
 1.11a
July 2018

DesignWare DW_ahb_eh2h Databook

DW_ahb_eh2h – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/company/legal/trademarks-brands.html
www.synopsys.com

Synopsys, Inc. 3

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

Contents

Revision History . 7

Preface .11
 Organization .11
Related Documentation .12
Web Resources .12
Customer Support .12
Product Code .13

Chapter 1
Product Overview .15

1.1 DesignWare System Overview .15
1.2 General Product Description .17

1.2.1 DW_ahb_eh2h Block Diagram .18
1.2.2 Functional Overview .18

1.3 Features .22
1.3.1 Clocks .22
1.3.2 Interfaces .22
1.3.3 Operation .23
1.3.4 Software Interface .23
1.3.5 Sideband Signals .23

1.4 Standards Compliance .23
1.5 Verification Environment Overview .23
1.6 Licenses .23
1.7 Where To Go From Here .24

Chapter 2
Functional Description .25

2.1 Definitions .26
2.2 Bridge Slave Interface .27

2.2.1 Slave Selection .27
2.2.2 Slave Response to Writes .27
2.2.3 Slave Response to Reads .28
2.2.4 Read Buffer Flush .28
2.2.5 Read-Sensitive Locations .29
2.2.6 Deadlock .29
2.2.7 Performance Impact of Locked Transfers .29
2.2.8 Performance Impact of Read Incremental Bursts .30
2.2.9 Local Access .30
2.2.10 Prefetch Depth .30

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Contents DesignWare DW_ahb_eh2h Databook

2.2.11 SPLIT Response and SPLIT Clear .30
2.2.12 Alternative “HREADY Low” Response Mode .31
2.2.13 Timeout on “HREADY Low” Response Mode .31

2.3 Bridge Master Interface .31
2.3.1 Generation of Secondary Writes .31
2.3.2 Generation of Secondary Reads .31
2.3.3 Behavior of ERROR Response .32
2.3.4 Behavior of SPLIT/RETRY Response .32
2.3.5 Behavior of Early Burst Termination .32
2.3.6 BUSY Cycles .32
2.3.7 HLOCK .32

2.4 Non-Standard Master ID Sideband Signal .32
2.5 Write Buffer .33
2.6 Read Buffer .33
2.7 Pipelines .34
2.8 Interrupt and Software Registers Interface .34
2.9 Clocking .35

2.9.1 Clock Adaptation .35
2.9.2 Reset Signals .35

2.10 Timing Diagrams .36

Chapter 3
Parameter Descriptions .39

3.1 Parameters .40

Chapter 4
Signal Descriptions .47

4.1 Slave Interface Signals .49
4.2 Master Interface Signals .54
4.3 Miscellaneous Signals .57

Chapter 5
Register Descriptions .59

5.1 DW_ahb_eh2h_mem_map/DW_ahb_eh2h_addr_block1 Registers .62
5.1.1 EH2H_EWSC .63
5.1.2 EH2H_EWS .65
5.1.3 EH2H_MEWS .67
5.1.4 EH2H_COMP_PARM_1 .69
5.1.5 EH2H_COMP_PARM_2 .73
5.1.6 EH2H_COMP_VERSION .74
5.1.7 EH2H_COMP_TYPE .75

Chapter 6
Programming the DW_ahb_eh2h .77

6.1 Programming Considerations .77

Chapter 7
Verification .79

7.1 Overview of Vera Tests .79
7.1.1 test_01_random .79

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Contents

7.1.2 test_02_random_m .80
7.1.3 test_03_random_c .80
7.1.4 test_04_random_e .80
7.1.5 test_20_version .80
7.1.6 test_21_regfile .80
7.1.7 test_22_timeout .80
7.1.8 test_23_demo .81

7.2 Overview of DW_ahb_eh2h Testbench .81
7.2.1 Running Simulations from the Command Line .81
7.2.2 Command Line Output Files .82

Chapter 8
Integration Considerations .83

8.1 Read Accesses .83
8.2 Write Accesses .83
8.3 Consecutive Write-Read .84
8.4 Accessing Top-level Constraints .85
8.5 Performance .86

8.5.1 Power Consumption, Frequency, and Area Results .86

Appendix A
Synchronizer Methods .89

A.1 Synchronizers Used in DW_ahb_eh2h .90
A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_ahb_eh2h) .91
A.3 Synchronizer 2: Synchronous (Dual-clock) FIFO Controller with Static Flags (DW_ahb_eh2h) 92

Chapter B
Internal Parameter Descriptions .95

Appendix C
Glossary .97

Index . 101

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Contents DesignWare DW_ahb_eh2h Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

Revision History

This table shows the revision history for the databook from release to release. This is being tracked from
version 1.04b onward.

Version Date Description

1.11a July 2018 Updated:
■ Version changed for 2018.07a release

■ Added MID Sideband signals: mmid, and smid

■ “Performance” on page 86

■ “Parameter Descriptions” on page 39, Chapter 4, “Signal Descriptions”,
“Register Descriptions” on page 59, and Appendix B, “Internal Parameter
Descriptions” are auto-extracted with change bars from the RTL

Removed:

■ Parameter EH2H_RAM_SYNC has been deprecated.

■ Chapter 2, “Building and Verifying a Component or Subsystem” and added the
contents in the newly created user guide.

1.10a October 2016 ■ Version number changed for 2016.10a release

■ “Parameter Descriptions” on page 39 and “Register Descriptions” on page 59
auto-extracted from the RTL

■ Removed the “Running Leda on Generated Code with coreConsultant”
section, and reference to Leda directory in Table 2-1

■ Removed the “Running Leda on Generated Code with coreAssembler”
section, and reference to Leda directory in Table 2-4

■ Replaced Figure 2-2 and Figure 2-3 to remove references to Leda

■ Moved “Internal Parameter Descriptions” to Appendix

■ Added an entry for the xprop directory in Table 2-1 and Table 2-4.

■ Added “Running VCS XPROP Analyzer”

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Revision History DesignWare DW_ahb_eh2h Databook

1.09a June 2015 ■ Added “Running SpyGlass® Lint and SpyGlass® CDC”

■ Added “Running SpyGlass® on Generated Code with coreAssembler”

■ Corrected completion of split response to a read (register space or external
slave) after a register space read.

■ Updated “Deadlock Conditions” on page 21 to provide a solution to exit the
deadlock scenario.

■ “Signal Descriptions” on page 47 auto-extracted from the RTL

■ Added “Internal Parameter Descriptions” on page 95

■ Added Appendix A, “Synchronizer Methods”

1.08a June 2014 ■ Version change for 2014.06a release

■ Added “Performance” section in the “Integration Considerations” chapter

1.07f May 2013 ■ Version change for 2013.05a release

■ Updated the template

1.07e Oct 2012 Added the product code on the cover and in Table 1-1

1.07e Mar 2012 Corrected offset values for EWS and MEWS registers in RAL description

1.07d Nov 2011 Version change for 2011.11a release

1.07c Oct 2011 Version change for 2011.10a release

1.07b Jun 2011 ■ Updated system diagram in Figure 1-1

■ Enhanced “Related Documents” section in Preface

1.07b May 2011 Corrected address offsets for EH2H_COMP_PARAM_1,
EH2H_COMP_VERSION, and EH2H_COMP_TYPE registers

1.07b Oct 2010 Version change for 2010.10a release

1.07a Sep 2010 ■ Added material about limitations with respect to defined length burst support

■ Corrected names of include files and vcs command used for simulation

1.06a Dec 2009 Updated databook to new template for consistency with other IIP/VIP/PHY
databooks.

1.06a Jul 2009 Corrected value and default of EH2H_RAM_SYNC parameter

1.06a Jun 2009 Corrected name of mhbusreq signal in I/O diagram table

1.06a May 2009 Removed references to QuickStarts, as they are no longer supported

1.06a Oct 2008 ■ Updated “Clock Adaptation” section

■ Version change for 2008.10a release

1.05b Jun 2008 ■ Version change for 2008.06a release

■ Added more detail about transfer changing from a SINGLE to an INCR

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Revision History

1.05a Feb 2008 Added more detail about cases where the DW_ahb_eh2h can change a SINGLE
to an INCR

1.05a Nov 2007 ■ Added synchronization parameters in Clocking Configuration

■ Clarifications on bursts and upsizing

1.04b Aug 7, 2007 ■ Added Reset Signalssection

■ Corrected mhresetn synchronous information

1.04b June 14, 2007 Version change for 2007.06a release

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Revision History DesignWare DW_ahb_eh2h Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

Preface

This databook provides information that you need to interface the DesignWare enhanced AHB-to-AHB
bridge component (DW_ahb_eh2h) to the Advanced High-Performance Bus (AHB). This component
conforms to the AMBA Specification, Revision 2.0 from Arm®.

The information in this databook includes a functional description, signal and parameter descriptions, and a
memory map. Also provided are an overview of the component testbench, a description of the tests that are
run to verify the coreKit, and synthesis information for the coreKit.

 Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Functional Description” describes the functional operation of the DW_ahb_eh2h.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_ahb_eh2h.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_ahb_eh2h signals.

■ Chapter 5, Register Descriptions describes the programmable registers of the DW_ahb_eh2h.

■ Chapter 6, “Programming the DW_ahb_eh2h” provides information needed to program the
configured DW_ahb_eh2h.

■ Chapter 7, “Verification” provides information on verifying the configured DW_ahb_eh2h.

■ Chapter 8, “Integration Considerations” includes information you need to integrate the configured
DW_ahb_eh2h into your design.

■ Appendix A, “Synchronizer Methods”documents the synchronizer methods (blocks of synchronizer
functionality) used in DW_ahb_eh2h to cross clock boundaries.

■ Appendix B, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals, Registers and Parameters chapters.

■ Appendix C, “Glossary” provides a glossary of general terms.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Preface DesignWare DW_ahb_eh2h Databook

Related Documentation
■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using

DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA 2,
see the Guide to Documentation for DesignWare Synthesizable Components for AMBA 2 and AMBA 3 AXI.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the requested
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained, your
issue is automatically routed to a support engineer who is experienced with your product. The
Sub Product entry is critical for correct routing.

Go to http://solvnet.synopsys.com/EnterACall and click the Open A Support Case to enter a
call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: <product version number>

http://solvnet.synopsys.com/EnterACall
http://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Preface

■ Problem Type:
■ Priority:
■ Title: DW_ahb_eh2h
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified earlier) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
https://www.synopsys.com/support/global-support-centers.html

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare AMBA Fabric.

Table 1-1 DesignWare AMBA Fabric – Product Code: 3768-0

Component Name Description

DW_ahb High performance, low latency interconnect fabric for AMBA 2 AHB

DW_ahb_eh2h High performance, high bandwidth AMBA 2 AHB to AHB bridge

DW_ahb_h2h Area efficient, low bandwidth AMBA 2 AHB to AHB Bridge

DW_ahb_icm Configurable multi-layer interconnection matrix

DW_ahb_ictl Configurable vectored interrupt controllers for AHB bus systems

DW_apb High performance, low latency interconnect fabric & bridge for AMBA 2 APB for direct
connect to AMBA 2 AHB fabric

DW_apb_ictl Configurable vectored interrupt controllers for APB bus systems

DW_axi High performance, low latency interconnect fabric for AMBA 3 AXI

DW_axi_a2x Configurable bridge between AXI and AHB components or AXI and AXI components.

DW_axi_gm Simplify the connection of third party/custom master controllers to any AMBA 3 AXI fabric

DW_axi_gs Simplify the connection of third party/custom slave controllers to any AMBA 3 AXI fabric

mailto:support_center@synopsys.com
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Preface DesignWare DW_ahb_eh2h Databook

DW_axi_hmx Configurable high performance interface from and AHB master to an AXI slave

DW_axi_rs Configurable standalone pipelining stage for AMBA 3 AXI subsystems

DW_axi_x2h Bridge from AMBA 3 AXI to AMBA 2.0 AHB, enabling easy integration of legacy AHB
designs with newer AXI systems

DW_axi_x2p High performance, low latency interconnect fabric and bridge for AMBA 2 & 3 APB for direct
connect to AMBA 3 AXI fabric

DW_axi_x2x Flexible bridge between multiple AMBA 3 AXI components or buses

Component Name Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

1
Product Overview

The DW_ahb_eh2h is an AHB-to-AHB bridge with a FIFO-based architecture, designed to achieve high
throughput and high bus efficiency. This component is part of the DesignWare Synthesizable Components
for AMBA 2.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_ahb_eh2h Databook

Figure 1-1 Example of DW_ahb_eh2h in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/DW_apb_i2s_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/DW_axi_rs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf

Synopsys, Inc. 17SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Product Overview

You can connect, configure, synthesize, and verify the DW_ahb_eh2h within a DesignWare subsystem
using coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_ahb_eh2h component,
you might prefer to use coreConsultant, documentation for which is available in the coreConsultant User
Guide.

1.2 General Product Description
The Synopsys DW_ahb_eh2h consists of an AHB slave bus interface, a write buffer, a read buffer, and an
AHB master bus interface. These components operate as follows:

1. The bridge slave accepts transfers (read/write requests, read/write addresses, and write data) from
the primary AHB and sends them to the write buffer.

2. The write buffer transmits transfer attributes to the bridge master.

3. The bridge master executes received transfers into the secondary AHB.

4. The read buffer returns read data and read responses from the bridge master to the bridge slave.

NoteNoteNoteNote When the DW_axi_hmx is used with the DW_ahb_eh2h to bridge from AHB to AXI—that is, to
allow masters on an AHB bus to access slaves on an AXI bus—there is a performance issue
relating to write transfers. The DW_ahb_eh2h converts all write transactions to undefined
length INCR writes, and the DW_axi_hmx converts these undefined length INCR writes to
multiple AXI writes of length 1.
Although this does not affect the data throughput rate from the DW_axi_hmx, it does result in
some inefficiencies on the AXI bus:

■ Since every beat of write data is associated with a different address transfer, each address
transfer must win arbitration on the AXI bus before the associated data beat is allowed to
reach the slave.

■ For slaves—for example, memory controllers—that are optimized for transfers of a
particular burst length, there can be a reduction in throughput.

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_ahb_eh2h Databook

1.2.1 DW_ahb_eh2h Block Diagram

The components of DW_ahb_eh2h are illustrated in Figure 1-2.

Figure 1-2 DW_ahb_eh2h Block Diagram

1.2.2 Functional Overview

The following topics provide overview information about the function of the DW_ahb_eh2h. For more
information about the function and operation of the DW_ahb_eh2h, see “Functional Description” on
page 25.

1.2.2.1 Write Transfers

Writes from the primary AHB to the bridge are “posted,” meaning that the bridge slave responds with
OKAY terminating the primary transfer before the write data actually reaches its final destination in the
secondary AHB. Data is temporarily stored into local memory (the write buffer) until the bridge master is
able to perform the corresponding bus transfer to the secondary AHB. If the buffer becomes full, the bridge
slave splits the primary transfer. The split is cleared after the write buffer has been drained by the bridge
master and is able to accept new data. The split mechanism allows the primary AHB to be free to handle
other transfers.

1.2.2.2 Read Transfers

Reads from the primary AHB to the bridge are “split and prefetched”. The bridge slave splits the first beat
of a read burst. The read request is transmitted to the bridge master. Data is retrieved from the secondary
AHB by the bridge master and temporarily stored into local memory (the read buffer). Once all burst data is
available, the bridge slave clears the previously issued split response, signaling to the primary AHB that the
read burst can be re-issued for completion.

1.2.2.3 Data Width Adaptation

The bridge can be used to connect AHB systems with arbitrary data widths. The primary AHB is allowed to
perform full bandwidth1 read and write accesses to the bridge slave independently of the width of the
secondary AHB system. When the secondary data width is narrower than the primary data width, the

1. A full bandwidth transfer is a transfer with HSIZE = log2(bus width/8)

Bridge
Slave

Bridge
Master

Write Buffer

Read Buffer

Primary
AHB

Secondary
AHB

^ ^

shclk mhclk

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Product Overview

bridge master transforms wider primary transfers into narrower longer secondary bursts. This capability is
called transfer downsizing.

1.2.2.4 Software Interface and Interrupt

The bridge maintains two status registers to provide debug support and a minimal error recovery capability
in case of write failure. A write failure occurs whenever a write transfer from the bridge master is
terminated by an ERROR response. An interrupt line associated with write failure conditions is available at
the pinout of the component. A third register allows software to acknowledge and reset the status registers
and the interrupt signal.

1.2.2.5 Bus Performance

The bridge performance can be measured in terms of the number of bus clock cycles needed to execute a
burst (or a sequence of bursts) of n consecutive data phases. For the bridge slave consider two contributes to
the overall number of clock cycles: bus phase and split latency. The bus phase includes all the clock cycles
consumed by the bridge slave responding to the accessing master. The split latency includes all of the clock
cycles that last between a split response issued by the bridge and the retried transfer that follows after the
bridge clears the split. For the bridge master, there is no split latency and only the bus phase is considered,
which is defined as the number of clock cycles required for the master to generate n secondary data phases.

1.2.2.5.1 Bridge Slave Writes

When the write buffer has enough free locations to accept a full burst of length n, the split latency is zero
and the bus phase lasts n+2 clock cycles (two wait states are inserted on the first NSEQ transfer). The
average throughput on the bus phase is then n/n+2.

Bridge slave writes are affected by split latency when the write buffer operates close to the full condition.
When a split is generated on a write transaction because the buffer is full, the latency depends on the
capacity of the bridge master to drain the write buffer, which ultimately depends on the secondary system
clock, data width, and the behavior of the secondary system in terms of wait states, responses, and
arbitration.

1.2.2.5.2 Bridge Master Writes

The bus phase lasts n clock cycles. Two idle cycles are required for arbitration; two idle cycles are required
in between consecutive bursts. The average throughput is n/n+2.

NoteNoteNoteNote When the secondary data width is wider than the primary data width, the bridge master does
not transform narrower primary transfers into wider shorter secondary transfers. The HSIZE
attribute for secondary transfers is limited by the width of the primary data bus. This feature,
known as transfer upsizing, is not supported by the DW_ahb_eh2h bridge.

NoteNoteNoteNote Write performance deteriorates when the buffer depth is too short the secondary AHB is
unavailable for long periods, or your write bandwidth is too large so that the write buffer is
close to full or is full.

https://solvnet.synopsys.com
www.designware.com

20 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_ahb_eh2h Databook

1.2.2.5.3 Bridge Slave Reads

Bridge slave reads always are affected by split latency (assuming the write buffer is empty), consisting of:

■ Synchronization delay to transmit the read request from the bridge slave clock domain to the bridge
master clock domain (depends on the clock mode and pipe mode parameters, see “Parameter
Descriptions” on page 39)

■ Arbitration and bus phase of the bridge master, needed to prefetch read data

■ Synchronization to transmit read completion back to the bridge slave (depends on the clock mode
and pipe mode parameters, see “Parameter Descriptions” on page 39)

■ Primary arbitration delay between the split clear generated by the bridge slave and the retried
transfer

Split latency on reads is minimal when the clock mode parameter is set to synchronous and the pipe mode
parameters are all set to 0 (see “Parameter Descriptions” on page 39).

The bus phase at the primary AHB lasts n+2 clock cycles (two extra cycles are needed for the initial split
response). The average throughput on the primary bus phase is n/n+2

1.2.2.5.4 Bridge Master Reads

This has the same behavior as Bridge Master Writes.

1.2.2.5.5 Bus Decoupling

The write buffer helps to decouple the primary AHB from wait cycles, split/retry responses, and arbitration
delay incurred when writing to the secondary AHB. The result is a peak throughput close to 1 seen by the
primary master in write direction. The read buffer, in combination with a SPLIT response (issued by the
bridge slave) and data prefetch (performed by the bridge master), allows for better bus utilization on reads.
After a SPLIT response, the arbiter removes the master that is currently owning the bus so that the primary
AHB can be used by other masters. The result of this mechanism is an improvement in the overall bus
efficiency of the primary AHB, because only the originating master is affected by the latency of the read
access. While the originating master is stalled by the SPLIT response, the primary AHB is fully available for
other masters to operate.

1.2.2.5.6 Multi-Master Systems

Because both read and writes are non-blocking (writes are posted, reads are split), the bridge efficiently
supports systems where multiple primary masters concurrently require access to the secondary bus. Writes
from different masters are posted in the order in which they are received by the bridge slave, and executed
in the same order by the bridge master. Reads are split, leaving the primary bus free for other masters to
post a read or write access to the bridge slave or to any other primary slaves. Consecutive reads from
different masters are executed by the bridge master in the same order in which they are received by the
bridge slave.

1.2.2.6 Recommendations

You should take note of the following information regarding the DW_ahb_eh2h.

1.2.2.6.1 Locked Transfers

Read and write transfers are generally executed in the order in which they are received. The only exception
is for locked transfers. Locked transfers are always completed before any other previously split read transfer

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 21SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Product Overview

that is pending. When the bridge receives a locked transfer request and there are other reads (from other
masters) still pending, the bridge aborts any operations for those reads and flushes the read buffer from any
prefetched data to allow the locked transfer to complete first. Aborted transactions must be repeated after
the locked transfer has completed.

1.2.2.6.2 Read-Sensitive Locations

Care must be taken when accessing read-sensitive locations in the secondary AHB (for example, a device
FIFO or a reset-on-read status register) through the bridge. There are situations (see “Read-Sensitive
Locations” on page 29) where the bridge is forced to flush out the read buffer, which can cause data loss if
the discarded buffer content is fetched from read-sensitive locations.

1.2.2.6.3 Deadlock Conditions

The split mechanism ensures adequate protection against deadlock conditions for bidirectional applications.
Deadlock can still occur if locked transfer types are used in both directions. The following figure shows
Master 3 in system A accessing the bridge AB with a locked transfer, while Master 3 in system B is
performing a locked transfer to bridge BA. Both systems, A and B, are locked which results in an deadlock.

Figure 1-3 Deadlock Scenario for Simultaneous Locked Access

This deadlock scenario can be resolved by using the Alternative "HREADY Low" Response Mode with the
timeout. Whenever locked transfers are requested, "HREADY Low" Response Mode can be enabled
dynamically by qualifying the address phase with the sstall signal assertion, which inhibits the SPLIT
response functionality. If the Master 3 (MA3) in system A and Master 3 (MB3) in system B simultaneously
generate locked transfer as in Figure 1-3, then transfer cannot be completed as system A and B are already
locked. Due to the existence of the timeout functionality (with "HREADY Low" Response Mode), an error is
generated thus, bringing the system A and system B out of the deadlock. System A and system B can rebuild
the locked transfer again.

A B
BA

AB

MA1

MA3

SA1

MB1

MB3

SB1

MA2 SB2

SA2 MB2

https://solvnet.synopsys.com
www.designware.com

22 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_ahb_eh2h Databook

1.3 Features
The following sections discuss the DW_ahb_eh2h features.

1.3.1 Clocks

■ Asynchronous or synchronous clocks, any clock ratio

■ Fully registered outputs

■ Optional pipeline stages to reduce logic levels on bus inputs

1.3.2 Interfaces

The DW_ahb_eh2h has the following interfaces.

■ AHB Slave

❑ Data width: 32,64,128, or 256 bits

❑ Address width: 32 or 64 bits

❑ Big or little endian

❑ Zero or two wait states OKAY response

❑ ERROR response

❑ No RETRY response

❑ SPLIT response

❑ HSPLIT generation

❑ Handling of multiple, outstanding split transactions

❑ Multiple HSELs

❑ HREADY low (alternative to SPLIT response) operation mode

■ AHB Master

❑ Data width: 32,64,128, or 256 bits

❑ Address width: 32 or 64 bits

❑ Big or little endian

❑ Lock and bus request generation

❑ SINGLE, INCR burst type generation for writes

❑ Any burst type generation for reads

❑ Downsizing of wider transfers; note that upsizing is not supported

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Product Overview

1.3.3 Operation

The DW_ahb_eh2h has the following features for read/write operation:

■ Writes

❑ Configurable depth write buffer

❑ Posted writes (always, HPROT is don't care)

❑ SPLIT response on write buffer full

❑ Maximum of two wait states on non-sequential access

❑ Zero wait states (full bandwidth) on sequential access

❑ Zero BUSY cycles (full bandwidth), secondary burst generation

■ Reads

❑ Configurable depth read buffer

❑ Prefetched reads

❑ Non-prefetched reads

❑ SPLIT response on non-sequential (non yet prefetched) access

❑ Zero wait states (full bandwidth) on prefetched read data

1.3.4 Software Interface

■ Interrupt signal on write errors

■ Interrupt status/clear registers

1.3.5 Sideband Signals

■ Input sstall pin to qualify an address phase for HREADY low operation mode

■ Output sflush pin to monitor the flushing operation on the read buffer

1.4 Standards Compliance
The DW_ahb_eh2h component conforms to the AMBA Specification, Revision 2.0 from Arm®. Readers are
assumed to be familiar with this specification.

1.5 Verification Environment Overview
The DW_ahb_eh2h includes an extensive verification environment, which sets up and invokes your selected
simulation tool to execute tests that verify the functionality of the configured component. You can then
analyze the results of the simulation. The “Verification” on page 79 section discusses the specific procedures
for verifying the DW_ahb_eh2h.

1.6 Licenses
Before you begin using the DW_ahb_eh2h, you must have a valid license. For more information, see
“Licenses” in the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI Installation Guide.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Product Overview DesignWare DW_ahb_eh2h Databook

1.7 Where To Go From Here
At this point, you may want to get started working with the DW_ahb_eh2h component within a subsystem
or by itself. Synopsys provides several tools within its coreTools suite of products for the purposes of
configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

For more information about configuring, synthesizing, and verifying just your DW_ahb_eh2h component,
see “Overview of the coreConsultant Configuration and Integration Process” in DesignWare Synthesizable
Components for AMBA 2 User Guide.

For more information about implementing your DW_ahb_eh2h component within a DesignWare
subsystem using coreAssembler, see “Overview of the coreAssembler Configuration and Integration
Process” in DesignWare Synthesizable Components for AMBA 2 User Guide.

https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf

Synopsys, Inc. 25

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

2
Functional Description

Like its predecessor, DW_ahb_h2h, DW_ahb_eh2h is an AHB component attached as a slave to a first AHB
subsystem (primary AHB) and as a master to a second AHB subsystem (secondary AHB) see DesignWare
DW_ahb_h2h Databook. The function of DW_ahb_eh2h is to establish a communication link between the two
subsystems, allowing for data exchange between a primary master and a secondary slave, as illustrated in
Figure 2-1.

Figure 2-1 System Overview

M

M

S

S

S M

DW_ahb_eh2h

AHB bus
(primary)

AHB bus
(secondary)

https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf

26 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_ahb_eh2h Databook

Figure 2-2 illustrates a more complex block diagram of the DW_ahb_eh2h.

Figure 2-2 DW_ahb_eh2h Block Diagram

2.1 Definitions
The following provides definitions for terms that are used throughout this chapter:

■ Transfer – A transfer is a bus cycle where HREADY is high. Depending on the value of HTRANS, a
transfer can be nonsequential (NSEQ), sequential (SEQ), IDLE, or BUSY. A transfer is issued by a bus
master and responded by a bus slave.

■ Access – An access to a given slave is a transfer qualified by one of the slave select lines.

■ Wait State – A wait state is a bus cycle where HREADY is low and HRESP is OKAY.

■ OKAY Response – A bus cycle where HREADY is high and HRESP is OKAY.

■ Non-OKAY Response – Two consecutive bus cycles where HREADY is low and HRESP is ERROR,
RETRY or SPLIT on the first cycle, HREADY is high and HRESP maintained to the previous value on
the second cycle.

■ Response – Sequence of bus cycles driven by a bus slave in response to a transfer issued by a bus
master. The sequence consists of zero, one or more wait states followed either by OKAY or
Non-OKAY response.

■ Transaction – A sequence of transfers.

■ Throughput – The average throughput for a bus transaction of length n is the ratio between the total
number n of data phases in the transaction and the total number n+k of clock cycles required to
execute them.

Throughput = n/n+k

Bridge
Master

Bridge
Slave

Write Buffer

Read Buffer

shclk mhclk

^

^

^

^

^

^

^

mFSMsFSM

^

mhctrl

mhaddr

mhwdata

mhrdata
mhresp

mhtrans
mhready
mhbusreq

mhgrant
mlock

shctrl

shaddr

shwdata

shrdata

shtrans
shready

shsel_xxx

shsplit
shready_resp

shresp

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Functional Description

2.2 Bridge Slave Interface
The function of the bridge slave interface is described as follows:

2.2.1 Slave Selection

The bridge slave interface is sensitive to transfers qualified by either one of the three input select lines:

■ shsel_reg

When a transfer is qualified by shsel_reg, it is a “local access”—the bridge uses the lower 10 bits of
shaddr to access local registers. In terms of bus protocol and bus response, a local access is treated the
same way as any other bridge access. The only difference is that no corresponding transfer is
produced by the bridge on the master side.

■ shsel_p and shsel_np

When a transfer is qualified by shsel_p or shsel_np, it is a “secondary access”— the bridge uses all the
bits of shaddr to produce a corresponding transfer on the master side. When a read INCR transfer is
qualified by shsel_p (p stands for “prefetch”), the bridge master prefetches read data for that transfer.

When a read INCR transfer is qualified by shsel_np (np stands for “no prefetch”), the bridge master
treats the request as a read SINGLE request, and no prefetch of read data occurs for sequential
addresses following the first address of the burst.

Selection with shsel_p or shsel_np only matters for read INCR accesses. For any other access types
(write transfers any burst type, read transfers which are not INCR), shsel_p and shsel_np are
equivalent.

For more information about these signals, see “Signal Descriptions” on page 47.

2.2.2 Slave Response to Writes

The bridge response behavior on a write access depends on the value of shtrans and the availability1 of the
write buffer. The “minimum write buffer availability” required to accept a transfer with an OKAY response
varies from 1 to 4 free entries, depending on the current and the previous transfer types.

When the write buffer availability is below the minimum required, the transfer is SPLIT. If the write buffer
availability is equal or above the minimum required the following rules apply:

■ NSEQ transfers are accepted with two wait states, OKAY response.

■ SEQ transfers are normally accepted with 0 wait states, OKAY response.

NoteNoteNoteNote When the bridge slave interface is not selected, the bridge drives 0 wait states OKAY
response.

1. The write buffer availability is defined as the number of free locations available on the next clock cycle. Because of the
pipelined nature of the AHB bus, depending on the previous transfer seen by the bridge slave, the current clock cycle (on
which the current transfer must be handled) may or may not require a write buffer push. The buffer availability can then be
calculated as the number of free locations available in the current clock cycle (decreased by 1) when the current cycle
requires a write buffer push.

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_ahb_eh2h Databook

■ SEQ transfers can be occasionally accepted with two wait states, OKAY response. This can happen
when the SEQ is preceded by BUSY cycles, and the write buffer has become full on the write data
push of the previous SEQ/NSEQ write transfer.

If the write buffer availability is below the minimum:

■ NSEQ/SEQ transfers are SPLIT in two cycles

Regardless the write buffer availability:

■ BUSY and IDLE transfers are always responded with 0 wait states, OKAY response

2.2.3 Slave Response to Reads

The bridge response behavior on a read access depends on the value of shtrans and the read buffer status.
When a read access is seen by the bridge slave for the first time, the transfer is split and a read request is
forwarded to the bridge master. When the master receives the request, a read burst is executed onto the
secondary AHB and prefetched data is stored into the read buffer. When all data beats for the read burst
have been prefetched, the read buffer status becomes “ready.”

Data stored into the read buffer is marked by a tag that identifies the primary master which originated the
read transfer. When the buffer is ready and a NSEQ/SEQ read access occurs, a comparison is made between
shmaster and the tag of the current read buffer data entry.

■ A read access is marked by the bridge as “new” when either one of the following conditions occurs:

❑ Read buffer is ready but shmaster does not match the tag.

❑ The read buffer is “not ready”.

A new read access is typically a NSEQ access that is first seen by the bridge (was not previously
split, and split cleared by the bridge) or a SEQ access that goes beyond the prefetched data
availability into the buffer.

■ A read access is marked by the bridge as “return” when the following condition is true:

❑ The read buffer is ready and shmaster does match the tag.

A return read access typically occurs when a previously split read transfer is cleared by the
bridge itself and is retried by the primary master.

■ NSEQ/SEQ “new” transfers are SPLIT in two cycles.

■ NSEQ/SEQ “return” transfers are responded with 0 wait states, OKAY response or two cycle ERROR
response, depending on the response received by the bridge master on the corresponding secondary
transfer.

■ BUSY and IDLE transfers are always responded with 0 wait states, OKAY response.

2.2.4 Read Buffer Flush

There are two situations where the bridge must flush out part of or all of the content of the read buffer:

■ A locked transfer occurs when one or more previously split reads are still pending.

■ A read “return” burst is early terminated before all data beats present in the buffer have been fetched
by the primary master.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Functional Description

The read buffer is fully flushed when a locked transfer (read or write) is received and there are pending
reads into the bridge. The read buffer is partially flushed when a read burst transfer terminates at the
primary before all prefetched data entries stored into the buffer for that transfer have been popped out. The
number of entries to be flushed in this case is given by the number of prefetched entries that are still in the
buffer for that transfer.

The bridge has only one read buffer, which is used to queue in a first-in-first-out fashion sequential data
beats associated with read bursts requested by different primary masters. Under normal conditions, a
sequence of “new” read transfers (issued by different primary masters) is cleared and returned by the
bridge in the exact order in which the masters were split. If the last transfer is locked, pending reads of the
other master cannot be returned before the locked transfer has completed because the bus is locked and
cannot be handed over to another master. To avoid deadlock, the bridge must flush any non-locked read
data emerging from the first-in-first-out buffer to allow the last locked transfer to advance in the queue and
complete first.

Similarly, when a “return” read burst is early terminated, the bridge must flush out any remaining
sequential data beat (prefetched “in excess”) from the buffer, which would otherwise prevent any
subsequent read transfer to be returned and completed.

The output signal sflush is high whenever a data word is flushed out from the read buffer. The signal is
provided to allow external monitoring on the flush functionality.

2.2.5 Read-Sensitive Locations

Typically, a read buffer flush is not a problem when data is prefetched from true memory. If the flushed
data is still needed, the transfer is eventually repeated by the master. There is a loss in performance, but not
a loss of data. When data is prefetched from read-sensitive locations, a read buffer flush produces a data
loss.

To avoid this scenario, the following access rules must be followed when using the bridge to access
read-sensitive locations:

1. Always use a locked access type

2. Always use a SINGLE burst type

Rule1 can be dropped if no master in the primary AHB ever requests locked access to the bridge.

2.2.6 Deadlock

Two bridges can be used to connect two AHB subsystems in a bidirectional fashion. The split response
mechanisms automatically protect the system from deadlock. However, the case must be avoided where
both bridges are accessed with locked access type at almost the same time. In this scenario, unrecoverable
deadlock is produced. For more an illustration of a deadlock condition, see Figure 1-3.

2.2.7 Performance Impact of Locked Transfers

The bridge is designed to efficiently support traffic from multiple masters, where only a small percentage of
the transfers are locked and the distribution of the requests is such that only a small fraction of the locked
transfers cause the read buffer to flush. Handling of unlocked transfers becomes inefficient when intense
read traffic from multiple masters occurs where a high percentage of the requests is locked. For this reason,
locked access to the bridge must be used with care.

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_ahb_eh2h Databook

2.2.8 Performance Impact of Read Incremental Bursts

The bridge is designed to efficiently support read-defined length bursts, where the prefetch depth is known.
Using undefined length read bursts becomes inefficient when a big fraction of the prefetched data is not
needed by the master and is flushed by the bridge. For this reason, it is preferable to use defined-length
burst types whenever possible.

2.2.9 Local Access

A local access must always be 32 bits in size and SINGLE burst type. The behavior of the bridge is undefined
for other access types.

2.2.10 Prefetch Depth

The prefetch depth used by the bridge for a given read transfer depends on the following factors:

■ Select line used to qualify the transfer: shsel_p/shsel_np

■ Value of shburst on the read transfer

■ Distance of shaddr from the 1 KB boundary

■ Value of the EH2H_READ_PREFETCH_DEPTH configuration parameter

■ Number of free locations in the read buffer

Under normal conditions, the bridge always attempts to prefetch all data beats for the read burst. If this is
not possible because, for example, the number of free locations in the read buffer is too low, the bridge
reduces the prefetch depth to the value that fills the buffer.

2.2.11 SPLIT Response and SPLIT Clear

A SPLIT response is only generated after:

■ Write access or “new” read access when write buffer is full

A SPLIT that occurs in this situation is said to be a “write” SPLIT because it is caused by the write
buffer being unavailable.

■ New read access when write buffer is not full

A SPLIT that occurs in this situation is said to be a “read” split.

Both write and read SPLITs are always followed by a split clear.

A write SPLIT is cleared when the write buffer contains at least four free entries. The latency between the
SPLIT response and the SPLIT clear depends on the capacity of the master interface to drain the write
buffer.

A read SPLIT is cleared when the read buffer contains all prefetched read data associated with the SPLIT
read transaction. The latency depends on the number of reads and writes queued into the write buffer
before the current transaction, and the capacity of the master to execute queued transactions in the
secondary AHB.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Functional Description

2.2.12 Alternative “HREADY Low” Response Mode

The SPLIT response functionality can be inhibited in two ways: (1) qualifying the address phase with the
sstall signal driven to 1 or (2) configuring the bridge with EH2H_IS_SSPLIT_CAPABLE = 0. When the
SPLIT functionality is inhibited, the response sequence SPLIT-response/SPLIT-clear is replaced by
shready_resp low. Because hready low stalls the primary bus, transfers qualified by sstall = 1 are said to be
“stalling” transfers. Like locked transfers, stalling transfers require the read buffer to be flushed.

2.2.13 Timeout on “HREADY Low” Response Mode

A timeout counter counts sttick transitions while shready_resp is low. If two transitions are counted while
shready_resp is low, the transfer data phase is terminated with an ERROR response. The sttick signal is
expected to be an externally driven periodic waveform. If the timeout functionality is not required, sttick
can be hardwired to 1 or 0 on the bridge I/O.

2.3 Bridge Master Interface
The function of the master interface is described as follows:

2.3.1 Generation of Secondary Writes

The bridge master is sensitive to the status of the write buffer. As soon as write data is present in the buffer,
the master requests the bus and setup address and control information for the new transfer. The transfer
starts when the master is granted the bus; data is taken from the buffer and driven onto the bus.

In the case of a burst, the first NSEQ transfer is followed by one or more SEQ transfers. Once the last data
beat has been driven, burst execution terminates, mhtrans is driven to IDLE, and mhbusreq is driven low.
Write bursts can only be of type SINGLE or INCR. If the primary requests a wrapped burst type, it is
executed as an INCR burst, with mhtrans set to NSEQ on the address phase that follows the wrap.

2.3.2 Generation of Secondary Reads

The bridge master is sensitive to the status of the write buffer. As soon as a read request is present in the
write buffer, the master checks the availability of the read buffer. If the read buffer is available, the master
requests the bus and address and control information is setup for the new transfer. Otherwise, the master
waits for the read buffer to be drained by the bridge slave. The transfer starts when the master is granted the

NoteNoteNoteNote When the DW_axi_hmx is used with the DW_ahb_eh2h to bridge from AHB to AXI—that is, to
allow masters on an AHB bus to access slaves on an AXI bus—there is a performance issue
relating to write transfers. The DW_ahb_eh2h converts all write transactions to undefined
length INCR writes, and the DW_axi_hmx converts these undefined length INCR writes to
multiple AXI writes of length 1.
Although this does not affect the data throughput rate from the DW_axi_hmx, it does result in
some inefficiencies on the AXI bus:

■ Since every beat of write data is associated with a different address transfer, each address
transfer must win arbitration on the AXI bus before the associated data beat is allowed to
reach the slave.

■ For slaves—for example, memory controllers—that are optimized for transfers of a
particular burst length, there can be a reduction in throughput.

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_ahb_eh2h Databook

bus; data is sampled from the bus and put onto the read buffer. In case of a burst, the first NSEQ transfer is
followed by one or more SEQ transfers. Once the last data beat has been pushed onto the buffer, burst
execution terminates, mhtrans is driven to IDLE, and mhbusreq is driven low. Read bursts can be of any
burst type according to the requested burst type and the data-width ratio between the slave interface and
the master.

2.3.3 Behavior of ERROR Response

ERROR responses from a secondary slave are ignored. The bridge master does not insert IDLE on the
second cycle of the two-cycle response, and the burst is continued as normal. In case of a read, the error
response is returned to the primary master through the read buffer. In case of a write, an interrupt is
generated.

2.3.4 Behavior of SPLIT/RETRY Response

SPLIT and RETRY are handled in the same way. The bridge master cancels the next transfer, inserting IDLE
on the second cycle of the two-cycle response and repeats the retried/split transfer, reissuing address and
controls with HBURST equal to INCR. This continues until an ERROR or OKAY response is received.

2.3.5 Behavior of Early Burst Termination

If mhgrant is removed during burst execution, the bridge master continues requesting and waits for the bus
to be granted ownership again. Once bus ownership is granted, the burst is continued with HBURST equal
to INCR.

2.3.6 BUSY Cycles

There are cases where the bridge masters insert BUSY cycles during the execution of write bursts. This can
happen as a result of mhclk being much faster than shclk, or because of BUSY cycles inserted by the
originating primary master. BUSY cycles are never inserted during execution of read bursts.

2.3.7 HLOCK

Transfers that are requested by the primary with shmastlock asserted are handled by the bridge master as
locked. Bus arbitration is performed by the bridge master with mhbusreq and mhlock asserted.

2.4 Non-Standard Master ID Sideband Signal
Sideband signal smid/mmid is used to transmit additional information about the transfer in progress on
AHB slave. The sideband signal is expected to be constant for a burst operation. The EH2H_MID_WIDTH
parameter specifies the width of a non-standard Master ID sideband signals. When set to 0, the Master ID
sideband signals are removed. The value of smid signal is directly transmitted as mmid signal on the
secondary master interface. Figure 2-3 is an example AHB transaction in DW_ahb_eh2h.

NoteNoteNoteNote When a transaction has to be rebuilt due to a SPLIT, RETRY, De-grant Event or Early Burst
Termination, the bridge master always rebuilds the transfer with hburst equal to INCR. A De-
grant Event is defined as “the bridge master's hbusreq is active while hready is active and
hgrant is removed.”

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Functional Description

Figure 2-3 AHB Transaction in DW_ahb_eh2h With MID Sideband Signal

2.5 Write Buffer
The write buffer is used to transmit read and write requests from the bridge slave to the bridge master.

In write direction, the buffer is pushed by the bridge slave with the following information:

■ A control word containing burst type, master number, protection, locked attributes for the burst

■ An address word containing the nonsequential start address for the burst

■ One or more consecutive data words containing the write data for the burst

In read direction, the buffer is pushed by the bridge slave with the following information:

■ A control word containing burst type, master number, maximum prefetch depth to be applied

■ An address word containing the nonsequential start address for the burst

The two wait states inserted on NSEQ writes are required to push address and controls. The depth of the
buffer is under user control (minimum is four). The bigger the depth of the buffer, the more the capacity of
the bridge to smooth out peaks in the write bandwidth.

2.6 Read Buffer
The read buffer is used to transmit prefetched read data from the bridge master to the bridge slave.

The buffer is pushed by the bridge master with the following information:

■ A control word containing burst type, master number, prefetch depth actually applied by the bridge
master

■ One or more consecutive data words containing read data for burst and response

The depth of the buffer is under user control (minimum is four). The bigger the depth of the buffer, the more
the capacity of the bridge to store prefetched data for longer bursts or for multiple bursts requested in
succession by different masters.

https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_ahb_eh2h Databook

The guideline formula to set the read buffer depth to allow prefetch of k consecutive read bursts of length N
is:

READ_BUFFER_DEPTH=k*(N+1)

For example, to prefetch one burst of length 16, READ_BUFFER_DEPTH must be set to 17. To allow up to 2
INCR8 burst, READ_BUFFER_DEPTH must be set to 18.

2.7 Pipelines
To support high clock speed with tight input delay constraints, the read and write buffers are equipped
with retiming pipeline stages placed in front of push and pop interfaces.

The scope of these pipelines is to reduce critical timing paths between unregistered bus inputs and the
buffer’s push/pop logic. You can control instantiation of the pipelines using four independent “pipe-mode”
configuration parameters:

EH2H_WRITE_BUFFER_PUSH_PIPE_MODE
EH2H_READ_BUFFER_PUSH_PIPE_MODE
EH2H_WRITE_BUFFER_POP_PIPE_MODE
EH2H_READ_BUFFER_POP_PIPE_MODE

The pipelines are transparent in terms of functionality (apart from a small extra latency effect). For
applications where timing is not critical, you can avoid the instantiation of the pipelines setting these
pipe-mode parameters to 0.

For applications where timing is critical, you can determine if timing requirements are met instantiating all
the pipelines and synthesizing the component. At a later stage, a selective removal of the pipelines from
paths that are not critical can be performed to optimize for area.

For more information about setting these configuration parameters, see “Parameter Descriptions” on
page 39.

2.8 Interrupt and Software Registers Interface
The following local registers are available within the bridge:

■ EWS: Errored Write Status register

■ MEWS: Multiple Errored Write Status register

■ EWSC: Errored Write Status Clear register

■ Bit K of EWS is set when a write transfer (originated by the primary master K) executed by the bridge
master receives an ERROR response.

■ Bit K of MEWS is set when a write transfer (originated by the primary master K) receives an ERROR
response and the corresponding bit K in EWS is already set.

■ Writing to EWSC, a vector with bit K set to 1 causes bit K to be reset in EWS and MEWS registers.

After issuing a block of writes, the master can check if the writes are successful issuing a read to EWS. This
methodology can be used to facilitate software debugging. The interrupt line is generated from the OR of
EWS bits. The line is synchronous to mhclk.

For more information about these registers, see “Register Descriptions” on page 59.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Functional Description

2.9 Clocking
The following section discuss clocking details

2.9.1 Clock Adaptation

The bridge can be used to connect AHB systems running with arbitrary clocks. The bridge slave is a single
clock design operating with the primary AHB clock; the bridge master is a single clock design operating
with the secondary AHB clock. Clock adaptation is performed by the DesignWare Dual-Clock FIFO
Controllers (DW_fifoctl_s2_sf), internally used to implement FIFO management of the read and write
memory buffers.

If the EH2H_CLK_MODE parameter is set to “Synchronous,” a synchronization depth of 1 is used between
the push and pop clock domains of the internal dual clock FIFOs. Although the synchronization has a depth
of 1—that is, a signal can be synchronized in a single clock cycle—it is actually comprised of two
synchronization register stages. The first stage is performed on the negative edge of the destination clock,
and the second stage is performed on the positive edge of the destination clock.

You can use the EH2H_CLK_MODE parameter, described in “Parameter Descriptions” on page 39, to
specify whether the clocks are synchronous or asynchronous during configuration of the DW_ahb_eh2h.
The synchronous clock mode configuration does not affect the overall functionality of DW_ahb_eh2h but
allows for a reduction in the synchronization latency between the operations of the bridge slave and the
bridge master.

For more information about the DW Dual-Clock FIFO controllers, go to the following Synopsys web page:

http://www.synopsys.com/dw/ipdir.php?c=DW_fifoctl_s2_sf

If EH2H_CLK_MODE is set to asynchronous, you can individually choose the synchronization depths for
signals traversing from master interface to slave interface (EH2H_SIF_SYNC_DEPTH), and from slave
interface to master interface (EH2H_MIF_SYNC_DEPTH).

For both parameters, there is a choice of two- or three-stage positive-edge synchronization.

The DW_ahb_eh2h performs all clock domain crossing through the internal dual clock FIFOs. Within these
FIFOs, the pointer values are synchronized across clock domains, using the synchronization depth specified
by the user. The data from the FIFO is sampled from push clock domain registers to the pop clock domain
through a read multiplexor. Control logic within the DW_ahb_eh2h ensures that the currently selected read
data from the FIFO is not sampled in the same cycle that it is being updated by the push clock domain.

2.9.2 Reset Signals

To avoid serious operational failures, both sides of the DW_ahb_eh2h should be reset before any system
traffic reaches it; that is, it is an illegal operation to reset just one side of the DW_ahb_eh2h without resetting
the other side. It is not necessary to activate the mhresetn and shresetn signals simultaneously; they can be
reset at different times, but nothing should try to access the DW_ahb_eh2h between the time when one side
is reset and the other is reset.

Each reset signal can be asserted asynchronously, but it must be de-asserted synchronously with respect to
its own clock; that is mhresetn is de-asserted synchronously with respect to mhclk, and shresetn is
de-asserted synchronously with respect to shclk.

To avoid metastability on reset, each reset signal should be de-asserted for at least three cycles of the slower
clock.

http://www.synopsys.com/dw/ipdir.php?c=DW_fifoctl_s2_sf
https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_ahb_eh2h Databook

No transaction should be driven to the DW_ahb_eh2h under these combined conditions:

1. During assertion of mhresetn and shresetn.

2. For one additional cycle of shclk for the slave interface.

2.10 Timing Diagrams
This section provides timing diagrams for the DW_ahb_eh2h.

The timing diagram in Figure 2-4 shows the execution of a write INCR4 burst performed by the primary
master 1 (m1) to the bridge. Two wait states are inserted by the bridge slave on the first NSEQ burst beat, as
can be seen by the transitions on shready. The remaining SEQ beats have no wait states. After several clock
cycles of latency, the bridge master requests the bus, the arbiter grants ownership to master 2 (m2, the
bridge), and the bridge master executes the burst in four clock cycles.

Figure 2-4 Write Burst

The timing diagram in Figure 2-5 shows the execution of a read INCR4 burst performed by master 1 (m1) to
the bridge. The bridge uses split response operation mode. The bridge slave splits the transfer on the first
NSEQ burst beat. This can be seen by the transitions on shresp. At a later stage, the split is cleared as

INCR4

NSEQ SEQ

A0 A1 A2 A3

D0 D1 D2 D3

OKAY

INCR

NSEQ SEQ

A0 A1 A2 A3

D0 D1 D2 D3

shclk

shbusreq_m1

shgrant_m1

shsel_s2

shwrite

shburst

shtrans

shaddr

shwdata

shready

shresp

mhclk

mhbusreq_m2

mhgrant_m2

mhwrite

mhburst

mhtrans

mhaddr

mhwdata

mhready

mhresp

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Functional Description

indicated by the transition on the shsplit bus. The split master then retries the split transfer and completes
the burst in four clock cycles. In between the split response and the split clear events, the bridge master
prefetches read data from the secondary bus, as indicated by transitions on mh* signals.

Figure 2-5 Read Burst With Split Response Operation Mode

The timing diagram in Figure 2-6 shows the execution of a read INCR4 burst performed by master 1 (m1) to
the bridge. The bridge uses hready low operation mode. The bridge slave drives shready low on the first
NSEQ burst beat. At a later stage, shready is driven high, allowing the master to complete the burst in four

INCR4 INCR4

NSEQSEQ IDLE NSEQ SEQ

A0 A1 A0 A0 A1 A2 A3

D0 D1 D2 D3

SPLIT

1

INCR4

NSEQ SEQ

A0 A1 A2 A3

D0 D1 D2 D3

shclk

shbusreq_m1

shgrant_m1

shsel_s2

shwrite

shburst

shtrans

shaddr

shrdata

shready

shresp

shsplit

mhclk

mhbusreq_m2

mhgrant_m2

mhwrite

mhburst

mhtrans

mhaddr

mhrdata

mhready

mhresp

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Functional Description DesignWare DW_ahb_eh2h Databook

clock cycles. While hready is low, the bridge master prefetches read data from the secondary bus, as
indicated by transitions on mh* signals.

Figure 2-6 Read Burst With hready Low Operation Mode

INCR4

NSEQ SEQ

A0 A1 A2 A3

D0 D1 D2 D3

INCR4

NSEQ SEQ

A0 A1 A2 A3

D0 D1 D2 D3

shclk

shbusreq_m1

shgrant_m1

shsel_s2

shwrite

shburst

shtrans

shaddr

shrdata

shready

shresp

shsplit

mhclk

mhbusreq_m2

mhgrant_m2

mhwrite

mhburst

mhtrans

mhaddr

mhrdata

mhready

mhresp

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_ahb_eh2h Databook

3.1 Parameters

Table 3-1 Parameters

Label Description

Address bus width Specifies the address bus width of the primary AHB system to which the bridge is
attached as an AHB slave. The address and write data are sequentially pushed into
the write buffer. The write buffer width is determined by the data width. If the data is
less than 64 bits, the address width must be restricted to match the data width.
Therefore, this parameter can be set to 64 only when the data width is greater than
32 bits.
Values:

■ 32 (32)

■ 64 (64)

Default Value: 32
Enabled: EH2H_PHY_SDATA_WIDTH>32
Parameter Name: EH2H_PHY_SADDR_WIDTH

Data bus width Specifies the read and write data bus width of the primary AHB system to which the
bridge is attached as an AHB slave.
Values:

■ 32 (32)

■ 64 (64)

■ 128 (128)

■ 256 (256)

Default Value: 32
Enabled: Always
Parameter Name: EH2H_PHY_SDATA_WIDTH

Data bus endianness Specifies the data bus endianness of the primary AHB system to which the bridge is
attached as an AHB slave.
Values:

■ Little-Endian (0)

■ Big-Endian (1)

Default Value: Little-Endian
Enabled: Always
Parameter Name: EH2H_PHY_SBIG_ENDIAN

Number of masters in primary
AHB

Specifies the number of masters in the primary AHB. This parameter determines
how many bits are valid in the shsplit output bus and in the interrupt status registers.
Values: 1, ..., 15
Default Value: 3
Enabled: Always
Parameter Name: EH2H_PHY_NUM_PRIMARY_MASTERS

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Parameter Descriptions

Address bus width Specifies the address bus width of the secondary AHB system to which the bridge is
attached as an AHB master.
Values:
■ 32 (32)

■ 64 (64)

Default Value: 32
Enabled: Always
Parameter Name: EH2H_PHY_MADDR_WIDTH

Data bus width Specifies the read and write data bus width of the secondary AHB system to which
the bridge is attached as an AHB master.
Values:
■ 32 (32)

■ 64 (64)

■ 128 (128)

■ 256 (256)

Default Value: 32
Enabled: Always
Parameter Name: EH2H_PHY_MDATA_WIDTH

Data bus endianness Specifies the Data bus endianness of the secondary AHB system to which the
bridge is attached as an AHB master.
Values:

■ Little-Endian (0)

■ Big-Endian (1)

Default Value: Little-Endian
Enabled: Always
Parameter Name: EH2H_PHY_MBIG_ENDIAN

Write buffer depth Specifies the number of locations in the write buffer. The write buffer transfers
controls, addresses, and write data from the bridge slave to the bridge master.
Values: 4, ..., 256
Default Value: 8
Enabled: Always
Parameter Name: EH2H_WRITE_BUFFER_DEPTH

Read buffer depth Specifies the number of locations in the read buffer. The read buffer transfers
controls, addresses, and read data from the bridge master to the bridge slave.
Values: 4, ..., 256
Default Value: 8
Enabled: Always
Parameter Name: EH2H_READ_BUFFER_DEPTH

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_ahb_eh2h Databook

Read prefetch depth Specifies the number of locations considered for prefetch by the bridge master
when a read undefined-length incremental burst operation is requested by the
bridge slave.
Values: 1, ..., 16
Default Value: 1
Enabled: Always
Parameter Name: EH2H_READ_PREFETCH_DEPTH

Write buffer push pipe mode Reduces the critical timing path length between the bridge slave bus inputs and the
write buffer push logic, allowing the instantiation of a pipeline stage in front of the
push interface of the write buffer.
Values:

■ No-Pipe (0)

■ Pipe (1)

Default Value: Pipe
Enabled: Always
Parameter Name: EH2H_WRITE_BUFFER_PUSH_PIPE_MODE

Read buffer push pipe mode Reduces the critical timing path length between the bridge master bus inputs and
the read buffer push logic, allowing the instantiation of a pipeline stage in front of the
push interface of the read buffer.
Values:

■ No-Pipe (0)

■ Pipe (1)

Default Value: Pipe
Enabled: Always
Parameter Name: EH2H_READ_BUFFER_PUSH_PIPE_MODE

Write buffer pop pipe mode Reduces the critical timing path length between the bridge master bus inputs and
the write buffer pop logic, allowing the instantiation of a pipeline stage in front of the
pop interface of the write buffer.
Values:

■ No-Pipe (0)

■ Pipe (1)

Default Value: Pipe
Enabled: Always
Parameter Name: EH2H_WRITE_BUFFER_POP_PIPE_MODE

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Parameter Descriptions

Read buffer pop pipe mode Reduces the critical timing path length between the bridge slave bus inputs and the
read buffer pop logic, allowing the instantiation of a pipeline stage in front of the pop
interface of the read buffer.
Values:
■ No-Pipe (0)

■ Pipe (1)

Default Value: Pipe
Enabled: Always
Parameter Name: EH2H_READ_BUFFER_POP_PIPE_MODE

Clocking mode Determines how two clock domains must be synchronized. The bridge slave is
always clocked by shclk and reset by shresetn. The bridge master is always clocked
by mhclk and reset by mhresetn.
Values:
■ Asynchronous (0)

■ Synchronous (1)

Default Value: Asynchronous
Enabled: Always
Parameter Name: EH2H_CLK_MODE

Slave Interface
Synchronisation Depth ?

Determines the amount of synchronization to be placed on signals crossing from
the master interface to the slave interface. This controls the depth of
synchronization added to the push pointer of the read buffer and the pop pointer of
the write buffer.
Values:
■ 2-stage posedge (2)

■ 3 stage posedge (3)

Default Value: 3 stage posedge
Enabled: EH2H_CLK_MODE==0
Parameter Name: EH2H_SIF_SYNC_DEPTH

Master Interface
Synchronisation Depth ?

Determines the amount of synchronization to be placed on signals crossing from
the slave interface to the master interface. This controls the depth of
synchronization added to the pop pointer of the read buffer and the push pointer of
the write buffer.
Values:

■ 2-stage posedge (2)

■ 3 stage posedge (3)

Default Value: 3 stage posedge
Enabled: EH2H_CLK_MODE==0
Parameter Name: EH2H_MIF_SYNC_DEPTH

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_ahb_eh2h Databook

SPLIT capable slave Enables generation of a SPLIT response and SPLIT clear from the slave interface.
When this parameter is False, the slave interface never generated s SPLIT. When
True, the slave interface SPLIT behavior can be controlled dynamically using the
sstall input signal.
Values:
■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: EH2H_IS_SSPLIT_CAPABLE

Non Standard Master ID
Sideband Signal Width

The parameter specifies the width of a non standard Master ID sideband signals.
When set to 0, the Master ID sideband signals are removed.
Values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Default Value: 0
Enabled: Always
Parameter Name: EH2H_MID_WIDTH

Connect shsel_p Controls the connection of the shsel_p signal to the AHB fabric. If this value is set to
1, the shsel_p signal is included in the connection to the target interface. If this value
is set to 0, the shsel_p input signal is tied to logic 0.
The connection order for hsel is:

■ shsel_p

■ shsel_np

■ shsel_reg

Values: 0, 1
Default Value: 1
Enabled: This parameter is used in the coreAssembler.
Parameter Name: EH2H_CONNECT_HSEL_P

Connect shsel_np Controls the connection of the shsel_np signal to the AHB fabric. If this value is set
to 1, the shsel_np signal is included in the connection to the target interface. If this
value is set to 0, the shsel_np input signal is tied to logic 0. If
EH2H_CONNECT_HSEL_P is enabled, shsel_np connects to the slave index after
shsel_p.
The connection order for hsel is:

■ shsel_p

■ shsel_np

■ shsel_reg

Values: 0, 1
Default Value: 0
Enabled: This parameter is used in the coreAssembler.
Parameter Name: EH2H_CONNECT_HSEL_NP

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Parameter Descriptions

Connect shsel_reg Controls the connection of the shsel_reg signal to the AHB fabric. If this value is set
to 1, the shsel_reg signal is included in the connection to the target interface. If this
value is set to 0, the shsel_reg input signal is tied to logic 0. If
EH2H_CONNECT_HSEL_P and EH2H_CONNECT_HSEL_NP are enabled, the
shsel_reg signal connects to the slave index after the shsel_np signal. If
EH2H_CONNECT_HSEL_NP is not enabled, shsel_reg connects to the slave index
after shsel_p.
The connection order for hsel is:

■ shsel_p

■ shsel_np

■ shsel_reg

Values: 0, 1
Default Value: 0
Enabled: This parameter is used in the coreAssembler.
Parameter Name: EH2H_CONNECT_HSEL_REG

Table 3-1 Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Parameter Descriptions DesignWare DW_ahb_eh2h Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the controller. For configurable IP titles, your actual
configuration might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
controller. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the inactive state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_ahb_eh2h Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ Slave Interface on page 49

■ Master Interface on page 54

■ Miscellaneous Signals on page 57

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Signal Descriptions

4.1 Slave Interface Signals

shclk - - shrdata
shresetn - - shready_resp

shaddr - - shresp
shburst - - shsplit

shmaster - - sflush
shmastlock -

shprot -
shready -

shsel_reg -
shsel_np -
shsel_p -

shsize -
shtrans -

shwdata -
shwrite -

smid -
sttick -
sstall -

Table 4-1 Slave Interface Signals

Port Name I/O Description

shrdata[(SDW-1):0] O Slave read data
Exists: Always
Synchronous To: shclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

shready_resp O Slave current data phase complete
Exists: Always
Synchronous To: shclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

shresp[1:0] O Slave response control
Exists: Always
Synchronous To: shclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_ahb_eh2h Databook

shsplit[15:0] O Slave split clear indication for the arbiter
Exists: Always
Synchronous To: EH2H_IS_SSPLIT_CAPABLE==1 ? "shclk" :
"None"
Registered: EH2H_IS_SSPLIT_CAPABLE == 1 ?
"0:0=No;15:1=Yes" : "No"
Power Domain: SINGLE_DOMAIN
Active State: High

sflush O External monitoring on the flush functionality.This signal is high
whenever a data word is flushed out from the read buffer.
Exists: Always
Synchronous To: shclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

shclk I Slave clock
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

shresetn I Slave reset. Asynchronous assertion, synchronous de-assertion.
The reset must be deasserted synchronously after the rising edge of
slave port clock. DW_ahb_eh2h does not contain logic to perform
this synchronization, so it must be provided externally.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

shaddr[(SAW-1):0] I Slave address
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-1 Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Signal Descriptions

shburst[2:0] I Slave burst control
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

shmaster[3:0] I Master which owns address bus
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

shmastlock I Slave lock control
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

shprot[3:0] I Slave protection control
Exists: Always
Synchronous To: shclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

shready I Slave previous data phase complete
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

shsel_reg I Slave select used for local register access
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-1 Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_ahb_eh2h Databook

shsel_np I Slave select used for secondary access when prefetch on INCR
reads can be enabled
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

shsel_p I Slave select used for secondary access when prefetch on INCR
reads can be disabled
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

shsize[2:0] I Slave size control
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

shtrans[1:0] I Slave transfer control
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

shwdata[(SDW-1):0] I Slave write data
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

shwrite I Slave direction control
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-1 Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Signal Descriptions

smid[(EH2H_MID_WIDTH-1):0] I Optional. Non standard Master ID sideband signal input.
Exists: EH2H_MID_WIDTH!=0
Synchronous To: shclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

sttick I Slave periodic waveform used to timeout HREADY low responses
Exists: Always
Synchronous To: shclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

sstall I Slave address phase qualifier for transfers.

■ 1: HREADY low response mode

■ 0: SPLIT response mode

Exists: Always
Synchronous To: (EH2H_IS_SSPLIT_CAPABLE == 1) ? "shclk" :
"None"
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-1 Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_ahb_eh2h Databook

4.2 Master Interface Signals

mhclk - - mhaddr
mhresetn - - mhburst
mhgrant - - mhbusreq
mhrdata - - mhlock
mhready - - mhprot

mhresp - - mhsize
- mhtrans
- mhwdata
- mhwrite
- mmid

Table 4-2 Master Interface Signals

Port Name I/O Description

mhaddr[(MAW-1):0] O Master address
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

mhburst[2:0] O Master burst control
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

mhbusreq O Master bus request status
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

mhlock O Master lock control
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Signal Descriptions

mhprot[3:0] O Master protection control
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

mhsize[2:0] O Master size control
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

mhtrans[1:0] O Master transfer control
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

mhwdata[(MDW-1):0] O Master write data
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

mhwrite O Master direction control
Exists: Always
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

mmid[(EH2H_MID_WIDTH-1):0] O Optional. Non standard Master ID sideband signal output.
Exists: EH2H_MID_WIDTH!=0
Synchronous To: mhclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-2 Master Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_ahb_eh2h Databook

mhclk I Master clock
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

mhresetn I Master reset. Asynchronous assertion, synchronous de-assertion.
The reset must be deasserted synchronously after the rising edge of
master port clock. DW_ahb_eh2h does not contain logic to perform
this synchronization, so it must be provided externally
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

mhgrant I Master bus grant status
Exists: Always
Synchronous To: mhclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

mhrdata[(MDW-1):0] I Master read data
Exists: Always
Synchronous To: mhclk
Registered: EH2H_PHY_MDATA_WIDTH >
EH2H_PHY_SDATA_WIDTH ? No : Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

mhready I Master data phase complete
Exists: Always
Synchronous To: mhclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

mhresp[1:0] I Master response control
Exists: Always
Synchronous To: mhclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-2 Master Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Signal Descriptions

4.3 Miscellaneous Signals

- minterrupt

Table 4-3 Miscellaneous Signals

Port Name I/O Description

minterrupt O Master interrupt generated from the OR of the Error on Write Status
register bits
Exists: Always
Synchronous To: mhclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Signal Descriptions DesignWare DW_ahb_eh2h Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

5
Register Descriptions

This chapter details all possible registers in the core. They are arranged hierarchically into maps and blocks
(banks). For configurable IP titles, your actual configuration might not contain all of these registers.

Attention: For configurable IP titles, do not use this document to determine the exact attributes of your
register map. It is for reference purposes only.

When you configure the core in coreConsultant, you must access the register attributes for your actual
configuration at workspace/report/ComponentRegisters.html or
workspace/report/ComponentRegisters.xml after you have completed the report creation activity. That
report comes from the exact same source as this chapter but removes all the registers that are not in your
actual configuration. This does not apply to non-configurable IP titles. In addition, all parameter
expressions are evaluated to actual values. Therefore, the Offset and Memory Access values might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Exists Expressions

The Exist expressions indicate the combination of configuration parameters required for a register, field, or
block to exist in the memory map. The expression is only valid in the local context and does not indicate the
conditions for existence of the parent. For example, the Exists expression for a bit field in a register assumes
that the register exists and does not include the conditions for existence of the register.

Offset

The term Offset is synonymous with Address.

Memory Access Attributes

The Memory Access attribute is defined as <ReadBehavior>/<WriteBehavior> which are defined in the
following table.

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

Special Optional Attributes

Some register fields might use the following optional attributes.

Table 5-1 Possible Read and Write Behaviors

Read (or Write) Behavior Description

RC A read clears this register field.

RS A read sets this register field.

RM A read modifies the contents of this register field.

Wo You can only write to this register once field.

W1C A write of 1 clears this register field.

W1S A write of 1 sets this register field.

W1T A write of 1 toggles this register field.

W0C A write of 0 clears this register field.

W0S A write of 0 sets this register field.

W0T A write of 0 toggles this register field.

WC Any write clears this register field.

WS Any write sets this register field.

WM Any write toggles this register field.

no Read Behavior attribute You cannot read this register. It is Write-Only.

no Write Behavior attribute You cannot write to this register. It is Read-Only.

Table 5-2 Memory Access Examples

Memory Access Description

R Read-only register field.

W Write-only register field.

R/W Read/write register field.

R/W1C You can read this register field. Writing 1 clears it.

RC/W1C Reading this register field clears it. Writing 1 clears it.

R/Wo You can read this register field. You can only write to it once.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Register Descriptions

Component Banks/Blocks

The following table shows the address blocks for each memory map. Follow the link for an address block to
see a table of its registers.

Table 5-3 Optional Attributes

Attribute Description

Volatile As defined by the IP-XACT specification. If true, indicates in the
case of a write followed by read, or in the case of two consecutive
reads, there is no guarantee as to what is returned by the read on
the second transaction or that this return value is consistent with the
write or read of the first transaction. The element implies there is
some additional mechanism by which this field can acquire new
values other than by reads/writes/resets and other access methods
known to IP-XACT. For example, when the core updates the register
field contents.

Testable As defined by the IP-XACT specification. Possible values are
unconstrained, untestable, readOnly, writeAsRead, restore.
Untestable means that this field is untestable by a simple automated
register test. For example, the read-write access of the register is
controlled by a pin or another register. readOnly means that you
should not write to this register; only read from it. This might apply
for a register that modifies the contents of another register.

Reset Mask As defined by the IP-XACT specification. Indicates that this register
field has an unknown reset value. For example, the reset value is set
by another register or an input pin; or the register is implemented
using RAM.

* Varies Indicates that the memory access (or reset) attribute (read, write
behavior) is not fixed. For example, the read-write access of the
register is controlled by a pin or another register. Or when the
access depends on some configuration parameter; in this case the
post-configuration report in coreConsultant gives the actual access
value.

Table 5-4 Address Banks/Blocks for Memory Map: DW_ahb_eh2h_mem_map

Address Block Description

DW_ahb_eh2h_addr_block1 on page 62 DW_ahb_eh2h address block
Exists: Always

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

5.1 DW_ahb_eh2h_mem_map/DW_ahb_eh2h_addr_block1 Registers
DW_ahb_eh2h address block Follow the link for the register to see a detailed description of the register.

Table 5-5 Registers for Address Block: DW_ahb_eh2h_mem_map/DW_ahb_eh2h_addr_block1

Register Offset Description

EH2H_EWSC on page 63 0x0 This register resets the EH2H_EWS[K] and
EH2H_MEWS[K] bits.

EH2H_EWS on page 65 0x4 This register is set when the bridge master receives an
ERROR response on a write transfer. The...

EH2H_MEWS on page 67 0x8 This register is set when the bridge master receives an
ERROR response on a write transfer and the...

EH2H_COMP_PARM_1 on page 69 0x3f0 This register provides the value of the configured
parameters, namely EH2H_IS_SSPLIT_CAPABLE,
EH2H_CLK_MODE,...

EH2H_COMP_PARM_2 on page 73 0x3f4 This register provides the value of the configured parameters
namely, EH2H_WRITE_BUFFER_DEPTH,
EH2H_READ_BUFFER...

EH2H_COMP_VERSION on page 74 0x3f8 This register provides the EH2H Component Version ID.

EH2H_COMP_TYPE on page 75 0x3fc This register provides information about the Component
Type.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Register Descriptions

5.1.1 EH2H_EWSC

■ Name: Error on Write Status Clear

■ Description: This register resets the EH2H_EWS[K] and EH2H_MEWS[K] bits.

■ Size: 32 bits

■ Offset: 0x0

■ Exists: Always

31
:y

x:
1

0

R
S

V
D

_1
_E

H
2H

_E
W

S
C

E
H

2H
_E

W
S

C

R
S

V
D

_E
H

2H
_E

W
S

C

Table 5-6 Fields for Register: EH2H_EWSC

Bits Name
Memory
Access Description

31:y RSVD_1_EH2H_EWSC W (RSVD_1_EH2H_EWSC) These bits of the EH2H_EWSC
register are reserved. They always return 0.
Value After Reset: 0x0
Exists: Always
Range Variable[y]:
EH2H_PHY_NUM_PRIMARY_MASTERS + 1

x:1 EH2H_EWSC W This bit denotes whether the status is cleared or not.
Values:

■ 0x0 (NO_EFFECT): No effect

■ 0x1 (CLEAR_STATUS): Clear the status

Value After Reset: 0x0
Exists: Always
Range Variable[x]:
EH2H_PHY_NUM_PRIMARY_MASTERS

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

0 RSVD_EH2H_EWSC W These bits of the EH2H_EWSC register are reserved. They
always return 0.
Value After Reset: 0x0
Exists: Always

Table 5-6 Fields for Register: EH2H_EWSC (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Register Descriptions

5.1.2 EH2H_EWS

■ Name: Error on Write Status

■ Description: This register is set when the bridge master receives an ERROR response on a write
transfer. The index K corresponds to the primary master which originated the transfer. After issuing
a block of writes, the primary master can check if the writes were successful by issuing a read to EWS.
This methodology can be used to facilitate software debugging.

■ Size: 32 bits

■ Offset: 0x4

■ Exists: Always

31
:y

x:
1

0

R
S

V
D

_1
_E

H
2H

_E
W

S

E
H

2H
_E

W
S

R
S

V
D

_E
H

2H
_E

W
S

Table 5-7 Fields for Register: EH2H_EWS

Bits Name
Memory
Access Description

31:y RSVD_1_EH2H_EWS R This bit of the EH2H_EWS register is reserved. It always
returns 0.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]:
EH2H_PHY_NUM_PRIMARY_MASTERS + 1

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

x:1 EH2H_EWS R These bits denote the Interrupt status. The interrupt line
(minterrupt) is generated from the OR of the EWS bits and is
synchronous to mhclk.
Values:

■ 0x0 (INACTIVE): Interrupt is Inactive

■ 0x1 (ACTIVE): Interrupt is Active

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]:
EH2H_PHY_NUM_PRIMARY_MASTERS

0 RSVD_EH2H_EWS R These bits of the EH2H_EWS register are reserved. They
always return 0.
Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-7 Fields for Register: EH2H_EWS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Register Descriptions

5.1.3 EH2H_MEWS

■ Name: Multiple Errors on Write Status

■ Description: This register is set when the bridge master receives an ERROR response on a write
transfer and the EH2H_EWS[K] bit is already set. The index K corresponds to the primary master that
originated the transfer.

■ Size: 32 bits

■ Offset: 0x8

■ Exists: Always

31
:y

x:
1

0

R
S

V
D

_1
_E

H
2H

_M
E

W
S

E
H

2H
_M

E
W

S

R
S

V
D

_E
H

2H
_M

E
W

S

Table 5-8 Fields for Register: EH2H_MEWS

Bits Name
Memory
Access Description

31:y RSVD_1_EH2H_MEWS R These bits (RSVD_1_EH2H_MEWS) of the EH2H_MEWS
register are reserved. They always return 0.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]:
EH2H_PHY_NUM_PRIMARY_MASTERS + 1

x:1 EH2H_MEWS R Interrupt status.
Values:
■ 0x0 (INACTIVE): Interrupt is Inactive

■ 0x1 (ACTIVE): Interrupt is Active

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]:
EH2H_PHY_NUM_PRIMARY_MASTERS

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

0 RSVD_EH2H_MEWS R This bit (RSVD_EH2H_MEWS) of the EH2H_MEWS register
is reserved. It always returns 0.
Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-8 Fields for Register: EH2H_MEWS (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Register Descriptions

5.1.4 EH2H_COMP_PARM_1

■ Name: Component Parameter Register 1

■ Description: This register provides the value of the configured parameters, namely
EH2H_IS_SSPLIT_CAPABLE, EH2H_CLK_MODE, EH2H_NUM_PRIMARY_MASTERS,
EH2H_PHY_SBIG_ENDIAN, EH2H_PHY_SADDR_WIDTH, EH2H_PHY_SDATA_WIDTH,
EH2H_PHY_MBIG_ENDIAN, EH2H_PHY_MADDR_WIDTH, EH2H_PHY_MDATA_WIDTH.

■ Size: 32 bits

■ Offset: 0x3f0

■ Exists: Always

31
:1

7

16
:2

1:
0

R
S

V
D

_1
_E

H
2H

_C
O

M
P

_P
A

R
A

M
_1

E
H

2H
_C

O
M

P
_P

A
R

M
_1

R
S

V
D

_E
H

2H
_C

O
M

P
_P

A
R

A
M

_1

Table 5-9 Fields for Register: EH2H_COMP_PARM_1

Bits Name
Memory
Access Description

31:17 RSVD_1_EH2H_COMP_PARAM_
1

R RSVD_1_EH2H_COMP_PARAM_1 Reserved field read-
only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

16:2 EH2H_COMP_PARM_1 R These bits specify the following values:

■ 2nd bit for IS_SSPLIT_CAPABLE

- 0x0 (FALSE): EH2H is not Split Capable
- 0x1 (TRUE): EH2H is Split Capable

■ 3rd bit for CLK_MODE

- 0x0 (ASYNC_CLOCK_MODE): Asynchronous Clock
Mode

- 0x1 (SYNC_CLOCK_MODE): Synchronous Clock
Mode

■ [7:4] for NUM_PRIMARY_MASTERS

- 0x1 (PRIMARY_MASTERS_1): Number of primary
masters is equal to 1

- 0x2 (PRIMARY_MASTERS_2): Number of primary
masters is equal to 2

- 0x3 (PRIMARY_MASTERS_3): Number of primary
masters is equal to 3

- 0x4 (PRIMARY_MASTERS_4): Number of primary
masters is equal to 4

- 0x5 (PRIMARY_MASTERS_5): Number of primary
masters is equal to 5

- 0x6 (PRIMARY_MASTERS_6): Number of primary
masters is equal to 6

- 0x7 (PRIMARY_MASTERS_7): Number of primary
masters is equal to 7

- 0x8 (PRIMARY_MASTERS_8): Number of primary
masters is equal to 8

- 0x9 (PRIMARY_MASTERS_9): Number of primary
masters is equal to 9

- 0xa (PRIMARY_MASTERS_10): Number of primary
masters is equal to 10

- 0xb (PRIMARY_MASTERS_11): Number of primary
masters is equal to 11

- 0xc (PRIMARY_MASTERS_12): Number of primary
masters is equal to 12

- 0xd (PRIMARY_MASTERS_13): Number of primary
masters is equal to 13

- 0xe (PRIMARY_MASTERS_14): Number of primary
masters is equal to 14

- 0xf (PRIMARY_MASTERS_15): Number of primary
masters is equal to 15

■ 8th bit for PHY_SBIG_ENDIAN

Table 5-9 Fields for Register: EH2H_COMP_PARM_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Register Descriptions

- 0x0 (SLAVE_LITTLE_ENDIAN): Slave is Little Endian
- 0x1 (SLAVE_BIG_ENDIAN): Slave is Big Endian

■ 9th bit for PHY_SADDR_WIDTH

- 0x0 (SLAVE_ADDR_WIDTH_32): AHB slave address
bus width is equal to 32

- 0x1 (SLAVE_ADDR_WIDTH_64): AHB slave address
bus width is equal to 64

■ [11:10] for PHY_SDATA_WIDTH

- 0x0 (SLAVE_DATA_WIDTH_32): AHB slave data bus
width is equal to 32

- 0x1 (SLAVE_DATA_WIDTH_64): AHB slave data bus
width is equal to 64

- 0x2 (SLAVE_DATA_WIDTH_128): AHB slave data bus
width is equal to 128

- 0x3 (SLAVE_DATA_WIDTH_256): AHB slave data bus
width is equal to 256

■ 12th bit for PHY_MBIG_ENDIAN

- 0x0 (MASTER_LITTLE_ENDIAN): Master is Little
Endian

- 0x1 (MASTER_BIG_ENDIAN): Master is Big Endian

■ 13th bit for PHY_MADDR_WIDTH

- 0x0 (MASTER_ADDR_WIDTH_32): AHB master
address bus width is equal to 32

- 0x1 (MASTER_ADDR_WIDTH_64): AHB master
address bus width is equal to 64

■ [16:14] for PHY_MDATA_WIDTH

- 0x0 (MASTER_DATA_WIDTH_8): AHB slave data bus
width is equal to 8

- 0x1 (MASTER_DATA_WIDTH_16): AHB slave data
bus width is equal to 16

- 0x2 (MASTER_DATA_WIDTH_32): AHB slave data
bus width is equal to 32

- 0x3 (MASTER_DATA_WIDTH_64): AHB slave data
bus width is equal to 64

- 0x4 (MASTER_DATA_WIDTH_128): AHB slave data
bus width is equal to 128

- 0x5 (MASTER_DATA_WIDTH_256): AHB slave data
bus width is equal to 256

Value After Reset: COMP_P_1_RESET_VAL
Exists: Always

Table 5-9 Fields for Register: EH2H_COMP_PARM_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

1:0 RSVD_EH2H_COMP_PARAM_1 R These bits (RSVD_EH2H_COMP_PARAM_1) of the
EH2H_COMP_PARM_1 register are reserved. They always
return 0.
Value After Reset: 0x0
Exists: Always

Table 5-9 Fields for Register: EH2H_COMP_PARM_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Register Descriptions

5.1.5 EH2H_COMP_PARM_2

■ Name: Component Parameter Register 2

■ Description: This register provides the value of the configured parameters namely,
EH2H_WRITE_BUFFER_DEPTH, EH2H_READ_BUFFER DEPTH, and
EH2H_READ_PREFETCH_DEPTH.

■ Size: 32 bits

■ Offset: 0x3f4

■ Exists: Always

31
:2

0

19
:0

R
S

V
D

_E
H

2H
_C

O
M

P
_P

A
R

A
M

_2

E
H

2H
_C

O
M

P
_P

A
R

M
_2

Table 5-10 Fields for Register: EH2H_COMP_PARM_2

Bits Name
Memory
Access Description

31:20 RSVD_EH2H_COMP_PARAM_2 R These bits (RSVD_EH2H_COMP_PARAM_2) of the
EH2H_COMP_PARM_2 register are reserved. They always
return 0.
Value After Reset: 0x0
Exists: Always

19:0 EH2H_COMP_PARM_2 R These bits specify the value for WRITE_BUFFER_DEPTH,
READ_BUFFER_DEPTH, and READ_PREFETCH_DEPTH.

■ [7:0] for WRITE_BUFFER DEPTH

■ [15:8] for READ_BUFFER DEPTH

■ [19:16] for READ_PREFETCH_DEPTH

Value After Reset: COMP_P_2_RESET_VAL
Exists: Always

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

5.1.6 EH2H_COMP_VERSION

■ Name: EH2H Component Version Register

■ Description: This register provides the EH2H Component Version ID.

■ Size: 32 bits

■ Offset: 0x3f8

■ Exists: Always

31
:0

E
H

2H
_C

O
M

P
_V

E
R

S
IO

N

Table 5-11 Fields for Register: EH2H_COMP_VERSION

Bits Name
Memory
Access Description

31:0 EH2H_COMP_VERSION R These bits specify the component version ID.
Value After Reset: EH2H_COMP_VERSION
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Register Descriptions

5.1.7 EH2H_COMP_TYPE

■ Name: EH2H Component Type Register

■ Description: This register provides information about the Component Type.

■ Size: 32 bits

■ Offset: 0x3fc

■ Exists: Always

31
:0

E
H

2H
_C

O
M

P
_T

Y
P

E

Table 5-12 Fields for Register: EH2H_COMP_TYPE

Bits Name
Memory
Access Description

31:0 EH2H_COMP_TYPE R These bits specify the DesignWare Component Type number
(0x44571130). This assigned unique hexadecimal value is
constant and is derived from the two ASCII letters "DW"
followed by a 16-bit unsigned number.
Value After Reset: EH2H_COMP_TYPE
Exists: Always

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Register Descriptions DesignWare DW_ahb_eh2h Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

6
Programming the DW_ahb_eh2h

This chapter describes the programmable features of the DW_ahb_eh2h.

6.1 Programming Considerations
You should note the following guidelines when programming the three software registers: Error on Write
Status Clear (EWSC), Error on Write Status (EWS), Multiple Errors on Write Status (MEWS).

■ Access to local registers must always be 32 bits wide.

■ Bridge slave interface does not check the size of the local register access.

■ Bridge slave interface does not perform a direction check on local register access.

■ Execution and ordering of local accesses is always consistent with any other read and write operation
performed by the bridge. The only difference is that the transfer is terminated within the bridge and
does not affect the secondary bus.

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Programming the DW_ahb_eh2h DesignWare DW_ahb_eh2h Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

7
Verification

This chapter provides an overview of the testbench available for DW_ahb_eh2h verification. Once you have
configured the DW_ahb_eh2h in coreConsultant and have set up the verification environment, you can run
simulations automatically.

7.1 Overview of Vera Tests
The DW_ahb_eh2h peripheral incorporates numerous operational features. Many of these features, having
related operational characteristics, are combined into one test to reduce simulation time. Some of the tests
listed in this chapter do have some overlap.

A detailed description of each test, outlining specific transactions, appears in the README file located in
the workspace/sim/ directory.

The DW_ahb_eh2h verification testbench performs the following set of tests.

7.1.1 test_01_random

This test verifies the overall bridge functionality with randomized stimuli. Monitors are switched off to
allow simulation of longer random sequences. Up to three primary masters are used to generate random
bus traffic on the primary AHB. The bridge slave is accessed in both read and write direction by all the
masters. Other slaves are also present in the system. Two secondary masters are used to generate random
bus traffic on the secondary AHB. The bridge master competes with those masters to access in both read and
write direction secondary slaves.

Randomized parameters for the bus masters are:

■ Requesting/non-requesting behavior of each master

■ Locked transfers versus non-locked transfers

■ Transfer attributes: address, protection, direction, burst type, size

NoteNoteNoteNote The DW_ahb_eh2h verification testbench is built with DesignWare Verification IP (VIP). Make
sure you have the supported version of the VIP components for this release, otherwise, you
may experience some tool compatibility problems. For more information about supported tools
in this release, refer to the following web page:
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf

https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Verification DesignWare DW_ahb_eh2h Databook

■ Transfer data (algorithmically correlated with the random address)

■ Busy cycle insertion

■ Incremental burst length

Randomized parameters for the bus slaves are:

■ Response type (no ERROR response in the secondary AHB)

■ Wait states

■ Split-response/split-clear delay

This test checks:

■ Data consistency across the bridge– If a secondary location has been written through the bridge, it
must always be possible to read consistent data from that location.

■ Deadlock – Timeout for transfer completion is implemented in each master to ensure any transfer
completes within a predefined amount of clock cycles.

■ AMBA protocol – Bridge slave responses are monitored with a dedicated checker.

7.1.2 test_02_random_m

This test verifies the protocol behavior of the bridge master and uses similar stimuli and checking as in the
test_01_random test. It also verifies the bridge master protocol behavior using the AHB bus monitor.

7.1.3 test_03_random_c

This test is used to cover scenarios with more than three masters in the primary AHB. Up to
EH2H_NUM_PRIMARY_MASTERS are used to generate random bus traffic on the primary AHB. The
bridge slave is accessed in both read and write direction by all the masters. Other slaves are also present in
the system. The test proceeds similarly to test_01_random and test_02_random_m.

7.1.4 test_04_random_e

This test is used to cover ERROR response scenarios and uses stimuli similar to test_01_random except that
slaves in the secondary AHB are configured to generate exclusively OKAY and ERROR responses. This test
runs similar checks as test_01_random, however, data consistency checks are inhibited.

7.1.5 test_20_version

This test verifies the consistency between the version ID value read from the corresponding register within
the bridge, the version ID constant in the cc_constants file, and the coreKit version ID.

7.1.6 test_21_regfile

This test reads and writes all the register within the software interface of the bridge.

7.1.7 test_22_timeout

This test covers timeout scenarios where the bridge terminates a waited transfer with an ERROR response.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Verification

7.1.8 test_23_demo

This test produces waveforms for simple read and write transfers to show the basic behavior of the bridge
master and the bridge slave.

7.2 Overview of DW_ahb_eh2h Testbench
The following diagram is a illustrates the DW_ahb_eh2h testbench.

Figure 7-1 DW_ahb_eh2h Testbench

7.2.1 Running Simulations from the Command Line

To run simulations from a UNIX command line, a simulation model must be generated through the
coreConsultant GUI. In addition, all tests and test options must be configured in the Verification tab of the
GUI. Then, simulations can be run as follows:

To run all tests selected in the GUI, change your working directory to DW_ahb_eh2h/sim and then execute
the following command:

runtest.sh

Vera Tests
(test stimuli and results)

test_DW_ahb_eh2h.v

= RTL Vera shell

sa1

sa3

ma1

mb1

sb1

monmon

U_ahb_a U_ahb_b

= RTL Testbench

= Vera program

= RTL

mb3

U_eh2h_a

mb2sa2

sb3

test_DW_ahb_h2h.vr

DUT

ma15

sax, max, sbx, mbx = AHB maste
slave BFMs

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Verification DesignWare DW_ahb_eh2h Databook

To run single tests, change the working directory to DW_ahb_eh2h/sim and run the following:

runtest --simulator selected_simulator --test test_name

The selected_simulator is the one chosen in the GUI (does not work if not configured in the GUI). The
test_name is the name of the selected test and the sub directory where the test is located. For example, to run
the simple register write/read test using vcs, run the following:

runtest --simulator vcs --test test_reg_wr_rd

The results of running tests through the command line are available only in each test directory, in the
test.log file.

7.2.2 Command Line Output Files

The runtest.log file is generated in workspace/sim/ only as a result of running simulations from
coreConsultant or coreAssembler. The runtest.log file provides a pass/fail result for the particular
simulation, as well as some detailed information. The test.log file located in workspace/sim/test_name is
generated when tests are run from the GUI or command line, and provides more detail on each specific test
simulation, in addition to the pass/fail status. The waveforms are also written to this directory, when
enabled. To enable waveform generation from the command line, the switch DumpEnabled must be set as
follows:

runtest --simulator vcs --DumpEnabled 1 --test test_reg_wr_rd

If the simulation results match expected results, the simulation completes successfully and the simulation
status in the test.log file is PASSED. If the simulation results do not match expected results, the simulation
terminates and the simulation status in the test.log file is FAILED.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

8
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment.

8.1 Read Accesses
For reads, registers less than the full access width return zeros in the unused upper bits. An AHB read takes
two hclk cycles. The two cycles can be thought of as a control and data cycle, respectively. As shown in the
following figure, the address and control is driven from clock 1 (control cycle); the read data for this access
is driven by the slave interface onto the bus from clock 2 (data cycle) and is sampled by the master on clock
3. The operation of the AHB bus is pipelined, so while the read data from the first access is present on the
bus for the master to sample, the control for the next access is present on the bus for the slave to sample.

Figure 8-1 AHB Read

8.2 Write Accesses
When writing to a register, bit locations larger than the register width or allocation are ignored. Only
pertinent bits are written to the register. Similar to the read case, a write access may be thought of as
comprising a control and data cycle. As illustrated in the following figure, the address and control is driven

0x20 0x28

3'b000

0x00 0x10 0x00

0x10

0x00

clock 2 clock 3clock 1

hclk

haddr

hsize[2:0]

hwrite

hready_resp

hrdata[31:0]

irq_status

irq_maskstatus

https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_ahb_eh2h Databook

from clock1 (control cycle), and the write data is driven by the bus from clock 2 (data cycle) and sampled by
the destination register on clock 3.

Figure 8-2 AHB Write

The operation of the AHB bus is pipelined, so while the write data for the first write is present on the bus for
the slave to sample, the control for the next write is present on the bus for the slave to sample.

8.3 Consecutive Write-Read
This is a specific case for the AHB slave interface. The AMBA specification says that for a read after a write
to the same address, the newly written data must be read back, not the old data. To comply with this, the
slave interface in the DW_ahb_eh2h inserts a “wait state” when it detects a read immediately after a write to
the same address. As shown in the following figure, the control for a write is driven on clock 1, followed by
the write data and the control for a read from the same address on clock 2.

Figure 8-3 AHB Wait State Read/Write

0xC0 0xC4 0xCC

3'b000

0x00 0xFF 0xAA

0x00 0xFF

0x00 0xAA

clock 1 clock 2 clock 3 clock 4

hclk

haddr

hsize[2:0]

hwrite

hready_resp

hwdata[31:0]

fiq_inten

fiq_intmask

0x10 0x00

3'b001

OKAY

0x0000 0xFFFF

0x0000 0xFFFF 0x0000

0xA0A0 0xFFFF

clock 1 clock 2 clock 3 clock 4 clock 5

hclk

haddr

hsize[2:0]

hwrite

hresp[1:0]

hready_resp

hwdata[63:0]

hrdata[63:0]

irq_intforce

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Integration Considerations

Sensing the read after a write to the same address, the slave interface drives hready_resp low from clock 3;
hready_resp is driven high on clock 4 when the new write data can be read; and the bus samples
hready_resp high on clock 5 and reads the newly written data. The following figure shows a normal
consecutive write-read access.

Figure 8-4 AHB Consecutive Read/Write

8.4 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

0x10 0x30

3'b001

OKAY

0x0000 0xFFFF

0x0000 0xA0A0

0xA0A0 0xFFFF

0xA0A0

clock 1 clock 2 clock 3 clock 4

hclk

haddr

hsize[2:0]

hwrite

hresp[1:0]

hready_resp

 hwdata[63:0]

hrdata[63:0]

irq_intforce

irq_finalstatus

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_ahb_eh2h Databook

8.5 Performance
This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_ahb_eh2h.

8.5.1 Power Consumption, Frequency, and Area Results

Table 8-1 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_ahb_eh2h using the industry standard 28nm technology library and how it affects performance.

Table 8-1 Power Consumption, Frequency, and Area Results for DW_ahb_eh2h Using Industry Standard 28nm
Technology Library

Configuration

Operating

Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration mhclk: 300 MHz
shclk: 300 MHz

10194 gates 0.172uW 35.8uW

Minimum Configuration:
EH2H_PHY_SADDR_WIDTH=32
EH2H_PHY_SDATA_WIDTH=32
EH2H_PHY_SBIG_ENDIAN=0
EH2H_PHY_MADDR_WIDTH=32
EH2H_PHY_MDATA_WIDTH=32
EH2H_PHY_MBIG_ENDIAN=0
EH2H_PHY_NUM_PRIMARY_MASTERS=2
EH2H_WRITE_BUFFER_DEPTH=4
EH2H_READ_BUFFER_DEPTH=4
EH2H_READ_PREFETCH_DEPTH=1
EH2H_CLK_MODE=0
EH2H_IS_SSPLIT_CAPABLE=1
EH2H_WRITE_BUFFER_PUSH_PIPE_MODE=0
EH2H_WRITE_BUFFER_POP_PIPE_MODE=0
EH2H_READ_BUFFER_PUSH_PIPE_MODE=0
EH2H_READ_BUFFER_POP_PIPE_MODE=0

mhclk: 300 MHz
shclk: 300 MHz

6218 gates 0.103uW 20.9 uW

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Integration Considerations

Maximum Configuration:
EH2H_PHY_SADDR_WIDTH=64
EH2H_PHY_SDATA_WIDTH=128
EH2H_PHY_SBIG_ENDIAN=0
EH2H_PHY_MADDR_WIDTH=64
EH2H_PHY_MDATA_WIDTH=128
EH2H_PHY_MBIG_ENDIAN=0
EH2H_PHY_NUM_PRIMARY_MASTERS=15
EH2H_WRITE_BUFFER_DEPTH=4
EH2H_READ_BUFFER_DEPTH=4
EH2H_READ_PREFETCH_DEPTH=1
EH2H_CLK_MODE=0
EH2H_IS_SSPLIT_CAPABLE=1
EH2H_WRITE_BUFFER_PUSH_PIPE_MODE=0
EH2H_WRITE_BUFFER_POP_PIPE_MODE=0
EH2H_READ_BUFFER_PUSH_PIPE_MODE=0
EH2H_READ_BUFFER_POP_PIPE_MODE=0
EH2H_MID_WIDTH=12

mhclk: 300 MHz
shclk: 300 MHz

17118 gates 0.289uW 60.7uW

Configuration

Operating

Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Integration Considerations DesignWare DW_ahb_eh2h Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

A
Synchronizer Methods

This appendix describes the synchronizer methods (blocks of synchronizer functionality) that are used in
the DW_ahb_eh2h to cross clock boundaries.

This appendix contains the following sections:

■ “Synchronizers Used in DW_ahb_eh2h” on page 90

■ “Synchronizer 1: Simple Double Register Synchronizer (DW_ahb_eh2h)” on page 91

■ “Synchronizer 2: Synchronous (Dual-clock) FIFO Controller with Static Flags (DW_ahb_eh2h)” on
page 92

NoteNoteNoteNote The DesignWare Building Blocks (DWBB) contains several synchronizer components with
functionality similar to methods documented in this appendix. For more information about the
DWBB synchronizer components go to:
https://www.synopsys.com/dw/buildingblock.php

https://www.synopsys.com/dw/buildingblock.php
https://solvnet.synopsys.com
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Synchronizer Methods DesignWare DW_ahb_eh2h Databook

A.1 Synchronizers Used in DW_ahb_eh2h
Each of the synchronizers and synchronizer sub-modules are comprised of verified DesignWare Basic Core
(BCM) RTL designs. The BCM synchronizer designs are identified by the synchronizer type. The
corresponding RTL files comprising the BCM synchronizers used in the DW_ahb_eh2h are listed and cross
referenced to the synchronizer type in Table A-1. Note that certain BCM modules are contained in other
BCM modules, as they are used in a building block fashion.

Table A-1 Synchronizers Used in DW_ahb_eh2h

Synchronizer Module
File Sub Module File Synchronizer Type and Number

DW_ahb_eh2h_bcm21.v Synchronizer 1: Simple Multiple Register Synchronizer

DW_ahb_eh2h_bcm07.v DW_ahb_eh2h_bcm05.v
DW_ahb_eh2h_bcm21.v

Synchronizer 2: Synchronous dual clock FIFO Controller with
Static Flags

NoteNoteNoteNote The BCM21 is a basic multiple register based synchronizer module used in the design. It can
be replaced with equivalent technology specific synchronizer cell.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Synchronizer Methods

A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_ahb_eh2h)
This is a single clock data bus synchronizer for synchronizing data that crosses asynchronous clock
boundaries. The synchronization scheme depends on core configuration. If shclk and mhclk are
asynchronous (EH2H_CLK_MODE =0) then DW_ahb_eh2h_bcm21 is instantiated inside the core for
synchronization. The number of stages of synchronization is configurable through the parameter
EH2H_SIF_SYNC_DEPTH. The following example shows the two stage synchronization process
(Figure A-1) both using positive edge of clock.

Figure A-1 Block Diagram of Synchronizer 1 with Two Stage Synchronization (Both Positive Edge)

The following example shows the three stage synchronization process (Figure A-2) both using positive edge
of clock.

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Synchronizer Methods DesignWare DW_ahb_eh2h Databook

Figure A-2 Block Diagram of Synchronizer 1 with Three Stage Synchronization (Both Positive Edge)

A.3 Synchronizer 2: Synchronous (Dual-clock) FIFO Controller with Static
Flags (DW_ahb_eh2h)

DW_ahb_eh2h_bcm07 is a dual independent clock FIFO RAM controller. It is designed to interface with a
dual-port synchronous RAM. The FIFO controller provides address generation, write-enable logic, flag
logic, and operational error detection logic. Figure A-3 shows the block diagram of Synchronizer 2.

Configured as : f_sync_type = 3, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
data_s

test

width

width

Configured as : f_sync_type = 3, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

data_ddata_s
width

D Q
width

test

width

width
width

D Q

D Q
width

D Q

D Q

data_d
width width

D Q
width

D Q D Q

width

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Synchronizer Methods

Figure A-3 Synchronizer 2 Block Diagram

push_req_n

clk_push

rst_n

pop_req_n

clk_pop

Push Interface

sync

sync

Gray addr

Gray addr

wr_addr

rd_addr

push_error
Push Status Flags

pop_error

Pop Status Flags

wr_addr

rd_addr

we_n

Pop Interface

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Synchronizer Methods DesignWare DW_ahb_eh2h Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

B
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table B-2 Internal Parameters

Parameter Name Equals To

CLK_MODE (EH2H_CLK_MODE ? 1'b1 : 1'b0)

COMP_P_1_RESET_VAL {MDATA_WIDTH, MADDR_WIDTH, MBIG_ENDIAN,
SDATA_WIDTH, SADDR_WIDTH, SBIG_ENDIAN,
NUM_PRIMARY_MASTERS, CLK_MODE,
SSPLIT_CAPABLE}

COMP_P_2_RESET_VAL {(READ_PREFETCH_DEPTH-1),
(READ_BUFFER_DEPTH-1),
(WRITE_BUFFER_DEPTH-1)}

EH2H_COMP_TYPE 32'h44571130

EH2H_COMP_VERSION EH2H_VERSION_ID

EH2H_VERSION_ID 32'h3131312a

MADDR_W_D_32_LOG lg(EH2H_PHY_MADDR_WIDTH/32)

MADDR_WIDTH MADDR_W_D_32_LOG

MAW EH2H_PHY_MADDR_WIDTH

MBIG_ENDIAN (EH2H_PHY_MBIG_ENDIAN ? 1'b1 : 1'b0)

MDATA_W_D_8_LOG lg(EH2H_PHY_MDATA_WIDTH/8)

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_eh2h Databook

MDATA_WIDTH MDATA_W_D_8_LOG

MDW EH2H_PHY_MDATA_WIDTH

NUM_PRIMARY_MASTERS EH2H_PHY_NUM_PRIMARY_MASTERS

READ_BUFFER_DEPTH EH2H_READ_BUFFER_DEPTH

READ_PREFETCH_DEPTH EH2H_READ_PREFETCH_DEPTH

SADDR_W_D_32_LOG lg(EH2H_PHY_SADDR_WIDTH/32)

SADDR_WIDTH SADDR_W_D_32_LOG

SAW EH2H_PHY_SADDR_WIDTH

SBIG_ENDIAN (EH2H_PHY_SBIG_ENDIAN ? 1'b1 : 1'b0)

SDATA_W_D_32_LOG lg(EH2H_PHY_SDATA_WIDTH/32)

SDATA_WIDTH SDATA_W_D_32_LOG

SDW EH2H_PHY_SDATA_WIDTH

SSPLIT_CAPABLE (EH2H_IS_SSPLIT_CAPABLE ? 1'b1 : 1'b0)

WRITE_BUFFER_DEPTH EH2H_WRITE_BUFFER_DEPTH

Table B-2 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

C
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces (Arm® Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by Arm®
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (Arm® Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in a
word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Glossary DesignWare DW_ahb_eh2h Databook

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable block
that can be instantiated as a single entity (VHDL) or module (Verilog) in a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used in
the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a big
piece of IIP. Anything that requires coreConsultant for configuration, as well as
anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in the
DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable cores
into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design views
and synthesis views you need to integrate the core into your design. Can also
synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format back
to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant or
coreAssembler to quickly build DesignWare Synthesizable Component designs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

1.11a
July 2018

DesignWare DW_ahb_eh2h Databook Glossary

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is authorized
by a single DesignWare license. Products include SmartModels, VMT model
suites, DesignWare Memory Models, Building Block IP, and the DesignWare
Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code by
non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

1.11a
July 2018

Glossary DesignWare DW_ahb_eh2h Databook

RTL Register Transfer Level. A higher level of abstraction that implies a certain gate-
level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as synthesizable
IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology through
synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component. The
files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in any
form, including a Design View.

workspace A network location that contains a personal copy of a component or subsystem.
After you configure the component or subsystem (using coreConsultant or
coreAssembler), the workspace contains the configured component/subsystem
and generated views needed for integration of the component/subsystem at the
top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing easier
interfacing. Usually requires an extra, sometimes automated, step to create the
wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101

DesignWare DW_ahb_eh2h Databook

SolvNet
DesignWare.com

1.11a
July 2018

Index

A
active command queue

definition 97
activity

definition 97
AHB

definition 97
AMBA

definition 97
APB

definition 97
APB bridge

definition 97
application design

definition 97
arbiter

definition 97
B
BFM

definition 97
big-endian

definition 97
Block diagram, of DW_ahb_eh2h 18
blocked command stream

definition 97
blocking command

definition 97
Bridge master. See Master interface
Bridge slave. See Slave interface
bus bridge

definition 98
Bus decoupling, overview of 20
Bus performance See Performance.
BUSY response, and master interface 32

C
Clock adaptation, overview of 35
Clocking 35
command channel

definition 98
command stream

definition 98
component

definition 98
configuration

definition 98
configuration intent

definition 98
core

definition 98
core developer

definition 98
core integrator

definition 98
coreAssembler

definition 98
coreConsultant

definition 98
coreKit

definition 98
Customer Support 12
cycle command

definition 98
D
Data width adaptation, overview of 18
Deadlock conditions, for bidirectional applications 21,
29
decoder

definition 98
Definitions, for DW_ahb_eh2h 26
design context

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_ahb_eh2h Databook

102 Synopsys, Inc.SolvNet
DesignWare.com

1.11a
July 2018

definition 98
design creation

definition 98
Design View

definition 98
DesignWare cores

definition 99
DesignWare Library

definition 99
DesignWare Synchronous FIFO Controllers, and
DW_ahb_eh2h 35
DesignWare Synthesizable Components

definition 98
dual role device

definition 99
DW_ahb_eh2h 82

block diagram of 18
features of 22
functional overview 18
programming of 77
recommendations for 20
testbench

overview of 81
overview of tests 79

timing diagrams of 36
E
Early burst termination, behavior of 32
endian

definition 99
Environment, licenses 23
ERROR response, behavior of 32
F
Features, of DW_ahb_eh2h 22
Full-Functional Mode

definition 99
Functional description

overview 18
G
GPIO

definition 99
GTECH

definition 99
H
hard IP

definition 99

HDL
definition 99

I
IIP

definition 99
implementation view

definition 99
instantiate

definition 99
interface

definition 99
Interrupts, overview of 19
IP

definition 99
L
Licenses 23
little-endian

definition 99
Locked transfers

about 20
and performance 29

M
MacroCell

definition 99
master

definition 99
Master interface

and locked transfers 32
and read buffer 31
and write buffer 31
behavior of 31
BUSY response 32
ERROR response 32
reads from 20
RETRY response 32
SPLIT response 32
writes from 19

mhlock 32
model

definition 99
monitor

definition 99
Multi-master systems, overview of 20
N
non-blocking command

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_ahb_eh2h Databook Index

Synopsys, Inc. 1031.11a
July 2018

SolvNet
DesignWare.com

definition 99
P
Performance, and DW_ahb_eh2h 19

and locked transfers 29
and read incremental bursts 30

peripheral
definition 99

Pipelines
function of 34

Prefetch depth 30
Programming DW_ahb_eh2h 77
R
Read buffer 18

and master interface 31
behavior of 33
flushing of 28

Read incremental bursts, and performance 30
Read transfers 18
Read-sensitive locations

about 21
rules for 29

Registers
behavior of 34
overview of 19

Reset signals, overview of 35
RETRY response, behavior of 32
RTL

definition 100
runtest.log 82
S
SDRAM

definition 100
SDRAM controller

definition 100
shready_resp

low mode 31
timeouts on 31

shsel_np 27
shsel_p 27
shsel_reg 27
Simple double register synchronizer 91
Simulation

command line output files 82
from command line 81
of DW_ahb_eh2h coreKit 81

results 82
slave

definition 100
Slave interface

and local access 30
function of 27
reads from 20
response to reads 28
response to writes 27
writes from 19

SoC
definition 100

SoC Platform
AHB contained in 15
APB, contained in 15
defined 15

soft IP
definition 100

SPLIT clear 30
SPLIT response 30

behavior of 32
inhibited functionality 31

static controller
definition 100

sttick 31
subsystem

definition 100
Synchronizer

simple double register 91
Synchronous clock mode

about 35
synthesis intent

definition 100
synthesizable IP

definition 100
T
technology-independent

definition 100
test.log 82
testbench

output files 82
Testsuite Regression Environment (TRE)

definition 100
Timeouts 31
Timing diagrams 36
Transfer forwarding, overview of 18

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_ahb_eh2h Databook Index

Synopsys, Inc. 1041.11a
July 2018

SolvNet
DesignWare.com

Transfers, locked 32
TRE

definition 100
V
Vera, overview of tests 79
Verification

and Vera tests 79
of DW_ahb_eh2h coreKit 81
output files 82
results 82

VIP
definition 100

W
workspace

definition 100
wrap

definition 100
wrapper

definition 100
Write buffer 18

and master interface 31
behavior of 33
from bridge master 19
from bridge slave 19

Write transfers 18
Writes, from primary AHB 18
Z
zero-cycle command

definition 100

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_ahb_eh2h Block Diagram
	1.2.2 Functional Overview
	1.2.2.1 Write Transfers
	1.2.2.2 Read Transfers
	1.2.2.3 Data Width Adaptation
	1.2.2.4 Software Interface and Interrupt
	1.2.2.5 Bus Performance
	1.2.2.6 Recommendations

	1.3 Features
	1.3.1 Clocks
	1.3.2 Interfaces
	1.3.3 Operation
	1.3.4 Software Interface
	1.3.5 Sideband Signals

	1.4 Standards Compliance
	1.5 Verification Environment Overview
	1.6 Licenses
	1.7 Where To Go From Here

	2 Functional Description
	2.1 Definitions
	2.2 Bridge Slave Interface
	2.2.1 Slave Selection
	2.2.2 Slave Response to Writes
	2.2.3 Slave Response to Reads
	2.2.4 Read Buffer Flush
	2.2.5 Read-Sensitive Locations
	2.2.6 Deadlock
	2.2.7 Performance Impact of Locked Transfers
	2.2.8 Performance Impact of Read Incremental Bursts
	2.2.9 Local Access
	2.2.10 Prefetch Depth
	2.2.11 SPLIT Response and SPLIT Clear
	2.2.12 Alternative “HREADY Low” Response Mode
	2.2.13 Timeout on “HREADY Low” Response Mode

	2.3 Bridge Master Interface
	2.3.1 Generation of Secondary Writes
	2.3.2 Generation of Secondary Reads
	2.3.3 Behavior of ERROR Response
	2.3.4 Behavior of SPLIT/RETRY Response
	2.3.5 Behavior of Early Burst Termination
	2.3.6 BUSY Cycles
	2.3.7 HLOCK

	2.4 Non-Standard Master ID Sideband Signal
	2.5 Write Buffer
	2.6 Read Buffer
	2.7 Pipelines
	2.8 Interrupt and Software Registers Interface
	2.9 Clocking
	2.9.1 Clock Adaptation
	2.9.2 Reset Signals

	2.10 Timing Diagrams

	3 Parameter Descriptions
	3.1 Parameters

	4 Signal Descriptions
	4.1 Slave Interface Signals
	4.2 Master Interface Signals
	4.3 Miscellaneous Signals

	5 Register Descriptions
	5.1 DW_ahb_eh2h_mem_map/DW_ahb_eh2h_addr_block1 Registers
	5.1.1 EH2H_EWSC
	5.1.2 EH2H_EWS
	5.1.3 EH2H_MEWS
	5.1.4 EH2H_COMP_PARM_1
	5.1.5 EH2H_COMP_PARM_2
	5.1.6 EH2H_COMP_VERSION
	5.1.7 EH2H_COMP_TYPE

	6 Programming the DW_ahb_eh2h
	6.1 Programming Considerations

	7 Verification
	7.1 Overview of Vera Tests
	7.1.1 test_01_random
	7.1.2 test_02_random_m
	7.1.3 test_03_random_c
	7.1.4 test_04_random_e
	7.1.5 test_20_version
	7.1.6 test_21_regfile
	7.1.7 test_22_timeout
	7.1.8 test_23_demo

	7.2 Overview of DW_ahb_eh2h Testbench
	7.2.1 Running Simulations from the Command Line
	7.2.2 Command Line Output Files

	8 Integration Considerations
	8.1 Read Accesses
	8.2 Write Accesses
	8.3 Consecutive Write-Read
	8.4 Accessing Top-level Constraints
	8.5 Performance
	8.5.1 Power Consumption, Frequency, and Area Results

	A Synchronizer Methods
	A.1 Synchronizers Used in DW_ahb_eh2h
	A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_ahb_eh2h)
	A.3 Synchronizer 2: Synchronous (Dual-clock) FIFO Controller with Static Flags (DW_ahb_eh2h)

	B Internal Parameter Descriptions
	C Glossary
	Index

