLED): I2C enabled

■ 0x0 (DISABLED): I2C disabled

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-48 Fields for Register: IC_ENABLE_STATUS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 253SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.44 IC_FS_SPKLEN

■ Name: I2C SS, FS or FM+ spike suppression limit

■ Description: I2C SS, FS or FM+ spike suppression limit

This register is used to store the duration, measured in ic_clk cycles, of the longest spike that is
filtered out by the spike suppression logic w hen the component is operating in SS, FS or FM+ modes.
The relevant I2C requirement is tSP (table 4) as detailed in the I2C Bus Specification. This register
must be programmed with a minimum value of 1.

■ Size: 32 bits

■ Offset: 0xa0

■ Exists: IC_ULTRA_FAST_MODE==0

31
:8

7:
0

R
S

V
D

_I
C

_F
S

_S
P

K
LE

N

IC
_F

S
_S

P
K

LE
N

Table 5-49 Fields for Register: IC_FS_SPKLEN

Bits Name
Memory
Access Description

31:8 RSVD_IC_FS_SPKLEN R IC_FS_SPKLEN Reserved bits - Read Only
Exists: Always

7:0 IC_FS_SPKLEN R/W This register must be set before any I2C bus transaction can
take place to ensure stable operation. This register sets the
duration, measured in ic_clk cycles, of the longest spike in
the SCL or SDA lines that will be filtered out by the spike
suppression logic. This register can be written only when the
I2C interface is disabled which corresponds to the
IC_ENABLE[0] register being set to 0. Writes at other times
have no effect. The minimum valid value is 1; hardware
prevents values less than this being written, and if attempted
results in 1 being set. or more information, refer to "Spike
Suppression".
Value After Reset: IC_DEFAULT_FS_SPKLEN
Exists: Always

https://solvnet.synopsys.com
www.designware.com

254 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.45 IC_UFM_SPKLEN

■ Name: I2C Ultra-Fast mode spike suppression limit

■ Description: I2C UFM spike suppression limit

This register is used to store the duration, measured in ic_clk cycles, of the longest spike that is
filtered out by the spike suppression logic when the component is operating in Ultra-Fast mode. The
relevant I2C requirement is tSP (table 13) as detailed in the I2C Bus Specification. This register must
be programmed with a minimum value of 1.

■ Size: 32 bits

■ Offset: 0xa0

■ Exists: IC_ULTRA_FAST_MODE==1

31
:8

7:
0

R
S

V
D

_I
C

_U
F

M
_S

P
K

LE
N

IC
_U

F
M

_S
P

K
LE

N

Table 5-50 Fields for Register: IC_UFM_SPKLEN

Bits Name
Memory
Access Description

31:8 RSVD_IC_UFM_SPKLEN R IC_UFM_SPKLEN Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 255SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

7:0 IC_UFM_SPKLEN R/W This register must be set before any I2C bus transaction can
take place to ensure stable operation. This register sets the
duration, measured in ic_clk cycles, of the longest spike in
the SCL or SDA lines that will be filtered out by the spike
suppression logic.
This register can be written only when the I2C interface is
disabled which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 1; hardware prevents values less
than this being written, and if attempted results in 1 being
set.
Value After Reset: IC_DEFAULT_UFM_SPKLEN
Exists: Always

Table 5-50 Fields for Register: IC_UFM_SPKLEN (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

256 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.46 IC_HS_SPKLEN

■ Name: I2C HS spike suppression limit register

■ Description: I2C HS spike suppression limit register

This register is used to store the duration, measured in ic_clk cycles, of the longest spike that is
filtered out by the spike suppression logic when the component is operating in HS modes. The
relevant I2C requirement is tSP (table 6) as detailed in the I2C Bus Specification. This register must be
programmed with a minimum value of 1 and is implemented only if the component is configured to
support HS mode; that is, if the IC_MAX_SPEED_MODE parameter is set to 3.

■ Size: 32 bits

■ Offset: 0xa4

■ Exists: IC_HIGHSPEED_MODE_EN

31
:8

7:
0

R
S

V
D

_I
C

_H
S

_S
P

K
LE

N

IC
_H

S
_S

P
K

LE
N

Table 5-51 Fields for Register: IC_HS_SPKLEN

Bits Name
Memory
Access Description

31:8 RSVD_IC_HS_SPKLEN R IC_HS_SPKLEN Reserved bits - Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 257SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

7:0 IC_HS_SPKLEN R/W This register must be set before any I2C bus transaction can
take place to ensure stable operation. This register sets the
duration, measured in ic_clk cycles, of the longest spike in
the SCL or SDA lines that will be filtered out by the spike
suppression logic; for more information, refer to "Spike
Suppression"
This register can be written only when the I2C interface is
disabled which corresponds to the IC_ENABLE[0] register
being set to 0. Writes at other times have no effect.
The minimum valid value is 1; hardware prevents values less
than this being written, and if attempted results in 1 being
set.
Value After Reset: IC_DEFAULT_HS_SPKLEN
Exists: Always

Table 5-51 Fields for Register: IC_HS_SPKLEN (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

258 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.47 IC_CLR_RESTART_DET

■ Name: Clear RESTART_DET Interrupt Register

■ Description: Clear RESTART_DET Interrupt Register

■ Size: 32 bits

■ Offset: 0xa8

■ Exists: IC_SLV_RESTART_DET_EN == 1

31
:1

0

R
S

V
D

_I
C

_C
LR

_R
E

S
T

A
R

T
_D

E
T

C
LR

_R
E

S
T

A
R

T
_D

E
T

Table 5-52 Fields for Register: IC_CLR_RESTART_DET

Bits Name
Memory
Access Description

31:1 RSVD_IC_CLR_RESTART_DET R IC_CLR_RESTART_DET Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_RESTART_DET R Read this register to clear the RESTART_DET interrupt (bit
12) of IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 259SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.48 IC_SCL_STUCK_AT_LOW_TIMEOUT

■ Name: I2C SCL Stuck at Low Timeout register

■ Description: I2C SCL Stuck at Low Timeout

This register is used to store the duration, measured in ic_clk cycles, used to Generate an Interrupt
(SCL_STUCK_AT_LOW) if SCL is held low for the IC_SCL_STUCK_LOW_TIMEOUT duration.

■ Size: 32 bits

■ Offset: 0xac

■ Exists: IC_BUS_CLEAR_FEATURE==1

31
:0

IC
_S

C
L_

S
T

U
C

K
_L

O
W

_T
IM

E
O

U
T

Table 5-53 Fields for Register: IC_SCL_STUCK_AT_LOW_TIMEOUT

Bits Name
Memory
Access Description

31:0 IC_SCL_STUCK_LOW_TIMEOU
T

R/W DW_apb_i2c generate the interrupt to indicate SCL stuck at
low (SCL_STUCK_AT_LOW) if it detects the SCL stuck at
low for the IC_SCL_STUCK_LOW_TIMEOUT in units of
ic_clk period. This register can be written only when the I2C
interface is disabled which corresponds to the
IC_ENABLE[0] register being set to 0. Writes at other times
have no effect.
Value After Reset: IC_SCL_STUCK_TIMEOUT_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

260 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.49 IC_SDA_STUCK_AT_LOW_TIMEOUT

■ Name: I2C SDA Stuck at Low Timeout register

■ Description: I2C SDA Stuck at Low Timeout

This register is used to store the duration, measured in ic_clk cycles, used to Recover the Data (SDA)
line through sending SCL pulses if SDA is held low for the mentioned duration.

■ Size: 32 bits

■ Offset: 0xb0

■ Exists: IC_BUS_CLEAR_FEATURE==1

31
:0

IC
_S

D
A

_S
T

U
C

K
_L

O
W

_T
IM

E
O

U
T

Table 5-54 Fields for Register: IC_SDA_STUCK_AT_LOW_TIMEOUT

Bits Name
Memory
Access Description

31:0 IC_SDA_STUCK_LOW_TIMEOU
T

R/W DW_apb_i2c initiates the recovery of SDA line through
enabling the SDA_STUCK_RECOVERY_EN
(IC_ENABLE[3]) register bit, if it detects the SDA stuck at low
for the IC_SDA_STUCK_LOW_TIMEOUT in units of ic_clk
period.
Value After Reset: IC_SDA_STUCK_TIMEOUT_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 261SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.50 IC_CLR_SCL_STUCK_DET

■ Name: Clear SCL Stuck at Low Detect interrupt Register

■ Description: Clear SCL Stuck at Low Detect Interrupt Register

■ Size: 32 bits

■ Offset: 0xb4

■ Exists: IC_BUS_CLEAR_FEATURE==1

31
:1

0

R
S

V
D

_C
LR

_S
C

L_
S

T
U

C
K

_D
E

T

C
LR

_S
C

L_
S

T
U

C
K

_D
E

T

Table 5-55 Fields for Register: IC_CLR_SCL_STUCK_DET

Bits Name
Memory
Access Description

31:1 RSVD_CLR_SCL_STUCK_DET R CLR_SCL_STUCK_DET Reserved bits - Read Only
Exists: Always
Volatile: true

0 CLR_SCL_STUCK_DET R Read this register to clear the SCL_STUCT_AT_LOW
interrupt (bit 15) of the IC_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

262 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.51 IC_DEVICE_ID

■ Name: I2C Device-Id register

■ Description: I2C Device-ID Register

This Register contains the Device-ID of the component which includes 12-bits of Manufacturer name
and 9-bits of part identification and 3 bits of die-version.

■ Size: 32 bits

■ Offset: 0xb8

■ Exists: IC_DEVICE_ID==1

31
:2

4

23
:0

R
S

V
D

_I
C

_D
E

V
IC

E
_I

D

D
E

V
IC

E
-I

D

Table 5-56 Fields for Register: IC_DEVICE_ID

Bits Name
Memory
Access Description

31:24 RSVD_IC_DEVICE_ID R IC_DEVICE_ID Reserved bits - Read Only
Exists: Always

23:0 DEVICE-ID R Contains the Device-ID of the component assigned through
the configuration parameter 'IC_DEVICE_ID_VALUE'
Value After Reset: IC_DEVICE_ID_VALUE
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 263SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.52 IC_SMBUS_CLK_LOW_SEXT

■ Name: SMBus Slave Clock Extend Timeout register

■ Description: SMBus Slave Clock Extend Timeout Register

This Register contains the Timeout value used to determine the Slave Clock Extend Timeout in one
transfer (from START to STOP). This Register can be written only when the DW_apb_i2c is disabled,
which corresponds to IC_ENABLE[0] being set to 0. This register is present only if configuration
parameter IC_SMBUS is set to 1. This register is used to store the duration, measured in ic_clk cycles,
used to detect the slave clock extend timeout if slave extends the clock (SCL) for the mentioned
duration.

■ Size: 32 bits

■ Offset: 0xbc

■ Exists: IC_SMBUS==1

31
:0

S
M

B
U

S
_C

LK
_L

O
W

_S
E

X
T

_T
IM

E
O

U
T

Table 5-57 Fields for Register: IC_SMBUS_CLK_LOW_SEXT

Bits Name
Memory
Access Description

31:0 SMBUS_CLK_LOW_SEXT_TIME
OUT

R/W This field is used to detect the Slave Clock Extend timeout
(tLOW:SEXT) in master mode extended by the slave device
in one message from the initial START to the STOP. The
values in this register are in units of ic_clk period.
Value After Reset:
IC_SMBUS_CLK_LOW_SEXT_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

264 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.53 IC_SMBUS_CLK_LOW_MEXT

■ Name: SMBus Master Clock Extend Timeout register

■ Description: SMBus Master Clock Extend Timeout Register

This Register contains the Timeout value used to determine the Master Clock Extend Timeout in one
byte of transfer. This Register can be written only when the DW_apb_i2c is disabled, which
corresponds to IC_ENABLE[0] being set to 0. This register is present only if configuration parameter
IC_SMBUS is set to 1. This register is used to store the duration, measured in ic_clk cycles, used to
detect the Master clock extend timeout if Master extends the clock (SCL) for the mentioned duration.

■ Size: 32 bits

■ Offset: 0xc0

■ Exists: IC_SMBUS==1

31
:0

S
M

B
U

S
_C

LK
_L

O
W

_M
E

X
T

_T
IM

E
O

U
T

Table 5-58 Fields for Register: IC_SMBUS_CLK_LOW_MEXT

Bits Name
Memory
Access Description

31:0 SMBUS_CLK_LOW_MEXT_TIME
OUT

R/W This field is used to detect the Master extend SMBus clock
(SCLK) timeout defined from START-to-ACK, ACK-to-ACK,
or ACK-to-STOP in Master mode. The values in this register
are in units of ic_clk period.
Value After Reset:
IC_SMBUS_CLK_LOW_MEXT_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 265SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.54 IC_SMBUS_THIGH_MAX_IDLE_COUNT

■ Name: SMBus Master THigh MAX Bus-idle count Register

■ Description: SMBus Master THigh MAX Bus-idle count Register

This register programs the Bus-idle time period used when a master has been dynamically added to
the bus or when a master has generated a clock reset on the bus. This register is used to store the
duration, measured in ic_clk cycles, used to detect the Bus Idle condition if SCL and SDA are held
high for the mentioned duration. This register can be written only when the DW_apb_i2c is disabled,
which corresponds to IC_ENABLE[0] being set to 0. This register is present only if configuration
parameter IC_SMBUS is set to 1.

■ Size: 32 bits

■ Offset: 0xc4

■ Exists: IC_SMBUS==1

31
:1

6

15
:0

R
S

V
D

_S
M

B
U

S
_T

H
IG

H
_M

A
X

_B
U

S
_I

D
LE

_C
N

T

S
M

B
U

S
_T

H
IG

H
_M

A
X

_B
U

S
_I

D
LE

_C
N

T

Table 5-59 Fields for Register: IC_SMBUS_THIGH_MAX_IDLE_COUNT

Bits Name
Memory
Access Description

31:16 RSVD_SMBUS_THIGH_MAX_BU
S_IDLE_CNT

R SMBUS_THIGH_MAX_BUS_IDLE_CNT Reserved bits -
Read Only
Exists: Always

https://solvnet.synopsys.com
www.designware.com

266 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

15:0 SMBUS_THIGH_MAX_BUS_IDL
E_CNT

R/W This field is used to set the required Bus-Idle time period
used when a master has been dynamically added to the bus
and may not have detected a state transition on the SMBCLK
or SMBDAT lines.
In this case, the master must wait long enough to ensure that
a transfer is not currently in progress The values in this
register are in units of ic_clk period.
Value After Reset: IC_SMBUS_RST_IDLE_CNT_DEFAULT
Exists: Always

Table 5-59 Fields for Register: IC_SMBUS_THIGH_MAX_IDLE_COUNT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 267SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.55 IC_SMBUS_INTR_STAT

■ Name: SMBus Interrupt Status Register

■ Description: SMBUS Interrupt Status Register

Each bit in this register has a corresponding mask bit in the IC_SMBUS_INTR_MASK register. These
bits are cleared by writing the matching SMBus interrupt clear register(IC_CLR_SMBUS_INTR) bits.
The unmasked raw versions of these bits are available in the IC_SMBUS_RAW_INTR_STAT register.

■ Size: 32 bits

■ Offset: 0xc8

■ Exists: IC_SMBUS==1

31
:1

1

10 9 8 7 6 5 4 3 2 1 0

R
S

V
D

_I
C

_S
M

B
U

S
_I

N
T

R
_S

T
A

T

R
_S

M
B

U
S

_A
LE

R
T

_D
E

T

R
_S

M
B

U
S

_S
U

S
P

E
N

D
_D

E
T

R
_S

LV
_R

X
_P

E
C

_N
A

C
K

R
_A

R
P

_A
S

S
G

N
_A

D
D

R
_C

M
D

_D
E

T

R
_A

R
P

_G
E

T
_U

D
ID

_C
M

D
_D

E
T

R
_A

R
P

_R
S

T
_C

M
D

_D
E

T

R
_A

R
P

_P
R

E
P

A
R

E
_C

M
D

_D
E

T

R
_H

O
S

T
_N

O
T

IF
Y

_M
S

T
_D

E
T

R
_Q

U
IC

K
_C

M
D

_D
E

T

R
_M

S
T

_C
LO

C
K

_E
X

T
N

D
_T

IM
E

O
U

T

R
_S

LV
_C

LO
C

K
_E

X
T

N
D

_T
IM

E
O

U
T

Table 5-60 Fields for Register: IC_SMBUS_INTR_STAT

Bits Name
Memory
Access Description

31:11 RSVD_IC_SMBUS_INTR_STAT R IC_SMBUS_INTR_STAT Reserved bits - Read Only
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

268 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

10 R_SMBUS_ALERT_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_SMBUS_ALERT_DET bit.
Values:

■ 0x1 (ACTIVE): SMBUS_ALERT_DET interrupt is active

■ 0x0 (INACTIVE): SMBUS_ALERT_DET interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1
Volatile: true

9 R_SMBUS_SUSPEND_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_SMBUS_SUSPEND_DET bit.
Values:

■ 0x1 (ACTIVE): SMBUS_SUSPEND_DET interrupt is
active

■ 0x0 (INACTIVE): SMBUS_SUSPEND_DET interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1
Volatile: true

8 R_SLV_RX_PEC_NACK R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_SLV_RX_PEC_NACK bit.
Values:

■ 0x1 (ACTIVE): SLV_RX_PEC_NACK interrupt is active

■ 0x0 (INACTIVE): SLV_RX_PEC_NACK interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

7 R_ARP_ASSGN_ADDR_CMD_D
ET

R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_ARP_ASSGN_ADDR_CMD_DET bit.
Values:
■ 0x1 (ACTIVE): ARP_ASSGN_ADDR_CMD_DET

interrupt is active

■ 0x0 (INACTIVE): ARP_ASSGN_ADDR_CMD_DET
interrupt is inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

Table 5-60 Fields for Register: IC_SMBUS_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 269SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

6 R_ARP_GET_UDID_CMD_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_ARP_GET_UDID_CMD_DET bit.
Values:

■ 0x1 (ACTIVE): ARP_GET_UDID_CMD_DET interrupt is
active

■ 0x0 (INACTIVE): ARP_GET_UDID_CMD_DET interrupt
is inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

5 R_ARP_RST_CMD_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_ARP_RST_CMD_DET bit.
Values:

■ 0x1 (ACTIVE): ARP_RST_CMD_DET interrupt is active

■ 0x0 (INACTIVE): ARP_RST_CMD_DET interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

4 R_ARP_PREPARE_CMD_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_ARP_PREPARE_CMD_DET bit.
Values:

■ 0x1 (ACTIVE): ARP_PREPARE_CMD_DET interrupt is
active

■ 0x0 (INACTIVE): ARP_PREPARE_CMD_DET interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

3 R_HOST_NOTIFY_MST_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_HOST_NOTIFY_MST_DET bit.
Values:
■ 0x1 (ACTIVE): HOST_NOTIFY_MST_DET interrupt is

active

■ 0x0 (INACTIVE): HOST_NOTIFY_MST_DET interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS==1
Volatile: true

Table 5-60 Fields for Register: IC_SMBUS_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

270 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

2 R_QUICK_CMD_DET R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_QUICK_CMD_DET bit.
Values:

■ 0x1 (ACTIVE): QUICK_CMD_DET interrupt is active

■ 0x0 (INACTIVE): QUICK_CMD_DET interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

1 R_MST_CLOCK_EXTND_TIMEO
UT

R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_MST_CLOCK_EXTND_TIMEOUT bit.
Values:

■ 0x1 (ACTIVE): MST_CLOCK_EXTND_TIMEOUT
interrupt is active

■ 0x0 (INACTIVE): MST_CLOCK_EXTND_TIMEOUT
interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

0 R_SLV_CLOCK_EXTND_TIMEO
UT

R See IC_SMBUS_INTR_RAW_STATUS for a detailed
description of R_SLV_CLOCK_EXTND_TIMEOUT bit.
Values:

■ 0x1 (ACTIVE): SLV_CLOCK_EXTND_TIMEOUT
interrupt is active

■ 0x0 (INACTIVE): SLV_CLOCK_EXTND_TIMEOUT
interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-60 Fields for Register: IC_SMBUS_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 271SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.56 IC_SMBUS_INTR_MASK

■ Name: SMBus Interrupt Mask Register

■ Description: SMBus Interrupt Mask Register

■ Size: 32 bits

■ Offset: 0xcc

■ Exists: IC_SMBUS==1

31
:1

1

10 9 8 7 6 5 4 3 2 1 0

R
S

V
D

_I
C

_S
M

B
U

S
_I

N
T

R
_M

A
S

K

M
_S

M
B

U
S

_A
LE

R
T

_D
E

T

R
_S

M
B

U
S

_S
U

S
P

E
N

D
_D

E
T

M
_S

LV
_R

X
_P

E
C

_N
A

C
K

M
_A

R
P

_A
S

S
G

N
_A

D
D

R
_C

M
D

_D
E

T

M
_A

R
P

_G
E

T
_U

D
ID

_C
M

D
_D

E
T

M
_A

R
P

_R
S

T
_C

M
D

_D
E

T

M
_A

R
P

_P
R

E
P

A
R

E
_C

M
D

_D
E

T

M
_H

O
S

T
_N

O
T

IF
Y

_M
S

T
_D

E
T

M
_Q

U
IC

K
_C

M
D

_D
E

T

M
_M

S
T

_C
LO

C
K

_E
X

T
N

D
_T

IM
E

O
U

T

M
_S

LV
_C

LO
C

K
_E

X
T

N
D

_T
IM

E
O

U
T

Table 5-61 Fields for Register: IC_SMBUS_INTR_MASK

Bits Name
Memory
Access Description

31:11 RSVD_IC_SMBUS_INTR_MASK R IC_SMBUS_INTR_MASK Reserved bits - Read Only
Exists: Always

10 M_SMBUS_ALERT_DET R/W This bit masks the R_SMBUS_ALERT_DET interrupt in
IC_SMBUS_INTR_STAT register.
Values:

■ 0x1 (DISABLED): SMBUS_ALERT_DET interrupt is
unmasked

■ 0x0 (ENABLED): SMBUS_ALERT_DET interrupt is
masked

Value After Reset: 0x1
Exists: IC_SMBUS_SUSPEND_ALERT==1

https://solvnet.synopsys.com
www.designware.com

272 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

9 R_SMBUS_SUSPEND_DET R/W This bit masks the R_SMBUS_SUSPEND_DET interrupt in
IC_SMBUS_INTR_STAT register.
Values:

■ 0x1 (DISABLED): SMBUS_SUSPEND_DET interrupt is
unmasked

■ 0x0 (ENABLED): SMBUS_SUSPEND_DET interrupt is
masked

Value After Reset: 0x1
Exists: IC_SMBUS_SUSPEND_ALERT==1

8 M_SLV_RX_PEC_NACK R/W This bit masks the R_SLV_RX_PEC_NACK interrupt in
IC_SMBUS_INTR_STAT register.
Values:

■ 0x1 (DISABLED): SLV_RX_PEC_NACK interrupt is
unmasked

■ 0x0 (ENABLED): SLV_RX_PEC_NACK interrupt is
masked

Value After Reset: 0x1
Exists: IC_SMBUS_ARP==1

7 M_ARP_ASSGN_ADDR_CMD_D
ET

R/W This bit masks the R_ARP_ASSGN_ADDR_CMD_DET
interrupt in IC_SMBUS_INTR_STAT register.
Values:
■ 0x1 (DISABLED): ARP_ASSGN_ADDR_CMD_DET

interrupt is unmasked

■ 0x0 (ENABLED): ARP_ASSGN_ADDR_CMD_DET
interrupt is masked

Value After Reset: 0x1
Exists: IC_SMBUS_ARP==1

6 M_ARP_GET_UDID_CMD_DET R/W This bit masks the R_ARP_GET_UDID_CMD_DET interrupt
in IC_SMBUS_INTR_STAT register.
Values:
■ 0x1 (DISABLED): ARP_GET_UDID_CMD_DET interrupt

is unmasked

■ 0x0 (ENABLED): ARP_GET_UDID_CMD_DET interrupt
is masked

Value After Reset: 0x1
Exists: IC_SMBUS_ARP==1

Table 5-61 Fields for Register: IC_SMBUS_INTR_MASK (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 273SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5 M_ARP_RST_CMD_DET R/W This bit masks the R_ARP_RST_CMD_DET interrupt in
IC_SMBUS_INTR_STAT register.
Values:

■ 0x1 (DISABLED): ARP_RST_CMD_DET interrupt is
unmasked

■ 0x0 (ENABLED): ARP_RST_CMD_DET interrupt is
masked

Value After Reset: 0x1
Exists: IC_SMBUS_ARP==1

4 M_ARP_PREPARE_CMD_DET R/W This bit masks the R_ARP_PREPARE_CMD_DET interrupt
in IC_SMBUS_INTR_STAT register.
Values:

■ 0x1 (DISABLED): ARP_PREPARE_CMD_DET interrupt
is unmasked

■ 0x0 (ENABLED): ARP_PREPARE_CMD_DET interrupt is
masked

Value After Reset: 0x1
Exists: IC_SMBUS_ARP==1

3 M_HOST_NOTIFY_MST_DET R/W This bit masks the R_HOST_NOTIFY_MST_DET interrupt in
IC_SMBUS_INTR_STAT register.
Values:
■ 0x1 (DISABLED): HOST_NOTIFY_MST_DET interrupt is

unmasked

■ 0x0 (ENABLED): HOST_NOTIFY_MST_DET interrupt is
masked

Value After Reset: 0x1
Exists: IC_SMBUS==1

2 M_QUICK_CMD_DET R/W This bit masks the R_QUICK_CMD_DET interrupt in
IC_SMBUS_INTR_STAT register.
Values:
■ 0x1 (DISABLED): QUICK_CMD_DET interrupt is

unmasked

■ 0x0 (ENABLED): QUICK_CMD_DET interrupt is masked

Value After Reset: 0x1
Exists: Always

Table 5-61 Fields for Register: IC_SMBUS_INTR_MASK (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

274 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

1 M_MST_CLOCK_EXTND_TIMEO
UT

R/W This bit masks the R_MST_CLOCK_EXTND_TIMEOUT
interrupt in IC_SMBUS_INTR_STAT register.
Values:

■ 0x1 (DISABLED): MST_CLOCK_EXTND_TIMEOUT
interrupt is unmasked

■ 0x0 (ENABLED): MST_CLOCK_EXTND_TIMEOUT
interrupt is masked

Value After Reset: 0x1
Exists: Always

0 M_SLV_CLOCK_EXTND_TIMEO
UT

R/W This bit masks the R_SLV_CLOCK_EXTND_TIMEOUT
interrupt in IC_SMBUS_INTR_STAT register.
Values:

■ 0x1 (DISABLED): SLV_CLOCK_EXTND_TIMEOUT
interrupt is unmasked

■ 0x0 (ENABLED): SLV_CLOCK_EXTND_TIMEOUT
interrupt is masked

Value After Reset: 0x1
Exists: Always

Table 5-61 Fields for Register: IC_SMBUS_INTR_MASK (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 275SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.57 IC_SMBUS_RAW_INTR_STAT

■ Name: SMBus Raw Interrupt Status Register

■ Description: SMBus Raw Interrupt Status Register

Unlike the IC_SMBUS_INTR_STAT register, these bits are not masked so they always show the true
status of the DW_apb_i2c.

■ Size: 32 bits

■ Offset: 0xd0

■ Exists: IC_SMBUS==1
31

:1
1

10 9 8 7 6 5 4 3 2 1 0

R
S

V
D

_I
C

_S
M

B
U

S
_R

A
W

_I
N

T
R

_S
T

A
T

S
M

B
U

S
_A

LE
R

T
_D

E
T

S
M

B
U

S
_S

U
S

P
E

N
D

_D
E

T

S
LV

_R
X

_P
E

C
_N

A
C

K

A
R

P
_A

S
S

G
N

_A
D

D
R

_C
M

D
_D

E
T

A
R

P
_G

E
T

_U
D

ID
_C

M
D

_D
E

T

A
R

P
_R

S
T

_C
M

D
_D

E
T

A
R

P
_P

R
E

P
A

R
E

_C
M

D
_D

E
T

H
O

S
T

_N
T

F
Y

_M
S

T
_D

E
T

Q
U

IC
K

_C
M

D
_D

E
T

M
S

T
_C

LO
C

K
_E

X
T

N
D

_T
IM

E
O

U
T

S
LV

_C
LO

C
K

_E
X

T
N

D
_T

IM
E

O
U

T

Table 5-62 Fields for Register: IC_SMBUS_RAW_INTR_STAT

Bits Name
Memory
Access Description

31:11 RSVD_IC_SMBUS_RAW_INTR_
STAT

R IC_SMBUS_RAW_INTR_STAT Reserved bits - Read Only
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

276 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

10 SMBUS_ALERT_DET R Indicates whether a SMBALERT (ic_smbalert_in_n) signal is
driven low by the slave.
Values:

■ 0x1 (ACTIVE): SMBUS Alert interrupt is active

■ 0x0 (INACTIVE): SMBUS Alert interrupt is inactive

Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1
Volatile: true

9 SMBUS_SUSPEND_DET R Indicates whether a SMBSUS (ic_smbsus_in_n) signal is
driven low by the Host.
Values:

■ 0x1 (ACTIVE): SMBUS System Suspended interrupt is
active

■ 0x0 (INACTIVE): SMBUS System Suspended interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1
Volatile: true

8 SLV_RX_PEC_NACK R Indicates whether a NACK has been sent due to PEC
mismatch while working as ARP slave.
Values:

■ 0x1 (ACTIVE): SLV_RX_PEC_NACK interrupt is active

■ 0x0 (INACTIVE): SLV_RX_PEC_NACK interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

7 ARP_ASSGN_ADDR_CMD_DET R Indicates whether an Assign Address ARP command has
been received.
Values:
■ 0x1 (ACTIVE): ARP_ASSGN_ADDR_CMD_DET

interrupt is active

■ 0x0 (INACTIVE): ARP_ASSGN_ADDR_CMD_DET
interrupt is inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

Table 5-62 Fields for Register: IC_SMBUS_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 277SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

6 ARP_GET_UDID_CMD_DET R Indicates whether a Get UDID ARP command has been
received.
Values:

■ 0x1 (ACTIVE): ARP_GET_UDID_CMD_DET interrupt is
active

■ 0x0 (INACTIVE): ARP_GET_UDID_CMD_DET interrupt
is inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

5 ARP_RST_CMD_DET R Indicates whether a General or Directed Reset ARP
command has been received.
Values:

■ 0x1 (ACTIVE): ARP_RST_CMD_DET interrupt is active

■ 0x0 (INACTIVE): ARP_RST_CMD_DET interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

4 ARP_PREPARE_CMD_DET R Indicates whether a prepare to ARP command has been
received.
Values:

■ 0x1 (ACTIVE): ARP_PREPARE_CMD_DET interrupt is
active

■ 0x0 (INACTIVE): ARP_PREPARE_CMD_DET interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1
Volatile: true

3 HOST_NTFY_MST_DET R Indicates whether a Notify ARP Master ARP command has
been received.
Values:
■ 0x1 (ACTIVE): HOST_NTFY_MST_DET interrupt is

active

■ 0x0 (INACTIVE): HOST_NTFY_MST_DET interrupt is
inactive

Value After Reset: 0x0
Exists: IC_SMBUS==1
Volatile: true

Table 5-62 Fields for Register: IC_SMBUS_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

278 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

2 QUICK_CMD_DET R Indicates whether a Quick command has been received on
the SMBus interface regardless of whether DW_apb_i2c is
operating in slave or master mode. Enabled only when
IC_SMBUS=1 is set to 1.
Values:

■ 0x1 (ACTIVE): Quick Command interrupt is active

■ 0x0 (INACTIVE): Quick Command interrupt is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

1 MST_CLOCK_EXTND_TIMEOUT R Indicates whether the Master device transaction (START-to-
ACK, ACK-to-ACK, or ACK-to-STOP) from START to STOP
exceeds IC_SMBUS_CLOCK_LOW_MEXT time with in
each byte of message.
This bit is enabled only when:

■ IC_SMBUS=1

■ IC_CON[0]=1

■ IC_EMPTYFIFO_HOLD_MASTER_EN=1 or

■ IC_RX_FULL_HLD_BUS_EN=1

Values:

■ 0x1 (ACTIVE): Master Clock Extend Timeout interrupt is
active

■ 0x0 (INACTIVE): Master Clock Extend Timeout interrupt
is inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-62 Fields for Register: IC_SMBUS_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 279SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

0 SLV_CLOCK_EXTND_TIMEOUT R Indicates whether the transaction from Slave (i.e from
START to STOP) exceeds IC_SMBUS_CLK_LOW_SEXT
time.
This bit is enabled only when:

■ IC_SMBUS=1

■ IC_CON[0]=1

Values:
■ 0x1 (ACTIVE): Slave Clock Extend Timeout interrupt is

active

■ 0x0 (INACTIVE): Slave Clock Extend Timeout interrupt is
inactive

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-62 Fields for Register: IC_SMBUS_RAW_INTR_STAT (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

280 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.58 IC_CLR_SMBUS_INTR

■ Name: Clear SMBus Interrupt Register

■ Description: SMBus Clear Interrupt Register

■ Size: 32 bits

■ Offset: 0xd4

■ Exists: IC_SMBUS==1

31
:1

1

10 9 8 7 6 5 4 3 2 1 0

R
S

V
D

_I
C

_C
LR

_S
M

B
U

S
_I

N
T

R

C
LR

_S
M

B
U

S
_A

LE
R

T
_D

E
T

C
LR

_S
M

B
U

S
_S

U
S

P
E

N
D

_D
E

T

C
LR

_S
LV

_R
X

_P
E

C
_N

A
C

K

C
LR

_A
R

P
_A

S
S

G
N

_A
D

D
R

_C
M

D
_D

E
T

C
LR

_A
R

P
_G

E
T

_U
D

ID
_C

M
D

_D
E

T

C
LR

_A
R

P
_R

S
T

_C
M

D
_D

E
T

C
LR

_A
R

P
_P

R
E

P
A

R
E

_C
M

D
_D

E
T

C
LR

_H
O

S
T

_N
O

T
IF

Y
_M

S
T

_D
E

T

C
LR

_Q
U

IC
K

_C
M

D
_D

E
T

C
LR

_M
S

T
_C

LO
C

K
_E

X
T

N
D

_T
IM

E
O

U
T

C
LR

_S
LV

_C
LO

C
K

_E
X

T
N

D
_T

IM
E

O
U

T

Table 5-63 Fields for Register: IC_CLR_SMBUS_INTR

Bits Name
Memory
Access Description

31:11 RSVD_IC_CLR_SMBUS_INTR W IC_CLR_SMBUS_INTR Reserved bits - Read Only
Exists: Always

10 CLR_SMBUS_ALERT_DET W Write this register bit to clear the SMBUS_ALERT_DET
interrupt (bit 10) of the IC_SMBUS_RAW_INTR_STAT
register.
Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1

9 CLR_SMBUS_SUSPEND_DET W Write this register bit to clear the SMBUS_SUSPEND_DET
interrupt (bit 9) of the IC_SMBUS_RAW_INTR_STAT
register.
Value After Reset: 0x0
Exists: IC_SMBUS_SUSPEND_ALERT==1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 281SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

8 CLR_SLV_RX_PEC_NACK W Write this register bit to clear the SLV_RX_PEC_NACK
interrupt (bit 8) of the IC_SMBUS_RAW_INTR_STAT
register.
Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1

7 CLR_ARP_ASSGN_ADDR_CMD
_DET

W Write this register bit to clear the
ARP_ASSGN_ADDR_CMD_DET interrupt (bit 7) of the
IC_SMBUS_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1

6 CLR_ARP_GET_UDID_CMD_DE
T

W Write this register bit to clear the
ARP_GET_UDID_CMD_DET interrupt (bit 6) of the
IC_SMBUS_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1

5 CLR_ARP_RST_CMD_DET W Write this register bit to clear the ARP_RST_CMD_DET
interrupt (bit 5) of the IC_SMBUS_RAW_INTR_STAT
register.
Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1

4 CLR_ARP_PREPARE_CMD_DET W Write this register bit to clear the
ARP_PREPARE_CMD_DET interrupt (bit 4) of the
IC_SMBUS_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: IC_SMBUS_ARP==1

3 CLR_HOST_NOTIFY_MST_DET W Write this register bit to clear the HOST_NOTIFY_MST_DET
interrupt (bit 3) of the IC_SMBUS_RAW_INTR_STAT
register.
Value After Reset: 0x0
Exists: IC_SMBUS==1

2 CLR_QUICK_CMD_DET W Write this register bit to clear the QUICK_CMD_DET
interrupt (bit 2) of the IC_SMBUS_RAW_INTR_STAT
register.
Value After Reset: 0x0
Exists: Always

1 CLR_MST_CLOCK_EXTND_TIM
EOUT

W Write this register bit to clear the
MST_CLOCK_EXTND_TIMEOUT interrupt (bit 1) of the
IC_SMBUS_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always

Table 5-63 Fields for Register: IC_CLR_SMBUS_INTR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

282 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

0 CLR_SLV_CLOCK_EXTND_TIME
OUT

W Write this register bit to clear the
SLV_CLOCK_EXTND_TIMEOUT interrupt (bit 0) of the
IC_SMBUS_RAW_INTR_STAT register.
Value After Reset: 0x0
Exists: Always

Table 5-63 Fields for Register: IC_CLR_SMBUS_INTR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 283SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.59 IC_OPTIONAL_SAR

■ Name: I2C Optional Slave Address Register

■ Description: I2C Optional Slave Address Register

Optional Slave address for I2C in SMBus Mode. A same restriction as IC_SAR applies on
IC_OPTIONAL_SAR.

■ Size: 32 bits

■ Offset: 0xd8

■ Exists: IC_OPTIONAL_SAR==1

31
:7

6:
0

R
S

V
D

_I
C

_O
P

T
IO

N
A

L_
S

A
R

O
P

T
IO

N
A

L_
S

A
R

Table 5-64 Fields for Register: IC_OPTIONAL_SAR

Bits Name
Memory
Access Description

31:7 RSVD_IC_OPTIONAL_SAR R IC_OPTIONAL_SAR Reserved bits - Read Only
Exists: Always

6:0 OPTIONAL_SAR R/W Optional Slave address for DW_apb_i2c when operating as a
slave in SMBus Mode.
Value After Reset: IC_OPTIONAL_SAR_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

284 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.60 IC_SMBUS_UDID_LSB

■ Name: SMBUS ARP UDID LSB Register

■ Description: SMBUS ARP UDID LSB Register

This Register can be written only when the DW_apb_i2c is disabled, which corresponds to
IC_ENABLE[0] being set to 0. This register is present only if configuration parameter
IC_SMBUS_UDID_HC is set to 1. This register is used to store the LSB 32 bit value of Slave UDID
register used in Address Resolution Protocol of SMBus.

■ Size: 32 bits

■ Offset: 0xdc

■ Exists: (IC_SMBUS_ARP == 1) && (IC_SMBUS_UDID_HC == 1)

31
:0

S
M

B
U

S
_U

D
ID

_L
S

B

Table 5-65 Fields for Register: IC_SMBUS_UDID_LSB

Bits Name
Memory
Access Description

31:0 SMBUS_UDID_LSB R/W This field is used to store the LSB 32 bit value of slave
unique device identifier used in Address Resolution Protocol.
Value After Reset: IC_SMBUS_UDID_LSB_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 285SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.61 IC_SMBUS_UDID_WORD0

■ Name: SMBUS ARP UDID WORD0 Register

■ Description: SMBUS UDID WORD0 Register

This Register can be written only when the DW_apb_i2c is disabled, which corresponds to
IC_ENABLE[0] being set to 0. This register is present only if configuration parameter
IC_SMBUS_UDID_HC is set to 0. This register is used to store the Lower 32 bit value of Slave UDID
register i.e. UDID[31:0] used in Address Resolution Protocol of SMBus.

■ Size: 32 bits

■ Offset: 0xdc

■ Exists: IC_SMBUS_UDID_HC==0

31
:0

S
M

B
U

S
_U

D
ID

_W
O

R
D

0

Table 5-66 Fields for Register: IC_SMBUS_UDID_WORD0

Bits Name
Memory
Access Description

31:0 SMBUS_UDID_WORD0 R/W This field is used to store the Lower 32 bit value of slave
unique device identifier used in Address Resolution Protocol.
Value After Reset: IC_SMBUS_UDID_LSB_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

286 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.62 IC_SMBUS_UDID_WORD1

■ Name: SMBUS ARP UDID WORD1 Register

■ Description: SMBUS UDID WORD1 Register

This Register can be written only when the DW_apb_i2c is disabled, which corresponds to
IC_ENABLE[0] being set to 0. This register is present only if configuration parameter
IC_SMBUS_UDID_HC is set to 0. This register is used to store the Middle-Lower 32 bit value of Slave
UDID register i.e. UDID[63:32] used in Address Resolution Protocol of SMBus.

■ Size: 32 bits

■ Offset: 0xe0

■ Exists: IC_SMBUS_UDID_HC==0

31
:0

S
M

B
U

S
_U

D
ID

_W
O

R
D

1

Table 5-67 Fields for Register: IC_SMBUS_UDID_WORD1

Bits Name
Memory
Access Description

31:0 SMBUS_UDID_WORD1 R/W This field is used to store the Middle-Lower 32 bit value of
slave unique device identifier used in Address Resolution
Protocol.
Value After Reset: IC_SMBUS_UDID_WORD1_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 287SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.63 IC_SMBUS_UDID_WORD2

■ Name: SMBUS ARP UDID WORD2 Register

■ Description: SMBUS UDID WORD2 Register

This Register can be written only when the DW_apb_i2c is disabled, which corresponds to
IC_ENABLE[0] being set to 0. This register is present only if configuration parameter
IC_SMBUS_UDID_HC is set to 0. This register is used to store the Middle-Upper 32 bit value of Slave
UDID register i.e. UDID[95:64] used in Address Resolution Protocol of SMBus.

■ Size: 32 bits

■ Offset: 0xe4

■ Exists: IC_SMBUS_UDID_HC==0

31
:0

S
M

B
U

S
_U

D
ID

_W
O

R
D

2

Table 5-68 Fields for Register: IC_SMBUS_UDID_WORD2

Bits Name
Memory
Access Description

31:0 SMBUS_UDID_WORD2 R/W This field is used to store the Middle-Upper 32 bit value of
slave unique device identifier used in Address Resolution
Protocol.
Value After Reset: IC_SMBUS_UDID_WORD2_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

288 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.64 IC_SMBUS_UDID_WORD3

■ Name: SMBUS ARP UDID WORD3 Register

■ Description: SMBUS UDID WORD3 Register

This Register can be written only when the DW_apb_i2c is disabled, which corresponds to
IC_ENABLE[0] being set to 0. This register is present only if configuration parameter
IC_SMBUS_UDID_HC is set to 0. This register is used to store the Upper 32 bit value of Slave UDID
register i.e. UDID[127:96] used in Address Resolution Protocol of SMBus.

■ Size: 32 bits

■ Offset: 0xe8

■ Exists: IC_SMBUS_UDID_HC==0

31
:0

S
M

B
U

S
_U

D
ID

_W
O

R
D

3

Table 5-69 Fields for Register: IC_SMBUS_UDID_WORD3

Bits Name
Memory
Access Description

31:0 SMBUS_UDID_WORD3 R/W This field is used to store the Upper 32 bit value of slave
unique device identifier used in Address Resolution Protocol.
Value After Reset: IC_SMBUS_UDID_WORD3_DEFAULT
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 289SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.65 REG_TIMEOUT_RST

■ Name: Register timeout counter reset value

■ Description: Name: Register timeout counter reset register Size: REG_TIMEOUT_WIDTH bits
Address: 0xF0 Read/Write Access: Read/Write This register keeps the timeout value of register
timer counter. The reset value of the register is REG_TIMEOUT_VALUE. The default reset value can
be further modified if HC_REG_TIMEOUT_VALUE = 0. The final programmed value (or the default
reset value if not programmed) determines from what value the register timeout counter starts
counting down. A zero on this counter will break the waited transaction with PSLVERR as high.

■ Size: 32 bits

■ Offset: 0xf0

■ Exists: [<functionof> "(((SLAVE_INTERFACE_TYPE>0 && SLVERR_RESP_EN==1 &&
REG_TIMEOUT_WIDTH>0) ? 1 : 0)==1) ? 1 : 0"]

31
:y

x:
0

x:
0

R
S

V
D

_R
E

G
_T

IM
E

O
U

T
_R

S
T

R
E

G
_T

IM
E

O
U

T
_R

S
T

_r
o

R
E

G
_T

IM
E

O
U

T
_R

S
T

_r
w

Table 5-70 Fields for Register: REG_TIMEOUT_RST

Bits Name
Memory
Access Description

31:y RSVD_REG_TIMEOUT_RST R Reserved bits - Read Only
Exists: Always
Volatile: true
Range Variable[y]: REG_TIMEOUT_WIDTH

x:0 REG_TIMEOUT_RST_ro R This field holds reset value of REG_TIMEOUT counter
register.
Value After Reset: REG_TIMEOUT_VALUE
Exists: [<functionof> "(HC_REG_TIMEOUT_VALUE==1) ?
1 : 0"]
Volatile: true
Range Variable[x]: REG_TIMEOUT_WIDTH - 1

https://solvnet.synopsys.com
www.designware.com

290 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

x:0 REG_TIMEOUT_RST_rw R/W This field holds reset value of REG_TIMEOUT counter
register.
Value After Reset: REG_TIMEOUT_VALUE
Exists: [<functionof> "(HC_REG_TIMEOUT_VALUE==0) ?
1 : 0"]
Volatile: true
Range Variable[x]: REG_TIMEOUT_WIDTH - 1

Table 5-70 Fields for Register: REG_TIMEOUT_RST (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 291SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.66 IC_COMP_PARAM_1

■ Name: Component Parameter Register 1

■ Description: Component Parameter Register 1

NoteThis is a constant read-only register that contains encoded information about the component's
parameter settings. The reset value depends on coreConsultant parameter(s).

■ Size: 32 bits

■ Offset: 0xf4

■ Exists: [<functionof> "(IC_ADD_ENCODED_PARAMS==1) ? 1 : 0"]

31
:2

4

23
:1

6

15
:8

7 6 5 4 3:
2

1:
0

R
S

V
D

_I
C

_C
O

M
P

_P
A

R
A

M
_1

T
X

_B
U

F
F

E
R

_D
E

P
T

H

R
X

_B
U

F
F

E
R

_D
E

P
T

H

A
D

D
_E

N
C

O
D

E
D

_P
A

R
A

M
S

H
A

S
_D

M
A

IN
T

R
_I

O

H
C

_C
O

U
N

T
_V

A
LU

E
S

M
A

X
_S

P
E

E
D

_M
O

D
E

A
P

B
_D

A
T

A
_W

ID
T

H

Table 5-71 Fields for Register: IC_COMP_PARAM_1

Bits Name
Memory
Access Description

31:24 RSVD_IC_COMP_PARAM_1 R IC_COMP_PARAM_1 Reserved bits - Read Only
Exists: Always

23:16 TX_BUFFER_DEPTH R The value of this register is derived from the
IC_TX_BUFFER_DEPTH coreConsultant parameter.

■ 0x00 = Reserved

■ 0x01 = 2

■ 0x02 = 3

■ ...

■ 0xFF = 256

Value After Reset: ENCODED_IC_TX_BUFFER_DEPTH
Exists: Always

https://solvnet.synopsys.com
www.designware.com

292 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

15:8 RX_BUFFER_DEPTH R The value of this register is derived from the
IC_RX_BUFFER_DEPTH coreConsultant parameter.

■ 0x00: Reserved

■ 0x01: 2

■ 0x02: 3

■ ...

■ 0xFF: 256

Value After Reset: ENCODED_IC_RX_BUFFER_DEPTH
Exists: Always

7 ADD_ENCODED_PARAMS R The value of this register is derived from the
IC_ADD_ENCODED_PARAMS coreConsultant parameter.
Reading 1 in this bit means that the capability of reading
these encoded parameters via software has been included.
Otherwise, the entire register is 0 regardless of the setting of
any other parameters that are encoded in the bits.
Values:
■ 0x1 (ENABLED): Enables capability of reading encoded

parameters

■ 0x0 (DISBALED): Disables capability of reading encoded
parameters

Value After Reset: IC_ADD_ENCODED_PARAMS
Exists: Always

6 HAS_DMA R The value of this register is derived from the IC_HAS_DMA
coreConsultant parameter.
Values:

■ 0x1 (ENABLED): DMA handshaking signals are enabled

■ 0x0 (DISABLED): DMA handshaking signals are disabled

Value After Reset: IC_HAS_DMA
Exists: Always

5 INTR_IO R The value of this register is derived from the IC_INTR_IO
coreConsultant parameter.
Values:

■ 0x1 (COMBINED): COMBINED Interrupt outputs

■ 0x0 (INDIVIDUAL): INDIVIDUAL Interrupt outputs

Value After Reset: IC_INTR_IO
Exists: Always

Table 5-71 Fields for Register: IC_COMP_PARAM_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 293SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

4 HC_COUNT_VALUES R The value of this register is derived from the IC_HC_COUNT
VALUES coreConsultant parameter.
Values:

■ 0x1 (ENABLED): Hard code the count values for each
mode.

■ 0x0 (DISABLED): Programmable count values for each
mode.

Value After Reset: IC_HC_COUNT_VALUES
Exists: Always

3:2 MAX_SPEED_MODE R The value of this register is derived from the
IC_MAX_SPEED_MODE coreConsultant parameter.

■ 0x0: Reserved

■ 0x1: Standard

■ 0x2: Fast

■ 0x3: High

Values:

■ 0x1 (STANDARD): IC MAX SPEED is STANDARD MODE

■ 0x2 (FAST): IC MAX SPEED is FAST MODE

■ 0x3 (HIGH): IC MAX SPEED is HIGH MODE

Value After Reset: "(IC_ULTRA_FAST_MODE_EN==0) ?
(IC_MAX_SPEED_MODE) : \"0x00\""
Exists: IC_ULTRA_FAST_MODE==0

1:0 APB_DATA_WIDTH R The value of this register is derived from the
APB_DATA_WIDTH coreConsultant parameter.
Values:

■ 0x0 (APB_08BITS): APB data bus width is 08 bits

■ 0x1 (APB_16BITS): APB data bus width is 16 bits

■ 0x2 (APB_32BITS): APB data bus width is 32 bits

■ 0x3 (RESERVED): Reserved bits

Value After Reset: ENCODED_APB_DATA_WIDTH
Exists: Always

Table 5-71 Fields for Register: IC_COMP_PARAM_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

294 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

5.1.67 IC_COMP_VERSION

■ Name: I2C Component Version Register

■ Description: I2C Component Version Register

■ Size: 32 bits

■ Offset: 0xf8

■ Exists: Always

31
:0

IC
_C

O
M

P
_V

E
R

S
IO

N

Table 5-72 Fields for Register: IC_COMP_VERSION

Bits Name
Memory
Access Description

31:0 IC_COMP_VERSION R Specific values for this register are described in the
Releases Table in the DW_apb_i2c Release Notes
Value After Reset: IC_VERSION_ID
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 295SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Register Descriptions

5.1.68 IC_COMP_TYPE

■ Name: I2C Component Type Register

■ Description: I2C Component Type Register

■ Size: 32 bits

■ Offset: 0xfc

■ Exists: Always

31
:0

IC
_C

O
M

P
_T

Y
P

E

Table 5-73 Fields for Register: IC_COMP_TYPE

Bits Name
Memory
Access Description

31:0 IC_COMP_TYPE R Designware Component Type number = 0x44_57_01_40.
This assigned unique hex value is constant and is derived
from the two ASCII letters 'DW' followed by a 16-bit unsigned
number.
Value After Reset: 0x44570140
Exists: Always

https://solvnet.synopsys.com
www.designware.com

296 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Register Descriptions DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 297

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

6
Programming the DW_apb_i2c

The DW_apb_i2c can be programmed through software registers or the DW_apb_i2c low-level software
driver.

6.1 Software Registers
For information about programming the software registers in terms of DW_apb_i2c operation, see “Slave
Mode Operation” on page 44 and “Master Mode Operation” on page 47. The software registers are
described in more detail in “Register Descriptions” on page 141.

6.2 Software Drivers
The family of DesignWare Synthesizable Components includes a Driver Kit for the DW_apb_i2c
component. This low-level Driver Kit allows you to easily program a DW_apb_i2c component and integrate
your code into a larger software system. The Driver Kit provides the following benefits to IP designers:

■ Proven method of access to DW_apb_i2c minimizing usage errors

■ Rapid software development with minimum overhead

■ Detailed knowledge of DW_apb_i2c register bit fields not required

■ Easy integration of DW_apb_i2c into existing software system

■ Programming at register level eliminated

You must purchase a source code license (DWC-APB-Advanced-Source) to use the DW_apb_i2c Driver Kit.
However, you can access some Driver Kit files and documentation in
$DESIGNWARE_HOME/drivers/DW_apb_i2c/latest. For more information about the Driver Kit, see the
DW_apb_i2c Driver Kit User Guide. For more information about purchasing the source code license and
obtaining a download of the Driver Kit, contact Synopsys at designware@synopsys.com for details.

http://www.synopsys.com/dw/doc.php/drivers/DW_apb_i2c/latest/doc/dw_apb_i2c_driver.pdf
https://solvnet.synopsys.com
https://www.synopsys.com/dw/doc.php/drivers/DW_apb_i2c/latest/doc/dw_apb_i2c_driver.pdf
www.designware.com

298 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

6.3 Programming Example
The flow diagram in Figure 6-1 shows an overview of programming the DW_apb_i2c.

Figure 6-1 Flowchart for DW_ahb_dmac and DW_apb_i2c Programming Example

Program CTL0 as required for transfer:

1. Set DONE field to 0
2. Set BLOCK_TS to 19
3. Set LLP_SRC_EN to 0
4. Set LLP_DST_EN to 0
5. Set SMS field to 00 = AHB master1
6. Set DMS field to 01 = AHB master2
7. Set TT_FC field to 001 for memory-to-
 peripheral transfer
8. Set SRC_MSIZE to 001 for four data items
9. Set DEST_MSIZE to 001 for four data items
10. Set SINC field to 00 = Increment
11. Set DINC field to 10 = No change
12. Set SRC_TR_WIDTH to 000 for eight bits
13. Set DST_TR_WIDTH to 000 for eight bits
14. Set INT_EN field to 1 to enable interrupts

ChEnReg[0]
= 0?

N

YClear all DMAC
interrupts by writing
to Clear* registers

Read ChEnReg to
check if Channel0

is free

Write address of
IC_DATA_CMD

register to SAR0

Write address of
system memory
location to DAR0

Program CFGx as required for transfer:

1. Set SRC_PER field to 0
2. Set SS_UPD_EN field to 0
3. Set DS_UPD_EN field to 0
4. Set PROTCTL field to data access value
5. Set FIFO_MODE field to 0 – single transfer
mode
6. Set FCMODE field to 0
7. Set RELOAD_DST field to 0
8. Set RELOAD_SRC field to 0
9. Set MAX_ABRST field to 0
10. Set SRC_HS_POL and DST_HS_POL
 fields to 0 – active high handshaking
 interface polarity
11. Set LOCK_B field to 0
12. Set LOCK_CH field to 0
13. Set LOCK_B_L field to 2’b00
14. Set LOCK_CH_L field to 2’b00
15. Set HS_SEL_DST field to 0 = hardware
 handshaking
16. Set CH_SUSP field to 1’b0
17. Set CH_PRIOR field to 1’b0

Write to
DmaCfgReg to set
Global DMA Enable

Write to
ChEnReg to

enable Channel 0

Write to IC_ENABLE
register to disable

DW_apb_i2c

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 1 – Slave
 disabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 1 – Master
 enabled

Set address of
target Slave by
writing it to SAR

Write to
IC_SS_HCNT to
set HIGH period

of SCL

Write to
IC_INTR_MASK to

enable all
interrupts

Write to
IC_RX_TL to
set Rx FIFO

threshold level

Write to
IC_ENABLE to

enable
Dw_apb_i2c

DW_ahb_dmac Programming

DW_apb_i2c Programming

Write to
IC_SS_LCNT to
set LOW period

of SCL

Write to
IC_TX_TL to
set Tx FIFO

threshold level

Write to
IC_DMA_CR to
enable transmit

FIFO DMA channel

Write to
IC_DMA_TDLR to
set Transmit Data

Level for DMA requests

* I2C asserts dma_tx_req to the
DMAC when Tx FIFO level is below
IC_DMA_TDLR
* DMAC responds by writing to I2C Tx
FIFO and asserting dma_ack
* I2C transfer begins when a
command is available in Tx FIFO

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 299SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

The following outlines details regarding reads and writes to/from DW_apb_i2c masters/slaves and VIP
master/slaves:

■ For DW_apb_i2c master writes to a slave VIP model, bear in mind when using the DMA that you are
writing characters from the byte stream. However, for a write, the DW_apb_i2c needs a halfword. To
use the DMA, you should write software similar to the following:

short int temp_array[];
char * ptr=(char *) temp_array;
foreach byte in bytes {
 store byte ptr++;
 store '0x01' write command ptr++
}

a. Program the DMA to read a stream of halfwords from memory and write them to the
DW_apb_i2c using the hardware interface.

b. Program the DW_apb_i2c to do a write using the transmit DMA.

■ For DW_apb_i2c master reads from a slave VIP model:

a. Create a read command halfword.

b. Program DMA channel 0 to do a fixed read of the read command halfword—that is, no address
increment—to the DW_apb_i2c transmit buffer.

c. Program DMA channel 1 to read the data from the read buffer and store it in memory.

d. Program the DW_apb_i2c to do a master read by setting both DMA channels.

■ For DW_apb_i2c slave writes from a master VIP model:

a. Program the DW_apb_i2c to be a slave with the RX buffer DMA enabled.

b. Program the DMA to read the buffer and store the bytes in memory.

■ For DW_apb_i2c slave reads from a master VIP model:

a. Enable IC_INTR_MASK.RD_REQ; otherwise the DW_apb_i2c does not acknowledge the read.

b. When you get the RD_REQ interrrupt, program the DMA to write the TX buffer with the read
data.

c. Program the DW_apb_i2c to enable the TX DMA.

NoteNoteNoteNote When there is at least one entry in the DW_apb_i2c Rx FIFO, the DW_apb_i2c asserts
dma_single to the DMAC. When the number of entries in the DW_apb_i2c Rx FIFO reaches
reaches IC_DMA_RDLR, the DW_apb_i2c asserts dma_rx_req to the DMAC. In this example,
in order to read nineteen data items from the DW_apb_i2c Rx FIFO, the DMAC samples
dma_req for three BURST transfers of four beats of size 1 byte each, and it samples
dma_single for three SINGLE transfers of size 1 byte each.

https://solvnet.synopsys.com
www.designware.com

300 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

The flow diagram in Figure 6-2 shows a programming example for the DW_apb_i2c Master.

Figure 6-2 Flowchart for DW_apb_i2c Master

The flow diagram in Figure 6-3 shows a programming example for the DW_apb_i2c master in standard
mode, fast mode, or fast mode plus with 7-bit addressing.

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 1 – Slave
 disabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 1 – Master
 enabled

Set address of
target Slave by
writing it to TAR

Write to
IC_SS_HCNT to
set HIGH period

of SCL

Write to
IC_INTR_MASK to

enable all
interrupts

Write to
IC_RX_TL to
set Rx FIFO

threshold level

Write to
IC_TX_TL to
set Tx FIFO

threshold level

Write to
IC_SS_LCNT to
set LOW period

of SCL

Write 1 to
IC_ENABLE to

enable
DW_apb_i2c

Write to IC_DATA_CMD to
push Write command and write data

TX_EMPTY
interrupt

asserted? Read
IC_DATA_CMD[7:0]

to retrieve

Y

Y

N

or Read command Tx FIFO

IC_STATUS[5]
(MST_ACTIVITY)

= 0?

Is

Y

N

Y

Command is
Write?

RX_FULL
interrupt

asserted?

received byte

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

commands
to send?

MoreY

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 301SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 6-3 Flowchart for DW_apb_i2c Master in Standard Mode, Fast Mode, or Fast Mode Plus

Write to IC_ENABLE
register to disable

DW_apb_i2c

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 1 – Slave
 disabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 1 – Master
 enabled

Set address of
target Slave by
writing it to TAR

Write to
IC_SS_HCNT to
set HIGH period

of SCL

Write to
IC_INTR_MASK to

enable all
interrupts

Write to
IC_RX_TL to
set Rx FIFO

threshold level

Write to
IC_TX_TL to
set Tx FIFO

threshold level

Write to
IC_SS_LCNT to
set LOW period

of SCL

Write to
IC_ENABLE to

enable
DW_apb_i2c

Tx FIFO
empty?

Is

Write I2C command to Tx FIFO.
∗ For Write command:
 ∗ Program IC_DATA_CMD[8] with 0
 ∗ Program IC_DATA_CMD[7:0] with data to be transmitted
∗ For Read command:
 ∗ Program IC_DATA_CMD[8] with 1
 ∗ Read IC_DATA_CMD[7:0] to retrieve received data

DW_apb_i2c Master pops command
from Tx FIFO and processes it

DW_apb_i2c Master issues START
bit as soon as command is

EMPTYFIFO_
HOLD_MASTER_EN

= 1?

IC_

last command of
transfer? Is STOP bit
(IC_DATA_CMD[9])

Is this

DW_apb_i2c Master holds SCL
low and waits for next command;

Write next
I2C command

to Tx FIFO

DW_apb_i2c Master
issues STOP bit

and ends transfer

Y

Y

N

N

N

available in Tx FIFO

= 1?

EMPTYFIFO_
HOLD_MASTER_EN

= 1?

IC_

DW_apb_i2c Master does not
issue STOP bit

Y

N

Y

IC_RX_FULL_HLD
_BUS_EN=1

N

Y

Is command a READ?
Is Rx FIFO full?

DW_apb_i2c Master holds
SCL low and waits for Rx
FIFo to get some space

Y

N

https://solvnet.synopsys.com
www.designware.com

302 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

The flow diagram in Figure 6-4 shows a programming example for DW_apb_i2c as master with TAR
address update. This flow shows how the MST_ON_HOLD interrupt is used when the software needs
information from the hardware to safely update the TAR address.

NoteNoteNoteNote When the software has full knowledge of when it is safe to update the TAR address without
requiring information from hardware, the MST_ON_HOLD interrupt is not required to update
the TAR address.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 303SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 6-4 Flowchart for DW_apb_i2c Master with TAR Address Update

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 1 – Slave
 disabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 1 – Master
 enabled

Set address of
target Slave by
writing it to TAR

Write to
IC_SS_HCNT to
set HIGH period

of SCL

Write to
IC_INTR_MASK to

enable all
interrupts

Write to
IC_RX_TL to
set Rx FIFO

threshold level

Write to
IC_TX_TL to
set Tx FIFO

threshold level

Write to
IC_SS_LCNT to
set LOW period

of SCL

Write 1 to
IC_ENABLE to

enable
DW_apb_i2c

Write to IC_DATA_CMD to
push Write command and write data

Read
IC_DATA_CMD[7:0]

to retrieve

Y

Y

N

or Read command Tx FIFO

IC_STATUS[5]
(MST_ACTIVITY)

= 0?

Is

Y

N

Y

Command is
Write?

received byte

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

commands
to send?

MoreY

Y

N

Y

Y

N

IC_EMPTY_FIFO_HOLD_MASTER_EN=1
&& DYNAMIC_TAR_UPDATE=1 ?

last command of
transfer? Is STOP bit
(IC_DATA_CMD[9])

Is this

= 1?

MST_ON_HOLD
interrupt asserted?

Update IC_TAR Register and issue
first command with RESTART bit
set in IC_DATA_CMD

DW_apb_i2c
issues a
STOP and
ends transfer

RX_FULL
interrupt
asserted?

Is Tx FIFO
empty?

https://solvnet.synopsys.com
www.designware.com

304 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

The flow diagram in Figure 6-5 shows a programming example for the DW_apb_i2c Slave in standard
mode, fast mode, or fast mode plus with 7-bit addressing.

Figure 6-5 Flowchart for DW_apb_i2c Slave in Standard Mode, Fast Mode, or Fast Mode Plus with 7-bit
Addressing

6.4 Programming Flow for SCL and SDA Bus Recovery
The flow diagram in Figure 6-6 shows a programming example for SCL and SDA bus recovery.

Program IC_CON register fields as
required:

1. Set IC_SLAVE_DISABLE to 0 – Slave
 enabled
2. Set IC_RESTART_EN to 1 – Enable
 restart mode
3. Set IC_10BITADDR_MASTER to 0 –
 7-bit addressing
4. Set IC_10BITADDR_SLAVE to 0 – 7-bit
 addressing
5. Set IC_MAX_SPEED_MODE to 1 –
 Standard mode
6. Set IC_MASTER_MODE to 0 – Master
 disabled

Program IC_SAR
with address to

which DW_apb_i2c
slave responds

Write 1 to
IC_ENABLE to

enable
DW_apb_i2c

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Write to
IC_INTR_MASK

to unmask
required interrupts

interrupt
(IC_RAW_INTR_STAT[5]) or

RX_FULL interrupt

RD_REQ

(IC_RAW_INTR_STAT[6])
asserted?

Is TX_ABRT
interrupt asserted or

IC_RAW_INTR_STAT[6] = 1?

Write data to be transmitted
 to IC_DATA_CMD[7:0];

write 0 to IC_DATA_CMD[8]
to specify direction of transfer

Read IC_CLR_TX_ABRT
to clear TX_ABRT interrupt

Read
IC_DATA_CMD[7:0]

to retrieve
received byte

Read IC_CLR_RD_REQ
to clear RD_REQ interrupt

RX_FULL
interrupt

RD_REQ
interrupt

RX_FULL interrupt

RD_REQ interrupt

N

Y

Is
IC_STATUS[6]

(SLV_ACTIVITY)
= 0?

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Y

N

Y

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 305SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 6-6 Flowchart for SCL and SDA Bus Recovery

6.5 Programming Flow for Reading the Device ID
Figure 6-7 shows a programming flow in the master to initiate a Device ID read.

Write 0 to
IC_ENABLE to

disable
DW_apb_i2c

Write 1 to IC_CON[11] to enable the bus feature
Program SCL Stuck Timeout (IC_SCL_STUCK_LOW_TIMEOUT)
Program SDA Stuck Timeout (IC_SDA_STUCK_LOW_TIMEOUT)

Write 1 to
IC_ENABLE to

enable
DW_apb_i2c

Any interrupt?

Perform normal transfers

ic_tx_abort_intr?
Is IC_TX_ABORT_SOURCE[17]

=1

ic_scl_stuck_at_low_intr? Reset the entire DW_apb_i2c system

Write 1 to IC_ENABLE[3] to initiate recovery
on required Master

Y

N

Y

Y

Poll for recovery IC_ENABLE[3]=0?

IC_STATUS[11]=1?

1. Clear the interrupt
2. Read IC_CLR_TX_ABRT

Process with normal transfers

Reset the entire DW_apb_i2c system

N

Y

N

Y

Not recovered
Recovered

https://solvnet.synopsys.com
www.designware.com

306 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

Figure 6-7 Flowchart for Reading a Device ID

As the Device ID consists of 3 bytes, the user must issue 3 read commands in IC_DATA_CMD register. One
read command populates one byte of Device ID in RX FIFO. If more than 3 commands are issued, the
Device ID rolls back.

6.6 Programming Flow for SMBUS Timeout in Master Mode
Figure 6-8 shows a programming flow for SMBus timeout in master mode.

Figure 6-8 SMBUS Timeout Programming Flow in Master Mode

Write 0 to IC_ENABLE[0] to disable DW_apb_i2c

Write 1 to IC_TAR[13] and IC_TAR[11] to enable a Device ID read

Write 1 to IC_ENABLE to enable DW_apb_i2c

Push 3 read commands into IC_DATA_CMD

Program following registers to detect SMBUS timeouts:
- IC_SCL_STUCK_AT_LOW_TIMEOUT
- IC_SDA_STUCK_AT_LOW_TIMEOUT
- IC_SMBUS_CLK_LOW_SEXT
- IC_SMBUS_CLK_LOW_MEXT

Program IC_ENABLE[0] to 1 to enable DW_apb_i2c

Has IC_TX_ABORT_INTR occurred?
Is IC_TX_ABRT_SOURCE[17]=1?
Has SMBDAT timeout occurred?

Enable SMBUS_CLK_RESET
(IC_ENABLE[16] to reset the SMBus

Has IC_SMBUS_INTR_STAT.R_CLOCK_EXTD_TIMEOUT
This interrpt initimate that the mster is violating the
tLow;MEXT timeout

Has IC_INTR_STAT.R_SCL_STUCK_AT_LOW occurred?
tTIMEOUT;MIN Violation
Or
Has IC_SMBUS_INTR_STAT.R_SLV_CLOCK_EXTND_TIMEOUT
occurred?
tLOW;SEXT Violation

Enable USER ABORT (IC_ENABLE[1])
To abort the transfer

Perform normal transfers

Any
interrupt?

Is SMBUS_CLK_RESET
(IC_ENABLE[16])=0? IS USER_ABORT (IC_ENABLE[1])=0?

NYYN

Y

Y Y

N

Y

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 307SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

6.7 Programming Flow for SMBUS Timeout in Slave Mode
Figure 6-9 shows a programming flow for SMBus timeout in slave mode.

Figure 6-9 SMBUS Timeout Programming Flow in Slave Mode

6.8 ARP Master Programming Flow
Figure 6-10 shows the programming flow for an ARP master.

Program IC_ENABLE[0] to 1 to enable DW_apb_i2c

Any interrupt?

N

Y

Program IC_SCL_STUCK_AT_LOW_TIMEOUT registers to detect the SMBUS tTIMEOUT; MIN Timeout

SCL_CLK_LOW_TIMEOUT_INTR?
tTIMEOUT;MIN Violation

Perform Normal Transfer
Communication Link (SCL and SDA)
Automatically Reset and FIFOs Flushed

https://solvnet.synopsys.com
www.designware.com

308 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

Figure 6-10 ARP Master Programming Flow

6.9 ARP Slave Programming Flow
Figure 6-11 shows the programming flow for an ARP slave.

Add Address to the Used

Reset

Send “Prepare to ARP”
Command

Is the packet
 acknowledged?

Send “Get UDID”
Command

Y

Are the initial 3 bytes

Y

acknowledged and
Receive byte counts = 0x11?

Send “Assign Address” command with the UDID
received from the “Get UDID” command

Y

Is the packet
 acknowledged?

Address Pool

ARP Complete

Switch to Slave Mode if the

Host Notify Protocol
Device Requires to Detect

Has ic_smbus_host_notify_intr N

Y

occurred?

Is DW_apb_i2c in master mode?

N

(Is IC_CON[0] =1 &&
IC_CON[6]=1)

Switch to Master Mode for
Performing ARP

N

Y

N

N

A

A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 309SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

Figure 6-11 ARP Slave Programming Flow

Reset

DW_apb_i2c acknowledges
and responds to device function

Is the address

DW_apb_i2c acknowledges the

Does DW_apb_i2c have
 a persistent slave address?

Hardware Clears the Address Valid

Y

Set the slave address (IC_SAR) to

N

persistent slave address

Hardware sets:
- Address valid flag to 1
- Address resolved flag to 0

and Address Resolved Flags

Slave address field matches
the SMBus ARP Address

Prepare for ARP command

General reset command?
DW_apb_i2c acknowledges the packet

packet and clears the address
resolved flag

and clears these flags:
- Address Resolved Flag
- Address valid flag if non-PSA

valid flag set?

Does slave address field
match with IC_SAR?

Y

Y

Y

N

N

N

N

Y

N

Y

AB CD

https://solvnet.synopsys.com
www.designware.com

310 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

DW_apb_i2c NACKs

Y

Return UDID

Assign address
Y

Y

B A C

command?

General get UDID
 command?

Is
the address resolved

flag set?

UDID match?
Y

- DW_apb_i2c acknowledges

- Set IC_SAR slave address
to assigned address

- Set address resolved and
address valid flags.

 the packetIs the address
value flag set?

Directed Reset
 command?

Directed Get
 UDID command?

Return UDID and
IC_SAR slavethe unknown ARP

command address

Return 0xFF for the

N

Is the address

Return IC_SAR current

valid flag set?
YN

device slave address
field

slave address for the

field
device slave address

N

N

N

Y

D
Y

N N

Y

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 311SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

6.10 SMBus SUSPEND Programming Flow in Host Mode

Figure 6-12 Suspend Programming Flow in Host Mode

Reset

Enable the SUSPEND signal

IC_ENABLE[17] Register Bit
through writing 1 to

DW_apb_i2c checks whether
 Master activity is enabled?

Y

N

DW_apb_i2c Master waits

completed
for Master activity to be

DW_apb_i2c asserts
ic_smbus_out_n signal

Insert Delay and wait

de-assert suspend signal

DW_apb_i2c de-asserts
ic_smbus_out_n signal

for specific time to

https://solvnet.synopsys.com
www.designware.com

312 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

6.11 SMBus SUSPEND Programming Flow in Device Mode

Figure 6-13 SMBus SUSPEND Programming flow in Device Mode

Reset

Is ic_smbus_det_intr
 interrupt received?

Y

N

Proceed with Normal
SMBus Transfers

Software initiates the Low
Power Mode and clears

Periodically polls for

Bit in IC_STATUS Register
SMBUS_SUSPEND_STATUS

the interrupt

Is IC_STATUS[19] =0?

Resume SMBus Device
from Low Power Mode

Y

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 313SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

6.12 SMBus ALERT Programming Flow in Host Mode

Figure 6-14 SMBus Alert Programming Flow in Host Mode

Reset

Has ic_smbalert_det_intr
 occurred?

N Proceed with Normal
SMBus Transfers

Load Tx-FIFO for one or two

DW_apb_i2c receives the Slave
address and puts it in Rx-FIFO

Is IC_STATUS[20] =0?
Y

N

Is DW_apb_i2c in

Y

N

Master Mode?

Switch to Master Mode for
sending the Alert Response
Address

Y

Software Clears the Interrupt
and Updates IC_TAR Register
with Alert Response Address (0xC)

Read Byte command.
Two commands are required if PEC
is appended at the end of the message

https://solvnet.synopsys.com
www.designware.com

314 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

6.13 SMBus ALERT Programming Flow in Device Mode

Figure 6-15 SMBus Alert Programming Flow in Device Mode

Reset

Is IC_ENABLE[18] = 1
N

De-assert ic_smbalert_oe signal and

Y

Perform normal

DW_apb_i2c responds with the device slave

DW_apb_i2c asserts
ic_smbalert_oe signal

Is incoming slave address

Y

N

equal to Alert response
address?

address (IC_SAR) for the Read Request. If PEC
is enabled, DW_apb_i2c appends the PEC
byte at the end of transfer.

auto-clear IC_ENABLE[18] bit

SMBus Transfers

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 315SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

6.14 Programming Flow Of DW_apb_i2c in Ultra-Fast Mode

6.14.1 DW_apb_i2c Master Mode

Figure 6-16 DW_apb_i2c Ultra-Fast Master Mode

Is this last

N

DW_apb_i2c Master holds SCL low and waits

Y DW_apb_i2c master

Is TX_FIFO empty?

Y

N

Write to IC_ENABLE
register to disable
DW_apb_i2c

Program IC_CON register fields as required:
- Set IC_SLAVE_DISABLE = 1 - Slave disabled
- Set IC_RESTART_EN = 1 - Enable Start Mode
- Set IC_10BITADDR_MASTER to 0 – 7-bit addressing
- Set IC_10BITADDR_SLAVE to 0 – 7-bit addressing
- Set IC_MASTER_MODE to 1 - Master enabled

Set address of target
Slave by writing it to TAR

Write to
IC_UFM_SCL_HCNT
IC_UFM_SCL_LCNT
IC_UFM_TBUF_CNT
IC_UFM_SPKLEN registers to

 set HIGH period, Low period,
tBuf count and spike length
value of SCL

Write to IC_INTR_MASK
to enable all interrupts

Write to IC_RX_TL to
set Rx FIFO threshold level

Write to IC_TX_TL to
set Tx FIFO threshold level

Write to IC_ENABLE to
enable DW_apb_i2c

- Write I2C command to Tx FIFO

DW_apb_i2c Master issues START bit as

- Program IC_DATA_CMD[8] with 0
- Program IC_DATA_CMD[7:0] with data to be transmitted
- Program IC_DATA_CMD[9] with 1 if the current command

is the last bye of transfer

soon as the command is available in Tx FIFO

DW_apb_i2c Master pops command
from Tx FIFO and processes it

Is STOP bit
command of transfer?

IC_DATA_CMD[9]=1?

Is IC_EMPTY_FIFO_

Y

HOLD_MASTER_EN
= 1?

waits for next command
DW_apb_i2c Master does not issue STOP bit

Write next I2C
command to
Tx FIFO

issues STOP bit
and ends transfer

N

https://solvnet.synopsys.com
www.designware.com

316 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

6.14.2 DW_apb_i2c Slave Mode

Figure 6-17 DW_apb_i2c Ultra-Fast Slave Mode

Write 0 to IC_ENABLE to

RX_FULL interrupt Y

disable DW_apb_i2c

Program IC_SAR with address to
which DW_apb_i2c slave responds

Program IC_CON register fields as required:
- Set IC_SLAVE_DISABLE to 0 (Slave enabled)
- Set IC_RESTART_EN to 1 (Enable restart mode)
- Set IC_10BITADDR_MASTER to 0 (7-bit addressing)
- Set IC_10BITADDR_SLAVE to 0 (7-bit addressing)
- Set IC_MASTER_MODE to 0 (Master disabled)

Write to IC_INTR_MASK to
unmask required interrupts

Write to IC_ENABLE to enable
DW_apb_i2c

(IC_RAW_INTR_STAT[6])
asserted?

Write 0 to IC_ENABLE to disable DW_apb_i2c

Read IC_DATA_CMD[7:0]

Y

Is IC_STATUS[6]

to retrieve received byte

SLV_ACTIVITY = 0?

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 317

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

7
Verification

This chapter provides an overview of the testbench available for DW_apb_i2c verification. Once you have
configured the DW_apb_i2c in coreConsultant and have set up the verification environment, you can run
simulations automatically.

DW_apb_i2c consists of the following types of environments:

■ “Vera Testbench Environment” – Uses the AMBA VMT VIPs and I2C BFM models.

7.1 Vera Testbench Environment

7.1.1 Overview of Vera Tests

The DW_apb_i2c verification testbench performs the following set of tests that have been written to
exhaustively verify the functionality and have also achieved maximum RTL code coverage.

7.1.2 APB Slave Interface

This suite of tests is run to verify that the APB interface functions correctly by checking the following:

■ All non-configuration parameter register reset values are verified.

■ All read-only registers are written to with opposite values to verify that they are read only.

■ All writable registers are written to with opposite values to verify that they can be written.

■ Some registers can be written only when the DW_apb_i2c is disabled.Confirm that those registers are
non-writable in that mode. Attempt to write the opposite values to those registers while the
DW_apb_i2c is disabled and verify that the writes are ignored.

NoteNoteNoteNote The DW_apb_i2c verification testbench is built with DesignWare Verification IP (VIP). Make
sure you have the supported version of the VIP components for this release, otherwise, you
may experience some tool compatibility problems. For more information about supported tools
in this release, see the following web page:

www.synopsys.com/products/designware/docs/doc/amba/latest/dw_amba_install.pdf

■ All tests use the APB Interface to program memory mapped registers dynamically during
tests.

http://www.synopsys.com/products/designware/docs/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

318 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Verification DesignWare DW_apb_i2c Databook

■ The *CNT registers can be written to only if the configuration parameter IC_HC_COUNT_VALUES =
0. Verify that the registers are read-only when IC_HC_COUNT_VALUES = 0 and writable when
IC_HC_COUNT_VALUES = 1.

■ Confirm that it is not possible to write the transmit buffer threshold level (IC_TX_TL) higher than the
size of the transmit buffer. Verify that if a larger value is written that the value becomes set to the size
of the transmit buffer (max).

■ Confirm that it is not possible to write the receive buffer threshold level (IC_RX_TL) higher than the
size of the transmit buffer. Verify that if a larger value is written that the value becomes set to the size
of the transmit buffer (max).

■ Write illegal value 0 to SPEED bits in IC_CON and verify that the new value is parameter
IC_MAX_SPEED_MODE.

■ Verify that the SPEED bits in IC_CON cannot be written to higher speeds than configuration
parameter IC_MAX_SPEED_MODE.

7.1.3 DW_apb_i2c Master Operation

This suite of tests is run only when the DW_apb_i2c is configured as a master. For instance, these tests go
through all combinations of speed, addressing, read/write, and multi-byte transfers. Commands are issued
to the DW_apb_i2c, and the I2C Slave is the target and used to verify the transfers. The tests also verify the
following:

■ SCL low and SCL high times are with I2C specification

■ Operation of all registers

■ Master arbitration

■ Debug outputs

■ Disabling of DW_apb_i2c shown correctly on ic_en output

■ Programmed count values for all the *CNT registers

■ The current source enable output operates correctly

■ Combined format operation (7- and 10-bit addressing modes)

■ Restart enable and disable

■ Clock synchronization by stretching SCL

■ Loop-back operation by performing simultaneous master-transmitter, slave-receiver sending
multiple bytes. A single-byte transfer with master-receiver, slave-transmitter is also performed

7.1.4 DW_apb_i2c Slave Operation

This suite of tests is run only when the DW_apb_i2c is configured as a slave. Similar to the tests developed
for the master, the driving force is the Serial Master BFM. For instance, these tests go through all
combinations of speed, addressing, read/write, and multi-byte transfers. The I2C master is used to generate

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 319SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Verification

transfers and the DW_apb_i2c is the target; the AHB Master is used to verify the transfers. The tests also
verify the following:

■ Operation of all registers

■ Debug outputs

■ Disabling of DW_apb_i2c shown correctly on ic_en output

■ Combined format operation (7- and 10-bit addressing modes)

7.1.5 DW_apb_i2c Interrupts

These tests verify that the DW_apb_i2c generates and handles the servicing of interrupts correctly. They
also verify operation of the debug ports.

7.1.6 DMA Handshaking Interface

These tests verify that DW_apb_i2c generates and responds through the handshaking interface. Transfers
are generated within the DMA BFM and transmitted through the I2C protocol from the DUT to the
ALT_DUT and vice versa. Different watermark levels are selected to control the clearing on the
dma_tx_req/dma_rx_req lines once an acknowledgement is received. A random number of bytes are
transferred using only the handshaking interface.

7.1.7 DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update

This test is run only if the DW_apb_i2c is configured as a master and the parameter
I2C_DYNAMIC_TAR_UPDATE = 1. This test verifies that DW_apb_i2c Master Target address (IC_TAR)
and the parameter IC_10BITADDR_MASTER can be updated dynamically while the DW_apb_i2c Slave is
involved in an I2C transfer on the I2C bus.

7.1.8 Generate NACK as a Slave-Receiver

This test is always run and tests the functionality of DW_apb_i2c, depending on whether the parameter
IC_SLV_DATA_NACK_ONLY is set to 0 or 1. This test verifies that ACK/NACKs are generated correctly
when DW_apb_i2c is acting as a slave-receiver, depending on whether IC_SLV_DATA_NACK_ONLY
register exists (set by having parameter IC_SLV_DATA_NACK_ONLY=1). If the register exists, its value is
set to 1 for the duration of the test. If the register exists (and therefore its value is 1), a NACK is generated by
the slave when data is sent to it, the transfer is aborted, and data is not written to the receive buffer.
Otherwise, ACKs are generated for the duration of the transfer, the transfer completes successfully, and the
data is written to the receive buffer successfully.

7.1.9 SCL Held Low for Duration Specified in IC_SDA_SETUP

This test verifies that during a Slave-Receive I2C transfer, DW_apb_i2c asserts the output port ic_data_oe,
holding SCL low for the minimum period specified in the IC_SDA_SETUP register. This only happens
every time the I2C master ACKs a data byte, and the transmit FIFO in DW_apb_i2c is not filled to satisfy this
read request.

https://solvnet.synopsys.com
www.designware.com

320 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Verification DesignWare DW_apb_i2c Databook

7.1.10 Generate ACK/NACK for General Call

This test verifies that the IC_ACK_GENERAL_CALL bit controls whether DW_apb_i2c ACK or NACKs an
I2C general call address.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 321

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

8
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment. The following sections discuss general
integration considerations.

8.1 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

8.2 Performance
This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_apb_i2c.

8.2.1 Power Consumption, Frequency, and Area Results

Table 8-1 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_apb_i2c using the industry standard 28nm technology library and how it affects performance.

Table 8-1 Power Consumption, Frequency, and Area Results for DW_apb_i2c Using 28nm Technology Library

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration pclk: 200 MHz 11297 gates 0.179uW 167.305uW

https://solvnet.synopsys.com
www.designware.com

322 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Integration Considerations DesignWare DW_apb_i2c Databook

Maximum SFIFO Configuration:
IC_CLK_TYPE=1
IC_HAS_ASYNC_FIFO=0
APB_DATA_WIDTH=32
IC_TX_BUFFER_DEPTH=16
IC_RX_BUFFER_DEPTH=16
SLAVE_INTERFACE_TYPE=2
SLVERR_RESP_EN=1
REG_TIMEOUT_WIDTH=8
HC_REG_TIMEOUT_VALUE=0
REG_TIMEOUT_VALUE=8

pclk: 200 MHz
ic_clk: 200 MHz

12869 gates 0.205uW 174.351uW

Maximum AFIFO Configuration:
IC_CLK_TYPE=1
IC_HAS_ASYNC_FIFO=1
APB_DATA_WIDTH=32
IC_TX_BUFFER_DEPTH=16
IC_RX_BUFFER_DEPTH=16
SLAVE_INTERFACE_TYPE=2
SLVERR_RESP_EN=1
REG_TIMEOUT_WIDTH=8
HC_REG_TIMEOUT_VALUE=0
REG_TIMEOUT_VALUE=8

pclk: 200 MHz
ic_clk: 200 MHz

13375 gates 0.213uW 226.352uW

Maximum smbus SFIFO
Configuration:
IC_CLK_TYPE=1
IC_HAS_ASYNC_FIFO=0
APB_DATA_WIDTH=32
IC_TX_BUFFER_DEPTH=16
IC_RX_BUFFER_DEPTH=16
SLAVE_INTERFACE_TYPE=2
SLVERR_RESP_EN=1
REG_TIMEOUT_WIDTH=8
HC_REG_TIMEOUT_VALUE=0
REG_TIMEOUT_VALUE=8
IC_SMBUS=1
IC_SMBUS_UDID_HC=0
IC_SMBUS_ARP=1

pclk: 200 MHz
ic_clk: 200 MHz

20027 gates 0.319uW 60.7887uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 323SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Integration Considerations

Maximum smbus AFIFO
Configuration:
IC_CLK_TYPE=1
IC_HAS_ASYNC_FIFO=1
APB_DATA_WIDTH=32
IC_TX_BUFFER_DEPTH=16
IC_RX_BUFFER_DEPTH=16
SLAVE_INTERFACE_TYPE=2
SLVERR_RESP_EN=1
REG_TIMEOUT_WIDTH=8
HC_REG_TIMEOUT_VALUE=0
REG_TIMEOUT_VALUE=8
IC_SMBUS=1
IC_SMBUS_UDID_HC=0
IC_SMBUS_ARP=1

pclk: 200 MHz
ic_clk: 200 MHz

20560 gates 0.329uW 63.1965uW

Minimum Configuration:
IC_CLK_TYPE=0
IC_MAX_SPEED_MODE=1
IC_10BITADDR_MASTER=0
IC_10BITADDR_SLAVE=0
IC_MASTER_MODE=0
IC_TX_BUFFER_DEPTH=2
IC_RX_BUFFER_DEPTH=2
IC_HC_COUNT_VALUES=1

pclk: 200 MHz
ic_clk: 200 MHz

5777 gates 0.0884 uW 16.2522uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

324 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Integration Considerations DesignWare DW_apb_i2c Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 325

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

A
Synchronizer Methods

This appendix describes the synchronizer methods (blocks of synchronizer functionality) that are used in
the DW_apb_i2c to cross clock boundaries.

This appendix contains the following sections:

■ “Synchronizers Used in DW_apb_i2c” on page 326

■ “Synchronizer 1: Simple Double Register Synchronizer” on page 327

■ “Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset” on
page 327

NoteNoteNoteNote The DesignWare Building Blocks (DWBB) contains several synchronizer components with
functionality similar to methods documented in this appendix. For more information about the
DWBB synchronizer components go to:
https://www.synopsys.com/dw/buildingblock.php

https://www.synopsys.com/dw/buildingblock.php
https://solvnet.synopsys.com
www.designware.com

326 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Synchronizer Methods DesignWare DW_apb_i2c Databook

A.1 Synchronizers Used in DW_apb_i2c
Each of the synchronizers and synchronizer sub-modules are comprised of verified DesignWare Basic Core
(BCM) RTL designs. The BCM synchronizer designs are identified by the synchronizer type. The
corresponding RTL files comprising the BCM synchronizers used in the DW_apb_i2c are listed and cross
referenced to the synchronizer type in Table A-1. Note that certain BCM modules are contained in other
BCM modules, as they are used in a building block fashion.

Table A-1 Synchronizers used in DW_apb_i2c

Synchronizer module
file Sub module file Synchronizer Type and Number

DW_apb_i2c_bcm21.v Synchronizer 1: Simple Multiple Register Synchronizer

DW_apb_i2c_bcm41.v DW_apb_i2c_bcm21.v Synchronizer 2: Simple Multiple Register Synchronizer with
Configurable Polarity Reset

NoteNoteNoteNote The BCM21 is a basic multiple register based synchronizer module used in the design. It can
be replaced with equivalent technology specific synchronizer cell.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 327SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Synchronizer Methods

A.2 Synchronizer 1: Simple Double Register Synchronizer
This is a single clock data bus synchronizer for synchronizing data that crosses asynchronous clock
boundaries. The synchronization scheme depends on core configuration. If pclk and ic_clk are
asynchronous (IC_CLK_TYPE =ASYNC) then DW_apb_i2c_bcm21 is instantiated inside the core for
synchronization. This uses two stage synchronization process () both using positive edge of clock.

Figure A-1 Block Diagram of Synchronizer 1 With Two Stage Synchronization (Both Positive Edges)

A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable
Polarity Reset

This is a single clock data bus synchronizer for synchronizing data that crosses asynchronous clock
boundaries with configurable polarity reset. The synchronization scheme depends on core configuration. If
pclk and ic_clk are asynchronous (IC_CLK_TYPE =ASYNC) then DW_apb_i2c_bcm41 is instantiated inside
the core for synchronization of ic_clk_in_a and ic_data_in_a input signals. This DW_apb_i2c_bcm41
synchronizer is similar to the DW_apb_i2c_bcm21 synchronizer and the polarity of the output of this
synchronizer can be configured. Figure A-2 shows the block diagram of Synchronizer 2.

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

328 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Synchronizer Methods DesignWare DW_apb_i2c Databook

Figure A-2 Block Diagram of Synchronizer 2 With Two Stage Synchronization (Both Positive Edges)

Configured as : f_sync_type = 3, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
data_s

test

width

width

Configured as : f_sync_type = 3, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

data_ddata_s
width

D Q
width

test

width

width
width

D Q

D Q
width

D Q

D Q

data_d
width width

D Q
width

D Q D Q

width

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 329

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

B
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table B-1 Internal Parameters

Parameter Name Equals To

ASYNC 2'b01

ENCODED_APB_DATA_WIDTH {[function_of: APB_DATA_WIDTH]}

ENCODED_IC_RX_BUFFER_DEPTH {[function_of: IC_RX_BUFFER_DEPTH]}

ENCODED_IC_TX_BUFFER_DEPTH {[function_of: IC_TX_BUFFER_DEPTH]}

IC_ADDR_SLICE_LHS 3'b111

IC_BUS_CLEAR_FEATURE_EN 1

IC_DEFAULT_SDA_RX_HOLD {[function_of: IC_DEFAULT_SDA_HOLD]}

IC_DEFAULT_SDA_TX_HOLD {[function_of: IC_DEFAULT_SDA_HOLD]}

IC_FS_MAX_SPKLEN 50

IC_HCNT_LO_LIMIT =((IC_ULTRA_FAST_MODE ==1) ? 3 :
((IC_CLK_FREQ_OPTIMIZATION == 1) ? 1 : 6))

IC_HIGHSPEED_MODE_EN =(IC_MAX_SPEED_MODE == 3 ? 1 : 0)

IC_HS_MAX_SPKLEN 10

https://solvnet.synopsys.com
www.designware.com

330 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Internal Parameter Descriptions DesignWare DW_apb_i2c Databook

IC_LCNT_LO_LIMIT =((IC_ULTRA_FAST_MODE ==1) ? 5 :
((IC_CLK_FREQ_OPTIMIZATION == 1) ? 6 : 8))

IC_SMBUS_UDID_WORD1_DEFAULT IC_SMBUS_UDID_MSB & 96'h0000000000000000ffffffff

IC_SMBUS_UDID_WORD2_DEFAULT (IC_SMBUS_UDID_MSB &
96'h00000000ffffffff00000000) >> 32

IC_SMBUS_UDID_WORD3_DEFAULT (IC_SMBUS_UDID_MSB &
96'hffffffff0000000000000000) >> 64

IC_ULTRA_FAST_MODE_EN =(IC_ULTRA_FAST_MODE == 1 ? 1 : 0)

IC_VERSION_ID 32'h3230322a

POW_2_REG_TIMEOUT_WIDTH {[function_of: REG_TIMEOUT_WIDTH]}

RX_ABW {[function_of: IC_RX_BUFFER_DEPTH]}

RX_ABW_P1 RX_ABW + 1

TX_ABW {[function_of: IC_TX_BUFFER_DEPTH]}

TX_ABW_P1 TX_ABW + 1

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 331

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

C
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and
off-chip external memory interfaces (Arm® Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by Arm®
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (Arm® Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB
bus.

application design Overall chip-level design into which a subsystem or subsystems are
integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in
a word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

https://solvnet.synopsys.com
www.designware.com

332 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Glossary DesignWare DW_apb_i2c Databook

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels
execute command streams independently of each other to provide full-duplex
mode function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable
block that can be instantiated as a single entity (VHDL) or module (Verilog) in a
design.

configuration The act of specifying parameters for a core prior to synthesis; can also be
used in the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a
big piece of IIP. Anything that requires coreConsultant for configuration, as well
as anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in
the DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable
cores into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design
views and synthesis views you need to integrate the core into your design. Can
also synthesize the core and run the unit-level testbench supplied with the
core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format
back to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 333SolvNet
DesignWare.com

2.02a
July 2018

DesignWare DW_apb_i2c Databook Glossary

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant
or coreAssembler to quickly build DesignWare Synthesizable Component
designs.

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is
authorized by a single DesignWare license. Products include SmartModels,
VMT model suites, DesignWare Memory Models, Building Block IP, and the
DesignWare Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code
by non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

https://solvnet.synopsys.com
www.designware.com

334 Synopsys, Inc. SolvNet
DesignWare.com

2.02a
July 2018

Glossary DesignWare DW_apb_i2c Databook

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

RTL Register Transfer Level. A higher level of abstraction that implies a certain
gate-level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as
synthesizable IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically
generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology
through synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component.
The files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in
any form, including a Design View.

workspace A network location that contains a personal copy of a component or
subsystem. After you configure the component or subsystem (using
coreConsultant or coreAssembler), the workspace contains the configured
component/subsystem and generated views needed for integration of the
component/subsystem at the top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing
easier interfacing. Usually requires an extra, sometimes automated, step to
create the wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 335

DesignWare DW_apb_i2c Databook

SolvNet
DesignWare.com

2.02a
July 2018

Index

A
active command queue

definition 331
activity

definition 331
AHB

definition 331
AMBA

definition 331
APB

definition 331
APB bridge

definition 331
application design

definition 331
arbiter

definition 331
Arbitration, of master 41
B
BFM

definition 331
big-endian

definition 331
Block diagram, of DW_apb_i2c 21
blocked command stream

definition 331
blocking command

definition 332
bus bridge

definition 332
C
Clock synchronization 43
command channel

definition 332
command stream

definition 332

component
definition 332

Configuration
of IC_CLK frequency 66

configuration
definition 332

configuration intent
definition 332

core
definition 332

core developer
definition 332

core integrator
definition 332

coreAssembler
definition 332

coreConsultant
definition 332

coreKit
definition 332

Customer Support 16
cycle command

definition 332
D
decoder

definition 332
design context

definition 332
design creation

definition 332
Design View

definition 333
DesignWare cores

definition 333
DesignWare Library

definition 333

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_i2c Databook

336 Synopsys, Inc.SolvNet
DesignWare.com

2.02a
July 2018

DesignWare Synthesizable Components
definition 333

Disabling DW_apb_i2c
version 1.06a 50

DMA Controller
and DW_apb_i2c 80

dual role device
definition 333

DW_apb_i2c
block diagram of 21
functional behavior 25
functional overview 21
operation modes 43
overview of 26
protocols 31
testbench

overview of tests 317
Dynamic update of IC_TAR

initial configuration of master mode 47
or 10-bit addressing for master mode 49

E
endian

definition 333
Environment, licenses 23
F
Full-Functional Mode

definition 333
Functional behavior, of DW_apb_i2c 25
Functional overview, of DW_apb_i2c 21
G
GPIO

definition 333
GTECH

definition 333
H
hard IP

definition 333
HDL

definition 333
I
IC_CLK frequency, configuration of 66
IIP

definition 333
implementation view

definition 333

instantiate
definition 333

interface
definition 333

Interfaces
DMA Controller 80

IP
definition 333

L
Licenses 23
little-endian

definition 333
M
MacroCell

definition 333
master

definition 333
Master arbitration 41
Master mode 47
model

definition 333
monitor

definition 333
N
non-blocking command

definition 334
O
Operation modes 43
P
peripheral

definition 334
Protocols, of I2C 31
R
RTL

definition 334
S
SDRAM

definition 334
SDRAM controller

definition 334
Simple double register synchronizer 327
slave

definition 334

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb_i2c Databook Index

Synopsys, Inc. 3372.02a
July 2018

SolvNet
DesignWare.com

Slave mode 44
SoC

definition 334
SoC Platform

AHB contained in 19
APB, contained in 19
defined 19

soft IP
definition 334

static controller
definition 334

subsystem
definition 334

Synchronizer
simple double register 327

synthesis intent
definition 334

synthesizable IP
definition 334

T
technology-independent

definition 334
Testsuite Regression Environment (TRE)

definition 334
TRE

definition 334
V
Vera, overview of tests 317
Verification

and Vera tests 317
VIP

definition 334
W
workspace

definition 334
wrap

definition 334
wrapper

definition 334
Z
zero-cycle command

definition 334

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_i2c Databook

338 Synopsys, Inc.SolvNet
DesignWare.com

2.02a
July 2018

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_apb_i2c Block Diagram

	1.3 Features
	1.3.1 I2C Features
	1.3.2 DesignWare APB Slave Interface

	1.4 Standards Compliance
	1.5 Verification Environment Overview
	1.6 Licenses
	1.7 Where To Go From Here

	2 Functional Description
	2.1 Overview
	2.2 I2C Terminology
	2.2.1 I2C Bus Terms
	2.2.2 Bus Transfer Terms

	2.3 I2C Behavior
	2.3.1 START and STOP Generation
	2.3.2 Combined Formats

	2.4 I2C Protocols
	2.4.1 START and STOP Conditions
	2.4.2 Addressing Slave Protocol
	2.4.2.1 7-bit Address Format
	2.4.2.2 10-bit Address Format

	2.4.3 Transmitting and Receiving Protocol
	2.4.3.1 Master-Transmitter and Slave-Receiver
	2.4.3.2 Master-Receiver and Slave-Transmitter

	2.4.4 START BYTE Transfer Protocol

	2.5 Tx FIFO Management and START, STOP and RESTART Generation
	2.5.1 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 0
	2.5.2 Tx FIFO Management When IC_EMPTYFIFO_HOLD_MASTER_EN = 1

	2.6 Multiple Master Arbitration
	2.7 Clock Synchronization
	2.8 Operation Modes
	2.8.1 Slave Mode Operation
	2.8.1.1 Initial Configuration
	2.8.1.2 Slave-Transmitter Operation for a Single Byte
	2.8.1.3 Slave-Receiver Operation for a Single Byte
	2.8.1.4 Slave-Transfer Operation For Bulk Transfers

	2.8.2 Master Mode Operation
	2.8.2.1 Initial Configuration
	2.8.2.2 Dynamic IC_TAR or IC_10BITADDR_MASTER Update
	2.8.2.3 Master Transmit and Master Receive

	2.8.3 Disabling DW_apb_i2c
	2.8.3.1 Procedure

	2.8.4 Aborting I2C Transfers
	2.8.4.1 Procedure

	2.9 Spike Suppression
	2.10 Fast Mode Plus Operation
	2.11 Bus Clear Feature
	2.11.1 SDA Line Stuck at LOW Recovery
	2.11.2 SCL Line is Stuck at LOW

	2.12 Device ID
	2.13 Ultra-Fast Speed Mode
	2.14 SMBus/PMBus
	2.14.1 tTimeout,MIN Parameter
	2.14.2 Master Device Clock Extension
	2.14.3 Slave Device Clock Extension
	2.14.4 SMBDAT Low Timeout
	2.14.5 Bus Protocols
	2.14.6 SMBUS Address Resolution Protocol
	2.14.6.1 Procedure to Perform ARP in Master Mode
	2.14.6.2 Procedure to Perform ARP in Slave Mode

	2.14.7 SMBUS Additional Slave Address
	2.14.8 SMBUS Optional Signals
	2.14.8.1 SMBus Suspend Signal
	2.14.8.2 SMBus Alert Signal

	2.15 IC_CLK Frequency Configuration
	2.15.1 Minimum High and Low Counts in SS, FS, FM+ and high speed Modes With IC_CLK_FREQ_OPTIMIZATION = 0.
	2.15.2 Minimum High and Low Counts in SS, FS, FM+ and high speed Modes With IC_CLK_FREQ_OPTIMIZATION = 1
	2.15.3 Minimum High and Low counts in Ultra-Fast mode (IC_ULTRA_FAST_MODE = 1)
	2.15.4 Minimum IC_CLK Frequency
	2.15.4.1 Standard Mode (SM), Fast Mode (FM), and Fast Mode Plus (FM+) with IC_CLK_FREQ_OPTIMIZATION = 0
	2.15.4.2 High-Speed (HS) Mode With IC_CLK_FREQ_OPTIMIZATION = 0
	2.15.4.3 SM, FM, FM+ and high speed Modes With IC_CLK_FREQ_OPTIMIZATION = 1
	2.15.4.4 ULTRA-FAST Mode
	2.15.4.5 Calculating High and Low Counts with IC_CLK_FREQ_OPTIMIZATION = 0
	2.15.4.6 Calculating High and Low counts with IC_CLK_FREQ_OPTIMIZATION = 1

	2.16 SDA Hold Time
	2.16.1 SDA Hold Timings in Receiver
	2.16.2 SDA Hold Timings in Transmitter

	2.17 DMA Controller Interface
	2.17.1 Enabling the DMA Controller Interface
	2.17.2 Overview of Operation
	2.17.3 Transmit Watermark Level and Transmit FIFO Underflow
	2.17.4 Choosing the Transmit Watermark Level
	2.17.4.1 Case 1: IC_DMA_TDLR = 2
	2.17.4.2 Case 2: IC_DMA_TDLR = 6

	2.17.5 Selecting DEST_MSIZE and Transmit FIFO Overflow
	2.17.6 Receive Watermark Level and Receive FIFO Overflow
	2.17.7 Choosing the Receive Watermark level
	2.17.8 Selecting SRC_MSIZE and Receive FIFO Underflow
	2.17.9 Handshaking Interface Operation
	2.17.9.1 dma_tx_req, dma_rx_req
	2.17.9.2 dma_tx_single, dma_rx_single

	2.18 APB Interface
	2.18.1 APB 3.0 Support
	2.18.2 APB 4.0 Support

	2.19 I/O Connections
	2.20 DW_apb_i2c Registers
	2.20.1 Registers and Field Descriptions
	2.20.2 Operation of Interrupt Registers

	2.21 UDID Feature

	3 Parameter Descriptions
	3.1 Top Level Parameters
	3.2 I2C Version 3.0 Features Parameters
	3.3 SMBus Features Parameters
	3.4 I2C Version 6.0 Features Parameters

	4 Signal Descriptions
	4.1 Interrupts Signals
	4.2 I2C Interface (Master/Slave) Signals
	4.3 APB Slave Interface Signals
	4.4 DMA Interface Signals
	4.5 SMBus Interface Signals
	4.6 I2C Debug Signals

	5 Register Descriptions
	5.1 DW_apb_i2c_mem_map/DW_apb_i2c_addr_block1 Registers
	5.1.1 IC_CON
	5.1.2 IC_TAR
	5.1.3 IC_SAR
	5.1.4 IC_HS_MADDR
	5.1.5 IC_DATA_CMD
	5.1.6 IC_SS_SCL_HCNT
	5.1.7 IC_UFM_SCL_HCNT
	5.1.8 IC_SS_SCL_LCNT
	5.1.9 IC_UFM_SCL_LCNT
	5.1.10 IC_FS_SCL_HCNT
	5.1.11 IC_UFM_TBUF_CNT
	5.1.12 IC_FS_SCL_LCNT
	5.1.13 IC_HS_SCL_HCNT
	5.1.14 IC_HS_SCL_LCNT
	5.1.15 IC_INTR_STAT
	5.1.16 IC_INTR_MASK
	5.1.17 IC_RAW_INTR_STAT
	5.1.18 IC_RX_TL
	5.1.19 IC_TX_TL
	5.1.20 IC_CLR_INTR
	5.1.21 IC_CLR_RX_UNDER
	5.1.22 IC_CLR_RX_OVER
	5.1.23 IC_CLR_TX_OVER
	5.1.24 IC_CLR_RD_REQ
	5.1.25 IC_CLR_TX_ABRT
	5.1.26 IC_CLR_RX_DONE
	5.1.27 IC_CLR_ACTIVITY
	5.1.28 IC_CLR_STOP_DET
	5.1.29 IC_CLR_START_DET
	5.1.30 IC_CLR_GEN_CALL
	5.1.31 IC_ENABLE
	5.1.32 IC_STATUS
	5.1.33 IC_TXFLR
	5.1.34 IC_RXFLR
	5.1.35 IC_SDA_HOLD
	5.1.36 IC_TX_ABRT_SOURCE
	5.1.37 IC_SLV_DATA_NACK_ONLY
	5.1.38 IC_DMA_CR
	5.1.39 IC_DMA_TDLR
	5.1.40 IC_DMA_RDLR
	5.1.41 IC_SDA_SETUP
	5.1.42 IC_ACK_GENERAL_CALL
	5.1.43 IC_ENABLE_STATUS
	5.1.44 IC_FS_SPKLEN
	5.1.45 IC_UFM_SPKLEN
	5.1.46 IC_HS_SPKLEN
	5.1.47 IC_CLR_RESTART_DET
	5.1.48 IC_SCL_STUCK_AT_LOW_TIMEOUT
	5.1.49 IC_SDA_STUCK_AT_LOW_TIMEOUT
	5.1.50 IC_CLR_SCL_STUCK_DET
	5.1.51 IC_DEVICE_ID
	5.1.52 IC_SMBUS_CLK_LOW_SEXT
	5.1.53 IC_SMBUS_CLK_LOW_MEXT
	5.1.54 IC_SMBUS_THIGH_MAX_IDLE_COUNT
	5.1.55 IC_SMBUS_INTR_STAT
	5.1.56 IC_SMBUS_INTR_MASK
	5.1.57 IC_SMBUS_RAW_INTR_STAT
	5.1.58 IC_CLR_SMBUS_INTR
	5.1.59 IC_OPTIONAL_SAR
	5.1.60 IC_SMBUS_UDID_LSB
	5.1.61 IC_SMBUS_UDID_WORD0
	5.1.62 IC_SMBUS_UDID_WORD1
	5.1.63 IC_SMBUS_UDID_WORD2
	5.1.64 IC_SMBUS_UDID_WORD3
	5.1.65 REG_TIMEOUT_RST
	5.1.66 IC_COMP_PARAM_1
	5.1.67 IC_COMP_VERSION
	5.1.68 IC_COMP_TYPE

	6 Programming the DW_apb_i2c
	6.1 Software Registers
	6.2 Software Drivers
	6.3 Programming Example
	6.4 Programming Flow for SCL and SDA Bus Recovery
	6.5 Programming Flow for Reading the Device ID
	6.6 Programming Flow for SMBUS Timeout in Master Mode
	6.7 Programming Flow for SMBUS Timeout in Slave Mode
	6.8 ARP Master Programming Flow
	6.9 ARP Slave Programming Flow
	6.10 SMBus SUSPEND Programming Flow in Host Mode
	6.11 SMBus SUSPEND Programming Flow in Device Mode
	6.12 SMBus ALERT Programming Flow in Host Mode
	6.13 SMBus ALERT Programming Flow in Device Mode
	6.14 Programming Flow Of DW_apb_i2c in Ultra-Fast Mode
	6.14.1 DW_apb_i2c Master Mode
	6.14.2 DW_apb_i2c Slave Mode

	7 Verification
	7.1 Vera Testbench Environment
	7.1.1 Overview of Vera Tests
	7.1.2 APB Slave Interface
	7.1.3 DW_apb_i2c Master Operation
	7.1.4 DW_apb_i2c Slave Operation
	7.1.5 DW_apb_i2c Interrupts
	7.1.6 DMA Handshaking Interface
	7.1.7 DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update
	7.1.8 Generate NACK as a Slave-Receiver
	7.1.9 SCL Held Low for Duration Specified in IC_SDA_SETUP
	7.1.10 Generate ACK/NACK for General Call

	8 Integration Considerations
	8.1 Accessing Top-level Constraints
	8.2 Performance
	8.2.1 Power Consumption, Frequency, and Area Results

	A Synchronizer Methods
	A.1 Synchronizers Used in DW_apb_i2c
	A.2 Synchronizer 1: Simple Double Register Synchronizer
	A.3 Synchronizer 2: Simple Double Register Synchronizer with Configurable Polarity Reset

	B Internal Parameter Descriptions
	C Glossary
	Index

