
 3.02a
July 2018

DesignWare DW_apb Databook

DW_apb – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://www.synopsys.com/company/legal/trademarks-brands.html
https://solvnet.synopsys.com
www.designware.com
www.synopsys.com

Synopsys, Inc. 3

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

Contents

Revision History . 5

Preface . 7
Organization . 7
Related Documentation . 7
Web Resources . 8
Customer Support . 8
Product Code . 9

Chapter 1
Product Overview .11

1.1 DesignWare System Overview .11
1.1.1 DesignWare System Block Diagram .11

1.2 General Product Description .13
1.3 Features .13

1.3.1 Notes and Restrictions .14
1.3.2 Features Not Supported .14

1.4 Standards Compliance .14
1.5 Verification Environment Overview .14
1.6 Licenses .14
1.7 Where To Go From Here .15

Chapter 2
Functional Description .17

2.1 Overview .17
2.1.1 Block Diagram .17

2.2 Transfers .18
2.2.1 Burst Transfers .19

2.3 PCLK versus HCLK .19
2.4 Optional External Decoder .19
2.5 Endianness .20
2.6 APB Slave Interface .20
2.7 Memory Map .21
2.8 Backward Compatibility with AMBA 2 APB and AMBA 3 APB .21
2.9 Timing Diagrams .21
2.10 Back-to-Back Transfer Support on an APB Interface .33
2.11 APB4 Protocol Feature .35

2.11.1 Write Strobing .35
2.11.2 Protection .35

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 4SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Contents

Chapter 3
Parameter Descriptions .37

3.1 Top Level Parameters .38
3.2 Address Map Parameters .40

Chapter 4
Signal Descriptions .41

4.1 Clocks and Resets Signals .43
4.2 AHB Slave Interface Signals .44
4.3 APB Interface Signals .47

Chapter 5
Verification .51

5.1 Overview of Vera Tests .51
5.1.1 PCLK equals HCLK .51
5.1.2 PCLK Equals HCLK Divided by 2 or more .52
5.1.3 Ignoring IDLE and BUSY transfers .53

5.2 Overview of DW_apb Testbench .53
5.3 Running Simulations from the Command Line .54

5.3.1 Command Line Output Files .55

Chapter 6
Integration Considerations .57

6.1 Performance .58
6.1.1 Power Consumption, Frequency, and Area Results .58

6.2 Accessing Top-level Constraints .58
6.3 Reading and Writing from an APB Slave .58

6.3.1 Reading From Unused Locations .59
6.3.2 32-bit Bus System .60
6.3.3 16-bit Bus System .61
6.3.4 8-bit Bus System .61

6.4 Write Timing Operation .61
6.5 Read Timing Operation .63
6.6 Coherency .63

6.6.1 Writing Coherently .64
6.6.2 Reading Coherently .70

Appendix A
DesignWare Constants .75

Chapter B
Internal Parameter Descriptions .77

Appendix C
Glossary .79

Index .83

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

Revision History

This section tracks the significant documentation changes that occur from release-to-release and during a
release from version 1.02d onward.

Version Date Description

3.02a July 2018 Updated:
■ Version changed for 2018.07a release

■ “Performance” on page 110

■ “Parameter Descriptions” on page 37, “Signal Descriptions” on page 41, and
“Internal Parameter Descriptions” on page 77 are auto-extracted with change
bars from the RTL

Removed:

■ Chapter 2, “Building and Verifying a Component or Subsystem” and added the
contents in the newly created user guide.

3.01a October 2016 ■ Version changed for 2016.10a release

■ Added “Back-to-Back Transfer Support on an APB Interface” on page 33

■ “Parameter Descriptions” on page 37 auto-extracted from the RTL

■ Removed the “Running Leda on Generated Code with coreConsultant” section,
and reference to Leda directory in Table 2-1

■ Removed the “Running Leda on Generated Code with coreAssembler” section,
and reference to Leda directory in Table 2-4

■ Recreated Figure 2-20 on page 35

■ Added “Running VCS XPROP Analyzer”

■ Moved “Internal Parameter Descriptions” to Appendix

3.00a June 2015 ■ Added “Running SpyGlass® Lint and SpyGlass® CDC”

■ Added “Running SpyGlass on Generated Code with coreAssembler”

■ “Signal Descriptions” on page 41 auto-extracted from the RTL

■ Added “Internal Parameter Descriptions” on page 77

■ Added “APB4 Protocol Feature” on page 35

■ Updated area and power numbers in “Performance” on page 58

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Revision History DesignWare DW_apb Databook

2.03a June 2014 ■ Version change for 2014.06a release

■ Updated “Performance” section in the “Integration Considerations” chapter

■ Corrected Default Input/Output Delays in Signals chapter

2.02c May 2013 ■ Version change for 2013.05a release

■ Updated the template

2.02b Oct 2012 Added the product code on the cover and in Table 1-1

2.02b Oct 2011 Version change for 2011.10a release

2.02a Jun 2011 Updated:

■ Figure 3-14 to reflect current hrdata functionality

■ System diagram in Figure 1-1

■ “Related Documents” section in Preface.

2.01a May 2011 Corrected Figures 3-7 and 3-9.

2.01a Apr 2011 Version change for 2011.03a release.

2.00a Dec 2010 Version change for 2010.12a release.

1.04a Sep 2010 ■ Corrected names of include files and vcs command used for simulation

■ Included additional information about AMBA 3 APB protocol

1.03a Dec 2009 Updated databook to new template for consistency with other IIP/VIP/PHY
databooks

1.03a Jul 2009 Enhanced with PRDATA sample timing

1.03a May 2009 Removed references to QuickStarts, as they are no longer supported

1.03a Oct 2008 Version change for 2008.10a release

1.02e Jul 2008 Added “Burst Transfers” subsection

1.02e Jun 2008 Version change for 2008.06a release

1.02d Dec 2007 ■ Updated for revised installation guide and consolidated release notes titles

■ Changed references of “Designware AMBA” to simply “DesignWare”

1.02d Jun 2007 Description added under Figure 11

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

Preface

This databook provides information about the DW_apb, which is an AMBA APB Protocol Specification
v2.0-compliant Advanced Peripheral Bus component. The DW_apb is a part of the DesignWare
Synthesizable Components for AMBA APB Protocol Specification v2.0. The databook also supplies
descriptions of tests used to verify the DW_apb component, synthesis information, and user options unique
to the DW_apb.

This databook is intended for designers who plan to use the DW_apb with Synopsys tools and supported
third-party simulators. Readers are assumed to be familiar with the AMBA Specification, Revision 2.0 from
Arm®.

Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Functional Description” describes the functional operation of the DW_apb.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_apb.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_apb signals.

■ Chapter 5, “Verification” provides information on verifying the configured DW_apb.

■ Chapter 6, “Integration Considerations” includes information you need to integrate the configured
DW_apb into your design.

■ Appendix A, “DesignWare Constants” includes the contents of the DesignWare Synthesizable
Components bus constants file.

■ Appendix B, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals chapter.

■ Appendix C, “Glossary” provides a glossary of general terms.

Related Documentation
■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using

DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

https://solvnet.synopsys.com
http://www.arm.com/products/solutions/AMBA_Spec.html
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title

8 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Preface DesignWare DW_apb Databook

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA
APB Protocol Specification v2.0, see the Guide to Documentation for DesignWare Synthesizable Components for
AMBA 2 and AMBA 3 AXI.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the requested
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained, your
issue is automatically routed to a support engineer who is experienced with your product. The
Sub Product entry is critical for correct routing.

Go to http://solvnet.synopsys.com/EnterACall and click Open A Support Case to enter a call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: <product version number>
■ Problem Type:
■ Priority:
■ Title: DW_apb
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

https://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
http://solvnet.synopsys.com/EnterACall
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Preface

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified earlier) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
https://www.synopsys.com/support/global-support-centers.html

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare AMBA Fabric.

Table 1-1 DesignWare AMBA Fabric – Product Code: 3768-0

Component Name Description

DW_ahb High performance, low latency interconnect fabric for AMBA 2 AHB

DW_ahb_eh2h High performance, high bandwidth AMBA 2 AHB to AHB bridge

DW_ahb_h2h Area efficient, low bandwidth AMBA 2 AHB to AHB Bridge

DW_ahb_icm Configurable multi-layer interconnection matrix

DW_ahb_ictl Configurable vectored interrupt controllers for AHB bus systems

DW_apb High performance, low latency interconnect fabric & bridge for AMBA APB4 for direct
connect to AMBA 2 AHB fabric

DW_apb_ictl Configurable vectored interrupt controllers for APB bus systems

DW_axi High performance, low latency interconnect fabric for AMBA 3 AXI

DW_axi_a2x Configurable bridge between AXI and AHB components or AXI and AXI components.

DW_axi_gm Simplify the connection of third party/custom master controllers to any AMBA 3 AXI fabric

DW_axi_gs Simplify the connection of third party/custom slave controllers to any AMBA 3 AXI fabric

DW_axi_hmx Configurable high performance interface from and AHB master to an AXI slave

DW_axi_rs Configurable standalone pipelining stage for AMBA 3 AXI subsystems

DW_axi_x2h Bridge from AMBA 3 AXI to AMBA 2.0 AHB, enabling easy integration of legacy AHB
designs with newer AXI systems

DW_axi_x2p High performance, low latency interconnect fabric and bridge for AMBA 2 & 3 APB for direct
connect to AMBA 3 AXI fabric

mailto:support_center@synopsys.com
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Preface DesignWare DW_apb Databook

DW_axi_x2x Flexible bridge between multiple AMBA 3 AXI components or buses

Component Name Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

1
Product Overview

This chapter describes the DesignWare APB, which provides a bridge between the AHB bus and a set of
APB peripherals.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing components for the following:

■ AMBA version 2.0-compliant AHB (Advanced High-performance Bus)

■ AMBA APB Protocol Specification v2.0 (Advanced Peripheral Bus)

■ AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)

1.1.1 DesignWare System Block Diagram

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and an APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Product Overview DesignWare DW_apb Databook

Figure 1-1 Example of DW_apb in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/DW_apb_i2s_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/DW_axi_rs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Product Overview

You can connect, configure, synthesize, and verify the DW_apb within a DesignWare subsystem using
coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_apb component, you
might prefer to use coreConsultant, documentation for which is available in the coreConsultant User Guide.

1.2 General Product Description
The DW_apb is a parameterizable, synthesizable, and programmable component that implements the APB
functionality of the AMBA APB Protocol Specification v2.0 from Arm®.

The DW_apb provides a bridge between the AHB bus and a set of APB peripherals. All communication
between masters on the AHB and slaves on the APB pass through the DW_apb. From the point of view of
the AHB system, the DW_apb appears as a slave, as illustrated in Figure 1-2.

Figure 1-2 DW_apb in an Example System

1.3 Features
The DW_apb includes the following features:

■ Compliance with the AMBA Specification, Revision 2.0 from Arm®

■ Compliance with the AMBA 3 APB Specification, Revision 1.0 from Arm®

■ Compliance with the AMBA APB Protocol Specification, v2.0 from Arm®

Support for the following:

■ Up to 16 APB slaves

■ Big- and little-endian AHB systems

■ Little-endian APB slaves

■ 32, 64, 128, and 256-bit AHB data buses

■ 8, 16, and 32-bit APB data buses

■ Single and burst AHB transfers

High Bandwidth
External Memory

Interface

High Performance
Processor

High Bandwidth
On Chip RAM

Interrupt GPIO

AHB

DMA
M

S

S

M

S = AHB slave
M = AHB master

DW_apb Bus IP
(AHB slave 3)

UART Timer

S

s s

s

Controller

s

s = DW_apb slave

https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title

14 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Product Overview DesignWare DW_apb Databook

■ Synchronous hclk/pclk; hclk is an integer multiple of pclk

■ Optional external decoder

1.3.1 Notes and Restrictions

■ Slave numbers are configured consecutively—0, 1, 2, 3; not 0, 3, 5, 9.

■ All slaves must have their address spaces aligned to a 1 KB boundary.

■ Minimum address space allocated to a configured slave is 1 KB.

■ There is support for only little-endian APB slaves.

■ The APB data bus width must be less than or equal to the AHB data bus width.

■ The APB clock must be equal to, or a submultiple of and synchronous to, the AHB clock.

1.3.2 Features Not Supported

The following features are not supported in this release:

■ Independent AHB clock (hclk) and APB clock (pclk) (APB bus must be synchronous with AHB bus)

■ No support for the following AHB features when an AHB slave:

❑ SPLIT transfers

❑ RETRY responses

■ Big-endian APB peripherals

Source code for this component is available on a per-project basis as a DesignWare Core. Contact your local
sales office for the details.

1.4 Standards Compliance
The DW_apb component conforms to the AMBA Specification, Revision 2.0, AMBA 3 APB Protocol
Specification v1.0, and AMBA APB Protocol Specification v2.0 from Arm®. Readers are assumed to be familiar
with these specifications.

1.5 Verification Environment Overview
The DW_apb includes an extensive verification environment, which sets up and invokes your selected
simulation tool to execute tests that verify the functionality of the configured component. You can then
analyze the results of the simulation.

The “Verification” on page 51 chapter discusses the specific procedures for verifying the DW_apb.

1.6 Licenses
Before you begin using the DW_apb, you must have a valid license. For more information, see “Licenses” in
the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI Installation Guide.

https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Product Overview

1.7 Where To Go From Here
At this point, you may want to get started working with the DW_apb component within a subsystem or by
itself. Synopsys provides several tools within its coreTools suite of products for the purposes of
configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

For more information about configuring, synthesizing, and verifying just your DW_apb component, see
“Overview of the coreConsultant Configuration and Integration Process” in DesignWare Synthesizable
Components for AMBA 2 User Guide.

For more information about implementing your DW_apb component within a DesignWare subsystem
using coreAssembler, see “Overview of the coreAssembler Configuration and Integration Process” in
DesignWare Synthesizable Components for AMBA 2 User Guide.

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf

16 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Product Overview DesignWare DW_apb Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 17

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

2
Functional Description

The DW_apb is a parameterizable, synthesizable, and programmable component that implements the APB
functionality of the AMBA Specification (Rev. 2.0).

2.1 Overview
The DW_apb provides the interconnect fabric to connect an AHB bus to APB peripherals, which are
compliant with AMBA 2 APB Specification, AMBA 3 APB Protocol Specification v1.0, or AMBA APB Protocol
Specification v2.0. The interconnect fabric is referred to as the APB Bridge in the AMBA 2 APB specification
and AMBA APB Protocol Specification v2.0, and simply as APB in the AMBA 3 APB Protocol Specification v1.0.
The bridge is the only master on the APB. From the point of view of the AHB system, the DW_apb appears
as a slave, as illustrated in Figure 2-1.

Figure 2-1 DW_apb in an Example System

2.1.1 Block Diagram

The DW_apb is configurable, synthesizable, and performs the following functions:

■ Monitors and responds to AHB transactions for the DW_apb

■ Generates APB control, address, and write data signals

High Bandwidth
External Memory

Interface

High Performance
Processor

High Bandwidth
On Chip RAM

Interrupt GPIO

AHB

DMA
M

S

S

M

S = AHB slave
M = AHB master

DW_apb Bus IP
(AHB slave 3)

UART Timer

S

s s

s

Controller

s

s = DW_apb slave

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

■ Generates AHB address and APB peripheral select lines

■ Frames APB peripheral control signals

■ Matches wide AHB write data bus to narrow APB write data bus

■ Converts big-endian AHB write data to little-endian APB write data

■ Matches narrow APB read data buses to wide AHB read data bus

■ Converts little-endian APB read data to big-endian AHB read data

A block diagram is illustrated in Figure 2-2.

Figure 2-2 DW_apb Block Diagram

2.2 Transfers
If an AHB master wants to communicate with an APB slave, it does this by selecting the DW_apb and
driving the necessary address, data, and control information to it. The DW_apb presents the data it receives
from the APB peripherals onto the AHB data bus. The DW_apb cannot initiate any transfers on the AHB
itself; it responds to only requests from AHB masters.

A write transfer on the APB has the address, control, and data signals aligned, unlike the AHB where data
and addresses are pipelined. The transfer on the APB takes a minimum of two cycles to complete. A write
transfer from the AHB to the APB does not require the AHB system bus to stall until the transfer on the APB
has completed. This means a write to the APB can be followed directly by a read from an AHB peripheral
(not DW_apb).

While the APB transfer is being aligned, started, and executed, a read from an AHB peripheral can be
performed. If the system were held until the write is completed, then for a system with a very slow APB, it
would be the APB that would control the system performance. If another write occurs to the APB
immediately following the first, the address and control is taken, the instruction is pipelined, and other
transfers are stalled by bringing hready low. When the pipeline is cleared, any additional instructions for
the APB are then processed. However if the first write transfer targets an AMBA APB4 slave, the AHB
cannot issue any new transfer while the first does not complete on DW_apb.

Regarding reads, once a read is started, it is completed and the AHB bus held (by bringing hready low) until
the data is returned from the slave. For more information about read and write transfers to or from the APB,
see “Timing Diagrams” on page 21.

DW_apb

Address
Decoder

Read Data
MUX

AHB
AHB Slave

Slave 0

Slave j

.

.

.

.

.

.

.

Configurable
Slave Signals (up to 16)

j = up to 15

Interface

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

2.2.1 Burst Transfers

The DW_apb supports all AHB burst accesses. Since the DW_apb is a relatively simple slave, it processes all
AHB beats on a cycle-by-cycle basis. Since an AHB master is required to generate an address for every beat
of a burst, the DW_apb can support AHB bursts without internally sampling the hburst signal. The hburst is
necessary for only more advanced slaves that do prefetching, cache line fills, and so on.

The hburst input is still included in the DW_apb for I/O signal compatibility with later releases that may
include functionality that uses the hburst information.

2.3 PCLK versus HCLK
The DW_apb uses only hclk and pclk_en, and it treats a rising edge of hclk and pclk_en = 1 as an indication
of a rising edge on pclk. This means that if pclk_en is active, then the next rising edge on hclk is also a rising
edge of pclk. The design of the DW_apb assumes that the clocks hclk and pclk are synchronous; they do not
have to be the same frequency. The pclk_en should be generated from an hclk register.

When pclk is the same as hclk, pclk_en must be always high. (The data rate on the APB is half that on the
AHB, due to the how the AMBA standard is defined.)

When pclk is not the same as hclk, the data rate on the APB depends on the frequency of the pclk_en signal,
which pulses once every n hclk cycles. When addresses and data come from an AHB master, they are saved.
Only when pclk_en is high are addresses and data presented to the APB slave.

APB peripherals use the pclk signal as the clock, whereas the APB bridge uses hclk and the pclk_en signal in
order to gauge pclk in relation to hclk.

2.4 Optional External Decoder
During configuration of DW_apb, you can choose to have an external decoder. By having the decoder
external to DW_apb, you can connect any decoder with any number of remap options. When this option is
chosen, the internal decoder is not included. There are inputs for the peripheral selects from the external
decoder, which pass though the bridge and drive the peripheral select outputs of DW_apb.

NoteNoteNoteNote If a transfer is initiated with a BUSY or IDLE transfer, DW_apb ignores the transfer.

NoteNoteNoteNote When pclk is not equal to hclk, prdata is sampled on the first positive hclk edge after assertion
of penable, not on the first pclk edge after assertion of penable. For more details, see the text
associated with Figure 2-8 on page 24.

https://solvnet.synopsys.com
www.designware.com

20 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

2.5 Endianness
APB slave subsystems are little-endian; the DW_apb performs the conversion from a big-endian AHB to the
little-endian APB peripheral by swapping the bytes. However, there is no support for converting a
big-endian AHB to a big-endian APB slave peripheral. You have to manually perform this process by
swapping the bytes as illustrated in Figure 2-3.

Figure 2-3 Converting Big-Endian AHB to Big-Endian APB Peripheral

2.6 APB Slave Interface
The DW_apb and DesignWare APB slaves have only one data width for both the read and write APB data
buses (APB_DATA_WIDTH). The DW_apb expects each read data bus to be APB_DATA_WIDTH bits
wide. For non-DesignWare APB slaves, you must pad the upper bits with zeros to make the bus
APB_DATA_WIDTH bits wide. No APB slave can have a read data bus width greater than
APB_DATA_WIDTH.

Figure 2-4 shows the relationship between DesignWare and non-DesignWare APB slaves.

Figure 2-4 DW_apb and APB Slave Data Widths

Big
Endian

AHB

DW_apb
(Little Endian)

A
B
C
D

31

0

31

0

D
C
B
A

DW_apb_timers
(Little Endian)

D C B A
[31:24] [7:0]

Non-DW APB

(Big Endian)

A B C D
[31:24] [7:0]

Peripheral

hwdata {hwdata[7:0
,
 hwdata[15:
]
 hwdata[23:}

DW_apb DesignWare APB Slave0

pwdata[x–1:0]

prdata_0[x–1:0]

pwdata[x–1:0]

prdata[x–1:0] Register
Block

x = APB_DATA_WIDTH
m <= x

non-DesignWare Slave1

prdata[m–1:0]prdata_1[x–1:0]

‘0’

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 21SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

For more information about the APB data width and how it relates to DesignWare and non-DesignWare
APB slaves, see “Integration Considerations” on page 57.

2.7 Memory Map
Figure 2-5 illustrates a DW_apb memory map for a system with three slaves. Notice that the starting and
ending address space (R0_APB_SA, R0_APB_EA) of the APB corresponds to an address space on the AHB
for all APB slaves.

Figure 2-5 DW_apb Memory Map

2.8 Backward Compatibility with AMBA 2 APB and AMBA 3 APB
The AMBA 3 APB protocol has added the signals ready (pready) and error (pslverr) to the previous
protocol, and the AMBA APB Protocol Specification v2.0 protocol has added the signals write-strobing
(pstrb) and protection (pprot). However, APB slaves attached to the DW_apb can support either the AMBA
APB Protocol Specification v2.0, AMBA 3 APB or AMBA 2 APB protocol. For each APB slave, you can use
the APB_INTERFACE_TYPE_SLAVE_i configuration parameter to specify whether the attached component
supports AMBA APB Protocol Specification v2.0, AMBA 3 APB or AMBA 2 APB. This configuration
determines whether or not the freshly introduced signals are added on the I/O of the DW_apb instance. For
more information on configuration parameters, see “Parameter Descriptions” on page 37.

2.9 Timing Diagrams
For timing, refer to the following diagrams:

■ Read Transfer from AHB to AMBA 2 APB Slave (hclk = pclk): Figure 2-6

■ Read Transfer from AHB to AMBA 3 APB Slave (hclk = pclk): Figure 2-7

■ Read Transfer from AHB to AMBA 2 APB Slave(hclk != pclk): Figure 2-8

■ Read Transfer from AHB to AMBA 3 APB Slave (hclk != pclk): Figure 2-9

■ Write Transfer from AHB to AMBA 2 APB Slave (hclk = pclk): Figure 2-10

R0_APB_EA

R0_APB_SA START_PADDR_0

END_PADDR_0

START_PADDR_1

END_PADDR_1, START_PADDR_2
END_PADDR_2S2

S1

S0

unusedAll APB Slaves

AHB

(AHB Slave)

APB

https://solvnet.synopsys.com
www.designware.com

22 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

■ Write Transfer from AHB to AMBA 3 APB Slave (hclk = pclk):Figure 2-11

■ Write Transfer from AHB to AMBA 2 APB Slave (hclk != pclk): Figure 2-12

■ Write Transfer from AHB to AMBA 3 APB Slave (hclk != pclk): Figure 2-13

■ Read Transfer from AHB to AMBA 3 APB Slave (hclk != pclk) completed with an error: Figure 2-14

■ Write Transfer from AHB to AMBA 3 APB Slave (hclk != pclk) completed with an error: Figure 2-15

■ Back-to-back write transfer (hclk = pclk): Figure 2-16

■ Back-to-back write transfer (hclk != pclk): Figure 2-17

Figure 2-6 DW_apb Read Transfer from AHB to AMBA 2 APB Slave (hclk = pclk)

A

2

D1

A

D1

pclk

hclk

pclk_en

 hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

hrdata[31:0]

 psel

paddr[31:0]

penable

pwrite

pwdata[31:0]

prdata[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

Figure 2-7 DW_apb Read Transfer from from AHB to AMBA 3 APB Slave (hclk = pclk)

A

2

A

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hrdata[31:0]

psel

penable

pwrite

prdata[31:0]

paddr[31:0]

pready

D1

D1

https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

Figure 2-8 DW_apb Read Transfer from AHB to AMBA 2 APB Slave(hclk != pclk)

The DW_apb registers the hready_resp output to prevent long combinatorial paths in the AHB bus system.
The pclk_en signal is used to ensure that the hready_resp output can be registered from the DW_apb,
regardless of the frequency ratio between hclk and pclk.

This implementation results in read data from the APB slave being sampled by the AHB master one hclk
cycle after being driven by the APB slave.

The DW_apb bridge expects the prdata input from the APB slave to be registered. As the prdata input to the
DW_apb bridge is driven from a register, it returns the read data to the AHB master before the end of the
PENABLE phase without negatively affecting the timing closure of the system.

This architecture results in a high performance AMBA-compliant APB bridge.

The AMBA protocol specification gives designers two choices when interfacing APB and AHB; refer to 5-15
of the AMBA Specification, Revision 2.0.

1. Route prdata directly to the AHB (hclk domain).

2. Register prdata at the end of the ENABLE cycle.

Because option 1 does not require a wait state for APB reads, and since prdata is assumed to come from a
register, this is the best option for high performance. This is how the DW_apb bridge is implemented.

A

2

D1

A

D1

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

hrdata[31:0]

psel

paddr[31:0]

penable

pwrite

pwdata[31:0]

prdata[31:0]

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

In systems where pclk is not equal to hclk, this means that prdata is sampled on the first hclk edge after
penable is asserted. This requires that the prdata signals from the APB slaves—attached to the prdata_s(j)
ports—must be constrained to be stable one hclk after transitioning. This is already taken care of in the
packaged synthesis intent of the DW_apb, but is your responsibility to ensure if synthesis is done outside of
coreConsultant or coreAssembler.

Figure 2-9 DW_apb Read Transfer from AHB to AMBA 3 APB Slave (hclk != pclk)

A

2

D1

A

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hrdata[31:0]

psel

penable

pwrite

prdata[31:0]

paddr[31:0]

pready

D1

https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

Figure 2-10 DW_apb Write Transfer from AHB to AMBA 2 APB Slave (hclk = pclk)

A

2

D1

A

D1

pclk

hclk

pclk_en

 hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

hrdata[31:0]

psel

paddr[31:0]

penable

pwrite

pwdata[31:0]

prdata[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

Figure 2-11 DW_apb Write Transfer from AHB to AMBA 3 APB Slave (hclk = pclk)

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

psel

penable

pwrite

pwdata[31:0]

paddr[31:0]

pready

A

2

D1

A

D1

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

Figure 2-12 DW_apb Write Transfer from AHB to AMBA 2 APB Slave (hclk != pclk)

A

2

D1

A

D1

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

hrdata[31:0]

psel

paddr[31:0]

penable

pwrite

pwdata[31:0]

prdata[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

Figure 2-13 DW_apb Write Transfer from AHB to AMBA 3 APB Slave (hclk != pclk)

A

2

A

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

psel

penable

pwrite

pwdata[31:0]

paddr[31:0]

pready

D

D

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

Figure 2-14 DW_apb Read Transfer from AHB to AMBA 3 APB Slave (hclk != pclk) Completed with Error

A

2

A

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hrdata[31:0]

psel

penable

pwrite

prdata[31:0]

paddr[31:0]

pready

D

pslverr

D

hresp[1:0] ERROR

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

Figure 2-15 DW_apb Write Transfer from AHB to AMBA 3 APB Slave (hclk != pclk) Completed with Error

The DW_apb bridge expects the pslverr input from the APB slave to be registered. As the pslverr input to
the DW_apb bridge is driven from a register, it returns hresp to the AHB master before the end of the
PENABLE phase without negatively affecting the timing closure of the system. Thus pslverr is directly

A

2

A

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

psel

penable

pwrite

pwdata[31:0]

paddr[31:0]

pready

pslverr

hresp[1:0] ERROR

D

D

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

routed to the AHB (hclk domain) by mapping to hresp=ERROR (when pready is high) as suggested in the
AMBA 3 APB Specification, Revision 1.0. Note that the paths from pready_sX to hready_resp are always
registered.

Figure 2-16 Back-to-Back Write Transfer (hclk = pclk)

A B C D

2 2 2 2

D1 D2 D3 D4

A B C D

D1 D2 D3 D4

pclk

hclk

pclk_en

 hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

hrdata[31:0]

psel

paddr[31:0]

penable

pwrite

pwdata[31:0]

prdata[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

Figure 2-17 Back-to-Back Write Transfer (hclk != pclk)

2.10 Back-to-Back Transfer Support on an APB Interface
By default, DW_apb waits for an APB transfer to complete to provide the response to an AHB interface and
thereby introduces an additional cycle (wait cycle) on the APB interface. The additional cycle reduces the
performance on the APB interface. DW_apb supports the APB_ENH_THROUGHPUT parameter to enable
back-to-back transfers such that the wait cycle is removed and a back-to-back transfer occurs on an APB
interface.

Figure 2-18 shows the three transfers on an APB when APB_ENH_THROUGHPUT is not set to 1 and clock
ratio of pclk and hclk is 1. DW_apb issues next transfer only after the current transfer is over and there is
always a 2-cycle delay between every APB transfer.

NoteNoteNoteNote Figure 2-16 and Figure 2-17 show the AHB issuing consecutive write transfers on the
DW_apb, which are targeting AMBA 2 APB slaves. If any transfer targets an AMBA 3 APB
slave, the bus brings hready low and the systems stalls until each transfer completes on the
APB bus.

A B C D

2 2 2 2

D1 D2 D3 D4

A B C D

D1 D2 D3 D4

pclk

hclk

pclk_en

hsel

haddr[31:0]

htrans[1:0]

hwrite

hready

hwdata[31:0]

hrdata[31:0]

psel

paddr[31:0]

penable

pwrite

pwdata[31:0]

prdata[31:0]

https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

Figure 2-18 APB 3 Transfer When APB_ENH_THROUGHPUT_EN = 0

When APB_ENH_THROUGHPUT is set to 1, the 2-cycle delay between every APB transfer is removed and
back-to-back transfer occurs on the APB interface that includes the overall bandwidth. Figure 2-19 shows
the APB 3 transfer when APB_ENH_THROUGHPUT is set to 1 and clock ratio of pclk and hclk is 1.

Figure 2-19 APB 3 Transfer When APB_ENH_THROUGHPUT_EN = 1

NoteNoteNoteNote APB transactions are not back-to-back when:

■ APB transfers return with an ERROR response.

■ AHB Master inserts the next transfer after an APB slave receives a READY response for
the current transfer.

ADDR - 1

2 3

ADDR-1

ADDR-2

ADDR-2

3

ADDR-3

hclk

pclk_en

hsel

haddr

htrans

hready_resp

psel

penable

paddr

pready

ADDR - 1

2 3

ADDR-1

ADDR-2

ADDR-2

3

ADDR-3

ADDR-3

hclk

pclk_en

hsel

haddr

htrans

hready_resp

psel

penable

paddr

pready

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Functional Description

2.11 APB4 Protocol Feature

2.11.1 Write Strobing

Write strobing allows AHB master to send data with width lesser than that defined by
APB_DATA_WIDTH. The active data bytes are communicated to the APB peripheral by the pstrb signal.
The mapping between hwdata and pwdata in case of varying haddr, hsize, and APB_DATA_WIDTH is
shown independently in Figure 2-20, for APB2/APB3 and APB4 modes.

Figure 2-20 Mapping Between hwdata and pwdata

2.11.2 Protection

Setting APB_INTERFACE_TYPE_SLAVE_x to APB4 adds a three-bit pprot signal to its interface. Values to
the signal are mapped in the following manner:

7 6 5

4567
7 5 4
7

6
6 5 4

7 6 5 4
4

4567
4567

7 6 5 4
5 4
5 67

4
5
6
7

7 6 5

4567
7 5 4
7

6
6 5 4

7 6 5 4
4

4567
4567

7 6 5

4567
7 5 46

5 4
7 6 5 4

4

4567
4567
4567
4567
4567

7 6 5

4567
7 5 4
7

6
6 5 4

7 6 5 4
4

4567
4567

5

67
5 4

4
7 6

4

67
4
5
6
7

5

32
16
16
8
8
8
8

HWDAT
A[31:0]

HSIZE
(Decoded)

2'b00
2'b00
2'b10
2'b00
2'b01
2'b10
2'b11

HADDR
[1:0]

2'b00
2'b00
2'b10
2'b00
2'b01
2'b10
2'b11

PADDR
[1:0]

PSTRB

N/A

N/A
N/A
N/A
N/A
N/A

N/A

PWDATA

NOTE: APB_SLAVE_INTERFACE_x = APB2/APB3: HSIZE must match `APB_DATA_WIDTH

32
16
16
8
8
8
8

HWDAT
A[31:0]

HSIZE
(Decoded)

2'b00
2'b00
2'b00
2'b00
2'b01
2'b10
2'b11

HADDR
[1:0]

2'b00
2'b00
2'b00
2'b00
2'b00
2'b00
2'b00

PADDR
[1:0]

PSTRB

4'b1111

4'b1100
4'b0001
4'b0010
4'b0100
4'b1000

4'b0011

PWDATA

NOTE: APB_SLAVE_INTERFACE_x = APB4: HSIZE can be less than or equal to ̀ APB_DATA_WIDTH

2'b00
2'b10
2'b00
2'b01
2'b10
2'b11
2'b00
2'b01
2'b10
2'b11

16
16
8
8
8
8
8
8
8
8

2'b00

2'b00
2'b00
2'b10
2'b10
2'b00

2'b10

2'b01

2'b11
2'b10

2'b11

2'b01
2'b10
2'b01
2'b10
1'b1

2'b11

1'b1
1'b1
1'b1

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Functional Description DesignWare DW_apb Databook

■ If EXT_PROT_EN parameter is enabled:

Enabling the parameter includes the hsize signal to the AHB interface, which supplies values to
pprot.

pprot[0] <= hprot[1];

pprot[1] <= 1'b0;

pprot[2] <= hprot[0];

In any case, hprot[3:2] (cacheable, bufferable bits) are unused in design.

■ If EXT_PROT_EN parameter is disabled:

All three bits in pprot signal are assigned a default value (1'b0)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

■ Top Level Parameters on page 38

■ Address Map on page 40

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Parameter Descriptions DesignWare DW_apb Databook

3.1 Top Level Parameters

Table 3-1 Top Level Parameters

Label Description

 Top Level Parameters

AHB System Address Width The address width of the AHB system.
Values:

■ 32 (32)

■ 64 (64)

Default Value: 32
Enabled: Always
Parameter Name: HADDR_WIDTH

APB System Address Width The address width of the APB system.
Values:

■ 32 (32)

■ 64 (64)

Default Value: 32
Enabled: Always
Parameter Name: PADDR_WIDTH

AHB Data Bus Width The data width of the AHB bus.
Values: 32, 64, 128, 256
Default Value: 32
Enabled: Always
Parameter Name: AHB_DATA_WIDTH

AHB Endianness The endianness of the AHB system. The APB subsystem is always little-endian.
Values:

■ Little-Endian (0)

■ Big-Endian (1)

Default Value: Little-Endian
Enabled: Always
Parameter Name: BIG_ENDIAN

APB Data Bus Width The data width of the APB bus.
Values: 8, 16, 32
Default Value: 32
Enabled: Always
Parameter Name: APB_DATA_WIDTH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Parameter Descriptions

Number of APB Slave Ports The number of APB slave ports.
Values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Default Value: 4
Enabled: Always
Parameter Name: NUM_APB_SLAVES

External Decoder? If this parameter is set to True (1), the decoder is external to DW_apb. If False (0),
the decoder is internal to DW_apb. For an internal decoder, the addresses needs to
be supplied by DW_apb during configuration. An external decoder allows users to
connect to any decoder.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: APB_HAS_XDCDR

Include HPROT signal to
interface?

Enabling this parameter includes the HPROT signal to the AHB interface.
Values: 0, 1
Default Value: 0
Enabled: APB_INTERFACE_TYPE_SLAVE(x) configured for APB4 on any Slave
Parameter Name: EXT_PROT_EN

Enable enhanced throughput
on APB bus?

If configured in this mode, DW_apb performs back-to-back transfers on the APB
bus, if AHB master is providing back-to-back transfers. This increases the overall
throughput.
Values:

■ No (0)

■ Yes (1)

Default Value: No
Enabled: Always
Parameter Name: APB_ENH_THROUGHPUT_EN

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Parameter Descriptions DesignWare DW_apb Databook

3.2 Address Map Parameters

Table 3-2 Address Map Parameters

Label Description

 Slave x

Start Address of APB Slave x
(for x = 0; x <=
NUM_APB_SLAVES-1)

The Start Address for APB Slave x. This is an absolute address value.
Values: 0x00000000, ..., 0xfffffc00
Default Value: For N=0: 0x00000400; for N=1: 0x00000800; for N=2: 0x00000c00;
for N=3: 0x00001000; for N=4: 0x00001400; for N=5: 0x00001800; for N=6:
0x00001c0; for N=7: 0x00002000; for N=8: 0x00002400; for N=9: 0x00002800; for
N=10: 0x00002c00; for N=11: 0x00003000; for N=12: 0x00003400; for N=13:
0x00003800; for N=14: 0x00003c00; for N=15: 0x000040000
Enabled: NUM_APB_SLAVES > x && !APB_HAS_XDCDR
Parameter Name: START_PADDR_(x)

End Address of APB Slave x
(for x = 0; x <=
NUM_APB_SLAVES-1)

The End Address for APB Slave x. This is an absolute address value.
Values: 0x000003ff, ..., 0xffffffff
Default Value: For N=0: 0x000007ff; for N=1: 0x00000bff; for N=2: 0x00000fff; for
N=3: 0x000013ff; for N=4: 0x000017ff; for N=5: 0x00001bff; for N=6: 0x00001fff; for
N=7: 0x000023ff; for N=8: 0x000027ff; for N=9: 0x00002bff; for N=10: 0x00002fff;
for N=11: 0x000033ff; for N=12: 0x000037ff; for N=13: 0x00003bff; for N=14:
0x00003fff; for N=15: 0x000043ff
Enabled: NUM_APB_SLAVES > x && !APB_HAS_XDCDR
Parameter Name: END_PADDR_(x)

APB Slave Interface Type
(for x = 0; x <=
NUM_APB_SLAVES-1)

Select between AMBA 4 APB slave (APB4), AMBA 3 APB slave (APB3), and AMBA
2 APB slave (APB2) for Slave x. If AMBA 3 APB Slave is selected, the additional
ports PREADY and PSLVERR are included. If AMBA 4 APB Slave is selected, the
additional ports PSTRB and PPROT are included.
Values:

■ APB2 (0)

■ APB3 (1)

■ APB4 (2)

Default Value: APB2
Enabled: NUM_APB_SLAVES > x && !APB_HAS_XDCDR
Parameter Name: APB_INTERFACE_TYPE_SLAVE_(x)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the controller. For configurable IP titles, your actual
configuration might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
controller. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the I/
O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the inactive state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Signal Descriptions DesignWare DW_apb Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ Clocks and Resets on page 43

■ AHB Slave Interface Signals on page 44

■ APB Interface Signals on page 47

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Signal Descriptions

4.1 Clocks and Resets Signals

hclk -
hresetn -
pclk_en -

Table 4-1 Clocks and Resets Signals

Port Name I/O Description

hclk I AHB Clock Signal. This clock times all bus transfers. All signal
timings are related to the rising edge of hclk.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

hresetn I AHB Reset Signal. This signal is used to reset the system and the
bus on the DesignWare interface. The reset must be synchronously
deasserted after the rising edge of hclk. Since DW_apb does not
contain logic to perform this synchronization, it must be provided
externally. During reset, masters must ensure that address and
control signals are at valid levels, and that htrans indicates the IDLE
state.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

pclk_en I APB Clock Enable Strobe. This signal is of one hclk cycle duration
and identifies the hclk rising edge that corresponds with a pclk rising
edge. Tied high by the user if pclk = hclk.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Signal Descriptions DesignWare DW_apb Databook

4.2 AHB Slave Interface Signals

haddr - - hresp
hready - - hready_resp

hsel - - hrdata
htrans -
hwrite -
hsize -

hburst -
hprot -

hwdata -

Table 4-2 AHB Slave Interface Signals

Port Name I/O Description

haddr[(HADDR_WIDTH-1):0] I Address bus from AHB master.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hready I Ready response for DW_apb.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

hsel I When asserted, the signal indicates that the DW_apb has been
selected. Each AHB slave has its own hsel line. This is driven by the
AHB decoder block.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

htrans[1:0] I Transfer type from selected master.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Signal Descriptions

hwrite I When hwrite is high, there is a write transfer and the master
broadcasts data on the write data bus (hwdata). When hwrite is low,
a read transfer is performed, and the DW_apb must generate the
data on the read data bus (hrdata).
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

hsize[2:0] I Transfer size. Indicates the size of the transfer. This signal is used in
the component only when the component is configured to have an
APB4 enabled interface. In this case, hsize can supply values which
decode to a width less than or equal to APB_DATA_WIDTH.
Otherwise, each transfer requires a hsize of APB_DATA_WIDTH, and
the input value is assumed to decode to the same value. The signal
is left unconnected in this case.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hburst[(HBURST_WIDTH-1):0] I Burst type indication from selected AHB master. This signal is left
unconnected on the interface because it is not required.
Exists: Always
Synchronous To: None
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hprot[3:0] I AHB Protection type signal. HPROT values are mapped to relevant
pprot signal if the input signal is included. Otherwise, default values
(3'b000) are copied to the pprot signals upon access.
Exists: (EXT_PROT_EN==1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-2 AHB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Signal Descriptions DesignWare DW_apb Databook

hresp[1:0] O Transfer Response. This signal is always an OKAY response. When
hready_resp is High, this shows the transfer has completed
successfully(Connected directly to 1 or 0).
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hready_resp O Response from DW_apb. Asserted when current transfer has
completed.
Exists: Always
Synchronous To: hclk
Registered: APB_ENH_THROUGHPUT_EN==0 ? Yes :
(APB_HAS_APB3==0 ? Yes : No)
Power Domain: SINGLE_DOMAIN
Active State: High

hwdata[(AHB_DATA_WIDTH-1):0] I Write data bus from selected AHB master.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hrdata[(AHB_DATA_WIDTH-1):0] O Transfer read data. The read data bus is used to transfer data from
DW_apb to the bus master during read operations.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-2 AHB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Signal Descriptions

4.3 APB Interface Signals

xpsel_sN (for N = 0; N <= NUM_APB_SLAVES-1)
-

- paddr

prdata_sN (for N = 0; N <= NUM_APB_SLAVES-
1) -

- penable

pready_sN (for N = 0; N <= NUM_APB_SLAVES-
1) -

- pwrite

pslverr_sN (for N = 0; N <= NUM_APB_SLAVES-
1) -

- pprot

- pstrb
- psel_sN (for N = 0; N <= NUM_APB_SLAVES-1)
- pwdata

Table 4-3 APB Interface Signals

Port Name I/O Description

paddr[(PADDR_WIDTH-1):0] O APB address bus. Can change on only a pclk_en active edge. It
retains its last value, even though there may be no activity on the
APB bus, until it is overwritten by a new address.
Exists: Always
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

penable O Enable Strobe. Asserted to validate APB transfer. It is always driven
low at the end of each APB access.
Exists: Always
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

pwrite O APB Read/Write Signal. When pwrite is high, there is a write transfer
and data is broadcast on the write data bus (pwdata). When pwrite is
low, a read transfer is performed, and the slave must generate the
data on its read data bus (prdata).
Exists: Always
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Signal Descriptions DesignWare DW_apb Databook

pprot[2:0] O APB4 Protection type signal. HPROT values are mapped to relevant
pprot signal if the input signal is included. Else, default values are
copied to the pprot signals upon access.
Exists: APB_HAS_APB4==1
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

pstrb[((APB_DATA_WIDTH/8)-1):0] O APB4 Write strobe bus. HSIZE of an incoming transaction may now
be lower than APB_DATA_WIDTH. This value along with address
offset is used to generate strobe signals on APB side to selectively
write to certain bytes in the apb data bus.
Exists: APB_HAS_APB4==1
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

psel_sN
(for N = 0; N <= NUM_APB_SLAVES-1)

O Select lines for APB slaves (one per slave)
Exists: N < NUM_APB_SLAVES
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

xpsel_sN
(for N = 0; N <= NUM_APB_SLAVES-1)

I Optional. Slave select line for APB.
Exists: N < NUM_APB_SLAVES
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

prdata_sN[(APB_DATA_WIDTH-1):0]
(for N = 0; N <= NUM_APB_SLAVES-1)

I Read Data from APB slaves. The width of each bus is
APB_DATA_WIDTH.
Exists: N < NUM_APB_SLAVES
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-3 APB Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Signal Descriptions

pready_sN
(for N = 0; N <= NUM_APB_SLAVES-1)

I Indicates whether a request cycle was accepted. Exists only on slave
interfaces configured as APB3 or APB4.
Exists: N < NUM_APB_SLAVES
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pslverr_sN
(for N = 0; N <= NUM_APB_SLAVES-1)

I Flag for the slave error response from APB. Exists only on slave
interfaces configured as APB3 or APB4.
Exists: N < NUM_APB_SLAVES
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pwdata[(APB_DATA_WIDTH-1):0] O APB transfer write data bus shared by all slaves.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-3 APB Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Signal Descriptions DesignWare DW_apb Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

5
Verification

This chapter provides an overview of the testbench available for DW_apb verification. Once you have
configured the DW_apb in coreConsultant and have set up the verification environment, you can run
simulations automatically.

5.1 Overview of Vera Tests
The DW_apb verification environment performs the following set of tests, which are listed in the Tests tab
of the coreConsultant Verification activity. By default, all of the tests are enabled to run. The tests have been
written to verify the functionality and have also achieved maximum RTL code coverage.

5.1.1 PCLK equals HCLK

When the pclk is the same as the hclk, the data rate on the APB is half that on the AHB. Internal latency is
not an issue in this mode—when data is ready on the hclk domain, it can be transferred directly to the pclk
domain. To test this functionality, the following tests are performed:

■ Initiate a single write transfer to the APB slave

■ Initiate two consecutive write transfers to different address locations within the APB slave

■ Initiate two write transfers to different address locations within the APB slave, separated by one hclk
cycle

■ Initiate two write transfers to different address locations within the APB slave, separated by two hclk
cycles

■ Initiate two write transfers to different address locations within the APB slave, separated by three or
more hclk cycles

■ Initiate multiple write transfers to different address locations within the APB slave, separated by a
random number of hclk cycles

NoteNoteNoteNote The DW_apb verification testbench is built with DesignWare Verification IP (VIP). Make sure
you have the supported version of the VIP components for this release, otherwise, you may
experience some tool compatibility problems. For more information about supported tools in
this release, refer to the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI
Installation Guide.

https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Verification DesignWare DW_apb Databook

■ Initiate a single read transfer to the APB slave

■ Initiate two consecutive read transfers to the APB slave

■ Initiate two read transfers to the APB slave, separated by one hclk cycle

■ Initiate two read transfers to the APB slave, separated by two or more hclk cycles

■ Initiate a write transfer, followed directly by a read transfer to the same address location

■ Initiate a write transfer, followed by one hclk cycle later with a read transfer to the same address
location

■ Initiate a write transfer, followed by two hclk cycles later with a read transfer to the same address
location

■ Initiate a write transfer, followed by three or more hclk cycles later with a read transfer to the same
address location

■ Initiate a write transfer to the start address, to the end address of the slave address. Then Initiate a
write transfer to addresses outside the slave address range, but within the DW_apb address range

■ Initiate a read transfer to the APB slave, followed directly by a read to another AHB slave

5.1.2 PCLK Equals HCLK Divided by 2 or more

When pclk is not the same as hclk, the data saved on the hclk side needs to be held and the master held off
from starting new transfers until the rising edge of pclk occurs. This way the saved data can be off-loaded
and the new data stored. The data are sometimes address values; at other times they are write data values.

The following checks are needed when the first transfer occurs in any phase of the pclk domain. The transfer
occurs when pclk_en is low and high. When pclk_en is high, the state machine moves on; when it is low, it
waits for the rising edge of pclk.

Some of the states of the state machine are dependent on pclk_en; others are directly controlled by only hclk.

■ Initiate a single write transfer to the APB slave

■ Initiate two consecutive write transfers to different address locations within the APB slave

■ Initiate two write transfers to different address locations within the APB slave, separated by one hclk
cycle

■ Initiate two write transfers to different address locations within the APB slave, separated by two hclk
cycles

■ Initiate two write transfers to different address locations within the APB slave, separated by three or
more hclk cycles

■ Initiate multiple write transfers to different address locations within the APB slave, separated by a
random number of hclk cycles

■ Initiate a single read transfer to the APB slave

■ Initiate two consecutive read transfers to the APB slave

■ Initiate two read transfers to the APB slave, separated by one hclk cycle

■ Initiate two read transfers to the APB slave, separated by two or more hclk cycles

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Verification

■ Initiate a write transfer, followed directly by a read transfer to the same address location

■ Initiate a write transfer, followed one hclk cycle later with a read transfer to the same address location

■ Initiate a write transfer, followed two hclk cycles later with a read transfer to the same address
location

■ Initiate a write transfer, followed three or more hclk cycles later with a read transfer to the same
address location

■ Initiate a write transfer to the start address, to the end address of the slave address. Initiate a write
transfer to addresses outside the slave address range, but within the DW_apb address range

■ Initiate a read transfer to the APB slave, followed directly by a read to another AHB slave

5.1.3 Ignoring IDLE and BUSY transfers

Only for nonsequential or sequential transfer will there be any resultant APB activity. If a transfer is
initiated with a busy or an idle transfer, DW_apb ignores this transfer.

■ Initiate a single write that is IDLE on htrans

■ Initiate a single read that is IDLE on htrans

■ Initiate a single write that is BUSY on htrans

■ Initiate a single read that is BUSY on htrans

■ Initiate back-to-back writes, the first being a NONSEQ, followed directly by an IDLE

■ Initiate back-to-back writes, the first being a NONSEQ, followed directly by a BUSY

■ Initiate back-to-back reads, the first being a NONSEQ, followed directly by an IDLE

■ Initiate back-to-back reads, the first being a NONSEQ, followed directly by a BUSY

■ Initiate back-to-back read, followed by a write which is an IDLE

■ Initiate back-to-back read, followed by a write which is a BUSY

■ Initiate back-to-back write followed by read a which is an IDLE

■ Initiate back-to-back write followed by read which is an IDLE

5.2 Overview of DW_apb Testbench
As illustrated in Figure 5-1, the DW_apb testbench is a Verilog testbench that includes an instantiation of the
design under test (DUT) and a Vera shell, which consists of the following components:

■ An AHB master bus functional model (BFM)

■ One AHB slave BFM – the DW_apb

■ An AHB monitor

■ APB slave BFMs

■ An APB monitor

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Verification DesignWare DW_apb Databook

■ Test stimuli

■ Test results

The AHB monitor monitors activity from the AHB master to the AHB slave; the APB monitor oversees
activity to and from the APB slave BFMs. The testbench verifies all possible user configurations specified in
the Specify Configuration task of coreConsultant. The testbench also tests that the component is
AMBA-compliant and self-checking, displaying pass or fail results.

Figure 5-1 DW_apb Testbench

5.3 Running Simulations from the Command Line
To run simulations from a UNIX command line, a simulation model must be generated through the
coreConsultant GUI. In addition, all tests and test options must be configured in the Verification tab of the
GUI. Then, simulations can be run as follows:

■ To run all tests selected in the GUI, change your working directory to DW_apb/sim and then execute
the following command:

runtest.sh

test_DW_apb.v

AHB Bus Model

VERA Tests
(test stimuli and results)

AHB Master
BFM

AHB
Monitor

AHB Slave1
BFM

j = Number of APB Slaves (up to 16)

= VERA shell

DUT
DW_apb.v
(AHB Slave2)

APB Slave1
BFM

APB Slavej
BFM

APB
Monitor

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Verification

■ To run single tests, change the working directory to DW_apb/sim and run the following:

runtest --simulator selected_simulator --test test_name

The selected_simulator is the one chosen in the GUI (does not work if not configured in the GUI). The
test_name is the name of the selected test and the sub directory where the test is located. For example, to run
the simple register write/read test using VCS, run the following:

runtest --simulator vcs --test test_reg_wr_rd

The results of running tests through the command line are available only in the test.log file in each test
directory.

5.3.1 Command Line Output Files

The runtest.log file in workspace/sim includes all of the results of the simulation and presents them in the
following categories:

■ Summary of All Results – Provides the final result either PASSED or FAILED

■ Verification Activity Log – Shows a log of the simulation activity

■ Testbench Preparation – Provides a list of runtest options that were executed during the simulation

■ Simulation Execution – Provides the output of the simulator; this information is also saved to test.log
in workspace/sim/test_apb

■ Simulation Results – Includes the time the simulation completed, the path to test.log, how many
errors were encountered, and the overall result (PASSED/FAILED)

The workspace/sim/test_apb directory includes the various logs that are included in runtest.log. The
individual log files in workspace/sim/test_apb are:

■ test.log – Output of the testbench; includes specifics about the simulators used, the tests used to
verify the core, and the simulation results.

■ summary – Post-processed file that includes the following sections:

❑ Testbench Preparation

❑ Simulation Execution

❑ Profiling Report

❑ Test Report

❑ Simulation Results

■ test.result – Testbench automatically compares the simulation results with the expected results
during simulation. If the simulation results match expected results, the simulation completes
successfully and the simulation status in the test.result file is PASSED. If the simulation results do not
match expected results, the simulation terminates and the simulation status in the test.result file is
FAILED.

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Verification DesignWare DW_apb Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

6
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment.

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

6.1 Performance
This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_apb.

6.1.1 Power Consumption, Frequency, and Area Results

Table 6-1 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_apb using the industry standard 28nm technology library and how it affects performance.

Table 6-1 Power Consumption, Frequency, and Area Results for DW_apb Using 28nm Technology Library

6.2 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

6.3 Reading and Writing from an APB Slave
When writing to and reading from DesignWare APB slaves, you should consider the following:

■ The size of the APB peripheral should always be set equal to the size of the APB data bus, if possible.

■ The APB bus has no concept of a transfer size or a byte lane, unlike the DW_ahb.

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration hclk: 300 MHz 1832 gates 32 nW 6.008 uW

Minimum Configuration:
NUM_APB_SLAVES=1

hclk:300 MHz 1683 gates 29.4 nW 5.794 uW

Maximum Configuration:
NUM_APB_SLAVES=16
BIG_ENDIAN=1

hclk:300 MHz 2376 gates 38.9 nW 6.239 uW

Maximum Configuration with
APB4 Enabled:
NUM_APB_SLAVES=16
BIG_ENDIAN=1
All Slaves support APB4

hclk:300 MHz 2818 gates 46.2 nW 7.868 uW

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Integration Considerations

■ The APB slave subsystem is little endian; the DW_apb performs the conversion from a big-endian
AHB to the little-endian APB.

■ All APB slave programming registers are aligned on 32-bit boundaries, irrespective of the APB bus
size.

■ The maximum APB_DATA_WIDTH is 32 bits. Registers larger than this occupies more than one
location in the memory map.

■ The DW_apb does not return any SPLIT or RETRY response; it always returns an OKAY response to
the AHB.

■ For all bus widths:

❑ In the case of a read transaction, registers less than the full bus width returns zeros in the unused
upper bits.

❑ Writing to bit locations larger than the register width does not have any effect. Only the pertinent
bits are written to the register.

■ The APB slaves do not need the full 32-bit address bus, paddr. The slaves include the lower bits even
though they are not actually used in a 32- or 16-bit system.

6.3.1 Reading From Unused Locations

Reading from an unused location or unused bits in a particular register always returns zeros. The following
sections show the relationship between the register map and the read/write operations for the three
possible APB_DATA_WIDTH values: 8-, 16-, and 32-bit APB buses.

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

Figure 6-1 Read/Write Locations for Different APB Bus Data Widths

6.3.2 32-bit Bus System

For 32-bit bus systems, all programming registers can be read or written with one operation, as illustrated in
the previous figure.

Because all registers are on 32-bit boundaries, paddr[1:0] is not actually needed in the 32-bit bus case. But
these bits still exist in the configured code for usability purposes.

NoteNoteNoteNote If you write to an address location not on a 32-bit boundary, the bottom bits are ignored/not
used.

31 0715 APB Address
nn00

nn04

nn08
nn09Register 3 [15:8] Register 3 [7:0]

Register 2 [15:8] Register 2 [7:0]

Register 1 [7:0]

Register 3 [31:24]
Register 3 [23:16]

nn05

nn0A
nn0B

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:16] Register 3 [15:0]

Register 2 [15:0]

Register 1 [7:0]

nn0A

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:0]

Register 2 [15:0]

Register 1 [7:0]

32-bit APB

16-bit APB

8-bit APB

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Integration Considerations

6.3.3 16-bit Bus System

For 16-bit bus systems, two scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 16 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 16 bits wide returns zeros in the un-used bits. Writing to bit locations larger than
the register width causes nothing to happen, i.e. only the pertinent bits are written to the register.

2. The register to be written to or read from is >16 and <= 32 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower two bytes (half-word) and the
second transaction the upper half-word.

Because the bus is reading a half-word at a time, paddr[0] is not actually needed in the 16-bit bus case. But
these bits still exist in the configured code for connectivity purposes.

6.3.4 8-bit Bus System

For 8-bit bus systems, three scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 8 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 8 bits wide returns zeros in the unused bits. Writing to bit locations larger than the
register width causes nothing to happen, that is, only the pertinent bits are written to the register.

2. The register to be written to or read from is >8 and <=16 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the upper byte.

3. The register to be written to or read from is >16 and <=32 bits

In this case, four AHB transactions are required, which in turn creates four APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the second byte, and so on.

Because the bus is reading a byte at a time, all lower bits of paddr are decoded in the 8-bit bus case.

6.4 Write Timing Operation
A timing diagram of an APB write transaction for an APB peripheral register (an earlier version of the
DW_apb_ictl) is shown in the following figure. Data, address, and control signals are aligned. The APB

NoteNoteNoteNote If you write to an address location not on a 16-bit boundary, the bottom bits are ignored/not
used.

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

frame lasts for two cycles when psel is high, unless an APB3 enabled slave delays the transfer completion by
pulling pready low.

Figure 6-2 APB Write Transaction

A write can occur after the first phase with penable low, or after the second phase when penable is high. The
second phase is preferred and is used in all APB slave components. The timing diagram is shown with the
write occurring after the second phase. Whenever the address on paddr matches a corresponding address
from the memory map and provided psel, pwrite, and penable are high, then the corresponding register
write enable is generated.

A write from the AHB to the APB does not require the AHB system bus to stall until the transfer on the APB
has completed. A write to the APB can be followed by a read transaction from another AHB peripheral (not
the DW_apb).

The timing example is a 33-bit register and a 32-bit APB data bus. To write this, 5 byte enables would be
generated internally. The example shows writing to the first 32 bits with one write transaction.

Register

pclk

psel

penable

pwrite

paddr[7:2]

pwdata[31:0]

irq_inten[32:0]

wen_inten[4:0] 0x0f

0x100000000 0x100001234

0x00001234

IrqIntEnL

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Integration Considerations

6.5 Read Timing Operation
A timing diagram of an APB read transaction for an APB peripheral (an earlier version of the DW_apb_ictl)
is shown in the following figure. The APB frame lasts for two cycles, when psel is high, unless an APB3
enabled slave delays the transfer completion by pulling pready low.

Figure 6-3 APB Read Transaction

Whenever the address on paddr matches the corresponding address from the memory map—psel is high,
pwrite and penable are low—then the corresponding read enable is generated. The read data is registered
within the peripheral before passing back to the master through the DW_apb and DW_ahb.

The qualification of the read-back data with hready from the bridge is shown in the timing diagram, but this
does not form part of the APB interface. The read happens in the first APB cycle and is passed straight back
to the AHB master in the same cycles as it passes through the bridge. By returning the data immediately to
the AHB bus, the bridge can release control of the AHB data bus faster. This is important for systems where
the APB clock is slower than the AHB clock.

Once a read transaction has started, it is completed and the AHB bus is held either until the data is returned
from the slave, or until it responds with an ERROR message.

6.6 Coherency
Coherency is where bits within a register are logically connected. For instance, part of a register is read at
time 1 and another part is read at time 2. Being coherent means that the part read at time 2 is at the same
value it was when the register was read at time 1. The unread part is stored into a shadow register and this
is read at time 2. When there is no coherency, no shadow registers are involved.

NoteNoteNoteNote If a read enable is not active, then the previously read data is maintained on the read-back
data bus.

Register

pclk

psel

penable

pwrite

paddr[7:2]

prdata[31:0]

irq_inten[32:0]

ren_irq_inten[4:0]

0x100001234

0x1234

IrqIntEnL

0x1234hrdata[31:0]

hready

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

A bus master may need to be able to read the contents of a register, regardless of the data bus width, and be
guaranteed of the coherency of the value read. A bus master may need to be able to write a register
coherently regardless of the data bus width and use that register only when it has been fully programmed.
This may need to be the case regardless of the relationship between the clocks.

Coherency enables a value to be read that is an accurate reflection of the state of the counter, independent of
the data bus width, the counter width, and even the relationship between the clocks. Additionally, a value
written in one domain is transferred to another domain in a seamless and coherent fashion.

Throughout this appendix the following terms are used:

■ Writing. A bus master programs a configuration register. An example is programming the load value
of a counter into a register.

■ Transferring. The programmed register is in a different clock domain to where it is used, therefore, it
needs to be transferred to the other clock domain.

■ Loading. Once the programmed register is transferred into the correct clock domain, it needs to be
loaded or used to perform its function. For example, once the load value is transferred into the
counter domain, it gets loaded into the counter.

6.6.1 Writing Coherently

Writing coherently means that all the bits of a register can be written at the same time. A peripheral may
have programmable registers that are wider than the width of the connected APB data bus, which prevents
all the bits being programmed at the same time unless additional coherency circuitry is provided.

The programmable register could be the load value for a counter that may exist in a different clock domain.
Not only does the value to be programmed need to be coherent, it also needs to be transferred to a different
clock domain and then loaded into the counter. Depending on the function of the programmable register, a
qualifier may need to be generated with the data so that it knows when the new value is currently
transferred and when it should be loaded into the counter.

Depending on the system and on the register being programmed, there may be no need for any special
coherency circuitry. One example that requires coherency circuitry is a 32-bit timer within an 8-bit APB
system. The value is entirely programmed only after four 8-bit wide write transfers. It is safe to transfer or
use the register when the last byte is currently written. An example where no coherency is required is a
16-bit wide timer within a 16-bit APB system. The value is entirely programmed after a single 16-bit wide
write transfer.

Coherency circuitry enables the value to be loaded into the counter only when fully programmed and
crossed over clock domains if the peripheral clock is not synchronous to the processor clock. While the load
register is being programmed, the counter has access to the previous load value in case it needs to reload the
counter.

Coherency circuitry is only added in cores where it is needed. The coherency circuitry incorporates an
upper byte method that requires users to program the load register in LSB to MSB order when the
peripheral width is smaller than the register width. When the upper byte is programmed, the value can be
transferred and loaded into the load register. When the lower bytes are being programmed, they need to be
stored in shadow registers so that the previous load register is available to the counter if it needs to reload.
When the upper byte is programmed, the contents of the shadow registers and the upper byte are loaded
into the load register.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Integration Considerations

The upper byte is the top byte of a register. A register can be transferred and loaded into the counter only
when it has been fully programmed. A new value is available to the counter once this upper byte is written
into the register. The following table shows the relationship between the register width and the peripheral
bus width for the generation of the correct upper byte. The numbers in the table represent bytes, Byte 0 is
the LSB and Byte 3 is the MSB. NCR means that no coherency circuitry is required, as the entire register is
written with one access.

There are three relationship cases to be considered for the processor and peripheral clocks:

■ Identical

■ Synchronous (phase coherent but of an integer fraction)

■ Asynchronous

Table 6-2 Upper Byte Generation

Upper Byte
Bus Width

Load Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 1 NCR NCR

17 - 24 2 2 NCR

25 - 32 3 2 (or 3) NCR

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

6.6.1.1 Identical Clocks

The following figure illustrates an RTL diagram for the circuitry required to implement the coherent write
transaction when the APB bus clock and peripheral clocks are identical.

Figure 6-4 Coherent Loading – Identical Synchronous Clocks

The following figure shows a 32-bit register that is written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal lasts
for one cycle and is used to load the counter with CntLoadValue.

Figure 6-5 Coherent Loading – Identical Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

pclk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

LoadValue[31:0]

UpperByteWen

LoadCnt

Counter[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Integration Considerations

Each of the bytes that make up the load register are stored into shadow registers until the final byte is
written. The shadow register is up to three bytes wide. The contents of the shadow registers and the final
byte are transferred into the CntLoadValue register when the final byte is written. The counter uses this
register to load/initialize itself. If the counter is operating in a periodic mode, it reloads from this register
each time the count expires.

By using the shadow registers, the CntLoadValue is kept stable until it can be changed in one cycle. This
allows the counter to be loaded in one access and the state of the counter is not affected by the latency in
programming it. When there is a new value to be loaded into the counter initially, this is signaled by
LoadCnt = 1. After the upper byte is written, the LoadCnt goes to zero.

6.6.1.2 Synchronous Clocks

When the clocks are synchronous but do not have identical periods, the circuitry needs to be extended so
that the LoadCnt signal is kept high until a rising edge of the counter clock occurs. This extension is
necessary so that the value can be loaded, using LoadCnt, into the counter on the first counter clock edge. At
the rising edge of the counter clock if LoadCnt is high, then a register clocked with the counter clock toggles,
otherwise it keeps its current value. A circuit detecting the toggling is used to clear the original LoadCnt by
looking for edge changes. The value is loaded into the counter when a toggle has been detected. Once it is
loaded, the counter should be free to increment or decrement by normal rules.

The following figure shows an RTL diagram for the circuitry required to implement the coherent write
when the bus and peripheral clocks are synchronous.

Figure 6-6 Coherent Loading – Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

OR

AND
ToggleToggle

1

1

Shaded Registers are all
connected to the Bus clock.
Others are connected to the
Peripheral clock.

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

The following figure shows a 32-bit register being written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal is
extended until a change in the toggle is detected and is used to load the counter.

Figure 6-7 Coherent Loading – Synchronous Clocks

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

counter_clk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

CntLoadValue[31:0]

LoadCnt

toggle_edge_detect

Counter[31:0]

toggle

pclk

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Integration Considerations

6.6.1.3 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three-times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock. The following figure shows an RTL diagram for the circuitry
required to implement the coherent write when the bus and peripheral clocks are asynchronous.

Figure 6-8 Coherent Loading – Asynchronous Clocks

When the clocks are asynchronous, you need to transfer the contents of the register from one clock domain
to another. It is not desirable to transfer the entire register through meta-stability registers, as coherency is
not guaranteed with this method. The circuitry needed requires the processor clock to be used to re-time the
peripheral clock. Upon a rising edge of the re-timed clock, the new value signal, NewValue, is transferred
into a safe new value signal, SafeNewValue, which happens after the edge of the peripheral clock has
occurred.

Every time there is a rising edge of the peripheral clock detected, the CntLoadValue is transferred into a
SafeCntLoadValue. This value is used to transfer the load value across the clock domains. The
SafeCntLoadValue only changes a number of bus clock cycles after the peripheral clock edge changes. A

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0]

Counter
[31:0]

Shadow

Toggle 1

1

Shaded and edge detect registers are all
connected to the Bus clock. Others are
connected to the Peripheral clock.

(or ByteWen[3])

ClrNewValue
Reset

EN

32

NewValue

red_counter_clk

SafeCountLoadValue

&

Reset

EN

ClrNewValue

red_counter_clk

Edge
Detect

ClrNewValue

pclk

Rising

Detect
counter_clk

pclk

Edge red_counter_clk

SafeNewValue

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

counter running on the peripheral clock is able to use this value safely. It could be up to two peripheral
clock periods before the value is loaded into the counter. Along with this loaded value, there also is a single
bit transferred that is used to qualify the loading of the value into the counter.

The timing diagram depicted in the following figure does not show the shadow registers being loaded. This
is identical to the loading for the other clock modes.

Figure 6-9 Coherent Loading – Asynchronous Clocks

The NewValue signal is extended until a change in the toggle is detected and is used to update the safe
value. The SafeNewValue is used to load the counter at the rising edge of the peripheral clock. Each time a
new value is written the toggle bit is flipped and the edge detection of the toggle is used to remove both the
NewValue and the SafeNewValue.

6.6.2 Reading Coherently

For writing to registers, an upper-byte concept is proposed for solving coherency issues. For read
transactions, a lower-byte concept is required. The following table provides the relationship between the
register width and the bus width for the generation of the correct lower byte.

Table 6-3 Lower Byte Generation

Lower Byte
Bus Width

Counter Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 0 NCR NCR

0D0C0B0A

0D0C0B0A

0D0C0B0A

A3

counter_clk

paddr

penable

pwdata[7:0]

NewValue

ntLoadValue[31:0]

red_counter_clk

ntLoadValue[31:0]

SafeNewValue

ClrNewValue

Counter[31:0]

toggle

pclk

0D

UpperByteWen

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Integration Considerations

Depending on the bus width and the register width, there may be no need to save the upper bits because the
entire register is read in one access, in which case there is no problem with coherency. When the lower byte
is read, the remaining upper bytes within the counter register are transferred into a holding register. The
holding register is the source for the remaining upper bytes. Users must read LSB to MSB for this solution to
operate correctly. NCR means that no coherency circuitry is required, as the entire register is read with one
access.

There are two cases regarding the relationship between the processor and peripheral clocks to be considered
as follows:

■ Identical and/or synchronous

■ Asynchronous

6.6.2.1 Synchronous Clocks

When the clocks are identical and/or synchronous, the remaining unread bits (if any) need to be saved into
a holding register once a read is started. The first read byte must be the lower byte provided in the previous
table, which causes the other bits to be moved into the holding register, SafeCntVal, provided that the
register cannot be read in one access. The upper bytes of the register are read from the holding register
rather than the actual register so that the value read is coherent. This is illustrated in the following figure
and in the timing diagram after it.

Figure 6-10 Coherent Registering – Synchronous Clocks

17 - 24 0 0 NCR

25 - 32 0 0 NCR

Table 6-3 Lower Byte Generation

Lower Byte
Bus Width

CntVal[31:8]

CntVal[31:8]

EN

LowerByteRen

SafeCntVal

ReadCntVal[31:0]

ByteRen[3:0]

Counter
Block

Shaded registers are clocked
with the processor clock.

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

Figure 6-11 Coherent Registering – Synchronous Clocks

6.6.2.2 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock.

To safely transfer a counter value from the counter clock domain to the bus clock domain, the counter clock
signal should be transferred to the bus clock domain. When the rising edge detect of this re-timed counter
clock signal is detected, it is safe to use the counter value to update a shadow register that holds the current
value of the counter.

While reading the counter contents it may take multiple APB transfers to read the value.

Once a read transaction has started, the value of the upper register bits need to be stored into a shadow
register so that they can be read with subsequent read accesses. Storing these upper bits preserves the
coherency of the value that is being read. When the processor reads the current value it actually reads the
contents of the shadow register instead of the actual counter value. The holding register is read when the
bus width is narrower than the counter width. When the LSB is read, the value comes from the shadow
register; when the remaining bytes are read they come from the holding register. If the data bus width is
wide enough to read the counter in one access, then the holding registers do not exist.

The counter clock is registered and successively pipelined to sense a rising edge on the counter clock.
Having detected the rising edge, the value from the counter is known to be stable and can be transferred
into the shadow register. The coherency of the counter value is maintained before it is transferred, because
the value is stable.

NoteNoteNoteNote You must read LSB to MSB when the bus width is narrower than the counter width.

A0 A1 A2 A3

00010203 0A0B0C0D 0E0F0G0H

clk1

CntVal[31:0]

paddr

penable

prdata[7:0]

SafeCntVal[31:8]

LowerByteRen

pclk

A0 A1 A2

03 02 01 00 0H 0G

000102 0E0F0G

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Integration Considerations

The following figure illustrates the synchronization of the counter clock and the update of the shadow
register.

Figure 6-12 Coherency and Shadow Registering – Asynchronous Clocks

CntVal

EN

LowerByteRen

SafeCntVal

ReadCntVal

Sync and shaded registers are
clocked with the processor clock.

ShdwCntVal

EN

Sync & Rising
Edge Detect

Safe To Update

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Integration Considerations DesignWare DW_apb Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

A
DesignWare Constants

Table A-1 provides the DesignWare bus constant definitions. These definitions can also be found in
DW_amba_constants.v file in the src directory of your DW_apb coreKit.

Table A-1 DesignWare Bus Constant Definitions

DesignWare Constant Value

HBURST_WIDTH 3

HMASTER_WIDTH 4

HPROT_WIDTH 4

HRESP_WIDTH 2

HSIZE_WIDTH 3

HSPLIT_WIDTH 16

HTRANS_WIDTH 2

HBURST Values

SINGLE 3‘b000

INCR 3‘b001

WRAP4 3‘b010

INCR4 3‘b011

WRAP8 3‘b100

INCR8 3‘b101

WRAP16 3‘b110

INCR16 3‘b111

HRESP Values

OKAY 2‘b00

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

DesignWare Constants DesignWare DW_apb Databook

ERROR 2‘b01

RETRY 2‘b10

SPLIT 2‘b11

HSIZE Values

BYTE 3‘b000

HWORD 3‘b001

WORD 3‘b010

LWORD 3‘b011

DWORD 3‘b100

WORD4 3‘b101

WORD8 3‘b110

WORD16 3‘b111

HTRANS Values

IDLE 2‘b00

BUSY 2‘b01

NONSEQ 2‘b10

SEQ 2‘b11

HWRITE/PWRITE Values

READ 1‘b0

WRITE 1‘b1

Generic Definitions

TRUE 1‘b1

FALSE 1‘b0

zero8 8‘b0

zero16 16‘b0

zero32 32‘b0

KBYTE 1024

Table A-1 DesignWare Bus Constant Definitions (Continued)

DesignWare Constant Value

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

B
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table B-1 Internal Parameters

Parameter Name Equals To

APB_HAS_APB3 =(APB_INTERFACE_TYPE_SLAVE_0 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_1 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_2 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_3 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_4 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_5 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_6 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_7 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_8 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_9 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_10 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_11 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_12 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_13 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_14 ! =0 ||
APB_INTERFACE_TYPE_SLAVE_15 ! =0)

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Internal Parameter Descriptions DesignWare DW_apb Databook

APB_HAS_APB4 =(APB_INTERFACE_TYPE_SLAVE_0 ==2 ||
APB_INTERFACE_TYPE_SLAVE_1 ==2 ||
APB_INTERFACE_TYPE_SLAVE_2 ==2 ||
APB_INTERFACE_TYPE_SLAVE_3 ==2 ||
APB_INTERFACE_TYPE_SLAVE_4 ==2 ||
APB_INTERFACE_TYPE_SLAVE_5 ==2 ||
APB_INTERFACE_TYPE_SLAVE_6 ==2 ||
APB_INTERFACE_TYPE_SLAVE_7 ==2 ||
APB_INTERFACE_TYPE_SLAVE_8 ==2 ||
APB_INTERFACE_TYPE_SLAVE_9 ==2 ||
APB_INTERFACE_TYPE_SLAVE_10 ==2 ||
APB_INTERFACE_TYPE_SLAVE_11 ==2 ||
APB_INTERFACE_TYPE_SLAVE_12 ==2 ||
APB_INTERFACE_TYPE_SLAVE_13 ==2 ||
APB_INTERFACE_TYPE_SLAVE_14 ==2 ||
APB_INTERFACE_TYPE_SLAVE_15 ==2)

IDLE 2'b00

OKAY 2'b00

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79

DesignWare DW_apb Databook

SolvNet
DesignWare.com

3.02a
July 2018

C
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces (Arm® Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by Arm®
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (Arm® Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in a
word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Glossary DesignWare DW_apb Databook

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable block
that can be instantiated as a single entity (VHDL) or module (Verilog) in a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used in
the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a big
piece of IIP. Anything that requires coreConsultant for configuration, as well as
anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in the
DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable cores
into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design views
and synthesis views you need to integrate the core into your design. Can also
synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format back
to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant or
coreAssembler to quickly build DesignWare Synthesizable Component designs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

3.02a
July 2018

DesignWare DW_apb Databook Glossary

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is authorized
by a single DesignWare license. Products include SmartModels, VMT model
suites, DesignWare Memory Models, Building Block IP, and the DesignWare
Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code by
non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

3.02a
July 2018

Glossary DesignWare DW_apb Databook

RTL Register Transfer Level. A higher level of abstraction that implies a certain gate-
level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as synthesizable
IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology through
synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component. The
files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in any
form, including a Design View.

workspace A network location that contains a personal copy of a component or subsystem.
After you configure the component or subsystem (using coreConsultant or
coreAssembler), the workspace contains the configured component/subsystem
and generated views needed for integration of the component/subsystem at the
top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing easier
interfacing. Usually requires an extra, sometimes automated, step to create the
wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb Databook Index

Synopsys, Inc. 833.02a
July 2018

SolvNet
DesignWare.com

Index

A
active command queue

definition 79
activity

definition 79
AHB

definition 79
AMBA

definition 79
APB

definition 79
APB bridge

definition 79
APB slave interface

data widths 20
overview of 20

application design
definition 79

arbiter
definition 79

B
BFM

definition 79
big-endian

definition 79
Block diagram, of DW_apb 18
blocked command stream

definition 79
blocking command

definition 79
bus bridge

definition 80
C
Coherency

about 63
read 70

write 64
command channel

definition 80
command stream

definition 80
component

definition 80
configuration

definition 80
configuration intent

definition 80
core

definition 80
core developer

definition 80
core integrator

definition 80
coreAssembler

definition 80
coreConsultant

definition 80
coreKit

definition 80
Customer Support 8
cycle command

definition 80
D
Data widths, of DW_apb 20
decoder

definition 80
design context

definition 80
design creation

definition 80
Design View

definition 80

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb Databook

84 Synopsys, Inc.SolvNet
DesignWare.com

3.02a
July 2018

DesignWare constants 75
DesignWare cores

definition 81
DesignWare Library

definition 81
DesignWare Synthesizable Components

definition 80
dual role device

definition 81
DW_amba_constants.v 75
DW_apb

block diagram 18
data widths 20
features of 13, 17
functional description 17
memory map 21
slave interface, overview of 20
slaves

read timing operation 63
reading and writing from 20
write timing operation 61

testbench
output files 55
overview of 53
overview of tests 51

timing diagrams 21
E
endian

definition 81
Endianness, converting from big endian AHB 20
Environment, licenses 14
F
Features, of DW_apb 13, 17
Full-Functional Mode

definition 81
Functional description, of DW_apb 17
G
GPIO

definition 81
GTECH

definition 81
H
hard IP

definition 81
HDL

definition 81
I
IIP

definition 81
implementation view

definition 81
instantiate

definition 81
interface

definition 81
IP

definition 81
L
Licenses 14
little-endian

definition 81
M
MacroCell

definition 81
master

definition 81
Memory map, of DW_apb 21
model

definition 81
monitor

definition 81
N
non-blocking command

definition 81
P
peripheral

definition 81
R
Read coherency

about 70
and asynchronous clocks 72
and synchronous clocks 71

Reading, from unused locations 59
RTL

definition 82
runtest.log 55
S
SDRAM

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb Databook Index

Synopsys, Inc. 853.02a
July 2018

SolvNet
DesignWare.com

definition 82
SDRAM controller

definition 82
Simulation

from command line 54
of DW_apb coreKit 53
output files 55
results 55

slave
definition 82

SoC
definition 82

SoC Platform
AHB contained in 11
APB, contained in 11
defined 11

soft IP
definition 82

static controller
definition 82

subsystem
definition 82

synthesis intent
definition 82

synthesizable IP
definition 82

T
technology-independent

definition 82
test.log 55
Testsuite Regression Environment (TRE)

definition 82
Timing

diagrams, of DW_apb 21
read operation of DW_apb slave 63
write operation of DW_apb slave 61

TRE
definition 82

V
Vera, overview of tests 51
Verification

and Vera tests 51
of DW_apb coreKit 53
output files 55
results 55

VIP

definition 82
W
workspace

definition 82
wrap

definition 82
wrapper

definition 82
Write coherency

about 64
and asynchronous clocks 69
and identical clocks 66
and synchronous clocks 67

Z
zero-cycle command

definition 82

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb Databook

86 Synopsys, Inc.SolvNet
DesignWare.com

3.02a
July 2018

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	1 Product Overview
	1.1 DesignWare System Overview
	1.1.1 DesignWare System Block Diagram

	1.2 General Product Description
	1.3 Features
	1.3.1 Notes and Restrictions
	1.3.2 Features Not Supported

	1.4 Standards Compliance
	1.5 Verification Environment Overview
	1.6 Licenses
	1.7 Where To Go From Here

	2 Functional Description
	2.1 Overview
	2.1.1 Block Diagram

	2.2 Transfers
	2.2.1 Burst Transfers

	2.3 PCLK versus HCLK
	2.4 Optional External Decoder
	2.5 Endianness
	2.6 APB Slave Interface
	2.7 Memory Map
	2.8 Backward Compatibility with AMBA 2 APB and AMBA 3 APB
	2.9 Timing Diagrams
	2.10 Back-to-Back Transfer Support on an APB Interface
	2.11 APB4 Protocol Feature
	2.11.1 Write Strobing
	2.11.2 Protection

	3 Parameter Descriptions
	3.1 Top Level Parameters
	3.2 Address Map Parameters

	4 Signal Descriptions
	4.1 Clocks and Resets Signals
	4.2 AHB Slave Interface Signals
	4.3 APB Interface Signals

	5 Verification
	5.1 Overview of Vera Tests
	5.1.1 PCLK equals HCLK
	5.1.2 PCLK Equals HCLK Divided by 2 or more
	5.1.3 Ignoring IDLE and BUSY transfers

	5.2 Overview of DW_apb Testbench
	5.3 Running Simulations from the Command Line
	5.3.1 Command Line Output Files

	6 Integration Considerations
	6.1 Performance
	6.1.1 Power Consumption, Frequency, and Area Results

	6.2 Accessing Top-level Constraints
	6.3 Reading and Writing from an APB Slave
	6.3.1 Reading From Unused Locations
	6.3.2 32-bit Bus System
	6.3.3 16-bit Bus System
	6.3.4 8-bit Bus System

	6.4 Write Timing Operation
	6.5 Read Timing Operation
	6.6 Coherency
	6.6.1 Writing Coherently
	6.6.1.1 Identical Clocks
	6.6.1.2 Synchronous Clocks
	6.6.1.3 Asynchronous Clocks

	6.6.2 Reading Coherently
	6.6.2.1 Synchronous Clocks
	6.6.2.2 Asynchronous Clocks

	A DesignWare Constants
	B Internal Parameter Descriptions
	C Glossary
	Index

