
 2.22a
July 2018

DW_ahb_dmac – Product Code: 3889-0

DesignWare DW_ahb_dmac Databook

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://www.synopsys.com/company/legal/trademarks-brands.html
https://solvnet.synopsys.com
www.designware.com
www.synopsys.com

Synopsys, Inc. 3

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

Contents

Revision History . 9

Preface .15
Organization .15
Related Documentation .16
Web Resources .16
Customer Support .16

Chapter 1
Product Overview .19

1.1 DesignWare System Overview .19
1.2 General Product Description .21

1.2.1 DW_ahb_dmac Block Diagram .21
1.3 Basic Definitions .23
1.4 Features .28

1.4.1 General .28
1.4.2 Address Generation .29
1.4.3 Channel Buffering .29
1.4.4 Channel Control .29
1.4.5 Transfer Initiation .30
1.4.6 Flow Control .30
1.4.7 Interrupts .30
1.4.8 Low Power Mode .30

1.5 Standards Compliance .30
1.6 Verification Environment Overview .30
1.7 Licenses .31
1.8 Where To Go From Here .31

Chapter 2
Functional Description .33

2.1 Setup/Operation of DW_ahb_dmac Transfers .33
2.2 Block Flow Controller and Transfer Type .33
2.3 Handshaking Interface .34
2.4 Basic Interface Definitions .35
2.5 Memory Peripherals .36
2.6 Software Handshaking .36
2.7 Handshaking Interface – Peripheral Is Not Flow Controller .37

2.7.1 Single Transaction Region .38
2.7.2 Early-Terminated Burst Transaction .39
2.7.3 Hardware Handshaking – Peripheral Is Not Flow Controller .40

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Contents DesignWare DW_ahb_dmac Databook

2.7.4 Software Handshaking – Peripheral Is Not Flow Controller .46
2.7.5 Single Transactions – Peripheral Is Not Flow Controller .47

2.8 Handshaking Interface – Peripheral Is Flow Controller .48
2.8.1 Hardware Handshaking – Peripheral Is Flow Controller .49
2.8.2 Software Handshaking – Peripheral Is Flow Controller .51
2.8.3 Single Transactions – Peripheral is Flow Controller .52

2.9 Setting Up Transfers .52
2.9.1 Transfer Operation .53
2.9.2 Peripheral Interrupt Request Interface .87

2.10 Flow Control Configurations .88
2.11 Peripheral Burst Transaction Requests .90

2.11.1 Transmit Watermark Level and Transmit FIFO Underflow .90
2.11.2 Choosing the Transmit Watermark Level .90
2.11.3 Selecting CTLx.DEST_MSIZE and Transmit FIFO Overflow .93
2.11.4 Receive Watermark Level and Receive FIFO Overflow .93
2.11.5 Choosing the Receive Watermark level .94
2.11.6 Selecting CTLx.SRC_MSIZE and Receive FIFO Underflow .94

2.12 Generating Requests for the AHB Master Bus Interface .94
2.12.1 Locked DMA Transfers .96

2.13 Arbitration for AHB Master Interface .98
2.14 Latency .99
2.15 Scatter/Gather . 101
2.16 Endianness . 104

2.16.1 Big Endian-Little Endian Conversion Logic . 104
2.16.2 LLI Fetch, and Status and Control Write-Back . 105
2.16.3 Endian Selection . 105
2.16.4 Static Endian Configuration . 107
2.16.5 Dynamic Endian Configuration .107

2.17 AHB Transfer Error Handling . 108
2.18 Last Beat of DMA Burst Indication . 109

2.18.1 Example 1 . 109
2.19 Low Power Modes – Global and Channel Clock Gating . 111

2.19.1 Global Clock Gating . 111
2.19.2 Channel Clock Gating . 113

2.20 Interrupt Registers . 115

Chapter 3
Parameter Descriptions . 117

3.1 DMA Source Code Configuration Parameters . 118
3.2 Global DMA Configuration Parameters . 119
3.3 Configuration of AMBA layers Parameters . 125
3.4 Channel x configuration Parameters . 129

Chapter 4
Signal Descriptions . 139

4.1 Slave Interface Signals . 141
4.2 Master N Interface (for N = 1; N <= DMAH_NUM_MASTER_INT) Signals . 144
4.3 Test Interface Signals . 148
4.4 Peripheral Handshaking Interface Signals . 149

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Contents

4.5 Interrupt Interface Signals . 151
4.6 Debug Bus Interface Signals . 153

Chapter 5
Register Descriptions . 161

5.1 DMAC/Channel_x_Registers (for x = 1; x <= DMAH_NUM_CHANNELS-1) Registers 165
5.1.1 SARx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 167
5.1.2 DARx (for x = 0; x <= DMAH_NUM_CHANNELS-1) .168
5.1.3 LLPx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 169
5.1.4 CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 171
5.1.5 SSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 182
5.1.6 DSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 184
5.1.7 SSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1) .186
5.1.8 DSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 188
5.1.9 CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 190
5.1.10 SGRx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 199
5.1.11 DSRx (for x = 0; x <= DMAH_NUM_CHANNELS-1) . 201

5.2 DMAC/Interrupt Registers . 203
5.2.1 RawTfr . 205
5.2.2 RawBlock . 206
5.2.3 RawSrcTran . 207
5.2.4 RawDstTran . 209
5.2.5 RawErr . 210
5.2.6 StatusTfr . 211
5.2.7 StatusBlock . 212
5.2.8 StatusSrcTran . 213
5.2.9 StatusDstTran . 214
5.2.10 StatusErr . 215
5.2.11 MaskTfr . 216
5.2.12 MaskBlock . 218
5.2.13 MaskSrcTran . 220
5.2.14 MaskDstTran . 222
5.2.15 MaskErr . 224
5.2.16 ClearTfr . 226
5.2.17 ClearBlock . 227
5.2.18 ClearSrcTran . 228
5.2.19 ClearDstTran . 229
5.2.20 ClearErr . 230
5.2.21 StatusInt . 231

5.3 DMAC/Software_Handshake Registers . 233
5.3.1 ReqSrcReg . 234
5.3.2 ReqDstReg . 236
5.3.3 SglRqSrcReg . 238
5.3.4 SglRqDstReg . 240
5.3.5 LstSrcReg . 242
5.3.6 LstDstReg . 244

5.4 DMAC/Miscellaneous Registers . 246
5.4.1 DmaCfgReg . 247
5.4.2 ChEnReg . 248

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Contents DesignWare DW_ahb_dmac Databook

5.4.3 DmaIdReg . 250
5.4.4 DmaTestReg . 251
5.4.5 DmaLpTimeoutReg . 252
5.4.6 DMA_COMP_PARAMS_6 . 253
5.4.7 DMA_COMP_PARAMS_5 . 261
5.4.8 DMA_COMP_PARAMS_4 . 274
5.4.9 DMA_COMP_PARAMS_3 . 287
5.4.10 DMA_COMP_PARAMS_2 . 300
5.4.11 DMA_COMP_PARAMS_1 . 315
5.4.12 DmaCompsID . 329

Chapter 6
Programming the DW_ahb_dmac . 331

6.1 Software Drivers . 331
6.2 Register Access . 332
6.3 Illegal Register Access . 332
6.4 DW_ahb_dmac Transfer Types . 332

6.4.1 Multi-Block Transfers . 333
6.4.2 Auto-Reloading of Channel Registers . 337
6.4.3 Contiguous Address Between Blocks . 337
6.4.4 Suspension of Transfers Between Blocks . 338
6.4.5 Ending Multi-Block Transfers . 338

6.5 Programing Examples . 339
6.5.1 Programming Example for Linked List Multi-Block Transfer . 341

6.6 Programming a Channel . 342
6.6.1 Programming Examples . 343

6.7 Disabling a Channel Prior to Transfer Completion . 367
6.7.1 Abnormal Transfer Termination . 368

6.8 Defined-Length Burst Support on DW_ahb_dmac . 368

Chapter 7
Verification . 369

7.1 Overview of Vera Tests . 369
7.2 Overview of DW_ahb_dmac Testbench . 370

Chapter 8
Integration Considerations . 373

8.1 Performance . 373
8.1.1 Power Consumption, Frequency, and Area Results . 373

8.2 1KB Boundary Crossing . 376
8.3 Read Accesses . 376
8.4 Write Accesses . 377
8.5 Consecutive Write-Read . 377
8.6 Accessing Top-level Constraints . 379
8.7 Coherency . 379

8.7.1 Writing Coherently . 379
8.7.2 Reading Coherently . 385

Appendix A
Error and Warning Messages . 389

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Contents

A.1 Warnings During Simulation . 389
A.2 Warnings During Synthesis . 389

Chapter B
Internal Parameter Descriptions . 391

Appendix C
Channel Locking and Deadlock . 409

C.1 Hardware Detection of Deadlock . 409
C.1.1 Case 1 . 409
C.1.2 Case 2 . 410
C.1.3 Case 3 . 411
C.1.4 Deadlock Prevention by Hardware . 412

C.2 Programming Restrictions to Avoid Deadlock . 412

Appendix D
DW_ahb_dmac Application Notes . 415

D.1 Interoperability Between DW_ahb_dmac and PrimeCell Hardware Handshaking Interface 415
D.2 Mapping of PrimeCell Software Handshaking Registers to DW_ahb_dmac . 417

D.2.1 PrimeCell Software Handshaking Registers . 417
D.2.2 DW_ahb_dmac Software Handshaking Registers . 418
D.2.3 Register Interface Mapping . 418

Appendix E
Configuring DW_ahb_dmac to Match Arm PrimeCell PL080/PL081 . 423

E.1 ARM PL080 Equivalent . 423
E.2 ARM PL081 Equivalent . 423

Appendix F
Glossary . 427

Index . 431

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Contents DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

Revision History

This table shows the revision history for the databook from release to release. This is being tracked from
version 2.10b onward.

Version Date Description

2.22a July 2018 Updated:

■ Version changed for 2018.07a release

■ “Performance” on page 373

■ “Parameter Descriptions” on page 117, “Register Descriptions” on page 161,
“Signal Descriptions” on page 139, and “Internal Parameter Descriptions” on
page 391 are auto-extracted with change bars from the RTL

Removed:

■ Chapter 2, “Building and Verifying a Component or Subsystem” and added the
contents in the newly created user guide.

https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Revision History DesignWare DW_ahb_dmac Databook

2.21a October 2016 Added:

■ “Low Power Modes – Global and Channel Clock Gating” on page 111

■ “Low Power Mode Parameters” parameters:

- DMAH_LP_EN
- DMAH_CH_LP_EN
- DMAH_LP_TIMEOUT_WIDTH
- DMAH_HC_LP_TIMEOUT_VALUE
- DMAH_LP_TIMEOUT_VALUE

■ Low Power Count Register (DmaLpTimeoutReg)

■ “Parameter Descriptions” on page 117 and “Register Descriptions” on
page 161 auto-extracted from the RTL

■ Xprop directory in Table 2-1and Table 2-4

■ “Running VCS XPROP Analyzer”

■ Note in “Hardware Handshaking – Peripheral Is Not Flow Controller” on
page 40 and “Hardware Handshaking – Peripheral Is Flow Controller” on
page 49

Deleted:

■ “Running Leda on Generated Code with coreConsultant”, and reference to
Leda directory in Table 2-1

■ “Running Leda on Generated Code with coreAssembler” section, and
reference to Leda directory in Table 2-4

Moved:

■ Table 2-5 and Table 2-6 to “Transfer Operation” on page 53

■ Internal Parameter Descriptions to Appendix

■ “Interrupt Registers” on page 115 from Registers chapter

■ “Hardware Realignment of SAR/DAR Registers” on page 65 from Registers
chapter to “ Functional Description” on page 33

Updated:

■ Version changed for 2016.10a release

■ Table 2-1

2.20a June 2015 Added:

■ “Running SpyGlass® Lint and SpyGlass® CDC”

■ “Running SpyGlass on Generated Code with coreAssembler”

■ Chapter B, “Internal Parameter Descriptions”

Updated:
Chapter 4, “Signal Descriptions” auto-extracted from the RTL

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Revision History

2.19a June 2014 Updated:

■ Version for 2014.06a release

■ Big endian BE32 format for data transfer on AHB master interface

■ Performance section in Integration consideration

■ Default Input/Output Delay in the following Signal groups:

- Slave Interface
- Master N Interface

2.18b May 2013 Added:
■ An output signal dma_wlast on the AHB interface to indicate the last write data

during burst transfers to destination peripherals

■ Configuration parameter DMAH_WLAST_EN to enable the dma_wlast signal

■ Added section “Last Beat of DMA Burst Indication” to explain last write data
during bursts transfers feature

Removed:

■ Note stating that disabling the channel through software prior to completing a
transfer is not supported when DW_ahb_dmac is configured to use defined
length bursts; feature now supported

Updated:
■ Corrected the sequence of bits in the DMA_COMP_PARAMS_1 register

■ Document template

2.17d Sep 2012 Added the product code on the cover

2.17d Mar 2012 Updated:

■ Instructions for setting bit 0 of DmaCfgReg register

■ Descriptions of SSTATARx and DSTATARx registers

■ Information in Early-Terminated Burst Transaction section

2.17c Nov 2011 Version change for 2011.11a release

2.17b Oct 2011 Updated:

■ Corrected dma_req and dma_single as being registered

■ SSTATARx and DSTATARx register descriptions

2.17a Jun 2011 Updated:
■ System diagram in Figure 1-1

■ “Related Documentation” section in Preface

2.17a May 2011 Edited “Burst transaction” definition

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Revision History DesignWare DW_ahb_dmac Databook

2.17a Apr 2011 Added:

■ New “Latency” section

■ New DMAH_REVERSE_WB_OVERRIDE parameter

■ Information to “Memory Peripherals” section about impact of
CTLx.SRC_MSIZE, CTLx. DEST_MSIZE values on burst transfers to/from
memory peripherals

2.16a Dec 2010 Version change for 2010.12a release

2.15a Sep 2010 Updated:

■ Descriptions for dma_req signal

■ Corrected names of include files and vcs command used for simulation

■ Corrected defaults for DMAH_CHx_SMS and DMAH_CHx_DMS

2.14a May 2010 Updated the DMAH_INTR_POL parameter description

2.14a Dec 2009 Updated databook to new template for consistency with other IIP/VIP/PHY
databooks

2.14a Jul 2009 Corrected equations for avoiding underflow when programming a source burst
transaction

2.14a May 2009 Removed references to QuickStarts, as they are no longer supported

2.14a Apr 2009 Added:
Note that multi-block transfers not supported
Updated:
Corrected DMAH_CHx_FIFO_DEPTH equation

2.14a Nov 2008 Corrected CFG* reset values in memory map

2.14a Oct 2008 Version change for 2008.10a release

2.12a Jul 2008 Corrected Setting Up Transfers example #4 calculation

2.12a Jun 2008 Updated:
■ Descriptions for software handshaking registers to say that channel must be

enabled to allow writing to a bit

■ Descriptions for INT_EN register

2.11a Mar 2008 Updated:

■ CFGx.FIFO_EMPTY default to 0x1

■ Text for value of 1 for CFGx.FIFO_MODE

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Revision History

2.10b Jan 2008 Updated:

■ Table 23 (DMAH_CHx_CTL_WB_EN, DMAH_CHx_MULTI_BLK_TYPE)

■ Table 25 (SAR4, SGR4)

■ “Hardware Realignment of SAR/DAR Registers” section

■ Figure 71, LLPI register definition

2.10b July 2007 Corrected available files in workspace/sim/test_name directory

2.10b June 2007 Version change for 2007.06a release

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Revision History DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

Preface

This databook provides information that you need to interface the DesignWare AHB Central Direct
Memory Access (DMA) Controller, referred to as DW_ahb_dmac throughout the remainder of this
databook. This component conforms to the AMBA Specification, Revision 2.0 from Arm®.

The information in this databook includes a functional description, signal and parameter descriptions, and a
memory map. Also provided are an overview of the component testbench, a description of the tests that are
run to verify the coreKit, and synthesis information for the component.

Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “ Functional Description” describes the functional operation of the DW_ahb_dmac.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_ahb_dmac.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_ahb_dmac signals.

■ Chapter 5, “Register Descriptions” describes the programmable registers of the DW_ahb_dmac.

■ Chapter 6, “Programming the DW_ahb_dmac” provides information needed to program the
configured DW_ahb_dmac.

■ Chapter 7, “Verification” provides information on verifying the configured DW_ahb_dmac.

■ Chapter 8, “Integration Considerations” includes information you need to integrate the configured
DW_ahb_dmac into your design.

■ Appendix A, “Error and Warning Messages” describes errors and warnings that you may encounter
when configuring, verifying, or synthesizing the DesignWare component using the coreTools GUIs.

■ Appendix B, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals, Parameters, or Registers chapters..

■ Appendix C, “Channel Locking and Deadlock” explains how channel locking can cause deadlock.

■ Appendix D, “DW_ahb_dmac Application Notes” describes the interoperability between
DW_ahb_dmac and Arm® PrimeCell handshaking interface.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Preface DesignWare DW_ahb_dmac Databook

■ Appendix E, “Configuring DW_ahb_dmac to Match Arm PrimeCell PL080/PL081” provides
configuration parameter settings for DW_ahb_dmac so that it matches or is equivalent to the Arm®
PrimeCell PL080 and PL081 devices.

■ Appendix F, “Glossary” provides a glossary of general terms.

Related Documentation
■ DW_ahb_dmac Driver Kit User Guide – Contains information on the Driver Kit for the DW_ahb_dmac;

requires source code license (DWC-APB-Periph-Source)

■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using
DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA 2,
refer to the Guide to Documentation for DesignWare Synthesizable Components for AMBA 2 and AMBA 3 AXI.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the requested
information, using one of the following methods:

https://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
https://solvnet.synopsys.com
http://www.designware.com/
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
www.designware.com
https://www.synopsys.com/dw/doc.php/drivers/DW_ahb_dmac/latest/doc/dw_ahb_dmac_driver.pdf
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title

Synopsys, Inc. 17SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Preface

❑ For fastest response, use the SolvNet website. If you fill in your information as explained, your
issue is automatically routed to a support engineer who is experienced with your product. The
Sub Product entry is critical for correct routing.

Go to http://solvnet.synopsys.com/EnterACall and click the Open A Support Case to enter a
call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: product version number
■ Problem Type:
■ Priority:
■ Title: DW_ahb_dmac
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified earlier) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
http://www.synopsys.com/Support/GlobalSupportCenters

http://solvnet.synopsys.com/EnterACall
mailto:support_center@synopsys.com
http://www.synopsys.com/Support/GlobalSupportCenters
https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Preface DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

1
Product Overview

This chapter provides a basic overview of the DW_ahb_dmac, which is an AHB-Central DMA Controller
core that transfers data from a source peripheral to a destination peripheral over one or more AHB bus.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

20 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Product Overview DesignWare DW_ahb_dmac Databook

Figure 1-1 Example of DW_ahb_dmac in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/dw_apb_i2s_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/DW_axi_rs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf

Synopsys, Inc. 21SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Product Overview

You can connect, configure, synthesize, and verify the DW_ahb_dmac within a DesignWare subsystem
using coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_ahb_dmac component,
you might prefer to use coreConsultant, documentation for which is available in the coreConsultant User
Guide.

1.2 General Product Description
The Synopsys DW_ahb_dmac conforms to the AMBA Specification, Revision 2.0 from ARM.

1.2.1 DW_ahb_dmac Block Diagram

Figure 1-2 shows the following functional groupings of the main interfaces to the DW_ahb_dmac block:

■ DMA hardware request interface

■ Up to eight channels

■ FIFO per channel for source and destination

■ Arbiter

■ AHB master interface

■ AHB slave interface

Figure 1-2 DW_ahb_dmac Block Diagram

One channel of the DW_ahb_dmac is required for each source/destination pair. In the most basic
configurations, as illustrated in Figure 1-3 on page 22, the DW_ahb_dmac has one master interface and one
channel. The master interface reads the data from a source peripheral (A) and writes it to a destination
peripheral (B). Two AHB transfers are required for each DMA data transfer; this is also known as a
dual-access transfer.

Figure 1-3 illustrates a peripheral-to-peripheral DMA transfer, where peripheral A (source) uses a hardware
handshaking interface, and peripheral B (destination) uses a software handshaking interface. For example,
the request to send data to peripheral B is originated by the CPU, while writing to peripheral B is handled
by the DW_ahb_dmac. The channel source and destination arbitrate independently for the AHB master

DW_ahb_dmac

AHB Slave I/F

DMA Hardware
Request I/F

Channel 0

F
IF

OArbiter

Channel n

Master I/F

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title

22 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Product Overview DesignWare DW_ahb_dmac Databook

interface, along with other channels. For more information about the arbitration scheme, see “Arbitration
for AHB Master Interface” on page 98.

Figure 1-3 Peripheral-to-Peripheral DMA Transfer on Same AHB Layer

The DW_ahb_dmac also supports multi-layer DMA transfers when the source and destination peripherals
are on different AHB layers. In this case, you must configure the DW_ahb_dmac to have more than one
master interface—one per layer. Figure 1-4 on page 23 illustrates a DW_ahb_dmac with two master
interfaces and a DMA transfer between a source and destination on different AHB layers. Peripheral B uses

Destination

B1
Peripheral

Source
A

Source

A1
Peripheral

DW_ahb_dmac

Source
A

Source Destination

CPU

A B

AHB

Master I/F AHB Slave I/F

PeripheralPeripheral

Arbiter

Channel 0

FIFO

Source
FSM

Destination
FSM

R
eq

ue
st

G
ra

nt

R
eq

ue
st

G
ra

nt

Channel 7

G
ra

nt
 &

 R
eq

ue
st

Hardware
Handshaking I/F

0

15

channel registers

softw
are handshaking

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Product Overview

a hardware handshaking interface. The memory does not use any handshaking interface to the
DW_ahb_dmac in order to initiate DMA transfers.

Figure 1-4 Peripheral-to-Memory DMA Transfer on Separate AHB Layers

1.3 Basic Definitions
The following terms are concise definitions of the DMA concepts used throughout this databook:

■ Source peripheral – Device on a AHB layer from which the DW_ahb_dmac reads data; the
DW_ahb_dmac then stores the data in the channel FIFO. The source peripheral teams up with a
destination peripheral to form a channel. The source peripheral is either an AHB or APB slave. If the
source is an APB slave, it is accessed through the AHB-APB bridge.

■ Destination peripheral – Device to which the DW_ahb_dmac writes the stored data from the FIFO
(previously read from the source peripheral). The destination peripheral is either an AHB or APB
slave. If the destination is an APB slave, it is accessed through the AHB-APB bridge.

Destination

B
Peripheral

AHB (Layer 2)

DW_ahb_dmac

Memory

CPU

A

AHB (Layer 1)

Master I/F #1 AHB Slave I/F

Arbiter

Channel 0

FIFO

Source
FSM

Destination
FSM

R
eq

ue
st

G
ra

nt

Hardware
Handshaking I/F

Master I/F #2

Arbiter

https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Product Overview DesignWare DW_ahb_dmac Databook

■ Memory – Source or destination that is always “ready” for a DMA transfer and does not require a
handshaking interface to interact with the DW_ahb_dmac. A peripheral should be assigned as
memory only if it does not insert more than 16 wait states. If more than 16 wait states are required,
then the peripheral should use a handshaking interface—the default if the peripheral is not
programmed to be memory—in order to signal when the peripheral is ready to accept or supply data.
A memory peripheral can also generate SPLIT/RETRY responses.

■ Channel – Read/write data path between a source peripheral on one configured AHB layer and a
destination peripheral on the same or different AHB layer that occurs through the channel FIFO. If
the source peripheral is not memory, then a source handshaking interface is assigned to the channel.
If the destination peripheral is not memory, then a destination handshaking interface is assigned to
the channel. Source and destination handshaking interfaces can be assigned dynamically by
programming the channel registers.

■ Master interface – DW_ahb_dmac is a master on the AHB bus, reading data from the source and
writing it to the destination over the AHB bus. It is possible to have up to four master interfaces,
which means that up to four independent source and destination channels can operate
simultaneously. Each channel has to arbitrate for the master interface. You need to have more than
one master interface if the source and destination peripherals reside on different AHB layers.

■ Slave interface – The AHB interface over which the DW_ahb_dmac is programmed. The slave
interface in practice can be on the same layer as any of the master interfaces, or it can be on a separate
layer.

■ Handshaking interface – A set of signals or software registers that conform to a protocol and
handshake between the DW_ahb_dmac and source or destination peripheral in order to control
transferring a single or burst transaction between them. This interface is used to request,
acknowledge, and control a DW_ahb_dmac transaction. A channel can receive a request through one
of three types of handshaking interface: hardware, software, or peripheral interrupt.

❑ Hardware handshaking interface – Uses hardware signals to control transferring a single or
burst transaction between the DW_ahb_dmac and the source or destination peripheral. For more
information about this interface, see “Hardware Handshaking – Peripheral Is Not Flow
Controller” on page 40 and “Hardware Handshaking – Peripheral Is Flow Controller” on
page 49.

❑ Software handshaking interface– Uses software registers to control transferring a single or burst
transaction between the DW_ahb_dmac and the source or destination peripheral. No special
DW_ahb_dmac handshaking signals are needed on the I/O of the peripheral. This mode is useful
for interfacing an existing peripheral to the DW_ahb_dmac without modifying it. For more
information about this interface, see “Flow Control Configurations” on page 88.

❑ Peripheral interrupt handshaking interface – Simple use of the hardware handshaking interface.
In this mode, the interrupt line from the peripheral is tied to the dma_req input of the hardware
handshaking interface; other interface signals are ignored. For more information about this
interface, see “Peripheral Interrupt Request Interface” on page 87.

■ Flow controller – Device (either the DW_ahb_dmac, or source/destination peripheral) that
determines the length of a DMA block transfer and terminates it.

❑ If you know the length of a block before enabling the channel, then you should program the
DW_ahb_dmac as the flow controller.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Product Overview

❑ If the length of a block is not known prior to enabling the channel, the source or destination
peripheral needs to terminate a block transfer. In this mode, the peripheral is the flow controller.

For more information, see “Setup/Operation of DW_ahb_dmac Transfers” on page 33.

■ Flow control mode (CFGx.FCMODE) – Special mode that only applies when the destination
peripheral is the flow controller. It controls the data pre-fetching from the source peripheral.

■ Transfer hierarchy – Figure 1-5 illustrates the hierarchy between DW_ahb_dmac transfers, block
transfers, transactions (single or burst), and AHB transfers (single or burst) for non-memory
peripherals.

Figure 1-5 DW_ahb_dmac Transfer Hierarchy for Non-Memory Peripherals

NoteNoteNoteNote Note that for memory peripherals, there is no DMA Transaction Level.

DW_ahb_dmac Transfer

Block Block Block

Burst
Transaction

Burst
Transaction

Burst
Transaction

Single
Transaction

AMBA
Burst

Transfer

AMBA
Burst

Transfer

AMBA
Burst

Transfer

AMBA
Single

Transfer

AMBA
Single

Transfer

DMA Transfer
Level

Block Transfer
Level

DMA Transaction
Level

AMBA Transfer
Level

https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Product Overview DesignWare DW_ahb_dmac Databook

Figure 1-6 shows the transfer hierarchy for memory.

Figure 1-6 DW_ahb_dmac Transfer Hierarchy for Memory

■ Block – Block of DW_ahb_dmac data, the amount of which is the block length and is determined by
the flow controller. For transfers between the DW_ahb_dmac and memory, a block is broken directly
into a sequence of bursts and single transfers. For transfers between the DW_ahb_dmac and a
non-memory peripheral, a block is broken into a sequence of DW_ahb_dmac transactions (single and
bursts). These are in turn broken into a sequence of AHB transfers.

■ Transaction – Basic unit of a DW_ahb_dmac transfer, as determined by either the hardware or
software handshaking interface. A transaction is relevant only for transfers between the
DW_ahb_dmac and a source or destination peripheral if the peripheral is a non-memory device.
There are two types of transactions:

❑ Single transaction – Length of a single transaction is always 1 and is converted to a single AHB
transfer.

❑ Burst transaction – Length of a burst transaction is programmed into the DW_ahb_dmac. The
burst transaction is converted into a sequence of bursts and AHB single transfers. The burst
transaction length is under program control and normally bears some relationship to the FIFO
sizes in the DW_ahb_dmac and in the source and destination peripherals.

■ DMA transfer – Software controls the number of blocks in a DW_ahb_dmac transfer. Once the DMA
transfer has completed, the hardware within the DW_ahb_dmac disables the channel and can
generate an interrupt to signal the DMA transfer completion. You can then reprogram the channel for
a new DMA transfer.

❑ Single-block DMA transfer – Consists of a single block.

❑ Multi-block DMA transfer – DMA transfer may consist of multiple DW_ahb_dmac blocks.
Multi-block DMA transfers are supported through block chaining (linked list pointers),
auto-reloading channel registers, and contiguous blocks. The source and destination can
independently select which method to use.

■ Linked lists (block chaining) – Linked list pointer (LLP) points to the location in system
memory where the next linked list item (LLI) exists. The LLI is a set of registers that describes
the next block (block descriptor) and an LLP register. The DW_ahb_dmac fetches the LLI at

DW_ahb_dmac Transfer

Block Block Block

AMBA
Burst

Transfer

AMBA
Burst

Transfer

AMBA
Burst

Transfer

AMBA
Single

Transfer

DMA Transfer
Level

Block Transfer
Level

AMBA Transfer
Level

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Product Overview

the beginning of every block when block chaining is enabled. For more information about
linked lists and block chaining, see “Block Chaining Using Linked Lists” on page 333.
LLI accesses are always 32-bit accesses (Hsize = 2) aligned to 32-bit boundaries and cannot be
changed or programmed to anything other than 32-bit, even if the AHB master interface of the
LLI supports more than a 32-bit data width.

■ Auto-reloading – DW_ahb_dmac automatically reloads the channel registers at the end of
each block to the value when the channel was first enabled. For more information about this
function, see “Auto-Reloading of Channel Registers” on page 337.

■ Contiguous blocks – Address between successive blocks is selected to be a continuation from
the end of the previous block. For more information, see “Contiguous Address Between
Blocks” on page 337.

■ Scatter – Relevant to destination transfers within a block. The destination address is incremented or
decremented by a programmed amount when a scatter boundary is reached. The number of AHB
transfers between successive scatter boundaries is under software control.

■ Gather – Relevant to source transfers within a block. The source address is incremented or
decremented by a programmed amount when a gather boundary is reached. The number of AHB
transfers between successive gather boundaries is under software control.

For more information about scatter and gather, see “Scatter/Gather” on page 101.

■ Channel locking – Software can program a channel to keep the AHB master interface by locking
arbitration of the master bus interface for the duration of a DMA transfer, block, or transaction (single
or burst). For more information on channel locking, see “Channel Locking” on page 96.

■ Bus locking – Software can program a channel to maintain control of the AHB bus by asserting hlock
for the duration of a DMA transfer, block, or transaction (single or burst). At minimum, channel
locking is asserted during bus locking. For more information, see “Bus Locking” on page 96.

■ FIFO mode – Special mode to improve bandwidth. When enabled, the channel waits until the FIFO is
less than half full to fetch the data from the source peripheral, and waits until the FIFO is greater than
or equal to half full in order to send data to the destination peripheral. Because of this, the channel
can transfer the data using bursts, which eliminates the need to arbitrate for the AHB master interface
in each single AHB transfer. When this mode is not enabled, the channel waits only until the FIFO
can transmit or accept a single AHB transfer before it requests the master bus interface.

■ Pseudo fly-by operation – Typically, it takes two AHB bus cycles to complete a transfer—one for
reading the source and one for writing to the destination. However, when the source and destination
peripherals of a DMA transfer are on different AHB layers, it is possible for the DW_ahb_dmac to
fetch data from the source and store it in the channel FIFO at the same time that the DW_ahb_dmac
extracts data from the channel FIFO and writes it to the destination peripheral. This activity is known
as pseudo fly-by operation. In order for this to occur in appropriate sequential order, the source and
destination logic in the DW_ahb_dmac should first win their respective master interfaces, and then
the master interface for both source and destination layers must win arbitration of their AHB layer.

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Product Overview DesignWare DW_ahb_dmac Databook

1.4 Features
The DW_ahb_dmac component includes the following features.

1.4.1 General

■ AMBA 2.0-compliant

■ AHB slave interface – used to program the DW_ahb_dmac

■ Channels

❑ Up to eight channels, one per source and destination pair

❑ Unidirectional channels – data transfers in one direction only

❑ Programmable channel priority

■ AHB master interfaces

❑ Up to four independent AHB master interfaces that allows:

■ Up to four simultaneous DMA transfers
■ Masters that can be on different AHB layers (multi-layer support)
■ Source and destination that can be on different AHB layers (pseudo fly-by performance)

❑ Configurable data bus width (up to 256 bits) for each AHB master interface

❑ Configurable endianness for master interfaces

■ Transfers

❑ Support for memory-to-memory, memory-to-peripheral, peripheral-to-memory, and
peripheral-to-peripheral DMA transfers

❑ DW_ahb_dmac to or from APB peripherals through the APB bridge

■ Configurable identification register

■ Component ID parameters for configurable software driver support

■ Configuration of DesignWare AHB Lite system

■ DMA burst indication on the last beat

■ Support for Little Endian, Address Invariant (AI) Big Endian scheme and BE-32 (Word Invariant)
scheme of data access on AHB slave interface and each AHB master interface.

■ Arbitration scheme to decide which of the request lines is granted access to a particular master bus
interface.

Source code for this component is available on a per-project basis as a DesignWare Core. Contact your local
sales office for the details.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Product Overview

1.4.2 Address Generation

■ Programmable source and destination addresses (on AHB bus)

■ Address increment, decrement, or no change

■ Multi-block transfers achieved through:

❑ Linked Lists (block chaining)

❑ Auto-reloading of channel registers

❑ Contiguous address between blocks

■ Independent source and destination selection of multi-block transfer type

■ Scatter/Gather

1.4.3 Channel Buffering

■ Single FIFO per channel for source and destination

■ Configurable FIFO depth

■ D flip-flop-based FIFO

■ Automatic data packing or unpacking to fit FIFO width

1.4.4 Channel Control

■ Programmable source and destination for each channel

■ Programmable transfer type for each channel (memory-to-memory, memory-to-peripheral,
peripheral-to-memory, and peripheral-to-peripheral)

■ Programmable burst transaction size for each channel

■ Programmable enable and disable of DMA channel

■ Support for disabling channel without data loss

■ Support for suspension of DMA operation

■ Support for RETRY, SPLIT, and ERROR responses

■ Programmable maximum burst transfer size per channel

■ Configurable maximum transaction size to allow gate optimization

■ Configurable maximum block size to allow gate optimization

■ Bus locking – can be programmed to be over the transaction, block, or DMA transfer level

■ Channel locking – can be programmed to be over the transaction, block, or DMA transfer level

■ Option to hardcode type of multi-block transfer

■ Option to disable the writeback of the Channel Control register at the end of every block transfer

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Product Overview DesignWare DW_ahb_dmac Databook

1.4.5 Transfer Initiation

■ Handshaking interfaces for source and destination peripherals (up to 16)

❑ Hardware handshaking interface

❑ Software handshaking interface

❑ Peripheral interrupt handshaking interface

■ Handshaking interface supports single or burst DMA transactions

■ Polarity control for hardware handshaking interface

■ Enabling and disabling of individual DMA handshaking interfaces

1.4.6 Flow Control

■ Programmable flow control at block transfer level (source, destination, or DW_ahb_dmac)

■ Software control of source data pre-fetch when destination is flow controller

1.4.7 Interrupts

■ Combined and separate interrupt requests

■ Interrupt generation on:

❑ DMA transfer (multi-block) completion

❑ Block transfer completion

❑ Single and burst transaction completion

❑ Error condition

■ Support of interrupt enabling and masking

1.4.8 Low Power Mode

■ Global Clock Gating

■ Channel Specific Clock Gating

1.5 Standards Compliance
The DW_ahb_dmac component conforms to the AMBA Specification, Revision 2.0 from ARM. Readers are
assumed to be familiar with this specification.

1.6 Verification Environment Overview
The DW_ahb_dmac includes an extensive verification environment, which sets up and invokes your
selected simulation tool to execute tests that verify the functionality of the configured component. You can
then analyze the results of the simulation.

“Verification” on page 369 discusses the specific procedures for verifying the DW_ahb_dmac.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Product Overview

1.7 Licenses
Before you begin using the DW_ahb_dmac, you must have a valid license. For more information, see
“Licenses” in the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI Installation Guide.

1.8 Where To Go From Here
At this point, you may want to get started working with the DW_ahb_dmac component within a subsystem
or by itself. Synopsys provides several tools within its coreTools suite of products for the purposes of
configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

For more information about configuring, synthesizing, and verifying just your DW_ahb_dmac component,
see “Overview of the coreConsultant Configuration and Integration Process” in DesignWare Synthesizable
Components for AMBA 2 User Guide.

For more information about implementing your DW_ahb_dmac component within a DesignWare
subsystem using coreAssembler, see “Overview of the coreAssembler Configuration and Integration
Process” in DesignWare Synthesizable Components for AMBA 2 User Guide.

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Product Overview DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

2
Functional Description

This chapter describes the functional details of the DW_ahb_dmac component.

There is an option to configure AHB Lite, which is the DesignWare implementation of AMBA 2.0 AHB-Lite.
The DesignWare AHB Lite configuration does not include the following:

■ Requesting/granting protocols to the arbiter and split/retry responses from the slaves; all slaves are
made non-split capable

■ No arbiter as the signals associated with the component are not used: hbusreq and hgrant

■ No write data, address, or control multiplexers

■ Pause mode not enabled

■ Default master number changed to 1

■ Number of masters is changed to 1

You use the DMAH_M1_AHB_LITE parameter to configure the DW_ahb_dmac for an AHB Lite
configuration.

For more information about AHB Lite, refer to the DesignWare DW_ahb Databook.

2.1 Setup/Operation of DW_ahb_dmac Transfers
“Programming a Channel” on page 342 describes how to program the DW_ahb_dmac in order to perform
DMA transfers. This section discusses how a single block transfer, made up of transactions, is actually
performed. The relevant settings of the DW_ahb_dmac are also discussed here.

2.2 Block Flow Controller and Transfer Type
The device that controls the length of a block is known as the flow controller. Either the DW_ahb_dmac, the
source peripheral, or the destination peripheral must be assigned as the flow controller.

■ If the block size is known prior to when the channel is enabled, then the DW_ahb_dmac should be
programmed as the flow controller. The block size should be programmed into the CTLx.BLOCK_TS
field.

■ If the block size is unknown when the DW_ahb_dmac channel is enabled, either the source or
destination peripheral must be the flow controller.

https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

The CTLx.TT_FC field indicates the transfer type and flow controller for that channel. Table 2-1 lists valid
transfer types and flow controller combinations.

Table 2-1 Transfer Types and Flow Control Combinations (CTLx.TT_FC Field Decoding)

As an example, the DW_ahb_dmac can be programmed as the flow controller when a DMA block must be
transferred from a receive DW_apb_ssi peripheral to memory. In a block transfer, software programs the
DW_apb_ssi register – CTRLR1.NDF – with the number of source data items minus 1. Software then
programs the CTLx.BLOCK_TS register with the same value and programs the DW_ahb_dmac as the flow
controller.

The DW_apb_ssi has no built-in intelligence to signal block completion to the DW_ahb_dmac; this is not
required in this case because software knows the block size prior to enabling the channel.

As another example, a peripheral can be a block flow controller when a DMA block must be transferred
from an Ethernet controller to memory. In this case, the size of an ethernet packet may not be known prior
to enabling the DW_ahb_dmac channel. Therefore, the ethernet controller needs built-in intelligence to
indicate to the DW_ahb_dmac when a block transfer has completed.

2.3 Handshaking Interface
Handshaking interfaces are used at the transaction level to control the flow of single or burst transactions.
The operation of the handshaking interface is different and depends on whether the peripheral or the
DW_ahb_dmac is the flow controller.

The peripheral uses the handshaking interface to indicate to the DW_ahb_dmac that it is ready to transfer or
accept data over the AHB bus.

A non-memory peripheral can request a DMA transfer through the DW_ahb_dmac using one of two types
of handshaking interfaces:

■ Hardware

■ Software

CTLx.TT_FC Field Transfer Type Flow Controller

000 Memory to Memory DW_ahb_dmac

001 Memory to Peripheral DW_ahb_dmac

010 Peripheral to Memory DW_ahb_dmac

011 Peripheral to Peripheral DW_ahb_dmac

100 Peripheral to Memory Peripheral

101 Peripheral to Peripheral Source Peripheral

110 Memory to Peripheral Peripheral

111 Peripheral to Peripheral Destination Peripheral

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Software selects between the hardware or software handshaking interface on a per-channel basis. Software
handshaking is accomplished through memory-mapped registers, while hardware handshaking is
accomplished using a dedicated handshaking interface.

The type of handshaking interface depends on whether the peripheral is a flow controller or not.

2.4 Basic Interface Definitions

The following definitions are used in this chapter:

■ Source single transaction size in bytes

src_single_size_bytes = CTLx.SRC_TR_WIDTH/8 (1)

■ Source burst transaction size in bytes

src_burst_size_bytes = CTLx.SRC_MSIZE * src_single_size_bytes (2)

■ Destination single transaction size in bytes

dst_single_size_bytes = CTLx.DST_TR_WIDTH/8 (3)

■ Destination burst transaction size in bytes

dst_burst_size_bytes = CTLx.DEST_MSIZE * dst_single_size_bytes (4)

■ Block size in bytes:

❑ DW_ahb_dmac is flow controller – With the DW_ahb_dmac as the flow controller, the processor
programs the DW_ahb_dmac with the number of data items (block size) of source transfer width
(CTLx.SRC_TR_WIDTH) to be transferred by the DW_ahb_dmac in a block transfer; this is
programmed into the CTLx.BLOCK_TS field. Therefore, the total number of bytes to be
transferred in a block is:

blk_size_bytes_dma = CTLx.BLOCK_TS * src_single_size_bytes (5)

NoteNoteNoteNote Throughout the remainder of this document, references to both source and destination hardware
handshaking interfaces assume an active-high interface (refer to CFGx.SRC(DST)_HS_POL bits
in the Channel Configuration register, “CFGx”). When active-low handshaking interfaces are
used, then the active level and edge are reversed from that of an active-high interface.

NoteNoteNoteNote Source and destination peripherals can independently select the handshaking interface type; that
is, hardware or software handshaking. For more information, refer to the CFGx.HS_SEL_SRC
and CFGx.HS_SEL_DST parameters in the CFGx register.

NoteNoteNoteNote In this chapter and the following equations, references to CTLx.SRC_MSIZE,
CTLx.DEST_MSIZE, CTLx.SRC_TR_WIDTH, and CTLx.DST_TR_WIDTH refer to the decoded
values of the parameters; for example, CTLx.SRC_MSIZE = 3’b001 decodes to 4, and
CTLx.SRC_TR_WIDTH = 3’b010 decodes to 32 bits.

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

❑ Source peripheral is block flow controller

blk_size_bytes_src = (Number of source burst transactions in block * src_burst_size_bytes) +
(Number of source single transactions in block * src_single_size_bytes)(6)

❑ Destination peripheral is block flow controller

blk_size_bytes_dst = (Number of destination burst transactions in block * dst_burst_size_bytes) +
(Number of destination single transactions in block * dst_single_size_bytes)(7)

2.5 Memory Peripherals
Figure 1-6 shows the DMA transfer hierarchy of the DW_ahb_dmac for a memory peripheral. There is no
handshaking interface with the DW_ahb_dmac, and therefore the memory peripheral can never be a flow
controller. Once the channel is enabled, the transfer proceeds immediately without waiting for a transaction
request.

The alternative to not having a transaction-level handshaking interface is to allow the DW_ahb_dmac to
attempt AHB transfers to the peripheral once the channel is enabled. If the peripheral slave cannot accept
these AHB transfers, it inserts wait states onto the bus (by de-asserting hready) until it is ready; it is not
recommended that more than 16 wait states be inserted onto the bus. By using the handshaking interface,
the peripheral can signal to the DW_ahb_dmac that it is ready to transmit or receive data, and then the
DW_ahb_dmac can access the peripheral without the peripheral inserting wait states onto the bus.

The CTLx.SRC_MSIZE and CTLx.DEST_MSIZE are properties valid only for peripherals with a
handshaking interface; they cannot be used for defining the burst length for memory peripherals.

When the peripherals are memory, the DW_ahb_dmac is always the flow controller and uses DMA
transfers to move blocks; thus the CTLx.SRC_MSIZE and CTLx.DEST_MSIZE values are not used for
memory peripherals. The SRC_MSIZE/DEST_MSIZE limitations are used to accommodate devices that
have limited resources, such as a FIFO. Memory does not normally have limitations similar to the FIFOs.

Therefore:

■ Length of burst transfers to memory is always equal to the number of data items available in a
channel FIFO or data items required to complete the block transfer, whichever is smaller.

■ Length of burst transfers from memory is always equal to the space available in a channel FIFO or
number of data items required to complete the block transfer, whichever is smaller.

2.6 Software Handshaking
When the slave peripheral requires the DW_ahb_dmac to perform a DMA transaction, it communicates this
request by sending an interrupt to the CPU or interrupt controller. The interrupt service routine then uses

NoteNoteNoteNote If a channel is used exclusively for memory-to-memory DMA transfers – that is, no
transaction-level handshaking on the source or destination side – then set
DMAH_MAX_MULT_SIZE to 4 in order to achieve logic optimization.

NoteNoteNoteNote The length of burst transfers to or from memory can be limited by software by programming the
CFGx.MAX_ABRST register field.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

the software registers detailed in “Software Handshaking Registers” to initiate and control a DMA
transaction. This group of software registers is used to implement the software handshaking interface.

The HS_SEL_SRC/HS_SEL_DST bit in the CFGx channel configuration register must be set to enable
software handshaking. For examples on how to use the software handshaking interface, refer to “Example
9” on page 78, “Example 10” on page 80, and “Example 11” on page 83.

Figure 2-1 Software Controlled DMA Transfers

The software handshaking registers are:

■ ReqSrcReg– source software transaction request

■ ReqDstReg – destination software transaction request

■ SglReqSrcReg – single source transaction request

■ SglReqDstReg – single destination transaction request

■ LstSrcReg – last source transaction request

■ LstDstReg – last destination transaction request

For details on how the software handshaking flow works, refer to “Software Handshaking – Peripheral Is
Not Flow Controller” on page 46 and “Software Handshaking – Peripheral Is Flow Controller” on page 51.

2.7 Handshaking Interface – Peripheral Is Not Flow Controller
When the peripheral is not the flow controller, the DW_ahb_dmac tries to efficiently transfer the data using
as little of the bus bandwidth as possible. Generally, the DW_ahb_dmac tries to transfer the data using burst
transactions and, where possible, fill or empty the channel FIFO in single bursts – provided that the
software has not limited the burst length; refer to “Example 3”. The DW_ahb_dmac can also lock the
arbitration for the master bus interface so that a channel is permanently granted the master bus interface.

Peripheral

DW_ahb_dmac

CPU

■ Program and enable channel through “Channel Registers”

■ After interrupt, initiate and control DMA transaction between peripherals and
DW_ahb_dmac through “Software Handshaking Registers”.

Interrupt

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Additionally, the DW_ahb_dmac can assert the AMBA hlock signal to lock the DW_ahb system arbiter. For
more information, refer to “Locked DMA Transfers” on page 96.

Before describing the handshaking interface operation when the peripheral is not the flow controller, the
following sections define the terms “Single Transaction Region” and “Early-Terminated Burst Transaction.”

2.7.1 Single Transaction Region

There are cases where a DMA block transfer cannot complete using only burst transactions. Typically this
occurs when the block size is not a multiple of the burst transaction length; for more information, refer to
Example 4 and Example 5. In these cases, the block transfer uses burst transactions up to the point where the
amount of data left to complete the block is less than the amount of data in a burst transaction. At this point,
the DW_ahb_dmac samples the “single” status flag and completes the block transfer using single
transactions; again refer to Example 4 and Example 5.

The peripheral asserts a single status flag to indicate to the DW_ahb_dmac that there is enough data or
space to complete a single transaction from or to the source/destination peripheral.

The Single Transaction Region is the time interval where the DW_ahb_dmac uses single transactions to
complete the block transfer; burst transactions are exclusively used outside this region.

The Single Transaction Region applies to only a peripheral that is not the flow controller. The precise
definition of when this region is entered is dependent on what acts as the flow controller:

■ The DW_ahb_dmac is the flow controller – The source peripheral enters the Single Transaction
Region when the number of bytes left to complete in the source block transfer is less than
src_burst_size_bytes. If:

blk_size_bytes/src_burst_size_bytes = integer(8)

then the source never enters this region, and the source block uses only burst transactions.

The destination peripheral enters the Single Transaction Region when the number of bytes left to
complete in the destination block transfer is less than dst_burst_size_bytes. If:

blk_size_bytes/dst_burst_size_bytes = integer(9)

then the destination never enters this region, and the destination block uses only burst transactions.

NoteNoteNoteNote For hardware handshaking, the single status flag is a signal on the hardware handshaking
interface; refer to “Hardware Handshaking – Peripheral Is Not Flow Controller” on page 40. For
software handshaking, the single status flag is one of the software handshaking interface
registers; refer to “Software Handshaking – Peripheral Is Not Flow Controller” on page 46.

NoteNoteNoteNote Burst transactions can also be used in this region; for more information, refer to
““Early-Terminated Burst Transaction” on page 39.”

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

■ Either the source or destination peripheral is the flow controller – The destination or source
peripheral enters the Single Transaction Region when the flow control peripheral – that is, the source
or destination – signals the last transaction in the block and when the amount of data left to be
transferred in the destination/source block is less than that which is specified by
dst_burst_size_bytes/src_burst_size_bytes.

2.7.2 Early-Terminated Burst Transaction

When a source or destination peripheral is in the Single Transaction Region, a burst transaction can still be
requested. However, src_burst_size_bytes/ dst_burst_size_bytes is greater than the number of bytes left to
complete in the source/destination block transfer at the time that the burst transaction is triggered. In this
case, the burst transaction is started and “early-terminated” at block completion without transferring the
programmed amount of data – that is, src_burst_size_bytes or dst_burst_size_bytes – but only the amount
required to complete the block transfer. An Early-Terminated Burst Transaction occurs between the
DW_ahb_dmac and the peripheral only when the peripheral is not the flow controller.

The DW_ahb_dmac never terminates defined-length bursts early.

■ If the DW_ahb_dmac is configured with DMAH_INCR_BURSTS = 0 and it detects a burst request
when in the Single Transaction Region, the DW_ahb_dmac only issues SINGLE type transfers to
complete the burst.

■ If DMAH_INCR_BURSTS = 1 and the DW_ahb_dmac detects a burst when in the Single Transaction
Region, the DW_ahb_dmac issues an undefined length burst (INCR) of length only large enough to
complete the block transfer. It does not transfer all programmed src_burst_size_bytes or
dst_burst_size_bytes.

NoteNoteNoteNote The conditions mentioned earlier cause a peripheral to enter the Single Transaction Region.
When the peripheral is outside the Single Transaction Region, then the DW_ahb_dmac responds
to only burst transaction requests. Whether the peripheral knows that it is in the Single
Transaction Region or not, it must always generate burst requests outside the Single Transaction
Region, or the DMA block transfer stalls. Once in the Single Transaction Region, the
DW_ahb_dmac can complete the block transfer using single transactions.

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.7.3 Hardware Handshaking – Peripheral Is Not Flow Controller

Figure 2-2 illustrates the hardware handshaking interface between a peripheral – whether a destination or
source – and the DW_ahb_dmac when the peripheral is not the flow controller.

Figure 2-2 Hardware Handshaking Interface

Table 2-2 describes the hardware handshaking signals in the case where the peripheral is not the flow
controller; that is, where either the DW_ahb_dmac or the other peripheral is the flow controller. Signal
polarity can be programmed using the CFGx.SRC_HS_POL and CFGx.DST_HS_POL fields.

Table 2-2 Hardware Handshaking Interface

Signal Direction Description

dma_ack Output DW_ahb_dmac acknowledge signal to peripheral. The dma_ack signal is
asserted after the data phase of the last AHB transfer in the current transaction
– single or burst – to the peripheral that has completed. For a single transaction,
dma_ack remains asserted until the peripheral de-asserts dma_single;
dma_ack is de-asserted one hclk cycle later. For a burst transaction, dma_ack
remains asserted until the peripheral de-asserts dma_req; dma_ack is
de-asserted one hclk cycle later.

dma_finish Output DW_ahb_dmac asserts dma_finish to signal block completion. This has
the same timing as dma_ack and forms a handshaking loop with dma_req if the
last transaction in the block is a burst transaction, or with dma_single if the last
transaction in the block is a single transaction.
There is an exception to the timing definition mentioned earlier when
dma_finish interfaces with a source peripheral when the destination peripheral
is the flow controller; for details, refer to “Example 7” Case 1b.

dma_last Input Since the peripheral is not the flow controller, dma_last is not sampled by the
DW_ahb_dmac and this signal is ignored.

Peripheral DW_ahb_dmac CPU

Program and enable Channel through
“Channel Registers”

dma_req

dma_single

dma_last

dma_ack

dma_finish

=1’bx

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

dma_req Input Burst transaction request from peripheral. The DW_ahb_dmac always
interprets the dma_req signal as a burst transaction request, regardless of the
level of dma_single. This is a level-sensitive signal; once asserted by the
peripheral, dma_req must remain asserted until the DW_ahb_dmac asserts
dma_ack. Upon receiving the dma_ack signal from the DW_ahb_dmac to
indicate the burst transaction is complete, the peripheral should de-assert the
burst request signal, dma_req. Once dma_req is de-asserted by the peripheral,
the DW_ahb_dmac de-asserts dma_ack.
If an active level on dma_req is detected in the Single Transaction Region, then
the block is completed using an Early-Terminated Burst Transaction.

dma_single Input Single transfer status. The dma_single signal is a status signal that is
asserted by a destination peripheral when it can accept at least one destination
data item; otherwise it is cleared. For a source peripheral, the dma_single
signal is again a status signal and is asserted by a source peripheral when it
can transmit at least one source data item; otherwise it is cleared.
Once asserted, dma_single must remain asserted until dma_ack is asserted, at
which time the peripheral should de-assert dma_single.
This signal is sampled by the DW_ahb_dmac only in the Single Transaction
Region of the block transfer. Outside of this region, dma_single is ignored and
all transactions are burst transactions.

NoteNoteNoteNote When the dma_req or dma_single signal is asserted, they must remain asserted until dma_ack is
asserted; otherwise, the behavior of DW_ahb_dmac is not defined and data integrity is not
guaranteed.
In such scenarios, the corresponding channel can be reused by disabling the channel and then
by re-enabling the channel with appropriate programming required for subsequent DMA transfers.

Signal Direction Description

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-3 shows the timing diagram of a burst transaction where the peripheral clock, per_clk, equals hclk.
In this example, the peripheral is outside the Single Transaction Region, and therefore the DW_ahb_dmac
does not sample dma_single[0].

The handshaking loop is as follows:

dma_req asserted by peripheral

-> dma_ack asserted by DW_ahb_dmac

-> dma_req de-asserted by peripheral

-> dma_ack de-asserted by DW_ahb_dmac.

Figure 2-3 Burst Transaction – pclk = hclk

The per_clk signal is equal to hclk if the peripheral is an AHB peripheral; it is equal to pclk if the peripheral
is an APB peripheral. The burst transaction request signal, dma_req, and the single status signal,
dma_single, are generated in the peripheral of per_clk and sampled by hclk in the DW_ahb_dmac. The
acknowledge signal, dma_ack, is generated in the DW_ahb_dmac of hclk and sampled in the peripheral by
per_clk. The handshaking mechanism between the DW_ahb_dmac and the peripheral supports
quasi-synchronous clocks; that is, hclk and per_clk must be phase- aligned, and the hclk frequency must be
a multiple of the per_clk frequency.

In the case where the destination peripheral is an APB peripheral and for the case of buffered writes
through an APB bridge, then caution must be exercised so as not to overflow the destination peripheral
FIFO. This can happen when the write is buffered in the APB bridge; that is, the write completes on the AHB
before completing on the APB bus. The following scenario can cause an overflow: the DW_ahb_dmac
asserts dma_ack as soon as the write transaction completes on the AHB. The APB peripheral, on sampling
that the acknowledge signal is asserted, de-asserts its request signal and asserts the request signal one APB
clock cycle later, as it senses that there is space in its FIFO. The issue here is that there could be space for
only a single entry that the first buffered write consumes. The initiation of the second transaction may
overflow the FIFO. If the write is not buffered, then the initiation of the second transaction does not occur, as
the destination peripheral senses that its FIFO is full.

per_clk

hclk

dma_req[0]

dma_ack[0]

dma_single[0]

dma_finish[0]

dma_last[0]

burst transaction request

burst transaction complete

Value not sampled

Value not sampled

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

To avoid this, do one of the following:

1. Do not use buffered writes.

2. If using buffered writes, then ensure that dma_ack signal from the DW_ahb_dmac is delayed until
the write completes to the APB peripheral. One way may be to route the dma_ack signal through the
APB bridge.

Figure 2-4 shows two back-to-back burst transactions at the end of a block transfer where the hclk frequency
is twice the pclk frequency; the peripheral is an APB peripheral. The second burst transaction terminates the
block, and dma_finish[0] is asserted to indicate block completion.

Figure 2-4 Back-to-Back Burst Transactions – hclk = 2*per_clk

There are two things to note when designing the hardware handshaking interface:

■ Once asserted, the dma_req burst request signal must remain asserted until the corresponding
dma_ack signal is received, even if the condition that generates dma_req in the peripheral is False.

■ The dma_req signal should be de-asserted when dma_ack is asserted, even if the condition that
generates dma_req in the peripheral is True.

burst transaction request

burst transaction complete

burst transaction request

burst transaction complete

Value not sampled

block transfer complete

Value not sampled

hclk

per_clk

dma_req[0]

dma_ack[0]

dma_single[0]

dma_finish[0]

dma_last[0]

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-5 shows a single transaction that occurs in the Single Transaction Region. The handshaking loop is
as follows:

dma_single asserted by peripheral

-> dma_ack asserted by DW_ahb_dmac

-> dma_single de-asserted by peripheral

-> dma_ack de-asserted by DW_ahb_dmac

Figure 2-5 Single Transaction

Figure 2-6 shows a burst transaction, followed by two back-to-back single transactions, where the hclk
frequency is twice the per_clk frequency; handshaking interface 0 is used.

Figure 2-6 Burst Followed by Back-to-Back Single Transactions

After the first burst transaction, the peripheral enters the Single Transaction Region and the DW_ahb_dmac
starts sampling dma_single[0]. On hclk edges T2 and T4, the DW_ahb_dmac samples that dma_single[0] is
asserted and performs single transactions. The second single transaction terminates the block transfer;
dma_finish[0] is asserted to indicate block completion.

In the Single Transaction Region, if an active level on dma_req and dma_single occur on the same cycle – or
if the active level on dma_single occurs only one cycle before an active level on dma_req – then the burst
transaction takes precedence over the single transaction, and the block would be completed using an

per_clk

hclk

dma_req[0]

dma_ack[0]

dma_single[0]

dma_finish[0]

dma_last[0]

single transaction complete

Value not sampled

T4T3T2T1

burst transaction complete

burst transaction request

Single transaction complete Single transaction complete

Value not sampled

per_clk

hclk

dma_req[0]

dma_ack[0]

dma_single[0]

dma_finish[0]

dma_last[0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Early-Terminated Burst Transaction. If the DW_ahb_dmac samples that dma_req[0] is asserted on hclk
cycles T1-T2 or T3-T4 in Figure 2-6, then the burst request takes precedence.

In Figure 2-7, an active level on dma_req[0] after time T4 takes precedence over the active level on
dma_single[0] after time T3.

Figure 2-7 Early-Terminated Burst Transaction

Figure 2-8 shows a burst transaction followed by a single transaction, followed by a burst transaction at the
end of a block.

Figure 2-8 Burst Transaction ignored During Active Single Transaction

After the first burst transaction completes, the peripheral is in the Single Transaction Region and
DW_ahb_dmac samples that dma_single[0] is asserted at T1. The dma_req[0] signal is triggered in the
middle of this single transaction at time T2. This burst transaction request is ignored and is not serviced. An
active edge on dma_req[0] is re-generated and sampled by DW_ahb_dmac at time T3. This burst transaction
completes the block transfer using an Early-Terminated Burst Transaction.

2.7.3.1 Generating dma_req and dma_single Hardware Handshaking Signals

Figure 2-9 illustrates a suggested method of generating dma_req and dma_single for a source peripheral
when the peripheral is not the flow controller. The single_flag signal in Figure 2-9 is asserted when the
source FIFO has at least one source data item in the FIFO. The burst_flag signal in Figure 2-9 is asserted

T4T3T2T1

burst transaction complete

burst transaction request

Single transaction complete early terminated burst

Value not sampled

per_clk

hclk

dma_req[0]

dma_ack[0]

dma_single[0]

dma_finish[0]

dma_last[0]

T3T2T1

burst transaction complete

burst transaction request

Single transaction complete early terminated burst

Value not sampled

per_clk

hclk

dma_req[0]

dma_ack[0]

dma_single[0]

dma_finish[0]

dma_last[0]

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

when the source FIFO contains data items greater than or equal to some watermark-level number of data
items in it.

The destination peripheral dma_req and dma_single signals can be generated in a similar fashion, but in
this case the single_flag signal in Figure 2-9 is asserted when the destination FIFO has at least one free
location. The burst_flag signal in Figure 2-9 is asserted when the destination FIFO contains free locations
greater than or equal to some watermark-level number.

Figure 2-9 Generation of dma_req and dma_single by Source

2.7.4 Software Handshaking – Peripheral Is Not Flow Controller

When the peripheral is not the flow controller, then the last transaction registers – LstSrcReg and LstDstReg
– are not used, and the values in these registers are ignored.

2.7.4.1 Operation – Peripheral Not In Single Transaction Region

Writing a 1 to the ReqSrcReg[x]/ReqDstReg[x] register is always interpreted as a burst transaction request,
where x is the channel number. However, in order for a burst transaction request to start, software must
write a 1 to the SglReqSrcReg[x]/ SglReqDstReg[x] register.

You can write a 1 to the SglReqSrcReg[x]/SglReqDstReg[x] and ReqSrcReg[x]/ReqDstReg[x] registers in
any order, but both registers must be asserted in order to initiate a burst transaction. Upon completion of
the burst transaction, the hardware clears the SglReqSrcReg[x]/SglReqDstReg[x] and
ReqSrcReg[x]/ReqDstReg[x] registers.

NoteNoteNoteNote Figure 2-9 shows dma_req and dma_single being de-asserted when dma_ack is asserted. It also
shows how, once asserted, dma_req and dma_single remain asserted until dma_ack is
asserted. The example assumes active-high handshaking.

FIFO
single_flag

D Q dma_req

dma_ack

dma_single

controller

burst_flag

D Q

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.7.4.2 Operation – Peripheral In Single Transaction Region

Writing a 1 to the SglReqSrcReg/SglReqDstReg initiates a single transaction. Upon completion of the single
transaction, both the SglReqSrcReg/SglReqDstReg and ReqSrcReg/ReqDstReg bits are cleared by
hardware. Therefore, writing a 1 to the ReqSrcReg/ReqDstReg is ignored while a single transaction has
been initiated, and the requested burst transaction is not serviced.

Again, writing a 1 to the ReqSrcReg/ReqDstReg register is always a burst transaction request. However, in
order for a burst transaction request to start, the corresponding channel bit in the
SglReqSrcReg/SglReqDstReg must be asserted. Therefore, to ensure that a burst transaction is serviced in
this region, you must write a 1 to the ReqSrcReg/ReqDstReg before writing a 1 to the
SglReqSrcReg/SglReqDstReg register. If the programming order is reversed, a single transaction is started
instead of a burst transaction. The hardware clears both the ReqSrcReg/ReqDstReg and the
SglReqSrcReg/SglReqDstReg registers after the burst transaction request completes. When a burst
transaction is initiated in the Single Transaction Region, then the block completes using an
Early-Terminated Burst Transaction.

Software can poll the relevant channel bit in the SglReqSrcReg/SglReqDstReg and ReqSrcReg/ReqDstReg
registers. When both are 0, then either the requested burst or single transaction has completed.
Alternatively, the IntSrcTran or IntDstTran interrupts can be enabled and unmasked in order to generate an
interrupt when the requested source or destination transaction has completed.

2.7.5 Single Transactions – Peripheral Is Not Flow Controller

When the source peripheral is not the flow controller, the source peripheral can hardcode dma_single to an
inactive level (hardware handshaking), or software will never need to initiate single transactions from the
source (software handshaking). This can happen if either of the following is true:

■ Block size is a multiple of the burst transaction length.

❑ If DW_ahb_dmac is the flow controller

blk_size_bytes_dma/src_burst_size_bytes = integer

❑ If the destination peripheral is the flow controller

blk_size_bytes_dst/src_burst_size_bytes = integer

■ Block size is not a multiple of the burst transaction length, but the peripheral can dynamically adjust
the watermark level that triggers a burst request in order to enable block completion.

When the destination peripheral is not a flow controller, then the destination peripheral may hardcode
dma_single to an inactive level (hardware handshaking), or software will never need to initiate single
transactions to the destination (software handshaking). This can happen when any of the following are true:

■ Block size is a multiple of the burst transaction length.

❑ If DW_ahb_dmac is the flow controller

block_size_bytes_dma/dst_burst_size_bytes = integer

NoteNoteNoteNote The transaction-complete interrupts are triggered when both single and burst transactions are
complete. The same transaction-complete interrupt is used for both single and burst transactions.

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

❑ If the source peripheral is flow controller

block_size_bytes_src/dst_burst_size_bytes = integer

■ The destination peripheral can dynamically adjust the watermark level upwards so that a burst
request is triggered in order to enable a destination block completion.

■ It is guaranteed that data at some point will be extracted from the destination FIFO in the “Single
transaction region” in order to trigger a burst transaction.

If none of the above are true, then a series of burst transactions followed by single transactions is needed to
complete the source/destination block transfer; for more information, refer to “Example 4” and “Example
5”.

2.8 Handshaking Interface – Peripheral Is Flow Controller
When the peripheral is the flow controller, it controls the length of the block and must communicate to the
DW_ahb_dmac when the block transfer is complete. The peripheral does this by telling the DW_ahb_dmac
that the current transaction – burst or single – is the last transaction in the block. When the peripheral is the
flow controller and the block size is not a multiple of the CTLx.SRC_MSIZE/CTLx.DEST_MSIZE, then the
peripheral must use single transactions to complete a block transfer.

When the peripheral is the flow controller, it indicates directly to DW_ahb_dmac which type of transaction
– single or burst – to perform. Where possible, the DW_ahb_dmac uses the maximum possible burst length.
It can also lock the arbitration for the master bus so that a channel is permanently granted the master bus
interface. The DW_ahb_dmac can also assert the hlock signal to lock the DW_ahb system arbiter. For more
information, refer to “Locked DMA Transfers” on page 96.

NoteNoteNoteNote The destination peripheral requires data to be extracted in order to empty the destination FIFO
below a watermark level for triggering a destination burst request. If it is guaranteed that data at
some point will be extracted from the destination FIFO in the Single Transaction Region in order
to trigger a dma_req, then in this case, the dma_single signal from the destination can be tied to
an inactive level, and the destination block completes with an Early-Terminated Burst Transaction.

NoteNoteNoteNote Since the peripheral can terminate the block on a single transaction, there is no notion of a Single
Transaction Region such as there is when the peripheral is not the flow controller.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.8.1 Hardware Handshaking – Peripheral Is Flow Controller

Figure 2-10 shows the hardware handshaking interface between a destination or source peripheral and the
DW_ahb_dmac when the peripheral is the flow controller.

Figure 2-10 Hardware Handshaking Interface

Table 2-3 describes the operation of the hardware handshaking interface signals when the peripheral is the
flow controller; timing diagrams are illustrated in Figure 2-11 and Figure 2-12.

Table 2-3 Hardware Handshaking Interface

Signal Direction Description

dma_ack Output DW_ahb_dmac acknowledge signal to the peripheral. This is asserted after
the data phase of the last AHB transfer in the current transaction (single or
burst) to the peripheral has completed. It forms a handshaking loop with
dma_req and remains asserted until the peripheral de-asserts dma_req
(de-asserted one hclk cycle later).

dma_finish Output DW_ahb_dmac block transfer complete signal. The DW_ahb_dmac asserts
dma_finish in order to signal block completion. This uses the same timing as
dma_ack and forms a handshaking loop with dma_req.

dma_last Input Last transaction in block. When the peripheral is the flow controller, it asserts
dma_last on the same cycle as dma_req is asserted in order to signal that this
transaction request is the last in the block; the block transfer is complete after
this transaction is complete. If dma_single is high in the same cycle, then the
last transaction is a single transaction. If dma_single is low in the same cycle,
then the last transaction is a burst transaction.

dma_req Input Transaction request from peripheral. An active level on dma_req initiates a
transaction request. The type of transaction – single or burst – is qualified by
dma_single.
Once dma_req is asserted, it must remain asserted until dma_ack is asserted.
When the peripheral that is driving dma_req determines that dma_ack is
asserted, it must de-assert dma_req.

Peripheral DW_ahb_dmac CPU

Program and enable Channel through
“Channel Registers”

dma_req

dma_single
dma_last

dma_ack

dma_finish

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

The following timing diagrams assume that handshaking interface 0 is active-high.

Figure 2-11 shows a burst transaction followed by a single transaction, where the single transaction is the
last in the block. On clock edge T1, DW_ahb_dmac samples that dma_req[0] is asserted, dma_single[0] is
de-asserted, and dma_last[0] is de-asserted. This is a request for a burst transaction, which is not the last
transaction in the block.

Figure 2-11 Burst Transaction Followed by Single Transaction that Terminates Block

On clock edge T2, the DW_ahb_dmac samples that dma_req[0], dma_single[0], and dma_last[0] are all
asserted. This is a request for a single transaction, which is the last transaction in the block. The dma_last[0]
and dma_single[0] signals need only be valid on the same clock cycle that dma_req is generated.

dma_single Input Single or burst transaction request. If dma_single is de-asserted in the
same clock cycle as a rising edge on dma_req, a burst transaction is requested
by the peripheral. If asserted, the peripheral requests a single transaction.

NoteNoteNoteNote When the dma_req or dma_single signal is asserted, they must remain asserted until dma_ack is
asserted; otherwise, the behavior of DW_ahb_dmac is not defined and data integrity is not
guaranteed.
In such scenarios, the corresponding channel can be reused by disabling the channel and then
by re-enabling the channel with appropriate programming required for subsequent DMA transfers.

Signal Direction Description

T2T1

transaction complete

transaction request

burst transaction

last transaction in block

single transaction

transaction request

per_clk

hclk

dma_req[0]

dma_ack[0]

dma_finish[0]

dma_last[0]

dma_single[0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Similarly, Figure 2-12 shows a single transaction followed by a burst transaction, where the burst
transaction is the last transaction in the block.

Figure 2-12 Single Transaction Followed by Burst Transaction that Terminates Block

2.8.2 Software Handshaking – Peripheral Is Flow Controller

Writing a 1 to the Source/Destination Software Transaction Request initiates a transaction; refer to
“ReqSrcReg” and “ReqDstReg”, respectively. The type of transaction – single or burst – depends on the state
of the corresponding channel bit in the Single Source/Destination Transaction Request register; refer to
“SglReqSrcReg” or “SglReqDstReg”, respectively.

If SglReqSrcReg[n]/SglReqDstReg[n] = 1 when a 1 is written to the ReqSrcReg[n]/ReqDstReg[n] register,
this means that software is requesting a single transaction on channel n, or a burst transaction otherwise.

The request is the last in the block if the corresponding channel bit in the Last Source/Destination Request
register is asserted; refer to “LstSrcReg” and “LstDstReg”, respectively.

If LstSrcReg[n]/LstDstReg[n] = 1 when a 1 is written to the ReqSrcReg[n]/ReqDstReg[n] register, this
means that software is requesting that this transaction is the last transaction in the block. The
SglReqSrcReg/SglReqDstReg and LstSrcReg/LstDstReg registers must be written to before the
ReqSrcReg/ReqDstRegregisters.

On completion of the transaction – single or burst – the relevant channel bit in the
ReqSrcReg/ReqDstRegregister is cleared by hardware. Software can therefore poll this bit in order to
determine when the requested transaction has completed. Alternatively, the IntSrcTran or IntDstTran
interrupts can be enabled and unmasked in order to generate an interrupt when the requested transaction –
single or burst – has completed.

When the peripheral is the flow controller and the block size is not a multiple of the
CTLx.SRC_MSIZE/CTLx.DEST_MSIZE, then software must use single transactions to complete the block
transfer.

T2T1

transaction complete

transaction request

Single transaction

last transaction in block

per_clk

hclk

dma_req[0]

dma_ack[0]

dma_finish[0]

dma_last[0]

dma_single[0]

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.8.3 Single Transactions – Peripheral is Flow Controller

When the source peripheral is the flow controller, then it can hardcode dma_single to an inactive level
(hardware handshaking), or software will never need to initiate single transactions from the source
(software handshaking). This occurs when:

block_size_bytes_src/src_burst_size_bytes = integer (10)

When the destination peripheral is the flow controller, then the destination peripheral can hardcode
dma_single to an inactive level (hardware handshaking), or software will never need to initiate single
transactions to the destination (software handshaking) when:

block_size_bytes_dst/dst_burst_size_bytes = integer (11)

2.9 Setting Up Transfers
Transfers are set up by programming fields of the CTLx and CFGx registers for that channel. As shown in
Figure 1-5, a single block is made up of numerous transactions – single and burst – which are in turn
composed of AHB transfers. A peripheral requests a transaction through the handshaking interface to the
DW_ahb_dmac; for more information, refer to “Handshaking Interface” on page 34. The operation of the
handshaking interface is different and depends on what is acting as the flow controller.

Table 2-4 lists the parameters that are investigated in the following examples. The effects of these
parameters on the flow of the block transfer are highlighted. In addition to the software parameters, it
includes the channel FIFO depth, DMAH_CHx_FIFO_DEPTH, which is configurable only in
coreConsultant.

For definitions of the register parameters, refer to “Register Descriptions” on page 161; for definitions of
DW_ahb_dmac parameters in coreConsultant, refer to“Parameter Descriptions” on page 117.

Table 2-4 Parameters Used in Transfer Examples

Parameter Description

DMAH_CHx_FIFO_DEPTH Channel x FIFO depth in bytes

CTLx.TT_FC Transfer type and flow control

CTLx.BLOCK_TS Block transfer size

CTLx.SRC_TR_WIDTH Source transfer width

CTLx.DST_TR_WIDTH Destination transfer width

CTLx.SRC_MSIZE Source burst transaction length

CTLx.DEST_MSIZE Destination burst transaction length

CFGx.MAX_ABRST Maximum AMBA burst length

CFGx.FIFO_MODE FIFO mode select

CFGx.FCMODE Flow-control mode

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.9.1 Transfer Operation

The following examples show the effect of different settings of each parameter from Table 2-4 on a DMA
block transfer. In all examples, it is assumed that no bursts are early-terminated by the DW_ahb system
arbiter, unless otherwise stated. Example 1 through Example 8 use hardware handshaking on both the
source and destination side. Example 9 through Example 11 use software handshaking on both the source
and destination side.

The following is a brief description of each of the examples:

■ “Example 1” – Block transfer when the DW_ahb_dmac is the flow controller.

■ “Example 2” – Effect of DMAH_CHx_FIFO_DEPTH on a block transfer.

■ “Example 3” – Effect of maximum AMBA burst length, CFGx.MAX_ABRST, on a block transfer.

■ “Example 4” – Block transfer when the DW_ahb_dmac is the flow controller and the source
peripheral enters the Single Transaction Region.

■ “Example 5” – Block transfer when the DW_ahb_dmac is the flow controller and the destination
peripheral enters the Single Transaction Region. Also demonstrates channel FIFO flushing to the
destination peripheral at the end of a block transfer.

■ “Example 6” – Effect of CFGx.FIFO_MODE on a block transfer.

■ “Example 7” – Block transfer when the destination peripheral is the flow controller and data
pre-fetching from the source is enabled; CFGx.FCMODE = 0.

■ “Example 8” – Block transfer when the destination peripheral is the flow controller and data
pre-fetching from the source is disabled; CFGx.FCMODE = 1.

■ “Example 9” – Block transfer when the DW_ahb_dmac is the flow controller and software
handshaking is used on both the source and destination side.

■ “Example 10” – Block transfer when the DW_ahb_dmac is the flow controller and software
handshaking is used on both the source and destination side; the source enters the Single Transaction
Region.

■ “Example 11” – Block transfer when the source peripheral is the flow controller and software
handshaking is used on both the source and destination side; the destination peripheral enters the
Single Transaction Region.

The DW_ahb_dmac is programmed with the number of data items that are to be transferred for each burst
transaction request, CTLx.SRC_MSIZE /CTLx.DEST_MSIZE (see Table 2-5). Similarly, the width of each
data item in the transaction is set by the CTLx.SRC_TR_WIDTH and CTLx.DST_TR_WIDTH fields (see
Table 2-6).

Table 2-5 shows the number of data items that can be transferred for different CTLx.SRC_MSIZE and
CTLx.DEST_MSIZE values.

Table 2-5 CTLx.SRC_MSIZE and DEST_MSIZE Decoding

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Table 2-6 lists the block transfer size for different CTLx.SRC_TR_WIDTH and CTLx.DST_TR_WIDTH
values.

Table 2-6 CTLx.SRC_TR_WIDTH and CTLx.DST_TR_WIDTH Decoding

2.9.1.1 Example 1

Scenario: Example block transfer when the DW_ahb_dmac is the flow controller. This example is the same
for both software and hardware handshaking interfaces. Table 2-7 lists the DMA parameters for this
example.

Table 2-7 Parameters in Transfer Operation – Example 1

CTLx.SRC_MSIZE /
CTLx.DEST_MSIZE

Number of data items to be transferred

(of width CTLx.SRC_TR_WIDTH or CTLx.DST_TR_WIDTH)

000 1

001 4

010 8

011 16

100 32

101 64

110 128

111 256

CTLx.SRC_TR_WIDTH /
CTLx.DST_TR_WIDTH Size (bits)

000 8

001 16

010 32

011 64

100 128

101 256

11x 256

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Using equation (5), a total of 48 bytes are transferred in the block; that is, blk_size_bytes_dma = 48. As shown
in Figure 2-13, this block transfer consists of three bursts of length 4 from the source, interleaved with three
bursts, again of length 4, to the destination.

Figure 2-13 Breakdown of Block Transfer

Parameter Description

CTLx.TT_FC = 3’b011 Peripheral-to-peripheral transfer with DW_ahb_dmac as flow controller

CTLx.BLOCK_TS = 12 –

CTLx.SRC_TR_WIDTH = 3’b010 32 bit

CTLx.DST_TR_WIDTH = 3’b010 32 bit

CTLx.SRC_MSIZE = 3’b 001 Source burst transaction length = 4

CTLx.DEST_MSIZE = 3’b 001 Destination burst transaction length = 4

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 16 bytes –

AMBA bursts from source in red

src burst end

D3D2D1D0

D3D2D1D0

t1 t2 t3 t4 t5 t6
Time

DW_ahb_dmac

32

4

Channel FIFO

t0

src burst start dst burst start
src burst start
dst burst end

src burst end
dst burst start

src burst start
dst burst end

src burst end
dst burst start dst burst end

AMBA bursts from destination in blue

D7D6D5D4

D7D6D5D4

D11D10D9D8

D11D10D9D8

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

The channel FIFO is alternatively filled by a burst from the source and emptied by a burst to the destination
until the block transfer has completed, as shown in Figure 2-14.

Figure 2-14 Channel FIFO Contents at Times Indicated in Figure 2-13

Burst transactions are completed in one burst. Additionally, because (8) and (9) are both true, neither the
source or destination peripherals enter their Single Transaction Region at any stage throughout the DMA
transfer, and the block transfer from the source and to the destination consists of burst transactions only.

2.9.1.2 Example 2

Scenario: Effect of DMAH_CHx_FIFO_DEPTH on block transfers. This example is the same for both
software and hardware handshaking interfaces.

In this example, the coreConsultant DMAH_CHx_FIFO_DEPTH parameter is changed to 8 bytes, and all
other parameters are left unchanged from Example 1, Table 2-7.

D0
D1
D2

D3

Time t1 Time t2 Time t3 Time t4 Time t5 Time t6

D4
D5
D6

D7

Empty
Empty
Empty

Empty

Empty
Empty
Empty

Empty

D8
D9

D10

D11

Empty
Empty
Empty

Empty

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Example 1 shows the source and destination burst transactions completing in a single burst. In general, a
burst transaction may take multiple bursts to complete. With the DMAH_CHx_FIFO_DEPTH parameter set
to 8 bytes instead of 16 bytes, the block transfer would look like that shown in Figure 2-15.

Figure 2-15 Breakdown of Block Transfer for DMAH_CH_FIFO_DEPTH=8

The block transfer consists of six bursts of length 2 from the source, interleaved with six bursts – again of
length 2 – to the destination, as shown in Figure 2-13. The channel FIFO is alternatively filled by a burst
from the source and emptied by a burst to the destination, until the block transfer has completed. In this
example, a transfer of each source or destination burst transaction is made up of two bursts, each of
length 2.

Therefore, Example 2 has twice the number of bursts per block than Example 1.

Recommendation: To allow a burst transaction to complete in a single burst, the DW_ahb_dmac
channel FIFO depth should be large enough to accept an amount of data equal to an entire burst
transaction. Therefore, in order to allow both source and destination burst transactions to
complete in one burst:

 DMAH_CHx_FIFO_DEPTH >= max(2*src_burst_size_bytes,
 2*dst_burst_size_bytes)(12)

32

2

Channel FIFO

DW_ahb_dmac

AMBA bursts from source in red

AMBA bursts from destination in blue

D1D0

D1D0

D3D2

D3D2

D5D4

D5D4

D7D6

D7D6

D9D8

D9D8

D11D10

D11D10

src burst end

t1 t2 t3 t4 t5 t6
Time

t0

src burst start
dst burst start

t7 t8 t9 t10 t11 t12

dst burst end

src burst end

src burst start
dst burst start

dst burst end

src burst end

src burst start
dst burst start

dst burst end

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Adhering to the recommendation results in a reduced number of bursts per block, which in turn results in
improved bus utilization and lower latency for block transfers.

2.9.1.3 Example 3

Scenario: Effect of the maximum AMBA burst length, CFGx. MAX_ABRST. This example is the same for
both software and hardware handshaking interfaces.

If the CFGx. MAX_ABRST = 2 parameter and all other parameters are left unchanged from Example 1,
Table 2-7, then the block transfer would look like that shown in Figure 2-16.

Figure 2-16 Breakdown of Block Transfer where max_abrst = 2, Case 1

AMBA bursts from source in red

AMBA bursts from destination in blue

D1D0

D1D0

D3D2

D3D2

D5D4

D5D4

D7D6

D7D6

D9D8

D9D8

D11D10

D11D10

32

Channel FIFO

DW_ahb_dmac

4

src burst 1 end

t1 t2 t3 t4 t5 t6
Time

t0

src burst 1 start
dst burst 1 start

t7 t8 t9 t10 t11 t12

dst burst 1 end

src burst 2 end

src burst 2 start
dst burst 2 start

dst burst 2 end

src burst 3 end

src burst 3 start
dst burst 3 start

dst burst 3 end

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

The channel FIFO is alternatively half filled by a burst from the source, and then emptied by a burst to the
destination until the block transfer has completed; this is illustrated in Figure 2-17.

Figure 2-17 Channel FIFO Contents at Times Indicated in Figure 2-16

In this example block transfer, each source or destination burst transaction is made up of two bursts, each of
length 2. As Figure 2-17 illustrates, the top two channel FIFO locations are redundant for this block transfer.
However, this is not the general case. The block transfer could proceed as indicated in Figure 2-18.

Figure 2-18 Breakdown of Block Transfer where max_abrst = 2, Case 2

D0
D1

Empty

Empty

Time t1 Time t2 Time t3 Time t4 Time t11 Time t12

D2
D3

Empty

Empty

Empty
Empty
Empty

Empty

Empty
Empty
Empty

Empty

D10
D11

Empty

Empty

Empty
Empty
Empty

Empty

AMBA bursts from source in red

AMBA bursts from destination in blue

D1D0

D3D2

D0D1

D3D2

D5D4

D7D6

D5D4

D7D6

D9D8

D9D8

D11D10

D11D10

32

Channel FIFO

DW_ahb_dmac

4

src burst 1 end

t1 t2 t3 t4 t5 t6
Time

t0

src burst 1 start
dst burst 1 start

t7 t8 t9 t10 t11 t12

dst burst 1 end
src burst 2 endsrc burst 2 start
dst burst 2 start dst burst 2 end

src burst 3 endsrc burst 3 start
dst burst 3 start dst burst 3 end

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

This depends on the timing of the source and destination transaction requests, relative to each other.
Figure 2-19 illustrates the channel FIFO status for Figure 2-18.

Figure 2-19 Channel FIFO Contents at Times Indicated in Figure 2-18

Recommendation: To allow a burst transaction to complete in a single burst, the following should be true:

CFGx.MAX_ABRST >= max(src_burst_size_bytes, dst_burst_size_bytes)

Adhering to the recommendation results in a reduced number of bursts per block, which in turn results in
improved bus utilization and lower latency for block transfers. Limiting a burst to a maximum length
prevents the DW_ahb_dmac from saturating the AHB bus when the DW_ahb system arbiter is configured
to only allow changing of the grant signals to bus masters at the end of an undefined length burst. It also
prevents a channel from saturating a DW_ahb_dmac master bus interface. For more information, refer to
“Arbitration for AHB Master Interface” on page 98.

2.9.1.4 Example 4

Scenario: Source peripheral enters Single Transaction Region; the DW_ahb_dmac is the flow controller.

This example is the same for both hardware and software handshaking and demonstrates how a block from
the source can be completed using a series of single transactions. It also demonstrates how the watermark
level that triggers a burst request in the source peripheral can be dynamically adjusted so that the block
transfer from the source completes with an Early-Terminated Burst Transaction. Table 2-8 lists the
parameters used in this example.

Table 2-8 Parameters in Transfer Operation – Example 4

Parameter Comment

CTLx.TT_FC = 3’b011 Peripheral-to-peripheral transfer with DW_ahb_dmac as flow controller

CTLx.BLOCK_TS = 12 –

CTLx.SRC_TR_WIDTH = 3’b010 32 bit

CTLx.DST_TR_WIDTH = 3’b010 32 bit

CTLx.SRC_MSIZE = 3’b010 Source burst transaction length = 8

CTLx.DEST_MSIZE = 3’b001 Destination burst transaction length = 4

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 16 bytes –

D0
D1
D2

D3

Time t2 Time t4 Time t6 Time t8 Time t10 Time t12

D4
D5
D6

D7

Empty
Empty
Empty

Empty

Empty
Empty
Empty

Empty

D8
D9

D10

D11

Empty
Empty
Empty

Empty

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

In this case, BLOCK_TS is not a multiple of the source burst transaction length, CTLx.SRC_MSIZE, so near
the end of a block transfer from the source, the amount of data left to be transferred is less than
src_burst_size_bytes.

In this example, the block size is a multiple of the destination burst transaction length:

blk_size_bytes_dma/dst_burst_size_bytes = 48/16 = integer

The destination block is made up of three burst transactions to the destination and does not enter the Single
Transaction Region.

The block size is not a multiple of the source burst transaction length:

blk_size_bytes_dma/src_burst_size_bytes = 48/32 != integer

Consider the case where the watermark level that triggers a source burst request in the source peripheral is
equal to CTLx.SRC_MSIZE = 8; that is, eight entries or more need to be in the source peripheral FIFO in
order to trigger a burst request.

Figure 2-20 shows how this block transfer is broken into burst and single transactions, and bursts and single
transfers.

Figure 2-20 Breakdown of Block Transfer

AMBA bursts from source in red

AMBA bursts from destination in blue

D8

32

Channel FIFO

DW_ahb_dmac

4

t1 t2 t3 t4 t5 t6

Time

t0 t7 t8 t9

D3D2D1D0

D3D2D1D0

D7D6D5D4

D7D6D5D4

D9

D10

D11

D11D10D9D8

SBS = Source Burst Start

DBS = Destination Burst Start

SSS = Source Single Start

SBS 1 DBS 1 DBE 1

SBE = Source Burst End

SSE = Source Single End

DBE = Destination Burst End

SBE 1
DBS 2 DBE 2

SSS 1
SSS 2
SSE 1

SSS 3
SSE 2

SSS 4
SSE 3 SSE 4

DBS 4 DBE 4

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-21 shows the status of the source FIFO at various times throughout the source block transfer.

Figure 2-21 Source FIFO Contents at Time Indicated in Figure 2-20

As shown in Figure 2-22, if the DW_ahb_dmac does not perform single transactions, the source FIFO
contains four entries at time t1. However, the source has no more data to send. Therefore, if the watermark
level remains at 8 (at time t1, Case A in Figure 2-22), the watermark level is never reached and a new burst
request is never triggered.

Figure 2-22 Source FIFO Contents where Watermark Level is Dynamically Adjusted

The source peripheral, not knowing the length of a block and only able to request burst transactions, sits
and waits for the FIFO level to reach a watermark level before requesting a new burst transaction request.
This region, where the amount of data left to transfer in the source block is less than src_burst_size_bytes, is
known as the Single Transaction Region.

In the Single Transaction Region, the DW_ahb_dmac performs single transactions from the source
peripheral until the source block transfer has completed. In this example, the DW_ahb_dmac completes the
source block transfer using four single transactions from the source.

Now consider Case B in Figure 2-22, where the source peripheral can dynamically adjust the watermark
level that triggers a burst transaction request near the end of a block. After the first source burst transaction

D4
D5
D6
D7

D0
D1
D2

D3

Empty
Empty
Empty

Empty

Empty
Empty
Empty
Empty

D8
Empty
Empty

Empty

Empty
Empty
Empty

Empty

Empty
Empty
Empty
Empty

D9
Empty
Empty

Empty

Empty
Empty
Empty

Empty

Empty
Empty
Empty
Empty

D10
Empty
Empty

Empty

Empty
Empty
Empty

Empty

Empty
Empty
Empty
Empty

D11
Empty
Empty

Empty

Empty
Empty
Empty

Empty

Time t0

8

Watermark level
that triggers a
source burst
request.

Time t4 Time t5 Time t6 Time t7

Empty
Empty
Empty
Empty

D8
D9

D10

D11

Empty
Empty
Empty

Empty

Empty
Empty
Empty
Empty

D8
D9

D10

D11

Empty
Empty
Empty

Empty

D4
D5
D6
D7

D0
D1
D2

D3

Empty
Empty
Empty

Empty

8

Watermark level
that triggers a
source burst
request

Watermark level
that triggers a
source burst
request

8

Time t1 (Case A)

Watermark level
that triggers a
source burst
request

4

Time t1 (Case B)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

completes, the source peripheral recognizes that it has only four data items left to complete in the block and
adjusts the FIFO watermark level that triggers a burst transaction to 4. This triggers a burst request, and the
block completes using a burst transaction. However, CTLx.SRC_MSIZE = 8, and there are only four data
items left to transfer in the source block. The DW_ahb_dmac terminates the last source burst transaction
early and fetches only four of the eight data items in the last source burst transaction. This is called an
Early-Terminated Burst Transaction.

Observation: Under certain conditions, it is possible to hardcode dma_single from the source peripheral to
an inactive level (hardware handshaking). Under the same conditions, it is possible for software to complete
a source block transfer without initiating single transactions from the source. For more information, refer to
“Single Transactions – Peripheral Is Not Flow Controller” on page 47.

2.9.1.5 Example 5

Scenario: The destination peripheral enters the Single Transaction Region while the DW_ahb_dmac is the
flow controller. This example also demonstrates how the DW_ahb_dmac channel FIFO is flushed at the end
of a block transfer to the destination; this example is the same for both hardware and software handshaking.

Consider the case with the parameters set to values listed in Table 2-9.

Table 2-9 Parameters in Transfer Operation – Example 5

In this example, the block size is a multiple of the source burst transaction length:

blk_size_bytes_dma/src_burst_size_bytes = (44 * 1)/4 = 11 = integer

The source block transfer is completed using only burst transactions, and the source does not enter the
Single Transaction Region.

The block size is not a multiple of the destination burst transaction length:

blk_size_bytes_dma/dst_burst_size_bytes 44/32 != integer

So near the end of the block transfer to the destination, the amount of data left to be transferred is less than
dst_burst_size_bytes and the destination enters the Single Transaction Region.

Parameter Comment

CTLx.TT_FC = 3’b011 Peripheral-to-peripheral transfer with DW_ahb_dmac as flow controller

CTLx.BLOCK_TS = 44 –

CTLx.SRC_TR_WIDTH = 3’b000 8 bit

CTLx.DST_TR_WIDTH = 3’b 011 64bit

CTLx.SRC_MSIZE = 3’b001 Source burst transaction length = 4

CTLx.DEST_MSIZE = 3’b001 Destination burst transaction length = 4

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 32 bytes –

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-23 shows one way in which the block transfer to the destination can occur.

Figure 2-23 Block Transfer to Destination

After the first 32 bytes (dst_burst_size_bytes = 32) of the destination burst transaction have been transferred
to the destination, there are 12 bytes (blk_size_bytes_dma -dst_burst_size_bytes = 44 - 32) left to transfer. This is
less then the amount of data that is transferred in a destination burst (dst_burst_size_bytes = 32). Therefore,
the destination peripheral enters the Single Transaction Region where the DW_ahb_dmac can complete a
block transfer to the destination using single transactions.

At time t2 in Figure 2-23, a single transaction to the destination has been completed. There are now only
four bytes (12 - dst_single_size_bytes = 12 - 8) left to transfer in the destination block. However,
CTLx.DST_TR_WIDTH implies 64-bit AHB transfers to the destination (dst_single_size_bytes = 8 byte);
therefore, the DW_ahb_dmac cannot form a single word of the specified CTLx.DST_TR_WIDTH.

The DW_ahb_dmac channel FIFO has four bytes in it that must be flushed to the destination. The
DW_ahb_dmac switches into a “FIFO flush mode,” where the block transfer to the destination is completed
by changing the AHB transfer width to the destination to be equal to that of the CTLx.SRC_TR_WIDTH;
that is, byte AHB transfers in this example. Thus the last single transaction in the destination block is made
up of a burst of length 4 and CTLx.SRC_TR_WIDTH width.

When the DW_ahb_dmac is in FIFO flush mode, the address on haddr is incremented by the value of hsize
on the bus; that is, CTLx.SRC_TR_WIDTH, and not CTLx.DST_TR_WIDTH. In cases where the DARx is
selected to be contiguous between blocks (refer to Table 6-1 and “Programming Examples” on page 343), the
DARx will need re-alignment at the start of the next block, since it is aligned to CTLx.SRC_TR_WIDTH and

NoteNoteNoteNote
■ In the Single Transaction Region, asserting dma_single initiates a single transaction for

hardware handshaking. Writing a 1 to the relevant channel bit of the SglReqDstReg
register initiates a single transaction for software handshaking.

■ The destination peripheral, not knowing the length of a block and only able to request burst
transactions, sits and waits for the FIFO to fall below a watermark level before requesting a
new burst transaction request.

D3D2D1D0

64 64 64 64

D4

64

D5

8

D6

8

burst transaction single transaction single transaction

t2
Time

t1t0

Single Transaction Region

Flushing of channel FIFO

D7 D8

8 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

not CTLx.DST_TR_WIDTH at the end of the previous block. This is handled by hardware. For more
information, refer to “Hardware Realignment of SAR/DAR Registers” on page 65.

In general, channel FIFO flushing to the destination occurs if all three of the following are true:

■ DW_ahb_dmac or the Source peripheral are flow control peripherals

■ CTLx.DST_TR_WIDTH > CTLx.SRC_TR_WIDTH

■ Flow control device:

❑ If DW_ahb_dmac is flow controller:

blk_size_bytes_dma/dst_single_size_bytes != integer

❑ If source is flow controller:

blk_size_bytes_src/dst_single_size_bytes != integer

In this example, a burst request is not generated in the Single Transaction Region. If a burst request is
generated at time t1 in Figure 2-23, then the burst transaction proceeds until there is not enough data left in
the destination block to form a single data item of CTLx.DST_TR_WIDTH width. The burst transaction
would then be early-terminated. In this example, only one data item of the four requested (decoded value of
DEST_MIZE = 4) would be transferred to the destination in the burst transaction. This is referred to as an
Early-Terminated Burst Transaction. If a burst request is generated at time t2 in Figure 2-23, then the
destination block is completed (four byte transfers to the destination to flush the DW_ahb_dmac channel
FIFO) and this burst request is again be early-terminated at the end of the destination block.

Observation: If the source transfer width – CTLx.SRC_TR_WIDTH in the channel control register (CTLx) –
is less than the destination transfer width (CTLx.DST_TR_WIDTH), then the FIFO may need to be flushed at
the end of the block transfer. This is done by setting the AHB transfer width of the last few AHB transfers of
the block to the destination so that it is equal to CTLx.SRC_TR_WIDTH and not the programmed
CTLx.DST_TR_WIDTH.

2.9.1.5.1 Hardware Realignment of SAR/DAR Registers

In a particular circumstance, during contiguous multi-block DMA transfers, the destination address can
become misaligned between the end of one block and the start of the next block. When this situation occurs,
DW_ahb_dmac re-aligns the destination address before the start of the next block.

Consider the following example. If the block length is 9, the source transfer width is 16 (halfword), and the
destination transfer width is 32 (word)—the destination is programmed for contiguous block transfers—
then the destination performs four word transfers followed by a halfword transfer to complete the block
transfer to the destination. At the end of the destination block transfer, the address is aligned to a 16-bit
transfer as the last AMBA transfer is halfword. This is misaligned to the programmed transfer size of 32 bits
for the destination. However, for contiguous destination multi-block transfers, DW_ahb_dmac re-aligns the
DAR address to the nearest 32-bit address (next 32-bit address upwards if address control is incrementing
or next address downwards if address control is decrementing).

NoteNoteNoteNote When not in FIFO flush mode, a single transaction is mapped to a single AHB transfer.
However, in FIFO flush mode, a single transaction is mapped to multiple AHB transfers of
CTLx.SRC_TR_WIDTH width. The cumulative total of data transferred to the destination in
FIFO flush mode is less than dst_single_size_bytes.

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

The destination address is automatically realigned by the DW_ahb_dmac in the following DMA transfer
setup scenario:

■ Contiguous multi-block transfers on destination side, AND

■ DST_TR_WIDTH > SRC_TR_WIDTH, AND

■ (BLOCK_TS * SRC_TR_WIDTH)/DST_TR_WIDTH != integer (where SRC_TR_WIDTH,
DST_TR_WIDTH is byte width of transfer)

2.9.1.6 Example 6

Scenario: In all examples presented so far, none of the bursts have been early-terminated by the DW_ahb
system arbiter. Referring to Example 1, the AHB transfers on the source and destination side look somewhat
symmetric. In the examples presented so far, where the bursts are not early-terminated by the DW_ahb
system arbiter, the traffic profile on the AHB bus would be the same, regardless of the value of
CFGx.FIFO_MODE. This example, however, considers the effect of CFGx.FIFO_MODE; it is the same for
both hardware and software handshaking.

CFGx.FIFO_MODE: Determines how much space or data needs to be available in the FIFO before a burst
transaction request is serviced.

0 = Space/data available for single AHB transfer of the specified transfer width.

1 = Data available is greater than or equal to half the FIFO depth for destination transfers and space
available is greater than half the fifo depth for source transfers. The exceptions are at the end of a
burst transaction request or at the end of a block transfer.

Table 2-10 lists the parameters used in this example.

Table 2-10 Parameters in Transfer Operation – Example 6

Parameter Comment

CTLx.TT_FC = 3’b011 Peripheral-to-peripheral transfer with DW_ahb_dmac as flow controller

CTLx.BLOCK_TS = 32 –

CTLx.SRC_TR_WIDTH = 3’b010 32 bit

CTLx.DST_TR_WIDTH = 3’b010 32 bit

CTLx.SRC_MSIZE = 3’b010 Decoded value = 8

CTLx.DEST_MSIZE = 3’b001 Decoded value = 4

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 16 bytes –

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

The block transfer may proceed by alternately filling and emptying the DW_ahb_dmac channel FIFO. Up to
time t4, the transfer might proceed like that shown in Figure 2-24.

Figure 2-24 Block Transfer Up to Time “t4”

D3D2D1D0

Time

t1 t2 t3

src burst start dst burst start dst burst end

32

Channel FIFO

DW_ahb_dmac

4

D7D6D5D4

D3D2D1D0

D7D6D5D4

t0 t4

src burst end
dst burst start

AMBA bursts from source in red

AMBA bursts from destination in blue

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

At time t4, the src, channel, and destination FIFOs might look like that shown in Figure 2-25

Figure 2-25 Source, DW_ahb_dmac Channel and Destination FIFOs at Time ‘t4’ in Figure 2-22
.

At time t4, a source burst transaction is requested, and the DW_ahb_dmac attempts a burst of length 4.
Suppose that this burst is early-burst terminated after three AHB transfers. The FIFO status after this burst
might look like that shown in Figure 2-26.

Referring to Figure 2-26, notice that a burst request from the destination is not triggered, since the
destination FIFO contents are above the watermark level. The DW_ahb_dmac has space for one data item in
the channel FIFO. So, does the DW_ahb_dmac initiate a single AHB transfer from the source peripheral to
fill the channel FIFO?

The answer depends on the value of CFGx.FIFO_MODE. If CFGx.FIFO_MODE = 0, then the DW_ahb_dmac
attempts to perform a single AHB transfer in order to fill the channel FIFO. If CFGx.FIFO_MODE = 1, then

D2
D3
D4
D5
D6
D7

Empty
Empty

D8
D9

D10
D11

8

32

4

Channel FIFO

Empty

Empty

Empty

Empty

D12
D13
D14
D15

Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty

Watermark level that
triggers a source burst
request

32 32

Watermark level that
triggers a destination
burst request

4

Source
FIFO

Destination
FIFO

DW_ahb_dmac

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

the DW_ahb_dmac waits until the channel FIFO is less than half-full before initiating a burst from the
source, as illustrated in Figure 2-26.

Figure 2-26 FIFO Status After Early-Terminated Burst

Observation: When CFGx.FIFO_MODE = 1, the number of bursts per block is less than when
CFGx.FIFO_MODE = 0 and, hence, the bus utilization will improve. This setting favors longer bursts.
However, the latency of DMA transfers may increase when CFGx.FIFO_MODE = 1, since the
DW_ahb_dmac waits for the channel FIFO contents to be less than half the FIFO depth for source transfers,
or greater than or equal to half the FIFO depth for destination transfers. Therefore, system bus occupancy
and usage can be improved by delaying the servicing of multiple requests until there is sufficient
data/space available in the FIFO to generate a burst (rather than multiple single AHB transfers); this comes
at the expense of transfer latency. For reduced block transfer latency, set CFGx.FIFO_MODE = 0. For
improved bus utilization, set CFGx.FIFO_MODE = 1.

2.9.1.7 Example 7

Scenario: Example block transfer when the destination is the flow controller; the effect of data pre-fetching
(CFGx.FCMODE = 0) and possible data loss. This example uses a hardware handshaking interface, but the
same scenario can be explained using a software handshaking interface.

Flow Control Mode. Determines when source transaction requests are serviced when the Destination
Peripheral is the flow controller.

0 = Source transaction requests are serviced when they occur. Data pre-fetching is enabled.

1 = Source transaction requests are not serviced until a destination transaction request occurs. In this
mode, the amount of data transferred from the source is limited such that it is guaranteed to be

NoteNoteNoteNote Data pre-fetching is when data is fetched from the source before the destination requests it.

D3
D4
D5
D6
D7

Empty
Empty
Empty

D11
D12
D13
D14

8

32

4

Channel FIFO

D8

D9

D10

Empty

D16
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty

Watermark level that
triggers a source burst
request

32 32

Watermark level that
triggers a destination
burst request

4

Source
FIFO

Destination
FIFO

DW_ahb_dmac

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

transferred to the destination prior to block termination by the destination. Data pre-fetching is
disabled.

Table 2-11 lists the parameters used in this example.

Table 2-11 Parameters in Transfer Operation – Example 7

Consider a case where the destination block is made up of one burst transaction, followed by one single
transaction.

blk_size_bytes_dst = dst_burst_size_bytes = 16 + 4 = 20 bytes

There are a number of different cases that can arise when CFGx.FCMODE = 0:

1. When the destination peripheral signals a last transaction, there is enough data in the DW_ahb_dmac
channel FIFO to complete the last transaction to the destination. Therefore, the DW_ahb_dmac stops
transferring data from the source, and the block transfer from the source completes; any surplus data
that has been fetched from the source is effectively lost. Two cases arise when the destination
peripheral signals the last transaction in a block:

a. Active burst transaction request on source side

b. No active burst request on source side

Parameter Description

CTLx.TT_FC=3’b111 Peripheral-to-peripheral transfer with destination as flow controller

CTLx.BLOCK_TS = x –

CTLx.SRC_TR_WIDTH = 3’b010 32 bit

CTLx.DEST_TR_WIDTH=3’b010 32 bit

CTLx.SRC_MSIZE = 3’b010 Decoded value = 8

CTLx.DEST_MSIZE = 3’b001 Decoded value = 4

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 32 –

CFGx.FCMODE = 0 Data pre-fetching enabled

CFGx.SRC_PER = 0 Source assigned handshaking interface 0

CFGx.DEST_PER = 1 Destination assigned handshaking interface 1

CFGx.MAX_ABRST = 7 –

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2. When the destination peripheral signals a last transaction, there is not enough data in the channel
FIFO to complete the last transaction to the destination. The DW_ahb_dmac fetches just enough data
to complete the block transfer. Two cases arise.

a. Source enters Single Transaction Region when destination peripheral signals last transaction.

b. Source does not enter Single Transaction Region when destination peripheral signals last
transaction.

Setting CFGx.FCMODE is pertinent only when the destination peripheral is the flow controller. When
CFGx.FCMODE = 0, scenarios arise where not all the data that has been pre-fetched from the source is
required to complete the block transfer to the destination. This excess data is not transferred to the
destination peripheral and is effectively lost for a read-sensitive source peripheral. In this example, assume
a read-sensitive source peripheral.

Case a and Case b highlight instances where data pre-fetching is enabled and data is lost. Case a and Case b
highlight instances are data pre-fetching is enabled, but no data loss occurs.

In this example, handshaking interface 0 is assigned to the source peripheral, and handshaking interface 1 is
assigned to the destination peripheral.

Consider the block transfer shown in Figure 2-27, where the destination is the flow controller and data
pre-fetching is enabled (CFGx.FCMODE = 0).

Figure 2-27 Data Loss when Pre-Fetching is Enabled

The source requests a burst transaction at time T2. The destination requests a burst transaction at time T1
and completes this burst request at time T3. At time T4, the destination requests a single transaction, which
is to be the last in the block transfer. Suppose that at time T4 the DW_ahb_dmac has fetched seven words
from the source and written four words to the destination. Therefore, the DW_ahb_dmac has three words in
the channel FIFO, but the destination requires only one word to complete the block transfer.

The DW_ahb_dmac, recognizing that it has enough data in the channel FIFO to complete the block transfer
to the destination, fetches no more data from the source and early-terminates the source burst transaction

T6T5T4T3T2T1

hclk

dma_req[0]

dma_single[0]

dma_ack[0]

dma_finish[0]

dma_req[1]

dma_single[1]

dma_last[1]

dma_ack[1]

dma_finish[1]

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

(only seven of the eight data items in the source burst transaction have been fetched from the source) –
Early-Terminated Burst Transaction. The DW_ahb_dmac asserts dma_finish[0] to the source at time T5, and
this has the same timing as dma_ack[0], as shown in Figure 2-27.

At time T6, the last single transaction to the destination has completed, which has removed one of the
remaining three data words in the channel FIFO. At this time, both the source and destination block
transfers have completed, and there remain two data words in the channel FIFO that have been fetched
from the source. These two data words are lost because they do not form the start of the next block transfer
for multi-block transfers, since the channel FIFO is cleared between blocks for multi-block transfers.

2.9.1.7.1 Case 1b – Timing exception on dma_finish to the source when data pre-fetching is
enabled

Consider the block transfer shown in Figure 2-28, where the destination is the flow controller and data
pre-fetching is enabled (CFGx.FCMODE = 0).

Figure 2-28 Timing Exception on dma_finish to Source Peripheral

The source requests a burst transaction at time T2 and completes the burst transaction at time T5. The
destination requests a burst transaction at time T1 and completes this burst request at time T3. At time T4,
the destination requests a single transaction, which is to be the last in the block transfer. At time T5, the
DW_ahb_dmac has completed the burst transaction from the source.

At time T5, the DW_ahb_dmac has fetched eight words from the source and written four words to the
destination, which means that the DW_ahb_dmac has four words in the channel FIFO. However, the
destination requires only one word to complete the block transfer. The DW_ahb_dmac, recognizing that it

NoteNoteNoteNote There is an exception to Case a. If the last AHB transfer to the source received a SPLIT/RETRY
response over the AHB bus, then dma_finish is not asserted until the AHB transfer that received
the SPLIT/RETRY response is retried and an OKAY response is received over the hresp AHB
bus; to do otherwise would be a violation of the AMBA protocol. This additional word that is
fetched is effectively lost, since it is not transferred to the destination.

T7T6T5T4T3T2T1

hclk

dma_req[0]

dma_single[0]

dma_ack[0]

dma_finish[0]

dma_req[1]

dma_single[1]

dma_last[1]

dma_ack[1]

dma_finish[1]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

has enough data in the channel FIFO to complete the block transfer to the destination, fetches no more data
from the source and signals a source block completion by asserting dma_finish[0] for a single cycle at time
T6. Since there is no active transaction on the source side – that is, the previous source burst transaction has
completed and there has been no new burst request from the source – the dma_finish[0] cannot form a
handshaking loop with dma_req[0] (there is no active burst request) and therefore is asserted for only a
single cycle.

Similar to Case a, when both the source and destination block transfers have completed at time T7, there are
three data items left in the channel FIFO that are effectively lost.

2.9.1.7.2 Case 2a – Data pre-fetching enabled but no data loss. Source enters Single Transaction
Region when destination signals last transaction.

Consider the block transfer as shown in Figure 2-29, where the destination is a flow controller and data
pre-fetching is enabled (CFGx.FCMODE = 0). The transfer parameters are the same as case 1a, Table 2-11.

Figure 2-29 Case of No Data Loss When Pre-Fetching is Enabled

In this scenario, when dma_last[1] is asserted by the destination peripheral at time T4, there is not enough
data in the channel FIFO to complete the last single transaction. Assume that the DW_ahb_dmac has fetched
four data items from the source peripheral at time T4. In this case, the DW_ahb_dmac fetches one more data
item from the source peripheral and then early terminates the source burst using an Early-Terminated Burst
Transaction. The DW_ahb_dmac signals block completion to the source by asserting dma_finish[0] at T5,
which forms a handshaking loop with dma_req[0]. In this case, there is no data loss, and all data that is
fetched from the source has been transferred to the destination.

Consider the case where the transfer parameters are as given in Table 2-12.

Table 2-12 Transfer Parameters

T6T5T4T3T2T1

hclk

dma_req[0]

dma_single[0]

dma_ack[0]

dma_finish[0]

dma_req[1]

dma_single[1]

dma_last[1]

dma_ack[1]

dma_finish[1]

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-30 Source Enters Single Transaction Region when Destination Asserts dma_last[1]

As illustrated in Figure 2-30, the source requests a burst transaction at time T2 and completes the burst
transaction at time T3. The destination requests a burst transaction at time T1 and completes this burst
request at time T4. The destination requests a last single transaction at time T5; the channel FIFO is empty at
this time. The amount of data left to complete a source block transfer – 4 bytes – is less than the following:

src_burst_size_bytes = 4 * 4 = 16 bytes

Parameter Description

CTLx.TT_FC=3’b111 Peripheral-to-peripheral transfer with destination as flow controller

CTLx.BLOCK_TS = x

CTLx.SRC_TR_WIDTH = 3’b010 32 bit

CTLx.DEST_TR_WIDTH=3’b010 32 bit

CTLx.SRC_MSIZE = 3’b001 Decoded value = 4

CTLx.DEST_MSIZE = 3’b001 Decoded value = 4

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 32 –

CFGx.FCMODE = 0 Data pre-fetching enabled

CFGx.SRC_PER = 0 Source assigned handshaking interface 0

CFGx.DEST_PER = 1 Destination assigned handshaking interface 1

CFGx.MAX_ABRST = 7 –

T9T8T7T6T5T4T3T2T1

hclk

dma_req[0]

dma_single[0]

dma_ack[0]

dma_finish[0]

dma_req[1]

dma_single[1]

dma_last[1]

dma_ack[1]

dma_finish[1]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Therefore, the source enters the Single Transaction Region at time T6. At time T7, the DW_ahb_dmac
samples that dma_single[0] from the source peripheral is asserted and initiates a single transaction.

When this transaction completes at time T8, the DW_ahb_dmac recognizes that enough data has been
fetched from the source peripheral to complete the block transfer to the destination. The DW_ahb_dmac
asserts dma_finish[0] to the source peripheral at time T8; this has the same timing as dma_ack[0]. The
destination block transfer completes as previously described. No data loss occurs.

2.9.1.7.3 Case 2b – Data pre-fetching enabled but no data loss.

In this case, the source does not enter the Single Transaction Region when the destination signals the last
transaction. This case uses the parameters listed in Table 2-12

The destination block is made up of two burst transactions.

blk_size_bytes_dst = 2 * (4 * 4) = 32 bytes

As illustrated in Figure 2-31, the source requests a burst transaction at time T2 and completes the burst
transaction at time T3. The destination requests a burst transaction at time T1 and completes this burst
request at time T4.

Figure 2-31 Case where Source Does Not Enter Single transaction region when Destination Asserts dma_last[1]

At time T5 the destination peripheral requests the last burst transaction in the block transfer to the
destination. At this point, the channel FIFO is empty. The number of bytes that must be fetched from the
source peripheral to complete the block transfer to the destination is equal to 4 * 4 = 16 bytes. Since 16 bytes
is not less than src_msize_bytes (16 bytes), the source does not enter the Single Transaction Region. The
DW_ahb_dmac waits for a burst request from the source peripheral, which occurs at time T6. Upon

NoteNoteNoteNote If an active level on dma_req[0] is triggered at time T6 or T7, a source burst transaction takes
precedence over the source single transaction. Upon completion of the source block, this burst
transaction would have been early-terminated using an Early-Terminated Burst Transaction.

T8T7T6T5T4T3T2T1

hclk

dma_req[0]

dma_single[0]

dma_ack[0]

dma_finish[0]

dma_req[1]

dma_single[1]

dma_last[1]

dma_ack[1]

dma_finish[1]

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

completion of this burst request at time T7, the DW_ahb_dmac signals a source block transfer completion
and asserts dma_finish[0]. Upon completion of the last destination burst transaction at time T8, the
DW_ahb_dmac signals a destination block transfer completion and asserts dma_finish[1] to the destination.

Note that when data pre-fetching is enabled, CFGx.FCMODE = 0, the maximum amount of data that can be
lost depends on whether the last transaction in the block transfer to the destination is a single transaction or
burst transaction. In the worst case scenario, the DW_ahb_dmac has pre-fetched enough data from the
source to fill the channel FIFO when the last transaction is signalled by the destination peripheral.

The maximum amount of data that can be lost is:

■ Last transaction in block transfer is a single transaction:

DMAH_CHx_FIFO_DEPTH - dst_single_size_bytes [refer to equation (1)]

■ Last transaction in block transfer is a burst transaction:

DMAH_CHx_FIFO_DEPTH - dst_burst_size_bytes [refer to equation (2)]
If this equation is <= 0, then no data is lost.

Thus, if the last transaction in the block is a burst transaction and equation (2) is less than zero, then no data
can be lost when CFGx.FCMODE = 0. There is one exception to this, as outlined in Example 8.

Enabling data pre-fetching may reduce the latency of the DMA transfer when the destination is the flow
controller.

Observation: For a source peripheral that is not read-sensitive (such as memory), data pre-fetching should
be enabled – that is, CFGx.FCMODE = 0 – in order to reduce the transfer latency when the destination is the
flow controller. If the source peripheral is a read-sensitive device (such as a source FIFO), then data
pre-fetching should be disabled – that is, CFGx.FCMODE = 1 – when the destination peripheral is the flow
controller.

2.9.1.8 Example 8

Scenario: Data loss when destination is flow controller and data pre-fetching is disabled;
CFGx.FCMODE = 1.

This example uses a hardware handshaking interface, but the same scenario can be explained using a
software handshaking interface. Two scenarios arise when CFGx.FCMODE = 1:

■ CTLx.SRC_TR_WIDTH <= CTLx.DST_TR_WIDTH

■ CTLx.SRC_TR_WIDTH > CTLx.DST_TR_WIDTH

2.9.1.8.1 Case 1 – CTLx.SRC_TR_WIDTH <= CTLx.DST_TR_WIDTH

In this case, the DW_ahb_dmac controls the transfer of data from the source, such that at any time there is at
most enough data to complete the current transaction – single or burst – to the destination. If there is
currently no active transaction to the destination, then the channel FIFO is empty and no data is pre-fetched
from the source, even if the source has an active transaction request. If both the source and destination are
requesting, then the DW_ahb_dmac fetches only enough data from the source to complete the current
destination transaction, and no more. Therefore, there can never be any data loss.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.9.1.8.2 Case 2 – CTLx.SRC_TR_WIDTH > CTLx.DST_TR_WIDTH

In this example, assume the parameters in Table 2-13.

Table 2-13 Parameters in Transfer Operation – Example 7, Case 2b

Consider the case where the destination block is made up of a burst transaction, followed by one single
transaction:

blk_size_bytes_dst = (8 * 4) + 4 = 36 bytes

src_single_size_bytes = 8
dst_single_size_bytes = 4
src_burst_size_bytes = 4 * 8 = 32
dst_burst_size_bytes = 8 * 4 = 32

As illustrated in Figure 2-32, the source requests a burst transaction at time T2, and completes the burst
transaction at time T3. The destination requests a burst transaction at time T1 and completes this burst

Parameter Description

CFGx.FCMODE = 1 Data pre-fetching disabled

CTLx.BLOCK_TS = x –

CTLx.SRC_MSIZE = 3’b001 Decoded value = 4

CTLx.DEST_MSIZE = 3’b010 Decoded value = 8

CTLx.SRC_TR_WIDTH = 3’b011 64-bit

CTLx.DST_TR_WIDTH=3’b010 32-bit

CTLx.TT_FC=3’b111 Peripheral to Peripheral transfer with destination as flow controller

DMAH_CHx_FIFO_DEPTH = 32 –

CFGx.SRC_PER = 0 Source assigned handshaking interface 0

CFGx.DEST_PER = 1 Destination assigned handshaking interface 1

CFGx.MAX_ABRST = 8 –

https://solvnet.synopsys.com
www.designware.com

78 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

request at time T4. The destination requests a last single transaction at time T5. The channel FIFO is empty
at this time.

Figure 2-32 Data Loss when Data Pre-Fetching is Disabled

The amount of data left to complete a source block transfer, 4 bytes, is less than src_burst_size_bytes (32
bytes). Therefore, the source enters the Single Transaction Region. At time T7, the DW_ahb_dmac samples
that dma_single[0] is asserted and initiates a single transaction from the source.

The DW_ahb_dmac fetches a single source data item from the source peripheral and stores the eight bytes in
the channel FIFO. This single transaction completes at time T8; the source block also completes at time T8.
However, the destination requires only four of these eight bytes to complete the block transfer to the
destination (the block transfer to destination completes at time T9). The remaining four bytes are lost. Thus,
when the destination is the flow controller, data loss occurs when CFGx.FCMODE = 1 if both of the
following are true:

■ SRC_TR_WITDT > CTLx.DST_TR_WIDTH

■ blk_size_bytes_dst/src_single_size_bytes != integer.

The amount of data lost is:

src_single_size_bytes - dst_single_size_bytes [refer to equations (2) and (3)]

Observation: Data loss can occur when the destination is the flow controller, even if data pre-fetching is
disabled, CFGx.FCMODE = 1.

2.9.1.9 Example 9

Scenario: This scenario demonstrates how to use software handshaking on both the source and destination
sides when the DW_ahb_dmac is the flow controller. The DW_apb_ssi is used as the source and destination
peripherals; for more information on the DW_apb_ssi, refer to the DesignWare DW_apb_ssi Databook. This
example uses the parameters listed in Table 2-14.

Table 2-14 Parameters in Transfer Operation – Example 9

T9T8T7T6T5T4T3T2T1

hclk

dma_req[0]

dma_single[0]

dma_ack[0]

dma_finish[0]

dma_req[1]

dma_single[1]

dma_last[1]

dma_ack[1]

dma_finish[1]

https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_apb_ssi_databook.pdf

Synopsys, Inc. 79SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

All SSI parameters are prefixed with “SSI”.

The following are some definitions of DW_apb_ssi parameters that are used in this example:

■ SSI.TXFTLR: Transmit FIFO Threshold – Controls the level of entries (or below) at which the
DW_apb_ssi transmit FIFO controller triggers an ssi_txe_intr interrupt.

■ SSI.TXFLR: Transmit FIFO Level – Contains the number of valid data entries in the DW_apb_ssi
transmit FIFO.

■ SSI.IMR.TXEIM– Writing a 0 to this field masks the ssi_txe_intr interrupt.

■ SSI.RXFTLR: Receive FIFO Threshold – Controls the level of entries (or below) at which the
DW_apb_ssi transmit FIFO controller triggers an ssi_rxf_intr interrupt.

■ SSI.RXFLR: Receive FIFO Level – Contains the number of valid data entries in the DW_apb_ssi
transmit FIFO.

■ SSI.IMR.RXFIM – Writing a 0 to this field masks the ssi_rxf_intr interrupt.

In this example:

SSI.TXFTLR = CTLx.DEST_MSIZE
SSI.RXFTLR + 1 = CTLx.SRC_MSIZE

The block transfer takes place on channel 0.

It is assumed that the transaction complete interrupts, IntDstTran and IntSrcTran, are enabled and
unmasked at the beginning of the block transfer. For example:

MaskSrcTran[0] = 1
MaskDstTran[0] = 1
CTLx.INT_EN = 1

Parameter Description

CTLx.TT_FC = 3’b011 Peripheral-to-peripheral with DW_ahb_dmac as flow controller

CTLx.BLOCK_TS = 8

CTLx.SRC_TR_WIDTH = 3’b001 16 bit

CTLx.DST_TR_WIDTH = 3’b001 16 bit

CTLx.SRC_MSIZE = 3’b 001, Source burst transaction of length 4

CTLx.DEST_MSIZE = 3’b 010 Destination burst transaction of length 8

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 16 bytes –

CFGx.HS_SEL_SRC = 1 Source software handshaking

CFGx.HS_SEL_DST = 1 Destination software handshaking

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

The block size is a multiple of the source burst transaction length:

blk_size_bytes_dma/src_burst_size_bytes = 16/8 = 2 = integer

It is also a multiple of the destination burst transaction length:

blk_size_bytes_dma/dst_burst_size_bytes 16/16 = 1 = integer

This block consists of two source burst transactions and one destination burst transaction. Neither the
source nor destination enter the Single Transaction Region. The block transfer proceeds as follows:

1. SSI.TXFLR is initially equal to 0 so that an ssi_txe_intr interrupt is generated by the DW_apb_ssi. The
Interrupt Service Routine (ISR) for this interrupt writes hex 0101 to both the ReqDstReg and
SglReqDstReg registers; the order is not important. This generates a destination burst transaction
request. Before exiting, this ISR software should write a 0 to the SSI.IMR.TXEIM register in order to
mask any further ssi_txe_intr interrupts, since these are level-sensitive interrupts.

2. When the DW_apb_ssi receive FIFO contains greater than or equal to SSI.RXFTLR + 1 half-words, an
ssi_rxf_intr interrupt is generated by the DW_apb_ssi. The Interrupt Service Routine (ISR) for this
interrupt writes hex 0101 to both the ReqSrcReg and SglReqSrcReg registers; the order is not
important. This generates a source burst transaction request. Before exiting this ISR, software should
write a 0 to the SSI.IMR.RXFIM register in order to mask any further ssi_rxf_intr interrupts, since this
is a level-sensitive interrupt.

3. Upon completion of the source burst transaction, the DW_ahb_dmac clears ReqSrcReg[0] and
SglReqSrcReg[0], and generates an IntSrcTran interrupt. The ISR for this interrupt should write a 1 to
the SSI.IMR.RXFIM register in order to unmask the generation of ssi_rxf_intr interrupts.

4. Same as step 2.

5. Same as step 3.

6. Upon completion of the destination burst transaction, the DW_ahb_dmac clears ReqDstReg[0] and
SglReqDstReg[0], and generates an IntDstTran interrupt. The ISR for this interrupt should write a 1 to
the SSI.IMR.TXEIM register to unmask the generation of ssi_rxf_intr interrupts.

2.9.1.10 Example 10

Scenario: This scenario demonstrates how to use software handshaking on both the source and destination
side when DW_ahb_dmac is the flow controller and the source peripheral enters the Single Transaction
Region. The DW_apb_ssi is used as the source and destination peripherals; for more information on the
DW_apb_ssi, refer to the DesignWare DW_apb_ssi Databook.

This example uses the parameters listed in Table 2-15.

Table 2-15 Parameters in Transfer Operation – Example 10

NoteNoteNoteNote An alternative to using interrupts is for software to poll the DW_apb_ssi FIFO levels,
SSI.TXFLR/SSI.RXFLR, until they equal CTLx.DEST_MSIZE/CTLx.SRC_MIZE in place of
ssi_txe_intr/ssi_rxf_intr interrupts. Also, in place of IntSrcTran/IntDstTran interrupts, software
could poll the ReqSrcReg[0]/ReqDstReg[0] registers until cleared by hardware.

https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_apb_ssi_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

The block size is not a multiple of the source burst transaction length:

blk_size_bytes_dma/src_burst_size_bytes = 24/16 != integer

Therefore, the block transfer from the source enters the Single Transaction Region near the end of a block.

The block size is a multiple of the destination burst transaction length:

blk_size_bytes_dma/dst_burst_size_bytes 24/8 = 3 = integer

Therefore, the block transfer to the destination consists of three burst transactions, and the destination does
not enter the Single Transaction Region.

In this example:

SSI.TXFTLR = CTLx.DEST_MSIZE

2.9.1.10.1 ssi_rxf_intr Interrupt Service Routine (ISR)

1. Read the SSI.RXFTLR register.

If SSI.RXFTLR = 0:

a. Write hex 0101 to the SglReqSrcReg register.

b. Write 7 (CTLx.SRC_MSIZE - 1) into the SSI.RXFTLR register, which triggers a new ssi_rxf_intr
interrupt when the data items in the source FIFO are greater than or equal to 8.

else (SSI.RXFTLR = 7)

c. Write 0 to the SSI.IMR.RXFIM register in order to mask any further ssi_rxf_intr interrupts in the
ISR for the ssi_rxf_intr interrupt.

d. Write hex 0101 to the ReqSrcReg register.

Parameter Description

CTLx.TT_FC = 3’b011 Peripheral-to-peripheral DW_ahb_dmac as flow controller

CTLx.BLOCK_TS = 12 –

CTLx.SRC_TR_WIDTH = 3’b00 16 bit

CTLx.DST_TR_WIDTH = 3’b001 16 bit

CTLx.SRC_MSIZE = 3’b 010 Source burst transaction of length 8

CTLx.DEST_MSIZE = 3’b 001 Destination burst transaction of length 4

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 8 bytes –

CFGx.HS_SEL_SRC = 1 Source software handshaking

CFGx.HS_SEL_DST = 1 Destination software handshaking

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.9.1.10.2 IntSrcTran Interrupt Service Routine (ISR)

1. Write 0 into the SSI.RXFTLR register, which triggers an ssi_rxf_intr interrupt when a single data item
is in the DW_apb_ssi receive FIFO.

2. Write a 1 to the SSI.IMR.RXFIM register in order to unmask the generation of ssi_rxf_intr interrupts.

The DMA block transfer might proceed as follows:

1. Software writes a value of 0 into the SSI.RXFTLR register, which triggers an ssi_rxf_intr interrupt
when a single data item is in the DW_apb_ssi receive FIFO.

2. SSI.TXFLR is initially equal to 0, so an ssi_txe_intr interrupt is generated by DW_apb_ssi. The
Interrupt Service Routine (ISR) for this interrupt writes hex 0101 to both the ReqDstReg and
SglReqDstReg; the order is not important. This generates a destination burst transaction request.
Before exiting this ISR, software should write a 0 to the SSI.IMR.TXEIM register in order to mask any
further ssi_txe_intr interrupts, since this is a level-sensitive interrupt.

3. When the DW_apb_ssi receive FIFO contains one source data item, the DW_apb_ssi generates an
ssi_rxf_intr interrupt. The ssi_rxf_intr ISR is called with SSI.RXFTLR = 0.

4. When the DW_apb_ssi receive FIFO contains half-words greater than or equal to SSI.RXFTLR + 1 = 8,
an ssi_rxf_intr interrupt is generated by the DW_apb_ssi. The ssi_rxf_intr ISR is called with
SSI.RXFTLR = 7, which generates a source burst transaction request, as the SglReqSrcReg has already
been written to in step 3.

5. On completion of the destination burst transaction, the DW_ahb_dmac clears ReqDstReg[0] and
SglReqDstReg[0], and generates an IntDstTran interrupt. The ISR for this interrupt should write a 1 to
the SSI.IMR.TXEIM register in order to unmask the generation of ssi_txe_intr interrupts.

6. Same as step 2, except the ssi_txe_intr interrupt is generated when the DW_apb_ssi transmit FIFO
drops to or below the watermark level.

7. Same as step 5.

8. Upon completion of the source burst transaction, the DW_ahb_dmac clears ReqSrcReg[0] and
SglReqSrcReg[0], and generates an IntSrcTran interrupt.

9. Same as 6.

10. Same as 3.

11. The DW_ahb_dmac performs a single transaction from the source. Upon completion of the source
single transaction, the DW_ahb_dmac clears ReqSrcReg[0] and SglReqSrcReg[0], and generates an
IntSrcTran interrupt.

12. Steps 10 and 11, performed three more times. The block transfer from the source is now complete.

13. Same as step 7. The block transfer to the destination is now complete.

NoteNoteNoteNote The source peripheral has entered the Single Transaction Region, since there are only eight
bytes left to complete the source block; however, src_burst_size_bytes = 16 bytes.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

When the ssi_rxf_intr ISR has no knowledge of when the source peripheral is inside or outside the Single
Transaction Region, as for this example, then the ssi_rxf_intr ISR has to be invariant to this. If the
ssi_rxf_intr ISR knows when the Single Transaction Region has been entered, then it can dynamically adjust
the threshold level that triggers a source burst transaction, as explained in “Example 4” on page 60. The
source block then completes on an Early-Terminated Burst Transaction. The ssi_rxf_intr and IntSrcTran
Interrupt Service Routines in this case would be:

2.9.1.10.3 ssi_rxf_intr Interrupt Service Routine (ISR)

1. Write hex 0101 to the ReqSrcReg register, followed by a write of hex 0101 to the SglReqSrcReg
register. This generates a source burst transaction request.

2. Before exiting this ISR, software should write a 0 to the SSI.IMR.RXFIM register in order to mask any
further ssi_rxf_intr interrupts, since this is a level-sensitive interrupt.

2.9.1.10.4 IntSrcTran Interrupt Service Routine (ISR)

1. If the source has entered the Single Transaction Region after this burst transaction, then the ISR
writes a value of 3 into the SSI.RXFTLR register. This triggers an ssi_rxf_intr interrupt when four data
items are in the DW_apb_ssi receive FIFO.

2. Write a 1 to the SSI.IMR.TXEIM register in order to unmask the generation of ssi_txe_intr interrupts.

2.9.1.11 Example 11

Scenario: This scenario demonstrates how to use software handshaking on both the source and destination
side when the source peripheral is the flow controller and the destination peripheral enters the Single
Transaction Region. The DW_apb_ssi is used as the destination peripheral; for more information on the
DW_apb_ssi, refer to the DesignWare DW_apb_ssi Databook. This example uses the parameters listed in
Table 2-16.

Table 2-16 Parameters in Transfer Operation – Example 11

NoteNoteNoteNote The block transfer could proceed by polling the SSI.TXFLR/SSI.RXFLR registers in place of
ssi_txe_intr/ssi_rxf_intr interrupts. Also, in place of IntSrcTran/IntDstTran interrupts, software
could poll the ReqSrcReg[0]/ReqDstReg[0] registers.

NoteNoteNoteNote Knowing CTLx.BLOCK_TS and the number of source burst transactions completed, or by
reading CTLx.BLOCK_TS – which reads the total number of data items read from the source
peripheral up to this time – software can calculate when the amount of data left to fetch in the
source block transfer is less than CTLx.SRC_MSIZE. Therefore, software can calculate when the
source peripheral has entered the Single Transaction Region.

Parameter Description

CTLx.TT_FC = 3’b101 Peripheral-to-peripheral with source as flow controller

CTLx.BLOCK_TS = x –

CTLx.SRC_TR_WIDTH = 3’b001 16 bit

https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_apb_ssi_databook.pdf
https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

In this example, it is assumed that the source peripheral generates an interrupt when the FIFO level is
greater than or equal to some watermark level. For the purposes of this example, assume that the watermark
level that triggers an interrupt named src_burst_intr is equal to CTLx.SRC_MSIZE. Also assume that this
interrupt is level-sensitive and can be masked by writing to a software register in the source peripheral.

Consider the case where the source block is made up of a three-burst transaction:

blk_size_bytes_src = 3 * src_burst_size_bytes = 3 * 8 = 24 bytes

The block size is not a multiple of the destination burst transaction length:

blk_size_bytes_src/dst_burst_size_bytes 24/16 != integer

Therefore, the block transfer to the destination enters the Single Transaction Region near the end of the
block.

The DMA block transfer might proceed as follows:

1. Program SSI.TXFTLR = CTLx.DEST_MSIZE

2. SSI.TXFLR is initially 0, so an ssi_txe_intr interrupt is generated by the DW_apb_ssi. The Interrupt
Service Routine (ISR) for this interrupt writes hex 0101 to both the ReqDstReg and SglReqDstReg; the
order is not important. This generates a destination burst transaction request. Before exiting this ISR,
software should write a 0 to the SSI.IMR.TXEIM register in order to mask any further ssi_txe_intr
interrupts, since these are level-sensitive interrupts.

3. The source peripheral generates an interrupt when the watermark level is reached or exceeded. The
Interrupt Service Routine (ISR) for this interrupt writes hex 0100 to the SglReqSrcReg and LstSrcReg

CTLx.DST_TR_WIDTH = 3’b001 16 bit

CTLx.SRC_MSIZE = 3’b 001, Source burst transaction length = 4

CTLx.DEST_MSIZE = 3’b 010 Destination burst transaction length = 8

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 16 bytes –

CFGx.HS_SEL_SRC = 1 Source software handshaking

CFGx.HS_SEL_DST = 1 Destination software handshaking

Attention
Block transfer when one of the following is true:

■ It is guaranteed that data at some point will be extracted from the destination FIFO in the
“Single transaction region” in order to trigger a burst transaction.

■ When the watermark level that triggers a burst transaction to the destination can be
dynamically adjusted near the end of block.

Parameter Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

registers, followed by hex 0101 to the ReqSrcReg. This generates a source burst transaction request,
which is not the last in the block. Software should now mask the src_burst_intr interrupt.

4. Upon completion of the source burst transaction, the DW_ahb_dmac clears ReqSrcReg[0] and
generates an IntSrcTran interrupt. The ISR for this interrupt should unmask the generation of the
src_burst_intr interrupt in the source peripheral.

5. Repeat step 3.

6. Repeat step 4.

7. Upon completion of the destination burst transaction, the DW_ahb_dmac clears ReqDstReg[0] and
SglReqDstReg[0], and generates an IntDstTran interrupt. The ISR for this interrupt should write a 1
to the SSI.IMR.TXEIM register in order to unmask generation of ssi_rxf_intr interrupts.

8. The source peripheral generates an interrupt when the watermark level is reached or exceeded. The
Interrupt Service Routine (ISR) for this interrupt writes hex 0100 to the SglReqSrcReg register,
followed by hex 0101 to the LstSrcReg register, followed by hex 0101 to the ReqSrcReg register. This
generates a source burst transaction request, which is the last in the block. Software should now mask
the src_burst_intr interrupt.

9. Repeat 4. The block transfer from the source is now complete.

10. The block transfer to the destination may proceed as follows:

a. If it is guaranteed that data at some point will be extracted from the destination FIFO near the end
of a block in order to trigger a burst transaction, an ssi_txe_intr interrupt is generated by the
destination DW_apb_ssi peripheral. The Interrupt Service Routine (ISR) for this interrupt writes
hex 0101 to the ReqDstReg register, followed by a write hex 0101 to the SglReqDstReg; the order
is important. This generates a destination burst transaction request, which is an Early-Terminated
Burst Transaction. Before exiting this ISR, software should write a 0 to the SSI.IMR.TXEIM
register in order to mask any further ssi_txe_intr interrupts, since these are level-sensitive
interrupts. The block transfer to the destination is now complete.

b. If it is not guaranteed that data at some point will be extracted from the destination FIFO near the
end of a block in order to trigger a burst transaction, and if software can determine that the
destination has entered the Single Transaction Region, then it can write a value of 4 into the
SSI.TXFTLR register. This triggers an ssi_txe_intr interrupt when four free locations are present in
the DW_apb_ssi transmit FIFO. On receipt of this interrupt, software can then write hex 0101 to
the ReqDstReg register, followed by a write of hex 0101 to the SglReqDstReg register; the order is
important. This generates a destination burst transaction request, which is an Early-Terminated
Burst Transaction. Hardware clears ReqDstReg[0] and SglReqDstReg[0] upon block completion,
which occurs after four data items have been transferred to the destination in this burst
transaction, and an IntDstTran interrupt is generated. The block transfer to the destination is now
complete.

NoteNoteNoteNote Software can determine when it has entered the Single Transaction Region, since it knows that a
last-burst transaction has been requested by the source, and can calculate the number of bytes
left to complete in the destination block. It can then compare this to dst_burst_size_bytes. For
more information, refer to “Single Transaction Region” on page 38.

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

The ssi_txe_intr and IntDstTran Interrupt Service Routines in this case would be:

■ ssi_txe_intr Interrupt Service Routine (ISR)

a. Read the SSI.TXFTLR register.

If SSI.TXFTLR = 1

i. Write hex 0101 to the SglReqDstReg register.
ii. Write 8 (CTLx.DEST_MSIZE) to the SSI.TXFTLR register. This will trigger a new ssi_txe_intr

interrupt when the number of data items in the destination FIFO is less than or equal to 8.

else (SSI.TXFTLR = 8)

i. Write 0 to the SSI.IMR.TXFIM register in order to mask any further ssi_txe_intr interrupts in
the ISR for the ssi_txe_intr interrupt.

ii. Write hex 0101 to the ReqDstReg register.

■ IntDstTran Interrupt Service Routine (ISR)

a. Write 1 to the SSI.TXFTLR register, which triggers an ssi_txe_intr interrupt when a single free
location is available in the DW_apb_ssi transmit FIFO.

b. Write a 1 to the SSI.IMR.TXFIM register in order to unmask the generation of ssi_txe_intr
interrupts.

The DMA block transfer might proceed as follows:

1. Software writes a value of 1 into the SSI.TXFTLR register, which triggers an ssi_txe_intr interrupt
when a single free location is in the DW_apb_ssi transmit FIFO.

2. SSI.TXFLR is initially 0, so an ssi_txe_intr interrupt is generated by the DW_apb_ssi. The ssi_txe_intr
ISR is called when SSI.TXFTLR = 1.

3. SSI.TXFLR is initially 0, so an ssi_txe_intr interrupt is generated by the DW_apb_ssi. The ssi_txe_intr
ISR is called with SSI.TXFTLR = 8. A destination burst transaction request is generated, as the
SglReqDstReg register has been written to in step 2.

4. The source peripheral generates an interrupt when the watermark level is reached or exceeded. The
Interrupt Service Routine (ISR) for this interrupt writes hex 0100 to the SglReqSrcReg and LstSrcReg
registers, followed by a write of hex 0101 to the ReqSrcReg. This generates a source burst transaction
request, which is not the last in the block. Software should now mask the src_burst_intr interrupt.

5. Upon completion of the source burst transaction, the DW_ahb_dmac clears ReqSrcReg[0] and
generates an IntSrcTran interrupt. The ISR for this interrupt should unmask generation of the
src_burst_intr interrupt in the source peripheral.

6. Repeat step 4.

Attention
Block transfer when both of the following are true:

■ It is not guaranteed that data at some point will be extracted from the destination FIFO in
the “Single transaction region” in order to trigger a burst transaction.

■ When the watermark level that triggers a burst transaction to the destination cannot be
dynamically adjusted near the end of block.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

7. Repeat step 5.

8. Upon completion of the destination burst transaction, the DW_ahb_dmac clears ReqDstReg[0] and
SglReqDstReg[0], and generates an IntDstTran interrupt.

9. The source peripheral generates an interrupt when the watermark level is reached or exceeded. The
Interrupt Service Routine (ISR) for this interrupt writes hex 0100 to the SglReqSrcReg register,
followed by a write of hex 0101 to the LstSrcReg register, followed by a write of hex 0101 to the
ReqSrcReg register. This generates a source burst transaction request, which is the last in the block.
Software should now mask the src_burst_intr interrupt.

10. Repeat step 5. The block transfer from the source is now complete.

11. When a free location exists in the destination FIFO, an ssi_txe_intr interrupt is generated by the
DW_apb_ssi. The ssi_txe_intr ISR is called with SSI.TXFTLR = 1.

12. The DW_ahb_dmac performs a single transaction to the destination. Upon completion of the
destination single transaction, the DW_ahb_dmac clears ReqDstReg[0] and SglReqDstReg[0], and
generates an IntDstTran interrupt.

13. Repeat steps 11 and 12 four more times. The block transfer to the destination is now complete.

2.9.2 Peripheral Interrupt Request Interface

The interface illustrated in Figure 2-33 is a simplified version of the hardware handshaking interface. In this
mode:

■ The interrupt line from the peripheral is tied to the dma_req input.

■ The dma_single input is tied low.

■ All other interface signals are ignored.

NoteNoteNoteNote “Example 11” on page 83 outlines a DW_ahb_dmac block transfer using software handshaking
when interrupts are used to control the block transfer. The same could be achieved using register
polling.

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

This interface can be used where the slave peripheral does not have hardware handshaking signals. To the
DW_ahb_dmac, this is the same “Hardware Handshaking – Peripheral Is Not Flow Controller” on page 40.

Figure 2-33 Transaction Request Through Peripheral Interrupt

The peripheral can never be the flow controller, since it cannot connect to the dma_last signal. The interrupt
line from the peripheral is tied to the dma_req line, as shown in Figure 2-33. The timing of the interrupt line
from the peripheral must be the same as the dma_req line, as discussed in “Hardware Handshaking –
Peripheral Is Not Flow Controller” on page 40.

Since the dma_ack line is not sampled by the peripheral, the handshaking loop is as follows:

1. Peripheral generates an interrupt that asserts dma_req.

2. DW_ahb_dmac completes the burst transaction and generates an end-of-burst transaction interrupt,
IntSrcTran/IntDstTran. Interrupts must be enabled and the transaction complete interrupt
unmasked.

3. The interrupt service routine clears the interrupt in the peripheral so that the dma_req is de-asserted.

Notice that dma_single is hardcoded to an inactive level. For conditions where the source/destination
peripheral can tie dma_single to an inactive level, refer to “Single Transactions – Peripheral Is Not Flow
Controller” on page 47.

2.10 Flow Control Configurations
Figure 2-34 indicates five different flow control configurations using hardware handshaking interfaces – a
simplified version of the interface is shown. These scenarios can also be used for software handshaking,
which uses software registers instead of signals.

Peripheral

DW_ahb_dmac

DW_ahb_dmac
Request and

CPU

Program and enable Channel through
“Channel Registers”

dma_req

dma_single

dma_last

dma_ack

dma_finish

Interrupt

‘0’

‘0’ Response I/F

CPU

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Figure 2-34 Flow Control Configurations

Flow Control by DW_ahb_dmac

CPU
DW_ahb_dmac Memory

Memory

block size

Flow Control by DW_ahb_dmac

Memory

Peripheral 1dma_finish

Flow Control by Peripheral 2

CPU

DW_ahb_dmac

block size

Peripheral 2dma_finish

dma_last

Flow Control by DW_ahb_dmac

CPU
block size Peripheral 1

Peripheral 2dma_finish

dma_finish

Flow Control by Peripheral 2

DW_ahb_dmac

Peripheral 1

Peripheral 2dma_finish

dma_last

dma_finish

Memory

Channel
Control
Register
(CTLx)

DW_ahb_dmac
Channel
Control
Register
(CTLx)

DW_ahb_dmac
Channel
Control
Register
(CTLx)

https://solvnet.synopsys.com
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.11 Peripheral Burst Transaction Requests
For a source FIFO, an active edge is triggered on dma_req when the source FIFO exceeds some watermark
level. For a destination FIFO, an active edge is triggered on dma_req when the destination FIFO drops
below some watermark level.

This section investigates the optimal settings of these watermark levels on the source and destination
peripherals and their relationship to, respectively:

■ Source transaction length, CTLx.SRC_MSIZE

■ Destination transaction length, CTLx.DEST_MSIZE

For demonstration purposes, a receive DW_apb_ssi is used as a source peripheral, and a transmit
DW_apb_ssi is used as a destination peripheral. For more information on the DW_apb_ssi, refer to the
DesignWare DW_apb_ssi Databook.

2.11.1 Transmit Watermark Level and Transmit FIFO Underflow

During DW_apb_ssi serial transfers, DW_apb_ssi transmit FIFO requests are made to the DW_ahb_dmac
whenever the number of entries in the DW_apb_ssi transmit FIFO is less than or equal to the DW_apb_ssi
Transmit Data Level Register (SSI.DMATDLR) value. This is known as the watermark level. The
DW_ahb_dmac responds by writing a burst of data to the DW_apb_ssi transmit FIFO buffer, of length
DMA.CTLx.DEST_MSIZE.

Data should be fetched from the DW_ahb_dmac often enough for the DW_apb_ssi transmit FIFO to
continuously perform serial transfers; that is, when the DW_apb_ssi transmit FIFO begins to empty, another
burst transaction request should be triggered. Otherwise the DW_apb_ssi transmit FIFO runs out of data
(underflow). To prevent this condition, you must set the watermark level correctly.

2.11.2 Choosing the Transmit Watermark Level

Consider an example with the following assumption:

DMA.CTLx.DEST_MSIZE = SSI_TX_FIFO_DEPTH - SSI.DMATDLR

In this situation, the number of data items to be transferred in a DW_ahb_dmac burst is equal to the empty
space in the DW_apb_ssi transmit FIFO. Consider two different watermark level settings.

NoteNoteNoteNote Throughout this section, DW_apb_ssi-related parameters are prefixed with “SSI.”
DW_ahb_dmac-related parameters are prefixed with “DMA.”

NoteNoteNoteNote SSI_TX_FIFO_DEPTH is the DW_apb_ssi transmit FIFO depth. SSI.DMATDLR controls the level
at which a DW_ahb_dmac destination burst request is made by the DW_apb_ssi transmit logic. It
is equal to the watermark level; that is, a destination burst request is generated (active-edge of
dma_req triggered) when the number of valid data entries in the DW_apb_ssi transmit FIFO is
equal to or below this field value.

https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.11.2.1 Case 1: SSI.DMATDLR = 2

Figure 2-35 illustrates the watermark levels in Case 1 where SSI.DMATDLR = 2.

Figure 2-35 Case 1 Watermark Levels where SSI.DMATDLR = 2

Case 1 uses the parameters listed in Table 2-17.

Table 2-17 Transmit Watermark Level – Case 1

The number of burst transactions that are needed equals the block size divided by the number of data items
per burst:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/6 = 5

The number of burst transactions in the DW_ahb_dmac block transfer is 5, but the watermark level,
SSI.DMATDLR, is quite low. Therefore, the probability of an SSI underflow is high where the SSI serial
transmit line needs to transmit data, but where there is no data left in the transmit FIFO. This occurs because
the DW_ahb_dmac has not had time to service the DW_ahb_dmac request before the DW_apb_ssi transmit
FIFO becomes empty.

Parameter Comment

SSI.DMATDLR = 2 DW_apb_ssi transmit FIFO watermark level

DMA.CTLx.DEST_MSIZE = SSI_TX_FIFO_DEPTH
- SSI.DMATDLR = 6

DMA.CTLx.DEST_MSIZE is equal to the empty space in the
transmit FIFO at the time the burst request is made.

SSI _TX_FIFO_DEPTH = 8 DW_apb_ssi transmit FIFO depth

DMA.CTLx.BLOCK_TS = 30 Block size

SSI_TX_FIFO_DEPTH = 8

SSI.DMATDLR = 2

SSI_TX_FIFO_DEPTH - SSI.DMATDLR = 6

FULL

EMPTY

SSI Transmit FIFO

DW_ahb_dmac

Transmit FIFO
Watermark level

Data In
Data Out

https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.11.2.2 Case 2: SSI.DMATDLR = 6

Figure 2-36 illustrates the watermark levels in Case 2 where SSI.DMATDLR = 6.

Figure 2-36 Case 2 Watermark Levels where SSI.DMATDLR = 6

Case 2 uses the parameters listed in Table 2-18.

Table 2-18 Transmit Watermark Level – Case 2

The number of burst transactions in the block are:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/2 = 15

In this block transfer, there are fifteen destination burst transactions in a DMA block transfer, but the
watermark level, SSI.DMATDLR, is high. Therefore, the probability of an SSI underflow is low because the
DW_ahb_dmac has plenty of time to service the destination burst transaction request before the SSI transmit
FIFO becomes empty.

Thus, the second case has a lower probability of underflow at the expense of more burst transactions per
block. This potentially provides a greater amount of bursts per block and a worse bus utilization than the
former case.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while
at the same time keeping the probability of an underflow condition to an acceptable level. In practice, this is
a function of the following ratio:

For example, promoting the channel to the highest-priority channel in the DW_ahb_dmac, and promoting
the DW_ahb_dmac master interface to the highest-priority master in the AHB layer, increases the rate at

Parameter Description

SSI.DMATDLR = 6 DW_apb_ssi transmit FIFO watermark level

DMA.CTLx.DEST_MSIZE = SSI_TX_FIFO_DEPTH
- SSI.DMATDLR = 2

DMA.CTLx.DEST_MSIZE is equal to the empty space in the
transmit FIFO at the time the burst request is made.

SSI_TX_FIFO_DEPTH = 8 DW_apb_ssi transmit FIFO depth

DMA.CTLx.BLOCK_TS = 30 Block size

SSi_TX_FIFO_DEPTH = 8
SSI.DMATDLR = 6

SSI_TX_FIFO_DEPTH - SSI.DMATDLR = 2

FULL

EMPTY

SSI Transmit FIFO

Transmit FIFO
Watermark level

Data Out
DW_ahb_dmac

Data In

Rate of SSI data transmission
Rate of DW_ahb_dmac response to destination burst requests

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

which the DW_ahb_dmac can respond to burst transaction requests. This in turn allows you to decrease the
watermark level, which improves bus utilization without compromising the probability of an underflow
occurring.

2.11.3 Selecting CTLx.DEST_MSIZE and Transmit FIFO Overflow

As can be seen from Figure 2-36, programming DMA.CTLx.DEST_MSIZE to a value greater than the
watermark level that triggers the DW_ahb_dmac request may cause overflow when there is not enough
space in the DW_apb_ssi transmit FIFO to service the destination burst request. Therefore, the following
equation must be adhered to in order to avoid overflow:

DMA.CTLx.DEST_MSIZE <= SSI_TX_FIFO_DEPTH - SSI.DMATDLR(13)

In “Case 2: SSI.DMATDLR = 6” on page 92, the amount of space in the transmit FIFO at the time the burst
request is made is equal to the destination burst length, DMA.CTLx.DEST_MSIZE. Thus, the transmit FIFO
may be full, but not overflowed, upon completion of the burst transaction.

Therefore, for optimal operation, DMA.CTLx.DEST_MSIZE should be set at the FIFO level that triggers a
transmit DW_ahb_dmac request; that is:

DMA.CTLx.DEST_MSIZE = SSI_TX_FIFO_DEPTH - SSI.DMATDLR(14)

This is the setting used in Figure 2-24.

Adhering to equation (14) reduces the number of DW_ahb_dmac bursts needed for a block transfer, and this
in turn improves AHB bus utilization.

2.11.4 Receive Watermark Level and Receive FIFO Overflow

During DW_apb_ssi serial transfers, DW_apb_ssi receive FIFO requests are made to the DW_ahb_dmac
whenever the number of entries in the DW_apb_ssi receive FIFO is at or above the DW_ahb_dmac Receive
Data Level Register; that is, SSI.DMARDLR+1. This is known as the watermark level. The DW_ahb_dmac
responds by reading a burst of data from the receive FIFO buffer of length DMA.CTLx.SRC_MSIZE.

Data should be fetched by the DW_ahb_dmac often enough for the DW_apb_ssi receive FIFO to accept
serial transfers continuously; that is, when the DW_apb_ssi receive FIFO begins to fill, another burst
transaction request should be triggered. Otherwise, the DW_apb_ssi receive FIFO fills with data (overflow).
To prevent this condition, you must correctly set the watermark level.

NoteNoteNoteNote The DW_apb_ssi transmit FIFO is not full at the end of a DW_ahb_dmac burst transaction if
the SSI has successfully transmitted one data item or more on the SSI serial transmit line
before the end of the burst transaction.

NoteNoteNoteNote SSI.DMARDLR controls the level at which a source burst request is made by the receive logic.
When the number of valid data entries in the DW_apb_ssi receive FIFO is equal to or greater than
the watermark level (DMARDL+1), a source burst request is generated (active-edge of dma_req
triggered).

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.11.5 Choosing the Receive Watermark level

Similar to choosing the transmit watermark level described earlier, the receive watermark level,
SSI.DMARDLR+1, should be set to minimize the probability of overflow, as shown in Figure 2-37 on page
94. It is a trade-off between the number of burst transactions required per block versus the probability of an
overflow occurring.

2.11.6 Selecting CTLx.SRC_MSIZE and Receive FIFO Underflow

As can be seen in Figure 2-37, programming a source burst transaction length greater than the watermark
level may cause underflow when there is not enough data to service the source burst request. Therefore,
equation (15) below must be adhered to in order to avoid underflow.

If the number of data items in the DW_apb_ssi receive FIFO is equal to the source burst length at the time
the source burst request is made – DMA.CTLx.SRC_MSIZE – the DW_apb_ssi receive FIFO may be
emptied, but not underflowed, at the completion of the source burst transaction. For optimal operation,
DMA.CTLx.SRC_MSIZE should be set at the watermark level; that is:

DMA.CTLx.SRC_MSIZE = SSI.DMARDLR + 1(15)

Adhering to equation (15) reduces the number of burst transactions in a block transfer, and this in turn can
improve AHB bus utilization.

Figure 2-37 SSI Receive FIFO

2.12 Generating Requests for the AHB Master Bus Interface
Each channel has a source state machine and destination state machine running in parallel. These state
machines generate the request inputs to the arbiter, which arbitrates for the master bus interface (one arbiter
per master bus interface).

When the source/destination state machine is granted control of the master bus interface, and when the
master bus interface is granted control of the external AHB bus, then AHB transfers between the peripheral
and the DW_ahb_dmac (on behalf of the granted state machine) can take place.

AHB transfers from the source peripheral or to the destination peripheral cannot proceed until the channel
FIFO is ready. For burst transaction requests and for transfers involving memory peripherals, the criterion
for “FIFO readiness” is controlled by the FIFO_MODE field of the CFGx register.

NoteNoteNoteNote The DW_apb_ssi receive FIFO is not empty at the end of the source burst transaction if the SSI
has successfully received one data item or more on the SSI serial receive line before the end of
the burst, as illustrated in Figure 2-37.

SSI.DMARDLR + 1FULL

EMPTY

SSI Receive FIFO

Data In

Receive FIFO
Watermark level

DW_ahb_dmac
Data out

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

The definition of FIFO readiness is the same for:

■ Single transactions

■ Burst transactions, where CFGx.FIFO_MODE = 0

■ Transfers involving memory peripherals, where CFGx.FIFO_MODE = 0

The channel FIFO is deemed ready when the space/data available is sufficient to complete a single AHB
transfer of the specified transfer width. FIFO readiness for source transfers occurs when the channel FIFO
contains enough room to accept at least a single transfer of CTLx.SRC_TR_WIDTH width. FIFO readiness
for destination transfers occurs when the channel FIFO contains data to form at least a single transfer of
CTLx.DST_TR_WIDTH width.

When CFGx.FIFO_MODE = 1, then the criteria for FIFO readiness for burst transaction requests and
transfers involving memory peripherals are as follows:

■ A FIFO is ready for a source burst transfer when the FIFO is less than half empty.

■ A FIFO is ready for a destination burst transfer when the FIFO is greater than or equal to half full.

Exceptions to this “readiness” occur. During these exceptions, a value of CTLx.FIFO_MODE =0 is assumed.
The following are the exceptions:

■ Near the end of a burst transaction or block transfer – The channel source state machine does not wait
for the channel FIFO to be less than half empty if the number of source data items left to complete the
source burst transaction or source block transfer is less than DMAH_CHx_FIFO_DEPTH/2.
Similarly, the channel destination state machine does not wait for the channel FIFO to be greater than
or equal to half full, if the number of destination data items left to complete the destination burst
transaction or destination block transfer is less than DMAH_CHx_FIFO_DEPTH/2.

■ In FIFO flush mode – For an explanation of FIFO flush mode, refer to “Example 5” on page 63.

■ When a channel is suspended – The destination state machine does not wait for the FIFO to become
half empty to flush the FIFO, regardless of the value of the FIFO_MODEfield.

■ After receipt of a split/retry response from a source or destination – The AMBA protocol requires
that after an AHB master receives a split/retry response, it must re-issue the transfer that received
the split/retry before attempting any other transfer. Therefore, a transfer is re-issued to the same
address that returned the split/retry, regardless of FIFO_MODE, when the DW_ahb_dmac is next
granted the AHB bus. This is repeated until an OKAY response is received on the AHB hresp bus.

When the source/destination peripheral is not memory, the source/destination state machine waits for a
single/burst transaction request. Upon receipt of a transaction request and only if the channel FIFO is
“ready” for source/destination AHB transfers, a request for the master bus interface is made by the
source/destination state machine.

NoteNoteNoteNote An exception to FIFO readiness for destination transfers occurs in “FIFO flush mode.” In this
mode, FIFO readiness for destination transfers occurs when the channel FIFO contains data to
form at least a single transfer of CTLx.SRC_TR_WIDTH width (and not CTLx.DST_TR_WIDTH
width, as is the normal case). For an explanation of FIFO flush mode, refer to “Example 5” on
page 63.

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

When the source/destination peripheral is memory, the source/destination state machine must wait until
the channel FIFO is “ready.” A request is then made for the master bus interface. There is no handshaking
mechanism employed between a memory peripheral and the DW_ahb_dmac.

2.12.1 Locked DMA Transfers

It is possible to program the DW_ahb_dmac for:

■ Bus locking – Asserts the AHB hlock signal.

■ Channel locking – Locks the arbitration for the AHB master interface, which grants ownership of the
master bus interface to one of the requesting channel state machines (source or destination).

Bus and channel locking can proceed for the duration of a DMA transfer, a block transfer, or a single or
burst transaction.

2.12.1.1 Bus Locking

If the LOCK_Bbit in the channel configuration register (CFGx) is set, then the AHB hlock signal is asserted
for the duration specified in the LOCK_B_L field.

2.12.1.2 Channel Locking

If the LOCK_CH field is set, then the arbitration for the master bus interface is exclusively reserved for the
source and destination peripherals of that channel for the duration specified in the LOCK_CH_L field.

If bus locking is activated for a certain duration, then it follows that the channel is also automatically locked
for that duration. Three cases arise:

■ CFGx.LOCK_B = 0 – Programmed values of CFGx.LOCK_CH and CFGx.LOCK_CH_L are used.

■ CFGx.LOCK_B = 1 and CFGx.LOCK_CH = 0 – DMA transfer proceeds as if CFGx.LOCK_CH = 1 and
CFGx.LOCK_CH_L = CFGx.LOCK_B_L. The programmed values of CFGx.LOCK_CH and
CFGx.LOCK_CH_L are ignored.

■ CFGx.LOCK_B = 1 and CFGx.LOCK_CH = 1 – Two cases arise:

❑ CFGx.LOCK_B_L <= CFGx.LOCK_CH_L – In this case, the DMA transfer proceeds as if
CFGx.LOCK_CH_L = CFGx. LOCK_B_L and the programmed value of CFGx.LOCK_CH_L is
ignored. Thus, if bus locking is enabled over the DMA transfer level, then channel locking is
enabled over the DMA transfer level, regardless of the programmed value of CFGx.LOCK_CH_L

❑ CFGx.LOCK_B_L > CFGx.LOCK_CH_L – The programmed value of CFGx.LOCK_CH_L is used.
Thus, if bus locking is enabled over the DMA block transfer level and channel locking is enabled
over the DMA transfer level, then channel locking is performed over the DMA transfer level.

NoteNoteNoteNote There is one exception to this, which occurs when the destination peripheral is the flow controller
and CFGx.FCMODE = 1 (data pre-fetching is disabled). Then the source state machine does not
generate a request for the master bus interface (even if the FIFO is “ready” for source transfers
and has received a source transaction request) until the destination requests new data. Refer to
“Example 8” on page 76.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.12.1.3 Locking Levels

If locking is enabled for a channel, then locking of the AHB master bus interface at a programmed locking
transfer level is activated when the channel is first granted the AHB master bus interface at the start of that
locking transfer level. It continues until the locking transfer level has completed; that is, if channel 0 has
enabled channel level locking at the block transfer level, then this channel locks the master bus interface
when it is first granted the master bus interface at the start of the block transfer, and continues to lock the
master bus interface until the block transfer has completed.

Source and destination block transfers occur successively in time, and a new source block cannot commence
until the previous destination block has completed. When both source and destination are on the same AHB
layer, then block level locking is terminated on completion of the block to the destination. If they are on
separate layers, then block-level locking is terminated on completion of the block on that layer—when the
source block on the source AHB layer completes, and when the destination block on the destination AHB
layer completes. The same is true for DMA transfer-level locking.

Transaction-level locking is different due to the fact that source and destination transactions occur
independently in time, and the number of source and destination transactions in a DMA block or DMA
transfer do not have to match. When the source and destination are on the same AHB layer, then
transaction-level locking is cleared at the end of a source or destination transaction only if the opposing
peripheral is not currently in the middle of a transaction.

For example, if locking is enabled at the transaction level and an end-of-source transaction is signaled, then
this disables locking only if one of the following is true:

■ The destination is on a different AHB layer

■ The destination is on the same AHB layer, but the channel is not currently in the middle of a
transaction to the destination peripheral.

The same rules apply when an end-of-destination transaction is signalled.

If channel-level or bus-level locking is enabled for a channel at the transaction level, and either the source or
destination of the channel is a memory device, then the locking is ignored and the channel proceeds as if
locking (bus or channel) is disabled.

2.12.1.4 Channel Locking and Deadlock

Certain combinations of channel-level and bus-level locking may lead to deadlock, where multiple channels
are concurrently enabled and no channel can proceed with the DMA transfer. This occurs only for
configurations where DMAH_NUM_MASTER_INT > 1 and DMAH_NUM_CHANNELS > 1. The methods
used to avoid deadlock are described in more detail in “Channel Locking and Deadlock” on page 409.

NoteNoteNoteNote Since there is no notion of a transaction level for a memory peripheral, then transaction-level
locking is not allowed when either source or destination is memory.

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.13 Arbitration for AHB Master Interface
Each DW_ahb_dmac channel has two request lines that request ownership of a particular master bus
interface: channel source and channel destination request lines.

Source and destination arbitrate separately for the bus. Once a source/destination state machine gains
ownership of the master bus interface and the master bus interface has ownership of the AHB bus, then
AHB transfers can proceed between the peripheral and DW_ahb_dmac. Figure 2-38 illustrates the
arbitration flow of the master bus interface.

An arbitration scheme decides which of the request lines (2 * DMAH_NUM_CHANNELS) is granted the
particular master bus interface. Each channel has a programmable priority. A request for the master bus
interface can be made at any time, but is granted only after the current AHB transfer (burst or single) has
completed. Therefore, if the master interface is transferring data for a lower priority channel and a higher
priority channel requests service, then the master interface will complete the current burst for the lower
priority channel before switching to transfer data for the higher priority channel.

To prevent a channel from saturating the master bus interface, it can be given a maximum AMBA burst
length (MAX_ABRST field in CFGx register) at channel setup time. This also prevents the master bus
interface from saturating the AHB bus where the system arbiter cannot change the grant lines until the end
of an undefined length burst.

The following is the interface arbitration scheme employed when no channel has locked (Channel Locking)
the arbitration for the master bus interface:

■ If only one request line is active at the highest priority level, then the request with the highest priority
wins ownership of the AHB master bus interface; it is not necessary for the priority levels to be
unique.

If more than one request is active at the highest requesting priority, then these competing requests
proceed to a second tier of arbitration.

■ If equal priority requests occur, then the lower-numbered channel is granted.

In other words, if a peripheral request attached to Channel 7 and a peripheral request attached to
Channel 8 have the same priority, then the peripheral attached to Channel 7 is granted first.

NoteNoteNoteNote A channel source is granted before the destination if both have their request lines asserted when
a grant decision is made. A channel source and channel destination inherit their channel priority
and therefore always have the same priority.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Figure 2-38 Arbitration Flow for Master Bus Interface

2.14 Latency
By default, the DW_ahb_dmac has:

■ Seven cycles of latency from hardware handshaking request to NSEQ being issued from appropriate
AHB master interface

■ Two cycles of latency from completion of AHB burst to assertion of dma_ack

Arbiter Locked
by this

Channel?

IDLE

AMBA Transfer
in progress?

Highest
priority channel?

Arbiter locked
by different
channel?

Lowest
numbered

highest priority
request?

Granted Master
AHB Interface

request = 0

request = 1

No

Yes

No

No

Yes

No

Yes
AMBA transfer incomplete

AMBA transfer complete

No

Yes

Yes

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-39 shows the default latency from a hardware handshaking request to the AHB transfer, and the
latency from the completion of that burst to the assertion of dma_ack.

Figure 2-39 Default DW_ahb_dmac Latency

This default latency can be reduced by setting the parameter DMAH_REMOVE_PIPELINING to 1, which
reduces the latency to:

■ Five cycles from hardware handshaking request to NSEQ

■ One cycle from AHB burst completion to dma_ack.

Figure 2-40 shows the latency from a hardware handshaking request to the AHB transfer, and the latency
from the completion of that burst to the assertion of dma_ack; in this case, DMAH_REMOVE_PIPELINING
is set to 1.

Figure 2-40 DW_ahb_dmac Latency with DMAH_REMOVE_PIPELINING Set to 1

Setting DMAH_REMOVE_PIPELINING to 1 also does the following:

■ Results in longer logic paths in the DW_ahb_dmac, which can make it harder to reach the desired
operating frequency.

■ Reduces latency by one cycle when the hardware handshaking interfaces are not being used. One of
the pipeline stages removed is in the master interface arbiter, which is used for all types of transfer.

NoteNoteNoteNote The following latency illustrations are best-case scenarios where the DW_ahb_dmac master
interface already owns the AHB bus before issuing the transfer. AHB bus arbitration latency
increases the observed latency.

2*hclk7*hclk
hclk

dma_req

dma_ack

htrans1[1:0]

hgrant1

hready1

IDLE NSEQ IDLE

1*hclk5*hclk
hclk

dma_req

dma_ack

htrans1[1:0]

hgrant1

hready1
IDLE NSEQ IDLE

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.15 Scatter/Gather
Scatter is relevant to a destination transfer. The destination address is incremented or decremented by a
programmed amount – the scatter increment – when a scatter boundary is reached. Figure 2-41 shows an
example destination scatter transfer. The destination address is incremented or decremented by the value
stored in the destination scatter increment (DSRx.DSI) field (refer to “DSRx”), multiplied by the number of
bytes in a single AHB transfer to the destination š (decoded value of CTLx.DST_TR_WIDTH)/8 – when a
scatter boundary is reached. The number of destination transfers between successive scatter boundaries is
programmed into the Destination Scatter Count (DSC) field of the DSRx register.

Scatter is enabled by writing a 1 to the CTLx.DST_SCATTER_EN field. The CTLx.DINC field determines if
the address is incremented, decremented, or remains fixed when a scatter boundary is reached. If the
CTLx.DINC field indicates a fixed-address control throughout a DMA transfer, then the
CTLx.DST_SCATTER_EN field is ignored, and the scatter feature is automatically disabled.

Gather is relevant to a source transfer. The source address is incremented or decremented by a programmed
amount when a gather boundary is reached. The number of source transfers between successive gather
boundaries is programmed into the Source Gather Count (SGRx.SGC) field. The source address is
incremented or decremented by the value stored in the source gather increment (SGRx.SGI) field (refer to
“SGRx”), multiplied by the number of bytes in a single AHB transfer from the source – (decoded value of
CTLx.SRC_TR_WIDTH)/8 – when a gather boundary is reached.

Gather is enabled by writing a 1 to the CTLx.SRC_GATHER_EN field. The CTLx.SINC field determines if
the address is incremented, decremented, or remains fixed when a gather boundary is reached. If the
CTLx.SINC field indicates a fixed-address control throughout a DMA transfer, then the
CTLx.SRC_GATHER_EN field is ignored, and the gather feature is automatically disabled.

NoteNoteNoteNote For multi-block transfers, the counters that keep track of the number of transfers left to reach a
gather/scatter boundary are re-initialized to the source gather count (SGRx.SGC) and
destination scatter count (DSC), respectively, at the start of each block transfer.

https://solvnet.synopsys.com
www.designware.com

102 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-41 shows an example of a destination scatter transfer:

Figure 2-41 Example of Destination Scatter Transfer

As an example of gather increment, consider the following:

SRC_TR_WIDTH = 3'b 010 (32 bit)

SGR.SGC = 0x04 (source gather count)

CTLx.SRC_GATHER_EN = 1 (source gather enabled)

SARx = A0 (starting source address)

0 x 080

0 x 080

A0 + 0x018

A0 + 0x010
D1

D0

Scatter Increment

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

Data Stream

d3

d0

d7

d4

d11

d8

System Memory

CTLx.DST_TR_WIDTH = 3’b011 (64bit/8 = 8 bytes)
DSR.DSI = 16

DSR.DSC = 4

DSR.DSI * 8 = 0x80 (Scatter Increment in bytes)A0

A0 + 0x008

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

A0 + 0x100

A0 + 0x108

A0 + 0x110

A0 + 0x118

A0 + 0x200

A0 + 0x208

A0 + 0x210

A0 + 0x218

Scatter Boundary A0 + 0x20

Scatter Increment

Scatter Boundary A0 + 0x120

Scatter Boundary A0 + 0x220

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 103SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Figure 2-42 shows a source gather when SGR.SGI = 0x01.

Figure 2-42 Source Gather when SGR.SGI = 0x1

In general, if the starting address is A0 and CTLx.SINC = 2’b00 (increment source address control), then the
transfer will be:

A0, AO + TWB, A0 + 2*TWB(A0 + (SGR.SGC-1)*TWB)
<-scatter_increment-> (A0 + (SGR.SGC*TWB) + (SGR.SGI *TWB))

where TWB is the transfer width in bytes, decoded value of CTLx.SRC_TR_WIDTH/8 =
src_single_size_bytes.

A0 + 0x00c

A0 + 0x008
D1

D0

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

Data Stream

d3

d0

d7

d4

d11

d8

System Memory

CTLx.SRC_TR_WIDTH = 3’b010 (32bit/8 = 4 bytes)
SGR.SGI = 1

SGR.SGC = 4

SGR.SGI * 4 = 0x4 (Gather Increment in bytes)A0

A0 + 0x004

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

A0 + 0x020

A0 + 0x014

A0 + 0x018

A0 + 0x01c

A0 + 0x030

A0 + 0x034

A0 + 0x028

A0 + 0x02c

Gather Boundary A0 + 0x10

Gather Boundary A0 + 0x38

Gather Boundary A0 + 0x24
Gather Increment = 4

Gather Increment = 4

Gather Increment = 4

https://solvnet.synopsys.com
www.designware.com

104 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.16 Endianness
DW_ahb_dmac supports Little Endian, Address Invariant (AI) Big Endian scheme and BE-32 (Word
Invariant) scheme of data access on AHB slave interface and each AHB master interface. Endian format can
be either hard coded using coreConsultant configuration parameter or selected using a I/O pins (signal).

2.16.1 Big Endian-Little Endian Conversion Logic

The behavior of DW_ahb_dmac for Big Endian-Little Endian conversion using BE-32 (Word Invariant)
method is as shown in the following figures.

Figure 2-43 BE-LE Conversion Using BE-32 (Word Invariant) Method for 32-Bit Data Bus

Figure 2-44 BE-LE Conversion Using BE-32 (Word Invariant) Method for 54-Bit Data Bus – Word Access

Byte 0 Byte 7

Big Endian

Little Endian

Byte 3 Byte4

Byte 0Byte 3Byte4Byte 7

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 105SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Figure 2-45 BE-LE Conversion Using BE-32 (Word Invariant) Method for 64-Bit Data Bus – Half Word Access

Figure 2-46 BE-LE Conversion Using BE-32 (Word Invariant) Method for 64-Bit Data Bus – Byte Access

2.16.2 LLI Fetch, and Status and Control Write-Back

The DW_ahb_dmac can be programmed to use the Little Endian scheme whenever it fetches a Linked List
Item (LLI) or writes Status and Control register data back to the LLI location, regardless of the endian
format selected for the source and destination data transfer on the particular AHB master interface.

2.16.3 Endian Selection

The endian scheme used for the register access, for source and destination data transfer on master interfaces
and LLI fetch, and for Status and Control write-back access on master interfaces is decided by the values of
the coreConsultant parameters and the I/O signals. All possible combinations of endian scheme are
captured in Table 2-19.

Byte 0 Byte 7

Big Endian

Little Endian

Byte 3 Byte4

Byte 0Byte 3Byte4Byte 7

Byte 0 Byte 7

Big Endian

Little Endian

Byte 3 Byte4

Byte 0Byte 3Byte4Byte 7

https://solvnet.synopsys.com
www.designware.com

106 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Table 2-19 Endian Scheme Selection116
D

M
A

H
_S

T
A

T
IC

_E
N

D
IA

N
_S

E
L

E
C

T

D
M

A
H

_B
IG

_E
N

D
IA

N

d
m

a_
b

ig
_e

n
d

ia
n

_s
lv

/m
1/

m
2/

m
3/

m
4

D
M

A
H

_B
E

32
_S

E
L

E
C

T
IO

N
_P

IN
_E

N

d
m

a_
b

e_
se

le
ct

_b
e3

2_
sl

v/
m

1/
m

2/
m

3/
m

4
Endian Scheme Used for
Register Access on Slave

Interface and SRC/DST Data
Access on M1/M2/M3/M4 Master

Interface

D
M

A
H

_L
L

I_
E

N
D

IA
N

_S
E

L
E

C
T

IO
N

_P
IN

_E
N

d
m

a_
le

_s
el

ec
t_

lli
_m

1/
m

2/
m

3/
m

4

Endian Scheme Used for LLI
Fetch/ Status and Control Write
Back Access on M1/M2/M3/M4

Master Interface

1 0 X X X Little Endian X X Little Endian

1 1 X 0 X Big Endian AI

0 X Big Endian AI

1
0 Big Endian AI

1 Little Endian

1 1 X 1

0 Big Endian AI

0 X Big Endian AI

1
0 Big Endian AI

1 Little Endian

1 Big Endian BE-32

0 X Big Endian BE-32

1
0 Big Endian BE-32

1 Little Endian

0 X 0 X X Little Endian X X Little Endian

0 X 1 0 X Big Endian AI

0 X Big Endian AI

1
0 Big Endian AI

1 Little Endian

0 X 1 1

0 Big Endian AI

0 X Big Endian AI

1
0 Big Endian AI

1 Little Endian

1 Big Endian BE-32

0 X Big Endian BE-32

1
0 Big Endian BE-32

1 Little Endian

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 107SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.16.4 Static Endian Configuration

You can statically configure endianness under the following conditions:

■ Endianness of the AHB slave interface and all configured AHB master interfaces are the same

■ Endianness is known at system configuration time

Under these circumstances, you do the following:

1. Set the DMAH_STATIC_ENDIAN_SELECT parameter to True.

2. Configure the DMAC_BIG_ENDIAN parameter to either big-endian or little-endian.

3. Configure the DMAH_BE32_SELECTION_PIN_EN parameter and drive the appropriate I/O to
either big-endian AI or big-endian BE-32

2.16.5 Dynamic Endian Configuration

You should dynamically configure endianness if either of the following conditions exists:

■ Endianness of the AHB slave interface and all configured master interfaces are not all the same.

■ Endianness of the slave interface or any master interface is not known at system configuration time.

Under either of these circumstances, do the following:

1. Set the DMAH_STATIC_ENDIAN_SELECT parameter to False.

2. Drive the appropriate I/O pin to either big-endian (AI or BE-32) or little-endian.

For example, if you were to drive dmah_big_endian_mN to 1, where N is the master number, configure the
DMAH_BE32_SELECTION_PIN_EN parameter to 1 and drive dma_be_select_be32_mN to 1, where N is the
master number. The AMBA layer to which that master interface is attached is Big Endian BE-32. Conversely,
if you were to drive dmah_big_endian_mN to 0, that master interface would be Little Endian.

The dma_big_endian_slv signal works in the same way for the slave interface.

NoteNoteNoteNote The endian scheme used for the Status and Control write-back is the same as defined by the
DMAH_LLI_ENDIAN_SELECTION_PIN_EN parameter and dma_le_select_lli_mN input
signal, where N = 1/2/3/4 for the corresponding master interface even when LLP_SRC_EN =
LLP_DST_EN = 0 for the corresponding channel. This is because Status and Control write-
back happens to the address location derived from the base address defined by LLPx.LOC
value (base address of LLI).

https://solvnet.synopsys.com
www.designware.com

108 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

2.17 AHB Transfer Error Handling
Upon occurrence of an error in an AHB transfer, the following occurs:

1. DMA transfer in progress stops immediately

2. Relevant channel is disabled,

3. An interrupt is issued (if not masked)

If multiple channels are enabled, only the one where the AHB error is detected is disabled.

The contents of the FIFO are not cleared, but they become inaccessible and are overwritten once the channel
is re-enabled to start a new sequence.

There is no support for automatically resuming the transfer from the point where the error occurred, and
the full block transfer has to be re-initiated in order to be successfully completed.

The DMA does not use the hardware handshaking interface to signal the error occurrence in any way, nor
does it signal the end of a transfer. In practice, this means that if a request from a peripheral is active when
the error occurs—dma_req is high if peripheral is the flow controller; dma_req or dma_single are high if
peripheral is not the flow controller—the channel is disabled without the DMA ever asserting dma_ack (or
dma_finish).

The hardware handshake interface on the peripheral side has to be re-initiated by the CPU upon detection
of the error interrupt. The dma_req signal needs to be brought low before the channel is re-enabled and then
brought high when the channel has been enabled.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 109SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

2.18 Last Beat of DMA Burst Indication
DW_ahb_dmac provides an additional output signal (dma_wlast) on the AHB interface to indicate the last
write data during burst transfers to destination peripherals. The dma_wlast signal is available only when
the parameter DMAH_WLAST_EN is set.

The dma_wlast signal is an active high signal that is asserted on completion of the last address phase of
every destination MSIZE data transfer, similar to the wlast signal in the AXI protocol. The signal remains
asserted until the associated last dataphase is complete. This signal is available on all AHB interfaces when
the parameter DMAH_WLAST_EN is set.

The following example explains the behavior of the dma_wlast signal in different cases.

2.18.1 Example 1

Scenario: Example block transfer when the DW_ahb_dmac is the flow controller. The table lists the DMA
parameters for this example.

Table 2-20 Parameters Used in Transfer Operation - Example 1

Using equation (5), a total of 64 bytes is transferred in the block; that is, blk_size_bytes_dma = 64. This block
transfer consists of two destination MSIZE data transfers of length 8 beats. The first MSIZE data transfer
consists of two INCR4 AHB bursts. The second MSIZE data transfer consists of a single INCR8 AHB burst.
The dma_wlast signal is asserted at the end of every destination MSIZE data transfer as shown in
Figure 2-47.

Parameter Description

CTLx.TT_FC = 3’b011 Peripheral to peripheral transfer with DW_ahb_dmac as flow controller

CTLx.BLOCK_TS = 16 -

CTLx.SRC_TR_WIDTH = 3’b010 32 bit

CTLx.DST_TR_WIDTH = 3’b010 32 bit

CTLx.SRC_MSIZE = 3’b 010 Source burst transaction length = 8

CTLx.DEST_MSIZE = 3’b 010 Destination burst transaction length = 8

CFGx.MAX_ABRST = 1’b 0 No limit on maximum AMBA burst length

DMAH_CHx_FIFO_DEPTH = 64 bytes -

NoteNoteNoteNote The dma_wlast signal indicates the last data beat of destination MSIZE data transfer only when
the destination is peripheral. This signal is not applicable when the destination is memory.

https://solvnet.synopsys.com
www.designware.com

110 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-47 Assertion of the dma_wlast Signal

Figure 2-47 shows the following:

1. The first INCR4 AHB burst transfer of the first MSIZE data transfer.

2. The second INCR4 AHB burst transfer of the first MSIZE data transfer.

3. The signal dma_wlast asserted at the end of the first MSIZE data transfer.

4. A single INCR8 AHB burst ransfer of the second MSIZE data transfer.

5. The dma_wlast signal asserted at the end of the second MSIZE data transfer.

The dma_wlast signal is asserted regardless of HREADY and is therefore pulse extended if HREADY is low,
as shown in Figure 2-48.

Figure 2-48 Behavior of the dma_wlast Signal During Wait State

a0 a4 a8 aC a10 a14 a18 a1C a20 a24 a28 a2C a30 a34 a38 a3C

IDLE NSEQ SEQ IDLE NSEQ SEQ IDLE NSEQ SEQ IDLE

INCR 4 INCR 4 INCR8

OKAY

d0 d4 d8 dC d10 d14 d18 d1C d20 d24 d28 d2C d30 d34 d38 d3C

WORD WORD WORD

1 2

3 5

4

hclk

htrans

haddr

hburst

hwrite

hsize

hwdata

hready

hresp

dma_wlast

a20 a24 a28 a2C a30 a34 a38 a3C

IDLE NSEQ SEQ IDLE

INCR8

OKAY

d20 d24 d28 d2C d30 d34 d38 d3C

WORD

1

2

hclk

htrans

haddr

hburst

hwrite

hsize

hwdata

hready

hresp

dma_wlast

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 111SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Figure 2-48 shows the following:

1. Wait states are inserted on the last data beat of a destination MSIZE transfer.

2. The dma_wlast signal remains asserted till the last data beat completes.

Figure 2-49 shows the behavior of the dma_wlast signal when SPLIT/RETRY response is issued by a slave
on the last beat of destination MSIZE data transfer.

Figure 2-49 Behavior of the dma_wlast Signal During SPLIT Response

Figure 2-49 shows the following:

1. The dma_wlast asserted after the address phase of the last data beat of a destination MSIZE transfer.

2. The slave has issued a SPLIT response.

3. The dma_wlast again asserted while completing the last data beat of a destination MSIZE transfer.

2.19 Low Power Modes – Global and Channel Clock Gating
DW_ahb_dmac supports low power implementation, which is achieved by performing clock gating based
on the idle time. This section discusses the following clock gating methodologies that DW_ahb_dmac
incorporates to implement low power:

■ “Global Clock Gating” on page 111

■ “Channel Clock Gating” on page 113

2.19.1 Global Clock Gating

Global clock gating is a method to support low power mode in DW_ahb_dmac. When this mode is
configured, DW_ahb_dmac enters the low power mode when DW_ahb_dmac is idle for a certain period of
time.

The following conditions are used to determine whether DW_ahb_dmac is idle:

■ All Channels are disabled and transactions are not happening in the slave interface.

a20 a24 a28 a2C a30 a34 a38 a3C a3C

IDLE NSEQ SEQ IDLE NSEQ IDLE

INCR8 SINGLE

OKAY SPLIT OKAY

d20 d24 d28 d2C d30 d34 d38 d3C d3C

WORD WORD

31

2

hclk

htrans

haddr

hburst

hwrite

hsize

hwdata

hready

hresp

dma_wlast

https://solvnet.synopsys.com
www.designware.com

112 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

■ Transaction is not happening on the DW_ahb_dmac master interfaces and the active channels are in
the IDLE state. This means that a channel is waiting for a request from a handshaking interface that
takes considerable time to respond and active transfers are also not happening on the AHB Slave
Interface.

Global clock gating is configured using the DMAH_LP_EN parameter and the inactive time period is
programmed using the DMAH_LP_TIMEOUT register. The timeout period can also be hardcoded using the
DMAH_HC_LP_TIMEOUT_VALUE parameter.

DW_ahb_dmac includes an internal clock gating cell to enable clock gating. This cell must be replaced by a
user-specific clock gating module during synthesis. Figure 2-50 describes the block diagram of
DW_ahb_dmac when DMAH_LP_EN is set to 1, that is when global clock gating is enabled.

Figure 2-50 Global Clock Gating in DW_ahb_dmac

After entering low power mode, DW_ahb_dmac can wake up under any of the following conditions:

■ Register read/write on the AHB Slave interface.

■ Handshake request initiated by the peripheral.

As soon as DW_ahb_dmac is inactive, the DW_ahb_dmac low power counter starts incrementing, and when
this counter times out, DW_ahb_dmac enters the low power mode (as shown in Figure 2-51). To exit the low
power mode, DW_ahb_dmac takes one hclk cycle. As all other blocks are clock gated during this period of
time, all read/write are delayed by one cycle.

Figure 2-51 describes the wake up sequence of DW_ahb_dmac when it exits low power mode after noticing
a read/write transaction on the slave interface.

Clock
Gating

Cell

hclk

haddr

hread_resp

DW_ahb_dmac

Global Clock
Gating Module

hsel

htrans
hwrite
hsize

Ihclk (gated hclk)

Channel Busy
Signal

Global Clock Gated
DW_ahb_dmac Logic

Slave Interface
Busy Signal

DMA
Handshake

Signals

Slave Interface
hready Signal

Logic

Slave
Interface
Module

DMA Busy
Internal
Signals

Other
Modules

Channel Top
Module

Handshake
Module

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 113SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

Figure 2-51 Global Clock Gating Sequence in DW_ahb_dmac – Wakeup Due to a Read/Write Transaction

In Figure 2-51:

■ The dmah_lp_timeout signal denotes the low power counter that expires as the counter reaches the
timeout value (that is, 8 in Figure 2-51).

■ The dmah_busy signal denotes the internal signal indicating that DW_ahb_dmac is busy (not idle)
and is de-asserted. This indicates that DW_ahb_dmac has to enter into the low power mode.

■ The internal low power mode gated hclk (ihclk) is switched off.

■ A register read/write transaction is received on the AHB Slave interface.

■ The internal dmah_busy signal is asserted and low power counter is reset, indicating that
DW_ahb_dmac must wake up from the low power mode.

■ The internal ihclk is switched on, to exit the low power mode.

2.19.2 Channel Clock Gating

Channel Clock Gating is another method to enable low power mode, in addition to the Global Clock Gating
method (see “Global Clock Gating” on page 111). When this mode is configured, DW_ahb_dmac turns off
the clock for a particular channel when the channel is idle. Only a small portion of the channel that is
responsible to turn on the clock is constantly supplied with a clock.

This mode is configured using the DMAH_CH_LP_EN parameter and the inactive time period is
programmed using the DMAH_LP_TIMEOUT register.

Figure 2-52 describes the block diagram of DW_ahb_dmac when DMAH_CH_LP_EN is set to 1, that is,
when Channel Clock Gating is enabled.

2

3

4

5

6

1

IDLE NSEQ SEQ

A1 A2 A3

0 1 7 8 0

hclk

ihclk

htrans

haddr

hready_resp

dmah_busy

dmah_lp_timeout

https://solvnet.synopsys.com
www.designware.com

114 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

Figure 2-52 Channel Clock Gating in DW_ahb_dmac

The Channel Clock Gating sequence is similar to that of Global Clock Gating.

The conditions for a channel to enter low power mode in Channel Clock Gating are as follows:

■ DW_ahb_dmac comes out of reset and none of the channel registers are being written.

■ While a channel is enabled, activity does not happen on the handshaking interface and active AHB
transfer does not happen (related to the specific channel) on the Master interface.

■ When a channel gets disabled and remains inactive for the duration programmed or hardcoded in
DMAH_LP_TIMEOUT register.

If the channel is clock gated due to inactivity on the handshaking interface/AHB Master interface when a
channel is enabled or disabled, then the channel exits from clock low power mode due any to the following
conditions:

■ Any new request is detected on the hardware/software handshaking interface.

■ Write transaction occurs on any channel-specific registers.

Clock
Gating

Cell

hclk

DW_ahb_dmac_ch_top

Channel Clock
Gating Module

Slave-interface related
Signals

Channel Enable

ihclk (Channel Gated hclk)

Channel-Specific
Register Module

Source/Destination
State Machine
Busy

Channel Clock Gated
DW_ahb_dmac_ch_top Logic

Logic

Other Modules

Write
Indication
and Valid
Address
Status

Channel
Busy Signal

Source and
Destination State

Machine

DMA
Handshake

Signals

Clear Block
Interrupt and

Mask Interrupt
Internal Signals

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 115SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Functional Description

■ Block interrupt corresponding to the channel cleared through the ClearBlock register.

■ Block mask corresponding to the channel asserted through the MaskBlock register.

■ Channel is disabled due to:

❑ De-assertion of CH_EN bit (that corresponds to the channel of interest) of the ChEnReg register.

❑ De-assertion of DMA_EN bit of the DmaCfgReg register.

❑ Channel disabling due to the completion of transfer or error response received on AHB Master
interface for source and destination.

The Channel Clock Gating can be enabled only if the Global Clock Gating is enabled.

2.20 Interrupt Registers
The following sections describe the registers pertaining to interrupts, their status, and how to clear them.
For each channel, there are five types of interrupt sources:

■ IntBlock – Block Transfer Complete Interrupt

This interrupt is generated on DMA block transfer completion to the destination peripheral.

■ IntDstTran – Destination Transaction Complete Interrupt

This interrupt is generated after completion of the last AHB transfer of the requested single/burst
transaction from the handshaking interface (either the hardware or software handshaking interface)
on the destination side.

■ IntErr – Error Interrupt

This interrupt is generated when an ERROR response is received from an AHB slave on the HRESP
bus during a DMA transfer. In addition, the DMA transfer is cancelled and the channel is disabled.

■ IntSrcTran – Source Transaction Complete Interrupt

This interrupt is generated after completion of the last AHB transfer of the requested single/burst
transaction from the handshaking interface (either the hardware or software handshaking interface)
on the source side.

■ IntTfr – DMA Transfer Complete Interrupt

This interrupt is generated on DMA transfer completion to the destination peripheral.

There are several groups of interrupt-related registers:

■ RawBlock, RawDstTran, RawErr, RawSrcTran, RawTfr

NoteNoteNoteNote If the destination for a channel is memory, then that channel will never generate the IntDstTran
interrupt. Because of this, the corresponding bit in this field will not be set.

NoteNoteNoteNote If the source or destination is memory, then IntSrcTran/IntDstTran interrupts should be ignored,
as there is no concept of a “DMA transaction level” for memory.

https://solvnet.synopsys.com
www.designware.com

116 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

 Functional Description DesignWare DW_ahb_dmac Databook

■ StatusBlock, StatusDstTran, StatusErr, StatusSrcTran, StatusTfr

■ MaskBlock, MaskDstTran, MaskErr, MaskSrcTran, MaskTfr

■ ClearBlock, ClearDstTran, ClearErr, ClearSrcTran, ClearTfr

■ StatusInt

When a channel has been enabled to generate interrupts, the following is true:

■ Interrupt events are stored in the Raw Status registers.

■ The contents of the Raw Status registers are masked with the contents of the Mask registers.

■ The masked interrupts are stored in the Status registers.

■ The contents of the Status registers are used to drive the int_* port signals.

■ Writing to the appropriate bit in the Clear registers clears an interrupt in the Raw Status registers and
the Status registers on the same clock cycle.

The contents of each of the five Status registers is ORed to produce a single bit for each interrupt type in the
Combined Status register; that is, StatusInt.

NoteNoteNoteNote For interrupts to propagate past the raw* interrupt register stage, CTLx.INT_EN must be set to
1'b1, and the relevant interrupt must be unmasked in the mask* interrupt register.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 117

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

■ DMA Source Code Configuration on page 118

■ Global DMA Configuration on page 119

■ Configuration of AMBA layers on page 125

■ Channel x configuration on page 129

https://solvnet.synopsys.com
www.designware.com

118 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

3.1 DMA Source Code Configuration Parameters

Table 3-1 DMA Source Code Configuration Parameters

Label Description

 DMA Source Code Configuration

Use DesignWare Foundation
Synthesis Library

The component code utilizes DesignWare Foundation parts for optimal Synthesis
QoR. Customers with only a DesignWare license must use Foundation parts.
Customers with only a Source license, CANNOT use Foundation parts. Customers
with both Source and DesignWare licenses have the option of using DesignWare
Foundation parts.
Values:

■ false (0)

■ true (1)

Default Value: True if DesignWare License is available; False if no DesignWare
License is available.
Enabled: Parameter is enabled if customer has both Source and DesignWare
licenses.
Parameter Name: USE_FOUNDATION

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 119SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

3.2 Global DMA Configuration Parameters

Table 3-2 Global DMA Configuration Parameters

Label Description

 Top Level Configurations

Number of AHB master
interfaces

Creates the specified number of AHB master interfaces. A channel source or
destination device can be programmed to be on any of the configured AHB layers
attached to the AHB Master interface. This setting determines if a master interface
signal set is present on the I/O or not. AHB master interface 1 signals are always
present.
Values: 1, 2, 3, 4
Default Value: 1
Enabled: Always
Parameter Name: DMAH_NUM_MASTER_INT

Number of DMA channels Creates the specified number of DW_ahb_dmac channels. Each channel is uni-
directional and transfers data from the channel source to the channel destination.
The channel source and destination AHB layer, system address and handshaking
interface are under software control.
Values: 1, 2, 3, 4, 5, 6, 7, 8
Default Value: 1
Enabled: Always
Parameter Name: DMAH_NUM_CHANNELS

Number of handshaking
interfaces

Creates the specified number of handshaking interfaces. You can program the
DW_ahb_dmac to assign a handshaking interface for each channel source and
destination. If 0 is selected, then no hardware handshaking signals are present on
the I/O.
Values: 0, ..., 16
Default Value: 2
Enabled: Always
Parameter Name: DMAH_NUM_HS_INT

Use undefined length bursts
only?

When set to 1, the DW_ahb_dmac selects undefined length INCR bursts only.
Setting this option to 0 allows the DW_ahb_dmac to select the largest valid defined
length burst (SINGLE, INCR4, INCR8, INCR16) for the transfer.
Note: It is not valid to send defined-length bursts to non-changing or decrementing
addresses. If this option is set to 0, the DW_ahb_dmac selects undefined-length
INCR bursts when CTLx.SINC or CTLx.DINC are set to Decrement or No Change.
Values:

■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: DMAH_INCR_BURSTS

https://solvnet.synopsys.com
www.designware.com

120 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Allow the slave interface to
return an error response when
an illegal access is attempted?

Setting this option to 1 allows the slave interface to return an error response on the
hresp bus when an illegal access is attempted over the AHB slave interface. For a
list of illegal accesses, refer to \"Illegal Register Access\" chapter. Setting this
option to 0 results in an OKAY response being returned on the hresp bus for all of
the illegal accesses.
Values:
■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: DMAH_RETURN_ERR_RESP

Interrupts are active high? Interrupt active polarity for all of the configured interrupt ports. When this box is
selected the interrupt polarity for all interrupt pins on the I/O interface is active high.
When this box is unselected the interrupt polarity for all interrupt pins on the I/O
interface is active low.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: DMAH_INTR_POL

Table 3-2 Global DMA Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 121SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

Interrupt pins to appear as
outputs

Selects which interrupt related pins appear as outputs of the design.

■ All:Contents of all five Interrupts Status Registers appear as output pins on
int(_n) output bus. 5 * DMAH_NUM_CHANNELS bits wide.

■ Type:All internal interrupts are combined by type and appear on int_flag(_n)
output 5 bit bus.

- bit[4] = Error interrupt
- bit[3] = Destination transaction complete interrupt
- bit[2] = Source transaction complete interrupt
- bit[1] = Block complete interrupt
- bit[0] = Transfer complete interrupt

Also, the bitwise OR of all bits of int_flag(_n) bus is driven onto the
int_combined(_n) single bit output port.

■ Combined - Bitwise OR of all bits of int_flag(_n) bus is driven onto the
int_combined(_n) single bit output port.

Values:
■ ALL (0)

■ TYPE (1)

■ COMBINED (2)

Default Value: COMBINED
Enabled: Always
Parameter Name: DMAH_INTR_IO

ID number This 32-bit value is hardwired and read back by a read to the DMA Controller ID
Register (DmaldReg).
Values: 0x0, ..., 0xffffffff
Default Value: 0x0
Enabled: Always
Parameter Name: DMAH_ID_NUM

Allow the AMBA burst length to
be limited to a programmable
maximum value?

When set to 1, you can limit the maximum AMBA burst length to a value under
software control by writing to the channel configuration register; this is a global
parameter for all of the configured master interfaces. Setting this option to 0 allows
for some logic optimization.
Note:If this option is set to 0, then the maximum AMBA burst length is a function of
the channel FIFO depths. The DW_ahb_dmac may try to fill or empty a channel
FIFO in a single burst.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: DMAH_MABRST

Table 3-2 Global DMA Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

122 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Remove Internal Pipeline
Stages ?

Setting this parameter to 1 removes 3 pipeline stages internal to DW_ahb_dmac.

■ Input register on hardware handshaking interface input signals.

■ Output register on master interface arbiter.

■ Register on path from the destination state machine to dma_ack*.

Removing these pipeline stages improves latency, but can result in reduced
operating frequency.
Setting this parameter to 0 keeps the 3 pipeline stages.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: DMAH_REMOVE_PIPELINING

Reverse order of LLI Status
WriteBack

When the DMAC writes back the status information to the LLI memory location, the
following order is used:
1. DSTATx
2. SSTATx
3. CTRLx.
When this parameter is set, the write back order will be changed to
1. CTRLx
2. SSTATx
3. DSTATx
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: At least one of DMAH_CHx_CTL_WB_EN parameters should be equal to
1
Parameter Name: DMAH_REVERSE_WB_OVERRIDE

Add encoded parameters Adding the encoded parameters gives firmware an easy and quick way of identifying
the DesignWare component within an I/O memory map. Some critical design-time
options determine how a driver should interact with the peripheral. There is a
minimal area overhead when you include these parameters. Additionally, this option
allows a self-configurable single driver to be developed for each component.
Values:

■ false (0x0)

■ true (0x1)

Default Value: true
Enabled: Always
Parameter Name: DMAH_ADD_ENCODED_PARAMS

Table 3-2 Global DMA Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 123SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

Include logic to enable
dma_wlast[N] Signal?

Enables the additional handshaking signal dma_wlast on all selected AHB
interfaces. The dma_wlast signal is asserted on completion of the last address
phase of every destination transaction and remains asserted until the associated
last dataphase completes.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_HS_INT != 0
Parameter Name: DMAH_WLAST_EN

 Low Power Options

Enable DW_ahb_dmac Global
Low Power logic?

This parameter is used to enable Global Clock Gating logic
Values:
■ false (0)

■ true (1)

Default Value: True if DesignWare License is available; False if no DesignWare
License is available.
Enabled: Parameter is enabled if customer has both Source and DesignWare
licenses.
Parameter Name: DMAH_LP_EN

Enable DW_ahb_dmac
Channel Low Power logic?

This parameter is used to enable Channel Global Clock Gating logic
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_LP_EN==1
Parameter Name: DMAH_CH_LP_EN

Width of Low Power Counter
register

Defines width of Low Power Counter. Setting the values from 4 through 32 for the
parameter, enables the user to configure the timeout period value from 4 to 2^32-1
pclk cycles.
Values: 4, ..., 32
Default Value: 4
Enabled: DMAH_LP_EN || DMAH_CH_LP_EN
Parameter Name: DMAH_LP_TIMEOUT_WIDTH

Table 3-2 Global DMA Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

124 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Hardcode time-out counter
value

Enabling this parameter makes Low Power Counter register a read-only register.
The register can be programmed by user if the hardcode option is turned off.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: (DMAH_LP_EN || DMAH_CH_LP_EN) &&
DMAH_LP_TIMEOUT_WIDTH!=1
Parameter Name: DMAH_HC_LP_TIMEOUT_VALUE

Default Value of inactive cycles
after which DW_ahb_dmac
goes into Low Power mode

Defines the reset value of Low Power Counter register. This value can be over -
ridden by programming the Low Power Counter register before enabling the
DW_ahb_dmac.
Values: 4, ..., 4294967295
Default Value: 8
Enabled: (DMAH_LP_EN || DMAH_CH_LP_EN) &&
DMAH_LP_TIMEOUT_WIDTH>2
Parameter Name: DMAH_LP_TIMEOUT_VALUE

Table 3-2 Global DMA Configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 125SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

3.3 Configuration of AMBA layers Parameters

Table 3-3 Configuration of AMBA layers Parameters

Label Description

 Configuration of AMBA layers

Statically configure endianness
through coreConsultant?

The endian scheme of the DW_ahb_dmac can be configured statically through
coreConsultant or dynamically via pins on the I/O. For the static case, there is a
single coreConsultant parameter that selects between Little Endian/Big Endian for
all AHB master interfaces and the AHB slave interface.
For the dynamic case, there is an individual pin for each of the AHB master
interfaces and one for the AHB slave interface.
Selection between AI and BE-32 method for Big Endian access is controlled by
additional parameters defined for slave interface and each master interface.
Values:

■ false (0)

■ true (1)

Default Value: true
Enabled: Always
Parameter Name: DMAH_STATIC_ENDIAN_SELECT

System is big endian? The AHB master and slave interfaces can be configured to exist in either big or little
endian system.
When set to 1, all master interfaces and the slave interface become big endian.
Otherwise, they are set to little endian.
Selection between AI and BE-32 methods for big endian access is controlled by
additional parameters and inputs defined for slave interface and each master
interface.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_STATIC_ENDIAN_SELECT==1
Parameter Name: DMAH_BIG_ENDIAN

https://solvnet.synopsys.com
www.designware.com

126 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Add AI/BE-32 Big Endian
scheme selection pin on AHB
Slave and Master Interfaces ?

If this parameter is enabled, additional inputs are enabled to control the scheme
used for big endian access (individual pin is added for AHB Slave interface and
each of the AHB Master interfaces).
AHB Slave interface and each AHB Master interfaces can be independently
configured to support Address Invariant (AI) or Word Invariant (BE-32) Big Endian
scheme if this interface is configured for Big Endian access.

■ 0: Address Invariant(AI) method is used for Big Endian access for Slave and
Master 1/2/3/4 Interfaces (current scheme)

■ 1: Address Invariant(AI) or Word Invariant(BE-32) method is used for Big Endian
access for Slave and Master 1/2/3/4 Interfaces depending on the value of
dma_be_select_be32_slv/mN, input where N = 1/2/3/4

Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: (DMAH_STATIC_ENDIAN_SELECT==0) || (
(DMAH_STATIC_ENDIAN_SELECT==1) && (DMAH_BIG_ENDIAN==1))
Parameter Name: DMAH_BE32_SELECTION_PIN_EN

Add Little Endian scheme
selection pin for LLI access on
AHB Master Interfaces ?

If this parameter is enabled, additional inputs are enabled to control the endian
scheme used for LLI fetch and Status and Control writeback. (Individual pin is
added for each of the AHB Master interfaces.)
LLI fetch and Status and Control write-back access on each AHB Master interfaces
can be independently configured to support Big Endian scheme (AI or BE-32 based
on the endian scheme selected for that particular Master interface) or Little Endian
scheme (irrespective of the endian scheme selected for that particular Master
interface).

■ 0: Endian scheme used for LLI fetch and Status & Control write-back is same as
that used for data access for M1/M2/M3/M4 interfaces (current scheme)

■ 1: Endian scheme used for LLI fetch and Status & Control write-back access is
same as that used for data access for M1/M2/M3/M4 interfaces (OR) Little
Endian method is used for LLI fetch and Status and Control writeback access
irrespective of the endian scheme used for data access depending on the value
of dma_le_select_lli_mN input, where N = 1/2/3/4.

Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: (DMAH_STATIC_ENDIAN_SELECT==0) || (
(DMAH_STATIC_ENDIAN_SELECT==1) && (DMAH_BIG_ENDIAN==1))
Parameter Name: DMAH_LLI_ENDIAN_SELECTION_PIN_EN

Table 3-3 Configuration of AMBA layers Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 127SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

Slave interface data bus width Specifies the data bus width for the AHB slave interface.
Values: 32, 64, 128, 256
Default Value: 32
Enabled: Always
Parameter Name: DMAH_S_HDATA_WIDTH

Is Layer 1 AMBA-Lite? Select this box if master interface 1 is the only master on this AMBA layer. If this is
the case then this is an AMBA-Lite layer. De-select this box if there is more than one
master on this AMBA layer. Even though the DMAH_M1_AHB_LITE parameter is
associated with master behavior, this parameter configures the DW_ahb_dmac in
AHB Lite mode for slave functions as well. When the DMAH_M1_AHB_LITE
parameter is configured for AHB Lite mode, the SPLIT and RETRY functions are
disabled for both master and slave functions.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_MASTER_INT>=1
Parameter Name: DMAH_M1_AHB_LITE

Master 1 interface data bus
width

AHB Master 1 interface data bus width.
Values: 32, 64, 128, 256
Default Value: 32
Enabled: DMAH_NUM_MASTER_INT>=1
Parameter Name: DMAH_M1_HDATA_WIDTH

Is Layer 2 AMBA-Lite? Select this box if master interface 2 is the only master on this AMBA layer. If this is
the case then this is an AMBA-Lite layer. De-select this box if there is more than one
master on this AMBA layer.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_MASTER_INT>=2
Parameter Name: DMAH_M2_AHB_LITE

Master 2 interface data bus
width

AHB Master 2 interface data bus width.
Values: 32, 64, 128, 256
Default Value: 32
Enabled: DMAH_NUM_MASTER_INT>=2
Parameter Name: DMAH_M2_HDATA_WIDTH

Table 3-3 Configuration of AMBA layers Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

128 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Is Layer 3 AMBA-Lite? Select this box if master interface 3 is the only master on this AMBA layer. If this is
the case then this is an AMBA-Lite layer. De-select this box if there is more than one
master on this AMBA layer.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_MASTER_INT>=3
Parameter Name: DMAH_M3_AHB_LITE

Master 3 interface data bus
width

AHB Master 3 interface data bus width.
Values: 32, 64, 128, 256
Default Value: 32
Enabled: DMAH_NUM_MASTER_INT>=3
Parameter Name: DMAH_M3_HDATA_WIDTH

Is Layer 4 AMBA-Lite? Select this box if master interface 4 is the only master on this AMBA layer. If this is
the case then this is an AMBA-Lite layer. De-select this box if there is more than one
master on this AMBA layer.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_MASTER_INT>=4
Parameter Name: DMAH_M4_AHB_LITE

Master 4 interface data bus
width

AHB Master 4 interface data bus width.
Values: 32, 64, 128, 256
Default Value: 32
Enabled: DMAH_NUM_MASTER_INT>=4
Parameter Name: DMAH_M4_HDATA_WIDTH

Table 3-3 Configuration of AMBA layers Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 129SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

3.4 Channel x configuration Parameters

Table 3-4 Channel x configuration Parameters

Label Description

 Channel x configuration

Channel x FIFO depth in bytes
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Channel x FIFO depth in bytes.
Values: 8, 16, 32, 64, 128, 256
Default Value: 16
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_FIFO_DEPTH

Maximum value of burst
transaction size
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Maximum value of burst transaction size that can be programmed for channel x
(CTLx.SRC_MSIZE and CTLx.DEST_MSIZE).
Limiting DMAH_CHx_MAX_MULT_SIZE to a maximum value will allow for some
logic optimization of the implementation.
Values: 4, 8, 16, 32, 64, 128, 256
Default Value: 8
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_MAX_MULT_SIZE

Maximum block size in source
transfer widths
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

The description of this parameter is dependent on what is assigned as the flow
controller.

■ DW_ahb_dmac flow controller: Maximum block size, in multiples of source
transfer width, that can be programmed for channel x. A programmed value
greater than this will result in erroneous behavior.

■ Source/destination assigned as flow controller: In this case, the blocks can
be greater than DMAH_CHx_MAX_BLK_SIZE in size, but the logic that keeps
track of the size of a block saturates at DMAH_CHx_MAX_BLK_SIZE. This does
not result in erroneous behavior, but a readback by software of the block size is
incorrect when the block size exceeds the saturated value.

This parameter is also used to limit the gather and scatter count registers to a
maximum value of DMAH_CHx_MAX_BLK_SIZE.
Limiting DMAH_CHx_MAX_BLK_SIZE to a maximum value allows some logic
optimization of the implementation.
Values: 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095
Default Value: 31
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_MAX_BLK_SIZE

https://solvnet.synopsys.com
www.designware.com

130 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Hardcode channel x's flow
control device to allow for logic
optimization
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Hardcodes the flow control peripheral for the channel. If ANY_FC is selected, then
the flow control device is not hardcoded, and software selects the flow control
device for a DMA transfer.
Hardcoding the flow control device allows some logic optimization of the
implementation.
Values:

■ DMA_FC_ONLY (0)

■ SRC_FC_ONLY (1)

■ DST_FC_ONLY (2)

■ ANY_FC (3)

Default Value: DMA_FC_ONLY
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_FC

Include logic to enable channel
or bus locking on channel x?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Include or exclude logic to enable channel or bus level locking on channel x. When
set to 1, then software can program the DMA controller to assert hlock over the
DMA transfer, DMA block transfer or DMA transaction. When enabled, then software
can also program the DMA controller to lock the arbitration for the master bus
interface unit over the DMA transfer, DMA block transfer or DMA transaction.
Disabling this option allows for some logic optimization of the implementation.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_LOCK_EN

Hardcode the master interface
attached to the source of
channel x
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Hardcode the Master interface attached to the source of channel x. If this is not
hardcoded, then software can program the source of channel x to be attached to
any of the configured layers. Hardcoding this value will allow for some logic
optimization of the implementation.
Values:
■ MASTER_1 (0)

■ MASTER_2 (1)

■ MASTER_3 (2)

■ MASTER_4 (3)

■ NO_HARDCODE (4)

Default Value: MASTER_1(0) if DMAH_NUM_MASTER_INT = 1;
NO_HARDCODE otherwise
Enabled: DMAH_NUM_CHANELS >= x
Parameter Name: DMAH_CHx_SMS

Table 3-4 Channel x configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 131SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

Hardcode the master interface
attached to the destination of
channel x
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Hardcode the Master interface attached to the destination of channel x. If this is not
hardcoded then software can program the destination of channel x to be attached to
any of the configured layers. Hardcoding this value will allow for some logic
optimization of the implementation.
Values:
■ MASTER_1 (0)

■ MASTER_2 (1)

■ MASTER_3 (2)

■ MASTER_4 (3)

■ NO_HARDCODE (4)

Default Value: MASTER_1(0) if DMAH_NUM_MASTER_INT = 1;
NO_HARDCODE otherwise
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_DMS

Hardcode channel x's source
transfer width
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Hardcode the source transfer width for transfers from the source of channel x. If this
is not hardcoded then software can program the source transfer width for channel x.
Hardcoding this value will allow for some logic optimization of the implementation.
Values:

■ NO_HARDCODE (0)

■ BYTE (8)

■ HALFWORD (16)

■ WORD (32)

■ TWO_WORD (64)

■ FOUR_WORD (128)

■ EIGHT_WORD (256)

Default Value: WORD
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_STW

Table 3-4 Channel x configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

132 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Hardcode channel x's
destination transfer width
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Hardcode the destination transfer width for transfers from the destination of channel
x. If this is not hardcoded then software can program the destination transfer width
for channel x.
Hardcoding this value will allow for some logic optimization of the implementation.
Values:

■ NO_HARDCODE (0)

■ BYTE (8)

■ HALFWORD (16)

■ WORD (32)

■ TWO_WORD (64)

■ FOUR_WORD (128)

■ EIGHT_WORD (256)

Default Value: WORD
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_DTW

Can the source of channel x
return a non-ok response on
hresp?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Set this parameter to 1 if the source peripheral attached to channel x can return a
non-OK response on hresp, such as a SPLIT, RETRY, or ERROR response. If set to
0, then hardware assumes that only OK responses are returned from the source
peripheral attached to the channel.
Setting this parameter to 0 allows some logic optimization of the implementation
Values:
■ false (0)

■ true (1)

Default Value: true
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_SRC_NON_OK

Can the destination of channel
x return a non-ok response on
hresp?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Set this parameter to 1 if the destination peripheral attached to channel x can return
a non-OKAY response on hresp, such as a SPLIT, RETRY, or ERROR response. If
set to 0, then hardware assumes that only OKAY responses are returned from the
destination peripheral attached to the channel.
Setting this parameter to 0 allows some logic optimization of the implementation.
Values:

■ false (0)

■ true (1)

Default Value: true
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_DST_NON_OK

Table 3-4 Channel x configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 133SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

Include logic to enable multi-
block DMA transfers on
channel x?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Includes or excludes logic to enable multi-block DMA transfers on channel x. If this
option is de-selected then hardware hardwires channel x to do single block transfers
only.
De-selecting this box will allow for some logic optimization of the implementation.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_MULTI_BLK_EN

Table 3-4 Channel x configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

134 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Choose type of multi-blocks to
be supported?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

This parameter allows the user to hardcode the type of multi-block transfers that
DW_ahb_dmac can perform. This results in some logic optimization of the
implementation.
Legal Values:

■ NO_HARDCODE: Allow all types of multi-block support

■ CONT_RELOAD: Allow only multi-block transfers where SARx is contiguous;
DARx and CTLx are reloaded from their initial values.

■ RELOAD_RELOAD: Allow only multi-block transfers where SARx,DARx and
CTLx are reloaded from their initial values.

■ CONT_LLP: Allow only multi-block transfers where SARx is contiguous;
DARx,CTLx and LLPx are loaded from the next Linked List Item.

■ RELOAD_LLP: Allow only multi-block transfers where SARx is reloaded from it's
initial value; DARx,CTLx and LLPx are loaded from the next Linked List Item.

■ LLP_CONT: Allow only multi-block transfers where SARx,CTLx and LLPx are
loaded from the next Linked List Item; DARx is contiguous.

■ LLP_RELOAD: Allow only multi-block transfers where SARx,CTLx and LLPx are
loaded from the next Linked List Item; DARx is reloaded from it's initial values.

■ LLP_LLP: Allow only multi-block transfers where SARx,DARx,CTLx and LLPx
are loaded from the next Linked List Item.

Values:
■ NO_HARDCODE (0)

■ CONT_RELOAD (1)

■ RELOAD_CONT (2)

■ RELOAD_RELOAD (3)

■ CONT_LLP (4)

■ RELOAD_LLP (5)

■ LLP_CONT (6)

■ LLP_RELOAD (7)

■ LLP_LLP (8)

Default Value: NO_HARDCODE
Enabled: DMAH_CHx_MULTI_BLK_EN = 1
Parameter Name: DMAH_CHx_MULTI_BLK_TYPE

Table 3-4 Channel x configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 135SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

Hardcode Channel x LLP
register to 0?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

If set to 1, hardcodes channel x Linked List Pointer register to 0 (LLPx.LOC == 0),
which disables the following features:

■ Multi-block DMA transfers using block chaining

■ Source and destination status fetch

■ Control and source/destination status writeback

Multi-block DMA transfers may still be enabled on channel x through auto-reloading
of channel registers.
Selecting this box will allow for some logic optimization of the implementation.
Values:
■ false (0)

■ true (1)

Default Value: true
Enabled: DMAH_CHx_MULTI_BLK_TYPE == 0 or
DMAH_CHx_MULTI_BLK_TYPE >= 4
Parameter Name: DMAH_CHx_HC_LLP

Fetch status from source of
channel x?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Include or exclude logic to fetch a status register from the source peripheral of
channel x and write this status information to system memory at the end of each
block transfer. The location from where the source status register is fetched from is
under software control as is the writeback location.
Disabling this parameter will allow for some logic optimization of the implementation.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_CHx_HC_LLP==0
Parameter Name: DMAH_CHx_STAT_SRC

Fetch status from destination
of channel x?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Include or exclude logic to fetch a status register from the destination peripheral of
channel x and write this status information to system memory at the end of each
block transfer. The location from where the destination status register is fetched
from is under software control as is the writeback location.
Disabling this parameter will allow for some logic optimization of the implementation.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_CHx_HC_LLP==0
Parameter Name: DMAH_CHx_STAT_DST

Table 3-4 Channel x configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

136 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

Hardcode the master interface
attached to the LLP peripheral
of channel 0
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Hardcode the AHB master interface attached to the peripheral that stores the LLI
information (Linked List Item) for channel x. If this is not hardcoded, then software
can program the peripheral that stores the LLI information of channel x to be
attached to any of the configured layers. Hardcoding this value allows some logic
optimization of the implementation.
LLI accesses are always 32-bit accesses (Hsize = 2) aligned to 32-bit boundaries
and cannot be changed or programmed to anything other than 32-bit, even if the
AHB master interface of the LLI supports more than a 32-bit data width.
Values:

■ MASTER_1 (0)

■ MASTER_2 (1)

■ MASTER_3 (2)

■ MASTER_4 (3)

■ NO_HARDCODE (4)

Default Value: MASTER_1(0) if DMAH_NUM_MASTER_INT = 1;
NO_HARDCODE otherwise
Enabled: DMAH_CHx_HC_LLP == 0 and DMAH_NUM_MASTER_INT > 1 and
(DMAH_CHx_MULTI_BLK_TYPE == 0 or DMAH_CHx_MULTI_BLK_TYPE >= 4)
Parameter Name: DMAH_CHx_LMS

Can the LLP peripheral of
channel 0 return a non-ok
response on hresp?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Set this parameter to 1 if the LLP peripheral attached to channel x can return a non-
OK response on hresp, such as a SPLIT, RETRY, or ERROR response. If set to 0,
then hardware assumes that only OK responses are returned from the LLP
peripheral attached to the channel.
Setting this parameter to 0 allows some logic optimization of the implementation
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_CHx_HC_LLP == 0 and (DMAH_CHx_MULTI_BLK_TYPE == 0 or
DMAH_CHx_MULTI_BLK_TYPE >= 4)
Parameter Name: DMAH_CHx_LLP_NON_OK

Include logic to enable the
'gather' feature on channel x?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Include or exclude logic to enable the 'gather' feature on channel x. De-selecting this
box will allow for some logic optimization of the implementation.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_SRC_GAT_EN

Table 3-4 Channel x configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 137SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Parameter Descriptions

Include logic to enable 'scatter'
feature on channel x?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Include or exclude logic to enable the 'scatter' feature on channel x. De-selecting
this box will allow for some logic optimization of the implementation.
Values:
■ false (0)

■ true (1)

Default Value: false
Enabled: DMAH_NUM_CHANNELS >= x
Parameter Name: DMAH_CHx_DST_SCA_EN

Include logic to enable control
register writeback after each
block transfer?
(for x = 0; x <=
DMAH_NUM_CHANNELS-1)

Include or exclude logic to enable writeback of the CTLx, SSTATx and DSTATx
registers at the end of every block transfer. De-selecting this box will allow for some
logic optimization of the implementation.
Values:
■ false (0)

■ true (1)

Default Value: False (0)
Enabled: DMAH_CHx_HC_LLP == 0 and DMAH_CHx_STAT_SRC == 0 and
DMAH_CHx_STAT_DST == 0
Parameter Name: DMAH_CHx_CTL_WB_EN

Table 3-4 Channel x configuration Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

138 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Parameter Descriptions DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 139

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the core. For configurable IP titles, your actual configuration
might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
core. It is for reference purposes only.

When you configure the core in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the in-active state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

140 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ Slave Interface on page 141

■ Master N Interface on page 144

■ Test Interface on page 148

■ Peripheral Handshaking Interface on page 149

■ Interrupt Interface on page 151

■ Debug Bus Interface on page 154

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 141SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

4.1 Slave Interface Signals

hclk - - hrdata
dma_big_endian_slv - - hready_resp

dma_be_select_be32_slv - - hresp
hresetn -

haddr -
hwdata -

hwrite -
hready -

hsize -
hsel -

htrans -

Table 4-1 Slave Interface Signals

Port Name I/O Description

hclk I Bus clock. Common clock for all layers
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

dma_big_endian_slv I Slave endianness. When active high, this signal indicates big
endianness on the AMBA layer or the slave interface. When active
low, this signal indicates little endianness.
Exists: DMAH_STATIC_ENDIAN_SELECT==0
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: 1 for big endian; 0 for little endian

dma_be_select_be32_slv I Slave interface Big Endian format selection pin.

■ 0: Big Endian AI format is used for data transfer on slave
interface.

■ 1: Big Endian BE-32format is used for data transfer on slave
interface

Exists: DMAH_BE32_SELECTION_PIN_EN==1
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

142 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

hresetn I Bus reset. Common reset for all layer. Asynchronously asserts and
synchronously removed.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

haddr[(DMAH_HADDR_WIDTH-1):0] I Slave port address
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A.

hwdata[(DMAH_S_HDATA_WIDTH-1):0] I Slave port write data
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hwrite I Slave port transfer direction. When active high, this signal indicates a
write transfer. When active low, this signal indicates a read transfer.
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: 1 for Write; 0 for Read

hready I Current transfer is complete
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

hsize[2:0] I Slave port transfer size
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-1 Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 143SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

hsel I Slave select. Asserted when the current transfer on the AHB is
intended for the DW_ahb_dmac
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

htrans[1:0] I Slave port transfer control
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hrdata[(DMAH_S_HDATA_WIDTH-1):0] O Slave port read data
Exists: Always
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hready_resp O Transfer complete
Exists: Always
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

hresp[1:0] O Slave port response type from slave. When DW_ahb_dmac is
configured for AHB Lite mode and instantiated in an AHB Lite
system, the HRESP0 signal is connected to the HRESP signal in the
AHB Bus Fabric; the HRESP1 signal is left unconnected.
Exists: Always
Synchronous To: hclk
Registered: DMAH_RETURN_ERR_RESP==1 ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-1 Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

144 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

4.2 Master N Interface (for N = 1; N <= DMAH_NUM_MASTER_INT) Signals

dma_big_endian_mN - - haddrN
dma_be_select_be32_mN - - hwdataN

dma_le_select_lli_mN - - hwriteN
hrdataN - - hbusreqN
hgrantN - - hlockN
hrespN - - htransN

hreadyN - - hburstN
- hsizeN
- hprotN

Table 4-2 Master N Interface (for N = 1; N <= DMAH_NUM_MASTER_INT) Signals

Port Name I/O Description

dma_big_endian_mN I Master endianness. When active high, this signal indicates big
endianness on the AMBA layer or the master interface. When active
low, this signal indicates little endianness.
Exists: DMAH_STATIC_ENDIAN_SELECT==0
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: 1 for big endian; 0 for little endian

dma_be_select_be32_mN I Master interface Big Endian format selection pin.

■ 0: Big Endian AI format is used for data transfer on master
interface.

■ 1: Big Endian BE-32format is used for data transfer on master
interface

Exists: DMAH_BE32_SELECTION_PIN_EN==1
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 145SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

dma_le_select_lli_mN I Big Endian format selection pin for LLI fetch and status and control
write-back for the Master N Interface.
 0 : Endian scheme used for LLI fetch and status & control write-back
access on master interface is same as that used for data access for
master interface.
 1 : Little Endian scheme used for LLI fetch and status & control write-
back access on master interface irrespective of the endian scheme
used for data access on master interface.
Exists: DMAH_LLI_ENDIAN_SELECTION_PIN_EN==1
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

hrdataN[(DMAH_M1_HDATA_WIDTH-
1):0]

I Master port read data
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hgrantN I Bus grant
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

hrespN[1:0] I Master port response type from slave. When DW_ahb_dmac is
configured for AHB Lite mode and instantiated in an AHB Lite
system, the HRESP0 signal is connected to the HRESP signal in the
AHB Bus Fabric; the HRESP1 signal is left unconnected.
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hreadyN I Indicates that the current transfer is completed.
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-2 Master N Interface (for N = 1; N <= DMAH_NUM_MASTER_INT) Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

146 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

haddrN[(DMAH_HADDR_WIDTH-1):0] O Master port address
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

hwdataN[(DMAH_M1_HDATA_WIDTH-
1):0]

O Master port write data
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

hwriteN O Master port transfer direction. When active high, this signal indicates
a write transfer. When active low, this signal indicates a read transfer.
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: 1 for Write; 0 for Read

hbusreqN O Bus request
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

hlockN O AHB bus lock qualifier. Indicates to the arbiter that the master is
performing a number of indivisible transfers.
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

htransN[1:0] O Transfer control. Indicates type of current transfer.
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-2 Master N Interface (for N = 1; N <= DMAH_NUM_MASTER_INT) Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 147SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

hburstN[2:0] O Burst type and length control
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: DMAH_INCR_BURSTS==0 ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: N/A

hsizeN[2:0] O Master port transfer size
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

hprotN[3:0] O Protection control
Exists: DMAH_NUM_MASTER_INT >= N
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-2 Master N Interface (for N = 1; N <= DMAH_NUM_MASTER_INT) Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

148 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

4.3 Test Interface Signals

scan_mode -

Table 4-3 Test Interface Signals

Port Name I/O Description

scan_mode I Scan Mode. This signal should be asserted - that is, driven to logic 1
during scan testing and should be deasserted - tied to logic 0 - at all
other times.
Exists: (DMAH_LP_EN==1) || (DMAH_CH_LP_EN==1)
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 149SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

4.4 Peripheral Handshaking Interface Signals

dma_req - - dma_ack
dma_single - - dma_wlast

dma_last - - dma_finish

Table 4-4 Peripheral Handshaking Interface Signals

Port Name I/O Description

dma_req[(DMAH_NUM_HS_INT_NZ-
1):0]

I Burst transaction request from peripheral
Exists: (DMAH_NUM_HS_INT != 0)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

dma_single[(DMAH_NUM_HS_INT_NZ-
1):0]

I Single transfer status
Exists: (DMAH_NUM_HS_INT != 0)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

dma_last[(DMAH_NUM_HS_INT_NZ-
1):0]

I Last transaction in block indicator.
Exists: (DMAH_NUM_HS_INT != 0)
Synchronous To: hclk
Registered: DMAH_REG_HS_IF==1 ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: N/A

dma_ack[(DMAH_NUM_HS_INT-1):0] O Transaction complete acknowledge signal.
Exists: (DMAH_NUM_HS_INT != 0)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

150 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

dma_wlast[(DMAH_NUM_MASTER_INT
-1):0]

O Indicates the completion of the last address phase of every
destination transaction. It remains asserted until the associated last
data phase completes.
Exists: (DMAH_NUM_HS_INT != 0) && (DMAH_WLAST_EN == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

dma_finish[(DMAH_NUM_HS_INT-1):0] O DMA block complete signal.
Exists: (DMAH_NUM_HS_INT != 0)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-4 Peripheral Handshaking Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 151SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

4.5 Interrupt Interface Signals

- intr
- int_flag
- int_combined
- intr_n
- int_flag_n
- int_combined_n

Table 4-5 Interrupt Interface Signals

Port Name I/O Description

intr[((5*DMAH_NUM_CHANNELS)-1):0] O Contents of all five Interrupt Status Registers. x is the number of
configured DW_ahb_dmac channels (1 to 8).
 Bits[x-1:0]- contents of StatTfr
 Bits[2x-1:x]- contents of StatBlock
 Bits[3x-1:2x]- contents of StatSrcTrans
 Bits[4x-1:3x]- contents of StatDstTrans
 Bits[5x-1:4x]- contents of StatErr
Exists: (DMAH_INTR_IO == 0) && (DMAH_INTR_POL == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

int_flag[4:0] O All internal interrupts for each channel are combined by type for
maximum flexibility in supporting driver SoC interrupt schemes.
 Bit 0: logical OR of all interrupts of type IntTfr
 Bit 1: logical OR of all interrupts of type IntBlock
 Bit 2: logical OR of all interrupts of type IntSrcTran
 Bit 3: logical OR of all interrupts of type IntDstTran
 Bit 4: logical OR of all interrupts of type IntErr.
Exists: (DMAH_INTR_IO == 1) && (DMAH_INTR_POL == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

152 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

int_combined O Logical OR of all individual interrupts.
Exists: ((DMAH_INTR_IO == 2) || (DMAH_INTR_IO == 1)) &&
(DMAH_INTR_POL == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

intr_n[((5*DMAH_NUM_CHANNELS)-
1):0]

O Contents of all five Interrupt Status Registers. x is the number of
configured DW_ahb_dmac channels (1 to 8).

■ Bits[x-1:0]- contents of StatTfr

■ Bits[2x-1:x]- contents of StatBlock

■ Bits[3x-1:2x]- contents of StatSrcTrans

■ Bits[4x-1:3x]- contents of StatDstTrans

■ Bits[5x-1:4x]- contents of StatErr

Exists: (DMAH_INTR_IO == 0) && (DMAH_INTR_POL == 0)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

int_flag_n[4:0] O All internal interrupts for each channel are combined by type for
maximum flexibility in supporting driver SoC interrupt schemes.

■ Bit 0: logical OR of all interrupts of type IntTfr

■ Bit 1: logical OR of all interrupts of type IntBlock

■ Bit 2: logical OR of all interrupts of type IntSrcTran

■ Bit 3: logical OR of all interrupts of type IntDstTran

■ Bit 4: logical OR of all interrupts of type IntErr.

Exists: (DMAH_INTR_IO == 1) && (DMAH_INTR_POL == 0)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

int_combined_n O logical OR of all individual interrupts.
Exists: ((DMAH_INTR_IO == 2) || (DMAH_INTR_IO == 1)) &&
(DMAH_INTR_POL == 0)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-5 Interrupt Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 153SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

4.6 Debug Bus Interface Signals

- debug_dmah_busy
- debug_ch_busy
- debug_prevent_deadlock_rfe
- debug_grant_index_mN (for N = 1; N <=
DMAH_NUM_MASTER_INT)
- debug_granted_mN (for N = 1; N <=
DMAH_NUM_MASTER_INT)
- debug_fifo_ready_src
- debug_fifo_ready_dst
- debug_fifo_half_full
- debug_fifo_empty
- debug_tfr_req_mN (for N = 1; N <=
DMAH_NUM_MASTER_INT)
- debug_length_m_i
- debug_dma_data_req
- debug_rd_rawtfr
- debug_rd_rawblock
- debug_rd_rawsrctran
- debug_rd_rawdsttran
- debug_rd_rawerr
- debug_rd_int_en
- debug_rd_masktfr
- debug_rd_maskblock
- debug_rd_masksrctran
- debug_rd_maskdsttran
- debug_rd_maskerr
- debug_statusint_dmacore
- debug_req_miN (for N = 1; N <=
DMAH_NUM_MASTER_INT)
- debug_mask_lck_ch_mN (for N = 1; N <=
DMAH_NUM_MASTER_INT)
- debug_ch_enable
- debug_ch_enable_reg
- debug_dum_req_dst_region
- debug_dum_req_src_region
- debug_en_src_hs_sgl
- debug_en_dst_hs_sgl
- debug_dma_ctl_en

https://solvnet.synopsys.com
www.designware.com

154 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

Table 4-6 Debug Bus Interface Signals

Port Name I/O Description

debug_dmah_busy O Debug bus, indicates the Low Power State of the DMA. Included on
the I/O for verification purposes. These signals should be left
disconnected.
Exists: (DMAH_DEBUG_BUS == 1) && (DMAH_LP_EN == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

debug_ch_busy[(DMAH_NUM_CHANN
ELS-1):0]

O Debug bus, indicates the Low Power State of the Channel. Included
on the I/O for verification purposes. These signals should be left
disconnected.
Exists: (DMAH_DEBUG_BUS == 1) && (DMAH_CH_LP_EN == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_prevent_deadlock_rfe[(DMAH_N
UM_CHANNELS-1):0]

O Debug signal for deadlock
Exists: (DMAH_DEBUG_BUS == 1) && ((DMAH_LP_EN == 1) ||
(DMAH_CH_LP_EN == 1))
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_grant_index_mN[(LOG2_DMAH_
NUM_PER-1):0]
(for N = 1; N <=
DMAH_NUM_MASTER_INT)

O Debug bus included on the I/O for verification purposes. These
signals should be left disconnected
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: DMAH_REMOVE_PIPELINING==1 ? No :Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_granted_mN
(for N = 1; N <=
DMAH_NUM_MASTER_INT)

O Debug bus granted to master N
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: DMAH_REMOVE_PIPELINING==1 ? No :Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 155SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

debug_fifo_ready_src[(DMAH_NUM_CH
ANNELS-1):0]

O Source debug fifo ready
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_fifo_ready_dst[(DMAH_NUM_CH
ANNELS-1):0]

O Destination debug fifo ready
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_fifo_half_full[(DMAH_NUM_CHA
NNELS-1):0]

O Debug fifo half full
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_fifo_empty[(DMAH_NUM_CHAN
NELS-1):0]

O Debug fifo empty
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_tfr_req_mN
(for N = 1; N <=
DMAH_NUM_MASTER_INT)

O Debug transfer request to master N
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

debug_length_m_i[((DMAH_NUM_MAS
TER_INT*(MAX_LOG2_FIFO_DEPTH_
BYTES+1))-1):0]

O Debug transfer length
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-6 Debug Bus Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

156 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

debug_dma_data_req[(DMAH_NUM_PE
R-1):0]

O Debug DMA data request
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_rawtfr[(DMAH_NUM_CHANN
ELS-1):0]

O Raw interrupt read output from Tfr
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_rawblock[(DMAH_NUM_CHA
NNELS-1):0]

O Raw interrupt read output from Block
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_rawsrctran[(DMAH_NUM_CH
ANNELS-1):0]

O Raw interrupt read output from SrcTran
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_rawdsttran[(DMAH_NUM_CH
ANNELS-1):0]

O Raw interrupt read output from DstTran
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_rawerr[(DMAH_NUM_CHANN
ELS-1):0]

O Raw interrupt read output from Err
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-6 Debug Bus Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 157SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

debug_rd_int_en[(DMAH_NUM_CHANN
ELS-1):0]

O Interrupt read enable
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_masktfr[(DMAH_NUM_CHAN
NELS-1):0]

O Mask interrupt read output from Tfr
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_maskblock[(DMAH_NUM_CH
ANNELS-1):0]

O Mask interrupt read output from Block
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_masksrctran[(DMAH_NUM_C
HANNELS-1):0]

O Mask interrupt read output from SrcTran
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_maskdsttran[(DMAH_NUM_C
HANNELS-1):0]

O Mask interrupt read output from DstTran
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_rd_maskerr[(DMAH_NUM_CHAN
NELS-1):0]

O Mask interrupt read output from Err
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-6 Debug Bus Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

158 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

debug_statusint_dmacore[4:0] O Debug status interrupt from DMA core
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_req_miN[(DMAH_NUM_PER-
1):0]
(for N = 1; N <=
DMAH_NUM_MASTER_INT)

O Debug request from master N
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_mask_lck_ch_mN[(DMAH_NUM
_PER-1):0]
(for N = 1; N <=
DMAH_NUM_MASTER_INT)

O Lock the transfer channel for master N
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_ch_enable[(DMAH_NUM_CHAN
NELS-1):0]

O Debug channel enable
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_ch_enable_reg[(DMAH_NUM_C
HANNELS-1):0]

O Debug channel enable register
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_dum_req_dst_region[(DMAH_NU
M_CHANNELS-1):0]

O Destination debug bus dummy request
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-6 Debug Bus Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 159SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Signal Descriptions

debug_dum_req_src_region[(DMAH_NU
M_CHANNELS-1):0]

O Source debug bus dummy request
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_en_src_hs_sgl[(DMAH_NUM_C
HANNELS-1):0]

O Debug enable source
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_en_dst_hs_sgl[(DMAH_NUM_C
HANNELS-1):0]

O Debug enable destination
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

debug_dma_ctl_en O Debug DMA control enable
Exists: (DMAH_DEBUG_BUS == 1)
Synchronous To: hclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-6 Debug Bus Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

160 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Signal Descriptions DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 161

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

5
Register Descriptions

This chapter details all possible registers in the controller. They are arranged hierarchically into maps and
blocks (banks). For configurable IP titles, your actual configuration might not contain all of these registers.

Attention: For configurable IP titles, do not use this document to determine the exact attributes of your
register map. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the register attributes for your actual
configuration at workspace/report/ComponentRegisters.html or
workspace/report/ComponentRegisters.xml after you have completed the report creation activity. That
report comes from the exact same source as this chapter but removes all the registers that are not in your
actual configuration. This does not apply to non-configurable IP titles. In addition, all parameter
expressions are evaluated to actual values. Therefore, the Offset and Memory Access values might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

Exists Expressions

These expressions indicate the combination of configuration parameters required for a register, field, or
block to exist in the memory map. The expression is only valid in the local context and does not indicate the
conditions for existence of the parent. For example, the expression for a bit field in a register assumes that
the register exists and does not include the conditions for existence of the register.

Offset

The term Offset is synonymous with Address.

Memory Access Attributes

The Memory Access attribute is defined as <ReadBehavior>/<WriteBehavior> which are defined in the
following table.

https://solvnet.synopsys.com
www.designware.com

162 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

Special Optional Attributes

Some register fields might use the following optional attributes.

Table 5-1 Possible Read and Write Behaviors

Read (or Write) Behavior Description

RC A read clears this register field.

RS A read sets this register field.

RM A read modifies the contents of this register field.

Wo You can only write to this register once field.

W1C A write of 1 clears this register field.

W1S A write of 1 sets this register field.

W1T A write of 1 toggles this register field.

W0C A write of 0 clears this register field.

W0S A write of 0 sets this register field.

W0T A write of 0 toggles this register field.

WC Any write clears this register field.

WS Any write sets this register field.

WM Any write toggles this register field.

no Read Behavior attribute You cannot read this register. It is Write-Only.

no Write Behavior attribute You cannot write to this register. It is Read-Only.

Table 5-2 Memory Access Examples

Memory Access Description

R Read-only register field.

W Write-only register field.

R/W Read/write register field.

R/W1C You can read this register field. Writing 1 clears it.

RC/W1C Reading this register field clears it. Writing 1 clears it.

R/Wo You can read this register field. You can only write to it once.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 163SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

Component Banks/Blocks

The following table shows the address blocks for each memory map. Follow the link for an address block to
see a table of its registers.

Table 5-3 Optional Attributes

Attribute Description

Volatile As defined by the IP-XACT specification. If true, indicates in the
case of a write followed by read, or in the case of two consecutive
reads, there is no guarantee as to what is returned by the read on
the second transaction or that this return value is consistent with the
write or read of the first transaction. The element implies there is
some additional mechanism by which this field can acquire new
values other than by reads/writes/resets and other access methods
known to IP-XACT. For example, when the core updates the register
field contents.

Testable As defined by the IP-XACT specification. Possible values are
unconstrained, untestable, readOnly, writeAsRead, restore.
Untestable means that this field is untestable by a simple automated
register test. For example, the read-write access of the register is
controlled by a pin or another register. readOnly means that you
should not write to this register; only read from it. This might apply
for a register that modifies the contents of another register.

Reset Mask As defined by the IP-XACT specification. Indicates that this register
field has an unknown reset value. For example, the reset value is set
by another register or an input pin; or the register is implemented
using RAM.

* Varies Indicates that the memory access (or reset) attribute (read, write
behavior) is not fixed. For example, the read-write access of the
register is controlled by a pin or another register. Or when the
access depends on some configuration parameter; in this case the
post-configuration report in coreConsultant gives the actual access
value.

Table 5-4 Address Banks/Blocks for Memory Map: DMAC

Address Block Description

DW_ahb_dmac Channel x register address block
(for x = 1; x <= DMAH_NUM_CHANNELS-1) on page 165

DW_ahb_dmac Channel x register address block
Exists: DMAH_NUM_CHANNELS > 0

Interrupt_Registers on page 203 Interrupt registers
Exists: Always

Software_Handshake_Registers on page 233 Software Handshaking Registers
Exists: Always

https://solvnet.synopsys.com
www.designware.com

164 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

Miscellaneous_Registers on page 246 Miscellaneous Registers
Exists: Always

Table 5-4 Address Banks/Blocks for Memory Map: DMAC (Continued)

Address Block Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 165SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.1 DMAC/Channel_x_Registers (for x = 1; x <= DMAH_NUM_CHANNELS-1)
Registers

Channel registers. Follow the link for the register to see a detailed description of the register.

Table 5-5 Registers for Address Block: DMAC/Channel_x_Registers (for x = 1; x <= DMAH_NUM_CHANNELS-
1)

Register Offset Description

SARx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 167

0x0 +
x*0x58

The starting source address is programmed by software
before the DMA channel is enabled, or by an...

DARx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 168

0x8 +
x*0x58

The starting destination address is programmed by software
before the DMA channel is enabled, or...

LLPx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 169

0x10 +
x*0x58

This register does not exist if the DMAH_CHx_HC_LLP
configuration parameter is set to True The LLP...

CTLx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 171

0x18 +
x*0x58

This register contains fields that control the DMA transfer.
The CTLx register is part of the block...

SSTATx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 182

0x20 +
x*0x58

After each block transfer completes, hardware can retrieve
the source status information from the...

DSTATx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 184

0x28 +
x*0x58

After each block transfer completes, hardware can retrieve
the destination status information from...

SSTATARx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 186

0x30 +
x*0x58

After completion of each block transfer, hardware can
retrieve the source status information from...

DSTATARx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 188

0x38 +
x*0x58

After completion of each block transfer, hardware can
retrieve the destination status information...

CFGx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 190

0x40 +
x*0x58

This register contains fields that configure the DMA transfer.
The channel configuration register...

SGRx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 199

0x48 +
x*0x58

The Source Gather register contains two fields: - Source
gather count field (SGRx.SGC) Specifies...

https://solvnet.synopsys.com
www.designware.com

166 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

DSRx
(for x = 0; x <= DMAH_NUM_CHANNELS-
1) on page 201

0x50 +
x*0x58

The Destination Scatter register contains two fields: -
Destination scatter count field (DSRx.DSC)...

Table 5-5 Registers for Address Block: DMAC/Channel_x_Registers (for x = 1; x <= DMAH_NUM_CHANNELS-1)
(Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 167SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.1.1 SARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Source Address for Channel x

■ Description: The starting source address is programmed by software before the DMA channel is
enabled, or by an LLI update before the start of the DMA transfer. While the DMA transfer is in
progress, this register is updated to reflect the source address of the current AHB transfer.

Note:You must program the SAR address to be aligned to CTLx.SRC_TR_WIDTH.

For information on how the DARx is updated at the start of each DMA block for multi-block
transfers, refer "Programming Examples".

■ Size: 64 bits

■ Offset: 0x0 + x*0x58

■ Exists: DMAH_NUM_CHANNELS > 0

63
:3

2

31
:0

R
sv

d_
S

A
R

S
A

R

Table 5-6 Fields for Register: SARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_SAR R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

31:0 SAR R/W Current Source Address of DMA transfer. Updated after
each source transfer. The SINC field in the CTLx register
determines whether the address increments, decrements, or
is left unchanged on every source transfer through the block
transfer.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

168 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.1.2 DARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Destination Address Register for Channel x

■ Description: The starting destination address is programmed by software before the DMA channel is
enabled, or by an LLI update before the start of the DMA transfer. While the DMA transfer is in
progress, this register is updated to reflect the destination address of the current AHB transfer.

Note: You must program the DAR to be aligned to CTLx.DST_TR_WIDTH.

For information on how the DARx is updated at the start of each DMA block for multi-block
transfers, refer "Programming Examples".

■ Size: 64 bits

■ Offset: 0x8 + x*0x58

■ Exists: DMAH_NUM_CHANNELS > 0

63
:3

2

31
:0

R
sv

d_
D

A
R

D
A

R

Table 5-7 Fields for Register: DARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_DAR R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

31:0 DAR R/W Current Destination address of DMA transfer. Updated
after each destination transfer. The DINC field in the CTLx
register determines whether the address increments,
decrements, or is left unchanged on every destination
transfer throughout the block transfer.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 169SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.1.3 LLPx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Linked List Pointer Register for Channel x

■ Description: This register does not exist if the DMAH_CHx_HC_LLP configuration parameter is set
to True

The LLP register has two functions:

 - The logical result of the equation LLP.LOC !=0 is used to set up the type of DMA transfer - single or
multi-block. The Table "Programming of Transfer Types and Channel Register Update Method"
shows how the method of updating the channel registers is a function of LLP.LOC != 0. If LLP.LOC is
set to 0x0, then transfers using linked lists are not enabled. This register must be programmed prior
to enabling the channel in order to set up the transfer type.

 - LLP.LOC != 0 contains the pointer to the next LLI for block chaining using linked lists; refer to
"Block Chaining Using Linked Lists". The LLPx register can also point to the address where write-
back of the control and source/destination status information occur after block completion.

Note:You need to program this register to point to the first Linked List Item (LLI) in memory prior to
enabling the channel if block chaining is enabled. If DMAH_RETURN_ERR_RESP is set to True, the
DW_ahb_dmac returns an ERROR response to an illegal register access, which includes accessing
registers that have been removed during DW_ahb_dmac configuration. If
DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always returns an OK response. For
more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x10 + x*0x58

■ Exists: !DMAH_CHx_HC_LLP && DMAH_NUM_CHANNELS > x

63
:3

2

31
:2

1:
0

R
sv

d_
LL

P

LO
C

LM
S

Table 5-8 Fields for Register: LLPx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_LLP R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

170 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

31:2 LOC R/W Starting Address In Memory of next LLI if block chaining is
enabled. Note that the two LSBs of the starting address are
not stored because the address is assumed to be aligned to
a 32-bit boundary. LLI accesses are always 32-bit accesses
(Hsize=2) aligned to 32-bit boundaries and cannot be
changed or programmed to anything other than 32-bit.
Value After Reset: 0x0
Exists: !DMAH_CHx_HC_LLP
Volatile: true

1:0 LMS R/W List Master Select. Identifies the AHB layer/interface where
the memory device that stores the next linked list item
resides.
This field does not exist if the configuration parameter is not
set to NO_HARDCODE. In this case, the read-back value is
always the hardcoded value.
The maximum value of this field that can be read back is
DMAH_NUM_MASTER_INT-1.
Values:

■ 0x0 (LIST_MASTER_SELECT_1): The memory device
stores the next linked list item on AHB master 1

■ 0x1 (LIST_MASTER_SELECT_2): The memory device
stores the next linked list item on AHB master 2

■ 0x2 (LIST_MASTER_SELECT_3): The memory device
stores the next linked list item on AHB master 3

■ 0x3 (LIST_MASTER_SELECT_4): The memory device
stores the next linked list item on AHB master 4

Value After Reset: 0x0
Exists: !DMAH_CHx_HC_LLP && DMAH_CHx_LMS == 4
Volatile: true

Table 5-8 Fields for Register: LLPx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 171SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.1.4 CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Control Register for Channel x

■ Description: This register contains fields that control the DMA transfer.

The CTLx register is part of the block descriptor (linked list item - LLI) when block chaining is
enabled. It can be varied on a block-by-block basis within a DMA transfer when block chaining is
enabled. For information about the behavior of this register between blocks, refer to "Multi-Block
Transfers".

If status write-back is enabled, the upper word of the control register, CTLx[63:32], is written to the
control register location of the LLI in system memory at the end of the block transfer.

Note:You need to program this register prior to enabling the channel.

■ Size: 64 bits

■ Offset: 0x18 + x*0x58

■ Exists: DMAH_NUM_CHANNELS > x

63
:4

5

44 43
:y

x:
32

31
:2

9

28 27 26
:2

5

24
:2

3

22
:2

0

19 18 17 16
:1

4

13
:1

1

10
:9

8:
7

6:
4

3:
1

0

R
sv

d_
3_

C
T

L

D
O

N
E

R
sv

d_
2_

C
T

L

B
LO

C
K

_T
S

R
sv

d_
1_

C
T

L

LL
P

_S
R

C
_E

N

LL
P

_D
S

T
_E

N

S
M

S

D
M

S

T
T

_F
C

R
sv

d_
C

T
L

D
S

T
_S

C
A

T
T

E
R

_E
N

S
R

C
_G

A
T

H
E

R
_E

N

S
R

C
_M

S
IZ

E

D
E

S
T

_M
S

IZ
E

S
IN

C

D
IN

C

S
R

C
_T

R
_W

ID
T

H

D
S

T
_T

R
_W

ID
T

H

IN
T

_E
N

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:45 Rsvd_3_CTL R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

172 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

44 DONE R/W Done bit.
If status write-back is enabled, the upper word of the control
register, CTLx[63:32], is written to the control register
location of the Linked List Item (LLI) in system memory at the
end of the block transfer with the done bit set.
Software can poll the LLI CTLx.DONE bit to see when a
block transfer is complete. The LLI CTLx.DONE bit should
be cleared when the linked lists are set up in memory prior to
enabling the channel.
LLI accesses are always 32-bit accesses (Hsize=2) aligned
to 32-bit boundaries and cannot be changed or programmed
to anything other than 32-bit. For more information, refer to
"Multi-Block Transfers".
Values:

■ 0x0 (DISABLED): DONE bit is deasserted the enb of
block transfer

■ 0x1 (ENABLED): SET the DONE bit at the end of block
transfer

Value After Reset: 0x0
Exists: Always
Volatile: true

43:y Rsvd_2_CTL R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_CH0_MAX_BLK_SIZE_INT + 32

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 173SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:32 BLOCK_TS R/W Block Transfer Size.
When the DW_ahb_dmac is the flow controller, the user
writes this field before the channel is enabled in order to
indicate the block size. The number programmed into
BLOCK_TS indicates the total number of single transactions
to perform for every block transfer; a single transaction is
mapped to a single AMBA beat.
Width: The width of single transaction is determined by
CTLx.SRC_TR_WIDTH. For further information on setting
this field, refer to "Transfer Operation".
Once the transfer starts, the read-back value is the total
number of data items already read from the source
peripheral, regardless of what is the flow controller.
When the source or destination peripheral is assigned as the
flow controller, then the maximum block size that can be read
back saturates at DMAH_CHx_MAX_BLK_SIZE, but the
actual block size can be greater.
Value After Reset: 0x2
Exists: Always
Volatile: true
Range Variable[x]: DMAH_CH0_MAX_BLK_SIZE_INT + 31

31:29 Rsvd_1_CTL R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

28 LLP_SRC_EN R/W Block chaining is enabled on the source side only if the
LLP_SRC_EN field is high and LLPx.LOC is non-zero. For
more information, see "Block Chaining using Linked Lists".
Values:

■ 0x0 (LLP_SRC_DISABLE): Block chaining using Linked
List is disabled on the Source side

■ 0x1 (LLP_SRC_ENABLE): Block chaining using Linked
List is enabled on the Source side

Value After Reset: 0x0
Exists: !DMAH_CHx_HC_LLP &&
DMAH_CHx_MULTI_BLK_EN
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

174 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

27 LLP_DST_EN R/W Block chaining is enabled on the destination side only if
LLP_DST_EN field is high and LLPx.LOC is non-zero. For
more information, see "Block Chaining using Linked Lists".
Values:

■ 0x0 (LLP_DST_DISABLE): Block chaining using Linked
List is disabled on the Destination side

■ 0x1 (LLP_DST_ENABLE): Block chaining using Linked
List is enabled on the Destination side

Value After Reset: 0x0
Exists: !DMAH_CHx_HC_LLP &&
DMAH_CHx_MULTI_BLK_EN
Volatile: true

26:25 SMS R/W Source Master Select. Identifies the Master Interface layer
where the source device (peripheral or memory) resides.
The maximum value of this field that can be read back is
DMAH_NUM_MASTER_INT-1.
Values:

■ 0x0 (SMS_0): Source device (peripheral or memory) is
accessed from AHB master 1

■ 0x1 (SMS_1): Source device (peripheral or memory) is
accessed from AHB master 2

■ 0x2 (SMS_2): Source device (peripheral or memory) is
accessed from AHB master 3

■ 0x3 (SMS_3): Source device (peripheral or memory) is
accessed from AHB master 4

Value After Reset: {(DMAH_CTLx_SMS_RST)}
Exists: DMAH_CHx_SMS == 4
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 175SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

24:23 DMS R/W Destination Master Select. Identifies the Master Interface
layer where the destination device (peripheral or memory)
resides. The maximum value of this field that can be read
back is DMAH_NUM_MASTER_INT-1.
Values:

■ 0x0 (DMS_0): Destination device (peripheral or memory)
is accessed from AHB master 1

■ 0x1 (DMS_1): Destination device (peripheral or memory)
is accessed from AHB master 2

■ 0x2 (DMS_2): Destination device (peripheral or memory)
is accessed from AHB master 3

■ 0x3 (DMS_3): Destination device (peripheral or memory)
is accessed from AHB master 4

Value After Reset: {(DMAH_CTLx_DMS_RST)}
Exists: DMAH_CHx_DMS == 4
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

176 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

22:20 TT_FC R/W Transfer Type and Flow Control. Flow control can be
assigned to the DW_ahb_dmac, the source peripheral, or the
destination peripheral. For more information on transfer
types and flow control, refer to "Setup/Operation of the
DW_ahb_dmac Transfers".
Dependencies: If the configuration parameter
DMAH_CHx_FC is set to DMA_FC_ONLY, then TT_FC[2]
does not exist and TT_FC[2] always reads back 0.
If DMAH_CHx_FC is set to SRC_FC_ONLY, then
TT_FC[2:1] does not exist and TT_FC[2:1] always reads
back 2'b10.
If DMAH_CHx_FC is set to DST_FC_ONLY, then TT_FC[2:1]
does not exist and TT_FC[2:1] always reads back 2'b11.
For multi-block transfers using linked list operation, TT_FC
must be constant for all blocks of this multi-block transfer.
Values:
■ 0x0 (TT_FC_0): Transfer type is Memory to Memory and

Flow Controller is DW_ahb_dmac

■ 0x1 (TT_FC_1): Transfer type is Memory to Peripheral
and Flow Controller is DW_ahb_dmac

■ 0x2 (TT_FC_2): Transfer type is Peripheral to Memory
and Flow Controller is DW_ahb_dmac

■ 0x3 (TT_FC_3): Transfer type is Peripheral to Peripheral
and Flow Controller is DW_ahb_dmac

■ 0x4 (TT_FC_4): Transfer type is Peripheral to Memory
and Flow Controller is Peripheral

■ 0x5 (TT_FC_5): Transfer type is Peripheral to Peripheral
and Flow Controller is Source Peripheral

■ 0x6 (TT_FC_6): Transfer type is Memory to Peripheral
and Flow Controller is Peripheral

■ 0x7 (TT_FC_7): Transfer type is Peripheral to Peripheral
and Flow Controller is Destination Peripheral

Value After Reset: {(DMAH_CTLx_TT_FC_RST)}
Exists: Always
Volatile: true

19 Rsvd_CTL R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 177SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

18 DST_SCATTER_EN R/W Destination scatter enable. Scatter on the destination side
is applicable only when the CTLx.DINC bit indicates an
incrementing or decrementing address control.
Values:

■ 0x0 (DST_SCATTER_DISABLE): Destination Scatter is
disabled

■ 0x1 (DST_SCATTER_ENABLE): Destination Scatter is
enabled

Value After Reset: 0x0
Exists: DMAH_CHx_DST_SCA_EN
Volatile: true

17 SRC_GATHER_EN R/W Source gather enable. Gather on the source side is
applicable only when the CTLx.SINC bit indicates an
incrementing or decrementing address control.
Values:

■ 0x0 (SRC_GATHER_DISABLE): Source gather is
disabled

■ 0x1 (SRC_GATHER_ENABLE): Source gather is enabled

Value After Reset: 0x0
Exists: DMAH_CHx_SRC_GAT_EN
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

178 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

16:14 SRC_MSIZE R/W Source Burst Transaction Length. Number of data items,
each of width CTLx.SRC_TR_WIDTH, to be read from the
source every time a burst transferred request is made from
either the corresponding hardware or software handshaking
interface.
NOTE: This value is not related to the AHB bus master
HBURST bus. For information on the decoding for this field,
see the "Setting Up Transfers" section and for more
inforamtion about this field, see the "Choosing the Receive
Watermark level" section in the DW_ahb_dmac Databook.
Values:
■ 0x0 (SRC_MSIZE_0): Number of data items to be

transferred is 1

■ 0x1 (SRC_MSIZE_1): Number of data items to be
transferred is 4

■ 0x2 (SRC_MSIZE_2): Number of data items to be
transferred is 8

■ 0x3 (SRC_MSIZE_3): Number of data items to be
transferred is 16

■ 0x4 (SRC_MSIZE_4): Number of data items to be
transferred is 32

■ 0x5 (SRC_MSIZE_5): Number of data items to be
transferred is 64

■ 0x6 (SRC_MSIZE_6): Number of data items to be
transferred is 128

■ 0x7 (SRC_MSIZE_7): Number of data items to be
transferred is 256

Value After Reset: 0x1
Exists: Always
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 179SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

13:11 DEST_MSIZE R/W Destination Burst Transaction Length. Number of data
items, each of width CTLx.DST_TR_WIDTH, to be written to
the destination every time a destination burst transaction
request is made from either the corresponding hardware or
software handshaking interface.
NOTE: This value is not related to the AHB bus master
HBURST bus.
Values:
■ 0x0 (DEST_MSIZE_0): Number of data items to be

transferred is 1

■ 0x1 (DEST_MSIZE_1): Number of data items to be
transferred is 4

■ 0x2 (DEST_MSIZE_2): Number of data items to be
transferred is 8

■ 0x3 (DEST_MSIZE_3): Number of data items to be
transferred is 16

■ 0x4 (DEST_MSIZE_4): Number of data items to be
transferred is 32

■ 0x5 (DEST_MSIZE_5): Number of data items to be
transferred is 64

■ 0x6 (DEST_MSIZE_6): Number of data items to be
transferred is 128

■ 0x7 (DEST_MSIZE_7): Number of data items to be
transferred is 256

Value After Reset: 0x1
Exists: Always
Volatile: true

10:9 SINC R/W Source Address Increment. Indicates whether to
increment or decrement the source address on every source
transfer. If the device is fetching data from a source
peripheral FIFO with a fixed address, then set this field to
"No change".
Values:

■ 0x0 (SINC_0): Increments the source address

■ 0x1 (SINC_1): Decrements the source address

■ 0x2 (SINC_2): No change in the source address

■ 0x3 (SINC_3): No change in the source address

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

180 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

8:7 DINC R/W Destination Address Increment. Indicates whether to
increment or decrement the destination address on every
destination transfer. If your device is writing data to a
destination peripheral FIFO with a fixed address, then set
this field to \"No Change\".
Values:

■ 0x0 (DINC_0): Increments the destination address

■ 0x1 (DINC_1): Decrements the destination address

■ 0x2 (DINC_2): No change in the destination address

■ 0x3 (DINC_3): No change in the destination address

Value After Reset: 0x0
Exists: Always
Volatile: true

6:4 SRC_TR_WIDTH R/W Source Transfer Width. Mapped to AHB bus hsize. For a
non-memory peripheral, typically the peripheral (source)
FIFO width.
This value must be less than or equl to
DMAH_Mk_HDATA_WIDTH, where k is the AHB layer 1 to 4
where the source resides.
Values:

■ 0x0 (SRC_TR_WIDTH_0): Source transfer width is 8 bits

■ 0x1 (SRC_TR_WIDTH_1): Source transfer width is 16
bits

■ 0x2 (SRC_TR_WIDTH_2): Source transfer width is 32
bits

■ 0x3 (SRC_TR_WIDTH_3): Source transfer width is 64
bits

■ 0x4 (SRC_TR_WIDTH_4): Source transfer width is 128
bits

■ 0x5 (SRC_TR_WIDTH_5): Source transfer width is 256
bits

■ 0x6 (SRC_TR_WIDTH_6): Source transfer width is 256
bits

■ 0x7 (SRC_TR_WIDTH_7): Source transfer width is 256
bits

Value After Reset: {(DMAH_CTLx_SRC_TR_RST)}
Exists: !DMAH_CHx_STW
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 181SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

3:1 DST_TR_WIDTH R/W Destination Transfer Width. Mapped to AHB bus hsize.
For a non-memory peripheral, typically the peripheral
(destination) FIFO width.
This value must be less than or equal to
DMAH_Mk_HDATA_WIDTH where k is the AHB layer 1 to 4
where the destination resides. For the decoding of this field,
see the "Setting Up Transfers" section in the DW_ahb_dmac
Databook.
Values:
■ 0x0 (DST_TR_WIDTH_0): Destination transfer width is 8

bits

■ 0x1 (DST_TR_WIDTH_1): Destination transfer width is
16 bits

■ 0x2 (DST_TR_WIDTH_2): Destination transfer width is
32 bits

■ 0x3 (DST_TR_WIDTH_3): Destination transfer width is
64 bits

■ 0x4 (DST_TR_WIDTH_4): Destination transfer width is
128 bits

■ 0x5 (DST_TR_WIDTH_5): Destination transfer width is
256 bits

■ 0x6 (DST_TR_WIDTH_6): Destination transfer width is
256 bits

■ 0x7 (DST_TR_WIDTH_7): Destination transfer width is
256 bits

Value After Reset: {(DMAH_CTLx_DST_TR_RST)}
Exists: !DMAH_CHx_DTW
Volatile: true

0 INT_EN R/W Interrupt Enable Bit. If set, then all interrupt-generating
sources are enabled. Functions as a global mask bit for all
interrupts for the channel; raw* interrupt registers still assert
if CTLx.INT_EN=0.
Values:

■ 0x0 (INTERRUPT_DISABLE): Interrupt is disabled

■ 0x1 (INTERRUPT_ENABLE): Interrupt is enabled

Value After Reset: 0x1
Exists: Always
Volatile: true

Table 5-9 Fields for Register: CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

182 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.1.5 SSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Source Status Register for Channel x

■ Description: After each block transfer completes, hardware can retrieve the source status
information from the address pointed to by the contents of the SSTATARx register. This status
information is then stored in the SSTATx register and written out to the SSTATx register location of
the LLI before the start of the next block. For conditions under which the source status information is
fetched, refer to "Multi-Block Transfers". This register does not exist if DMAH_CHx_STAT_SRC is set
to False; in this case, the read-back value is always 0.

Note: This register is a temporary placeholder for the source status information on its way to the
SSTATx register location of the LLI. The source status information should be retrieved by software
from the SSTATx register location of the LLI, and not by a read of this register over the
DW_ahb_dmac slave interface.

If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response to an
illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x20 + x*0x58

■ Exists: DMAH_CHx_STAT_SRC && DMAH_NUM_CHANNELS > x

63
:3

2

31
:0

R
sv

d_
1_

S
S

T
A

T

S
S

T
A

T

Table 5-10 Fields for Register: SSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_1_SSTAT R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 183SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

31:0 SSTAT R/W Source status information retrieved by hardware from the
address pointed to by the contents of the STATARx register
Value After Reset: 0x0
Exists: DMAH_CHx_STAT_SRC
Volatile: true

Table 5-10 Fields for Register: SSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

184 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.1.6 DSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Destination Status Register for Channel x

■ Description: After each block transfer completes, hardware can retrieve the destination status
information from the address pointed to by the contents of the DSTATARx register. This status
information is then stored in the DSTATx register and written out to the DSTATx register location of
the LLI before the start of the next block. For conditions under which the destination status
information is fetched, refer to "Multi-Block Transfers". This register does not exist if
DMAH_CHx_STAT_DST is set to False; in this case, the read-back value is always 0.

Note:This register is a temporary placeholder for the destination status information on its way to the
DSTATx register location of the LLI. The destination status information should be retrieved by
software from the DSTATx register location of the LLI, and not by a read of this register over the
DW_ahb_dmac slave interface.

If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response to an
illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x28 + x*0x58

■ Exists: DMAH_CHx_STAT_DST && DMAH_NUM_CHANNELS > x

63
:3

2

31
:0

R
sv

d_
1_

D
S

T
A

T

D
S

T
A

T

Table 5-11 Fields for Register: DSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_1_DSTAT R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 185SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

31:0 DSTAT R/W Destination status information retrieved by hardware from
the address pointed to by the contents of DSTATARx register.
Value After Reset: 0x0
Exists: DMAH_CHx_STAT_DST
Volatile: true

Table 5-11 Fields for Register: DSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

186 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.1.7 SSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Source Status Address Register for Channel x

■ Description: After completion of each block transfer, hardware can retrieve the source status
information from the user-defined address to which the contents of the SSTATARx register point.
The user can select any location in system memory that would provide a 32-bit value to indicate the
status of the source transfer. For example, if the DW_apb_ssi is the source peripheral for the DMA
transfer, the user can use one of the SSI registers to indicate the status of the transfer. Thus the
address programmed in SSTATARx could be the address of the SSI.CTRL register or the SSI.ISR
register, or it could be the address of the SSI.RXFLR register.

Note: If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

This register does not exist if the configuration parameter DMAH_CHx_STAT_SRC is set to False; in
this case, the read-back value is always 0.

■ Size: 64 bits

■ Offset: 0x30 + x*0x58

■ Exists: DMAH_CHx_STAT_SRC && DMAH_NUM_CHANNELS > x

63
:3

2

31
:0

R
sv

d_
1_

S
S

T
A

T
A

R

S
S

T
A

T
A

R

Table 5-12 Fields for Register: SSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_1_SSTATAR R Reserved field - read-only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 187SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

31:0 SSTATAR R/W Pointer from where hardware can fetch the source status
information, which is registered in the SSTATx register and
written out to the SSTATx register location of the LLI before
the start of the next block.
Value After Reset: 0x0
Exists: DMAH_CHx_STAT_SRC

Table 5-12 Fields for Register: SSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

188 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.1.8 DSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Destination Status Address Register for Channel x

■ Description: After completion of each block transfer, hardware can retrieve the destination status
information from the user-defined address to which the contents of the DSTATARx register point.
The user can select any location in system memory that would provide a 32-bit value to indicate the
status of the destination transfer. For example, if the DW_apb_ssi is the destination peripheral for the
DMA transfer, the user can use one of the SSI registers to indicate the status of the transfer. Thus the
address programmed in DSTATARx could be the address of the SSI.CTRL register or the SSI.ISR
register, or it could be the address of the SSI.TXFLR register.

Note: If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

This register does not exist if the configuration parameter DMAH_CHx-STAT_DST is set to False; in
this case, the read-back value is always 0.

■ Size: 64 bits

■ Offset: 0x38 + x*0x58

■ Exists: DMAH_CHx_STAT_DST && DMAH_NUM_CHANNELS > x

63
:3

2

31
:0

R
sv

d_
1_

D
S

T
A

T
A

R

D
S

T
A

T
A

R

Table 5-13 Fields for Register: DSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_1_DSTATAR R Reserved field - read-only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 189SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

31:0 DSTATAR R/W Pointer from where hardware can fetch the destination status
information, which is registered in the DSTATx register and
written out to the DSTATx register location of the LLI before
the start of the next block.
Value After Reset: 0x0
Exists: DMAH_CHx_STAT_DST

Table 5-13 Fields for Register: DSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

190 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.1.9 CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Configuration Register for Channel x

■ Description: This register contains fields that configure the DMA transfer. The channel configuration
register remains fixed for all blocks of a multi-block transfer.

Note: You need to program this register prior to enabling the channel.

■ Size: 64 bits

■ Offset: 0x40 + x*0x58

■ Exists: DMAH_NUM_CHANNELS > x

63
:4

7

46
:y

x:
43

42
:y

x:
39

38 37 36
:3

4

33 32 31 30 29
:2

0

19 18 17 16 15
:1

4

13
:1

2

11 10 9 8 7:
5

4:
0

R
sv

d_
3_

C
F

G

R
sv

d_
2_

C
F

G

D
E

S
T

_P
E

R

R
sv

d_
1_

C
F

G

S
R

C
_P

E
R

S
S

_U
P

D
_E

N

D
S

_U
P

D
_E

N

P
R

O
T

C
T

L

F
IF

O
_M

O
D

E

F
C

M
O

D
E

R
E

LO
A

D
_D

S
T

R
E

LO
A

D
_S

R
C

M
A

X
_A

B
R

S
T

S
R

C
_H

S
_P

O
L

D
S

T
_H

S
_P

O
L

LO
C

K
_B

LO
C

K
_C

H

LO
C

K
_B

_L

LO
C

K
_C

H
_L

H
S

_S
E

L_
S

R
C

H
S

_S
E

L_
D

S
T

F
IF

O
_E

M
P

T
Y

C
H

_S
U

S
P

C
H

_P
R

IO
R

R
sv

d_
C

F
G

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:47 Rsvd_3_CFG R Reserved field - read-only
Value After Reset: 0x0
Exists: Always

46:y Rsvd_2_CFG R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: LOG2_DMAH_NUM_HS_INT + 43

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 191SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:43 DEST_PER R/W Destination hardware interface.
Assigns a hardware handshaking interface (0 :
DMAH_NUM_HS_INT-1) to the destination of channel x if the
CFGx.HS_SEL_DST field is 0; otherwise, this field is
ignored. The channel can then communicate with the
destination peripheral connected to that interface through the
assigned hardware handshaking interface.
NOTE1: For correct DW_ahb_dmac operation, only one
peripheral (source or destination) should be assigned to the
same handshaking interface.
NOTE2: This field does not exist if the configuration
parameter DMAH_NUM_HS_INT is set to 0.
Value After Reset: 0x0
Exists: DMAH_NUM_HS_INT > 0
Range Variable[x]: LOG2_DMAH_NUM_HS_INT + 42

42:y Rsvd_1_CFG R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: LOG2_DMAH_NUM_HS_INT + 39

x:39 SRC_PER R/W Source Hardware Interface..
Assigns a hardware handshaking interface (0 :
DMAH_NUM_HS_INT-1) to the source of channel x if the
CFGx.HS_SEL_SRC field is 0; otherwise, this field is
ignored. The channel can then communicate with the source
peripheral connected to that interface through the assigned
hardware handshaking interface.
NOTE1: For correct DW_ahb_dmac operation, only one
peripheral (source or destination) should be assigned to the
same handshaking interface.
NOTE2: This field does not exist if the configuration
parameter DMAH_NUM_HS_INT is set to 0.
Value After Reset: 0x0
Exists: DMAH_NUM_HS_INT > 0
Range Variable[x]: LOG2_DMAH_NUM_HS_INT + 38

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

192 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

38 SS_UPD_EN R/W Source Status Update Enable. Source status information
is fetched only from the location pointed to by the SSTATARx
register, stored in the SSTATx register and written out to the
SSTATx location of the LLI, if SS_UPD_EN is high.
NOTE: This enalbe is applicable only if
DMAH_CHx_STAT_SRC is set to True. This field does not
exist if the configuration parameter DMAH_CHx_STAT_SRC
is set to False; in this case, the read-back value is always 0.
Values:
■ 0x0 (DISABLED): Source Status Update is disabled.

■ 0x1 (ENABLED): Source Status Update is enabled.

Value After Reset: 0x0
Exists: DMAH_CHx_STAT_SRC

37 DS_UPD_EN R/W Destination Status Update Enable. Destination status
information is fetched only from the location pointed to by the
DSTATARx register, stored in the DSTATx register and
written out to the DSTATx location of the LLI, if DS_UPD_EN
is high. This field does not exist if the configuration
parameter DMAH_CHx_SATAT_DST is set to False; in this
case, the read-back value is always 0.
Values:

■ 0x0 (DISABLED): Destination Status Update is disabled

■ 0x1 (ENABLED): Destination Status Update is enabled

Value After Reset: 0x0
Exists: DMAH_CHx_STAT_DST

36:34 PROTCTL R/W Protection Control bits used to drive the AHB HPROT[3:1]
bus. The AMBA Specification recommends that the default of
HPROT indicates a non-cached, non-buffered, privileged
data access. The reset value is used to indicate such an
access.
HPROT[0] is tied high because all transfers are data
accesses, as there are no opcode fetches.
There is a one-to-one mapping of these register bits to the
HPROT[3:1] master interface signals.
Mapping of HPROT bus is as follows:

■ 1'b1 to HPROT[0]

■ CFGx.PROTCTL[1] to HPROT[1]

■ CFGx.PROTCTL[2] to HPROT[2]

■ CFGx.PROTCTL[3] to HPROT[3]

Value After Reset: 0x1
Exists: Always

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 193SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

33 FIFO_MODE R/W FIFO Mode Select. Determines how much space or data
needs to be available in the FIFO before a burst transaction
request is serviced.
Values:

■ 0x0 (FIFO_MODE_0): Space/data available for single
AHB transfer of the specified transfer width

■ 0x1 (FIFO_MODE_1): Data available is greater than or
equal to half the FIFO depth for destination transfers and
space available is greater than half the fifo depth for
source transfers. The exceptions are at the end of a burst
transaction request or at the end of a block transfer.

Value After Reset: 0x0
Exists: Always

32 FCMODE R/W Flow Control Mode. Determines when source transaction
requests are serviced when the Destination Peripheral is the
flow controller.
Values:

■ 0x0 (FCMODE_0): Source transaction requests are
serviced when they occur. Data pre-fetching is enabled

■ 0x1 (FCMODE_1): Source transaction requests are not
serviced until a destination transaction request occurs. In
this mode, the amount of data transferred from the source
is limited so that it is guaranteed to be transferred to the
destination prior to block termination by the destination.
Data pre-fetching is disabled.

Value After Reset: 0x0
Exists: Always

31 RELOAD_DST * Varies Automatic Destination Reload. The DARx register can be
automatically reloaded from its initial value at the end of
every block for multi-block transfers. A new block transfer is
then initiated. This register does not exist if the configuration
parameter DMAH_CHx_MULTI_BLK_EN is not selected; in
this case, the read-back value is always 0.
Values:

■ 0x0 (DISABLE): Destination Reload Disabled.

■ 0x1 (ENABLE): Destination Reload Enabled

Value After Reset: 0x0
Exists: DMAH_CHx_MULTI_BLK_EN
Memory Access: {(DMAH_CH0_RELOAD_DST_HC == 0)
? "read-write" : "read-only"}

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

194 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

30 RELOAD_SRC * Varies Automatic Source Reload. The SARx register can be
automatically reloaded from its initial value at the end of
every block for multi-block transfers. A new block transfer is
then initiated. This field does not exist if the configuration
parameter DMAH_CHx_MULTI_BLK_EN is not selected; in
this case, the read-back value is always 0.
Values:

■ 0x0 (DISABLE): Source Reload Disabled

■ 0x1 (ENABLE): Source Reload Enabled

Value After Reset: 0x0
Exists: DMAH_CHx_MULTI_BLK_EN
Memory Access: {(DMAH_CH0_RELOAD_SRC_HC == 0)
? "read-write" : "read-only"}

29:20 MAX_ABRST R/W Maximum AMBA Burst Length. Maximum AMBA burst
length that is used for DMA transfers on this channel.
A value of 0 indicates that software is not limiting the
maximum AMBA burst length for DMA transfers on this
channel.
This field does not exist if the configuration parameter
DMAH_MABRST is not selected; in this case, the read-back
value is always 0, and the maximum AMBA burst length
cannot be limited by software.
Value After Reset: 0x0
Exists: DMAH_MABRST

19 SRC_HS_POL R/W Source Handshaking Interface Polarity.
Values:

■ 0x0 (ACTIVE_HIGH): Source Handshaking Interface
Polarity is Active high

■ 0x1 (ACTIVE_LOW): Source Handshaking Interface
Polarity is Active low

Value After Reset: 0x0
Exists: Always

18 DST_HS_POL R/W Destination Handshaking Interface Polarity.
Values:
■ 0x0 (ACTIVE_HIGH): Destination Handshaking Interface

Polarity is Active high

■ 0x1 (ACTIVE_LOW): Destination Handshaking Interface
Polarity is Active low

Value After Reset: 0x0
Exists: Always

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 195SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

17 LOCK_B R/W Bus Lock Bit. When active, the AHB bus master signal
hlock is asserted for the duration specified in
CFGx.LOCK_B_L. For more information, refer to "Locked
DMA Transfers". This field does not exist if the configuration
parameter DMAH_CHx_LOCK_EN is set to False; in this
case, the read-back value is always 0.
Values:

■ 0x0 (DISABLED): Bus lock bit is not enabled

■ 0x1 (ENABLED): Bus lock bit is enabled

Value After Reset: 0x0
Exists: DMAH_CHx_LOCK_EN

16 LOCK_CH R/W Channel Lock Bit. When the channel is granted control of
the master bus interface and if the CFGx.LOCK_CH bit is
asserted, then no other channels are granted control of the
master bus interface for the duration specified in
CFGx.LOCK_CH_L. Indicates to the master bus interface
arbiter that this channel wants exclusive access to the
master bus interface for the duration specified in
CFGx.LOCK_CH_L. This field does not exist if the
configuration parameter DMAH_CHx_LOCK_EN is set to
False; in this case, the read-back value is always 0.
Values:

■ 0x0 (DISABLED): Channel lock bit is not enabled

■ 0x1 (ENABLED): Channel lock bit is enabled

Value After Reset: 0x0
Exists: DMAH_CHx_LOCK_EN

15:14 LOCK_B_L R/W Bus lock level. Indicates the duration over which
CFGx.LOCK_B bit applies. This field does not exist if the
parameter DMAH_CHx_LOCK_EN is set to False; in this
case, the read-back value is always 0.
Values:

■ 0x0 (LOCK_B_L_0): Over complete DMA transfer

■ 0x1 (LOCK_B_L_1): Over complete DMA block transfer

■ 0x2 (LOCK_B_L_2): Over complete DMA transaction

■ 0x3 (LOCK_B_L_3): Over complete DMA transaction

Value After Reset: 0x0
Exists: DMAH_CHx_LOCK_EN

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

196 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

13:12 LOCK_CH_L R/W Channel Local Level. Indicates the duration over which
CFGx.LOCK_CH applies. This field does not exist if the
configuration parameter DMAH_CHx_LOCK_EN is set to
False; in this case, the read-back value is always 0.
Values:

■ 0x0 (LOCK_CH_L_0): Over complete DMA transfer

■ 0x1 (LOCK_CH_L_1): Over complete DMA block transfer

■ 0x2 (LOCK_CH_L_2): Over complete DMA transaction

■ 0x3 (LOCK_CH_L_3): Over complete DMA transaction

Value After Reset: 0x0
Exists: DMAH_CHx_LOCK_EN

11 HS_SEL_SRC R/W Source Software or Hardware Handshaking Select. This
register selects which of the handshaking interfaces -
hardware or software - is active for source requests on this
channel. If the source peripheral is memory, then this bit is
ignored.
Values:

■ 0x0 (HARDWARE_HS): Hardware handshaking interface.
Software initiated transaction requests are ignored.

■ 0x1 (SOFTWARE_HS): Software handshaking interface.
Hardware initiated transaction requests are ignored.

Value After Reset: 0x1
Exists: Always

10 HS_SEL_DST R/W Destination Software or Hardware Handshaking Select.
This register selects which of the handshaking interfaces -
hardware or software - is active for destination requests on
this channel. If the destination peripheral is memory, then
this bit is ignored.
Values:

■ 0x0 (HARDWARE_HS): Hardware handshaking interface.
Software initiated transaction requests are ignored.

■ 0x1 (SOFTWARE_HS): Software handshaking interface.
Hardware initiated transaction requests are ignored.

Value After Reset: 0x1
Exists: Always

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 197SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

9 FIFO_EMPTY R Channel FIFO status. Indicates if there is data left in the
channel FIFO. Can be used in conjunction with
CFGx.CH_SUSP to cleanly disable a channel. For more
information, refer to "Disabling a Channel Prior to Transfer
Completion".
Values:

■ 0x0 (NOT_EMPTY): Channel FIFO is not empty

■ 0x1 (EMPTY): Channel FIFO is empty

Value After Reset: 0x1
Exists: Always

8 CH_SUSP R/W Channel Suspend. Suspends all DMA data transfers from
the source until this bit is cleared. There is no guarantee that
the current transaction will complete. Can also be used in
conjunction with CFGx.FIFO_EMPTY to cleanly disable a
channel without losing any data. For more information, refer
to "Disabling a Channel Prior to Transfer Completion".
Values:

■ 0x0 (NOT_SUSPENDED): DMA transfer from the source
is not suspended

■ 0x1 (SUSPENDED): Suspend DMA transfer from the
source

Value After Reset: 0x0
Exists: Always

7:5 CH_PRIOR R/W Channel Priority. A priority of 7 is the highest priority, and 0
is the lowest. This field must be programmed within the
range 0 to DMAH_NUM_CHANNELS-1. A programmed
value outside this range will cause erroneous behavior.
Values:

■ 0x0 (CH_PRIOR_0): Channel priority is 0

■ 0x1 (CH_PRIOR_1): Channel priority is 1

■ 0x2 (CH_PRIOR_2): Channel priority is 2

■ 0x3 (CH_PRIOR_3): Channel priority is 3

■ 0x4 (CH_PRIOR_4): Channel priority is 4

■ 0x5 (CH_PRIOR_5): Channel priority is 5

■ 0x6 (CH_PRIOR_6): Channel priority is 6

■ 0x7 (CH_PRIOR_7): Channel priority is 7

Value After Reset: x
Exists: Always

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

198 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

4:0 Rsvd_CFG R Reserved field - read-only
Value After Reset: 0x0
Exists: Always

Table 5-14 Fields for Register: CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 199SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.1.10 SGRx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Source Gather Register for Channel x

■ Description: The Source Gather register contains two fields:

❑ Source gather count field (SGRx.SGC) Specifies the number of contiguous source transfers of
CTLx.SRC_TR_WIDTH between successive gather intervals. This is defined as a gather
boundary.

❑ Source gather interval field (SGRx.SGI) Specifies the source address increment/decrement in
multiples of CTLx.SRC_TR_WIDTH on a gather boundary when gather mode is enabled for the
source transfer.

Note:If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

The CTLx.SINC field controls whether the address increments or decrements. When the CTLx.SINC
field indicates a fixed-address control, then the address remains constant throughout the transfer and
the SGRx register is ignored. This register does not exist if the configuration parameter
DMAH_CHx_SRC_GAT_EN is set to False. For more information, see "Scatter/Gather".

■ Size: 64 bits

■ Offset: 0x48 + x*0x58

■ Exists: DMAH_CHx_SRC_GAT_EN && DMAH_NUM_CHANNELS > x

63
:3

2

31
:y

x:
20

19
:0

R
sv

d_
1_

S
G

R

R
sv

d_
S

G
R

S
G

C

S
G

I

Table 5-15 Fields for Register: SGRx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_1_SGR R Reserved field - read-only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

200 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

31:y Rsvd_SGR R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_CH0_MAX_BLK_SIZE_INT + 20

x:20 SGC R/W Source Gather Count. Source contiguous tranfer count
between successive gather boundaries.
Value After Reset: 0x0
Exists: DMAH_CHx_SRC_GAT_EN
Range Variable[x]: DMAH_CH0_MAX_BLK_SIZE_INT + 19

19:0 SGI R/W Source Gather Interval.
Value After Reset: 0x0
Exists: DMAH_CHx_SRC_GAT_EN

Table 5-15 Fields for Register: SGRx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 201SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.1.11 DSRx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

■ Name: Destination Scatter Register for Channel x

■ Description: The Destination Scatter register contains two fields:

❑ Destination scatter count field (DSRx.DSC) Specifies the number of contiguous destination
transfers of CTLx.DST_TR_WIDTH between successive scatter boundaries.

❑ Destination scatter interval field (DSRx.DSI) Specifies the destination address
increment/decrement in multiples of CTLx.DST_TR_WIDTH on a scatter boundary when scatter
mode is enabled for the destination transfer.

Note: If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

The CTLx.DINC field controls whether the address increments or decrements. When the CTLx.DINC
field indicates a fixed address control, then the address remains constant throughout the transfer and
the DSRx register is ignored. This register does not exist if the configuration parameter
DMAH_CHx_DST_SCA_EN is set to False. For more information, see "Scatter/Gather".

■ Size: 64 bits

■ Offset: 0x50 + x*0x58

■ Exists: DMAH_CHx_DST_SCA_EN && DMAH_NUM_CHANNELS > x

63
:3

2

31
:y

x:
20

19
:0

R
sv

d_
1_

D
S

R

R
sv

d_
D

S
R

D
S

C

D
S

I

Table 5-16 Fields for Register: DSRx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

Bits Name
Memory
Access Description

63:32 Rsvd_1_DSR R Reserved field - read-only
Value After Reset: 0x0
Exists: Always

31:y Rsvd_DSR R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_CH0_MAX_BLK_SIZE_INT + 20

https://solvnet.synopsys.com
www.designware.com

202 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

x:20 DSC R/W Destination Scatter Count. Destination contiguous transfer
count between successive scatter boundaries.
Value After Reset: 0x0
Exists: DMAH_CHx_DST_SCA_EN
Range Variable[x]: DMAH_CH0_MAX_BLK_SIZE_INT + 19

19:0 DSI R/W Destination Scatter Interval.
Value After Reset: 0x0
Exists: DMAH_CHx_DST_SCA_EN

Table 5-16 Fields for Register: DSRx (for x = 0; x <= DMAH_NUM_CHANNELS-1) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 203SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2 DMAC/Interrupt Registers
Interrupt registers. Follow the link for the register to see a detailed description of the register.

Table 5-17 Registers for Address Block: DMAC/Interrupt_Registers

Register Offset Description

RawTfr on page 205 0x2c0 Interrupt events are stored in this Raw Interrupt Status
register before masking. This register...

RawBlock on page 206 0x2c8 Interrupt events are stored in this Raw Interrupt Status
register before masking. This register...

RawSrcTran on page 207 0x2d0 Interrupt events are stored in this Raw Interrupt Status
register before masking. This register...

RawDstTran on page 209 0x2d8 Interrupt events are stored in this Raw Interrupt Status
register before masking. This register...

RawErr on page 210 0x2e0 Interrupt events are stored in this Raw Interrupt Status
register before masking. This register...

StatusTfr on page 211 0x2e8 Channel DMA Transfer complete interrupt event from all
channels is stored in this Interrupt Status...

StatusBlock on page 212 0x2f0 Channel Block complete interrupt event from all channels is
stored in this Interrupt Status register...

StatusSrcTran on page 213 0x2f8 Channel Source Transaction complete interrupt event from
all channels is stored in this Interrupt...

StatusDstTran on page 214 0x300 Channel destination transaction complete interrupt event
from all channels is stored in this Interrupt...

StatusErr on page 215 0x308 Channel Error interrupt event from all channels is stored in
this Interrupt Status register after...

MaskTfr on page 216 0x310 The contents of the Raw Status register RawTfr is masked
with the contents of the Mask register...

MaskBlock on page 218 0x318 The contents of the Raw Status register RawBlock is masked
with the contents of the Mask register...

MaskSrcTran on page 220 0x320 The contents of the Raw Status register RawSrcTran is
masked with the contents of the Mask register...

MaskDstTran on page 222 0x328 The contents of the Raw Status register RawDstTran is
masked with the contents of the Mask register...

MaskErr on page 224 0x330 The contents of the Raw Status register RawErr is masked
with the contents of the Mask register...

ClearTfr on page 226 0x338 Each bit in the RawTfr and StatusTfr is cleared on the same
cycle by writing a 1 to the corresponding...

https://solvnet.synopsys.com
www.designware.com

204 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

ClearBlock on page 227 0x340 Each bit in the RawBlock and StatusBlock is cleared on the
same cycle by writing a 1 to the corresponding...

ClearSrcTran on page 228 0x348 Each bit in the RawSrcTran and StatusSrcTran is cleared on
the same cycle by writing a 1 to the...

ClearDstTran on page 229 0x350 Each bit in the RawDstTran and StatusDstTran is cleared on
the same cycle by writing a 1 to the...

ClearErr on page 230 0x358 Each bit in the RawErr and StatusErr is cleared on the same
cycle by writing a 1 to the corresponding...

StatusInt on page 231 0x360 The contents of each of the five Status registers StatusTfr,
StatusBlock, StatusSrcTran, StatusDstTran,...

Table 5-17 Registers for Address Block: DMAC/Interrupt_Registers (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 205SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.1 RawTfr

■ Name: Raw Status for IntTfr Interrupt

■ Description: Interrupt events are stored in this Raw Interrupt Status register before masking. This
register has a bit allocated per channel; for example, RawTfr[2] is the Channel 2 raw transfer
complete interrupt.

Each bit in this register is cleared by writing a 1 to the corresponding location in the ClearTfr register.

Note: Write access is available to this register or software testing purposes only. Under normal
operation, writes to this register are not recommended.

■ Size: 64 bits

■ Offset: 0x2c0

■ Exists: Always

63
:y

x:
0

R
sv

d_
R

aw
T

fr

R
A

W

Table 5-18 Fields for Register: RawTfr

Bits Name
Memory
Access Description

63:y Rsvd_RawTfr R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 RAW R/W Raw Status for IntTfr Interrupt
Values:
■ 0x0 (INACTIVE): Inactive Raw Interrupt Status

■ 0x1 (ACTIVE): Active Raw Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

206 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.2 RawBlock

■ Name: Raw Status for IntBlock Interrupt

■ Description: Interrupt events are stored in this Raw Interrupt Status register before masking. This
register has a bit allocated per channel; for example, RawBlock[2] is the Channel 2 raw block
complete interrupt.

Each bit in this register is cleared by writing a 1 to the corresponding location in the ClearBlock
register.

Note:Write access is available to this register or software testing purposes only. Under normal
operation, writes to this register are not recommended.

■ Size: 64 bits

■ Offset: 0x2c8

■ Exists: Always

63
:y

x:
0

R
sv

d_
R

aw
B

lo
ck

R
A

W

Table 5-19 Fields for Register: RawBlock

Bits Name
Memory
Access Description

63:y Rsvd_RawBlock R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 RAW R/W Raw Status for IntBlock Interrupt
Values:

■ 0x0 (INACTIVE): Inactive Raw Interrupt Status

■ 0x1 (ACTIVE): Active Raw Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 207SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.3 RawSrcTran

■ Name: Raw Status for IntSrcTran Interrupt

■ Description: Interrupt events are stored in this Raw Interrupt Status register before masking. This
register has a bit allocated per channel; for example, RawSrcTran[2] is the Channel 2 raw source
transaction complete interrupt.

Each bit in this register is cleared by writing a 1 to the corresponding location in the ClearSrcTran
register.

Note:Write access is available to this register or software testing purposes only. Under normal
operation, writes to this register are not recommended.

■ Size: 64 bits

■ Offset: 0x2d0

■ Exists: Always

63
:y

x:
0

R
sv

d_
R

aw
S

rc
T

ra
n

R
A

W

Table 5-20 Fields for Register: RawSrcTran

Bits Name
Memory
Access Description

63:y Rsvd_RawSrcTran R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

https://solvnet.synopsys.com
www.designware.com

208 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

x:0 RAW R/W Raw Status for IntSrcTran Interrupt
Values:

■ 0x0 (INACTIVE): Inactive Raw Interrupt Status

■ 0x1 (ACTIVE): Active Raw Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-20 Fields for Register: RawSrcTran (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 209SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.4 RawDstTran

■ Name: Raw Status for IntDstTran Interrupt

■ Description: Interrupt events are stored in this Raw Interrupt Status register before masking. This
register has a bit allocated per channel; for example, RawDstTran[2] is the Channel 2 raw destination
transaction complete interrupt.

Each bit in this register is cleared by writing a 1 to the corresponding location in the ClearDstTran
register.

Note: Write access is available to this register or software testing purposes only. Under normal
operation, writes to this register are not recommended.

■ Size: 64 bits

■ Offset: 0x2d8

■ Exists: Always

63
:y

x:
0

R
sv

d_
R

aw
D

st
T

ra
n

R
A

W

Table 5-21 Fields for Register: RawDstTran

Bits Name
Memory
Access Description

63:y Rsvd_RawDstTran R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 RAW R/W Raw Status for IntDstTran Interrupt
Values:

■ 0x0 (INACTIVE): Inactive Raw Interrupt Status

■ 0x1 (ACTIVE): Active Raw Interrupt Status

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

210 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.5 RawErr

■ Name: Raw Status for IntErr Interrupt

■ Description: Interrupt events are stored in this Raw Interrupt Status register before masking. This
register has a bit allocated per channel; for example, RawErr[2] is the Channel 2 raw error interrupt.

Each bit in this register is cleared by writing a 1 to the corresponding location in the ClearErr register.

Note: Write access is available to this register or software testing purposes only. Under normal
operation, writes to this register are not recommended.

■ Size: 64 bits

■ Offset: 0x2e0

■ Exists: Always

63
:y

x:
0

R
sv

d_
R

aw
E

rr

R
A

W

Table 5-22 Fields for Register: RawErr

Bits Name
Memory
Access Description

63:y Rsvd_RawErr R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 RAW R/W Raw Status for IntErr Interrupt
Values:
■ 0x0 (INACTIVE): Inactive Raw Interrupt Status

■ 0x1 (ACTIVE): Active Raw Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 211SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.6 StatusTfr

■ Name: Status for IntTfr Interrupt

■ Description: Channel DMA Transfer complete interrupt event from all channels is stored in this
Interrupt Status register after masking. This register has a bit allocated per channel; for example,
StatusTfr[2] is the Channel 2 source DMA transfer complete interrupt. The contents of this register
are used to generate the interrupt signals (int or int_n bus, depending on interrupt polarity) leaving
the DW_ahb_dmac.

■ Size: 64 bits

■ Offset: 0x2e8

■ Exists: Always

63
:y

x:
0

R
sv

d_
S

ta
tu

sT
fr

S
T

A
T

U
S

Table 5-23 Fields for Register: StatusTfr

Bits Name
Memory
Access Description

63:y Rsvd_StatusTfr R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 STATUS R Status for IntTfr Interrupt
Values:

■ 0x0 (INACTIVE): Inactive Interrupt Status

■ 0x1 (ACTIVE): Active Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

212 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.7 StatusBlock

■ Name: Status for IntBlock Interrupt

■ Description: Channel Block complete interrupt event from all channels is stored in this Interrupt
Status register after masking. This register has a bit allocated per channel; for example, StatusBlock[2]
is the Channel 2 block complete interrupt. The contents of this register are used to generate the
interrupt signals (int or int_n bus, depending on interrupt polarity) leaving the DW_ahb_dmac.

■ Size: 64 bits

■ Offset: 0x2f0

■ Exists: Always

63
:y

x:
0

R
sv

d_
S

ta
tu

sB
lo

ck

S
T

A
T

U
S

Table 5-24 Fields for Register: StatusBlock

Bits Name
Memory
Access Description

63:y Rsvd_StatusBlock R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 STATUS R Status for IntBlock Interrupt
Values:

■ 0x0 (INACTIVE): Inactive Interrupt Status

■ 0x1 (ACTIVE): Active Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 213SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.8 StatusSrcTran

■ Name: Status for IntSrcTran Interrupt

■ Description: Channel Source Transaction complete interrupt event from all channels is stored in this
Interrupt Status register after masking. This register has a bit allocated per channel; for example,
StatusSrcTran[2] is the Channel 2 source transaction complete interrupt. The contents of this register
are used to generate the interrupt signals (int or int_n bus, depending on interrupt polarity) leaving
the DW_ahb_dmac.

■ Size: 64 bits

■ Offset: 0x2f8

■ Exists: Always

63
:y

x:
0

R
sv

d_
S

ta
tu

sS
rc

T
ra

n

S
T

A
T

U
S

Table 5-25 Fields for Register: StatusSrcTran

Bits Name
Memory
Access Description

63:y Rsvd_StatusSrcTran R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 STATUS R Status for IntSrcTran Interrupt
Values:

■ 0x0 (INACTIVE): Inactive Interrupt Status

■ 0x1 (ACTIVE): Active Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

214 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.9 StatusDstTran

■ Name: Status for IntDstTran Interrupt

■ Description: Channel destination transaction complete interrupt event from all channels is stored in
this Interrupt Status register after masking. This register has a bit allocated per channel; for example,
StatusDstTran[2] is the Channel 2 status destination transaction complete interrupt. The contents of
this register are used to generate the interrupt signals (int or int_n bus, depending on interrupt
polarity) leaving the DW_ahb_dmac.

■ Size: 64 bits

■ Offset: 0x300

■ Exists: Always

63
:y

x:
0

R
sv

d_
S

ta
tu

sD
st

T
ra

n

S
T

A
T

U
S

Table 5-26 Fields for Register: StatusDstTran

Bits Name
Memory
Access Description

63:y Rsvd_StatusDstTran R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 STATUS R Status for IntDstTran Interrupt
Values:

■ 0x0 (INACTIVE): Inactive Interrupt Status

■ 0x1 (ACTIVE): Active Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 215SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.10 StatusErr

■ Name: Status for IntErr Interrupt

■ Description: Channel Error interrupt event from all channels is stored in this Interrupt Status register
after masking. This register has a bit allocated per channel; for example, StatusErr[2] is the Channel 2
status Error interrupt. The contents of this register are used to generate the interrupt signals (int or
int_n bus, depending on interrupt polarity) leaving the DW_ahb_dmac.

■ Size: 64 bits

■ Offset: 0x308

■ Exists: Always

63
:y

x:
0

R
sv

d_
S

ta
tu

sE
rr

S
T

A
T

U
S

Table 5-27 Fields for Register: StatusErr

Bits Name
Memory
Access Description

63:y Rsvd_StatusErr R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 STATUS R Status for IntErr Interrupt
Values:

■ 0x0 (INACTIVE): Inactive Interrupt Status

■ 0x1 (ACTIVE): Active Interrupt Status

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

216 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.11 MaskTfr

■ Name: Status for IntTfr Interrupt

■ Description: The contents of the Raw Status register RawTfr is masked with the contents of the Mask
register MaskTfr. Each bit of register is allocated per channel; for example, MaskTfr[2] is the mask bit
for the Channel 2 transfer complete interrupt.

A channel INT_MASK bit will be written only if the corresponding mask write enable bit in the
INT_MASK_WE field is asserted on the same AHB write transfer. This allows software to set a mask
bit without performing a read-modified write operation. For example, writing hex 01x1 to the
MaskTfr register writes a 1 into MaskTfr[0], while MaskTfr[7:1] remains unchanged. Writing hex
00xx leaves MaskTfr[7:0] unchanged.

Writing a 1 to any bit in this register unmasks the corresponding interrupt, thus allowing the
DW_ahb_dmac to set the appropriate bit in the Status registers and int_* port signals.

■ Size: 64 bits

■ Offset: 0x310

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

M
as

kT
fr

IN
T

_M
A

S
K

_W
E

R
sv

d_
M

as
kT

fr

IN
T

_M
A

S
K

Table 5-28 Fields for Register: MaskTfr

Bits Name
Memory
Access Description

63:y Rsvd_1_MaskTfr R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 217SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 INT_MASK_WE W Interrupt Mask Write Enable
Values:

■ 0x0 (DISABLED): Interrupt mask write disable

■ 0x1 (ENABLED): Interrupt mask write enable

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_MaskTfr R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 INT_MASK R/W Mask for IntTfr Interrupt
Values:

■ 0x0 (MASK): Mask the interrupts

■ 0x1 (UNMASK): Unmask the interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-28 Fields for Register: MaskTfr (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

218 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.12 MaskBlock

■ Name: Mask for IntBlock Interrupt

■ Description: The contents of the Raw Status register RawBlock is masked with the contents of the
Mask register MaskBlock. Each bit of register is allocated per channel; for example, MaskBlock[2] is
the mask bit for the Channel 2 block complete interrupt.

A channel INT_MASK bit will be written only if the corresponding mask write enable bit in the
INT_MASK_WE field is asserted on the same AHB write transfer. This allows software to set a mask
bit without performing a read-modified write operation. For example, writing hex 01x1 to the
MaskBlock register writes a 1 into MaskBlock[0], while MaskBlock[7:1] remains unchanged. Writing
hex 00xx leaves MaskBlock[7:0] unchanged.

Writing a 1 to any bit in this register unmasks the corresponding interrupt, thus allowing the
DW_ahb_dmac to set the appropriate bit in the Status registers and int_* port signals.

■ Size: 64 bits

■ Offset: 0x318

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

M
as

kB
lo

ck

IN
T

_M
A

S
K

_W
E

R
sv

d_
M

as
kB

lo
ck

IN
T

_M
A

S
K

Table 5-29 Fields for Register: MaskBlock

Bits Name
Memory
Access Description

63:y Rsvd_1_MaskBlock R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 219SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 INT_MASK_WE W Interrupt Mask Write Enable
Values:

■ 0x0 (DISABLED): Interrupt mask write disable

■ 0x1 (ENABLED): Interrupt mask write enable

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_MaskBlock R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 INT_MASK R/W Mask for IntBlock Interrupt
Values:

■ 0x0 (MASK): Mask the interrupts

■ 0x1 (UNMASK): Unmask the interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-29 Fields for Register: MaskBlock (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

220 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.13 MaskSrcTran

■ Name: Status for IntSrcTran Interrupt

■ Description: The contents of the Raw Status register RawSrcTran is masked with the contents of the
Mask register MaskSrcTran. Each bit of register is allocated per channel; for example, MaskSrcTran[2]
is the mask bit for the Channel 2 source transaction complete interrupt.

When the source peripheral of DMA channel i is memory, then the source transaction complete
interrupt, MaskSrcTran[i], must be masked to prevent an erroneous triggering of an interrupt on the
int_combined signal.

A channel INT_MASK bit will be written only if the corresponding mask write enable bit in the
INT_MASK_WE field is asserted on the same AHB write transfer. This allows software to set a mask
bit without performing a read-modified write operation. For example, writing hex 01x1 to the
MaskSrcTran register writes a 1 into MaskSrcTran[0], while MaskSrcTran[7:1] remains unchanged.
Writing hex 00xx leaves MaskSrcTran[7:0] unchanged.

Writing a 1 to any bit in this register unmasks the corresponding interrupt, thus allowing the
DW_ahb_dmac to set the appropriate bit in the Status registers and int_* port signals.

■ Size: 64 bits

■ Offset: 0x320

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

M
as

kS
rc

T
ra

n

IN
T

_M
A

S
K

_W
E

R
sv

d_
M

as
kS

rc
T

ra
n

IN
T

_M
A

S
K

Table 5-30 Fields for Register: MaskSrcTran

Bits Name
Memory
Access Description

63:y Rsvd_1_MaskSrcTran R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 221SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 INT_MASK_WE W Interrupt Mask Write Enable
Values:

■ 0x0 (DISABLED): Interrupt mask write disable

■ 0x1 (ENABLED): Interrupt mask write enable

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_MaskSrcTran R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 INT_MASK R/W Mask for IntSrcTran Interrupt
Values:

■ 0x0 (MASK): Mask the interrupts

■ 0x1 (UNMASK): Unmask the interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-30 Fields for Register: MaskSrcTran (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

222 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.14 MaskDstTran

■ Name: Mask for IntDstTran Interrupt

■ Description: The contents of the Raw Status register RawDstTran is masked with the contents of the
Mask register MaskDstTran. Each bit of register is allocated per channel; for example,
MaskDstTran[2] is the mask bit for the Channel 2 destination transaction complete interrupt.

When the destination peripheral of DMA channel i is memory, then the destination transaction
complete interrupt, MaskDstTran[i], must be masked to prevent an erroneous triggering of an
interrupt on the int_combined(_n) signal.

A channel INT_MASK bit will be written only if the corresponding mask write enable bit in the
INT_MASK_WE field is asserted on the same AHB write transfer. This allows software to set a mask
bit without performing a read-modified write operation. For example, writing hex 01x1 to the
MaskDstTran register writes a 1 into MaskDstTran[0], while MaskDstTran[7:1] remains unchanged.
Writing hex 00xx leaves MaskDstTran[7:0] unchanged.

Writing a 1 to any bit in this register unmasks the corresponding interrupt, thus allowing the
DW_ahb_dmac to set the appropriate bit in the Status registers and int_* port signals.

■ Size: 64 bits

■ Offset: 0x328

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

M
as

kD
st

T
ra

n

IN
T

_M
A

S
K

_W
E

R
sv

d_
M

as
kD

st
T

ra
n

IN
T

_M
A

S
K

Table 5-31 Fields for Register: MaskDstTran

Bits Name
Memory
Access Description

63:y Rsvd_1_MaskDstTran R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 223SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 INT_MASK_WE W Interrupt Mask Write Enable
Values:

■ 0x0 (DISABLED): Interrupt mask write disable

■ 0x1 (ENABLED): Interrupt mask write enable

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_MaskDstTran R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 INT_MASK R/W Mask for IntDstTran Interrupt
Values:

■ 0x0 (MASK): Mask the interrupts

■ 0x1 (UNMASK): Unmask the interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-31 Fields for Register: MaskDstTran (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

224 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.15 MaskErr

■ Name: Mask for IntErr Interrupt

■ Description: The contents of the Raw Status register RawErr is masked with the contents of the Mask
register MaskErr. Each bit of register is allocated per channel; for example, MaskErr[2] is the mask bit
for the Channel 2 error interrupt.

A channel INT_MASK bit will be written only if the corresponding mask write enable bit in the
INT_MASK_WE field is asserted on the same AHB write transfer. This allows software to set a mask
bit without performing a read-modified write operation. For example, writing hex 01x1 to the
MaskErr register writes a 1 into MaskErr[0], while MaskErr[7:1] remains unchanged. Writing hex
00xx leaves MaskErr[7:0] unchanged.

Writing a 1 to any bit in this register unmasks the corresponding interrupt, thus allowing the
DW_ahb_dmac to set the appropriate bit in the Status registers and int_* port signals.

■ Size: 64 bits

■ Offset: 0x330

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

M
as

kE
rr

IN
T

_M
A

S
K

_W
E

R
sv

d_
M

as
kE

rr

IN
T

_M
A

S
K

Table 5-32 Fields for Register: MaskErr

Bits Name
Memory
Access Description

63:y Rsvd_1_MaskErr R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 225SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 INT_MASK_WE W Interrupt Mask Write Enable
Values:

■ 0x0 (DISABLED): Interrupt mask write disable

■ 0x1 (ENABLED): Interrupt mask write enable

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_MaskErr R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 INT_MASK R/W Mask for IntErr Interrupt
Values:

■ 0x0 (MASK): Mask the interrupts

■ 0x1 (UNMASK): Unmask the interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-32 Fields for Register: MaskErr (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

226 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.16 ClearTfr

■ Name: Clear for IntTfr Interrupt

■ Description: Each bit in the RawTfr and StatusTfr is cleared on the same cycle by writing a 1 to the
corresponding location in the this registers. Each bit is allocated per channel; for example, ClearTfr[2]
is the clear bit for the Channel 2 transfer done interrupt. Writing a 0 has no effect. This registers are
not readable.

■ Size: 64 bits

■ Offset: 0x338

■ Exists: Always

63
:y

x:
0

R
sv

d_
C

le
ar

T
fr

C
LE

A
R

Table 5-33 Fields for Register: ClearTfr

Bits Name
Memory
Access Description

63:y Rsvd_ClearTfr W Reserved field
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 CLEAR W Clear for IntTfr Interrupt
Values:

■ 0x0 (NOT_CLEAR): No effect

■ 0x1 (CLEAR): Clears interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 227SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.17 ClearBlock

■ Name: Clear for IntBlock Interrupt

■ Description: Each bit in the RawBlock and StatusBlock is cleared on the same cycle by writing a 1 to
the corresponding location in the this registers. Each bit is allocated per channel; for example,
ClearBlock[2] is the clear bit for the Channel 2 block done interrupt. Writing a 0 has no effect. This
registers are not readable.

■ Size: 64 bits

■ Offset: 0x340

■ Exists: Always

63
:y

x:
0

R
sv

d_
C

le
ar

B
lo

ck

C
LE

A
R

Table 5-34 Fields for Register: ClearBlock

Bits Name
Memory
Access Description

63:y Rsvd_ClearBlock W Reserved field
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 CLEAR W Clear for IntBlock Interrupt
Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

228 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.18 ClearSrcTran

■ Name: Clear for IntSrcTran Interrupt

■ Description: Each bit in the RawSrcTran and StatusSrcTran is cleared on the same cycle by writing a
1 to the corresponding location in the this registers. Each bit is allocated per channel; for example,
ClearSrcTran[2] is the clear bit for the Channel 2 source transaction done interrupt. Writing a 0 has no
effect. This registers are not readable.

■ Size: 64 bits

■ Offset: 0x348

■ Exists: Always

63
:y

x:
0

R
sv

d_
C

le
ar

S
rc

T
ra

n

C
LE

A
R

Table 5-35 Fields for Register: ClearSrcTran

Bits Name
Memory
Access Description

63:y Rsvd_ClearSrcTran W Reserved field
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 CLEAR W Clear for IntSrcTran Interrupt
Values:
■ 0x0 (NOT_CLEAR): No effect

■ 0x1 (CLEAR): Clears interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 229SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.19 ClearDstTran

■ Name: Clear for IntDstTran Interrupt

■ Description: Each bit in the RawDstTran and StatusDstTran is cleared on the same cycle by writing a
1 to the corresponding location in the this registers. Each bit is allocated per channel; for example,
ClearDstTran[2] is the clear bit for the Channel 2 destination transaction done interrupt. Writing a 0
has no effect. This registers are not readable.

■ Size: 64 bits

■ Offset: 0x350

■ Exists: Always

63
:y

x:
0

R
sv

d_
C

le
ar

D
st

T
ra

n

C
LE

A
R

Table 5-36 Fields for Register: ClearDstTran

Bits Name
Memory
Access Description

63:y Rsvd_ClearDstTran W Reserved field
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 CLEAR W Clear for IntDstTran Interrupt
Values:
■ 0x0 (NOT_CLEAR): No effect

■ 0x1 (CLEAR): Clears interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

230 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.2.20 ClearErr

■ Name: Clear for IntErr Interrupt

■ Description: Each bit in the RawErr and StatusErr is cleared on the same cycle by writing a 1 to the
corresponding location in the this registers. Each bit is allocated per channel; for example, ClearErr[2]
is the clear bit for the Channel 2 error interrupt. Writing a 0 has no effect. This registers are not
readable.

■ Size: 64 bits

■ Offset: 0x358

■ Exists: Always

63
:y

x:
0

R
sv

d_
C

le
ar

E
rr

C
LE

A
R

Table 5-37 Fields for Register: ClearErr

Bits Name
Memory
Access Description

63:y Rsvd_ClearErr W Reserved field
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 CLEAR W Clear for IntErr Interrupt
Values:

■ 0x0 (NOT_CLEAR): No effect

■ 0x1 (CLEAR): Clears interrupts

Value After Reset: 0x0
Exists: Always
Range Variable[x]: DMAH_NUM_CHANNELS - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 231SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.2.21 StatusInt

■ Name: Status for each Interrupt type

■ Description: The contents of each of the five Status registers StatusTfr, StatusBlock, StatusSrcTran,
StatusDstTran, StatusErr is ORed to produce a single bit for each interrupt type in the Combined
Status register (StatusInt). This register is read-only.

■ Size: 64 bits

■ Offset: 0x360

■ Exists: Always

63
:5

4 3 2 1 0

R
sv

d_
S

ta
tu

sI
nt

E
R

R

D
S

T
T

S
R

C
T

B
LO

C
K

T
F

R

Table 5-38 Fields for Register: StatusInt

Bits Name
Memory
Access Description

63:5 Rsvd_StatusInt R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

4 ERR R OR of the contents of StatusErr
Values:

■ 0x0 (INACTIVE): OR of the contents of StatusErr register
is 0

■ 0x1 (ACTIVE): OR of the contents of StatusErr register is
1

Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

232 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

3 DSTT R OR of the contents of StatusDstTran
Values:

■ 0x0 (INACTIVE): OR of the contents of StatusDstTran
register is 0

■ 0x1 (ACTIVE): OR of the contents of StatusDstTran
register is 1

Value After Reset: 0x0
Exists: Always
Volatile: true

2 SRCT R OR of the contents of StatusSrcTran
Values:

■ 0x0 (INACTIVE): OR of the contents of StatusSrcTran
register is 0

■ 0x1 (ACTIVE): OR of the contents of StatusSrcTran
register is 1

Value After Reset: 0x0
Exists: Always
Volatile: true

1 BLOCK R OR of the contents of StatusBlock register
Values:

■ 0x0 (INACTIVE): OR of the contents of StatusBlock
register is 0

■ 0x1 (ACTIVE): OR of the contents of StatusBlock register
is 1

Value After Reset: 0x0
Exists: Always
Volatile: true

0 TFR R OR of the contents of StatusTfr register
Values:
■ 0x0 (INACTIVE): OR of the contents of StatusTfr register

is 0

■ 0x1 (ACTIVE): OR of the contents of StatusTfr register is
1

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-38 Fields for Register: StatusInt (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 233SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.3 DMAC/Software_Handshake Registers
Software Handshaking Registers. Follow the link for the register to see a detailed description of the register.

Table 5-39 Registers for Address Block: DMAC/Software_Handshake_Registers

Register Offset Description

ReqSrcReg on page 234 0x368 A bit is assigned for each channel in this register.
ReqSrcReg[n] is ignored when software handshaking...

ReqDstReg on page 236 0x370 A bit is assigned for each channel in this register.
ReqDstReg[n] is ignored when software handshaking...

SglRqSrcReg on page 238 0x378 A bit is assigned for each channel in this register.
SglReqSrcReg[n] is ignored when software handshaking...

SglRqDstReg on page 240 0x380 A bit is assigned for each channel in this register.
SglReqDstReg[n] is ignored when software handshaking...

LstSrcReg on page 242 0x388 A bit is assigned for each channel in this register.
LstSrcReg[n] is ignored when software handshaking...

LstDstReg on page 244 0x390 A bit is assigned for each channel in this register.
LstDstReg[n] is ignored when software handshaking...

https://solvnet.synopsys.com
www.designware.com

234 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.3.1 ReqSrcReg

■ Name: Source Software Transaction Request register

■ Description: A bit is assigned for each channel in this register. ReqSrcReg[n] is ignored when
software handshaking is not enabled for the source of channel n.

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the
SRC_REQ_WE field is asserted on the same AHB write transfer, and if the channel is enabled in the
ChEnReg register. For example, writing hex 0101 writes a 1 into ReqSrcReg[0], while ReqSrcReg[7:1]
remains unchanged. Writing hex 00xx leaves ReqSrcReg[7:0] unchanged. This allows software to set
a bit in the ReqSrcReg register without performing a read-modified write operation.

The functionality of this register depends on whether the source is a flow control peripheral or not.
For a description of when the source is not a flow controller, refer to "Software Handshaking
Peripheral Is Not Flow Controller". For a description of when the source is a flow controller, refer to
"Software Handshaking Peripheral Is Flow Controller"

■ Size: 64 bits

■ Offset: 0x368

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

R
eq

S
rc

R
eg

S
R

C
_R

E
Q

_W
E

R
sv

d_
R

eq
S

rc
R

eg

S
R

C
_R

E
Q

Table 5-40 Fields for Register: ReqSrcReg

Bits Name
Memory
Access Description

63:y Rsvd_1_ReqSrcReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 235SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 SRC_REQ_WE W Source Software Transaction Request write enable
Values:

■ 0x0 (DISABLED): Source request write Disable

■ 0x1 (ENABLED): Source request write Enable

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_ReqSrcReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 SRC_REQ R/W Source Software Transaction Request
Values:

■ 0x0 (INACTIVE): Source request is not active

■ 0x1 (ACTIVE): Source request is active

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-40 Fields for Register: ReqSrcReg (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

236 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.3.2 ReqDstReg

■ Name: Destination Software Transaction Request register

■ Description: A bit is assigned for each channel in this register. ReqDstReg[n] is ignored when
software handshaking is not enabled for the source of channel n.

A channel DST_REQ bit is written only if the corresponding channel write enable bit in the
DST_REQ_WE field is asserted on the same AHB write transfer, and if the channel is enabled in the
ChEnReg register.

The functionality of this register depends on whether the destination is a flow control peripheral or
not. For a description of when the destination is not a flow controller, refer to "Software Handshaking
Peripheral Is Not Flow Controller". For a description of when the destination is a flow controller,
refer to "Software Handshaking Peripheral Is Flow Controller".

■ Size: 64 bits

■ Offset: 0x370

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

R
eq

D
st

R
eg

D
S

T
_R

E
Q

_W
E

R
sv

d_
R

eq
D

st
R

eg

D
S

T
_R

E
Q

Table 5-41 Fields for Register: ReqDstReg

Bits Name
Memory
Access Description

63:y Rsvd_1_ReqDstReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 237SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 DST_REQ_WE W Destination Software Transaction Request write enable
Values:

■ 0x0 (DISABLED): Destination request write Disable

■ 0x1 (ENABLED): Destination request write Enable

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_ReqDstReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 DST_REQ R/W Destination Software Transaction Request
Values:

■ 0x0 (INACTIVE): Destination request is not active

■ 0x1 (ACTIVE): Destination request is active

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-41 Fields for Register: ReqDstReg (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

238 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.3.3 SglRqSrcReg

■ Name: Source Single Transaction Request register

■ Description: A bit is assigned for each channel in this register. SglReqSrcReg[n] is ignored when
software handshaking is not enabled for the source of channel n.

A channel SRC_SGLREQ bit is written only if the corresponding channel write enable bit in the
SRC_SGLREQ_WE field is asserted on the same AHB write transfer, and if the channel is enabled in
the ChEnReg register.

The functionality of this register depends on whether the source is a flow control peripheral or not.
For a description of when the source is not a flow controller, refer to "Software Handshaking
Peripheral Is Not Flow Controller". For a description of when the source is a flow controller, refer to
"Software Handshaking Peripheral Is Flow Controller".

■ Size: 64 bits

■ Offset: 0x378

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

S
gl

R
qS

rc
R

eg

S
R

C
_S

G
LR

E
Q

_W
E

R
sv

d_
S

gl
R

qS
rc

R
eg

S
R

C
_S

G
LR

E
Q

Table 5-42 Fields for Register: SglRqSrcReg

Bits Name
Memory
Access Description

63:y Rsvd_1_SglRqSrcReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 239SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 SRC_SGLREQ_WE W Source Single Transaction Request write enable
Values:

■ 0x0 (DISABLED): Single write Disable

■ 0x1 (ENABLED): Single write Enable

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_SglRqSrcReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 SRC_SGLREQ R/W Source Single Transaction Request
Values:

■ 0x0 (INACTIVE): Source request is not active

■ 0x1 (ACTIVE): Source request is active

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-42 Fields for Register: SglRqSrcReg (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

240 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.3.4 SglRqDstReg

■ Name: Destination Single Transaction Request register

■ Description: A bit is assigned for each channel in this register. SglReqDstReg[n] is ignored when
software handshaking is not enabled for the destination of channel n.

A channel DST_SGLREQ bit is written only if the corresponding channel write enable bit in the
DST_SGLREQ_WE field is asserted on the same AHB write transfer, and if the channel is enabled in
the ChEnReg register.

The functionality of this register depends on whether the destination is a flow control peripheral or
not. For a description of when the destination is not a flow controller, refer to "Software Handshaking
Peripheral Is Not Flow Controller". For a description of when the destination is a flow controller,
refer to "Software Handshaking Peripheral Is Flow Controller".

■ Size: 64 bits

■ Offset: 0x380

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

S
gl

R
qD

st
R

eg

D
S

T
_S

G
LR

E
Q

_W
E

R
sv

d_
S

gl
R

qD
st

R
eg

D
S

T
_S

G
LR

E
Q

Table 5-43 Fields for Register: SglRqDstReg

Bits Name
Memory
Access Description

63:y Rsvd_1_SglRqDstReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 241SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 DST_SGLREQ_WE W Destination Single Transaction Request write enable
Values:

■ 0x0 (DISABLED): Destination write Disable

■ 0x1 (ENABLED): Destination write Enable

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_SglRqDstReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 DST_SGLREQ R/W Destination Single Transaction Request
Values:

■ 0x0 (INACTIVE): Destination Single or burst request is
not active

■ 0x1 (ACTIVE): Destination Single or burst request is
active

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-43 Fields for Register: SglRqDstReg (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

242 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.3.5 LstSrcReg

■ Name: Source Last Transaction Request register

■ Description: A bit is assigned for each channel in this register. LstSrcReg[n] is ignored when software
handshaking is not enabled for the source of channel n, or when the source of channel n is not a flow
controller.

A channel LSTSRC bit is written only if the corresponding channel write enable bit in the
LSTSRC_WE field is asserted on the same AHB write transfer, and if the channel is enabled in the
ChEnReg register.

For a description of this register, refer to "Software Handshaking Peripheral Is Flow Controller".

■ Size: 64 bits

■ Offset: 0x388

■ Exists: Always
63

:y

x:
8

7:
y

x:
0

R
sv

d_
1_

Ls
tS

rc
R

eg

LS
T

S
R

C
_W

E

R
sv

d_
Ls

tS
rc

R
eg

LS
T

S
R

C

Table 5-44 Fields for Register: LstSrcReg

Bits Name
Memory
Access Description

63:y Rsvd_1_LstSrcReg R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 243SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 LSTSRC_WE W Source Last Transaction Request write enable
Values:

■ 0x0 (DISABLED): Source last transaction request write
disable

■ 0x1 (ENABLED): Source last transaction request write
enable

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_LstSrcReg R Reserved field- read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 LSTSRC R/W Source Last Transaction Request register
Values:

■ 0x0 (NOT_LAST): Not last transaction in current block

■ 0x1 (LAST): Last transaction in current block

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-44 Fields for Register: LstSrcReg (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

244 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.3.6 LstDstReg

■ Name: Destination Last Transaction Request register

■ Description: A bit is assigned for each channel in this register. LstDstReg[n] is ignored when
software handshaking is not enabled for the destination of channel n or when the destination of
channel n is not a flow controller.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the
LSTDST_WE field is asserted on the same AHB write transfer, and if the channel is enabled in the
ChEnReg register.

For a description of this register, refer to "Software Handshaking Peripheral Is Flow Controller".

■ Size: 64 bits

■ Offset: 0x390

■ Exists: Always
63

:y

x:
8

7:
y

x:
0

R
sv

d_
1_

Ls
tD

st
R

eg

LS
T

D
S

T
_W

E

R
sv

d_
Ls

tD
st

R
eg

LS
T

D
S

T

Table 5-45 Fields for Register: LstDstReg

Bits Name
Memory
Access Description

63:y Rsvd_1_LstDstReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 245SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 LSTDST_WE W Source Last Transaction Request write enable
Values:

■ 0x0 (DISABLED): Destination last transaction request
write disable

■ 0x1 (ENABLED): Destination last transaction request
write enable

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_LstDstReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 LSTDST R/W Destination Last Transaction Request
Values:

■ 0x0 (NOT_LAST): Not last transaction in current block

■ 0x1 (LAST): Last transaction in current block

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-45 Fields for Register: LstDstReg (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

246 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.4 DMAC/Miscellaneous Registers
Miscellaneous Registers. Follow the link for the register to see a detailed description of the register.

Table 5-46 Registers for Address Block: DMAC/Miscellaneous_Registers

Register Offset Description

DmaCfgReg on page 247 0x398 This register is used to enable the DW_ahb_dmac, which
must be done before any channel activity...

ChEnReg on page 248 0x3a0 This is the DW_ahb_dmac Channel Enable Register. If
software needs to set up a new channel, then...

DmaIdReg on page 250 0x3a8 This is the DW_ahb_dmac ID register, which is a read-only
register that reads back the coreConsultant-configured...

DmaTestReg on page 251 0x3b0 This register is used to put the AHB slave interface into test
mode, during which the readback value...

DmaLpTimeoutReg on page 252 0x3b8 This register holds the timeout value of Low Power Counter.
The reset value of the register is...

DMA_COMP_PARAMS_6 on page 253 0x3c8 DMA_COMP_PARAMS_6 is a constant read-only register
that contains encoded information about the component...

DMA_COMP_PARAMS_5 on page 261 0x3d0 DMA_COMP_PARAMS_5 is a constant read-only register
that contains encoded information about the component...

DMA_COMP_PARAMS_4 on page 274 0x3d8 DMA_COMP_PARAMS_4 is a constant read-only register
that contains encoded information about the component...

DMA_COMP_PARAMS_3 on page 287 0x3e0 DMA_COMP_PARAMS_3 is a constant read-only register
that contains encoded information about the component...

DMA_COMP_PARAMS_2 on page 300 0x3e8 DMA_COMP_PARAMS_2 is a constant read-only register
that contains encoded information about the component...

DMA_COMP_PARAMS_1 on page 315 0x3f0 DMA_COMP_PARAMS_1 is a constant read-only register
that contains encoded information about the component...

DmaCompsID on page 329 0x3f8 This is the DW_ahb_dmac Component Version register,
which is a read-only register that specifies...

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 247SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.4.1 DmaCfgReg

■ Name: DW_ahb_dmac Configuration Register

■ Description: This register is used to enable the DW_ahb_dmac, which must be done before any
channel activity can begin.

If the global channel enable bit is cleared while any channel is still active, then DmaCfgReg.DMA_EN
still returns 1 to indicate that there are channels still active until hardware has terminated all activity
on all channels, at which point the DmaCfgReg.DMA_EN bit returns 0. For more information, refer to
"Abnormal Transfer Termination".

■ Size: 64 bits

■ Offset: 0x398

■ Exists: Always

63
:1

0

R
sv

d_
D

m
aC

fg
R

eg

D
M

A
_E

N

Table 5-47 Fields for Register: DmaCfgReg

Bits Name
Memory
Access Description

63:1 Rsvd_DmaCfgReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 DMA_EN R/W DW_ahb_dmac Enable bit.
Values:
■ 0x0 (DISABLED): DW_ahb_dmac Disabled

■ 0x1 (ENABLED): DW_ahb_dmac Enabled

Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

248 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.4.2 ChEnReg

■ Name: DW_ahb_dmac Channel Enable Register

■ Description: This is the DW_ahb_dmac Channel Enable Register. If software needs to set up a new
channel, then it can read this register in order to find out which channels are currently inactive; it can
then enable an inactive channel with the required priority.

All bits of this register are cleared to 0 when the global DW_ahb_dmac channel enable bit,
DmaCfgReg[0], is 0. When the global channel enable bit is 0, then a write to the ChEnReg register is
ignored and a read will always read back 0.

The channel enable bit, ChEnReg.CH_EN, is written only if the corresponding channel write enable
bit, ChEnReg.CH_EN_WE, is asserted on the same AHB write transfer. For example, writing hex
01x1 writes a 1 into ChEnReg[0], while ChEnReg[7:1] remains unchanged. Writing hex 00xx leaves
ChEnReg[7:0] unchanged. Note that a read-modified write is not required.

For information on software disabling a channel by writing 0 to ChEnReg.CH_EN, refer to "Disabling
a Channel Prior to Transfer Completion".

■ Size: 64 bits

■ Offset: 0x3a0

■ Exists: Always

63
:y

x:
8

7:
y

x:
0

R
sv

d_
1_

C
hE

nR
eg

C
H

_E
N

_W
E

R
sv

d_
C

hE
nR

eg

C
H

_E
N

Table 5-48 Fields for Register: ChEnReg

Bits Name
Memory
Access Description

63:y Rsvd_1_ChEnReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS + 8

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 249SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

x:8 CH_EN_WE W Channel enable register
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS + 7

7:y Rsvd_ChEnReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: DMAH_NUM_CHANNELS

x:0 CH_EN R/W Channel Enable. The ChEnReg.CH_EN bit is automatically
cleared by hardware to disable the channel after the last
AMBA transfer of the DMA transfer to the destination has
completed. Software can therefore poll this bit to determine
when this channel is free for a new DMA transfer.
Values:

■ 0x0 (DISABLED): Disable the channel

■ 0x1 (ENABLED): Enable the channel

Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: DMAH_NUM_CHANNELS - 1

Table 5-48 Fields for Register: ChEnReg (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

250 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.4.3 DmaIdReg

■ Name: DW_ahb_dmac ID register

■ Description: This is the DW_ahb_dmac ID register, which is a read-only register that reads back the
coreConsultant-configured hardcoded ID number, DMAH_ID_NUM.

■ Size: 64 bits

■ Offset: 0x3a8

■ Exists: Always

63
:3

2

31
:0

R
sv

d_
D

m
aI

dR
eg

D
M

A
_I

D

Table 5-49 Fields for Register: DmaIdReg

Bits Name
Memory
Access Description

63:32 Rsvd_DmaIdReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always

31:0 DMA_ID R Hardcoded DW_ahb_dmac peripheral ID.
Value After Reset: DMAH_ID_NUM
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 251SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.4.4 DmaTestReg

■ Name: DMA Test registers

■ Description: This register is used to put the AHB slave interface into test mode, during which the
readback value of the writable registers match the value written, assuming the DW_ahb_dmac
configuration has not optimized the same registers. In normal operation, the readback value of some
registers is a function of the DW_ahb_dmac state and does not match the value written.

■ Size: 64 bits

■ Offset: 0x3b0

■ Exists: Always

63
:1

0

R
sv

d_
D

m
aT

es
tR

eg

T
E

S
T

_S
LV

_I
F

Table 5-50 Fields for Register: DmaTestReg

Bits Name
Memory
Access Description

63:1 Rsvd_DmaTestReg R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

0 TEST_SLV_IF R/W DMA Test register
Values:

■ 0x0 (NORMAL_MODE): Puts the AHB slave interface into
Normal mode

■ 0x1 (TEST_MODE): Puts the AHB slave interface into
Test mode. In this mode, the readback value of the
writable registers always matches the values written.

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

252 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.4.5 DmaLpTimeoutReg

■ Name: DMAC Low Power Timeout Register

■ Description: This register holds the timeout value of Low Power Counter. The reset value of the
register is DMAH_LP_TIMEOUT_VALUE. The default reset value can be further modified if
DMAH_HC_LP_TIMEOUT_VALUE = 0. The final programmed value (or the default reset value if
not programmed) determines what is the timeout value the of low power counter.

■ Size: 64 bits

■ Offset: 0x3b8

■ Exists: DMAH_LP_TIMEOUT_WIDTH>2

63
:y

x:
0

R
sv

d_
D

m
aL

pT
im

eo
ut

R
eg

D
M

A
_L

P
_T

IM
E

O
U

T

Table 5-51 Fields for Register: DmaLpTimeoutReg

Bits Name
Memory
Access Description

63:y Rsvd_DmaLpTimeoutReg R Reserved field - read-only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: DMAH_LP_TIMEOUT_WIDTH

x:0 DMA_LP_TIMEOUT * Varies This field holds timeout value of low power counter register.
Value After Reset: DMAH_LP_TIMEOUT_VALUE
Exists: Always
Range Variable[x]: DMAH_LP_TIMEOUT_WIDTH - 1
Memory Access: {(DMAH_HC_LP_TIMEOUT_VALUE==0)
? "read-write" : "read-only"}

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 253SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.4.6 DMA_COMP_PARAMS_6

■ Name: DW_ahb_dmac Component Parameters Register 6

■ Description: DMA_COMP_PARAMS_6 is a constant read-only register that contains encoded
information about the component parameter settings for Channel 7. The reset value depends on
coreConsultant parameter(s).

Note: If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x3c8

■ Exists: DMAH_ADD_ENCODED_PARAMS

63 62
:6

0

59
:5

7

56
:5

4

53
:5

1

50
:4

8

47
:4

6

45 44 43 42 41 40 39 38 37
:3

5

34
:3

2

31
:0

R
sv

d_
1_

D
M

A
_C

O
M

P
_P

A
R

A
M

S
_6

C
H

7_
F

IF
O

_D
E

P
T

H

C
H

7_
S

M
S

C
H

7_
LM

S

C
H

7_
D

M
S

C
H

7_
M

A
X

_M
U

LT
_S

IZ
E

C
H

7_
F

C

C
H

7_
H

C
_L

LP

C
H

7_
C

T
L_

W
B

_E
N

C
H

7_
M

U
LT

I_
B

LK
_E

N

C
H

7_
LO

C
K

_E
N

C
H

7_
S

R
C

_G
A

T
_E

N

C
H

7_
D

S
T

_S
C

A
_E

N

C
H

7_
S

T
A

T
_S

R
C

C
H

7_
S

T
A

T
_D

S
T

C
H

7_
S

T
W

C
H

7_
D

T
W

R
sv

d_
D

M
A

_C
O

M
P

_P
A

R
A

M
S

_6

Table 5-52 Fields for Register: DMA_COMP_PARAMS_6

Bits Name
Memory
Access Description

63 Rsvd_1_DMA_COMP_PARAMS_
6

R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

254 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

62:60 CH7_FIFO_DEPTH R The value of this register is derived from the
DMAH_CH7_FIFO_DEPTH coreConsultant parameter.
Values:

■ 0x0 (FIFO_DEPTH_8): Channel 7 FIFO depth is 8 bytes

■ 0x1 (FIFO_DEPTH_16): Channel 7 FIFO depth is 16
bytes

■ 0x2 (FIFO_DEPTH_32): Channel 7 FIFO depth is 32
bytes

■ 0x3 (FIFO_DEPTH_64): Channel 7 FIFO depth is 64
bytes

■ 0x4 (FIFO_DEPTH_128): Channel 7 FIFO depth is 128
bytes

■ 0x5 (FIFO_DEPTH_256): Channel 7 FIFO depth is 256
bytes

Value After Reset: DMAH_CH7_FIFO_DEPTH_RST
Exists: Always

59:57 CH7_SMS R The value of this register is derived from the
DMAH_CH7_SMS coreConsultant parameter.
Values:
■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface

attached to the source of channel 7

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the source of channel 7

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the source of channel 7

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the source of channel 7

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH7_SMS_RST
Exists: Always

Table 5-52 Fields for Register: DMA_COMP_PARAMS_6 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 255SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

56:54 CH7_LMS R The value of this register is derived from the
DMAH_CH7_LMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the LLP peripherals of channel 7

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the LLP peripherals of channel 7

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the LLP peripherals of channel 7

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the LLP peripherals of channel 7

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH7_LMS_RST
Exists: Always

53:51 CH7_DMS R The value of this register is derived from the
DMAH_CH7_DMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the channel 7 destination

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the channel 7 destination

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the channel 7 destination

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the channel 7 destination

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH7_DMS_RST
Exists: Always

Table 5-52 Fields for Register: DMA_COMP_PARAMS_6 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

256 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

50:48 CH7_MAX_MULT_SIZE R The value of this register is derived from the
DMAH_CH7_MULT_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_MULT_SIZE_4): Maximum value of burst
transaction size that can be programmed for channel 7 is
4

■ 0x1 (MAX_MULT_SIZE_8): Maximum value of burst
transaction size that can be programmed for channel 7 is
8

■ 0x2 (MAX_MULT_SIZE_16): Maximum value of burst
transaction size that can be programmed for channel 7 is
16

■ 0x3 (MAX_MULT_SIZE_32): Maximum value of burst
transaction size that can be programmed for channel 7 is
32

■ 0x4 (MAX_MULT_SIZE_64): Maximum value of burst
transaction size that can be programmed for channel 7 is
64

■ 0x5 (MAX_MULT_SIZE_128): Maximum value of burst
transaction size that can be programmed for channel 7 is
128

■ 0x6 (MAX_MULT_SIZE_256): Maximum value of burst
transaction size that can be programmed for channel 7 is
256

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH7_MAX_MULT_SIZE_RST
Exists: Always

47:46 CH7_FC R The value of this register is derived from the
DMAH_CH7_FC coreConsultant parameter.
Values:

■ 0x0 (FC_DMA): Flow controller is DMA for channel 7

■ 0x1 (FC_SRC): Flow controller is Source for channel 7

■ 0x2 (FC_DST): Flow controller is Destination for channel
7

■ 0x3 (FC_ANY): Flow controller is ANY for channel 7

Value After Reset: DMAH_CH7_FC_RST
Exists: Always

Table 5-52 Fields for Register: DMA_COMP_PARAMS_6 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 257SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

45 CH7_HC_LLP R The value of this register is derived from the
DMAH_CH7_HC_LLP coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Exclude logic to hardcode
Channel 7 LLP register to 0

■ 0x0 (HARDCODED): Hardcode Channel 7 LLP register to
0

Value After Reset: DMAH_CH7_HC_LLP_RST
Exists: Always

44 CH7_CTL_WB_EN R The value of this register is derived from the
DMAH_CH7_CTL_WB_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable control register
writeback after each block transfer on channel 7

■ 0x1 (TRUE): Include logic to enable control register
writeback after each block transfer on channel 7

Value After Reset: DMAH_CH7_CTL_WB_EN_RST
Exists: Always

43 CH7_MULTI_BLK_EN R The value of this register is derived from the
DMAH_CH7_MULTI_BLK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel multi-block

DMA transfers on channel 7

■ 0x1 (TRUE): Include logic to enable channel multi-block
DMA transfers on channel 7

Value After Reset: DMAH_CH7_MULTI_BLK_EN_RST
Exists: Always

42 CH7_LOCK_EN R The value of this register is derived from the
DMAH_CH7_LOCK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel or bus

locking on channel 7

■ 0x1 (TRUE): Include logic to enable channel or bus
locking on channel 7

Value After Reset: DMAH_CH7_LOCK_EN_RST
Exists: Always

Table 5-52 Fields for Register: DMA_COMP_PARAMS_6 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

258 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

41 CH7_SRC_GAT_EN R The value of this register is derived from the
DMAH_CH7_SRC_GAT_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the gather feature
on channel 7

■ 0x1 (TRUE): Include logic to enable the gather feature on
channel 7

Value After Reset: DMAH_CH7_SRC_GAT_EN_RST
Exists: Always

40 CH7_DST_SCA_EN R The value of this register is derived from the
DMAH_CH7_DST_SCA_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the scatter feature
on channel 7

■ 0x1 (TRUE): Include logic to enable the scatter feature on
channel 7

Value After Reset: DMAH_CH7_DST_SCA_EN_RST
Exists: Always

39 CH7_STAT_SRC R The value of this register is derived from the
DMAH_CH7_STAT_SRC coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

source peripheral of channel 7 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
source peripheral of channel 7 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH7_STAT_SRC_RST
Exists: Always

38 CH7_STAT_DST R The value of this register is derived from the
DMAH_CH7_STAT_DST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

destination peripheral of channel 7 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
destination peripheral of channel 7 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH7_STAT_DST_RST
Exists: Always

Table 5-52 Fields for Register: DMA_COMP_PARAMS_6 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 259SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

37:35 CH7_STW R The value of this register is derived from the
DMAH_CH7_STW coreConsultant parameter.
Values:

■ 0x0 (NO_HARDCODE): No hardcode

■ 0x1 (STW_8): Hardcode the channel 7's source transfer
width to 8 bits

■ 0x2 (STW_16): Hardcode the channel 7's source transfer
width to 16 bits

■ 0x3 (STW_32): Hardcode the channel 7's source transfer
width to 32 bits

■ 0x4 (STW_64): Hardcode the channel 7's source transfer
width to 64 bits

■ 0x5 (STW_128): Hardcode the channel 7's source
transfer width to 128 bits

■ 0x6 (STW_256): Hardcode the channel 7's source
transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH7_SRC_TR_RST
Exists: Always

34:32 CH7_DTW R The value of this register is derived from the
DMAH_CH7_DTW coreConsultant parameter.
Values:

■ 0x0 (NO_HARDCODE): NO Hardcode

■ 0x1 (DTW_8): Hardcode the channel 7's destination
transfer width to 8 bits

■ 0x2 (DTW_16): Hardcode the channel 7's destination
transfer width to 16 bits

■ 0x3 (DTW_32): Hardcode the channel 7's destination
transfer width to 32 bits

■ 0x4 (DTW_64): Hardcode the channel 7's destination
transfer width to 64 bits

■ 0x5 (DTW_128): Hardcode the channel 7's destination
transfer width to 128 bits

■ 0x6 (DTW_256): Hardcode the channel 7's destination
transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH7_DST_TR_RST
Exists: Always

Table 5-52 Fields for Register: DMA_COMP_PARAMS_6 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

260 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

31:0 Rsvd_DMA_COMP_PARAMS_6 R Reserved field - read-only
Value After Reset: 0x0
Exists: Always

Table 5-52 Fields for Register: DMA_COMP_PARAMS_6 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 261SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.4.7 DMA_COMP_PARAMS_5

■ Name: DW_ahb_dmac Component Parameters Register 5

■ Description: DMA_COMP_PARAMS_5 is a constant read-only register that contains encoded
information about the component parameter settings for Channel 5 and Channel 6. The reset value
depends on coreConsultant parameter(s).

Note:If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x3d0

■ Exists: DMAH_ADD_ENCODED_PARAMS

63 62
:6

0
59

:5
7

56
:5

4
53

:5
1

50
:4

8
47

:4
6

45 44 43 42 41 40 39 38 37
:3

5
34

:3
2

31 30
:2

8
27

:2
5

24
:2

2
21

:1
9

18
:1

6
15

:1
4

13 12 11 10 9 8 7 6 5:
3

2:
0

R
sv

d_
1_

D
M

A
_C

O
M

P
_P

A
R

A
M

S
_5

C
H

5_
F

IF
O

_D
E

P
T

H
C

H
5_

S
M

S
C

H
5_

LM
S

C
H

5_
D

M
S

C
H

5_
M

A
X

_M
U

LT
_S

IZ
E

C
H

5_
F

C
C

H
5_

H
C

_L
LP

C
H

5_
C

T
L_

W
B

_E
N

C
H

5_
M

U
LT

I_
B

LK
_E

N
C

H
5_

LO
C

K
_E

N
C

H
5_

S
R

C
_G

A
T

_E
N

C
H

5_
D

S
T

_S
C

A
_E

N
C

H
5_

S
T

A
T

_S
R

C
C

H
5_

S
T

A
T

_D
S

T
C

H
5_

S
T

W
C

H
5_

D
T

W
R

sv
d_

D
M

A
_C

O
M

P
_P

A
R

A
M

S
_5

C
H

6_
F

IF
O

_D
E

P
T

H
C

H
6_

S
M

S
C

H
6_

LM
S

C
H

6_
D

M
S

C
H

6_
M

A
X

_M
U

LT
_S

IZ
E

C
H

6_
F

C
C

H
6_

H
C

_L
LP

C
H

6_
C

T
L_

W
B

_E
N

C
H

6_
M

U
LT

I_
B

LK
_E

N
C

H
6_

LO
C

K
_E

N
C

H
6_

S
R

C
_G

A
T

_E
N

C
H

6_
D

S
T

_S
C

A
_E

N
C

H
6_

S
T

A
T

_S
R

C
C

H
6_

S
T

A
T

_D
S

T
C

H
6_

S
T

W
C

H
6_

D
T

W

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5

Bits Name
Memory
Access Description

63 Rsvd_1_DMA_COMP_PARAMS_
5

R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

262 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

62:60 CH5_FIFO_DEPTH R The value of this register is derived from the
DMAH_CH5_FIFO_DEPTH coreConsultant parameter.
Values:

■ 0x0 (FIFO_DEPTH_8): Channel 5 FIFO depth is 8 bytes

■ 0x1 (FIFO_DEPTH_16): Channel 5 FIFO depth is 16
bytes

■ 0x2 (FIFO_DEPTH_32): Channel 5 FIFO depth is 32
bytes

■ 0x3 (FIFO_DEPTH_64): Channel 5 FIFO depth is 64
bytes

■ 0x4 (FIFO_DEPTH_128): Channel 5 FIFO depth is 128
bytes

■ 0x5 (FIFO_DEPTH_256): Channel 5 FIFO depth is 256
bytes

Value After Reset: DMAH_CH5_FIFO_DEPTH_RST
Exists: Always

59:57 CH5_SMS R The value of this register is derived from the
DMAH_CH5_SMS coreConsultant parameter.
Values:
■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface

attached to the source of channel 5

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the source of channel 5

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the source of channel 5

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the source of channel 5

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH5_SMS_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 263SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

56:54 CH5_LMS R The value of this register is derived from the
DMAH_CH5_LMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the LLP peripherals of channel 5

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the LLP peripherals of channel 5

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the LLP peripherals of channel 5

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the LLP peripherals of channel 5

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH5_LMS_RST
Exists: Always

53:51 CH5_DMS R The value of this register is derived from the
DMAH_CH5_DMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the channel 5 destination

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the channel 5 destination

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the channel 5 destination

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the channel 5 destination

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH5_DMS_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

264 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

50:48 CH5_MAX_MULT_SIZE R The value of this register is derived from the
DMAH_CH5_MULT_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_MULT_SIZE_4): Maximum value of burst
transaction size that can be programmed for channel 5 is
4

■ 0x1 (MAX_MULT_SIZE_8): Maximum value of burst
transaction size that can be programmed for channel 5 is
8

■ 0x2 (MAX_MULT_SIZE_16): Maximum value of burst
transaction size that can be programmed for channel 5 is
16

■ 0x3 (MAX_MULT_SIZE_32): Maximum value of burst
transaction size that can be programmed for channel 5 is
32

■ 0x4 (MAX_MULT_SIZE_64): Maximum value of burst
transaction size that can be programmed for channel 5 is
64

■ 0x5 (MAX_MULT_SIZE_128): Maximum value of burst
transaction size that can be programmed for channel 5 is
128

■ 0x6 (MAX_MULT_SIZE_256): Maximum value of burst
transaction size that can be programmed for channel 5 is
256

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH5_MAX_MULT_SIZE_RST
Exists: Always

47:46 CH5_FC R The value of this register is derived from the
DMAH_CH5_FC coreConsultant parameter.
Values:

■ 0x0 (FC_DMA): Flow controller is DMA for channel 5

■ 0x1 (FC_SRC): Flow controller is Source for channel 5

■ 0x2 (FC_DST): Flow controller is Destination for channel
5

■ 0x3 (FC_ANY): Flow controller is ANY for channel 5

Value After Reset: DMAH_CH5_FC_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 265SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

45 CH5_HC_LLP R The value of this register is derived from the
DMAH_CH5_HC_LLP coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Exclude logic to hardcode
Channel 5 LLP register to 0

■ 0x0 (HARDCODED): Hardcode Channel 5 LLP register to
0

Value After Reset: DMAH_CH5_HC_LLP_RST
Exists: Always

44 CH5_CTL_WB_EN R The value of this register is derived from the
DMAH_CH5_CTL_WB_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable control register
writeback after each block transfer on channel 5

■ 0x1 (TRUE): Include logic to enable control register
writeback after each block transfer on channel 5

Value After Reset: DMAH_CH5_CTL_WB_EN_RST
Exists: Always

43 CH5_MULTI_BLK_EN R The value of this register is derived from the
DMAH_CH5_MULTI_BLK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel multi-block

DMA transfers on channel 5

■ 0x1 (TRUE): Include logic to enable channel multi-block
DMA transfers on channel 5

Value After Reset: DMAH_CH5_MULTI_BLK_EN_RST
Exists: Always

42 CH5_LOCK_EN R The value of this register is derived from the
DMAH_CH5_LOCK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel or bus

locking on channel 5

■ 0x1 (TRUE): Include logic to enable channel or bus
locking on channel 5

Value After Reset: DMAH_CH5_LOCK_EN_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

266 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

41 CH5_SRC_GAT_EN R The value of this register is derived from the
DMAH_CH5_SRC_GAT_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the gather feature
on channel 5

■ 0x1 (TRUE): Include logic to enable the gather feature on
channel 5

Value After Reset: DMAH_CH5_SRC_GAT_EN_RST
Exists: Always

40 CH5_DST_SCA_EN R The value of this register is derived from the
DMAH_CH5_DST_SCA_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the scatter feature
on channel 5

■ 0x1 (TRUE): Include logic to enable the scatter feature on
channel 5

Value After Reset: DMAH_CH5_DST_SCA_EN_RST
Exists: Always

39 CH5_STAT_SRC R The value of this register is derived from the
DMAH_CH5_STAT_SRC coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

source peripheral of channel 5 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
source peripheral of channel 5 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH5_STAT_SRC_RST
Exists: Always

38 CH5_STAT_DST R The value of this register is derived from the
DMAH_CH5_STAT_DST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

destination peripheral of channel 5 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
destination peripheral of channel 5 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH5_STAT_DST_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 267SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

37:35 CH5_STW R The value of this register is derived from the
DMAH_CH5_STW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode the channel 5's
source transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode the channel 5's
source transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode the channel 5's
source transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode the channel 5's
source transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode the channel 5's
source transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode the channel 5's
source transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH5_SRC_TR_RST
Exists: Always

34:32 CH5_DTW R The value of this register is derived from the
DMAH_CH5_DTW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode the channel 5's
destination transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode the channel 5's
destination transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode the channel 5's
destination transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode the channel 5's
destination transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode the channel 5's
destination transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode the channel 5's
destination transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH5_DST_TR_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

268 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

31 Rsvd_DMA_COMP_PARAMS_5 R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

30:28 CH6_FIFO_DEPTH R The value of this register is derived from the
DMAH_CH6_FIFO_DEPTH coreConsultant parameter.
Values:

■ 0x0 (IFO_DEPTH_8): Channel 6 FIFO depth is 8 bytes

■ 0x1 (FIFO_DEPTH_16): Channel 6 FIFO depth is 16
bytes

■ 0x2 (FIFO_DEPTH_32): Channel 6 FIFO depth is 32
bytes

■ 0x3 (FIFO_DEPTH_64): Channel 6 FIFO depth is 64
bytes

■ 0x4 (FIFO_DEPTH_128): Channel 6 FIFO depth is 128
bytes

■ 0x5 (FIFO_DEPTH_256): Channel 6 FIFO depth is 256
bytes

Value After Reset: DMAH_CH6_FIFO_DEPTH_RST
Exists: Always

27:25 CH6_SMS R The value of this register is derived from the
DMAH_CH6_SMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the source of channel 6

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the source of channel 6

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the source of channel 6

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the source of channel 6

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH6_SMS_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 269SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

24:22 CH6_LMS R The value of this register is derived from the
DMAH_CH6_LMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the LLP peripherals of channel 6

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the LLP peripherals of channel 6

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the LLP peripherals of channel 6

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the LLP peripherals of channel 6

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH6_LMS_RST
Exists: Always

21:19 CH6_DMS R The value of this register is derived from the
DMAH_CH6_DMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the channel 6 destination

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the channel 6 destination

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the channel 6 destination

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the channel 6 destination

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH6_DMS_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

270 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

18:16 CH6_MAX_MULT_SIZE R The value of this register is derived from the
DMAH_CH6_MULT_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_MULT_SIZE_4): Maximum value of burst
transaction size that can be programmed for channel 6 is
4

■ 0x1 (MAX_MULT_SIZE_8): Maximum value of burst
transaction size that can be programmed for channel 6 is
8

■ 0x2 (MAX_MULT_SIZE_16): Maximum value of burst
transaction size that can be programmed for channel 6 is
16

■ 0x3 (MAX_MULT_SIZE_32): Maximum value of burst
transaction size that can be programmed for channel 6 is
32

■ 0x4 (MAX_MULT_SIZE_64): Maximum value of burst
transaction size that can be programmed for channel 6 is
64

■ 0x5 (MAX_MULT_SIZE_128): Maximum value of burst
transaction size that can be programmed for channel 6 is
128

■ 0x6 (MAX_MULT_SIZE_256): Maximum value of burst
transaction size that can be programmed for channel 6 is
256

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH6_MAX_MULT_SIZE_RST
Exists: Always

15:14 CH6_FC R The value of this register is derived from the
DMAH_CH6_FC coreConsultant parameter.
Values:

■ 0x0 (FC_DMA): Flow controller is DMA for channel 6

■ 0x1 (FC_SRC): Flow controller is Source for channel 6

■ 0x2 (FC_DST): Flow controller is Destination for channel
6

■ 0x3 (FC_ANY): Flow controller is ANY for channel 6

Value After Reset: DMAH_CH6_FC_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 271SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

13 CH6_HC_LLP R The value of this register is derived from the
DMAH_CH6_HC_LLP coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Exclude logic to hardcode
Channel 6 LLP register to 0

■ 0x0 (HARDCODED): Hardcode Channel 6 LLP register to
0

Value After Reset: DMAH_CH6_HC_LLP_RST
Exists: Always

12 CH6_CTL_WB_EN R The value of this register is derived from the
DMAH_CH6_CTL_WB_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable control register
writeback after each block transfer on channel 6

■ 0x1 (TRUE): Include logic to enable control register
writeback after each block transfer on channel 6

Value After Reset: DMAH_CH6_CTL_WB_EN_RST
Exists: Always

11 CH6_MULTI_BLK_EN R The value of this register is derived from the
DMAH_CH6_MULTI_BLK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel multi-block

DMA transfers on channel 6

■ 0x1 (TRUE): Include logic to enable channel multi-block
DMA transfers on channel 6

Value After Reset: DMAH_CH6_MULTI_BLK_EN_RST
Exists: Always

10 CH6_LOCK_EN R The value of this register is derived from the
DMAH_CH6_LOCK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel or bus

locking on channel 6

■ 0x1 (TRUE): Include logic to enable channel or bus
locking on channel 6

Value After Reset: DMAH_CH6_LOCK_EN_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

272 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

9 CH6_SRC_GAT_EN R The value of this register is derived from the
CH6_SRC_GAT_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the gather feature
on channel 6

■ 0x1 (TRUE): Include logic to enable the gather feature on
channel 6

Value After Reset: DMAH_CH6_SRC_GAT_EN_RST
Exists: Always

8 CH6_DST_SCA_EN R The value of this register is derived from the
DMAH_CH6_DST_SCA_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the scatter feature
on channel 6

■ 0x1 (TRUE): Include logic to enable the scatter feature on
channel 6

Value After Reset: DMAH_CH6_DST_SCA_EN_RST
Exists: Always

7 CH6_STAT_SRC R The value of this register is derived from the
DMAH_CH6_STAT_SRC coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

source peripheral of channel 6 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
source peripheral of channel 6 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH6_STAT_SRC_RST
Exists: Always

6 CH6_STAT_DST R The value of this register is derived from the
DMAH_CH6_STAT_DST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

destination peripheral of channel 6 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
destination peripheral of channel 6 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH6_STAT_DST_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 273SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5:3 CH6_STW R The value of this register is derived from the
DMAH_CH6_STW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE): No hardcode

■ 0x1 (TRANS_WIDTH_8): Hardcode the channel 6's
source transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode the channel 6's
source transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode the channel 6's
source transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode the channel 6's
source transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode the channel 6's
source transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode the channel 6's
source transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH6_SRC_TR_RST
Exists: Always

2:0 CH6_DTW R The value of this register is derived from the
DMAH_CH6_DTW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode the channel 6's
destination transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode the channel 6's
destination transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode the channel 6's
destination transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode the channel 6's
destination transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode the channel 6's
destination transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode the channel 6's
destination transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH6_DST_TR_RST
Exists: Always

Table 5-53 Fields for Register: DMA_COMP_PARAMS_5 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

274 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.4.8 DMA_COMP_PARAMS_4

■ Name: DW_ahb_dmac Component Parameters Register 4

■ Description: DMA_COMP_PARAMS_4 is a constant read-only register that contains encoded
information about the component parameter settings for Channel 3 and Channel 4. The reset value
depends on coreConsultant parameter(s).

Note:If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x3d8

■ Exists: DMAH_ADD_ENCODED_PARAMS

63 62
:6

0
59

:5
7

56
:5

4
53

:5
1

50
:4

8
47

:4
6

45 44 43 42 41 40 39 38 37
:3

5
34

:3
2

31 30
:2

8
27

:2
5

24
:2

2
21

:1
9

18
:1

6
15

:1
4

13 12 11 10 9 8 7 6 5:
3

2:
0

R
sv

d_
1_

D
M

A
_C

O
M

P
_P

A
R

A
M

S
_4

C
H

3_
F

IF
O

_D
E

P
T

H
C

H
3_

S
M

S
C

H
3_

LM
S

C
H

3_
D

M
S

C
H

3_
M

A
X

_M
U

LT
_S

IZ
E

C
H

3_
F

C
C

H
3_

H
C

_L
LP

C
H

3_
C

T
L_

W
B

_E
N

C
H

3_
M

U
LT

I_
B

LK
_E

N
C

H
3_

LO
C

K
_E

N
C

H
3_

S
R

C
_G

A
T

_E
N

C
H

3_
D

S
T

_S
C

A
_E

N
C

H
3_

S
T

A
T

_S
R

C
C

H
3_

S
T

A
T

_D
S

T
C

H
3_

S
T

W
C

H
3_

D
T

W
R

sv
d_

D
M

A
_C

O
M

P
_P

A
R

A
M

S
_4

C
H

4_
F

IF
O

_D
E

P
T

H
C

H
4_

S
M

S
C

H
4_

LM
S

C
H

4_
D

M
S

C
H

4_
M

A
X

_M
U

LT
_S

IZ
E

C
H

4_
F

C
C

H
4_

H
C

_L
LP

C
H

4_
C

T
L_

W
B

_E
N

C
H

4_
M

U
LT

I_
B

LK
_E

N
C

H
4_

LO
C

K
_E

N
C

H
4_

S
R

C
_G

A
T

_E
N

C
H

4_
D

S
T

_S
C

A
_E

N
C

H
4_

S
T

A
T

_S
R

C
C

H
4_

S
T

A
T

_D
S

T
C

H
4_

S
T

W
C

H
4_

D
T

W

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4

Bits Name
Memory
Access Description

63 Rsvd_1_DMA_COMP_PARAMS_
4

R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 275SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

62:60 CH3_FIFO_DEPTH R The value of this register is derived from the
DMAH_CH3_FIFO_DEPTH coreConsultant parameter.
Values:

■ 0x0 (FIFO_DEPTH_8): Channel 3 FIFO depth is 8 bytes

■ 0x1 (FIFO_DEPTH_16): Channel 3 FIFO depth is 16
bytes

■ 0x2 (FIFO_DEPTH_32): Channel 3 FIFO depth is 32
bytes

■ 0x3 (FIFO_DEPTH_64): Channel 3 FIFO depth is 64
bytes

■ 0x4 (FIFO_DEPTH_128): Channel 3 FIFO depth is 128
bytes

■ 0x5 (FIFO_DEPTH_256): Channel 3 FIFO depth is 256
bytes

Value After Reset: DMAH_CH3_FIFO_DEPTH_RST
Exists: Always

59:57 CH3_SMS R The value of this register is derived from the
DMAH_CH3_SMS coreConsultant parameter.
Values:
■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface

attached to the source of channel 3

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the source of channel 3

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the source of channel 3

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the source of channel 3

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH3_SMS_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

276 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

56:54 CH3_LMS R The value of this register is derived from the
DMAH_CH3_LMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the LLP peripherals of channel 3

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the LLP peripherals of channel 3

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the LLP peripherals of channel 3

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the LLP peripherals of channel 3

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH3_LMS_RST
Exists: Always

53:51 CH3_DMS R The value of this register is derived from the
DMAH_CH3_DMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the channel 3 destination

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the channel 3 destination

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the channel 3 destination

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the channel 3 destination

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH3_DMS_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 277SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

50:48 CH3_MAX_MULT_SIZE R The value of this register is derived from the
DMAH_CH3_MULT_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_MULT_SIZE_4): Maximum value of burst
transaction size that can be programmed for channel 3 is
4

■ 0x1 (MAX_MULT_SIZE_8): Maximum value of burst
transaction size that can be programmed for channel 3 is
8

■ 0x2 (MAX_MULT_SIZE_16): Maximum value of burst
transaction size that can be programmed for channel 3 is
16

■ 0x3 (MAX_MULT_SIZE_32): Maximum value of burst
transaction size that can be programmed for channel 3 is
32

■ 0x4 (MAX_MULT_SIZE_64): Maximum value of burst
transaction size that can be programmed for channel 3 is
64

■ 0x5 (MAX_MULT_SIZE_128): Maximum value of burst
transaction size that can be programmed for channel 3 is
128

■ 0x6 (MAX_MULT_SIZE_256): Maximum value of burst
transaction size that can be programmed for channel 3 is
256

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH3_MAX_MULT_SIZE_RST
Exists: Always

47:46 CH3_FC R The value of this register is derived from the
DMAH_CH3_FC coreConsultant parameter.
Values:

■ 0x0 (FC_DMA): Flow controller is DMA for channel 3

■ 0x1 (FC_SRC): Flow controller is Source for channel 3

■ 0x2 (FC_DST): Flow controller is Destination for channel
3

■ 0x3 (FC_ANY): Flow controller is ANY for channel 3

Value After Reset: DMAH_CH3_FC_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

278 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

45 CH3_HC_LLP R The value of this register is derived from the
DMAH_CH3_HC_LLP coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Exclude logic to hardcode
Channel 3 LLP register to 0

■ 0x0 (HARDCODED): Hardcode Channel 3 LLP register to
0

Value After Reset: DMAH_CH3_HC_LLP_RST
Exists: Always

44 CH3_CTL_WB_EN R The value of this register is derived from the
DMAH_CH3_CTL_WB_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable control register
writeback after each block transfer on channel 3

■ 0x1 (TRUE): Include logic to enable control register
writeback after each block transfer on channel 3

Value After Reset: DMAH_CH3_CTL_WB_EN_RST
Exists: Always

43 CH3_MULTI_BLK_EN R The value of this register is derived from the
DMAH_CH3_MULTI_BLK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel multi-block

DMA transfers on channel 3

■ 0x1 (TRUE): Include logic to enable channel multi-block
DMA transfers on channel 3

Value After Reset: DMAH_CH3_MULTI_BLK_EN_RST
Exists: Always

42 CH3_LOCK_EN R The value of this register is derived from the
DMAH_CH3_LOCK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel or bus

locking on channel 3

■ 0x1 (TRUE): Include logic to enable channel or bus
locking on channel 3

Value After Reset: DMAH_CH3_LOCK_EN_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 279SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

41 CH3_SRC_GAT_EN R The value of this register is derived from the
DMAH_CH3_SRC_GAT_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the gather feature
on channel 3

■ 0x1 (TRUE): Include logic to enable the gather feature on
channel 3

Value After Reset: DMAH_CH3_SRC_GAT_EN_RST
Exists: Always

40 CH3_DST_SCA_EN R The value of this register is derived from the
DMAH_CH3_DST_SCA_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the scatter feature
on channel 3

■ 0x1 (TRUE): Include logic to enable the scatter feature on
channel 3

Value After Reset: DMAH_CH3_DST_SCA_EN_RST
Exists: Always

39 CH3_STAT_SRC R The value of this register is derived from the
DMAH_CH3_STAT_SRC coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

source peripheral of channel 3 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
source peripheral of channel 3 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH3_STAT_SRC_RST
Exists: Always

38 CH3_STAT_DST R The value of this register is derived from the
DMAH_CH3_STAT_DST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

destination peripheral of channel 3 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
destination peripheral of channel 3 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH3_STAT_DST_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

280 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

37:35 CH3_STW R The value of this register is derived from the
DMAH_CH3_STW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode the channel 3's
source transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode the channel 3's
source transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode the channel 3's
source transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode the channel 3's
source transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode the channel 3's
source transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode the channel 3's
source transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH3_SRC_TR_RST
Exists: Always

34:32 CH3_DTW R The value of this register is derived from the
DMAH_CH3_DTW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode the channel 3's
destination transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode the channel 3's
destination transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode the channel 3's
destination transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode the channel 3's
destination transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode the channel 3's
destination transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode the channel 3's
destination transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH3_DST_TR_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 281SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

31 Rsvd_DMA_COMP_PARAMS_4 R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

30:28 CH4_FIFO_DEPTH R The value of this register is derived from the
DMAH_CH4_FIFO_DEPTH coreConsultant parameter.
Values:

■ 0x0 (FIFO_DEPTH_8): Channel 4 FIFO depth is 8 bytes

■ 0x1 (FIFO_DEPTH_16): Channel 4 FIFO depth is 16
bytes

■ 0x2 (FIFO_DEPTH_32): Channel 4 FIFO depth is 32
bytes

■ 0x3 (FIFO_DEPTH_64): Channel 4 FIFO depth is 64
bytes

■ 0x4 (FIFO_DEPTH_128): Channel 4 FIFO depth is 128
bytes

■ 0x5 (FIFO_DEPTH_256): Channel 4 FIFO depth is 256
bytes

Value After Reset: DMAH_CH4_FIFO_DEPTH_RST
Exists: Always

27:25 CH4_SMS R The value of this register is derived from the
DMAH_CH4_SMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the source of channel 4

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the source of channel 4

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the source of channel 4

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the source of channel 4

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH4_SMS_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

282 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

24:22 CH4_LMS R The value of this register is derived from the
DMAH_CH4_LMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the LLP peripherals of channel 4

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the LLP peripherals of channel 4

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the LLP peripherals of channel 4

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the LLP peripherals of channel 4

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH4_LMS_RST
Exists: Always

21:19 CH4_DMS R The value of this register is derived from the
DMAH_CH4_DMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the channel 4 destination

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the channel 4 destination

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the channel 4 destination

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the channel 4 destination

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH4_DMS_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 283SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

18:16 CH4_MAX_MULT_SIZE R The value of this register is derived from the
DMAH_CH4_MULT_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_MULT_SIZE_4): Maximum value of burst
transaction size that can be programmed for channel 4 is
4

■ 0x1 (MAX_MULT_SIZE_8): Maximum value of burst
transaction size that can be programmed for channel 4 is
8

■ 0x2 (MAX_MULT_SIZE_16): Maximum value of burst
transaction size that can be programmed for channel 4 is
16

■ 0x3 (MAX_MULT_SIZE_32): Maximum value of burst
transaction size that can be programmed for channel 4 is
32

■ 0x4 (MAX_MULT_SIZE_64): Maximum value of burst
transaction size that can be programmed for channel 4 is
64

■ 0x5 (MAX_MULT_SIZE_128): Maximum value of burst
transaction size that can be programmed for channel 4 is
128

■ 0x6 (MAX_MULT_SIZE_256): Maximum value of burst
transaction size that can be programmed for channel 4 is
256

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH4_MAX_MULT_SIZE_RST
Exists: Always

15:14 CH4_FC R The value of this register is derived from the
DMAH_CH4_FC coreConsultant parameter.
Values:

■ 0x0 (FC_DMA): Flow controller is DMA for channel 4

■ 0x1 (FC_SRC): Flow controller is Source for channel 4

■ 0x2 (FC_DST): Flow controller is Destination for channel
4

■ 0x3 (FC_ANY): Flow controller is ANY for channel 4

Value After Reset: DMAH_CH4_FC_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

284 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

13 CH4_HC_LLP R The value of this register is derived from the
DMAH_CH4_HC_LLP coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Exclude logic to hardcode
Channel 4 LLP register to 0

■ 0x0 (HARDCODED): Hardcode Channel 4 LLP register to
0

Value After Reset: DMAH_CH4_HC_LLP_RST
Exists: Always

12 CH4_CTL_WB_EN R The value of this register is derived from the
DMAH_CH4_CTL_WB_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable control register
writeback after each block transfer on channel 4

■ 0x1 (TRUE): Include logic to enable control register
writeback after each block transfer on channel 4

Value After Reset: DMAH_CH4_CTL_WB_EN_RST
Exists: Always

11 CH4_MULTI_BLK_EN R The value of this register is derived from the
DMAH_CH4_MULTI_BLK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel multi-block

DMA transfers on channel 4

■ 0x1 (TRUE): Include logic to enable channel multi-block
DMA transfers on channel 4

Value After Reset: DMAH_CH4_MULTI_BLK_EN_RST
Exists: Always

10 CH4_LOCK_EN R The value of this register is derived from the
DMAH_CH4_LOCK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel or bus

locking on channel 4

■ 0x1 (TRUE): Include logic to enable channel or bus
locking on channel 4

Value After Reset: DMAH_CH4_LOCK_EN_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 285SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

9 CH4_SRC_GAT_EN R The value of this register is derived from the
DMAH_CH4_SRC_GAT_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the gather feature
on channel 4

■ 0x1 (TRUE): Include logic to enable the gather feature on
channel 4

Value After Reset: DMAH_CH4_SRC_GAT_EN_RST
Exists: Always

8 CH4_DST_SCA_EN R The value of this register is derived from the
DMAH_CH4_DST_SCA_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the scatter feature
on channel 4

■ 0x1 (TRUE): Include logic to enable the scatter feature on
channel 4

Value After Reset: DMAH_CH4_DST_SCA_EN_RST
Exists: Always

7 CH4_STAT_SRC R The value of this register is derived from the
DMAH_CH4_STAT_SRC coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

source peripheral of channel 4 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
source peripheral of channel 4 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH4_STAT_SRC_RST
Exists: Always

6 CH4_STAT_DST R The value of this register is derived from the
DMAH_CH4_STAT_DST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

destination peripheral of channel 4 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
destination peripheral of channel 4 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH4_STAT_DST_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

286 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5:3 CH4_STW R The value of this register is derived from the
DMAH_CH4_STW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode the channel 4's
source transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode the channel 4's
source transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode the channel 4's
source transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode the channel 4's
source transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode the channel 4's
source transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode the channel 4's
source transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH4_SRC_TR_RST
Exists: Always

2:0 CH4_DTW R The value of this register is derived from the
DMAH_CH4_DTW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode the channel 4's
destination transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode the channel 4's
destination transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode the channel 4's
destination transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode the channel 4's
destination transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode the channel 4's
destination transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode the channel 4's
destination transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH4_DST_TR_RST
Exists: Always

Table 5-54 Fields for Register: DMA_COMP_PARAMS_4 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 287SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.4.9 DMA_COMP_PARAMS_3

■ Name: DW_ahb_dmac Component Parameters Register 3

■ Description: DMA_COMP_PARAMS_3 is a constant read-only register that contains encoded
information about the component parameter settings for Channel 1 and Channel 2. The reset value
depends on coreConsultant parameter(s).

Note:If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x3e0

■ Exists: DMAH_ADD_ENCODED_PARAMS

63 62
:6

0
59

:5
7

56
:5

4
53

:5
1

50
:4

8
47

:4
6

45 44 43 42 41 40 39 38 37
:3

5
34

:3
2

31 30
:2

8
27

:2
5

24
:2

2
21

:1
9

18
:1

6
15

:1
4

13 12 11 10 9 8 7 6 5:
3

2:
0

R
sv

d_
1_

D
M

A
_C

O
M

P
_P

A
R

A
M

S
_3

C
H

1_
F

IF
O

_D
E

P
T

H
C

H
1_

S
M

S
C

H
1_

LM
S

C
H

1_
D

M
S

C
H

1_
M

A
X

_M
U

LT
_S

IZ
E

C
H

1_
F

C
C

H
1_

H
C

_L
LP

C
H

1_
C

T
L_

W
B

_E
N

C
H

1_
M

U
LT

I_
B

LK
_E

N
C

H
1_

LO
C

K
_E

N
C

H
1_

S
R

C
_G

A
T

_E
N

C
H

1_
D

S
T

_S
C

A
_E

N
C

H
1_

S
T

A
T

_S
R

C
C

H
1_

S
T

A
T

_D
S

T
C

H
1_

S
T

W
C

H
1_

D
T

W
R

sv
d_

D
M

A
_C

O
M

P
_P

A
R

A
M

S
_3

C
H

2_
F

IF
O

_D
E

P
T

H
C

H
2_

S
M

S
C

H
2_

LM
S

C
H

2_
D

M
S

C
H

2_
M

A
X

_M
U

LT
_S

IZ
E

C
H

2_
F

C
C

H
2_

H
C

_L
LP

C
H

2_
C

T
L_

W
B

_E
N

C
H

2_
M

U
LT

I_
B

LK
_E

N
C

H
2_

LO
C

K
_E

N
C

H
2_

S
R

C
_G

A
T

_E
N

C
H

2_
D

S
T

_S
C

A
_E

N
C

H
2_

S
T

A
T

_S
R

C
C

H
2_

S
T

A
T

_D
S

T
C

H
2_

S
T

W
C

H
2_

D
T

W

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3

Bits Name
Memory
Access Description

63 Rsvd_1_DMA_COMP_PARAMS_
3

R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

288 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

62:60 CH1_FIFO_DEPTH R The value of this register is derived from the
DMAH_CH1_FIFO_DEPTH coreConsultant parameter.
Values:

■ 0x0 (FIFO_DEPTH_8): Channel 1 FIFO depth is 8 bytes

■ 0x1 (FIFO_DEPTH_16): Channel 1 FIFO depth is 16
bytes

■ 0x2 (FIFO_DEPTH_32): Channel 1 FIFO depth is 32
bytes

■ 0x3 (FIFO_DEPTH_64): Channel 1 FIFO depth is 64
bytes

■ 0x4 (FIFO_DEPTH_128): Channel 1 FIFO depth is 128
bytes

■ 0x5 (FIFO_DEPTH_256): Channel 1 FIFO depth is 256
bytes

Value After Reset: DMAH_CH1_FIFO_DEPTH_RST
Exists: Always

59:57 CH1_SMS R The value of this register is derived from the
DMAH_CH1_SMS coreConsultant parameter.
Values:
■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface

attached to the source of channel 1

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the source of channel 1

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the source of channel 1

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the source of channel 1

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH1_SMS_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 289SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

56:54 CH1_LMS R The value of this register is derived from the
DMAH_CH1_LMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the LLP peripherals of channel 1

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the LLP peripherals of channel 1

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the LLP peripherals of channel 1

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the LLP peripherals of channel 1

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH1_LMS_RST
Exists: Always

53:51 CH1_DMS R The value of this register is derived from the
DMAH_CH1_DMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the channel 1 destination

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the channel 1 destination

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the channel 1 destination

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the channel 1 destination

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH1_DMS_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

290 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

50:48 CH1_MAX_MULT_SIZE R The value of this register is derived from the
DMAH_CH1_MULT_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_MULT_SIZE_4): Maximum value of burst
transaction size that can be programmed for channel 1 is
4

■ 0x1 (MAX_MULT_SIZE_8): Maximum value of burst
transaction size that can be programmed for channel 1 is
8

■ 0x2 (MAX_MULT_SIZE_16): Maximum value of burst
transaction size that can be programmed for channel 1 is
16

■ 0x3 (MAX_MULT_SIZE_32): Maximum value of burst
transaction size that can be programmed for channel 1 is
32

■ 0x4 (MAX_MULT_SIZE_64): Maximum value of burst
transaction size that can be programmed for channel 1 is
64

■ 0x5 (MAX_MULT_SIZE_128): Maximum value of burst
transaction size that can be programmed for channel 1 is
128

■ 0x6 (MAX_MULT_SIZE_256): Maximum value of burst
transaction size that can be programmed for channel 1 is
256

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH1_MAX_MULT_SIZE_RST
Exists: Always

47:46 CH1_FC R The value of this register is derived from the
DMAH_CH1_FC coreConsultant parameter.
Values:

■ 0x0 (FC_DMA): Flow controller is DMA for channel 1

■ 0x1 (FC_SRC): Flow controller is Source for channel 1

■ 0x2 (FC_DST): Flow controller is Destination for channel
1

■ 0x3 (FC_ANY): Flow controller is ANY for channel 1

Value After Reset: DMAH_CH1_FC_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 291SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

45 CH1_HC_LLP R The value of this register is derived from the
DMAH_CH1_HC_LLP coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Exclude logic to hardcode
Channel 1 LLP register to 0

■ 0x0 (HARDCODED): Hardcode Channel 1 LLP register to
0

Value After Reset: DMAH_CH1_HC_LLP_RST
Exists: Always

44 CH1_CTL_WB_EN R The value of this register is derived from the
DMAH_CH1_CTL_WB_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable control register
writeback after each block transfer on channel 1

■ 0x1 (TRUE): Include logic to enable control register
writeback after each block transfer on channel 1

Value After Reset: DMAH_CH1_CTL_WB_EN_RST
Exists: Always

43 CH1_MULTI_BLK_EN R The value of this register is derived from the
DMAH_CH1_MULTI_BLK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel multi-block

DMA transfers on channel 1

■ 0x1 (TRUE): Include logic to enable channel multi-block
DMA transfers on channel 1

Value After Reset: DMAH_CH1_MULTI_BLK_EN_RST
Exists: Always

42 CH1_LOCK_EN R The value of this register is derived from the
DMAH_CH1_LOCK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel or bus

locking on channel 1

■ 0x1 (TRUE): Include logic to enable channel or bus
locking on channel 1

Value After Reset: DMAH_CH1_LOCK_EN_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

292 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

41 CH1_SRC_GAT_EN R The value of this register is derived from the
DMAH_CH1_SRC_GAT_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the gather feature
on channel 1

■ 0x1 (TRUE): Include logic to enable the gather feature on
channel 1

Value After Reset: DMAH_CH1_SRC_GAT_EN_RST
Exists: Always

40 CH1_DST_SCA_EN R The value of this register is derived from the
DMAH_CH1_DST_SCA_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the scatter feature
on channel 1

■ 0x1 (TRUE): Include logic to enable the scatter feature on
channel 1

Value After Reset: DMAH_CH1_DST_SCA_EN_RST
Exists: Always

39 CH1_STAT_SRC R The value of this register is derived from the
DMAH_CH1_STAT_SRC coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

source peripheral of channel 1 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
source peripheral of channel 1 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH1_STAT_SRC_RST
Exists: Always

38 CH1_STAT_DST R The value of this register is derived from the
DMAH_CH1_STAT_DST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

destination peripheral of channel 1 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
destination peripheral of channel 1 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH1_STAT_DST_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 293SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

37:35 CH1_STW R The value of this register is derived from the
DMAH_CH1_STW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode channel 1's source
transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode channel 1's source
transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode channel 1's source
transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode channel 1's source
transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode channel 1's
source transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode channel 1's
source transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH1_SRC_TR_RST
Exists: Always

34:32 CH1_DTW R The value of this register is derived from the
DMAH_CH1_DTW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode channel 1's
destination transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode channel 1's
destination transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode channel 1's
destination transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode channel 1's
destination transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode channel 1's
destination transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode channel 1's
destination transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH1_DST_TR_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

294 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

31 Rsvd_DMA_COMP_PARAMS_3 R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

30:28 CH2_FIFO_DEPTH R The value of this register is derived from the
DMAH_CH2_FIFO_DEPTH coreConsultant parameter.
Values:

■ 0x0 (FIFO_DEPTH_8): Channel 2 FIFO depth is 8 bytes

■ 0x1 (FIFO_DEPTH_16): Channel 2 FIFO depth is 16
bytes

■ 0x2 (FIFO_DEPTH_32): Channel 2 FIFO depth is 32
bytes

■ 0x3 (FIFO_DEPTH_64): Channel 2 FIFO depth is 64
bytes

■ 0x4 (FIFO_DEPTH_128): Channel 2 FIFO depth is 128
bytes

■ 0x5 (FIFO_DEPTH_256): Channel 2 FIFO depth is 256
bytes

Value After Reset: DMAH_CH2_FIFO_DEPTH_RST
Exists: Always

27:25 CH2_SMS R The value of this register is derived from the
DMAH_CH2_SMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the source of channel 2

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the source of channel 2

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the source of channel 2

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the source of channel 2

■ 0x4 (PROGRAMMALE): Programmable

Value After Reset: DMAH_CH2_SMS_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 295SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

24:22 CH2_LMS R The value of this register is derived from the
DMAH_CH2_LMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the LLP peripherals of channel 2

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the LLP peripherals of channel 2

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the LLP peripherals of channel 2

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the LLP peripherals of channel 2

■ 0x4 (PROGRAMMALE): Programmable

Value After Reset: DMAH_CH2_LMS_RST
Exists: Always

21:19 CH2_DMS R The value of this register is derived from the
DMAH_CH2_DMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the channel 2 destination

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the channel 2 destination

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the channel 2 destination

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the channel 2 destination

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH2_DMS_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

296 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

18:16 CH2_MAX_MULT_SIZE R The value of this register is derived from the
DMAH_CH2_MULT_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_MULT_SIZE_4): Maximum value of burst
transaction size that can be programmed for channel 2 is
4

■ 0x1 (MAX_MULT_SIZE_8): Maximum value of burst
transaction size that can be programmed for channel 2 is
8

■ 0x2 (MAX_MULT_SIZE_16): Maximum value of burst
transaction size that can be programmed for channel 2 is
16

■ 0x3 (MAX_MULT_SIZE_32): Maximum value of burst
transaction size that can be programmed for channel 2 is
32

■ 0x4 (MAX_MULT_SIZE_64): Maximum value of burst
transaction size that can be programmed for channel 2 is
64

■ 0x5 (MAX_MULT_SIZE_128): Maximum value of burst
transaction size that can be programmed for channel 2 is
128

■ 0x6 (MAX_MULT_SIZE_256): Maximum value of burst
transaction size that can be programmed for channel 2 is
256

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH2_MAX_MULT_SIZE_RST
Exists: Always

15:14 CH2_FC R The value of this register is derived from the
DMAH_CH2_FC coreConsultant parameter.
Values:

■ 0x0 (FC_DMA): Flow controller is DMA for channel 2

■ 0x1 (FC_SRC): Flow controller is Source for channel 2

■ 0x2 (FC_DST): Flow controller is Destination for channel
2

■ 0x3 (FC_ANY): Flow controller is ANY for channel 2

Value After Reset: DMAH_CH2_FC_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 297SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

13 CH2_HC_LLP R The value of this register is derived from the
DMAH_CH2_HC_LLP coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Exclude logic to hardcode
Channel 2 LLP register to 0

■ 0x0 (HARDCODED): Hardcode Channel 2 LLP register to
0

Value After Reset: DMAH_CH2_HC_LLP_RST
Exists: Always

12 CH2_CTL_WB_EN R The value of this register is derived from the
DMAH_CH2_CTL_WB_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable control register
writeback after each block transfer on channel 2

■ 0x1 (TRUE): Include logic to enable control register
writeback after each block transfer on channel 2

Value After Reset: DMAH_CH2_CTL_WB_EN_RST
Exists: Always

11 CH2_MULTI_BLK_EN R The value of this register is derived from the
DMAH_CH2_MULTI_BLK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel multi-block

DMA transfers on channel 2

■ 0x1 (TRUE): Include logic to enable channel multi-block
DMA transfers on channel 2

Value After Reset: DMAH_CH2_MULTI_BLK_EN_RST
Exists: Always

10 CH2_LOCK_EN R The value of this register is derived from the
DMAH_CH2_LOCK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel or bus

locking on channel 2

■ 0x1 (TRUE): Include logic to enable channel or bus
locking on channel 2

Value After Reset: DMAH_CH2_LOCK_EN_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

298 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

9 CH2_SRC_GAT_EN R The value of this register is derived from the
DMAH_CH2_SRC_GAT_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the gather feature
on channel 2

■ 0x1 (TRUE): Include logic to enable the gather feature on
channel 2

Value After Reset: DMAH_CH2_SRC_GAT_EN_RST
Exists: Always

8 CH2_DST_SCA_EN R The value of this register is derived from the
DMAH_CH2_DST_SCA_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the scatter feature
on channel 2

■ 0x1 (TRUE): Include logic to enable the scatter feature on
channel 2

Value After Reset: DMAH_CH2_DST_SCA_EN_RST
Exists: Always

7 CH2_STAT_SRC R The value of this register is derived from the
DMAH_CH2_STAT_SRC coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

source peripheral of channel 2 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
source peripheral of channel 2 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH2_STAT_SRC_RST
Exists: Always

6 CH2_STAT_DST R The value of this register is derived from the
DMAH_CH2_STAT_DST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

destination peripheral of channel 2 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
destination peripheral of channel 2 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH2_STAT_DST_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 299SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5:3 CH2_STW R The value of this register is derived from the
DMAH_CH2_STW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode channel 2's source
transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode channel 2's source
transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode channel 2's source
transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode channel 2's source
transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode channel 2's
source transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode channel 2's
source transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH2_SRC_TR_RST
Exists: Always

2:0 CH2_DTW R The value of this register is derived from the
DMAH_CH2_DTW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode channel 2's
destination transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode channel 2's
destination transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode channel 2's
destination transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode channel 2's
destination transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode channel 2's
destination transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode channel 2's
destination transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH2_DST_TR_RST
Exists: Always

Table 5-55 Fields for Register: DMA_COMP_PARAMS_3 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

300 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5.4.10 DMA_COMP_PARAMS_2

■ Name: DW_ahb_dmac Component Parameters Register 2

■ Description: DMA_COMP_PARAMS_2 is a constant read-only register that contains encoded
information about the component parameter settings. The reset value depends on coreConsultant
parameter(s).

Note:If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x3e8

■ Exists: DMAH_ADD_ENCODED_PARAMS

63
:6

0

59
:5

6

55
:5

2

51
:4

8

47
:4

4

43
:4

0

39
:3

6

35
:3

2

31 30
:2

8

27
:2

5

24
:2

2

21
:1

9

18
:1

6

15
:1

4

13 12 11 10 9 8 7 6 5:
3

2:
0

C
H

7_
M

U
LT

I_
B

LK
_T

Y
P

E

C
H

6_
M

U
LT

I_
B

LK
_T

Y
P

E

C
H

5_
M

U
LT

I_
B

LK
_T

Y
P

E

C
H

4_
M

U
LT

I_
B

LK
_T

Y
P

E

C
H

3_
M

U
LT

I_
B

LK
_T

Y
P

E

C
H

2_
M

U
LT

I_
B

LK
_T

Y
P

E

C
H

1_
M

U
LT

I_
B

LK
_T

Y
P

E

C
H

O
_M

U
LT

I_
B

LK
_T

Y
P

E

R
sv

d_
D

M
A

_C
O

M
P

_P
A

R
A

M
S

_2

C
H

0_
F

IF
O

_D
E

P
T

H

C
H

0_
S

M
S

C
H

0_
LM

S

C
H

0_
D

M
S

C
H

0_
M

A
X

_M
U

LT
_S

IZ
E

C
H

0_
F

C

C
H

0_
H

C
_L

LP

C
H

0_
C

T
L_

W
B

_E
N

C
H

0_
M

U
LT

I_
B

LK
_E

N

C
H

0_
LO

C
K

_E
N

C
H

0_
S

R
C

_G
A

T
_E

N

C
H

0_
D

S
T

_S
C

A
_E

N

C
H

0_
S

T
A

T
_S

R
C

C
H

0_
S

T
A

T
_D

S
T

C
H

0_
S

T
W

C
H

0_
D

T
W

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 301SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2

Bits Name
Memory
Access Description

63:60 CH7_MULTI_BLK_TYPE R The values of these bit fields are derived from the
DMAH_CH7_MULTI_BLK_TYPE coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Allow all types of multi-support

■ 0x1 (CONT_RELOAD): Allow only multi-block transfers
where SAR7 is contiguous; DAR and CTL are reloaded
from their initial values

■ 0x2 (RELOAD_CONT): Allow only multi-block transfers
where SAR7 and CTL7 are reloaded from their initial
values; DAR7 is contiguous

■ 0x3 (RELOAD_RELOAD): Allow only multi-block transfers
where SAR7, DAR7,and CTL7 are reloaded from their
initial values

■ 0x4 (CONT_LLP): Allow only multi-block transfers where
SAR7 is contiguous;DAR7, CTL7, and LLP7 are loaded
from the next linked list item

■ 0x5 (RELOAD_LLP): Allow only multi-block transfers
where SAR7 is reloaded from its initial value; DAR7,
CTL7, and LLP7,are loaded from the next linked list item

■ 0x6 (CNT_LLP): Allow only multi-block transfers where
SAR7, CTL7, and LLP7 are loaded from the next linked
list item; DARx is contiguous

■ 0x7 (LLP_RELOAD): Allow only multi-block transfers
where SAR7, CTL7, and LLP7,are loaded from the next
linked list item; DARx is reloaded from its initial values.

■ 0x8 (LLP_LLP): Allow only multi-block transfers where
SAR7, DAR7, CTL7, and LLP7 are loaded from the next
linked list item.

Value After Reset: DMAH_CH7_MULTI_BLK_TYPE_RST
Exists: Always

https://solvnet.synopsys.com
www.designware.com

302 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

59:56 CH6_MULTI_BLK_TYPE R The values of these bit fields are derived from the
DMAH_CH6_MULTI_BLK_TYPE coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Allow all types of multi-support

■ 0x1 (CONT_RELOAD): Allow only multi-block transfers
where SAR6 is contiguous; DAR and CTL are reloaded
from their initial values

■ 0x2 (RELOAD_CONT): Allow only multi-block transfers
where SAR6 and CTL6 are reloaded from their initial
values; DAR6 is contiguous

■ 0x3 (RELOAD_RELOAD): Allow only multi-block transfers
where SAR6, DAR6,and CTL6 are reloaded from their
initial values

■ 0x4 (CONT_LLP): Allow only multi-block transfers where
SAR6 is contiguous;DAR6, CTL6, and LLP6 are loaded
from the next linked list item

■ 0x5 (RELOAD_LLP): Allow only multi-block transfers
where SAR6 is reloaded from its initial value; DAR6,
CTL6, and LLP6,are loaded from the next linked list item

■ 0x6 (CNT_LLP): Allow only multi-block transfers where
SAR6, CTL6, and LLP6 are loaded from the next linked
list item; DARx is contiguous

■ 0x7 (LLP_RELOAD): Allow only multi-block transfers
where SAR6, CTL6, and LLP6,are loaded from the next
linked list item; DARx is reloaded from its initial values.

■ 0x8 (LLP_LLP): Allow only multi-block transfers where
SAR6, DAR6, CTL6, and LLP6 are loaded from the next
linked list item.

Value After Reset: DMAH_CH6_MULTI_BLK_TYPE_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 303SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

55:52 CH5_MULTI_BLK_TYPE R The values of these bit fields are derived from the
DMAH_CH5_MULTI_BLK_TYPE coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Allow all types of multi-support

■ 0x1 (CONT_RELOAD): Allow only multi-block transfers
where SAR5 is contiguous; DAR and CTL are reloaded
from their initial values

■ 0x2 (RELOAD_CONT): Allow only multi-block transfers
where SAR5 and CTL5 are reloaded from their initial
values; DAR5 is contiguous

■ 0x3 (RELOAD_RELOAD): Allow only multi-block transfers
where SAR5, DAR5,and CTL5 are reloaded from their
initial values

■ 0x4 (CONT_LLP): Allow only multi-block transfers where
SAR5 is contiguous;DAR5, CTL5, and LLP5 are loaded
from the next linked list item

■ 0x5 (RELOAD_LLP): Allow only multi-block transfers
where SAR5 is reloaded from its initial value; DAR5,
CTL5, and LLP5,are loaded from the next linked list item

■ 0x6 (CNT_LLP): Allow only multi-block transfers where
SAR5, CTL5, and LLP5 are loaded from the next linked
list item; DARx is contiguous

■ 0x7 (LLP_RELOAD): Allow only multi-block transfers
where SAR5, CTL5, and LLP5,are loaded from the next
linked list item; DARx is reloaded from its initial values.

■ 0x8 (LLP_LLP): Allow only multi-block transfers where
SAR5, DAR5, CTL5, and LLP5 are loaded from the next
linked list item.

Value After Reset: DMAH_CH5_MULTI_BLK_TYPE_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

304 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

51:48 CH4_MULTI_BLK_TYPE R The values of these bit fields are derived from the
DMAH_CH4_MULTI_BLK_TYPE coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Allow all types of multi-support

■ 0x1 (CONT_RELOAD): Allow only multi-block transfers
where SAR4 is contiguous; DAR and CTL are reloaded
from their initial values

■ 0x2 (RELOAD_CONT): Allow only multi-block transfers
where SAR4 and CTL4 are reloaded from their initial
values; DAR4 is contiguous

■ 0x3 (RELOAD_RELOAD): Allow only multi-block transfers
where SAR4, DAR4,and CTL4 are reloaded from their
initial values

■ 0x4 (CONT_LLP): Allow only multi-block transfers where
SAR4 is contiguous;DAR4, CTL4, and LLP4 are loaded
from the next linked list item

■ 0x5 (RELOAD_LLP): Allow only multi-block transfers
where SAR4 is reloaded from its initial value; DAR4,
CTL4, and LLP4,are loaded from the next linked list item

■ 0x6 (CNT_LLP): Allow only multi-block transfers where
SAR4, CTL4, and LLP4 are loaded from the next linked
list item; DARx is contiguous

■ 0x7 (LLP_RELOAD): Allow only multi-block transfers
where SAR4, CTL4, and LLP4,are loaded from the next
linked list item; DARx is reloaded from its initial values.

■ 0x8 (LLP_LLP): Allow only multi-block transfers where
SAR4, DAR4, CTL4, and LLP4 are loaded from the next
linked list item.

Value After Reset: DMAH_CH4_MULTI_BLK_TYPE_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 305SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

47:44 CH3_MULTI_BLK_TYPE R The values of these bit fields are derived from the
DMAH_CH3_MULTI_BLK_TYPE coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Allow all types of multi-support

■ 0x1 (CONT_RELOAD): Allow only multi-block transfers
where SAR3 is contiguous; DAR and CTL are reloaded
from their initial values

■ 0x2 (RELOAD_CONT): Allow only multi-block transfers
where SAR3 and CTL3 are reloaded from their initial
values; DAR3 is contiguous

■ 0x3 (RELOAD_RELOAD): Allow only multi-block transfers
where SAR3, DAR3,and CTL3 are reloaded from their
initial values

■ 0x4 (CONT_LLP): Allow only multi-block transfers where
SAR3 is contiguous;DAR3, CTL3, and LLP3 are loaded
from the next linked list item

■ 0x5 (RELOAD_LLP): Allow only multi-block transfers
where SAR3 is reloaded from its initial value; DAR3,
CTL3, and LLP3,are loaded from the next linked list item

■ 0x6 (CNT_LLP): Allow only multi-block transfers where
SAR3, CTL3, and LLP3 are loaded from the next linked
list item; DARx is contiguous

■ 0x7 (LLP_RELOAD): Allow only multi-block transfers
where SAR3, CTL3, and LLP3,are loaded from the next
linked list item; DARx is reloaded from its initial values.

■ 0x8 (LLP_LLP): Allow only multi-block transfers where
SAR3, DAR3, CTL3, and LLP3 are loaded from the next
linked list item.

Value After Reset: DMAH_CH3_MULTI_BLK_TYPE_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

306 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

43:40 CH2_MULTI_BLK_TYPE R The values of these bit fields are derived from the
DMAH_CH2_MULTI_BLK_TYPE coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Allow all types of multi-support

■ 0x1 (CONT_RELOAD): Allow only multi-block transfers
where SAR2 is contiguous; DAR and CTL are reloaded
from their initial values

■ 0x2 (RELOAD_CONT): Allow only multi-block transfers
where SAR2 and CTL2 are reloaded from their initial
values; DAR2 is contiguous

■ 0x3 (RELOAD_RELOAD): Allow only multi-block transfers
where SAR2, DAR2,and CTL2 are reloaded from their
initial values

■ 0x4 (CONT_LLP): Allow only multi-block transfers where
SAR2 is contiguous;DAR2, CTL2, and LLP2 are loaded
from the next linked list item

■ 0x5 (RELOAD_LLP): Allow only multi-block transfers
where SAR2 is reloaded from its initial value; DAR2,
CTL2, and LLP2,are loaded from the next linked list item

■ 0x6 (CNT_LLP): Allow only multi-block transfers where
SAR2, CTL2, and LLP2 are loaded from the next linked
list item; DARx is contiguous

■ 0x7 (LLP_RELOAD): Allow only multi-block transfers
where SAR2, CTL2, and LLP2,are loaded from the next
linked list item; DARx is reloaded from its initial values.

■ 0x8 (LLP_LLP): Allow only multi-block transfers where
SAR2, DAR2, CTL2, and LLP2 are loaded from the next
linked list item.

Value After Reset: DMAH_CH2_MULTI_BLK_TYPE_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 307SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

39:36 CH1_MULTI_BLK_TYPE R The values of these bit fields are derived from the
DMAH_CH1_MULTI_BLK_TYPE coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Allow all types of multi-support

■ 0x1 (CONT_RELOAD): Allow only multi-block transfers
where SAR1 is contiguous; DAR and CTL are reloaded
from their initial values

■ 0x2 (RELOAD_CONT): Allow only multi-block transfers
where SAR1 and CTL1 are reloaded from their initial
values; DAR1 is contiguous

■ 0x3 (RELOAD_RELOAD): Allow only multi-block transfers
where SAR1, DAR1,and CTL1 are reloaded from their
initial values

■ 0x4 (CONT_LLP): Allow only multi-block transfers where
SAR1 is contiguous;DAR1, CTL1, and LLP1 are loaded
from the next linked list item

■ 0x5 (RELOAD_LLP): Allow only multi-block transfers
where SAR1 is reloaded from its initial value; DAR1,
CTL1, and LLP1,are loaded from the next linked list item

■ 0x6 (CNT_LLP): Allow only multi-block transfers where
SAR1, CTL1, and LLP1 are loaded from the next linked
list item; DARx is contiguous

■ 0x7 (LLP_RELOAD): Allow only multi-block transfers
where SAR1, CTL1, and LLP1,are loaded from the next
linked list item; DARx is reloaded from its initial values.

■ 0x8 (LLP_LLP): Allow only multi-block transfers where
SAR1, DAR1, CTL1, and LLP1 are loaded from the next
linked list item.

Value After Reset: DMAH_CH1_MULTI_BLK_TYPE_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

308 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

35:32 CHO_MULTI_BLK_TYPE R The values of these bit fields are derived from the
DMAH_CH0_MULTI_BLK_TYPE coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Allow all types of multi-support

■ 0x1 (CONT_RELOAD): Allow only multi-block transfers
where SAR0 is contiguous; DAR and CTL are reloaded
from their initial values

■ 0x2 (RELOAD_CONT): Allow only multi-block transfers
where SAR0 and CTL0 are reloaded from their initial
values; DAR0 is contiguous

■ 0x3 (RELOAD_RELOAD): Allow only multi-block transfers
where SAR0, DAR0,and CTL0 are reloaded from their
initial values

■ 0x4 (CONT_LLP): Allow only multi-block transfers where
SAR0 is contiguous;DAR0, CTL0, and LLP0 are loaded
from the next linked list item

■ 0x5 (RELOAD_LLP): Allow only multi-block transfers
where SAR0 is reloaded from its initial value; DAR0,
CTL0, and LLP0,are loaded from the next linked list item

■ 0x6 (CNT_LLP): Allow only multi-block transfers where
SAR0, CTL0, and LLP0 are loaded from the next linked
list item; DARx is contiguous

■ 0x7 (LLP_RELOAD): Allow only multi-block transfers
where SAR0, CTL0, and LLP0,are loaded from the next
linked list item; DARx is reloaded from its initial values.

■ 0x8 (LLP_LLP): Allow only multi-block transfers where
SAR0, DAR0, CTL0, and LLP0 are loaded from the next
linked list item.

Value After Reset: DMAH_CH0_MULTI_BLK_TYPE_RST
Exists: Always

31 Rsvd_DMA_COMP_PARAMS_2 R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 309SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

30:28 CH0_FIFO_DEPTH R The value of this register is derived from the
DMAH_CH0_FIFO_DEPTH coreConsultant parameter.
Values:

■ 0x0 (FIFO_DEPTH_8): Channel 0 FIFO depth is 8 bytes

■ 0x1 (FIFO_DEPTH_16): Channel 0 FIFO depth is 16
bytes

■ 0x2 (FIFO_DEPTH_32): Channel 0 FIFO depth is 32
bytes

■ 0x3 (FIFO_DEPTH_64): Channel 0 FIFO depth is 64
bytes

■ 0x4 (FIFO_DEPTH_128): Channel 0 FIFO depth is 128
bytes

■ 0x5 (FIFO_DEPTH_256): Channel 0 FIFO depth is 256
bytes

Value After Reset: DMAH_CH0_FIFO_DEPTH_RST
Exists: Always

27:25 CH0_SMS R The value of this register is derived from the
DMAH_CH0_SMS coreConsultant parameter.
Values:
■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface

attached to the source of channel 0

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the source of channel 0

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the source of channel 0

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the source of channel 0

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH0_SMS_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

310 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

24:22 CH0_LMS R The value of this register is derived from the
DMAH_CH0_LMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the LLP peripherals of channel 0

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the LLP peripherals of channel 0

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the LLP peripherals of channel 0

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the LLP peripherals of channel 0

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH0_LMS_RST
Exists: Always

21:19 CH0_DMS R The value of this register is derived from the
DMAH_CH0_DMS coreConsultant parameter.
Values:

■ 0x0 (MASTER_1): Hardcode the AHB master 1 interface
attached to the channel 0 destination

■ 0x1 (MASTER_2): Hardcode the AHB master 2 interface
attached to the channel 0 destination

■ 0x2 (MASTER_3): Hardcode the AHB master 3 interface
attached to the channel 0 destination

■ 0x3 (MASTER_4): Hardcode the AHB master 4 interface
attached to the channel 0 destination

■ 0x4 (PROGRAMMABLE): Programmable

Value After Reset: DMAH_CH0_DMS_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 311SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

18:16 CH0_MAX_MULT_SIZE R The value of this register is derived from the
DMAH_CH0_MULT_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_MULT_SIZE_4): Maximum value of burst
transaction size that can be programmed for channel 0 is
4

■ 0x1 (MAX_MULT_SIZE_8): Maximum value of burst
transaction size that can be programmed for channel 0 is
8

■ 0x2 (MAX_MULT_SIZE_16): Maximum value of burst
transaction size that can be programmed for channel 0 is
16

■ 0x3 (MAX_MULT_SIZE_32): Maximum value of burst
transaction size that can be programmed for channel 0 is
32

■ 0x4 (MAX_MULT_SIZE_64): Maximum value of burst
transaction size that can be programmed for channel 0 is
64

■ 0x5 (MAX_MULT_SIZE_128): Maximum value of burst
transaction size that can be programmed for channel 0 is
128

■ 0x6 (MAX_MULT_SIZE_256): Maximum value of burst
transaction size that can be programmed for channel 0 is
256

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH0_MAX_MULT_SIZE_RST
Exists: Always

15:14 CH0_FC R The value of this register is derived from the
DMAH_CH0_FC coreConsultant parameter.
Values:

■ 0x0 (FC_DMA): Flow controller is DMA for channel 0

■ 0x1 (FC_SRC): Flow controller is Source for channel 0

■ 0x2 (FC_DST): Flow controller is Destination for channel
0

■ 0x3 (FC_ANY): Flow controller is ANY for channel 0

Value After Reset: DMAH_CH0_FC_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

312 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

13 CH0_HC_LLP R The value of this register is derived from the
DMAH_CH0_HC_LLP coreConsultant parameter.
Values:

■ 0x0 (PROGRAMMABLE): Exclude logic to hardcode
Channel 0 LLP register to 0

■ 0x0 (HARDCODED): Hardcode Channel 0 LLP register to
0

Value After Reset: DMAH_CH0_HC_LLP_RST
Exists: Always

12 CH0_CTL_WB_EN R The value of this register is derived from the
DMAH_CH0_CTL_WB_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable control register
writeback after each block transfer on channel 0

■ 0x1 (TRUE): Include logic to enable control register
writeback after each block transfer on channel 0

Value After Reset: DMAH_CH0_CTL_WB_EN_RST
Exists: Always

11 CH0_MULTI_BLK_EN R The value of this register is derived from the
DMAH_CH0_MULTI_BLK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel multi-block

DMA transfers on channel 0

■ 0x1 (TRUE): Include logic to enable channel multi-block
DMA transfers on channel 0

Value After Reset: DMAH_CH0_MULTI_BLK_EN_RST
Exists: Always

10 CH0_LOCK_EN R The value of this register is derived from the
DMAH_CH0_LOCK_EN coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to enable channel or bus

locking on channel 0

■ 0x1 (TRUE): Include logic to enable channel or bus
locking on channel 0

Value After Reset: DMAH_CH0_LOCK_EN_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 313SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

9 CH0_SRC_GAT_EN R The value of this register is derived from the
DMAH_CH0_SRC_GAT_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the gather feature
on channel 0

■ 0x1 (TRUE): Include logic to enable the gather feature on
channel 0

Value After Reset: DMAH_CH0_SRC_GAT_EN_RST
Exists: Always

8 CH0_DST_SCA_EN R The value of this register is derived from the
DMAH_CH0_DST_SCA_EN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Exclude logic to enable the scatter feature
on channel 0

■ 0x1 (TRUE): Include logic to enable the scatter feature on
channel 0

Value After Reset: DMAH_CH0_DST_SCA_EN_RST
Exists: Always

7 CH0_STAT_SRC R The value of this register is derived from the
DMAH_CH0_STAT_SRC coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

source peripheral of channel 0 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
source peripheral of channel 0 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH0_STAT_SRC_RST
Exists: Always

6 CH0_STAT_DST R The value of this register is derived from the
DMAH_CH0_STAT_DST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Exclude logic to fetch a status register from

destination peripheral of channel 0 and write this status
information to memory at end of each block transfer

■ 0x1 (TRUE): Include logic to fetch a status register from
destination peripheral of channel 0 and write this status
information to memory at end of each block transfer

Value After Reset: DMAH_CH0_STAT_DST_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

314 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

5:3 CH0_STW R The value of this register is derived from the
DMAH_CH0_STW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode channel 0's source
transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode channel 0's source
transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode channel 0's source
transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode channel 0's source
transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode channel 0's
source transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode channel 0's
source transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH0_SRC_TR_RST
Exists: Always

2:0 CH0_DTW R The value of this register is derived from the
DMAH_CH0_DTW coreConsultant parameter.
Values:

■ 0x0 (TRANS_WIDTH_PROGRAMMABLE):
Programmable

■ 0x1 (TRANS_WIDTH_8): Hardcode channel 0's
destination transfer width to 8 bits

■ 0x2 (TRANS_WIDTH_16): Hardcode channel 0's
destination transfer width to 16 bits

■ 0x3 (TRANS_WIDTH_32): Hardcode channel 0's
destination transfer width to 32 bits

■ 0x4 (TRANS_WIDTH_64): Hardcode channel 0's
destination transfer width to 64 bits

■ 0x5 (TRANS_WIDTH_128): Hardcode channel 0's
destination transfer width to 128 bits

■ 0x6 (TRANS_WIDTH_256): Hardcode channel 0's
destination transfer width to 256 bits

■ 0x7 (RESERVED): Reserved

Value After Reset: DMAH_CH0_DST_TR_RST
Exists: Always

Table 5-56 Fields for Register: DMA_COMP_PARAMS_2 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 315SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.4.11 DMA_COMP_PARAMS_1

■ Name: DW_ahb_dmac Component Parameters Register 1

■ Description: DMA_COMP_PARAMS_1 is a constant read-only register that contains encoded
information about the component parameter settings. The reset value depends on coreConsultant
parameter(s).

Note:If DMAH_RETURN_ERR_RESP is set to True, the DW_ahb_dmac returns an ERROR response
to an illegal register access, which includes accessing registers that have been removed during
DW_ahb_dmac configuration. If DMAH_RETURN_ERR_RESP is set to False, DW_ahb_dmac always
returns an OK response. For more information, refer to "Illegal Register Access".

■ Size: 64 bits

■ Offset: 0x3f0

■ Exists: DMAH_ADD_ENCODED_PARAMS

63
:6

2

61 60 59
:5

5

54
:5

3

52
:5

1

50
:4

9

48
:4

7

46
:4

5

44
:4

3

42
:4

0

39
:3

6

35 34
:3

3

32 31
:2

8

27
:2

4

23
:2

0

19
:1

6

15
:1

2

11
:8

7:
4

3:
0

R
sv

d_
1_

D
M

A
_C

O
M

P
_P

A
R

A
M

S
_1

S
T

A
T

IC
_E

N
D

IA
N

_S
E

LE
C

T

A
D

D
_E

N
C

O
D

E
D

_P
A

R
A

M
S

N
U

M
_H

S
_I

N
T

M
1_

H
D

A
T

A
_W

ID
T

H

M
2_

H
D

A
T

A
_W

ID
T

H

M
3_

H
D

A
T

A
_W

ID
T

H

M
4_

H
D

A
T

A
_W

ID
T

H

S
_H

D
A

T
A

_W
ID

T
H

N
U

M
_M

A
S

T
E

R
_I

N
T

N
U

M
_C

H
A

N
N

E
LS

R
sv

d_
D

M
A

_C
O

M
P

_P
A

R
A

M
S

_1

M
A

X
_A

B
R

S
T

IN
T

R
_I

O

B
IG

_E
N

D
IA

N

C
H

7_
M

A
X

_B
LK

_S
IZ

E

C
H

6_
M

A
X

_B
LK

_S
IZ

E

C
H

5_
M

A
X

_B
LK

_S
IZ

E

C
H

4_
M

A
X

_B
LK

_S
IZ

E

C
H

3_
M

A
X

_B
LK

_S
IZ

E

C
H

2_
M

A
X

_B
LK

_S
IZ

E

C
H

1_
M

A
X

_B
LK

_S
IZ

E

C
H

O
_M

A
X

_B
LK

_S
IZ

E

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1

Bits Name
Memory
Access Description

63:62 Rsvd_1_DMA_COMP_PARAMS_
1

R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

316 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

61 STATIC_ENDIAN_SELECT R The value of this register is derived from the
DMAH_STATIC_ENDIAN_SELECT coreConsultant
parameter.
Value After Reset:
DMAH_STATIC_ENDIAN_SELECT_RST
Exists: Always

60 ADD_ENCODED_PARAMS R The value of this register is derived from the
DMAH_ADD_ENCODED_PARAMS coreConsultant
parameter.
Values:

■ 0x0 (FALSE): Add encoded parameter is not enabled

■ 0x1 (TRUE): Add encoded parameter is enabled

■ 0x0 (STATIC_ENDIAN_FALSE): Endianness is not
configured through coreConsultant

■ 0x1 (STATIC_ENDIAN_TRUE): Endianness is statically
configured through coreConsultant

Value After Reset: DMAH_ADD_ENCODED_PARAMS
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 317SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

59:55 NUM_HS_INT R The value of this register is derived from the
DMAH_NUM_HS_INT coreConsultant parameter.
Values:

■ 0x0 (HS_INTERFACE_0): Number of handshaking
interfaces is 0

■ 0x1 (HS_INTERFACE_1): Number of handshaking
interfaces is 1

■ 0x2 (HS_INTERFACE_2): Number of handshaking
interfaces is 2

■ 0x3 (HS_INTERFACE_3): Number of handshaking
interfaces is 3

■ 0x4 (HS_INTERFACE_4): Number of handshaking
interfaces is 4

■ 0x5 (HS_INTERFACE_5): Number of handshaking
interfaces is 5

■ 0x6 (HS_INTERFACE_6): Number of handshaking
interfaces is 6

■ 0x7 (HS_INTERFACE_7): Number of handshaking
interfaces is 7

■ 0x8 (HS_INTERFACE_8): Number of handshaking
interfaces is 8

■ 0x9 (HS_INTERFACE_9): Number of handshaking
interfaces is 9

■ 0xa (HS_INTERFACE_a): Number of handshaking
interfaces is 10

■ 0xb (HS_INTERFACE_b): Number of handshaking
interfaces is 11

■ 0xc (HS_INTERFACE_c): Number of handshaking
interfaces is 12

■ 0xd (HS_INTERFACE_d): Number of handshaking
interfaces is 13

■ 0xe (HS_INTERFACE_e): Number of handshaking
interfaces is 14

■ 0xf (HS_INTERFACE_f): Number of handshaking
interfaces is 15

■ 0x10 (HS_INTERFACE_10): Number of handshaking
interfaces is 16

Value After Reset: DMAH_NUM_HS_INT_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

318 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

54:53 M1_HDATA_WIDTH R The value of this register is derived from the
DMAH_M1_HDATA_WIDTH coreConsultant parameter.
Values:

■ 0x0 (DATA_BUS_WIDTH_32): Master1 interface data bus
width is 32 bits

■ 0x1 (DATA_BUS_WIDTH_64): Master1 interface data bus
width is 64 bits

■ 0x2 (DATA_BUS_WIDTH_128): Master1 interface data
bus width is 128 bits

■ 0x3 (DATA_BUS_WIDTH_256): Master1 interface data
bus width is 256 bits

Value After Reset: DMAH_M1_HDATA_WIDTH_RST
Exists: Always

52:51 M2_HDATA_WIDTH R The value of this register is derived from the
DMAH_M2_HDATA_WIDTH coreConsultant parameter.
Values:

■ 0x0 (DATA_BUS_WIDTH_32): Master2 interface data bus
width is 32 bits

■ 0x1 (DATA_BUS_WIDTH_64): Master2 interface data bus
width is 64 bits

■ 0x2 (DATA_BUS_WIDTH_128): Master2 interface data
bus width is 128 bits

■ 0x3 (DATA_BUS_WIDTH_256): Master2 interface data
bus width is 256 bits

Value After Reset: DMAH_M2_HDATA_WIDTH_RST
Exists: Always

50:49 M3_HDATA_WIDTH R The value of this register is derived from the
DMAH_M3_HDATA_WIDTH coreConsultant parameter.
Values:
■ 0x0 (DATA_BUS_WIDTH_32): Master3 interface data bus

width is 32 bits

■ 0x1 (DATA_BUS_WIDTH_64): Master3 interface data bus
width is 64 bits

■ 0x2 (DATA_BUS_WIDTH_128): Master3 interface data
bus width is 128 bits

■ 0x3 (DATA_BUS_WIDTH_256): Master3 interface data
bus width is 256 bits

Value After Reset: DMAH_M3_HDATA_WIDTH_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 319SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

48:47 M4_HDATA_WIDTH R The value of this register is derived from the
DMAH_M4_HDATA_WIDTH coreConsultant parameter.
Values:

■ 0x0 (DATA_BUS_WIDTH_32): Master4 interface data bus
width is 32 bits

■ 0x1 (DATA_BUS_WIDTH_64): Master4 interface data bus
width is 64 bits

■ 0x2 (DATA_BUS_WIDTH_128): Master4 interface data
bus width is 128 bits

■ 0x3 (DATA_BUS_WIDTH_256): Master4 interface data
bus width is 256 bits

Value After Reset: DMAH_M4_HDATA_WIDTH_RST
Exists: Always

46:45 S_HDATA_WIDTH R The value of this register is derived from the
DMAH_S_HDATA_WIDTH coreConsultant parameter.
Values:

■ 0x0 (DATA_BUS_WIDTH_32): Slave interface data bus
width is 32 bits

■ 0x1 (DATA_BUS_WIDTH_64): Slave interface data bus
width is 64 bits

■ 0x2 (DATA_BUS_WIDTH_128): Slave interface data bus
width is 128 bits

■ 0x3 (DATA_BUS_WIDTH_256): Slave interface data bus
width is 256 bits

Value After Reset: DMAH_S_HDATA_WIDTH_RST
Exists: Always

44:43 NUM_MASTER_INT R The value of this register is derived from the
DMAH_NUM_MASTER_INT coreConsultant parameter.
Values:
■ 0x0 (NUM_MST_INTERFACE_1): Number of MASTER

interface is 1

■ 0x1 (NUM_MST_INTERFACE_2): Number of MASTER
interface is 2

■ 0x2 (NUM_MST_INTERFACE_3): Number of MASTER
interface is 3

■ 0x3 (NUM_MST_INTERFACE_4): Number of MASTER
interface is 4

Value After Reset: DMAH_NUM_MASTER_INT_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

320 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

42:40 NUM_CHANNELS R The value of this register is derived from the
DMAH_NUM_CHANNELS coreConsultant parameter.
Values:

■ 0x0 (NUM_CHANNEL_1): Number of DMA Channels is 1

■ 0x1 (NUM_CHANNEL_2): Number of DMA Channels is 2

■ 0x2 (NUM_CHANNEL_3): Number of DMA Channels is 3

■ 0x3 (NUM_CHANNEL_4): Number of DMA Channels is 4

■ 0x4 (NUM_CHANNEL_5): Number of DMA Channels is 5

■ 0x5 (NUM_CHANNEL_6): Number of DMA Channels is 6

■ 0x6 (NUM_CHANNEL_7): Number of DMA Channels is 7

■ 0x7 (NUM_CHANNEL_8): Number of DMA Channels is 8

Value After Reset: DMAH_NUM_CHANNELS_RST
Exists: Always

39:36 Rsvd_DMA_COMP_PARAMS_1 R Reserved field- read-only
Value After Reset: 0x0
Exists: Always

35 MAX_ABRST R The value of this register is derived from the
DMAH_MABRST coreConsultant parameter.
Values:
■ 0x0 (FALSE): Maximum AMBA burst length is not under

the control of software

■ 0x1 (TRUE): Limit the maximum AMBA burst length to a
value under software control by writing to the channel
configuration register

Value After Reset: DMAH_MABRST_RST
Exists: Always

34:33 INTR_IO R The value of this register is derived from the
DMAH_INTR_IO coreConsultant parameter.
Values:
■ 0x0 (ALL_INT): ALL interrupt-related signals appear as

outputs on the design

■ 0x1 (TYPE_INT): Only TYPE interrupt-related signals
appear as outputs on the design

■ 0x2 (COMBINED_INT): Only COMBINED interrupt-
related signals appear as outputs on the design

■ 0x3 (RESERVED): Reserved

Value After Reset: DMAH_INTR_IO_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 321SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

32 BIG_ENDIAN R The value of this register is derived from the
DMAH_BIG_ENDIAN coreConsultant parameter.
Values:

■ 0x0 (FALSE): Big Endian

■ 0x1 (TRUE): Little Endian

Value After Reset: DMAH_BIG_ENDIAN_RST
Exists: Always

31:28 CH7_MAX_BLK_SIZE R The values of these bit fields are derived from the
DMAH_CH7_MAX_BLK_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_BLOCK_SIZE_3): Maximum block size in
source transfer widths is 3 for channel 7

■ 0x1 (MAX_BLOCK_SIZE_7): Maximum block size in
source transfer widths is 7 for channel 7

■ 0x2 (MAX_BLOCK_SIZE_15): Maximum block size in
source transfer widths is 15 for channel 7

■ 0x3 (MAX_BLOCK_SIZE_31): Maximum block size in
source transfer widths is 31 for channel 7

■ 0x4 (MAX_BLOCK_SIZE_63): Maximum block size in
source transfer widths is 63 for channel 7

■ 0x5 (MAX_BLOCK_SIZE_127): Maximum block size in
source transfer widths is 127 for channel 7

■ 0x6 (MAX_BLOCK_SIZE_255): Maximum block size in
source transfer widths is 255 for channel 7

■ 0x7 (MAX_BLOCK_SIZE_511): Maximum block size in
source transfer widths is 511 for channel 7

■ 0x8 (MAX_BLOCK_SIZE_1023): Maximum block size in
source transfer widths is 1023 for channel 7

■ 0x9 (MAX_BLOCK_SIZE_2047): Maximum block size in
source transfer widths is 2047 for channel 7

■ 0xa (MAX_BLOCK_SIZE_4095): Maximum block size in
source transfer widths is 4095 for channel 7

Value After Reset: DMAH_CH7_MAX_BLK_SIZE_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

322 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

27:24 CH6_MAX_BLK_SIZE R The values of these bit fields are derived from the
DMAH_CH6_MAX_BLK_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_BLOCK_SIZE_3): Maximum block size in
source transfer widths is 3 for channel 6

■ 0x1 (MAX_BLOCK_SIZE_7): Maximum block size in
source transfer widths is 7 for channel 6

■ 0x2 (MAX_BLOCK_SIZE_15): Maximum block size in
source transfer widths is 15 for channel 6

■ 0x3 (MAX_BLOCK_SIZE_31): Maximum block size in
source transfer widths is 31 for channel 6

■ 0x4 (MAX_BLOCK_SIZE_63): Maximum block size in
source transfer widths is 63 for channel 6

■ 0x5 (MAX_BLOCK_SIZE_127): Maximum block size in
source transfer widths is 127 for channel 6

■ 0x6 (MAX_BLOCK_SIZE_255): Maximum block size in
source transfer widths is 255 for channel 6

■ 0x7 (MAX_BLOCK_SIZE_511): Maximum block size in
source transfer widths is 511 for channel 6

■ 0x8 (MAX_BLOCK_SIZE_1023): Maximum block size in
source transfer widths is 1023 for channel 6

■ 0x9 (MAX_BLOCK_SIZE_2047): Maximum block size in
source transfer widths is 2047 for channel 6

■ 0xa (MAX_BLOCK_SIZE_4095): Maximum block size in
source transfer widths is 4095 for channel 6

Value After Reset: DMAH_CH6_MAX_BLK_SIZE_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 323SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

23:20 CH5_MAX_BLK_SIZE R The values of these bit fields are derived from the
DMAH_CH5_MAX_BLK_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_BLOCK_SIZE_3): Maximum block size in
source transfer widths is 3 for channel 5

■ 0x1 (MAX_BLOCK_SIZE_7): Maximum block size in
source transfer widths is 7 for channel 5

■ 0x2 (MAX_BLOCK_SIZE_15): Maximum block size in
source transfer widths is 15 for channel 5

■ 0x3 (MAX_BLOCK_SIZE_31): Maximum block size in
source transfer widths is 31 for channel 5

■ 0x4 (MAX_BLOCK_SIZE_63): Maximum block size in
source transfer widths is 63 for channel 5

■ 0x5 (MAX_BLOCK_SIZE_127): Maximum block size in
source transfer widths is 127 for channel 5

■ 0x6 (MAX_BLOCK_SIZE_255): Maximum block size in
source transfer widths is 255 for channel 5

■ 0x7 (MAX_BLOCK_SIZE_511): Maximum block size in
source transfer widths is 511 for channel 5

■ 0x8 (MAX_BLOCK_SIZE_1023): Maximum block size in
source transfer widths is 1023 for channel 5

■ 0x9 (MAX_BLOCK_SIZE_2047): Maximum block size in
source transfer widths is 2047 for channel 5

■ 0xa (MAX_BLOCK_SIZE_4095): Maximum block size in
source transfer widths is 4095 for channel 5

Value After Reset: DMAH_CH5_MAX_BLK_SIZE_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

324 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

19:16 CH4_MAX_BLK_SIZE R The values of these bit fields are derived from the
DMAH_CH4_MAX_BLK_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_BLOCK_SIZE_3): Maximum block size in
source transfer widths is 3 for channel 4

■ 0x1 (MAX_BLOCK_SIZE_7): Maximum block size in
source transfer widths is 7 for channel 4

■ 0x2 (MAX_BLOCK_SIZE_15): Maximum block size in
source transfer widths is 15 for channel 4

■ 0x3 (MAX_BLOCK_SIZE_31): Maximum block size in
source transfer widths is 31 for channel 4

■ 0x4 (MAX_BLOCK_SIZE_63): Maximum block size in
source transfer widths is 63 for channel 4

■ 0x5 (MAX_BLOCK_SIZE_127): Maximum block size in
source transfer widths is 127 for channel 4

■ 0x6 (MAX_BLOCK_SIZE_255): Maximum block size in
source transfer widths is 255 for channel 4

■ 0x7 (MAX_BLOCK_SIZE_511): Maximum block size in
source transfer widths is 511 for channel 4

■ 0x8 (MAX_BLOCK_SIZE_1023): Maximum block size in
source transfer widths is 1023 for channel 4

■ 0x9 (MAX_BLOCK_SIZE_2047): Maximum block size in
source transfer widths is 2047 for channel 4

■ 0xa (MAX_BLOCK_SIZE_4095): Maximum block size in
source transfer widths is 4095 for channel 4

Value After Reset: DMAH_CH4_MAX_BLK_SIZE_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 325SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

15:12 CH3_MAX_BLK_SIZE R The values of these bit fields are derived from the
DMAH_CH3_MAX_BLK_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_BLOCK_SIZE_3): Maximum block size in
source transfer widths is 3 for channel 3

■ 0x1 (MAX_BLOCK_SIZE_7): Maximum block size in
source transfer widths is 7 for channel 3

■ 0x2 (MAX_BLOCK_SIZE_15): Maximum block size in
source transfer widths is 15 for channel 3

■ 0x3 (MAX_BLOCK_SIZE_31): Maximum block size in
source transfer widths is 31 for channel 3

■ 0x4 (MAX_BLOCK_SIZE_63): Maximum block size in
source transfer widths is 63 for channel 3

■ 0x5 (MAX_BLOCK_SIZE_127): Maximum block size in
source transfer widths is 127 for channel 3

■ 0x6 (MAX_BLOCK_SIZE_255): Maximum block size in
source transfer widths is 255 for channel 3

■ 0x7 (MAX_BLOCK_SIZE_511): Maximum block size in
source transfer widths is 511 for channel 3

■ 0x8 (MAX_BLOCK_SIZE_1023): Maximum block size in
source transfer widths is 1023 for channel 3

■ 0x9 (MAX_BLOCK_SIZE_2047): Maximum block size in
source transfer widths is 2047 for channel 3

■ 0xa (MAX_BLOCK_SIZE_4095): Maximum block size in
source transfer widths is 4095 for channel 3

Value After Reset: DMAH_CH3_MAX_BLK_SIZE_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

326 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

11:8 CH2_MAX_BLK_SIZE R The values of these bit fields are derived from the
DMAH_CH2_MAX_BLK_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_BLOCK_SIZE_3): Maximum block size in
source transfer widths is 3 for channel 2

■ 0x1 (MAX_BLOCK_SIZE_7): Maximum block size in
source transfer widths is 7 for channel 2

■ 0x2 (MAX_BLOCK_SIZE_15): Maximum block size in
source transfer widths is 15 for channel 2

■ 0x3 (MAX_BLOCK_SIZE_31): Maximum block size in
source transfer widths is 31 for channel 2

■ 0x4 (MAX_BLOCK_SIZE_63): Maximum block size in
source transfer widths is 63 for channel 2

■ 0x5 (MAX_BLOCK_SIZE_127): Maximum block size in
source transfer widths is 127 for channel 2

■ 0x6 (MAX_BLOCK_SIZE_255): Maximum block size in
source transfer widths is 255 for channel 2

■ 0x7 (MAX_BLOCK_SIZE_511): Maximum block size in
source transfer widths is 511 for channel 2

■ 0x8 (MAX_BLOCK_SIZE_1023): Maximum block size in
source transfer widths is 1023 for channel 2

■ 0x9 (MAX_BLOCK_SIZE_2047): Maximum block size in
source transfer widths is 2047 for channel 2

■ 0xa (MAX_BLOCK_SIZE_4095): Maximum block size in
source transfer widths is 4095 for channel 2

Value After Reset: DMAH_CH2_MAX_BLK_SIZE_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 327SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

7:4 CH1_MAX_BLK_SIZE R The values of these bit fields are derived from the
DMAH_CH1_MAX_BLK_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_BLOCK_SIZE_3): Maximum block size in
source transfer widths is 3 for channel 1

■ 0x1 (MAX_BLOCK_SIZE_7): Maximum block size in
source transfer widths is 7 for channel 1

■ 0x2 (MAX_BLOCK_SIZE_15): Maximum block size in
source transfer widths is 15 for channel 1

■ 0x3 (MAX_BLOCK_SIZE_31): Maximum block size in
source transfer widths is 31 for channel 1

■ 0x4 (MAX_BLOCK_SIZE_63): Maximum block size in
source transfer widths is 63 for channel 1

■ 0x5 (MAX_BLOCK_SIZE_127): Maximum block size in
source transfer widths is 127 for channel 1

■ 0x6 (MAX_BLOCK_SIZE_255): Maximum block size in
source transfer widths is 255 for channel 1

■ 0x7 (MAX_BLOCK_SIZE_511): Maximum block size in
source transfer widths is 511 for channel 1

■ 0x8 (MAX_BLOCK_SIZE_1023): Maximum block size in
source transfer widths is 1023 for channel 1

■ 0x9 (MAX_BLOCK_SIZE_2047): Maximum block size in
source transfer widths is 2047 for channel 1

■ 0xa (MAX_BLOCK_SIZE_4095): Maximum block size in
source transfer widths is 4095 for channel 1

Value After Reset: DMAH_CH1_MAX_BLK_SIZE_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

328 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

3:0 CHO_MAX_BLK_SIZE R The values of these bit fields are derived from the
DMAH_CH0_MAX_BLK_SIZE coreConsultant parameter.
Values:

■ 0x0 (MAX_BLOCK_SIZE_3): Maximum block size in
source transfer widths is 3 for channel 0

■ 0x1 (MAX_BLOCK_SIZE_7): Maximum block size in
source transfer widths is 7 for channel 0

■ 0x2 (MAX_BLOCK_SIZE_15): Maximum block size in
source transfer widths is 15 for channel 0

■ 0x3 (MAX_BLOCK_SIZE_31): Maximum block size in
source transfer widths is 31 for channel 0

■ 0x4 (MAX_BLOCK_SIZE_63): Maximum block size in
source transfer widths is 63 for channel 0

■ 0x5 (MAX_BLOCK_SIZE_127): Maximum block size in
source transfer widths is 127 for channel 0

■ 0x6 (MAX_BLOCK_SIZE_255): Maximum block size in
source transfer widths is 255 for channel 0

■ 0x7 (MAX_BLOCK_SIZE_511): Maximum block size in
source transfer widths is 511 for channel 0

■ 0x8 (MAX_BLOCK_SIZE_1023): Maximum block size in
source transfer widths is 1023 for channel 0

■ 0x9 (MAX_BLOCK_SIZE_2047): Maximum block size in
source transfer widths is 2047 for channel 0

■ 0xa (MAX_BLOCK_SIZE_4095): Maximum block size in
source transfer widths is 4095 for channel 0

Value After Reset: DMAH_CH0_MAX_BLK_SIZE_RST
Exists: Always

Table 5-57 Fields for Register: DMA_COMP_PARAMS_1 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 329SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Register Descriptions

5.4.12 DmaCompsID

■ Name: DMA Component ID register

■ Description: This is the DW_ahb_dmac Component Version register, which is a read-only register
that specifies the version of the packaged component in the upper 32 bits and the component type in
the lower 32 bits.

■ Size: 64 bits

■ Offset: 0x3f8

■ Exists: Always

63
:3

2

31
:0

D
M

A
_C

O
M

P
_V

E
R

S
IO

N

D
M

A
_C

O
M

P
_T

Y
P

E

Table 5-58 Fields for Register: DmaCompsID

Bits Name
Memory
Access Description

63:32 DMA_COMP_VERSION R DMA Component Version - See release notes.
Value After Reset: DMAH_VERSION_ID
Exists: Always

31:0 DMA_COMP_TYPE R DMA Component Type Number = `h44571110. This
assigned unique hex value is constant and is derived from
the two ASCII letters "DW" followed by a 32-bit unsigned
number
Value After Reset: DMAH_COMP_ID
Exists: Always

https://solvnet.synopsys.com
www.designware.com

330 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Register Descriptions DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 331

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

6
Programming the DW_ahb_dmac

The DW_ahb_dmac can be programmed through software registers or the DW_ahb_dmac low-level
software driver; software registers are described in more detail in “Register Descriptions” on page 161.

Shipped with the DW_ahb_dmac component is an address definition (memory map) C header file. This can
be used when the DW_ahb_dmac is programmed in a C environment.

6.1 Software Drivers
The family of DesignWare Synthesizable Components includes a Driver Kit for the DW_ahb_dmac
component. This low-level Driver Kit allows you to program a DW_ahb_dmac component and integrate
your code into a larger software system. The Driver Kit provides the following benefits to IP designers:

■ Proven method of access to DW_ahb_dmac minimizing usage errors

■ Rapid software development with minimum overhead

■ Detailed knowledge of DW_ahb_dmac register bit fields not required

■ Easy integration of DW_ahb_dmac into existing software system

■ Programming at register level eliminated

You must purchase a source code license (DWC-DMA-Controller-Source) to use the DW_ahb_dmac Driver
Kit. However, you can access some Driver Kit files and documentation in
$DESIGNWARE_HOME/drivers/DW_ahb_dmac/latest. For more information about the Driver Kit, refer
to the DW_ahb_dmac Driver Kit User Guide. For more information about purchasing the source code license
and obtaining a download of the Driver Kit, contact Synopsys at designware@synopsys.com for details.

NoteNoteNoteNote There are references to both software and hardware parameters throughout this chapter. The
software parameters are the field names in each register description table and are prefixed by
the register name; for example, the Block Transfer Size field in the Control Register for
Channel x is designated as “CTLx.BLOCK_TS.”
The hardware parameters are prefixed with an DMAH_* and are configured once using
Synopsys coreConsultant.

designware@synopsys.com
designware@synopsys.com
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/drivers/DW_ahb_dmac/latest/doc/dw_ahb_dmac_driver.pdf

332 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

6.2 Register Access
All registers are aligned to a 64-bit boundary and are 64 bits wide. In general, the upper 32 bits of a register
are reserved. A write to reserved bits within the register is ignored. A read from reserved bits in the register
reads back 0. To avoid address aliasing, do one of the following:

1. The DW_ahb_dmac should not be allocated more than 1 KB of address space in the system memory
map. If it is, then addresses selected above 1 KB from the base address are aliased to an address
within the 1 KB space, and a transfer takes place involving this register.

2. Software should not attempt to access non-register locations when hsel is asserted.

6.3 Illegal Register Access
An illegal access can be any of the following:

1. A AHB transfer of hsize greater than 64 is attempted.

2. The hsel signal is asserted, but the address does not decode to a valid address.

3. A write to the SARx, DARx, LLPx, CTLx, SSTATx, DSTATx, SSTATARx, DSTATARx, SGRx, or DSRx
registers occurs when the channel is enabled.

4. A read from the ClearBlock, ClearDstTran, ClearErr, ClearSrcTran, ClearTfris attempted.

5. A write to the StatusBlock, StatusDstTran, StatusErr, StatusSrcTran, StatusTfris attempted.

6. A write to the StatusIntregister is attempted.

7. A write to either the DmaIdReg or DMA Component ID Register register is attempted.

The response to an illegal access is configured using the configuration parameter
DMAH_RETURN_ERR_RESP. When DMAH_RETURN_ERR_RESP is set to True, an illegal access
(read/write) returns an error response.

If DMAH_RETURN_ERR_RESP is set to False, an OKAY response is returned, a read reads back 0x0, and a
write is ignored.

6.4 DW_ahb_dmac Transfer Types
A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-block
transfer, the SARx/DARx register in the DW_ahb_dmac is reprogrammed using either of the following
methods:

■ Block chaining using linked lists

■ Auto-reloading

■ Contiguous address between blocks

NoteNoteNoteNote The hsel signal is asserted by the system decoder when the address on the bus is within the
system address assigned for DW_ahb_dmac.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 333SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

On successive blocks of a multi-block transfer, the CTLx register in the DW_ahb_dmac is reprogrammed
using either of the following methods:

■ Block chaining using linked lists

■ Auto-reloading

When block chaining, using Linked Lists is the multi-block method of choice. On successive blocks, the
LLPx register in the DW_ahb_dmac is reprogrammed using block chaining with linked lists.

A block descriptor consists of six registers: SARx, DARx, LLPx, CTLx, SSTATx, and DSTATx. The first four
registers, along with the CFGx register, are used by the DW_ahb_dmac to set up and describe the block
transfer.

6.4.1 Multi-Block Transfers

Multi-block transfers are enabled by setting the DMAH_CHX_MULTI_BLK_EN configuration parameter to
True.

6.4.1.1 Block Chaining Using Linked Lists

To enable multi-block transfers using block chaining, you must set the configuration parameter
DMAH_CHx_MULTI_BLK_EN to True and the DMAH_CHx_HC_LLP parameter to False.

In this case, the DW_ahb_dmac reprograms the channel registers prior to the start of each block by fetching
the block descriptor for that block from system memory. This is known as an LLI update.

DW_ahb_dmac block chaining uses a Linked List Pointer register (LLPx) that stores the address in memory
of the next linked list item. Each LLI contains the corresponding block descriptors:

1. SARx

2. DARx

3. LLPx

4. CTLx

5. SSTATx

6. DSTATx

To set up block chaining, you program a sequence of Linked Lists in memory.

LLI accesses are always 32-bit accesses (Hsize = 2) aligned to 32-bit boundaries and cannot be changed or
programmed to anything other than 32-bit, even if the AHB master interface of the LLI supports more than
a 32-bit data width.

NoteNoteNoteNote The term Link List Item (LLI) and block descriptor are synonymous.

NoteNoteNoteNote Multi-block transfers—in which the source and destination are swapped during the transfer—
are not supported. In a multi-block transfer, the direction must not change for the duration of
the transfer.

https://solvnet.synopsys.com
www.designware.com

334 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

The SARx, DARx, LLPx, and CTLx registers are fetched from system memory on an LLI update. If
configuration parameter DMAH_CHx_CTL_WB_EN = True, then the updated contents of the CTLx,
SSTATx, and DSTATx registers are written back to memory on block completion. Figure 6-1 and Figure 6-2
show how you use chained linked lists in memory to define multi-block transfers using block chaining.

Figure 6-1 Multi-Block Transfer Using Linked Lists When DMAH_CHx_STAT_SRC Set to True

It is assumed that no allocation is made in system memory for the source status when the configuration
parameter DMAH_CHx_STAT_SRC is set to False. If this parameter is False, then the order of a Linked List
item is as follows:

1. SARx

2. DARx

3. LLPx

4. CTLx

5. DSTATx

Figure 6-2 Multi-Block Transfer Using Linked Lists When DMAH_CHx_STAT_SRC Set to False

Write-back for DSTATx

CTLx[63:32]

CTLx[31:0]

Write-back for SSTATx

LLPx(1)

DARx

SARx

LLI(0)

Write-back for DSTATx

CTLx[63:32]

CTLx[31:0]

Write-back for SSTATx

LLPx(2)

DARx

SARx

LLI(1)

LLPx(1) LLPx(2)LLPx(0)

System
Memory

Write-back for DSTATx

CTLx[63:32]

CTLx[31:0]

LLPx(1)

DARx

SARx

LLI(0)

Write-back for DSTATx

CTLx[63:32]

CTLx[31:0]

LLPx(2)

DARx

SARx

LLI(1)

LLPx(1) LLPx(2)LLPx(0)

System
Memory

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 335SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

Figure 6-3 and Figure 6-4 show the mapping of a Linked List Item stored in memory to the channel registers
block descriptor.

Rows 6 through 10 of Table 6-1 show the required values of LLPx, CTLx, and CFGx for multi-block DMA
transfers using block chaining.

Table 6-1 Programming of Transfer Types and Channel Register Update Method

NoteNoteNoteNote In order to not confuse the SARx, DARx, LLPx, CTLx, STATx, and DSTATx register locations
of the LLI with the corresponding DW_ahb_dmac memory mapped register locations, the LLI
register locations are prefixed with LLI; that is, LLI.SARx, LLI.DARx, LLI.LLPx, LLI.CTLx,
LLI.SSTATx, and LLI.DSTATx.

NoteNoteNoteNote For rows 6 through 10 of Table 6-1, the LLI.CTLx, LLI.LLPx, LLI.SARx, and LLI.DARx register
locations of the LLI are always affected at the start of every block transfer. The LLI.LLPx and
LLI.CTLx locations are always used to reprogram the DW_ahb_dmac LLPx and CTLx
registers. However, depending on the Table 6-1 row number, the LLI.SARx/LLI.DARx address
may or may not be used to reprogram the DW_ahb_dmac SARx/DARx registers.

Transfer Type

LLP.
LOC
 = 0

LLP_
SRC_EN
(CTLx)

RELOAD
_SRC
(CFGx)

LLP_
DST_EN
(CTLx)

RELOAD
_DST
(CFGx)

CTLx, LLPx
Update
Method

SARx
Update
Method

DARx
Update
Method

Write
Backa

1. Single-block or
last transfer of
multi-block.

Yes 0 0 0 0 None, user
reprograms

None
(single)

None
(single)

No

2. Auto-reload
multi-block
transfer with
contiguous SAR

Yes 0 0 0 1 CTLx, LLPx
are reloaded
from initial
values.

Con-
tiguous

Auto-
Reload

No

3. Auto-reload
multi-block
transfer with
contiguous DAR.

Yes 0 1 0 0 CTLx, LLPx
are reloaded
from initial
values

Auto-
Reload

Con-
tiguous

No

4. Auto-reload
multi-block
transfer

Yes 0 1 0 1 CTLx, LLPx
are reloaded
from initial
values

Auto-
reload

Auto-
Reload

No

5. Single-block or
last transfer of
multi-block.

No 0 0 0 0 None, user
reprograms

None
(single)

None
(single)

Yes

6. Linked list
multi-block
transfer with
contiguous SAR

No 0 0 1 0 CTLx, LLPx
loaded from
next Linked
List item.

Con-
tiguous

Linked
List

Yes

https://solvnet.synopsys.com
www.designware.com

336 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

Figure 6-3 Mapping of Block Descriptor (LLI) in Memory to Channel Registers When DMAH_CHx_STAT_SRC Set
to True

I

7. Linked list
multi-block
transfer with
auto-reload SAR

No 0 1 1 0 CTLx, LLPx
loaded from
next Linked
List item.

Auto-
Reload

Linked
List

Yes

8. Linked list
multi-block
transfer with
contiguous DAR

No 1 0 0 0 CTLx, LLPx
loaded from
next Linked
List item.

Linked
List

Con-
tiguous

Yes

9. Linked list
multi-block
transfer with
auto-reload DAR

No 1 0 0 1 CTLx, LLPx
loaded from
next Linked
List item.

Linked
List

Auto-
Reload

Yes

10. Linked list
multi-block
transfer

No 1 0 1 0 CTLx, LLPx
loaded from
next Linked
List item.

Linked
List

Linked
List

Yes

a. This column assumes that the configuration parameter DMAH_CHx_CTL_WB_EN = True. If DMAH_CHx_CTL_WB_EN
= False, then there is never writeback of the control and status registers regardless of transfer type, and all rows of this
column are “No”.

Transfer Type

LLP.
LOC
 = 0

LLP_
SRC_EN
(CTLx)

RELOAD
_SRC
(CFGx)

LLP_
DST_EN
(CTLx)

RELOAD
_DST
(CFGx)

CTLx, LLPx
Update
Method

SARx
Update
Method

DARx
Update
Method

Write
Backa

LLI.DSTATx

LLI.CTLx[63:32]

LLI.CTLx[31:0]

LLI.SSTATx

LLI.LLPx

LLI.DARx

LLI.SARx

{LLPx[31:2], 2‘b00} + 0x18

{LLPx[31:2], 2‘b00} + 0x14

{LLPx[31:2], 2‘b00} + 0x10

{LLPx[31:2], 2‘b00} + 0xc

{LLPx[31:2], 2‘b00} + 0x8

{LLPx[31:2], 2‘b00} + 0x4

{LLPx[31:2], 2‘b00}

hsize = 32

32
base address of LLI

Fixed Offsets

(LLPx.LOC)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 337SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

Figure 6-4 Mapping of Block Descriptor (LLI) in Memory to Channel Registers When DMAH_CHx_STAT_SRC Set
to False

6.4.2 Auto-Reloading of Channel Registers

During auto-reloading, the channel registers are reloaded with their initial values at the completion of each
block and the new values used for the new block. Depending on the row number in Table 6-1, some or all of
the SARx, DARx, and CTLx channel registers are reloaded from their initial value at the start of a block
transfer.

6.4.3 Contiguous Address Between Blocks

In this case, the address between successive blocks is selected as a continuation from the end of the previous
block.

Enabling the source or destination address to be contiguous between blocks is a function of the
CTLx.LLP_SRC_EN, CFGx.RELOAD_SRC, CTLx.LLP_DST_EN, and CTLx.RELOAD_DST registers (see
Table 6-1).

NoteNoteNoteNote
■ Throughout this databook, there are descriptions about fetching the LLI.CTLx register from

the location pointed to by the LLPx register. This exact location is the LLI base address
(stored in LLPx register) plus the fixed offset. For example, in Figure 6-3, the location of the
LLI.CTLx register is LLPx.LOC + 0xc.

■ Referring to Table 6-1, if the Write Back column entry is “Yes” and the configuration
parameter DMAH_CHx_CTL_WB_EN = True, then the CTLx[63:32] register is always
written to system memory (to LLI.CTLx[63:32]) at the end of every block transfer.

The source status is fetched and written to system memory at the end of every block
transfer if the Write Back column entry is “Yes,” DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is enabled.

The destination status is fetched and written to system memory at the end of every block
transfer if the Write Back column entry is “Yes,” DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled.

LLI.DSTATx

LLI.CTLx[63:32]

LLI.CTLx[31:0]

LLI.LLPx

LLI.DARx

LLI.SARx

{LLPx[31:2], 2‘b00} + 0x14

{LLPx[31:2], 2‘b00} + 0x10

{LLPx[31:2], 2‘b00} + 0xc

{LLPx[31:2], 2‘b00} + 0x8

{LLPx[31:2], 2‘b00} + 0x4

{LLPx[31:2], 2‘b00}

hsize = 32

32
base address of LLI

Fixed Offsets

(LLPx.LOC)

https://solvnet.synopsys.com
www.designware.com

338 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

6.4.4 Suspension of Transfers Between Blocks

At the end of every block transfer, an end-of-block interrupt is asserted if:

1. Interrupts are enabled, CTLx.INT_EN = 1, and

2. The channel block interrupt is unmasked, MaskBlock[n] = 1, where n is the channel number.

For rows 6, 8, and 10 of Table 6-1, the DMA transfer does not stall between block transfers. For example, at
the end-of-block N, the DW_ahb_dmac automatically proceeds to block N + 1.

For rows 2, 3, 4, 7, and 9 of Table 6-1 (SARx and/or DARx auto-reloaded between block transfers), the DMA
transfer automatically stalls after the end-of-block interrupt is asserted, if the end-of-block interrupt is
enabled and unmasked.

The DW_ahb_dmac does not proceed to the next block transfer until a write to the ClearBlock[n] block
interrupt clear register, done by software to clear the channel block-complete interrupt, is detected by
hardware.

For rows 2, 3, 4, 7, and 9 of Table 6-1 (SARx and/or DARx auto-reloaded between block transfers), the DMA
transfer does not stall if either:

■ Interrupts are disabled, CTLx.INT_EN = 0, or

■ The channel block interrupt is masked, MaskBlock[n] = 0, where n is the channel number.

Channel suspension between blocks is used to ensure that the end-of-block ISR (interrupt service routine) of
the next-to-last block is serviced before the start of the final block commences. This ensures that the ISR has
cleared the CFGx.RELOAD_SRC and/or CFGx.RELOAD_DST bits before completion of the final block. The
reload bits CFGx.RELOAD_SRC and/or CFGx.RELOAD_DST should be cleared in the end-of-block ISR for
the next-to-last block transfer.

6.4.5 Ending Multi-Block Transfers

All multi-block transfers must end as shown in either Row 1 or Row 5 of Table 6-1. At the end of every block
transfer, the DW_ahb_dmac samples the row number, and if the DW_ahb_dmac is in the Row 1 or Row 5
state, then the previous block transferred is the last block and the DMA transfer is terminated.

NoteNoteNoteNote You cannot select both SARx and DARx updates to be contiguous. If you want this
functionality, you should increase the size of the Block Transfer (CTLx.BLOCK_TS), or if this is
at the maximum value, use Row 10 of Table 6-1 and set up the LLI.SARx address of the block
descriptor to be equal to the end SARx address of the previous block. Similarly, set up the
LLI.DARx address of the block descriptor to be equal to the end DARx address of the previous
block. For more information, refer to “Multi-Block Transfer with Linked List for Source and
Linked List for Destination (Row 10)” on page 345.

NoteNoteNoteNote The block-complete interrupt is generated at the completion of the block transfer to the
destination.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 339SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

For rows 2, 3, and 4 of Table 6-1, (LLPx.LOC = 0 and CFGx.RELOAD_SRC and/or CFGx.RELOAD_DST is
set), multi-block DMA transfers continue until both the CFGx.RELOAD_SRC and CFGx.RELOAD_DST
registers are cleared by software. They should be programmed to 0 in the end-of-block interrupt service
routine that services the next-to-last block transfer; this puts the DW_ahb_dmac into the Row 1 state.

For rows 6, 8, and 10 of Table 6-1 (both CFGx.RELOAD_SRC and CFGx.RELOAD_DST cleared), you must
set up the last block descriptor in memory so that both LLI.CTLx.LLP_SRC_EN and
LLI.CTLx.LLP_DST_EN are 0.

The sampling of the LLPx.LOC bit takes place exclusively at the beginning of the transfer when the channel
is enabled. This determines whether writeback is enabled throughout the complete transfer, and changing
the value of this bit in subsequent blocks on the same transfer does not have any effect.

6.5 Programing Examples
The flow diagram in Figure 6-5 shows an overview of programming the DMA described in “Programming
Example for Linked List Multi-Block Transfer” on page 341.

NoteNoteNoteNote Row 1 and Row 5 are used for single-block transfers or terminating multi-block transfers.
Transfers initiated in rows 2, 3 or 4 can only end in row 1; similarly, transfers initiated in rows 6
through 10 can only end in row 5. Ending in the Row 5 state enables status fetch and
write-back for the last block. Ending in the Row 1 state disables status fetch and write-back for
the last block.

NoteNoteNoteNote The only allowed transitions between the rows of Table 6-1 are from any row into Row 1 or
Row 5. As already stated, a transition into row 1 or row 5 is used to terminate the DMA
transfer; all other transitions between rows are not allowed. Software must ensure that illegal
transitions between rows do not occur between blocks of a multi-block transfer. For example, if
block N is in row 10, then the only allowed rows for block N +1 are rows are rows 10 or 5.

https://solvnet.synopsys.com
www.designware.com

340 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

Figure 6-5 Flowchart for DMA Programming Example

Idle Channel
busv

Program
CTLx

Register

Clear pending
interrupts

Read
ChEnReg

Write to
DONE bit

Write to BLOCK_TS to
set block transfer size

Write to LLP_SRC_EN,
LLP_DST_EN to set

block chaining for
source/destination

Write to TT_FC to
set transfer type and

flow control

Write to
SRC_TR_WIDTH to
set source transfer

width

Write to
DST_TR_WIDTH to set

destination transfer
width

Write to SMS/DMS to
identify AHB layer for

source/destination

Write to SINC/DINC for
incrementing address
for source/destination

Write to SRC_MSIZE,
DEST_MSIZE to set

source/destination burst
transaction length

Write SRC_GATHER_EN
DST_SCATTER_EN to set
source/destination gather

enable bit

Write to INT_EN to set
Interrupt Enable bit

Program
CTLx

Register

Write to HS_SEL_SRC,
HS_SEL_DST to set
source/destination

handshaking interface

Hardware
handshaking

enabled

Write to SS_UPD_EN,
DS_UPD_EN to set

source/destination Status
Update Enable

Write to Protection
Control bit PROTCTL

Write to FIFO_MODE
select bit and Flow Control

Mode bit FCMODE

Write to RELOAD_SRC,
RELOAD_DST to set

automatid source/
destination Reload

Write to MAX_ABRST to
set Maximum AMBA

Burst Length

Write to SRC_HS_POL,
DST_HS_POL to set

source/destination
Handshaking Interface

Polarity

Write to SRC_PER,
DEST_PER to assign
hardware handshaking

interface

LOCK_B
Bus Lock bit

set

LOCK_CH
Channel Lock

bit set

Write to FIFO_EMPTY bit,
CH_SUSP Channel

Suspend bit and
CH_PRIOR Channel

Priority bit

Set LLPx register
locations of all

LLI entries

Set SARx/DARx
register locations
of all LLI entries

Scatter
enabled

Gather
enabled

Clear pending
interrupts

Write to ChEnReg to
enable DW_ahb_dmac

Set Bus Lock
Level duration

LOCK_B_L

Set Channel
Lock Level

duration
LOCK_CH_L

Program
SGRx

register

Program
DSRx

register

Y

N

Y

Y

Y

Y

N

N

N

N

Y

N

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 341SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

6.5.1 Programming Example for Linked List Multi-Block Transfer

This section explains the step-by-step programming of the DW_ahb_dmac. The example demonstrates
row 10 of Table 6-1 for Multi-Block Transfer with Linked List for Source and Linked List for Destination.
This example uses the DW_ahb_dmac to move four blocks of contiguous data from source to destination
memory using the Linked List feature.

1. Set up the chain of Linked List items—otherwise known as block descriptors—in memory. Write the
control information in the LLI.CTLx register location of the block descriptor for each LLI in memory
for Channel 1. In the LLI.CTLx register, the following is programmed:

a. Set up the transfer type for a memory-to-memory transfer:

- ctlx[22:20] = 3'b000;

b. Set up the transfer characteristics:

i. Transfer width for the source in the SRC_TR_WIDTH field
- ctlx[6:4] = 3'b001;

ii. Transfer width for the destination in the DST_TR_WIDTH field
- ctlx[3:1] = 3'b001;

iii. Source master layer in the SMS field where the source resides
- ctlx[26:25] = 2'b00;

iv. Destination master layer in the DMS field where the destination resides
- ctlx[24:23] = 2'b00;

v. Incrementing address for the source in the SINC field
- ctlx[10:9] = 2'b00;

vi. Incrementing address for the destination in the DINC field
- ctlx[8:7] = 2'b00;

2. Write the channel configuration information into the CFGx register for Channel 1:

a. HS_SEL_SRC/HS_SEL_DST bits select which of the handshaking interfaces—hardware or
software—is active for source requests on this channel.

- cfgx[11] = 1'b0;
- cfgx[10] = 1'b0;

These settings are ignored because both the source and destination are memory types.

b. If the hardware handshaking interface is activated for the source or destination peripheral, assign
the handshaking interface to the source and destination peripheral by programming the
SRC_PER and DEST_PER bits:

- cfgx[46:43] = 1'b0;
- cfgx[42:39] = 1'b0;

These settings are ignored because both the source and destination are memory types.

3. The following For loop, shown as a programming example, sets the following:

❑ LLI.LLPx register locations of all LLI entries in memory (except the last) to non-zero and point to
the base address of the next Linked List Item

❑ LLI.SARx/LLI.DARx register locations of all LLI entries in memory point to the start
source/destination block address preceding that LLI fetch

https://solvnet.synopsys.com
www.designware.com

342 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

The For statement below configures the LLPx entries:

 for(i=0; i < 4; i=i+1) begin
 if (i == 3)
 llpx = 0; // end of LLI
 else
 llpx = llp_addr + 20; // start of next LLI

 //-: Program SAR
 `AHB_MASTER.write(0, llp_addr, sarx, AhbWord32Attrb, handle[0]);
 //-: Program DAR
 `AHB_MASTER.write(0, (llp_addr + 4), darx, AhbWord32Attrb, handle[0]);

 //-: Program LLP
 `AHB_MASTER.write(0, (llp_addr + 8), llpx, AhbWord32Attrb, handle[0]);

 //-: Program CTL
 `AHB_MASTER.write(0, (llp_addr + 12), ctlx[31:0], AhbWord32Attrb, handle[0]);
 `AHB_MASTER.write(0, (llp_addr + 16), ctlx[63:32], AhbWord32Attrb, handle[0]);

 // update pointers
 llp_addr = llp_addr + 20; // start of next LLI

 // 4 16-bit words each with scatter/gather interval in each block
 // (works only with scatter_gather count of 2)
 sarx = sarx + 24;
 darx = darx + 24;

 end

4. If Gather is enabled—DMAH_CHx_SRC_GAT_EN = True and CTLx.SRC_GATHER_EN is
enabled— program the SGRx register for Channel 1.

5. If Scatter is enabled—DMAH_CHx_DST_SCA_EN = True and CTLx.DST_SCATTER_EN is
enabled—program the DSRx register for Channel 1.

6. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the
Interrupt Clear registers.

7. Finally, enable the channel by writing a 1 to the ChEnReg.CH_EN bit; the transfer is performed.

6.6 Programming a Channel
Three registers – LLPx, CTLx, and CFGx – need to be programmed to determine whether single- or
multi-block transfers occur, and which type of multi-block transfer is used. The different transfer types are
shown in Table 6-1.

The DW_ahb_dmac can be programmed to fetch the status from the source or destination peripheral; this
status is stored in the SSTATx and DSTATx registers. When the DW_ahb_dmac is programmed to fetch the
status from the source or destination peripheral, it writes this status and the contents of the CTLx register
back to memory at the end of a block transfer. The Write Back column of Table 6-1 shows when this occurs.

The “Update Method” columns indicate where the values of SARx, DARx, CTLx, and LLPx are obtained for
the next block transfer when multi-block DW_ahb_dmac transfers are enabled.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 343SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

6.6.1 Programming Examples

■ “Single-block Transfer (Row 1)” on page 343

■ “Multi-Block Transfer with Linked List for Source and Linked List for Destination (Row 10)” on
page 345

■ “Multi-Block Transfer with Source Address Auto-Reloaded and Destination Address Auto-Reloaded
(Row 4)” on page 350

■ “Multi-Block Transfer with Source Address Auto-Reloaded and Linked List Destination Address
(Row 7)” on page 353

■ “Multi-Block Transfer with Source Address Auto-Reloaded and Contiguous Destination Address
(Row 3)” on page 358

■ “Multi-Block DMA Transfer with Linked List for Source and Contiguous Destination Address
(Row 8)” on page 362

6.6.1.1 Single-block Transfer (Row 1)

This section describes a single-block transfer, Row 1 in Table 6-1.

1. Read the Channel Enable register to choose a free (disabled) channel; refer to “ChEnReg”.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the
Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, and ClearErr. Reading
the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts have been cleared.

3. Program the following channel registers:

a. Write the starting source address in the SARx register for channel x.

b. Write the starting destination address in the DARx register for channel x.

c. Program CTLx and CFGx according to Row 1, as shown in Table 6-1. Program the LLPx register
with 0.

d. Write the control information for the DMA transfer in the CTLx register for channel x. For
example, in the register, you can program the following:

i. Set up the transfer type (memory or non-memory peripheral for source and destination) and
flow control device by programming the TT_FC of the CTLx register. Table 2-1 lists the
decoding for this field.

NoteNoteNoteNote In Table 6-1, all other combinations of LLPx.LOC = 0, CTLx.LLP_SRC_EN,
CFGx.RELOAD_SRC, CTLx.LLP_DST_EN, and CFGx.RELOAD_DST are illegal, and causes
indeterminate or erroneous behavior.

NoteNoteNoteNote Row 5 in Table 6-1 is also a single-block transfer with write-back of control and status
information enabled at the end of the single-block transfer.

https://solvnet.synopsys.com
www.designware.com

344 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

ii. Set up the transfer characteristics, such as:
✧ Transfer width for the source in the SRC_TR_WIDTH field. Table 2-6 lists the decoding

for this field.
✧ Transfer width for the destination in the DST_TR_WIDTH field. Table 2-6 lists the

decoding for this field.
✧ Source master layer in the SMS field where the source resides.
✧ Destination master layer in the DMS field where the destination resides.
✧ Incrementing/decrementing or fixed address for the source in the SINC field.
✧ Incrementing/decrementing or fixed address for the destination in the DINC field.

e. Write the channel configuration information into the CFGx register for channel x.

i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals; this is not required for memory.
This step requires programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing
a 0 activates the hardware handshaking interface to handle source/destination requests.
Writing a 1 activates the software handshaking interface to handle source and destination
requests.

ii. If the hardware handshaking interface is activated for the source or destination peripheral,
assign a handshaking interface to the source and destination peripheral; this requires
programming the SRC_PER and DEST_PER bits, respectively.

f. If gather is enabled (parameter DMAH_CHx_SRC_GAT_EN = True and
CTLx.SRC_GATHER_EN is enabled), program the SGRx register for channel x.

g. If scatter is enabled (parameter DMAH_CHx_DST_SCA_EN = True and
CTLx.DST_SCATTER_EN), program the DSRxregister for channel x.

4. Ensure that bit 0 of the DmaCfgReg register is enabled before writing to ChEnReg.

5. Source and destination request single and burst DMA transactions in order to transfer the block of
data (assuming non-memory peripherals). The DW_ahb_dmac acknowledges at the completion of
every transaction (burst and single) in the block and carries out the block transfer.

6. Once the transfer completes, hardware sets the interrupts and disables the channel. At this time, you
can respond to either the Block Complete or Transfer Complete interrupts, or poll for the transfer
complete raw interrupt status register (RawTfr[n], n = channel number) until it is set by hardware, in
order to detect when the transfer is complete. Note that if this polling is used, the software must
ensure that the transfer complete interrupt is cleared by writing to the Interrupt Clear register,
ClearTfr[n], before the channel is enabled.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 345SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

6.6.1.2 Multi-Block Transfer with Linked List for Source and Linked List for Destination (Row 10)

1. Read the Channel Enable register (see “ChEnReg”) to choose a free (disabled) channel.

2. Set up the chain of Linked List Items (otherwise known as block descriptors) in memory. Write the
control information in the LLI.CTLx register location of the block descriptor for each LLI in memory
(see Figure 6-1) for channel x. For example, in the register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow
control device by programming the TT_FC of the CTLx register. Table 2-1 lists the decoding for
this field.

b. Set up the transfer characteristics, such as:

i. Transfer width for the source in the SRC_TR_WIDTH field. Table 2-6 lists the decoding for
this field.

ii. Transfer width for the destination in the DST_TR_WIDTH field. Table 2-6 lists the decoding
for this field.

iii. Source master layer in the SMS field where the source resides.
iv. Destination master layer in the DMS field where the destination resides.
v. Incrementing/decrementing or fixed address for the source in the SINC field.

vi. Incrementing/decrementing or fixed address for the destination in the DINC field.

3. Write the channel configuration information into the CFGx register for channel x.

i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals; this is not required for memory.
This step requires programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing
a 0 activates the hardware handshaking interface to handle source/destination requests for
the specific channel. Writing a 1 activates the software handshaking interface to handle
source/destination requests.

ii. If the hardware handshaking interface is activated for the source or destination peripheral,
assign the handshaking interface to the source and destination peripheral. This requires
programming the SRC_PER and DEST_PER bits, respectively.

4. Make sure that the LLI.CTLx register locations of all LLI entries in memory (except the last) are set as
shown in Row 10 of Table 6-1. The LLI.CTLx register of the last Linked List Item must be set as
described in Row 1 or Row 5 of Table 6-1. Figure 6-1 shows a Linked List example with two list items.

5. Make sure that the LLI.LLPx register locations of all LLI entries in memory (except the last) are
non-zero and point to the base address of the next Linked List Item.

6. Make sure that the LLI.SARx/LLI.DARx register locations of all LLI entries in memory point to the
start source/destination block address preceding that LLI fetch.

NoteNoteNoteNote This type of multi-block transfer can only be enabled when either of the following parameters is
set:

■ DMAH_CHx_MULTI_BLK_TYPE = NO_HARDCODE

or

■ DMAH_CHx_MULTI_BLK_TYPE = LLP_LLP

https://solvnet.synopsys.com
www.designware.com

346 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

7. If parameter DMAH_CHx_CTL_WB_EN = True, ensure that the LLI.CTLx.DONE field of the
LLI.CTLx register locations of all LLI entries in memory is cleared.

8. If source status fetching is enabled (DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is enabled), program the SSTATARx
register so that the source status information can be fetched from the location pointed to by the
SSTATARx. For conditions under which the source status information is fetched from system
memory, refer to the Write Back column of Table 6-1.

9. If destination status fetching is enabled (DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled), program the DSTATARx
register so that the destination status information can be fetched from the location pointed to by the
DSTATARx register. For conditions under which the destination status information is fetched from
system memory, refer to the Write Back column of Table 6-1.

10. If gather is enabled (DMAH_CHx_SRC_GAT_EN = True and CTLx.SRC_GATHER_EN is enabled),
program the SGRx register for channel x.

11. If scatter is enabled (DMAH_CHx_DST_SCA_EN = True and CTLx.DST_SCATTER_EN is enabled)
program the DSRx register for channel x.

12. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the
Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, and ClearErr. Reading
the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts have been cleared.

13. Program the CTLx and CFGx registers according to Row 10, as shown in Table 6-1

14. Program the LLPx register with LLP(0), the pointer to the first linked list item.

15. Finally, enable the channel by writing a 1 to the ChEnReg.CH_EN bit; the transfer is performed.

16. The DW_ahb_dmac fetches the first LLI from the location pointed to by LLPx(0).

17. Source and destination request single and burst DMA transactions to transfer the block of data
(assuming non-memory peripheral). The DW_ahb_dmac acknowledges at the completion of every
transaction (burst and single) in the block and carries out the block transfer.

18. Once the block of data is transferred, the source status information is fetched from the location
pointed to by the SSTATARxregister and stored in the SSTATxregister if DMAH_CHx_CTL_WB_EN
= True, DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is enabled. For conditions under
which the source status information is fetched from system memory, refer to the Write Back column
of Table 6-1.

The destination status information is fetched from the location pointed to by the DSTATARxregister
and stored in the DSTATxregister if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled. For conditions under which the
destination status information is fetched from system memory, refer to the Write Back column of
Table 6-1.

NoteNoteNoteNote The LLI.SARx, LLI.DARx, LLI.LLPx, and LLI.CTLx registers are fetched. The DW_ahb_dmac
automatically reprograms the SARx, DARx, LLPx, and CTLx channel registers from the
LLPx(0).

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 347SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

19. If DMAH_CHx_CTL_WB_EN = True, then the CTLx[63:32] register is written out to system memory.
For conditions under which the CTLx[63:32] register is written out to system memory, refer to the
Write Back column of Table 6-1.

The CTLx[63:32] register is written out to the same location on the same layer (LLPx.LMS) where it
was originally fetched; that is, the location of the CTLxregister of the linked list item fetched prior to
the start of the block transfer. Only the second word of the CTLx register is written out – CTLx[63:32]
– because only the CTLx.BLOCK_TS and CTLx.DONE fields have been updated by the
DW_ahb_dmac hardware. Additionally, the CTLx.DONE bit is asserted to indicate block completion.
Therefore, software can poll the LLI.CTLx.DONE bit of the CTLx register in the LLI to ascertain when
a block transfer has completed.

20. The SSTATx register is now written out to system memory if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is enabled. It is written to the SSTATx
register location of the LLI pointed to by the previously saved LLPx.LOC register.

The DSTATx register is now written out to system memory if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled. It is written to the DSTATx
register location of the LLI pointed to by the previously saved LLPx.LOC register.

The end-of-block interrupt, int_block, is generated after the write-back of the control and status
registers has completed.

21. The DW_ahb_dmac does not wait for the block interrupt to be cleared, but continues fetching the
next LLI from the memory location pointed to by the current LLPxregister and automatically
reprograms the SARx, DARx, LLPx, and CTLx channel registers. The DMA transfer continues until
the DW_ahb_dmac determines that the CTLx and LLPxregisters at the end of a block transfer match
the ones described in Row 1 or Row 5 of Table 6-1 (as discussed earlier). The DW_ahb_dmac then
knows that the previously transferred block was the last block in the DMA transfer.

NoteNoteNoteNote Do not poll the CTLx.DONE bit in the DW_ahb_dmac memory map; instead, poll the
LLI.CTLx.DONE bit in the LLI for that block. If the polled LLI.CTLx.DONE bit is asserted, then
this block transfer has completed. This LLI.CTLx.DONE bit is cleared at the start of the
transfer (Step 7).

NoteNoteNoteNote The write-back location for the control and status registers is the LLI pointed to by the previous
value of the LLPx.LOC register, not the LLI pointed to by the current value of the LLPx.LOC
register.

https://solvnet.synopsys.com
www.designware.com

348 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

The DMA transfer might look like that shown in Figure 6-6.

Figure 6-6 Multi-Block with Linked Address for Source and Destination

Block
2

Block
1

Block
0

Block
2

Block
1

Block
0

SAR(2)

SAR(1)

SAR(0)

DAR(2)

DAR(1)

DAR(0)

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 349SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

If you need to execute a DMA transfer where the source and destination address are contiguous, but where
the amount of data to be transferred is greater than the maximum block size CTLx.BLOCK_TS, then this can
be achieved using the type of multi-block transfer shown in Figure 6-7.

Figure 6-7 Multi-Block with Linked Address for Source and Destination Where SARx and DARx Between
Successive Blocks are Contiguous

SAR(3)

SAR(1)

SAR(0)

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

Block3

Block2

Block1

Block0

SAR(2)

DAR(3)

DAR(1)

DAR(0)

Block3

Block2

Block1

Block0

DAR(2)

https://solvnet.synopsys.com
www.designware.com

350 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

The DMA transfer flow is shown in Figure 6-8.

Figure 6-8 DMA Transfer Flow for Source and Destination Linked List Address

6.6.1.3 Multi-Block Transfer with Source Address Auto-Reloaded and Destination Address
Auto-Reloaded (Row 4)

1. Read the Channel Enable register (see “ChEnReg”) to choose an available (disabled) channel.

NoteNoteNoteNote This type of multi-block transfer can only be enabled when either of the following parameters is
set:

■ DMAH_CHx_MULTI_BLK_TYPE = NO_HARDCODE

or

■ DMAH_CHx_MULTI_BLK_TYPE = RELOAD_RELOAD

Channel enabled by
software

Channel disabled by
hardware

LLI fetch

Hardware reprograms
SARx, DARx, CTLx, and LLPx

Source/destination
status fetch

Write-back of control and
source/destination status to LLI

Is DW_ahb_dmac in
Row1 or Row5 of

Table 6-1?

DW_ahb_dmac block transfer

yes

no

Block-complete interrupt
generated here

DW_ahb_dmac transfer complete
interrupt generated here

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 351SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the
Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, and ClearErr. Reading
the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts have been cleared.

3. Program the following channel registers:

a. Write the starting source address in the SARx register for channel x.

b. Write the starting destination address in the DARx register for channel x.

c. Program CTLx and CFGx according to Row 4, as shown in Table 6-1. Program the LLPx register
with 0.

d. Write the control information for the DMA transfer in the CTLx register for channel x. For
example, in the register, you can program the following:

i. Set up the transfer type (memory or non-memory peripheral for source and destination) and
flow control device by programming the TT_FC of the CTLx register. Table 2-1 lists the
decoding for this field.

ii. Set up the transfer characteristics, such as:
✧ Transfer width for the source in the SRC_TR_WIDTH field; Table 2-6 lists the decoding

for this field.
✧ Transfer width for the destination in the DST_TR_WIDTH field; Table 2-6 lists the

decoding for this field.
✧ Source master layer in the SMS field where the source resides.
✧ Destination master layer in the DMS field where the destination resides.
✧ Incrementing/decrementing or fixed address for the source in the SINC field.
✧ Incrementing/decrementing or fixed address for the destination in the DINC field.

e. If gather is enabled (DMAH_CHx_SRC_GAT_EN = True and CTLx.SRC_GATHER_EN is
enabled), program the SGRx register for channel x.

f. If scatter is enabled (DMAH_CHx_DST_SCA_EN = True and CTLx.DST_SCATTER_EN),
program the DSRx register for channel x.

g. Write the channel configuration information into the CFGx register for channel x. Ensure that the
reload bits, CFGx. RELOAD_SRC and CFGx.RELOAD_DST, are enabled.

i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals; this is not required for memory.
This step requires programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing
a 0 activates the hardware handshaking interface to handle source/destination requests for
the specific channel. Writing a 1 activates the software handshaking interface to handle
source/destination requests.

ii. If the hardware handshaking interface is activated for the source or destination peripheral,
assign the handshaking interface to the source and destination peripheral. This requires
programming the SRC_PER and DEST_PER bits, respectively.

4. Ensure that bit 0 of the DmaCfgReg register is enabled before writing to ChEnReg.

5. Source and destination request single and burst DW_ahb_dmac transactions to transfer the block of
data (assuming non-memory peripherals). The DW_ahb_dmac acknowledges on completion of each
burst/single transaction and carries out the block transfer.

https://solvnet.synopsys.com
www.designware.com

352 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

6. When the block transfer has completed, the DW_ahb_dmac reloads the SARx, DARx, and CTLx
registers. Hardware sets the block-complete interrupt. The DW_ahb_dmac then samples the row
number, as shown in Table 6-1. If the DW_ahb_dmac is in Row 1, then the DMA transfer has
completed. Hardware sets the transfer complete interrupt and disables the channel. You can either
respond to the Block Complete or Transfer Complete interrupts, or poll for the transfer complete raw
interrupt status register (RawTfr[n], where n is the channel number) until it is set by hardware, in
order to detect when the transfer is complete. Note that if this polling is used, software must ensure
that the transfer complete interrupt is cleared by writing to the Interrupt Clear register, ClearTfr[n],
before the channel is enabled. If the DW_ahb_dmac is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLxx.INT_EN = 1) and the block-complete interrupt is unmasked
(MaskBlock[x] = 1’b1, where x is the channel number), hardware sets the block-complete
interrupt when the block transfer has completed. It then stalls until the block-complete interrupt
is cleared by software. If the next block is to be the last block in the DMA transfer, then the
block-complete ISR (interrupt service routine) should clear the reload bits in the
CFGx.RELOAD_SRC and CFGx.RELOAD_DST registers. This puts the DW_ahb_dmac into
Row 1, as shown in Table 6-1. If the next block is not the last block in the DMA transfer, then the
reload bits should remain enabled to keep the DW_ahb_dmac in Row 4.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block-complete interrupt is masked
(MaskBlock[x] = 1’b0, where x is the channel number), then hardware does not stall until it
detects a write to the block-complete interrupt clear register; instead, it immediately starts the
next block transfer. In this case, software must clear the reload bits in the CFGx.RELOAD_SRC
and CFGx.RELOAD_DST registers to put the DW_ahb_dmac into Row 1 of Table 6-1 before the
last block of the DMA transfer has completed.

The transfer is similar to that shown in Figure 6-9.

Figure 6-9 Multi-Block DMA Transfer with Source and Destination Address Auto-Reloaded

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

Block0
Block1

Block2

BlockN

SAR DAR

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 353SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

The DMA transfer flow is shown in Figure 6-10.

Figure 6-10 DMA Transfer Flow for Source and Destination Address Auto-Reloaded

6.6.1.4 Multi-Block Transfer with Source Address Auto-Reloaded and Linked List Destination
Address (Row 7)

1. Read the Channel Enable register (see “ChEnReg”) in order to choose a free (disabled) channel.

2. Set up the chain of linked list items (otherwise known as block descriptors) in memory. Write the
control information in the LLI.CTLx register location of the block descriptor for each LLI in memory
(see Figure 6-1) for channel x. For example, in the register you can program the following:

NoteNoteNoteNote This type of multi-block transfer can only be enabled when either of the following parameters is
set:

■ DMAH_CHx_MULTI_BLK_TYPE = 0

or

■ DMAH_CHx_MULTI_BLK_TYPE = RELOAD_LLP

Channel enabled by
software

Stall until block-complete
interrupt cleared by software

Block transfer

CTLx.INT_EN = 1
&&

MASKBLOCK[x]=1?

Reload SARx, DARx, and CTLx

yes

no

Block-complete interrupt
generated here

DW_ahb_dmac transfer
Is DW_ahb_dmac in
Row1 of Table 6-1?

no

yes

complete interrupt
generated here

Channel disabled by
hardware

https://solvnet.synopsys.com
www.designware.com

354 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

a. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow
control peripheral by programming the TT_FC of the CTLxregister. Table 2-1 lists the decoding
for this field.

b. Set up the transfer characteristics, such as:

i. Transfer width for the source in the SRC_TR_WIDTH field. Table 2-6 lists the decoding for
this field.

ii. Transfer width for the destination in the DST_TR_WIDTH field. Table 2-6 lists the decoding
for this field.

iii. Source master layer in the SMS field where the source resides.
iv. Destination master layer in the DMS field where the destination resides.
v. Incrementing/decrementing or fixed address for the source in the SINC field.

vi. Incrementing/decrementing or fixed address for the destination in the DINC field.

3. Write the starting source address in the SARxregister for channel x.

4. Write the channel configuration information into the CFGxregister for channel x.

i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals; this is not required for memory.
This step requires programming the HS_SEL_SRC/HS_SEL_DST bits. Writing a 0 activates
the hardware handshaking interface to handle source/destination requests for the specific
channel. Writing a 1 activates the software handshaking interface source/destination
requests.

ii. If the hardware handshaking interface is activated for the source or destination peripheral,
assign the handshaking interface to the source and destination peripheral; this requires
programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that the LLI.CTLx register locations of all LLIs in memory (except the last) are set as
shown in Row 7 of Table 6-1, while the LLI.CTLx register of the last Linked List item must be set as
described in Row 1 or Row 5 of Table 6-1. Figure 6-1 shows a Linked List example with two list items.

6. Ensure that the LLI.LLPx register locations of all LLIs in memory (except the last) are non-zero and
point to the next Linked List Item.

7. Ensure that the LLI.DARx register location of all LLIs in memory point to the start destination block
address preceding that LLI fetch.

8. If DMAH_CHx_CTL_WB_EN = True, ensure that the LLI.CTLx.DONE fields of the LLI.CTLx register
locations of all LLIs in memory are cleared.

9. If source status fetching is enabled (DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is enabled), program the
SSTATARxregister so that the source status information can be fetched from the location pointed to
by the SSTATARx. For conditions under which the source status information is fetched from system
memory, refer to the Write Back column of Table 6-1.

NoteNoteNoteNote The values in the LLI.SARx register locations of each of the Linked List Items (LLIs) set up in
memory, although fetched during an LLI fetch, are not used.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 355SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

10. If destination status fetching is enabled (DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled), program the
DSTATARxregister so that the destination status information can be fetched from the location
pointed to by the DSTATARxregister. For conditions under which the destination status information
is fetched from system memory, refer to the Write Back column of Table 6-1.

11. If gather is enabled (DMAH_CHx_SRC_GAT_EN = True and CTLx.SRC_GATHER_EN is enabled),
program the SGRxregister for channel x.

12. If scatter is enabled (DMAH_CHx_DST_SCA_EN = True and CTLx.DST_SCATTER_EN, program
the DSRx register for channel x.

13. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the
Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, and ClearErr. Reading
the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts have been cleared.

14. Program the CTLx and CFGxregisters according to Row 7, as shown in Table 6-1.

15. Program the LLPxregister with LLPx(0), the pointer to the first Linked List item.

16. Ensure that bit 0 of the DmaCfgRegregister is enabled before writing to ChEnReg.

17. The DW_ahb_dmac fetches the first LLI from the location pointed to by LLPx(0).

18. Source and destination request single and burst DW_ahb_dmac transactions in order to transfer the
block of data (assuming non-memory peripherals). The DW_ahb_dmac acknowledges at the
completion of every transaction (burst and single) in the block and carries out the block transfer.

19. Once the block of data is transferred, the source status information is fetched from the location
pointed to by the SSTATARx register and stored in the SSTATx register if
DMAH_CHx_CTL_WB_EN = True, DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is
enabled. For conditions under which the source status information is fetched from system memory,
refer to the Write Back column of Table 6-1.

The destination status information is fetched from the location pointed to by the DSTATARxregister
and stored in the DSTATxregister if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled. For conditions under which the
destination status information is fetched from system memory, refer to the Write Back column of
Table 6-1.

20. If DMAH_CHx_CTL_WB_EN = True, then the CTLx[63:32] register is written out to system memory.
For conditions under which the CTLx[63:32] register is written out to system memory, refer to the
Write Back column of Table 6-1.

The CTLx[63:32] register is written out to the same location on the same layer (LLPx.LMS) where it
was originally fetched; that is, the location of the CTLxregister of the linked list item fetched prior to
the start of the block transfer. Only the second word of the CTLxregister is written out – CTLx[63:32]
– because only the CTLx.BLOCK_TS and CTLx.DONE fields have been updated by hardware within
the DW_ahb_dmac. The LLI.CTLx.DONE bit is asserted to indicate block completion. Therefore,

NoteNoteNoteNote The LLI.SARx, LLI.DARx, LLI.LLPx, and LLI.CTLx registers are fetched. The LLI.SARx
register – although fetched – is not used.

https://solvnet.synopsys.com
www.designware.com

356 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

software can poll the LLI.CTLx.DONE bit field of the CTLx register in the LLI to ascertain when a
block transfer has completed.

21. The SSTATxregister is now written out to system memory if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is enabled. It is written to the SSTATx
register location of the LLI pointed to by the previously saved LLPx.LOC register.

The DSTATxregister is now written out to system memory if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled. It is written to the DSTATx
register location of the LLI pointed to by the previously saved LLPx.LOC register.

The end-of-block interrupt, int_block, is generated after the write-back of the control and status
registers has completed.

22. The DW_ahb_dmac reloads the SARx register from the initial value. Hardware sets the
block-complete interrupt. The DW_ahb_dmac samples the row number, as shown in Table 6-1. If the
DW_ahb_dmac is in Row 1 or Row 5, then the DMA transfer has completed. Hardware sets the
transfer complete interrupt and disables the channel. You can either respond to the Block Complete
or Transfer Complete interrupts, or poll for the transfer complete raw interrupt status register
(RawTfr[n], n = channel number) until it is set by hardware, in order to detect when the transfer is
complete. Note that if this polling is used, software must ensure that the transfer complete interrupt
is cleared by writing to the Interrupt Clear register, ClearTfr[n], before the channel is enabled. If the
DW_ahb_dmac is not in Row 1 or Row 5 as shown in Table 6-1, the following steps are performed.

23. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block-complete interrupt is unmasked
(MaskBlock[x] = 1’b1, where x is the channel number), hardware sets the block-complete
interrupt when the block transfer has completed. It then stalls until the block-complete interrupt
is cleared by software. If the next block is to be the last block in the DMA transfer, then the
block-complete ISR (interrupt service routine) should clear the CFGx.RELOAD_SRC source
reload bit. This puts the DW_ahb_dmac into Row 1, as shown in Table 6-1. If the next block is not
the last block in the DMA transfer, then the source reload bit should remain enabled to keep the
DW_ahb_dmac in Row 7, as shown in Table 6-1.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block-complete interrupt is masked
(MaskBlock[x] = 1’b0, where x is the channel number), then hardware does not stall until it
detects a write to the block-complete interrupt clear register; instead, it immediately starts the
next block transfer. In this case, software must clear the source reload bit, CFGx.RELOAD_SRC in

NoteNoteNoteNote Do not poll the CTLx.DONE bit in the DW_ahb_dmac memory map. Instead, poll the
LLI.CTLx.DONE bit in the LLI for that block. If the polled LLI.CTLx.DONE bit is asserted, then
this block transfer has completed. This LLI.CTLx.DONE bit is cleared at the start of the
transfer (Step 8).

NoteNoteNoteNote The write-back location for the control and status registers is the LLI pointed to by the previous
value of the LLPx.LOC register, not the LLI pointed to by the current value of the LLPx.LOC
register.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 357SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

order to put the device into Row 1 of Table 6-1 before the last block of the DMA transfer has
completed.

24. The DW_ahb_dmac fetches the next LLI from memory location pointed to by the current LLPx
register and automatically reprograms the DARx, CTLx, and LLPx channel registers. Note that the
SARx is not reprogrammed, since the reloaded value is used for the next DMA block transfer. If the
next block is the last block of the DMA transfer, then the CTLx and LLPx registers just fetched from
the LLI should match Row 1 or Row 5 of Table 6-1.

The DMA transfer might look like that shown in Figure 6-11.

Figure 6-11 Multi-Block DMA Transfer with Source Address Auto-Reloaded and Linked List Destination Address

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

Block0

Block1

Block2

BlockN

SAR DAR(0)

DAR(1)

DAR(2)

DAR(N)

https://solvnet.synopsys.com
www.designware.com

358 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

The DMA transfer flow is shown in Figure 6-12.

Figure 6-12 DMA Transfer Flow for Source Address Auto-Reloaded and Linked List Destination Address

6.6.1.5 Multi-Block Transfer with Source Address Auto-Reloaded and Contiguous Destination

Channel enabled by
software

Stall until block interrupt
cleared by hardware

LLI fetch

CTLx.INT_EN = 1
&&

MASKBLOCK[x]=1?

yes

no

Block-complete interrupt
generated here

DW_ahb_dmac transfer
Is DW_ahb_dmac in

Row1 or Row5 of
Table 6-1?

no

yes

complete interrupt
generated here

Channel disabled by
hardware

DW_ahb_dmac block transfer

Source/destination status fetch

Reload SARx

Hardware reprograms
DARx, CTLx, and LLPx

Write-back of control and
source/destination status to LLI

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 359SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

Address (Row 3)

1. Read the Channel Enable register (see “ChEnReg”) to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the
Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, and ClearErr. Reading
the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts have been cleared.

3. Program the following channel registers:

a. Write the starting source address in the SARxregister for channel x.

b. Write the starting destination address in the DARxregister for channel x.

c. Program CTLx and CFGx according to Row 3, shown in Table 6-1. Program the LLPx register
with 0.

d. Write the control information for the DMA transfer in the CTLx register for channel x. For
example, in the register, you can program the following:

i. Set up the transfer type (memory or non-memory peripheral for source and destination) and
flow control device by programming the TT_FC of the CTLx register. Table 2-1 lists the
decoding for this field.

ii. Set up the transfer characteristics, such as:
✧ Transfer width for the source in the SRC_TR_WIDTH field. Table 2-6 lists the decoding

for this field.
✧ Transfer width for the destination in the DST_TR_WIDTH field. Table 2-6 lists the

decoding for this field.
✧ Source master layer in the SMS field where the source resides.
✧ Destination master layer in the DMS field where the destination resides.
✧ Incrementing/decrementing or fixed address for the source in the SINC field.
✧ Incrementing/decrementing or fixed address for the destination in the DINC field.

e. If gather is enabled (DMAH_CHx_SRC_GAT_EN = True and CTLx.SRC_GATHER_EN is
enabled), program the SGRx register for channel x.

f. If scatter is enabled (DMAH_CHx_DST_SCA_EN = True and CTLx.DST_SCATTER_EN is
enabled), program the DSRx register for channel x.

g. Write the channel configuration information into the CFGxregister for channel x.

i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals; this is not required for memory.

NoteNoteNoteNote This type of multi-block transfer can only be enabled when either of the following parameters is
set:

■ DMAH_CHx_MULTI_BLK_TYPE = 0

or

■ DMAH_CHx_MULTI_BLK_TYPE = RELOAD_CONT

https://solvnet.synopsys.com
www.designware.com

360 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

This step requires programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing
a 0 activates the hardware handshaking interface to handle source/destination requests for
the specific channel. Writing a 1 activates the software handshaking interface to handle
source/destination requests.

ii. If the hardware handshaking interface is activated for the source or destination peripheral,
assign the handshaking interface to the source and destination peripheral. This requires
programming the SRC_PER and DEST_PER bits, respectively.

4. Ensure that bit 0 of the DmaCfgReg register is enabled before writing to ChEnReg.

5. Source and destination request single and burst DW_ahb_dmac transactions to transfer the block of
data (assuming non-memory peripherals). The DW_ahb_dmac acknowledges at the completion of
every transaction (burst and single) in the block and carries out the block transfer.

6. When the block transfer has completed, the DW_ahb_dmac reloads the SARx register; the DARx
register remains unchanged. Hardware sets the block-complete interrupt. The DW_ahb_dmac then
samples the row number, as shown in Table 6-1. If the DW_ahb_dmac is in Row 1, then the DMA
transfer has completed. Hardware sets the transfer-complete interrupt and disables the channel. You
can either respond to the Block Complete or Transfer Complete interrupts, or poll for the transfer
complete raw interrupt status register (RawTfr[n], n = channel number) until it is set by hardware, in
order to detect when the transfer is complete. Note that if this polling is used, software must ensure
that the transfer complete interrupt is cleared by writing to the Interrupt Clear register, ClearTfr[n],
before the channel is enabled. If the DW_ahb_dmac is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block-complete interrupt is unmasked
(MaskBlock[x] = 1’b1, where x is the channel number), hardware sets the block-complete
interrupt when the block transfer has completed. It then stalls until the block-complete interrupt
is cleared by software. If the next block is to be the last block in the DMA transfer, then the
block-complete ISR (interrupt service routine) should clear the source reload bit,
CFGx.RELOAD_SRC. This puts the DW_ahb_dmac into Row 1, as shown in Table 6-1. If the next
block is not the last block in the DMA transfer, then the source reload bit should remain enabled
to keep the DW_ahb_dmac in Row 3, as shown in Table 6-1.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block-complete interrupt is masked
(MaskBlock[x] = 1’b0, where x is the channel number), then hardware does not stall until it
detects a write to the block-complete interrupt clear register; instead, it starts the next block
transfer immediately. In this case, software must clear the source reload bit,
CFGx.RELOAD_SRC, to put the device into Row 1 of Table 6-1 before the last block of the DMA
transfer has completed.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 361SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

The transfer is similar to that shown in Figure 6-13.

Figure 6-13 Multi-Block DMA Transfer with Source Address Auto-Reloaded and Contiguous Destination Address

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

Block2

Block1

Block0

SAR

DAR(2)

DAR(0)

DAR(1)

https://solvnet.synopsys.com
www.designware.com

362 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

The DMA transfer flow is shown in Figure 6-14.

Figure 6-14 DMA Transfer Flow for Source Address Auto-Reloaded and Contiguous Destination Address

6.6.1.6 Multi-Block DMA Transfer with Linked List for Source and Contiguous Destination Address
(Row 8)

1. Read the Channel Enable register (see “ChEnReg”) to choose a free (disabled) channel.

2. Set up the linked list in memory. Write the control information in the LLI.CTLx register location of
the block descriptor for each LLI in memory (see Figure 6-1) for channel x. For example, in the
register, you can program the following:

NoteNoteNoteNote This type of multi-block transfer can only be enabled when either of the following parameters is
set:

■ DMAH_CHx_MULTI_BLK_TYPE = 0

or

■ DMAH_CHx_MULTI_BLK_TYPE = LLP_CONT

Channel enabled by
software

Stall until block interrupt
cleared by software

Block transfer

CTLx.INT_EN = 1
&&

MASKBLOCK[x]=1?

Reload SARx and CTLx

yes

no

Block-complete interrupt
generated here

DW_ahb_dmac transfer
Is DW_ahb_dmac in
Row1 of Table 6-1?

no

yes

complete interrupt
generated here

Channel disabled by
hardware

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 363SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

a. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow
control device by programming the TT_FC of the CTLx register. Table 2-1 lists the decoding for
this field.

b. Set up the transfer characteristics, such as:

i. Transfer width for the source in the SRC_TR_WIDTH field. Table 2-6 lists the decoding for
this field.

ii. Transfer width for the destination in the DST_TR_WIDTH field. Table 2-6 lists the decoding
for this field.

iii. Source master layer in the SMS field where the source resides.
iv. Destination master layer in the DMS field where the destination resides.
v. Incrementing/decrementing or fixed address for the source in the SINC field.

vi. Incrementing/decrementing or fixed address for the destination in the DINC field.

3. Write the starting destination address in the DARx register for channel x.

4. Write the channel configuration information into the CFGx register for channel x.

i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals; this is not required for memory.
This step requires programming the HS_SEL_SRC/HS_SEL_DST bits. Writing a 0 activates
the hardware handshaking interface to handle source/destination requests for the specific
channel. Writing a 1 activates the software handshaking interface to handle
source/destination requests.

ii. If the hardware handshaking interface is activated for the source or destination peripheral,
assign the handshaking interface to the source and destination peripherals. This requires
programming the SRC_PER and DEST_PER bits, respectively.

5. Ensure that all LLI.CTLx register locations of the LLI (except the last) are set as shown in Row 8 of
Table 6-1, while the LLI.CTLx register of the last Linked List item must be set as described in Row 1
or Row 5 of Table 6-1. Figure 6-1 shows a Linked List example with two list items.

6. Ensure that the LLI.LLPx register locations of all LLIs in memory (except the last) are non-zero and
point to the next Linked List Item.

7. Ensure that the LLI.SARx register location of all LLIs in memory point to the start source block
address preceding that LLI fetch.

8. If DMAH_CHx_CTL_WB_EN = True, ensure that the LLI.CTLx.DONE fields of the LLI.CTLx register
locations of all LLIs in memory are cleared.

9. If source status fetching is enabled (DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is enabled), program the SSTATARx
register so that the source status information can be fetched from the location pointed to by
SSTATARx. For conditions under which the source status information is fetched from system
memory, refer to the Write Back column of Table 6-1.

NoteNoteNoteNote The values in the LLI.DARx register location of each Linked List Item (LLI) in memory,
although fetched during an LLI fetch, are not used.

https://solvnet.synopsys.com
www.designware.com

364 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

10. If destination status fetching is enabled (DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled), program the DSTATARx
register so that the destination status information can be fetched from the location pointed to by the
DSTATARx register. For conditions under which the destination status information is fetched from
system memory, refer to the Write Back column of Table 6-1.

11. If gather is enabled (DMAH_CHx_SRC_GAT_EN = True and CTLx.SRC_GATHER_EN is enabled),
program the SGRx register for channel x.

12. If scatter is enabled (DMAH_CHx_DST_SCA_EN = True and CTLx.DST_SCATTER_EN) program
the DSRx register for channel x.

13. Clear any pending interrupts on the channel from the previous DMA transfer by writing to the
Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, and ClearErr. Reading
the Interrupt Raw Status and Interrupt Status registers confirms that all interrupts have been cleared.

14. Program the CTLx and CFGx registers according to Row 8, as shown in Table 6-1.

15. Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

16. Ensure that bit 0 of the DmaCfgReg register is enabled before writing to ChEnReg.

17. The DW_ahb_dmac fetches the first LLI from the location pointed to by LLPx(0).

18. Source and destination request single and burst DW_ahb_dmac transactions to transfer the block of
data (assuming non-memory peripherals). The DW_ahb_dmac acknowledges at the completion of
every transaction (burst and single) in the block and carries out the block transfer.

19. Once the block of data is transferred, the source status information is fetched from the location
pointed to by the SSTATARx register and stored in the SSTATx register if
DMAH_CHx_CTL_WB_EN = True, DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is
enabled. For conditions under which the source status information is fetched from system memory,
refer to the Write Back column of Table 6-1.

The destination status information is fetched from the location pointed to by the DSTATARx register
and stored in the DSTATx register if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled. For conditions under which the
destination status information is fetched from system memory, refer to the Write Back column of
Figure 6-1.

20. If DMAH_CHx_CTL_WB_EN = True, then the CTLx[63:32] register is written out to system memory.
For conditions under which the CTLx[63:32] register is written out to system memory, refer to the
Write Back column of Table 6-1.

The CTLx[63:32] register is written out to the same location on the same layer (LLPx.LMS) where it
was originally fetched; that is, the location of the CTLx register of the linked list item fetched prior to
the start of the block transfer. Only the second word of the CTLx register is written out, CTLx[63:32],
because only the CTLx.BLOCK_TS and CTLx.DONE fields have been updated by hardware within
the DW_ahb_dmac. Additionally, the CTLx.DONE bit is asserted to indicate block completion.

NoteNoteNoteNote The LLI.SARx, LLI.DARx, LLI.LLPx, and LLI.CTLx registers are fetched. The LLI.DARx
register location of the LLI – although fetched – is not used. The DARx register in the
DW_ahb_dmac remains unchanged.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 365SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

Therefore, software can poll the LLI.CTLx.DONE bit field of the CTLx register in the LLI to ascertain
when a block transfer has completed.

21. The SSTATx register is now written out to system memory if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_SRC = True, and CFGx.SS_UPD_EN is enabled. It is written to the SSTATx
register location of the LLI pointed to by the previously saved LLPx.LOC register.

The DSTATx register is now written out to system memory if DMAH_CHx_CTL_WB_EN = True,
DMAH_CHx_STAT_DST = True, and CFGx.DS_UPD_EN is enabled. It is written to the DSTATx
register location of the LLI pointed to by the previously saved LLPx.LOC register.

The end-of-block interrupt, int_block, is generated after the write-back of the control and status
registers has completed.

22. The DW_ahb_dmac does not wait for the block interrupt to be cleared, but continues and fetches the
next LLI from the memory location pointed to by the current LLPx register and automatically
reprograms the SARx, CTLx, and LLPx channel registers. The DARx register is left unchanged. The
DMA transfer continues until the DW_ahb_dmac samples that the CTLx and LLPx registers at the
end of a block transfer match those described in Row 1 or Row 5 of Table 2-1 (as discussed earlier).
The DW_ahb_dmac then knows that the previously transferred block was the last block in the DMA
transfer.

NoteNoteNoteNote Do not poll the CTLx.DONE bit in the DW_ahb_dmac memory map. Instead, poll the
LLI.CTLx.DONE bit in the LLI for that block. If the polled LLI.CTLx.DONE bit is asserted, then
this block transfer has completed. This LLI.CTLx.DONE bit was cleared at the start of the
transfer (Step 8).

NoteNoteNoteNote The write-back location for the control and status registers is the LLI pointed to by the previous
value of the LLPx.LOC register, not the LLI pointed to by the current value of the LLPx.LOC
register.

https://solvnet.synopsys.com
www.designware.com

366 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

The DW_ahb_dmac transfer might look like that shown in Figure 6-15. Note that the destination address is
decrementing.

Figure 6-15 Multi-Block DMA Transfer with Linked List Source Address and Contiguous Destination Address

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

Block2

Block0

SAR(2)

DAR(2)

DAR(0)

DAR(1)

Block2

Block1

Block1

Block0

SAR(1)

SAR(0)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 367SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Programming the DW_ahb_dmac

The DMA transfer flow is shown in Figure 6-16.

Figure 6-16 DMA Transfer Flow for Source Address Auto-Reloaded and Contiguous Destination Address

6.7 Disabling a Channel Prior to Transfer Completion
Under normal operation, software enables a channel by writing a 1 to the channel enable register,
ChEnReg.CH_EN, and hardware disables a channel on transfer completion by clearing the
ChEnReg.CH_EN register bit.

The recommended way for software to disable a channel without losing data is to use the CH_SUSP bit in
conjunction with the FIFO_EMPTY bit in the Channel Configuration Register (CFGx).

1. If software wishes to disable a channel prior to the DMA transfer completion, then it can set the
CFGx.CH_SUSP bit to tell the DW_ahb_dmac to halt all transfers from the source peripheral.
Therefore, the channel FIFO receives no new data.

2. Software can now poll the CFGx.FIFO_EMPTY bit until it indicates that the channel FIFO is empty.

3. The ChEnReg.CH_EN bit can then be cleared by software once the channel FIFO is empty.

Channel enabled by
software

LLI fetch

yes

no

Block-complete interrupt
generated here

DW_ahb_dmac transfer

Is DW_ahb_dmac in
Row1 or Row5 of

Table 6-1?

complete interrupt
generated here

Channel disabled by
hardware

DW_ahb_dmac block transfer

Source/destination status fetch

Hardware reprograms
SARx, CTLx, and LLPx

Write-back of control and
source/destination status to LLI

https://solvnet.synopsys.com
www.designware.com

368 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Programming the DW_ahb_dmac DesignWare DW_ahb_dmac Databook

When CTLx.SRC_TR_WIDTH < CTLx.DST_TR_WIDTH and the CFGx.CH_SUSP bit is high, the
CFGx.FIFO_EMPTY is asserted once the contents of the FIFO do not permit a single word of
CTLx.DST_TR_WIDTH to be formed. However, there may still be data in the channel FIFO, but not enough
to form a single transfer of CTLx.DST_TR_WIDTH. In this scenario, once the channel is disabled, the
remaining data in the channel FIFO is not transferred to the destination peripheral.

It is permissible to remove the channel from the suspension state by writing a 0 to the CFGx.CH_SUSP
register. The DMA transfer completes in the normal manner.

6.7.1 Abnormal Transfer Termination

A DW_ahb_dmac DMA transfer may be terminated abruptly by software by clearing the channel enable bit,
ChEnReg.CH_EN. You must not assume that the channel is disabled immediately after the ChEnReg. The
CH_EN bit is cleared over the AHB slave interface. Consider this as a request to disable the channel. You
must poll ChEnReg.CH_EN and confirm that the channel is disabled by reading back 0. A case where the
channel is not disabled after a channel disable request is where either the source or destination has received
a split or retry response. The DW_ahb_dmac must keep re-attempting the transfer to the system HADDR
that originally received the split or retry response until an OKAY response is returned; to do otherwise is an
AMBA protocol violation.

Software may terminate all channels abruptly by clearing the global enable bit in the DW_ahb_dmac
Configuration Register (DmaCfgReg[0]). Again, you must not assume that all channels are disabled
immediately after the DmaCfgReg[0] is cleared over the AHB slave interface. Consider this as a request to
disable all channels. You must poll ChEnReg and confirm that all channels are disabled by reading back 0.

6.8 Defined-Length Burst Support on DW_ahb_dmac
By default, the DW_ahb_dmac support incremental (INCR) bursts only. To achieve better performance,
defined length bursts, such as INCR4, INCR8 and INCR16 are required. The DW_ahb_dmac can be
configured to use defined-length bursts by setting the configuration parameter DMAH_INCR_BURSTS to 0.
In this mode, the DW_ahb_dmac selects the largest valid defined-length burst to complete the transfer.

NoteNoteNoteNote If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgment.

NoteNoteNoteNote If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent
to the destination peripheral and is not present when the channel is re-enabled. For
read-sensitive source peripherals, such as a source FIFO, this data is therefore lost. When the
source is not a read-sensitive device (such as memory), disabling a channel without waiting
for the channel FIFO to empty may be acceptable, since the data is available from the source
peripheral upon request and is not lost.
If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.
If the DW_ahb_dmac is configured to use defined length bursts (DMAH_INCR_BURSTS = 0),
disabling the channel through software prior to completing a transfer is not allowed. Clearing
the CH_EN bit prior to channel suspend may violate the AHB protocol.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 369

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

7
Verification

This chapter provides an overview of the testbench available for DW_ahb_dmac verification. Once the
DW_ahb_dmac has been configured and the verification environment set up, simulations can be run
automatically. For information on running simulations for DW_ahb_dmac in coreAssembler or
coreConsultant, see “Building and Verifying a Component or Subsystem” in DesignWare Synthesizable
Components for AMBA 2 User Guide.

7.1 Overview of Vera Tests
The DW_ahb_dmac verification testbench performs the following set of tests that have been written to
exhaustively verify the functionality and have also achieved maximum RTL code coverage:

■ A single block transfer

■ A single block transfer with register write back

■ An LLP block chaining transfer

■ A reloading transfer

■ A transfer that is suspended and the channel terminated

■ A transfer that is suspended and then resumed (without terminating the channel)

■ A transfer where the various peripherals (SRC, DST and LLP) issue error responses

■ A transfer where the channel is terminated part way through (without suspend)

■ A transfer where the channel is terminated part way through (without suspend) using the global
DW_ahb_dmac enable bit; terminates transfers running on all other channels as well

Within each of these transfers, all parameters are randomized.

NoteNoteNoteNote The DW_ahb_dmac verification testbench is built with DesignWare Verification IP (VIP). Make
sure that you have the supported version of the VIP components for this release, otherwise,
you may experience some tool compatibility problems. For more information about supported
tools in this release, refer to the DesignWare Synthesizable Components for
AMBA 2/AMBA 3 AXI Installation Guide.

https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://solvnet.synopsys.com
www.designware.com

370 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Verification DesignWare DW_ahb_dmac Databook

The testbench constantly verifies whether conditions including the following are met:

■ Transfers are correct

■ Registers are updated correctly

■ Registers are written out correctly

■ Interrupts are set correctly

■ FIFO mode and flow control mode is not violated

■ Bus and channel locking is correct

■ Channel arbitration is correct

7.2 Overview of DW_ahb_dmac Testbench
As illustrated in Figure 7-1, the DW_ahb_dmac testbench is a Verilog testbench that includes:

■ Verilog DUT (DW_ahb_dmac) and supporting bus IP (DW_ahb)

■ Vera BFMs (AHB master and slave) and monitors (AHB only)

■ Vera test harness and stimulus code

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 371SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Verification

Figure 7-1 DW_ahb_dmac Testbench

The file, test_DW_ahb_dmac.v, shows the instantiation of the top-level design in a testbench and resides in
the workspace/sim/testbench directory. The testbench tests your configuration specified in the Specify
Configuration task of coreConsultant and is self-checking. When a coreKit has been configured, the
verification environment is stored in workspace/sim. Files in workspace/sim/testbench form the actual
testbench for DW_ahb_dmac. The workspace/sim/test_name directory contains the test.vrh header file and
the encrypted test.vrp file.

The Competing AHB master BFM is used to compete with the DW_ahb_dmac when requesting the AHB
bus and also to generate AHB traffic to modulate the otherwise uninhibited flow of data between the
DW_ahb_dmac and AHB slaves. When the AMBA-lite version of the DW_ahb_dmac is being verified, the
competing AHB master BFM is not used, and the DW_ahb components are replaced with AMBA-lite
versions of the bus IP.

test_DW_ahb_dmac.v

AHB
Slave

I/F

Interrupt
I/F

DMA
HS
I/F

AHB #1
Master

I/F

AHB #2
Master

I/F

AHB #3
Master

I/F

AHB #4
Master

I/F

DW_ahb1
s1m1

s2

DW_ahb_dmac

DW_ahb2

s15 -1

m1m2

15 AHB Slave BFMs

Competing
AHB Master

BFM

DW_ahb3

s1

m2

s2
2 AHB Slave

BFMs

DW_ahb4

s1

m2

s2
2 AHB Slave

BFMs

DW_ahb5

s1

m2

s2
2 AHB Slave

BFMs

4 AHB MonitorsRTL -> RTL and Vera

BFM/Monitor
Configuration

Code

Bus IP/Testbench
Configuration

Code

Handshake
Modelling Code

BFM
Stimulus

Modelling Code

Main AHB
Master BFM

AHB Slave
BFM

AHB Monitor

https://solvnet.synopsys.com
www.designware.com

372 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Verification DesignWare DW_ahb_dmac Databook

NoteNoteNoteNote The top-level RTL code contains checkers to check for illegal programming of the
DW_ahb_dmac. These monitors are removed upon synthesis. Because all simulators apart
from VCS use a GTECH netlist, then the monitors are triggered only when you illegally
program the DW_ahb_dmac while running an RTL simulation using the VCS simulator. An
example of an illegal programming condition is where you program the source master select
field of the control register, CTL0.SMS = 3, in a DW_ahb_dmac configuration where
DMAH_NUM_MASTER_INT = 2. This triggers the following monitor illegal programming
warning:
DW_ahb_dmac_CHECKER ILLEGAL_PROG: SMS field in ctl register channel 0
refers to master interface 4, but there are only 2 master interfaces
in the system ***

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 373

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

8
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment.

8.1 Performance
This section discusses performance and the parameters—software and hardware configuration
parameters— that affect the performance of the DW_ahb_dmac.

8.1.1 Power Consumption, Frequency, and Area Results

Table 8-1 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_ahb_dmac using the industry standard 28nm technology library and how it affects performance.

Table 8-1 Power Consumption, Frequency, and Area Results for DW_ahb_dmac Using 28nm Technology
Library

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration hclk: 300 MHz 6534 gates 107 nW 20.4 uW

Default Configuration with clock
gating:
DMAH_LP_EN=1
DMAH_CH_LP_EN=1

hclk: 300 MHz 7156 gates 115nW 17.9 uW

https://solvnet.synopsys.com
www.designware.com

374 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Integration Considerations DesignWare DW_ahb_dmac Databook

Minimum Configuration:
DMAH_NUM_MASTER_INT=1
DMAH_NUM_CHANNELS=1
DMAH_NUM_HS_INT=0
DMAH_MABRST=0
DMAH_RETURN_ERR_RESP=0
DMAH_INTR_POL=1
DMAH_INTR_IO=2
DMAH_BIG_ENDIAN=0
DMAH_S_HDATA_WIDTH=32
DMAH_M1_HDATA_WIDTH=32
DMAH_M2_HDATA_WIDTH=32
DMAH_M3_HDATA_WIDTH=32
DMAH_M4_HDATA_WIDTH=32
DMAH_M1_AHB_LITE=0
DMAH_M2_AHB_LITE=0
DMAH_M3_AHB_LITE=0
DMAH_M4_AHB_LITE=0
DMAH_ID_NUM=0x02080901
DMAH_CH0_FIFO_DEPTH=8
DMAH_CHx_STAT_DST=0
DMAH_CHx_STAT_SRC=0
DMAH_CH0_MAX_MULT_SIZE=4
DMAH_CH0_MAX_BLK_SIZE=3
DMAH_CHx_FC=0
DMAH_CHx_LOCK_EN=0
DMAH_CHx_LOCK_EN=0
DMAH_CHx_SMS=0
DMAH_CHx_DMS=0
DMAH_CHx_LMS=0
DMAH_CHx_STW=32
DMAH_CHx_DTW=32
DMAH_CH0_SRC_NON_OK=0
DMAH_CH0_DST_NON_OK=0
DMAH_CHx_LLP_NON_OK=0
DMAH_CHx_MULTI_BLK_EN=0
DMAH_CHx_HC_LLP=1
DMAH_CHx_SRC_GAT_EN=0
DMAH_CHx_DST_SCA_EN=0

hclk: 300 MHz 4840 gates 78.2 nW 15.045 uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 375SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Integration Considerations

Maximum Configuration:
DMAH_NUM_MASTER_INT=4
DMAH_NUM_CHANNELS=8
DMAH_NUM_HS_INT=16
DMAH_MABRST=0
DMAH_RETURN_ERR_RESP=0
DMAH_INTR_POL=1
DMAH_INTR_IO=1
DMAH_BIG_ENDIAN=0
DMAH_S_HDATA_WIDTH=32
DMAH_M1_HDATA_WIDTH=32
DMAH_M2_HDATA_WIDTH=32
DMAH_M3_HDATA_WIDTH=32
DMAH_M4_HDATA_WIDTH=32
DMAH_M1_AHB_LITE=0
DMAH_M2_AHB_LITE=0
DMAH_M3_AHB_LITE=0
DMAH_M4_AHB_LITE=0
DMAH_ID_NUM=0x02080901
DMAH_CHx_FIFO_DEPTH=16
DMAH_CHx_STAT_DST =1
DMAH_CHx_STAT_SRC =1
DMAH_CHx_MAX_MULT_SIZE=256
DMAH_CHx_MAX_BLK_SIZE=4095
DMAH_CHx_FC=3
DMAH_CHx_LOCK_EN=1
DMAH_CHx_SMS=4
DMAH_CHx_DMS=4
DMAH_CHx_LMS=4
DMAH_CHx_STW=0
DMAH_CHx_DTW=0
DMAH_CHx_SRC_NON_OK=1
DMAH_CHx_DST_NON_OK=1
DMAH_CHx_LLP_NON_OK=1
DMAH_CHx_MULTI_BLK_EN=1
DMAH_CHx_HC_LLP=0
DMAH_CHx_SRC_GAT_EN=1
DMAH_CHx_DST_SCA_EN=1
DMAH_CHx_MULTI_BLK_TYPE=8
DMAH_CHx_CTL_WB_EN=1

hclk: 300 MHz 139623 gates 2.23 uW 312 uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

https://solvnet.synopsys.com
www.designware.com

376 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Integration Considerations DesignWare DW_ahb_dmac Databook

8.2 1KB Boundary Crossing
The AHB protocol requires that no AHB burst cross a 1KB address boundary. DW_ahb_dmac
handles this situation automatically. If a DMA transfer is set up by software such that during the
transfer one of the AHB transfers could cross a 1KB boundary, DW_ahb_dmac automatically sets up
the AHB transfers such that the end of the 1KB boundary completes one AHB transfer and the start of
the 1KB boundary starts another AHB transfer.

8.3 Read Accesses
For reads, registers less than the full access width return zeros in the unused upper bits. An AHB read takes
two hclk cycles. The two cycles can be thought of as a control and data cycle, respectively. As shown in the
following figure, the address and control is driven from clock 1 (control cycle); the read data for this access
is driven by the slave interface onto the bus from clock 2 (data cycle) and is sampled by the master on clock
3. The operation of the AHB bus is pipelined, so while the read data from the first access is present on the
bus for the master to sample, the control for the next access is present on the bus for the slave to sample.

Figure 8-1 AHB Read

Maximum Configuration with Low
Power Mode:
Same configuration as Maximum with
the below extra configurations:
DMAH_LP_EN=1
DMAH_CH_LP_EN=1

hclk: 300 MHz 142929 gates 2.3 uW 309 uW

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

0x20 0x28

3'b000

0x00 0x10 0x00

0x10

0x00

clock 2 clock 3clock 1

hclk

haddr

hsize[2:0]

hwrite

hready_resp

hrdata[31:0]

irq_status

irq_maskstatus

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 377SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Integration Considerations

8.4 Write Accesses
When writing to a register, bit locations larger than the register width or allocation are ignored. Only
pertinent bits are written to the register. Similar to the read case, a write access may be thought of as
comprising a control and data cycle. As illustrated in the following figure, the address and control is driven
from clock1 (control cycle), and the write data is driven by the bus from clock 2 (data cycle) and sampled by
the destination register on clock 3.

Figure 8-2 AHB Write

The operation of the AHB bus is pipelined, so while the write data for the first write is present on the bus for
the slave to sample, the control for the next write is present on the bus for the slave to sample.

8.5 Consecutive Write-Read
This is a specific case for the AHB slave interface. The AMBA specification says that for a read after a write
to the same address, the newly written data must be read back, not the old data. To comply with this, the
slave interface in the DW_ahb_ictl inserts a “wait state” when it detects a read immediately after a write to

0xC0 0xC4 0xCC

3'b000

0x00 0xFF 0xAA

0x00 0xFF

0x00 0xAA

clock 1 clock 2 clock 3 clock 4

hclk

haddr

hsize[2:0]

hwrite

hready_resp

 hwdata[31:0]

fiq_inten

fiq_intmask

https://solvnet.synopsys.com
www.designware.com

378 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Integration Considerations DesignWare DW_ahb_dmac Databook

the same address. As shown in the following figure, the control for a write is driven on clock 1, followed by
the write data and the control for a read from the same address on clock 2.

Figure 8-3 AHB Wait State Read/Write

Sensing the read after a write to the same address, the slave interface drives hready_resp low from clock 3;
hready_resp is driven high on clock 4 when the new write data can be read; and the bus samples
hready_resp high on clock 5 and reads the newly written data. The following figure shows a normal
consecutive write-read access.

Figure 8-4 AHB Consecutive Read/Write

0x10 0x00

3'b001

OKAY

0x0000 0xFFFF

0x0000 0xFFFF 0x0000

0xA0A0 0xFFFF

clock 1 clock 2 clock 3 clock 4 clock 5

hclk

haddr

hsize[2:0]

hwrite

hresp[1:0]

hready_resp

 hwdata[63:0]

hrdata[63:0]

irq_intforce

0x10 0x30

3'b001

OKAY

0x0000 0xFFFF

0x0000 0xA0A0

0xA0A0 0xFFFF

0xA0A0

clock 1 clock 2 clock 3 clock 4

hclk

haddr

hsize[2:0]

hwrite

hresp[1:0]

hready_resp

 hwdata[63:0]

hrdata[63:0]

irq_intforce

irq_finalstatus

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 379SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Integration Considerations

8.6 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

8.7 Coherency
Coherency is where bits within a register are logically connected. For instance, part of a register is read at
time 1 and another part is read at time 2. Being coherent means that the part read at time 2 is at the same
value it was when the register was read at time 1. The unread part is stored into a shadow register and this
is read at time 2. When there is no coherency, no shadow registers are involved.

A bus master may need to be able to read the contents of a register, regardless of the data bus width, and be
guaranteed of the coherency of the value read. A bus master may need to be able to write a register
coherently regardless of the data bus width and use that register only when it has been fully programmed.
This may need to be the case regardless of the relationship between the clocks.

Coherency enables a value to be read that is an accurate reflection of the state of the counter, independent of
the data bus width, the counter width, and even the relationship between the clocks. Additionally, a value
written in one domain is transferred to another domain in a seamless and coherent fashion.

Throughout this appendix the following terms are used:

■ Writing. A bus master programs a configuration register. An example is programming the load value
of a counter into a register.

■ Transferring. The programmed register is in a different clock domain to where it is used, therefore, it
needs to be transferred to the other clock domain.

■ Loading. Once the programmed register is transferred into the correct clock domain, it needs to be
loaded or used to perform its function. For example, once the load value is transferred into the
counter domain, it gets loaded into the counter.

8.7.1 Writing Coherently

Writing coherently means that all the bits of a register can be written at the same time. A peripheral may
have programmable registers that are wider than the width of the connected APB data bus, which prevents
all the bits being programmed at the same time unless additional coherency circuitry is provided.

The programmable register could be the load value for a counter that may exist in a different clock domain.
Not only does the value to be programmed need to be coherent, it also needs to be transferred to a different
clock domain and then loaded into the counter. Depending on the function of the programmable register, a
qualifier may need to be generated with the data so that it knows when the new value is currently
transferred and when it should be loaded into the counter.

https://solvnet.synopsys.com
www.designware.com

380 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Integration Considerations DesignWare DW_ahb_dmac Databook

Depending on the system and on the register being programmed, there may be no need for any special
coherency circuitry. One example that requires coherency circuitry is a 32-bit timer within an 8-bit APB
system. The value is entirely programmed only after four 8-bit wide write transfers. It is safe to transfer or
use the register when the last byte is currently written. An example where no coherency is required is a
16-bit wide timer within a 16-bit APB system. The value is entirely programmed after a single 16-bit wide
write transfer.

Coherency circuitry enables the value to be loaded into the counter only when fully programmed and
crossed over clock domains if the peripheral clock is not synchronous to the processor clock. While the load
register is being programmed, the counter has access to the previous load value in case it needs to reload the
counter.

Coherency circuitry is only added in cores where it is needed. The coherency circuitry incorporates an
upper byte method that requires users to program the load register in LSB to MSB order when the
peripheral width is smaller than the register width. When the upper byte is programmed, the value can be
transferred and loaded into the load register. When the lower bytes are being programmed, they need to be
stored in shadow registers so that the previous load register is available to the counter if it needs to reload.
When the upper byte is programmed, the contents of the shadow registers and the upper byte are loaded
into the load register.

The upper byte is the top byte of a register. A register can be transferred and loaded into the counter only
when it has been fully programmed. A new value is available to the counter once this upper byte is written
into the register. The following table shows the relationship between the register width and the peripheral
bus width for the generation of the correct upper byte. The numbers in the table represent bytes, Byte 0 is
the LSB and Byte 3 is the MSB. NCR means that no coherency circuitry is required, as the entire register is
written with one access.

There are three relationship cases to be considered for the processor and peripheral clocks:

■ Identical

■ Synchronous (phase coherent but of an integer fraction)

■ Asynchronous

Table 8-2 Upper Byte Generation

Upper Byte
Bus Width

Load Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 1 NCR NCR

17 - 24 2 2 NCR

25 - 32 3 2 (or 3) NCR

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 381SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Integration Considerations

8.7.1.1 Identical Clocks

The following figure illustrates an RTL diagram for the circuitry required to implement the coherent write
transaction when the APB bus clock and peripheral clocks are identical.

Figure 8-5 Coherent Loading – Identical Synchronous Clocks

The following figure shows a 32-bit register that is written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal lasts
for one cycle and is used to load the counter with CntLoadValue.

Figure 8-6 Coherent Loading – Identical Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

pclk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

LoadValue[31:0]

UpperByteWen

LoadCnt

Counter[31:0]

https://solvnet.synopsys.com
www.designware.com

382 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Integration Considerations DesignWare DW_ahb_dmac Databook

Each of the bytes that make up the load register are stored into shadow registers until the final byte is
written. The shadow register is up to three bytes wide. The contents of the shadow registers and the final
byte are transferred into the CntLoadValue register when the final byte is written. The counter uses this
register to load/initialize itself. If the counter is operating in a periodic mode, it reloads from this register
each time the count expires.

By using the shadow registers, the CntLoadValue is kept stable until it can be changed in one cycle. This
allows the counter to be loaded in one access and the state of the counter is not affected by the latency in
programming it. When there is a new value to be loaded into the counter initially, this is signaled by
LoadCnt = 1. After the upper byte is written, the LoadCnt goes to zero.

8.7.1.2 Synchronous Clocks

When the clocks are synchronous but do not have identical periods, the circuitry needs to be extended so
that the LoadCnt signal is kept high until a rising edge of the counter clock occurs. This extension is
necessary so that the value can be loaded, using LoadCnt, into the counter on the first counter clock edge. At
the rising edge of the counter clock if LoadCnt is high, then a register clocked with the counter clock toggles,
otherwise it keeps its current value. A circuit detecting the toggling is used to clear the original LoadCnt by
looking for edge changes. The value is loaded into the counter when a toggle has been detected. Once it is
loaded, the counter should be free to increment or decrement by normal rules.

The following figure shows an RTL diagram for the circuitry required to implement the coherent write
when the bus and peripheral clocks are synchronous.

Figure 8-7 Coherent Loading – Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

OR

AND
ToggleToggle

1

1

Shaded Registers are all
connected to the Bus clock.
Others are connected to the
Peripheral clock.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 383SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Integration Considerations

The following figure shows a 32-bit register being written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal is
extended until a change in the toggle is detected and is used to load the counter.

Figure 8-8 Coherent Loading – Synchronous Clocks

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

counter_clk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

CntLoadValue[31:0]

LoadCnt

toggle_edge_detect

Counter[31:0]

toggle

pclk

https://solvnet.synopsys.com
www.designware.com

384 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Integration Considerations DesignWare DW_ahb_dmac Databook

8.7.1.3 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three-times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock. The following figure shows an RTL diagram for the circuitry
required to implement the coherent write when the bus and peripheral clocks are asynchronous.

Figure 8-9 Coherent Loading – Asynchronous Clocks

When the clocks are asynchronous, you need to transfer the contents of the register from one clock domain
to another. It is not desirable to transfer the entire register through meta-stability registers, as coherency is
not guaranteed with this method. The circuitry needed requires the processor clock to be used to re-time the
peripheral clock. Upon a rising edge of the re-timed clock, the new value signal, NewValue, is transferred
into a safe new value signal, SafeNewValue, which happens after the edge of the peripheral clock has
occurred.

Every time there is a rising edge of the peripheral clock detected, the CntLoadValue is transferred into a
SafeCntLoadValue. This value is used to transfer the load value across the clock domains. The
SafeCntLoadValue only changes a number of bus clock cycles after the peripheral clock edge changes. A

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0]

Counter
[31:0]

Shadow

Toggle 1

1

Shaded and edge detect registers are all
connected to the Bus clock. Others are
connected to the Peripheral clock.

(or ByteWen[3])

ClrNewValue
Reset

EN

32

NewValue

red_counter_clk

SafeCountLoadValue

&

Reset

EN

ClrNewValue

red_counter_clk

Edge
Detect

ClrNewValue

pclk

Rising

Detect
counter_clk

pclk

Edge red_counter_clk

SafeNewValue

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 385SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Integration Considerations

counter running on the peripheral clock is able to use this value safely. It could be up to two peripheral
clock periods before the value is loaded into the counter. Along with this loaded value, there also is a single
bit transferred that is used to qualify the loading of the value into the counter.

The timing diagram depicted in the following figure does not show the shadow registers being loaded. This
is identical to the loading for the other clock modes.

Figure 8-10 Coherent Loading – Asynchronous Clocks

The NewValue signal is extended until a change in the toggle is detected and is used to update the safe
value. The SafeNewValue is used to load the counter at the rising edge of the peripheral clock. Each time a
new value is written the toggle bit is flipped and the edge detection of the toggle is used to remove both the
NewValue and the SafeNewValue.

8.7.2 Reading Coherently

For writing to registers, an upper-byte concept is proposed for solving coherency issues. For read
transactions, a lower-byte concept is required. The following table provides the relationship between the
register width and the bus width for the generation of the correct lower byte.

Table 8-3 Lower Byte Generation

Lower Byte
Bus Width

Counter Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 0 NCR NCR

0D0C0B0A

0D0C0B0A

0D0C0B0A

A3

counter_clk

paddr

penable

pwdata[7:0]

NewValue

ntLoadValue[31:0]

red_counter_clk

ntLoadValue[31:0]

SafeNewValue

ClrNewValue

Counter[31:0]

toggle

pclk

0D

UpperByteWen

https://solvnet.synopsys.com
www.designware.com

386 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Integration Considerations DesignWare DW_ahb_dmac Databook

Depending on the bus width and the register width, there may be no need to save the upper bits because the
entire register is read in one access, in which case there is no problem with coherency. When the lower byte
is read, the remaining upper bytes within the counter register are transferred into a holding register. The
holding register is the source for the remaining upper bytes. Users must read LSB to MSB for this solution to
operate correctly. NCR means that no coherency circuitry is required, as the entire register is read with one
access.

There are two cases regarding the relationship between the processor and peripheral clocks to be considered
as follows:

■ Identical and/or synchronous

■ Asynchronous

8.7.2.1 Synchronous Clocks

When the clocks are identical and/or synchronous, the remaining unread bits (if any) need to be saved into
a holding register once a read is started. The first read byte must be the lower byte provided in the previous
table, which causes the other bits to be moved into the holding register, SafeCntVal, provided that the
register cannot be read in one access. The upper bytes of the register are read from the holding register
rather than the actual register so that the value read is coherent. This is illustrated in the following figure
and in the timing diagram after it.

Figure 8-11 Coherent Registering – Synchronous Clocks

17 - 24 0 0 NCR

25 - 32 0 0 NCR

Table 8-3 Lower Byte Generation

Lower Byte
Bus Width

CntVal[31:8]

CntVal[31:8]

EN

LowerByteRen

SafeCntVal

ReadCntVal[31:0]

ByteRen[3:0]

Counter
Block

Shaded registers are clocked
with the processor clock.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 387SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Integration Considerations

Figure 8-12 Coherent Registering – Synchronous Clocks

8.7.2.2 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock.

To safely transfer a counter value from the counter clock domain to the bus clock domain, the counter clock
signal should be transferred to the bus clock domain. When the rising edge detect of this re-timed counter
clock signal is detected, it is safe to use the counter value to update a shadow register that holds the current
value of the counter.

While reading the counter contents it may take multiple APB transfers to read the value.

Once a read transaction has started, the value of the upper register bits need to be stored into a shadow
register so that they can be read with subsequent read accesses. Storing these upper bits preserves the
coherency of the value that is being read. When the processor reads the current value it actually reads the
contents of the shadow register instead of the actual counter value. The holding register is read when the
bus width is narrower than the counter width. When the LSB is read, the value comes from the shadow
register; when the remaining bytes are read they come from the holding register. If the data bus width is
wide enough to read the counter in one access, then the holding registers do not exist.

The counter clock is registered and successively pipelined to sense a rising edge on the counter clock.
Having detected the rising edge, the value from the counter is known to be stable and can be transferred
into the shadow register. The coherency of the counter value is maintained before it is transferred, because
the value is stable.

NoteNoteNoteNote You must read LSB to MSB when the bus width is narrower than the counter width.

A0 A1 A2 A3

00010203 0A0B0C0D 0E0F0G0H

clk1

CntVal[31:0]

paddr

penable

prdata[7:0]

SafeCntVal[31:8]

LowerByteRen

pclk

A0 A1 A2

03 02 01 00 0H 0G

000102 0E0F0G

https://solvnet.synopsys.com
www.designware.com

388 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Integration Considerations DesignWare DW_ahb_dmac Databook

The following figure illustrates the synchronization of the counter clock and the update of the shadow
register.

Figure 8-13 Coherency and Shadow Registering – Asynchronous Clocks

CntVal

EN

LowerByteRen

SafeCntVal

ReadCntVal

Sync and shaded registers are
clocked with the processor clock.

ShdwCntVal

EN

Sync & Rising
Edge Detect

Safe To Update

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 389

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

A
Error and Warning Messages

This appendix lists and describes errors and warnings that you may encounter when configuring, verifying,
or synthesizing the DesignWare component using the coreConsultant GUI.

A.1 Warnings During Simulation
When the Vera testbench is compiled, multiple copies of warnings similar to the following are generated:

Warning: call to potentially undefined super method “run” at
 <line number> in <file name>"

These messages can be ignored. The warning occurs because the run() task in the super class is defined as a
virtual task, and the super class is an abstract class. This means that run() does not have to be defined.
However, the super class always has run() defined, and the compiler should know this.

A.2 Warnings During Synthesis
If you use your own synthesis scripts and perform the ungroup command in Design Compiler (DC) on the
design, DC generates warning messages that indicate that some of the DesignWare cells cannot be
ungrouped. These messages are generated because few of the DesignWare components used in the design
(like W_ram_r_w_s_dff) have no hierarchy and cannot be ungrouped further.

You can ignore these messages.

https://solvnet.synopsys.com
www.designware.com

390 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Error and Warning Messages DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 391

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

B
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table B-1 Internal Parameters

Parameter Name Equals To

BLOCK_TS 43:32

CH0_FIFO_DEPTH {[function_of: DMAH_CH0_FIFO_DEPTH
MAX_AHB_HDATA_WIDTH]}

CH1_FIFO_DEPTH {[function_of: DMAH_CH1_FIFO_DEPTH
MAX_AHB_HDATA_WIDTH]}

CH2_FIFO_DEPTH {[function_of: DMAH_CH2_FIFO_DEPTH
MAX_AHB_HDATA_WIDTH]}

CH3_FIFO_DEPTH {[function_of: DMAH_CH3_FIFO_DEPTH
MAX_AHB_HDATA_WIDTH]}

CH4_FIFO_DEPTH {[function_of: DMAH_CH4_FIFO_DEPTH
MAX_AHB_HDATA_WIDTH]}

CH5_FIFO_DEPTH {[function_of: DMAH_CH5_FIFO_DEPTH
MAX_AHB_HDATA_WIDTH]}

CH6_FIFO_DEPTH {[function_of: DMAH_CH6_FIFO_DEPTH
MAX_AHB_HDATA_WIDTH]}

CH7_FIFO_DEPTH {[function_of: DMAH_CH7_FIFO_DEPTH
MAX_AHB_HDATA_WIDTH]}

https://solvnet.synopsys.com
www.designware.com

392 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

CH_EN 0

CH_PRIOR 7:5

DEST_MSIZE 13:11

DINC 8:7

DMAH_BIG_ENDIAN_RST {(DMAH_BIG_ENDIAN)}

DMAH_CH0_CTL_WB_EN_RST {(DMAH_CH0_CTL_WB_EN)}

DMAH_CH0_DMS_RST {(DMAH_CH0_DMS == 4) ? 4 : (DMAH_CH0_DMS == 3)
? 3 : (DMAH_CH0_DMS == 2) ? 2 : (DMAH_CH0_DMS
== 1) ? 1 : 0}

DMAH_CH0_DST_SCA_EN_RST {(DMAH_CH0_DST_SCA_EN)}

DMAH_CH0_DST_TR_RST {(DMAH_CH0_DTW == 256) ? 6 : (DMAH_CH0_DTW ==
128) ? 5 : (DMAH_CH0_DTW == 64) ? 4 :
(DMAH_CH0_DTW == 32) ? 3 : (DMAH_CH0_DTW ==
16) ? 2 : (DMAH_CH0_DTW == 8) ? 1 : 0}

DMAH_CH0_FC_RST {(DMAH_CH0_FC == 3) ? 3 : (DMAH_CH0_FC == 2) ? 2
: (DMAH_CH0_FC == 1) ? 1 : 0}

DMAH_CH0_FIFO_DEPTH_RST {(DMAH_CH0_FIFO_DEPTH == 256) ? 5 :
(DMAH_CH0_FIFO_DEPTH == 128) ? 4 :
(DMAH_CH0_FIFO_DEPTH == 64) ? 3 :
(DMAH_CH0_FIFO_DEPTH == 32) ? 2 :
(DMAH_CH0_FIFO_DEPTH == 16) ? 1 : 0}

DMAH_CH0_HC_LLP_RST {(DMAH_CH0_HC_LLP)}

DMAH_CH0_LMS_RST {(DMAH_CH0_LMS == 4) ? 4 : (DMAH_CH0_LMS == 3)
? 3 : (DMAH_CH0_LMS == 2) ? 2 : (DMAH_CH0_LMS
== 1) ? 1 : 0}

DMAH_CH0_LOCK_EN_RST {(DMAH_CH0_LOCK_EN)}

DMAH_CH0_MAX_BLK_SIZE_INT {[function_of: DMAH_CH0_MAX_BLK_SIZE]}

DMAH_CH0_MAX_BLK_SIZE_RST {(DMAH_CH0_MAX_BLK_SIZE == 4095) ? 10 :
(DMAH_CH0_MAX_BLK_SIZE == 2047) ? 9 :
(DMAH_CH0_MAX_BLK_SIZE == 1023) ? 8 :
(DMAH_CH0_MAX_BLK_SIZE == 511) ? 7 :
(DMAH_CH0_MAX_BLK_SIZE == 255) ? 6 :
(DMAH_CH0_MAX_BLK_SIZE == 127) ? 5 :
(DMAH_CH0_MAX_BLK_SIZE == 63) ? 4 :
(DMAH_CH0_MAX_BLK_SIZE == 31) ? 3 :
(DMAH_CH0_MAX_BLK_SIZE == 15) ? 2 :
(DMAH_CH0_MAX_BLK_SIZE == 7) ? 1 : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 393SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Internal Parameter Descriptions

DMAH_CH0_MAX_MULT_SIZE_RST {(DMAH_CH0_MAX_MULT_SIZE == 256) ? 6 :
(DMAH_CH0_MAX_MULT_SIZE == 128) ? 5 :
(DMAH_CH0_MAX_MULT_SIZE == 64) ? 4 :
(DMAH_CH0_MAX_MULT_SIZE == 32) ? 3 :
(DMAH_CH0_MAX_MULT_SIZE == 16) ? 2 :
(DMAH_CH0_MAX_MULT_SIZE == 8) ? 1 : 0}

DMAH_CH0_MULTI_BLK_EN_RST {(DMAH_CH0_MULTI_BLK_EN)}

DMAH_CH0_MULTI_BLK_TYPE_RST {(DMAH_CH0_MULTI_BLK_TYPE)}

DMAH_CH0_RELOAD_DST_HC {((DMAH_CH0_MULTI_BLK_EN == 1) &&
((DMAH_CH0_MULTI_BLK_TYPE == 0) ||
(DMAH_CH0_MULTI_BLK_TYPE == 1) ||
(DMAH_CH0_MULTI_BLK_TYPE == 3) ||
(DMAH_CH0_MULTI_BLK_TYPE == 7))) ? 0 : 1}

DMAH_CH0_RELOAD_SRC_HC {((DMAH_CH0_MULTI_BLK_EN == 1) &&
((DMAH_CH0_MULTI_BLK_TYPE == 0) ||
(DMAH_CH0_MULTI_BLK_TYPE == 2) ||
(DMAH_CH0_MULTI_BLK_TYPE == 3) ||
(DMAH_CH0_MULTI_BLK_TYPE == 5))) ? 0 : 1}

DMAH_CH0_SMS_RST {(DMAH_CH0_SMS == 4) ? 4 : (DMAH_CH0_SMS == 3)
? 3 : (DMAH_CH0_SMS == 2) ? 2 : (DMAH_CH0_SMS
== 1) ? 1 : 0}

DMAH_CH0_SRC_GAT_EN_RST {(DMAH_CH0_SRC_GAT_EN)}

DMAH_CH0_SRC_TR_RST {(DMAH_CH0_STW == 256) ? 6 : (DMAH_CH0_STW ==
128) ? 5 : (DMAH_CH0_STW == 64) ? 4 :
(DMAH_CH0_STW == 32) ? 3 : (DMAH_CH0_STW ==
16) ? 2 : (DMAH_CH0_STW == 8) ? 1 : 0}

DMAH_CH0_STAT_DST_RST {(DMAH_CH0_STAT_DST)}

DMAH_CH0_STAT_SRC_RST {(DMAH_CH0_STAT_SRC)}

DMAH_CH1_CTL_WB_EN_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH1_CTL_WB_EN) : 0}

DMAH_CH1_DMS_RST {(DMAH_NUM_CHANNELS>=2) ? ((DMAH_CH1_DMS
== 4) ? 4 : (DMAH_CH1_DMS == 3) ? 3 :
(DMAH_CH1_DMS == 2) ? 2 : (DMAH_CH1_DMS == 1)
? 1 : 0) : 0}

DMAH_CH1_DST_SCA_EN_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH1_DST_SCA_EN) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

394 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

DMAH_CH1_DST_TR_RST {(DMAH_NUM_CHANNELS>=2) ? ((DMAH_CH1_DTW
== 256) ? 6 : (DMAH_CH1_DTW == 128) ? 5 :
(DMAH_CH1_DTW == 64) ? 4 : (DMAH_CH1_DTW ==
32) ? 3 : (DMAH_CH1_DTW == 16) ? 2 :
(DMAH_CH1_DTW == 8) ? 1 : 0) : 0}

DMAH_CH1_FC_RST {(DMAH_NUM_CHANNELS>=2) ? ((DMAH_CH1_FC ==
3) ? 3 : (DMAH_CH1_FC == 2) ? 2 : (DMAH_CH1_FC ==
1) ? 1 : 0) : 0}

DMAH_CH1_FIFO_DEPTH_RST {(DMAH_NUM_CHANNELS>=2) ?
((DMAH_CH1_FIFO_DEPTH == 256) ? 5:
(DMAH_CH1_FIFO_DEPTH == 128) ? 4 :
(DMAH_CH1_FIFO_DEPTH == 64) ? 3 :
(DMAH_CH1_FIFO_DEPTH == 32) ? 2 :
(DMAH_CH1_FIFO_DEPTH == 16) ? 1 : 0) : 0}

DMAH_CH1_HC_LLP_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH1_HC_LLP) : 0}

DMAH_CH1_LMS_RST {(DMAH_NUM_CHANNELS>=2) ? ((DMAH_CH1_LMS
== 4) ? 4 : (DMAH_CH1_LMS == 3) ? 3 :
(DMAH_CH1_LMS == 2) ? 2 : (DMAH_CH1_LMS == 1) ?
1 : 0) : 0}

DMAH_CH1_LOCK_EN_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH1_LOCK_EN) : 0}

DMAH_CH1_MAX_BLK_SIZE_RST {(DMAH_CH1_MAX_BLK_SIZE == 4095) ? 10 :
(DMAH_CH1_MAX_BLK_SIZE == 2047) ? 9 :
(DMAH_CH1_MAX_BLK_SIZE == 1023) ? 8 :
(DMAH_CH1_MAX_BLK_SIZE == 511) ? 7 :
(DMAH_CH1_MAX_BLK_SIZE == 255) ? 6 :
(DMAH_CH1_MAX_BLK_SIZE == 127) ? 5 :
(DMAH_CH1_MAX_BLK_SIZE == 63) ? 4 :
(DMAH_CH1_MAX_BLK_SIZE == 31) ? 3 :
(DMAH_CH1_MAX_BLK_SIZE == 15) ? 2 :
(DMAH_CH1_MAX_BLK_SIZE == 7) ? 1 : 0}

DMAH_CH1_MAX_MULT_SIZE_RST {(DMAH_NUM_CHANNELS>=2) ?
((DMAH_CH1_MAX_MULT_SIZE == 256) ? 6 :
(DMAH_CH1_MAX_MULT_SIZE == 128) ? 5 :
(DMAH_CH1_MAX_MULT_SIZE == 64) ? 4 :
(DMAH_CH1_MAX_MULT_SIZE == 32) ? 3 :
(DMAH_CH1_MAX_MULT_SIZE == 16) ? 2 :
(DMAH_CH1_MAX_MULT_SIZE == 8) ? 1 : 0) : 0}

DMAH_CH1_MULTI_BLK_EN_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH1_MULTI_BLK_EN) : 0}

DMAH_CH1_MULTI_BLK_TYPE_RST {(DMAH_CH1_MULTI_BLK_TYPE)}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 395SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Internal Parameter Descriptions

DMAH_CH1_SMS_RST {(DMAH_NUM_CHANNELS>=2) ? ((DMAH_CH1_SMS
== 4) ? 4 : (DMAH_CH1_SMS == 3) ? 3 :
(DMAH_CH1_SMS == 2) ? 2 : (DMAH_CH1_SMS == 1)
? 1 : 0) : 0}

DMAH_CH1_SRC_GAT_EN_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH1_SRC_GAT_EN) : 0}

DMAH_CH1_SRC_TR_RST {(DMAH_NUM_CHANNELS>=2) ? ((DMAH_CH1_STW
== 256) ? 6 : (DMAH_CH1_STW == 128) ? 5 :
(DMAH_CH1_STW == 64) ? 4 : (DMAH_CH1_STW ==
32) ? 3 : (DMAH_CH1_STW == 16) ? 2 :
(DMAH_CH1_STW == 8) ? 1 : 0) : 0}

DMAH_CH1_STAT_DST_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH1_STAT_DST) : 0}

DMAH_CH1_STAT_SRC_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH1_STAT_SRC) : 0}

DMAH_CH2_CTL_WB_EN_RST {(DMAH_NUM_CHANNELS>=3) ?
(DMAH_CH2_CTL_WB_EN) : 0}

DMAH_CH2_DMS_RST {(DMAH_NUM_CHANNELS>=3) ? ((DMAH_CH2_DMS
== 4) ? 4 : (DMAH_CH2_DMS == 3) ? 3 :
(DMAH_CH2_DMS == 2) ? 2 : (DMAH_CH2_DMS == 1)
? 1 : 0) : 0}

DMAH_CH2_DST_SCA_EN_RST {(DMAH_NUM_CHANNELS>=3) ?
(DMAH_CH2_DST_SCA_EN) : 0}

DMAH_CH2_DST_TR_RST {(DMAH_NUM_CHANNELS>=3) ? ((DMAH_CH2_DTW
== 256) ? 6 : (DMAH_CH2_DTW == 128) ? 5 :
(DMAH_CH2_DTW == 64) ? 4 : (DMAH_CH2_DTW ==
32) ? 3 : (DMAH_CH2_DTW == 16) ? 2 :
(DMAH_CH2_DTW == 8) ? 1 : 0) : 0}

DMAH_CH2_FC_RST {(DMAH_NUM_CHANNELS>=3) ? ((DMAH_CH2_FC ==
3) ? 3 : (DMAH_CH2_FC == 2) ? 2 : (DMAH_CH2_FC ==
1) ? 1 : 0) : 0}

DMAH_CH2_FIFO_DEPTH_RST {(DMAH_NUM_CHANNELS>=3) ?
((DMAH_CH2_FIFO_DEPTH == 256) ? 5:
(DMAH_CH2_FIFO_DEPTH == 128) ? 4 :
(DMAH_CH2_FIFO_DEPTH == 64) ? 3 :
(DMAH_CH2_FIFO_DEPTH == 32) ? 2 :
(DMAH_CH2_FIFO_DEPTH == 16) ? 1 : 0) : 0}

DMAH_CH2_HC_LLP_RST {(DMAH_NUM_CHANNELS>=3) ?
(DMAH_CH2_HC_LLP) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

396 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

DMAH_CH2_LMS_RST {(DMAH_NUM_CHANNELS>=3) ? ((DMAH_CH2_LMS
== 4) ? 4 : (DMAH_CH2_LMS == 3) ? 3 :
(DMAH_CH2_LMS == 2) ? 2 : (DMAH_CH2_LMS == 1) ?
1 : 0) : 0}

DMAH_CH2_LOCK_EN_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH2_LOCK_EN) : 0}

DMAH_CH2_MAX_BLK_SIZE_RST {(DMAH_CH2_MAX_BLK_SIZE == 4095) ? 10 :
(DMAH_CH2_MAX_BLK_SIZE == 2047) ? 9 :
(DMAH_CH2_MAX_BLK_SIZE == 1023) ? 8 :
(DMAH_CH2_MAX_BLK_SIZE == 511) ? 7 :
(DMAH_CH2_MAX_BLK_SIZE == 255) ? 6 :
(DMAH_CH2_MAX_BLK_SIZE == 127) ? 5 :
(DMAH_CH2_MAX_BLK_SIZE == 63) ? 4 :
(DMAH_CH2_MAX_BLK_SIZE == 31) ? 3 :
(DMAH_CH2_MAX_BLK_SIZE == 15) ? 2 :
(DMAH_CH2_MAX_BLK_SIZE == 7) ? 1 : 0}

DMAH_CH2_MAX_MULT_SIZE_RST {(DMAH_NUM_CHANNELS>=3) ?
((DMAH_CH2_MAX_MULT_SIZE == 256) ? 6 :
(DMAH_CH2_MAX_MULT_SIZE == 128) ? 5 :
(DMAH_CH2_MAX_MULT_SIZE == 64) ? 4 :
(DMAH_CH2_MAX_MULT_SIZE == 32) ? 3 :
(DMAH_CH2_MAX_MULT_SIZE == 16) ? 2 :
(DMAH_CH2_MAX_MULT_SIZE == 8) ? 1 : 0) : 0}

DMAH_CH2_MULTI_BLK_EN_RST {(DMAH_NUM_CHANNELS>=2) ?
(DMAH_CH2_MULTI_BLK_EN) : 0}

DMAH_CH2_MULTI_BLK_TYPE_RST {(DMAH_CH2_MULTI_BLK_TYPE)}

DMAH_CH2_SMS_RST {(DMAH_NUM_CHANNELS>=3) ? ((DMAH_CH2_SMS
== 4) ? 4 : (DMAH_CH2_SMS == 3) ? 3 :
(DMAH_CH2_SMS == 2) ? 2 : (DMAH_CH2_SMS == 1)
? 1 : 0) : 0}

DMAH_CH2_SRC_GAT_EN_RST {(DMAH_NUM_CHANNELS>=3) ?
(DMAH_CH2_SRC_GAT_EN) : 0}

DMAH_CH2_SRC_TR_RST {(DMAH_NUM_CHANNELS>=3) ? ((DMAH_CH2_STW
== 256) ? 6 : (DMAH_CH2_STW == 128) ? 5 :
(DMAH_CH2_STW == 64) ? 4 : (DMAH_CH2_STW ==
32) ? 3 : (DMAH_CH2_STW == 16) ? 2 :
(DMAH_CH2_STW == 8) ? 1 : 0) : 0}

DMAH_CH2_STAT_DST_RST {(DMAH_NUM_CHANNELS>=3) ?
(DMAH_CH2_STAT_DST) : 0}

DMAH_CH2_STAT_SRC_RST {(DMAH_NUM_CHANNELS>=3) ?
(DMAH_CH2_STAT_SRC) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 397SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Internal Parameter Descriptions

DMAH_CH3_CTL_WB_EN_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH3_CTL_WB_EN) : 0}

DMAH_CH3_DMS_RST {(DMAH_NUM_CHANNELS>=4) ? ((DMAH_CH3_DMS
== 4) ? 4 : (DMAH_CH3_DMS == 3) ? 3 :
(DMAH_CH3_DMS == 2) ? 2 : (DMAH_CH3_DMS == 1)
? 1 : 0) : 0}

DMAH_CH3_DST_SCA_EN_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH3_DST_SCA_EN) : 0}

DMAH_CH3_DST_TR_RST {(DMAH_NUM_CHANNELS>=4) ? ((DMAH_CH3_DTW
== 256) ? 6 : (DMAH_CH3_DTW == 128) ? 5 :
(DMAH_CH3_DTW == 64) ? 4 : (DMAH_CH3_DTW ==
32) ? 3 : (DMAH_CH3_DTW == 16) ? 2 :
(DMAH_CH3_DTW == 8) ? 1 : 0) : 0}

DMAH_CH3_FC_RST {(DMAH_NUM_CHANNELS>=4) ? ((DMAH_CH3_FC ==
3) ? 3 : (DMAH_CH3_FC == 2) ? 2 : (DMAH_CH3_FC ==
1) ? 1 : 0) : 0}

DMAH_CH3_FIFO_DEPTH_RST {(DMAH_NUM_CHANNELS>=4) ?
((DMAH_CH3_FIFO_DEPTH == 256) ? 5:
(DMAH_CH3_FIFO_DEPTH == 128) ? 4 :
(DMAH_CH3_FIFO_DEPTH == 64) ? 3 :
(DMAH_CH3_FIFO_DEPTH == 32) ? 2 :
(DMAH_CH3_FIFO_DEPTH == 16) ? 1 : 0) : 0}

DMAH_CH3_HC_LLP_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH3_HC_LLP) : 0}

DMAH_CH3_LMS_RST {(DMAH_NUM_CHANNELS>=4) ? ((DMAH_CH3_LMS
== 4) ? 4 : (DMAH_CH3_LMS == 3) ? 3 :
(DMAH_CH3_LMS == 2) ? 2 : (DMAH_CH3_LMS == 1) ?
1 : 0) : 0}

DMAH_CH3_LOCK_EN_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH3_LOCK_EN) : 0}

DMAH_CH3_MAX_BLK_SIZE_RST {(DMAH_CH3_MAX_BLK_SIZE == 4095) ? 10 :
(DMAH_CH3_MAX_BLK_SIZE == 2047) ? 9 :
(DMAH_CH3_MAX_BLK_SIZE == 1023) ? 8 :
(DMAH_CH3_MAX_BLK_SIZE == 511) ? 7 :
(DMAH_CH3_MAX_BLK_SIZE == 255) ? 6 :
(DMAH_CH3_MAX_BLK_SIZE == 127) ? 5 :
(DMAH_CH3_MAX_BLK_SIZE == 63) ? 4 :
(DMAH_CH3_MAX_BLK_SIZE == 31) ? 3 :
(DMAH_CH3_MAX_BLK_SIZE == 15) ? 2 :
(DMAH_CH3_MAX_BLK_SIZE == 7) ? 1 : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

398 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

DMAH_CH3_MAX_MULT_SIZE_RST {(DMAH_NUM_CHANNELS>=4) ?
((DMAH_CH3_MAX_MULT_SIZE == 256) ? 6 :
(DMAH_CH3_MAX_MULT_SIZE == 128) ? 5 :
(DMAH_CH3_MAX_MULT_SIZE == 64) ? 4 :
(DMAH_CH3_MAX_MULT_SIZE == 32) ? 3 :
(DMAH_CH3_MAX_MULT_SIZE == 16) ? 2 :
(DMAH_CH3_MAX_MULT_SIZE == 8) ? 1 : 0) : 0}

DMAH_CH3_MULTI_BLK_EN_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH3_MULTI_BLK_EN) : 0}

DMAH_CH3_MULTI_BLK_TYPE_RST {(DMAH_CH3_MULTI_BLK_TYPE)}

DMAH_CH3_SMS_RST {(DMAH_NUM_CHANNELS>=4) ? ((DMAH_CH3_SMS
== 4) ? 4 : (DMAH_CH3_SMS == 3) ? 3 :
(DMAH_CH3_SMS == 2) ? 2 : (DMAH_CH3_SMS == 1)
? 1 : 0) : 0}

DMAH_CH3_SRC_GAT_EN_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH3_SRC_GAT_EN) : 0}

DMAH_CH3_SRC_TR_RST {(DMAH_NUM_CHANNELS>=4) ? ((DMAH_CH3_STW
== 256) ? 6 : (DMAH_CH3_STW == 128) ? 5 :
(DMAH_CH3_STW == 64) ? 4 : (DMAH_CH3_STW ==
32) ? 3 : (DMAH_CH3_STW == 16) ? 2 :
(DMAH_CH3_STW == 8) ? 1 : 0) : 0}

DMAH_CH3_STAT_DST_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH3_STAT_DST) : 0}

DMAH_CH3_STAT_SRC_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH3_STAT_SRC) : 0}

DMAH_CH4_CTL_WB_EN_RST {(DMAH_NUM_CHANNELS>=5) ?
(DMAH_CH4_CTL_WB_EN) : 0}

DMAH_CH4_DMS_RST {(DMAH_NUM_CHANNELS>=5) ? ((DMAH_CH4_DMS
== 4) ? 4 : (DMAH_CH4_DMS == 3) ? 3 :
(DMAH_CH4_DMS == 2) ? 2 : (DMAH_CH4_DMS == 1)
? 1 : 0) : 0}

DMAH_CH4_DST_SCA_EN_RST {(DMAH_NUM_CHANNELS>=5) ?
(DMAH_CH4_DST_SCA_EN) : 0}

DMAH_CH4_DST_TR_RST {(DMAH_NUM_CHANNELS>=5) ? ((DMAH_CH4_DTW
== 256) ? 6 : (DMAH_CH4_DTW == 128) ? 5 :
(DMAH_CH4_DTW == 64) ? 4 : (DMAH_CH4_DTW ==
32) ? 3 : (DMAH_CH4_DTW == 16) ? 2 :
(DMAH_CH4_DTW == 8) ? 1 : 0) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 399SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Internal Parameter Descriptions

DMAH_CH4_FC_RST {(DMAH_NUM_CHANNELS>=5) ? ((DMAH_CH4_FC ==
3) ? 3 : (DMAH_CH4_FC == 2) ? 2 : (DMAH_CH4_FC ==
1) ? 1 : 0) : 0}

DMAH_CH4_FIFO_DEPTH_RST {(DMAH_NUM_CHANNELS>=5) ?
((DMAH_CH4_FIFO_DEPTH == 256) ? 5:
(DMAH_CH4_FIFO_DEPTH == 128) ? 4 :
(DMAH_CH4_FIFO_DEPTH == 64) ? 3 :
(DMAH_CH4_FIFO_DEPTH == 32) ? 2 :
(DMAH_CH4_FIFO_DEPTH == 16) ? 1 : 0) : 0}

DMAH_CH4_HC_LLP_RST {(DMAH_NUM_CHANNELS>=5) ?
(DMAH_CH4_HC_LLP) :0}

DMAH_CH4_LMS_RST {(DMAH_NUM_CHANNELS>=5) ? ((DMAH_CH4_LMS
== 4) ? 4 : (DMAH_CH4_LMS == 3) ? 3 :
(DMAH_CH4_LMS == 2) ? 2 : (DMAH_CH4_LMS == 1) ?
1 : 0) : 0}

DMAH_CH4_LOCK_EN_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH4_LOCK_EN) : 0}

DMAH_CH4_MAX_BLK_SIZE_RST {(DMAH_CH4_MAX_BLK_SIZE == 4095) ? 10 :
(DMAH_CH4_MAX_BLK_SIZE == 2047) ? 9 :
(DMAH_CH4_MAX_BLK_SIZE == 1023) ? 8 :
(DMAH_CH4_MAX_BLK_SIZE == 511) ? 7 :
(DMAH_CH4_MAX_BLK_SIZE == 255) ? 6 :
(DMAH_CH4_MAX_BLK_SIZE == 127) ? 5 :
(DMAH_CH4_MAX_BLK_SIZE == 63) ? 4 :
(DMAH_CH4_MAX_BLK_SIZE == 31) ? 3 :
(DMAH_CH4_MAX_BLK_SIZE == 15) ? 2 :
(DMAH_CH4_MAX_BLK_SIZE == 7) ? 1 : 0}

DMAH_CH4_MAX_MULT_SIZE_RST {(DMAH_NUM_CHANNELS>=5) ?
((DMAH_CH4_MAX_MULT_SIZE == 256) ? 6 :
(DMAH_CH4_MAX_MULT_SIZE == 128) ? 5 :
(DMAH_CH4_MAX_MULT_SIZE == 64) ? 4 :
(DMAH_CH4_MAX_MULT_SIZE == 32) ? 3 :
(DMAH_CH4_MAX_MULT_SIZE == 16) ? 2 :
(DMAH_CH4_MAX_MULT_SIZE == 8) ? 1 : 0) :0}

DMAH_CH4_MULTI_BLK_EN_RST {(DMAH_NUM_CHANNELS>=4) ?
(DMAH_CH4_MULTI_BLK_EN) : 0}

DMAH_CH4_MULTI_BLK_TYPE_RST {(DMAH_CH4_MULTI_BLK_TYPE)}

DMAH_CH4_SMS_RST {(DMAH_NUM_CHANNELS>=5) ? ((DMAH_CH4_SMS
== 4) ? 4 : (DMAH_CH4_SMS == 3) ? 3 :
(DMAH_CH4_SMS == 2) ? 2 : (DMAH_CH4_SMS == 1)
? 1 : 0) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

400 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

DMAH_CH4_SRC_GAT_EN_RST {(DMAH_NUM_CHANNELS>=5) ?
(DMAH_CH4_SRC_GAT_EN) : 0}

DMAH_CH4_SRC_TR_RST {(DMAH_NUM_CHANNELS>=5) ? ((DMAH_CH4_STW
== 256) ? 6 : (DMAH_CH4_STW == 128) ? 5 :
(DMAH_CH4_STW == 64) ? 4 : (DMAH_CH4_STW ==
32) ? 3 : (DMAH_CH4_STW == 16) ? 2 :
(DMAH_CH4_STW == 8) ? 1 : 0) : 0}

DMAH_CH4_STAT_DST_RST {(DMAH_NUM_CHANNELS>=5) ?
(DMAH_CH4_STAT_DST) : 0}

DMAH_CH4_STAT_SRC_RST {(DMAH_NUM_CHANNELS>=5) ?
(DMAH_CH4_STAT_SRC) : 0 }

DMAH_CH5_CTL_WB_EN_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH5_CTL_WB_EN) : 0}

DMAH_CH5_DMS_RST {(DMAH_NUM_CHANNELS>=6) ? ((DMAH_CH5_DMS
== 4) ? 4 : (DMAH_CH5_DMS == 3) ? 3 :
(DMAH_CH5_DMS == 2) ? 2 : (DMAH_CH5_DMS == 1)
? 1 : 0) : 0 }

DMAH_CH5_DST_SCA_EN_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH5_DST_SCA_EN) : 0}

DMAH_CH5_DST_TR_RST {(DMAH_NUM_CHANNELS>=6) ? ((DMAH_CH5_DTW
== 256) ? 6 : (DMAH_CH5_DTW == 128) ? 5 :
(DMAH_CH5_DTW == 64) ? 4 : (DMAH_CH5_DTW ==
32) ? 3 : (DMAH_CH5_DTW == 16) ? 2 :
(DMAH_CH5_DTW == 8) ? 1 : 0) : 0}

DMAH_CH5_FC_RST {(DMAH_NUM_CHANNELS>=6) ? ((DMAH_CH5_FC ==
3) ? 3 : (DMAH_CH5_FC == 2) ? 2 : (DMAH_CH5_FC ==
1) ? 1 : 0) : 0}

DMAH_CH5_FIFO_DEPTH_RST {(DMAH_NUM_CHANNELS>=6) ?
((DMAH_CH5_FIFO_DEPTH == 256) ? 5:
(DMAH_CH5_FIFO_DEPTH == 128) ? 4 :
(DMAH_CH5_FIFO_DEPTH == 64) ? 3 :
(DMAH_CH5_FIFO_DEPTH == 32) ? 2 :
(DMAH_CH5_FIFO_DEPTH == 16) ? 1 : 0) : 0}

DMAH_CH5_HC_LLP_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH5_HC_LLP) : 0}

DMAH_CH5_LMS_RST {(DMAH_NUM_CHANNELS>=6) ? ((DMAH_CH5_LMS
== 4) ? 4 : (DMAH_CH5_LMS == 3) ? 3 :
(DMAH_CH5_LMS == 2) ? 2 : (DMAH_CH5_LMS == 1) ?
1 : 0) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 401SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Internal Parameter Descriptions

DMAH_CH5_LOCK_EN_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH5_LOCK_EN) : 0}

DMAH_CH5_MAX_BLK_SIZE_RST {(DMAH_CH5_MAX_BLK_SIZE == 4095) ? 10 :
(DMAH_CH5_MAX_BLK_SIZE == 2047) ? 9 :
(DMAH_CH5_MAX_BLK_SIZE == 1023) ? 8 :
(DMAH_CH5_MAX_BLK_SIZE == 511) ? 7 :
(DMAH_CH5_MAX_BLK_SIZE == 255) ? 6 :
(DMAH_CH5_MAX_BLK_SIZE == 127) ? 5 :
(DMAH_CH5_MAX_BLK_SIZE == 63) ? 4 :
(DMAH_CH5_MAX_BLK_SIZE == 31) ? 3 :
(DMAH_CH5_MAX_BLK_SIZE == 15) ? 2 :
(DMAH_CH5_MAX_BLK_SIZE == 7) ? 1 : 0}

DMAH_CH5_MAX_MULT_SIZE_RST {(DMAH_NUM_CHANNELS>=6) ?
((DMAH_CH5_MAX_MULT_SIZE == 256) ? 6 :
(DMAH_CH5_MAX_MULT_SIZE == 128) ? 5 :
(DMAH_CH5_MAX_MULT_SIZE == 64) ? 4 :
(DMAH_CH5_MAX_MULT_SIZE == 32) ? 3 :
(DMAH_CH5_MAX_MULT_SIZE == 16) ? 2 :
(DMAH_CH5_MAX_MULT_SIZE == 8) ? 1 : 0) : 0}

DMAH_CH5_MULTI_BLK_EN_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH5_MULTI_BLK_EN) : 0}

DMAH_CH5_MULTI_BLK_TYPE_RST {(DMAH_CH5_MULTI_BLK_TYPE)}

DMAH_CH5_SMS_RST {(DMAH_NUM_CHANNELS>=6) ? ((DMAH_CH5_SMS
== 4) ? 4 : (DMAH_CH5_SMS == 3) ? 3 :
(DMAH_CH5_SMS == 2) ? 2 : (DMAH_CH5_SMS == 1)
? 1 : 0) : 0 }

DMAH_CH5_SRC_GAT_EN_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH5_SRC_GAT_EN) : 0 }

DMAH_CH5_SRC_TR_RST {(DMAH_NUM_CHANNELS>=6) ? ((DMAH_CH5_STW
== 256) ? 6 : (DMAH_CH5_STW == 128) ? 5 :
(DMAH_CH5_STW == 64) ? 4 : (DMAH_CH5_STW ==
32) ? 3 : (DMAH_CH5_STW == 16) ? 2 :
(DMAH_CH5_STW == 8) ? 1 : 0) : 0 }

DMAH_CH5_STAT_DST_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH5_STAT_DST) : 0}

DMAH_CH5_STAT_SRC_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH5_STAT_SRC) : 0 }

DMAH_CH6_CTL_WB_EN_RST {(DMAH_NUM_CHANNELS>=7) ?
(DMAH_CH6_CTL_WB_EN) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

402 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

DMAH_CH6_DMS_RST {(DMAH_NUM_CHANNELS>=7) ? ((DMAH_CH6_DMS
== 4) ? 4 : (DMAH_CH6_DMS == 3) ? 3 :
(DMAH_CH6_DMS == 2) ? 2 : (DMAH_CH6_DMS == 1)
? 1 : 0) : 0}

DMAH_CH6_DST_SCA_EN_RST {(DMAH_NUM_CHANNELS>=7) ?
(DMAH_CH6_DST_SCA_EN) : 0}

DMAH_CH6_DST_TR_RST {(DMAH_NUM_CHANNELS>=7) ? ((DMAH_CH6_DTW
== 256) ? 6 : (DMAH_CH6_DTW == 128) ? 5 :
(DMAH_CH6_DTW == 64) ? 4 : (DMAH_CH6_DTW ==
32) ? 3 : (DMAH_CH6_DTW == 16) ? 2 :
(DMAH_CH6_DTW == 8) ? 1 : 0) : 0}

DMAH_CH6_FC_RST {(DMAH_NUM_CHANNELS>=7) ? ((DMAH_CH6_FC ==
3) ? 3 : (DMAH_CH6_FC == 2) ? 2 : (DMAH_CH6_FC ==
1) ? 1 : 0) : 0}

DMAH_CH6_FIFO_DEPTH_RST {(DMAH_NUM_CHANNELS>=7) ?
((DMAH_CH6_FIFO_DEPTH == 256) ? 5:
(DMAH_CH6_FIFO_DEPTH == 128) ? 4 :
(DMAH_CH6_FIFO_DEPTH == 64) ? 3 :
(DMAH_CH6_FIFO_DEPTH == 32) ? 2 :
(DMAH_CH6_FIFO_DEPTH == 16) ? 1 : 0) : 0}

DMAH_CH6_HC_LLP_RST {(DMAH_NUM_CHANNELS>=7) ?
(DMAH_CH6_HC_LLP) : 0}

DMAH_CH6_LMS_RST {(DMAH_NUM_CHANNELS>=7) ? ((DMAH_CH6_LMS
== 4) ? 4 : (DMAH_CH6_LMS == 3) ? 3 :
(DMAH_CH6_LMS == 2) ? 2 : (DMAH_CH6_LMS == 1) ?
1 : 0) : 0}

DMAH_CH6_LOCK_EN_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH6_LOCK_EN) : 0}

DMAH_CH6_MAX_BLK_SIZE_RST {(DMAH_CH6_MAX_BLK_SIZE == 4095) ? 10 :
(DMAH_CH6_MAX_BLK_SIZE == 2047) ? 9 :
(DMAH_CH6_MAX_BLK_SIZE == 1023) ? 8 :
(DMAH_CH6_MAX_BLK_SIZE == 511) ? 7 :
(DMAH_CH6_MAX_BLK_SIZE == 255) ? 6 :
(DMAH_CH6_MAX_BLK_SIZE == 127) ? 5 :
(DMAH_CH6_MAX_BLK_SIZE == 63) ? 4 :
(DMAH_CH6_MAX_BLK_SIZE == 31) ? 3 :
(DMAH_CH6_MAX_BLK_SIZE == 15) ? 2 :
(DMAH_CH6_MAX_BLK_SIZE == 7) ? 1 : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 403SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Internal Parameter Descriptions

DMAH_CH6_MAX_MULT_SIZE_RST {(DMAH_NUM_CHANNELS>=7) ?
((DMAH_CH6_MAX_MULT_SIZE == 256) ? 6 :
(DMAH_CH6_MAX_MULT_SIZE == 128) ? 5 :
(DMAH_CH6_MAX_MULT_SIZE == 64) ? 4 :
(DMAH_CH6_MAX_MULT_SIZE == 32) ? 3 :
(DMAH_CH6_MAX_MULT_SIZE == 16) ? 2 :
(DMAH_CH6_MAX_MULT_SIZE == 8) ? 1 : 0) : 0}

DMAH_CH6_MULTI_BLK_EN_RST {(DMAH_NUM_CHANNELS>=6) ?
(DMAH_CH6_MULTI_BLK_EN) : 0}

DMAH_CH6_MULTI_BLK_TYPE_RST {(DMAH_CH6_MULTI_BLK_TYPE)}

DMAH_CH6_SMS_RST {(DMAH_NUM_CHANNELS>=7) ? ((DMAH_CH6_SMS
== 4) ? 4 : (DMAH_CH6_SMS == 3) ? 3 :
(DMAH_CH6_SMS == 2) ? 2 : (DMAH_CH6_SMS == 1)
? 1 : 0) : 0}

DMAH_CH6_SRC_GAT_EN_RST {(DMAH_NUM_CHANNELS>=7) ?
(DMAH_CH6_SRC_GAT_EN) : 0}

DMAH_CH6_SRC_TR_RST {(DMAH_NUM_CHANNELS>=7) ? ((DMAH_CH6_STW
== 256) ? 6 : (DMAH_CH6_STW == 128) ? 5 :
(DMAH_CH6_STW == 64) ? 4 : (DMAH_CH6_STW ==
32) ? 3 : (DMAH_CH6_STW == 16) ? 2 :
(DMAH_CH6_STW == 8) ? 1 : 0) : 0}

DMAH_CH6_STAT_DST_RST {(DMAH_NUM_CHANNELS>=7) ?
(DMAH_CH6_STAT_DST) : 0}

DMAH_CH6_STAT_SRC_RST {(DMAH_NUM_CHANNELS>=7) ?
(DMAH_CH6_STAT_SRC):0}

DMAH_CH7_CTL_WB_EN_RST {(DMAH_NUM_CHANNELS ==8) ?
(DMAH_CH7_CTL_WB_EN) : 0}

DMAH_CH7_DMS_RST {(DMAH_NUM_CHANNELS ==8) ? ((DMAH_CH7_DMS
== 4) ? 4 : (DMAH_CH7_DMS == 3) ? 3 :
(DMAH_CH7_DMS == 2) ? 2 : (DMAH_CH7_DMS == 1)
? 1 : 0) : 0}

DMAH_CH7_DST_SCA_EN_RST {(DMAH_NUM_CHANNELS ==8) ?
(DMAH_CH7_DST_SCA_EN) : 0}

DMAH_CH7_DST_TR_RST {(DMAH_NUM_CHANNELS ==8) ? ((DMAH_CH7_DTW
== 256) ? 6 : (DMAH_CH7_DTW == 128) ? 5 :
(DMAH_CH7_DTW == 64) ? 4 : (DMAH_CH7_DTW ==
32) ? 3 : (DMAH_CH7_DTW == 16) ? 2 :
(DMAH_CH7_DTW == 8) ? 1 : 0) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

404 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

DMAH_CH7_FC_RST {(DMAH_NUM_CHANNELS ==8) ? ((DMAH_CH7_FC ==
3) ? 3 : (DMAH_CH7_FC == 2) ? 2 : (DMAH_CH7_FC ==
1) ? 1 : 0) : 0}

DMAH_CH7_FIFO_DEPTH_RST {(DMAH_NUM_CHANNELS ==8) ?
((DMAH_CH7_FIFO_DEPTH == 256) ? 5:
(DMAH_CH7_FIFO_DEPTH == 128) ? 4 :
(DMAH_CH7_FIFO_DEPTH == 64) ? 3 :
(DMAH_CH7_FIFO_DEPTH == 32) ? 2 :
(DMAH_CH7_FIFO_DEPTH == 16) ? 1 : 0) : 0}

DMAH_CH7_HC_LLP_RST {(DMAH_NUM_CHANNELS ==8) ?
(DMAH_CH7_HC_LLP) : 0}

DMAH_CH7_LMS_RST {(DMAH_NUM_CHANNELS ==8) ? ((DMAH_CH7_LMS
== 4) ? 4 : (DMAH_CH7_LMS == 3) ? 3 :
(DMAH_CH7_LMS == 2) ? 2 : (DMAH_CH7_LMS == 1) ?
1 : 0) : 0}

DMAH_CH7_LOCK_EN_RST {(DMAH_NUM_CHANNELS ==8) ?
(DMAH_CH7_LOCK_EN) : 0}

DMAH_CH7_MAX_BLK_SIZE_RST {(DMAH_CH7_MAX_BLK_SIZE == 4095) ? 10 :
(DMAH_CH7_MAX_BLK_SIZE == 2047) ? 9 :
(DMAH_CH7_MAX_BLK_SIZE == 1023) ? 8 :
(DMAH_CH7_MAX_BLK_SIZE == 511) ? 7 :
(DMAH_CH7_MAX_BLK_SIZE == 255) ? 6 :
(DMAH_CH7_MAX_BLK_SIZE == 127) ? 5 :
(DMAH_CH7_MAX_BLK_SIZE == 63) ? 4 :
(DMAH_CH7_MAX_BLK_SIZE == 31) ? 3 :
(DMAH_CH7_MAX_BLK_SIZE == 15) ? 2 :
(DMAH_CH7_MAX_BLK_SIZE == 7) ? 1 : 0}

DMAH_CH7_MAX_MULT_SIZE_RST {(DMAH_NUM_CHANNELS ==8) ?
((DMAH_CH7_MAX_MULT_SIZE == 256) ? 6 :
(DMAH_CH7_MAX_MULT_SIZE == 128) ? 5 :
(DMAH_CH7_MAX_MULT_SIZE == 64) ? 4 :
(DMAH_CH7_MAX_MULT_SIZE == 32) ? 3 :
(DMAH_CH7_MAX_MULT_SIZE == 16) ? 2 :
(DMAH_CH7_MAX_MULT_SIZE == 8) ? 1 : 0) : 0}

DMAH_CH7_MULTI_BLK_EN_RST {(DMAH_NUM_CHANNELS ==8) ?
(DMAH_CH7_MULTI_BLK_EN) : 0}

DMAH_CH7_MULTI_BLK_TYPE_RST {(DMAH_CH7_MULTI_BLK_TYPE)}

DMAH_CH7_SMS_RST {(DMAH_NUM_CHANNELS ==8) ? ((DMAH_CH7_SMS
== 4) ? 4 : (DMAH_CH7_SMS == 3) ? 3 :
(DMAH_CH7_SMS == 2) ? 2 : (DMAH_CH7_SMS == 1)
? 1 : 0) : 0}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 405SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Internal Parameter Descriptions

DMAH_CH7_SRC_GAT_EN_RST {(DMAH_NUM_CHANNELS ==8) ?
(DMAH_CH7_SRC_GAT_EN) : 0}

DMAH_CH7_SRC_TR_RST {(DMAH_NUM_CHANNELS ==8) ? ((DMAH_CH7_STW
== 256) ? 6 : (DMAH_CH7_STW == 128) ? 5 :
(DMAH_CH7_STW == 64) ? 4 : (DMAH_CH7_STW ==
32) ? 3 : (DMAH_CH7_STW == 16) ? 2 :
(DMAH_CH7_STW == 8) ? 1 : 0) : 0}

DMAH_CH7_STAT_DST_RST {(DMAH_NUM_CHANNELS ==8) ?
(DMAH_CH7_STAT_DST) : 0}

DMAH_CH7_STAT_SRC_RST {(DMAH_NUM_CHANNELS ==8) ?
(DMAH_CH7_STAT_SRC) :0 }

DMAH_COMP_ID 32'h44571110

DMAH_DEBUG_BUS 1

DMAH_HADDR_WIDTH 32

DMAH_INTR_IO_RST {(DMAH_INTR_IO == 0) ? 0 : ((DMAH_INTR_IO == 1) ?
1 : 2)}

DMAH_M1_HDATA_WIDTH_RST {(DMAH_M1_HDATA_WIDTH == 256) ? 3 :
(DMAH_M1_HDATA_WIDTH == 128) ? 2 :
(DMAH_M1_HDATA_WIDTH == 64) ? 1 : 0}

DMAH_M2_HDATA_WIDTH_RST {(DMAH_M2_HDATA_WIDTH == 256) ? 3 :
(DMAH_M2_HDATA_WIDTH == 128) ? 2 :
(DMAH_M2_HDATA_WIDTH == 64) ? 1 : 0}

DMAH_M3_HDATA_WIDTH_RST {(DMAH_M3_HDATA_WIDTH == 256) ? 3 :
(DMAH_M3_HDATA_WIDTH == 128) ? 2 :
(DMAH_M3_HDATA_WIDTH == 64) ? 1 : 0}

DMAH_M4_HDATA_WIDTH_RST {(DMAH_M4_HDATA_WIDTH == 256) ? 3 :
(DMAH_M4_HDATA_WIDTH == 128) ? 2 :
(DMAH_M4_HDATA_WIDTH == 64) ? 1 : 0}

DMAH_MABRST_RST {(DMAH_MABRST)}

DMAH_NUM_CHANNELS_RST {(DMAH_NUM_CHANNELS - 1)}

DMAH_NUM_HS_INT_NZ {[function_of: DMAH_NUM_HS_INT]}

DMAH_NUM_HS_INT_RST {(DMAH_NUM_HS_INT)}

DMAH_NUM_MASTER_INT_RST {(DMAH_NUM_MASTER_INT - 1)}

DMAH_NUM_PER {[function_of: DMAH_NUM_CHANNELS]}

DMAH_REG_HS_IF {DMAH_REMOVE_PIPELINING ? 0 : 1}

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

406 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

DMAH_S_HDATA_WIDTH_RST {(DMAH_S_HDATA_WIDTH == 256) ? 3 :
(DMAH_S_HDATA_WIDTH == 128) ? 2 :
(DMAH_S_HDATA_WIDTH == 64) ? 1 : 0}

DMAH_STATIC_ENDIAN_SELECT_RST {(DMAH_STATIC_ENDIAN_SELECT)}

DMAH_VERSION_ID 32'h3232322a

DMS 24:23

DST_SCATTER_EN 18

DS_UPD_EN 37

FCMODE 32

FIFO_EMPTY 9

FIFO_MODE 33

HS_SEL_DST 10

HS_SEL_SRC 11

INT_EN 0

LLP_DST_EN 27

LLP_SRC_EN 28

LMS 1:0

LOC (DMAH_HADDR_WIDTH-1):2

LOCK_B 17

LOCK_B_L 15:14

LOCK_CH 16

LOCK_CH_L 13:12

LOG2_DMAH_NUM_HS_INT {[function_of: DMAH_NUM_HS_INT]}

LOG2_DMAH_NUM_PER {[function_of: DMAH_NUM_PER]}

MAX_AHB_HDATA_WIDTH {[function_of:]}

MAX_LOG2_FIFO_DEPTH_BYTES {[function_of:]}

RELOAD_DST 31

RELOAD_SRC 30

SINC 10:9

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 407SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Internal Parameter Descriptions

SMS 26:25

SRC_GATHER_EN 17

SRC_MSIZE 16:14

SRC_PER 42:39

SRC_TR_WIDTH 6:4

SS_UPD_EN 38

TT_FC 22:20

Table B-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

408 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Internal Parameter Descriptions DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 409

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

C
Channel Locking and Deadlock

This appendix explains how locking can cause deadlock. Deadlock situations can occur where multiple
channels are enabled concurrently and no channel can proceed with its DMA transfer. This only occurs for
configurations where DMAH_NUM_MASTER_INT > 1 and DMAH_NUM_CHANNELS > 1.

The methods used to avoid deadlock are:

■ Hardware detects when a potential deadlock occurs between two channels and deal with it. Refer to
“Deadlock Prevention by Hardware” on page 412.

■ Programming restrictions to avoid potential deadlock situations. Refer to “Programming Restrictions
to Avoid Deadlock” on page 412.

C.1 Hardware Detection of Deadlock
Three cases are outlined that can potentially cause a deadlock situation.

C.1.1 Case 1

Consider a channel programmed as follows:

C.1.1.1 Channel 0

NoteNoteNoteNote Refer to “Channel Locking” on page 96 for details of the actual value of channel locking enable
and channel locking level used in the DMA transfer. These may differ from the programmed
values, CFGx_LOCK_CH and CFGx.LOCK_CH_L. All references to channel locking enable
and channel locking level in this section refer to the actual values used and not the
programmed values.

CTL0.SMS = 0 Source on AHB Layer 0

CTL0.DMS = 1 Destination on AHB Layer 1

CFG0.LOCK_CH_L = 0 Locking over complete DMA transfer

CFG0.LOCK_CH = 1 Channel Locking enabled

https://solvnet.synopsys.com
www.designware.com

410 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Channel Locking and Deadlock DesignWare DW_ahb_dmac Databook

C.1.1.2 Channel 1

Consider the following scenario. Channel 0 and Channel 1 are both enabled. The source of Channel 0 is
granted ownership of Layer 0 and then locks out all other channel access to Layer 0 until it completes the
DMA transfer. Before the Channel 0 destination requests Layer 1, the source of Channel 1 requests and is
granted Layer 1. Channel 1 now locks all other channel accesses to Layer 1.

This is a deadlock situation whereby neither Channel 1 nor Channel 0 can complete because neither channel
destination can gain access to its respective AHB layer.

C.1.1.3 Case 1 potential deadlock

Hardware flags a potential deadlock situation between two channels (channels x and y) if:

■ Both channels are enabled

■ CTLx.SMS = CTLy.DMS

■ CTLy.SMS = CTLx.DMS

■ Both channels have channel locking enabled

C.1.2 Case 2

This case occurs only when channel locking is enabled at the DMA transaction level.

C.1.2.1 Case 2 potential deadlock

Hardware flags a potential deadlock situation between two channels if:

1. Both channels are enabled

2. CTLv.SMS = CTLy.SMS

3. CTLx.DMS = CTLy.DMS

4. CTLx.SMS != CTLx.DMS and CTLy.SMS != CTLy.DMS

5. Both channels have channel locking enabled

6. Either channel x or channel y has channel locking enabled at the transaction level

CTL1.SMS = 1 Source on AHB Layer 1

CTL1.DMS = 0 Destination on AHB Layer 0

CFG1.LOCK_CH_L = 0 Locking over complete DMA transfer

CFG1.LOCK_CH = 1 Channel Locking enabled

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 411SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Channel Locking and Deadlock

C.1.3 Case 3

Another potential deadlock occurs when DMAH_NUM_MASTER_INT > 2 &&
DMAH_NUM_CHANNELS > 2. The following shows two examples when channel locking is enabled at
any level and where a potential deadlock situation can occur:

C.1.3.1 Example 1

For example, suppose all three channels employ channel locking at the block transfer level. If the source of
all three channels start before any of the destinations start, then a deadlock situation arises.

1. Layer 0 locked by the source of channel 0

2. Layer 1 locked by the source of channel 1

3. Layer 2 locked by the source of channel 2

Then:

1. The destination of channel 0 cannot proceed as Layer 1 is locked by channel 1

2. The destination of channel 1 cannot proceed as Layer 2 is locked by channel 2

3. The destination of channel 2 cannot proceed as Layer 0 is locked by channel 0

This is a deadlocked situation.

C.1.3.2 Example 2

CTL0.SMS = 0 Channel 0 Source on AHB Layer 0

CTL0.DMS = 1 Channel 0 Destination on AHB Layer 1

CTL1.SMS = 1 Channel 1 Source on AHB Layer 1

CTL1.DMS = 2 Channel 1 Destination on AHB Layer 2

CTL2.SMS = 2 Channel 2 Source on AHB Layer 2

CTL2.DMS = 0 Channel 2 Destination on AHB Layer 0

CTL0.SMS = 0 Channel 0 Source on AHB Layer 0

CTL0.DMS = 1 Channel 0 Destination on AHB Layer 1

CTL1.SMS = 1 Channel 1 Source on AHB Layer 1

CTL1.DMS = 2 Channel 1 Destination on AHB Layer 2

CTL2.SMS = 2 Channel 2 Source on AHB Layer 2

CTL2.DMS = 3 Channel 2 Destination on AHB Layer 3

CTL3.SMS = 3 Channel 3 Source on AHB Layer 3

CTL3.DMS = 3 Channel 3 Destination on AHB Layer 3

https://solvnet.synopsys.com
www.designware.com

412 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Channel Locking and Deadlock DesignWare DW_ahb_dmac Databook

This example is similar to “Example 1” on page 411. Suppose all four channels employ channel locking at
the block transfer level. If the source of all four channels start before any of the destinations start, then a
deadlock situation arises.

C.1.3.3 Case 3 potential deadlock

Hardware flags a potential deadlock situation between two channels if:

1. DMAH_NUM_MASTER_INT > 2 && DMAH_NUM_CHANNELS > 2

2. Both channels are enabled

3. Both channels have channel locking enabled at any level

4. The channel source and destination are on different layers

5. The source of one channel is on the same layer as the destination of the other channel

C.1.4 Deadlock Prevention by Hardware

Hardware detects a potential deadlock situation between two channels, as given in Case 1 potential
deadlock, Case 2 potential deadlock, and Case 3 potential deadlock. It then stalls one channel until the
enable bit of the other channel in the Channel Enable Register, ChEnReg.Ch_En, is cleared by hardware. The
channel that is first enabled by software is allowed to complete its DMA transfer before the other channel
can begin its DMA transfer. In this case, a lower priority channel can be given precedence over a higher one
if it is enabled first over the AHB slave interface; for example, the programmed channel priorities are
overridden.

C.2 Programming Restrictions to Avoid Deadlock
The previous section details scenarios where hardware detects potential deadlock situations and takes
preventative action. This section details scenarios where hardware does not detect potential deadlock
situations, but it is left up to software to avoid programming the DW_ahb_dmac in a way that may cause
deadlock. Failure to comply with these programming restrictions may lead to deadlock.

1. If

a. Channel locking is enabled at the DMA transfer level

b. The LLPx.LOC field is non-zero and

c. Block chaining is enabled on the source or destination side.

NoteNoteNoteNote This preventative method of avoiding deadlock assumes that no two channels are enabled by
software at the same time. To avoid enabling two or more channels at the same time, writes to
ChEnReg.ChEn should enable only one channel per write. Also, when enabling the DMAC
with a write to DmaCfgReg.DMA_EN, there should be no more than one ChEnReg.ChEn bit
already enabled.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 413SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Channel Locking and Deadlock

In equation form, this is:

((CFGx.LOCK_B == 1 && CFG.LOCK_B_L == 2'b00) ||

(CFGx.LOCK_CH == 1 && CFG.LOCK_CH_L == 2'b00)) &&

(LLPx.LOC != 0) &&

((CTLx.LLP_SRC_EN == 1) || ((CTLx.LLP_DST_EN == 1))

then the following condition must be complied with:

(LLPx.LMS == CTLx.SMS) || (LLPx.LMS == CTLx.DMS)

2. If:

CTLx.SMS != CTLx.DMS && DMAH_NUM_MASTER_INT > 2 && DMAH_NUM_CHANNELS > 2
then channel transaction level locking is prohibited. Software must ensure that if channel locking is
enabled, then the locking level used for channel locking is not at the transaction level.

3. If the DMA block size in bytes is less than or equal to the FIFO depth in bytes (the source block can
complete before the destination block starts) and if the source and destination are on different layers,
only transaction-level locking is allowed for channel locking.

https://solvnet.synopsys.com
www.designware.com

414 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Channel Locking and Deadlock DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 415

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

D
DW_ahb_dmac Application Notes

This appendix provides application notes for the DW_ahb_dmac.

D.1 Interoperability Between DW_ahb_dmac and PrimeCell Hardware
Handshaking Interface

You may have already designed a peripheral with a handshaking interface that conforms to the ARM
PrimeCell handshaking interface for use with the ARM PrimeCell DMA. This handshaking interface can be
mapped to conform with the DW_ahb_dmac handshaking interface with glue logic, as shown in Figure D-1
through Figure D-3. Table D-1 lists PrimeCell handshaking signals.

Table D-1 PrimeCell Handshaking Signals

ARM PrimeCell DMA
Handshaking Signal

Direction Relative to
Peripheral Description

dmacclr Input DMA request acknowledge clear.

dmactc Input DMA terminal count. Indicates the transaction is complete
and the block of data is transferred.

dmacbreq Output DMA burst transfer request.

dmacsreq Output DMA single transfer request.

dmaclbreq Output DMA last burst transfer request.

dmaclsreq Output DMA last single transfer request.

https://solvnet.synopsys.com
www.designware.com

416 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

DW_ahb_dmac Application Notes DesignWare DW_ahb_dmac Databook

Figure D-1 Mapping Between ARM PrimeCell and DW_ahb_dmac Peripheral Handshaking – Peripheral (source
or destination) is Flow Controller

Figure D-2 Mapping Between ARM PrimeCell and DW_ahb_dmac Source Peripheral Handshaking – Source
Peripheral Not Flow Controller

dma_ack
dma_finish

dma_last

dma_req

dma_single

dmacclr
dmactc

dmaclsreq
dmaclbreq

dmacsreq
dmacbreq

dmaclsreq
dmacsreq

dma_ack

dma_finish

dma_last

dma_req

dma_single

dmacclr

dmactc

1‘bx

dmacbreq

dmacsreq

dmaclbreq
dmaclsreq

unconnected
unconnected

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 417SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook DW_ahb_dmac Application Notes

Figure D-3 Mapping Between ARM PrimeCell and DW_ahb_dmac Destination Peripheral Handshaking –
Destination Peripheral Not Flow Controller

This glue logic may be used to allow a peripheral designed with the ARM PrimeCell handshaking interface
to operate with DW_ahb_dmac. This logic is shown in the Figure D-4.

Figure D-4 DMA Operation Using ARM PrimeCell Handshaking Interface with DW_ahb_dmac

D.2 Mapping of PrimeCell Software Handshaking Registers to DW_ahb_dmac
This application note describes the mapping of the PrimeCell software handshaking registers to the
equivalent DW_ahb_dmac software handshaking interface registers. Software that is used to control the
PrimeCell DMA Controller software interface registers can be changed to conform to the DW_ahb_dmac
software interface by the mapping described in the following sections.

D.2.1 PrimeCell Software Handshaking Registers

The ARM PrimeCell DMA Controller (PL080 and PL081) has four software registers that are used to control
the DMA handshaking. These registers allow DMA requests to be generated by software.

■ DMACSoftBReq (16 bits) – Generates DMA burst requests

■ DMACSoftSReq (16 bits) – Generates DMA single requests

dma_ack

dma_finish

dma_last

dma_req

dma_single

dmacclr

dmactc

1‘bx

dmacbreq

dmaclbreq
dmaclsreq

unconnected
unconnected

1‘b0

dmacsreq unconnected

Peripheral (source
or destination)

A
R

M
 P

ri
m

eC
el

l

DW_ahb_dmac

D
W

_a
hb

_d
m

ac

Glue logic as shown
in Figure D-1,

Figure D-2, and
Figure D-3

dmacclr

dmactc

dmaclsreq

dmaclbreq

dmacsreq

dmacbreq

dma_ack

dma_finish

dma_last

dmac_single

dma_req

ARM PrimeCell
DMA handshaking

signals

DW_ahb_dmac
DMA handshaking

signals

https://solvnet.synopsys.com
www.designware.com

418 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

DW_ahb_dmac Application Notes DesignWare DW_ahb_dmac Databook

■ DMACSoftLBReq (16 bits) – Generates DMA last burst requests

■ DMACSoftLSReq (16 bits) – Generates DMA last single requests

A DMA request can be generated for a peripheral (Source or Destination) by writing a 1 to the
corresponding register bit of the previous registers.

D.2.2 DW_ahb_dmac Software Handshaking Registers

DW_ahb_dmac has six registers allocated for software handshaking:

■ ReqSrcReg (64 bits) – Generates DMA requests for source peripheral

■ ReqDstReg (64 bits) – Generates DMA requests for destination peripheral

■ SglReqSrcReg (64 bits) – Generates DMA single requests for source peripheral

■ SglReqDstReg (64 bits) – Generates DMA single requests for destination peripheral

■ LstSrcReg (64 bits) – Generates DMA last requests for source peripheral

■ LstDstReg (64 bits) – Generates DMA last requests for destination peripheral

A DMA request can be generated for a source or destination peripheral by writing 1 to the “request” and
“request write enable” bits of the respective channel bits of the previous registers. For the exact register bit
encoding of these software handshaking interface registers, refer to “Software Handshaking Registers” in
this databook and to the PrimeCell DMAC databook for the PrimeCell registers.

D.2.3 Register Interface Mapping

This section provides the mapping of the ARM PrimeCell DMAC handshaking registers to DW_ahb_dmac
software handshaking registers when the peripheral (source or destination is flow controller) is not the flow
controller and when the peripheral is the flow controller.

D.2.3.1 Peripheral is Not Flow Controller

Table D-2 describes the mapping of the DW_ahb_dmac software handshaking registers with respect to the
PrimeCell DMAC handshaking registers when the peripheral is not the flow controller. The mapping is true
for the source peripheral when it is not the flow controller, and the destination peripheral when it is not the
flow controller.

Table D-2 Mapping of PrimeCell Handshaking Registers to DW_ahb_dmac DMA is Flow Controller

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 419SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook DW_ahb_dmac Application Notes

D.2.3.2 Peripheral is Flow Controller

 provides the mapping of the DW_ahb_dmac software handshaking registers with respect to the PrimeCell
DMAC handshaking registers when (source or destination) peripheral is the flow controller.

Burst transaction
outside Single
Transaction Region

Write to
DMACSoftBReq

SglReqSrcReg/
SglReqDstReg
followed by
ReqSrcReg/ ReqDstReg
OR
ReqSrcReg/ ReqDstReg
followed by
SglReqSrcReg/
SglReqDstReg

When converting from PrimeCell
programming for writes to
DMACSoftBReq, a corresponding write
is required to ReqSrcReg or ReqDstReg
in DW_ahb_dmac, depending on the bit
location (source or destination
peripheral) in the DMACSoftBReq
register.
Writing a 1 to the
ReqSrcReg[x]/ReqDstReg[x] register is
always interpreted as a burst transaction
request, where x is the channel number.
However, in order for a burst transaction
request to start, software must write a 1
to the
SglReqSrcReg[x]/SglReqDstReg[x]
register.

Single transaction
Inside the Single
Transaction Region

Write to
DMACSoftSReq

Write to SglReqSrcReg/
SglReqDstReg

When converting from PrimeCell
programming for writes to
DMACSoftSReq, a corresponding write
is required on SglReqSrcReg or
SglReqDstReg in DW_ahb_dmac,
depending on the bit location (source or
destination peripheral) in the
DMACSoftBReq register. This is only
true when a block transfer to the
peripheral is in the Single Transaction
Region.

https://solvnet.synopsys.com
www.designware.com

420 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

DW_ahb_dmac Application Notes DesignWare DW_ahb_dmac Databook

Table D-3 Mapping of PrimeCell Handshaking Registers to DW_ahb_dmac Peripheral is Flow Controller

Operation ARM PrimeCell DW_ahb_dmac Notes

Burst transaction DMACSoftBReq SglReqSrcReg/
SglReqDstReg
followed by
ReqSrcReg/ ReqDstReg

When converting from PrimeCell
programming for writes to
DMACSoftBReq, a corresponding
write is required on ReqSrcReg or
ReqDstReg in DW_ahb_dmac,
depending on the bit location (source
or destination peripheral) in the
DMACSoftBReq register.
This initiates a transaction. The type
of transaction, single or burst,
depends on the value in the
corresponding SglReqSrcReg/
SglReqDstReg register.If it is 0, it is a
burst transaction.

Single transaction DMACSoftSReq SglReqSrcReg/
SglReqDstReg
followed by
ReqSrcReg/ ReqDstReg

When converting from PrimeCell
programming for writes to
DMACSoftSReq, a corresponding
write is required on ReqSrcReg or
ReqDstReg in DW_ahb_dmac,
depending on the bit location (source
or destination peripheral) in the
DMACSoftBReq register.
This initiates a transaction. The type
of transaction, single or burst,
depends on the value in the
corresponding
SglReqSrcReg/SglReqDstReg
register. If it is 1, it is a single
transaction.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 421SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook DW_ahb_dmac Application Notes

Last burst transaction DMACSoftLBReq LstSrcReg/LstDstReg
followed by
SglReqSrcReg/
SglReqDstReg
followed by
ReqSrcReg/ ReqDstRega

When converting from PrimeCell
programming for writes to
DMACSoftLBReq, a corresponding
write is required on ReqSrcReg or
ReqDstReg in DW_ahb_dmac,
depending on the bit location (source
or destination peripheral) in the
DMACSoftBReq register.
This initiates a transaction. The type
of transaction, single or burst,
depends on the value in the
corresponding
SglReqSrcReg/SglReqDstReg
register. If it is 0, it is a burst
transaction. Futhermore, the
transaction is the last transaction in
the block if the corresponding bit in
the LstSrcReg/LstDstReg register
is 1.

Last single transaction DMACSoftLSReq LstSrcReg/LstDstReg
followed by
SglReqSrcReg/
SglReqDstReg
followed by
ReqSrcReg/ReqDstRega

When converting from PrimeCell
programming for writes to
DMACSoftLSReq, a corresponding
write is required on ReqSrcReg or
ReqDstReg in DW_ahb_dmac,
depending on the bit location (source
or destination peripheral) in the
DMACSoftBReq register.
This initiates a transaction. The type
of transaction, single or burst,
depends on the value in the
corresponding
SglReqSrcReg/SglReqDstReg
register. If it is 1, it is a single
transaction. Futhermore, the
transaction is the last transaction in
the block if the corresponding bit in
the LstSrcReg/LstDstReg register
is 1.

a. The order before the write to the ReqSrcReg/ReqDstReg register is not important.

Table D-3 Mapping of PrimeCell Handshaking Registers to DW_ahb_dmac Peripheral is Flow Controller
 (Continued)

Operation ARM PrimeCell DW_ahb_dmac Notes

https://solvnet.synopsys.com
www.designware.com

422 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

DW_ahb_dmac Application Notes DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 423

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

E
Configuring DW_ahb_dmac to Match Arm

PrimeCell PL080/PL081

This appendix provides the configuration parameter settings for DW_ahb_dmac so that it matches or is
equivalent to the Arm PrimeCell PL080 and PL081 devices.

E.1 ARM PL080 Equivalent
The ARM PL080 equivalent is a two-master, eight-channel device. The channel parameter settings are the
same for all channels, so only one set of parameters is listed for channel x, where x = 0 to 7. The
configuration parameters for the PL080 equivalent are described in Table E-1.

E.2 ARM PL081 Equivalent
The PL081 Arm equivalent is a one-master, two-channel device. The parameter settings are the same as the
PL080, except for the following two parameters:

■ DMAH_NUM_MASTER_INT = 1

■ DMAH_NUM_CHANNELS = 2

Again, the channel parameters are the same for all channels, so only one set of parameters is listed for
channel x, where x = 0 to 2. For the configuration settings for the PL081 equivalent (except for number of
masters and number of channels), refer to Table E-1.

For more information about the configuration parameters for DW_ahb_dmac, refer to “Parameter
Descriptions” on page 117.

Table E-1 ARM PL080 Equivalent Configuration Settings

DW_ahb_dmac Configuration Parameter Setting

DMAH_NUM_MASTER_INT 2

DMAH_NUM_CHANNELS 8

DMAH_NUM_HS_INT 16

DMAH_MABRST 0

https://solvnet.synopsys.com
www.designware.com

424 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Configuring DW_ahb_dmac to Match Arm PrimeCell PL080/PL081 DesignWare DW_ahb_dmac Databook

DMAH_RETURN_ERR_RESP 0

DMAH_INTR_POL 1

DMAH_INTR_IO 1

DMAH_BIG_ENDIAN 0

DMAH_S_HDATA_WIDTH 32

DMAH_M1_HDATA_WIDTH 32

DMAH_M2_HDATA_WIDTH 32

DMAH_M1_AHB_LITE 0

DMAH_M2_AHB_LITE 0

DMAH_ID_NUM 0x02080901

Channel Register (x = 0 to 7)

DMAH_CHx_FIFO_DEPTH 16

DMAH_CHx_STAT_DST 0

DMAH_CHx_STAT_SRC 0

DMAH_CHx_MAX_MULT_SIZE 256

DMAH_CHx_MAX_BLK_SIZE 4095

DMAH_CHx_FC 3

DMAH_CHx_LOCK_EN 0

DMAH_CHx_SMS 4

DMAH_CHx_DMS 4

DMAH_CHx_LMS 4

DMAH_CHx_STW 0

DMAH_CHx_DTW 0

DMAH_CHx_SRC_NON_OK 1

DMAH_CHx_DST_NON_OK 1

DMAH_CHx_LLP_NON_OK 1

DMAH_CHx_MULTI_BLK_EN 1

DMAH_CHx_HC_LLP 0

DMAH_CHx_SRC_GAT_EN 0

DW_ahb_dmac Configuration Parameter Setting

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 425SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Configuring DW_ahb_dmac to Match Arm PrimeCell PL080/PL081

DMAH_CHx_DST_SCA_EN 0

DMAH_CHx_MULTI_BLK_TYPE 8

DMAH_CHx_CTL_WB_EN 0

DW_ahb_dmac Configuration Parameter Setting

https://solvnet.synopsys.com
www.designware.com

426 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Configuring DW_ahb_dmac to Match Arm PrimeCell PL080/PL081 DesignWare DW_ahb_dmac Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 427

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

F
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces (Arm® Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by Arm®
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (Arm® Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in a
word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

https://solvnet.synopsys.com
www.designware.com

428 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Glossary DesignWare DW_ahb_dmac Databook

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable block
that can be instantiated as a single entity (VHDL) or module (Verilog) in a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used in
the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a big
piece of IIP. Anything that requires coreConsultant for configuration, as well as
anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in the
DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable cores
into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design views
and synthesis views you need to integrate the core into your design. Can also
synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format back
to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant or
coreAssembler to quickly build DesignWare Synthesizable Component designs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 429SolvNet
DesignWare.com

2.22a
July 2018

DesignWare DW_ahb_dmac Databook Glossary

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is authorized
by a single DesignWare license. Products include SmartModels, VMT model
suites, DesignWare Memory Models, Building Block IP, and the DesignWare
Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code by
non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

https://solvnet.synopsys.com
www.designware.com

430 Synopsys, Inc. SolvNet
DesignWare.com

2.22a
July 2018

Glossary DesignWare DW_ahb_dmac Databook

RTL Register Transfer Level. A higher level of abstraction that implies a certain gate-
level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as synthesizable
IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology through
synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component. The
files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in any
form, including a Design View.

workspace A network location that contains a personal copy of a component or subsystem.
After you configure the component or subsystem (using coreConsultant or
coreAssembler), the workspace contains the configured component/subsystem
and generated views needed for integration of the component/subsystem at the
top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing easier
interfacing. Usually requires an extra, sometimes automated, step to create the
wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 431

DesignWare DW_ahb_dmac Databook

SolvNet
DesignWare.com

2.22a
July 2018

Index

A
Accessing registers 332
active command queue

definition 427
activity

definition 427
AHB

definition 427
AHB master interface

arbitration for 98
AMBA

definition 427
APB

definition 427
APB bridge

definition 427
application design

definition 427
arbiter

definition 427
Arbitration, for AHB master interface 98
Auto-reloading, of channel registers 337
B
BFM

definition 427
big-endian

definition 427
Block

chaining, about 333
size 35

Block diagram, of DW_ahb_dmac 21
blocked command stream

definition 427
blocking command

definition 427
bus bridge

definition 428
Bus locking, about 96
C
Channel

locking
about 96
and deadlock 409
levels of 97

registers
auto-reloading of 337

Coherency
about 379
read 385
write 379

command channel
definition 428

command stream
definition 428

component
definition 428

configuration
definition 428

configuration intent
definition 428

Configuration parameters
ARM PrimeCell equivalents 423

core
definition 428

core developer
definition 428

core integrator
definition 428

coreAssembler
definition 428

coreConsultant
definition 428

coreKit

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_ahb_dmac Databook

432 Synopsys, Inc.SolvNet
DesignWare.com

2.22a
July 2018

definition 428
Customer Support 16
cycle command

definition 428
D
Deadlock, and channel locking 409
decoder

definition 428
design context

definition 428
design creation

definition 428
Design View

definition 428
DesignWare cores

definition 429
DesignWare Library

definition 429
DesignWare Synthesizable Components

definition 428
Destination

burst transaction size 35
peripheral

and transaction requests 96
single transaction size 35

Disabling DMA channel
prior to transfer completion 367

DMA transfers
hierarchy of 25
locked 96

dual role device
definition 429

DW_ahb_dmac
block diagram of 21
features of 22, 23
functional description of 21, 33
programming of 331
testbench

overview of 370
overview of tests 369

E
Early-terminated burst transaction 39
endian

definition 429
Environment, licenses 31

F
FIFO, readiness of 94
Flow control

about 33
configurations of 88

Full-Functional Mode
definition 429

Functional description 21
G
Generating

hardware handshaking signals 45
requests 94

GPIO
definition 429

GTECH
definition 429

H
Handshaking interface

overview 34
hard IP

definition 429
Hardware handshaking interface

generating signals for 45
mapping DW_ahb_dmac to PrimeCell 415
peripheral is flow controller 49
peripheral not flow controller 40

HDL
definition 429

I
IIP

definition 429
implementation view

definition 429
instantiate

definition 429
interface

definition 429
IP

definition 429
L
Licenses 31
little-endian

definition 429

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_ahb_dmac Databook Index

Synopsys, Inc. 4332.22a
July 2018

SolvNet
DesignWare.com

M
MacroCell

definition 429
master

definition 429
Memory peripherals 36
model

definition 429
monitor

definition 429
N
non-blocking command

definition 429
P
peripheral

definition 429
Peripheral burst transaction request, about 90
Peripheral interrupt request interface

about 87
Peripheral interrupt request interface, about 87
PrimeCell

equivalent configuration parameters 423
mapping hardware handshaking interface to

DW_ahb_dmac 415
mapping software handshaking registers to

DW_ahb_dmac 417
R
Read coherency

about 385
and asynchronous clocks 387
and synchronous clocks 386

Register access 332
Requesting, DMA transfers 34
RTL

definition 430
S
SDRAM

definition 430
SDRAM controller

definition 430
Setting up, transfers 52
Single transactions

peripheral is flow controller 52
peripheral not flow controller 47

slave

definition 430
SoC

definition 430
SoC Platform

AHB contained in 19
APB, contained in 19
defined 19

soft IP
definition 430

Software handshaking interface
about 36
mapping PrimeCell to DW_ahb_dmac 417
peripheral as flow controller 51
peripheral is flow controller 51
peripheral not flow controller 46
registers 37

Source
burst transaction size 35
single transaction size 35

static controller
definition 430

subsystem
definition 430

synthesis intent
definition 430

synthesizable IP
definition 430

T
technology-independent

definition 430
Testsuite Regression Environment (TRE)

definition 430
Transaction requests

from destination peripheral 96
generating 94

Transactions
early-terminated burst 39
single

peripheral is flow controller 52
peripheral not flow controller 47

Transfers
operation of 53
setting up 52

TRE
definition 430

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_ahb_dmac Databook

434 Synopsys, Inc.SolvNet
DesignWare.com

2.22a
July 2018

V
Vera, overview of tests 369
Verification

and Vera tests 369
VIP

definition 430
W
workspace

definition 430
wrap

definition 430
wrapper

definition 430
Write coherency

about 379
and asynchronous clocks 384
and identical clocks 381
and synchronous clocks 382

Z
zero-cycle command

definition 430

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support

	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_ahb_dmac Block Diagram

	1.3 Basic Definitions
	1.4 Features
	1.4.1 General
	1.4.2 Address Generation
	1.4.3 Channel Buffering
	1.4.4 Channel Control
	1.4.5 Transfer Initiation
	1.4.6 Flow Control
	1.4.7 Interrupts
	1.4.8 Low Power Mode

	1.5 Standards Compliance
	1.6 Verification Environment Overview
	1.7 Licenses
	1.8 Where To Go From Here

	2 Functional Description
	2.1 Setup/Operation of DW_ahb_dmac Transfers
	2.2 Block Flow Controller and Transfer Type
	2.3 Handshaking Interface
	2.4 Basic Interface Definitions
	2.5 Memory Peripherals
	2.6 Software Handshaking
	2.7 Handshaking Interface – Peripheral Is Not Flow Controller
	2.7.1 Single Transaction Region
	2.7.2 Early-Terminated Burst Transaction
	2.7.3 Hardware Handshaking – Peripheral Is Not Flow Controller
	2.7.3.1 Generating dma_req and dma_single Hardware Handshaking Signals

	2.7.4 Software Handshaking – Peripheral Is Not Flow Controller
	2.7.4.1 Operation – Peripheral Not In Single Transaction Region
	2.7.4.2 Operation – Peripheral In Single Transaction Region

	2.7.5 Single Transactions – Peripheral Is Not Flow Controller

	2.8 Handshaking Interface – Peripheral Is Flow Controller
	2.8.1 Hardware Handshaking – Peripheral Is Flow Controller
	2.8.2 Software Handshaking – Peripheral Is Flow Controller
	2.8.3 Single Transactions – Peripheral is Flow Controller

	2.9 Setting Up Transfers
	2.9.1 Transfer Operation
	2.9.1.1 Example 1
	2.9.1.2 Example 2
	2.9.1.3 Example 3
	2.9.1.4 Example 4
	2.9.1.5 Example 5
	2.9.1.6 Example 6
	2.9.1.7 Example 7
	2.9.1.8 Example 8
	2.9.1.9 Example 9
	2.9.1.10 Example 10
	2.9.1.11 Example 11

	2.9.2 Peripheral Interrupt Request Interface

	2.10 Flow Control Configurations
	2.11 Peripheral Burst Transaction Requests
	2.11.1 Transmit Watermark Level and Transmit FIFO Underflow
	2.11.2 Choosing the Transmit Watermark Level
	2.11.2.1 Case 1: SSI.DMATDLR = 2
	2.11.2.2 Case 2: SSI.DMATDLR = 6

	2.11.3 Selecting CTLx.DEST_MSIZE and Transmit FIFO Overflow
	2.11.4 Receive Watermark Level and Receive FIFO Overflow
	2.11.5 Choosing the Receive Watermark level
	2.11.6 Selecting CTLx.SRC_MSIZE and Receive FIFO Underflow

	2.12 Generating Requests for the AHB Master Bus Interface
	2.12.1 Locked DMA Transfers
	2.12.1.1 Bus Locking
	2.12.1.2 Channel Locking
	2.12.1.3 Locking Levels
	2.12.1.4 Channel Locking and Deadlock

	2.13 Arbitration for AHB Master Interface
	2.14 Latency
	2.15 Scatter/Gather
	2.16 Endianness
	2.16.1 Big Endian-Little Endian Conversion Logic
	2.16.2 LLI Fetch, and Status and Control Write-Back
	2.16.3 Endian Selection
	2.16.4 Static Endian Configuration
	2.16.5 Dynamic Endian Configuration

	2.17 AHB Transfer Error Handling
	2.18 Last Beat of DMA Burst Indication
	2.18.1 Example 1

	2.19 Low Power Modes – Global and Channel Clock Gating
	2.19.1 Global Clock Gating
	2.19.2 Channel Clock Gating

	2.20 Interrupt Registers

	3 Parameter Descriptions
	3.1 DMA Source Code Configuration Parameters
	3.2 Global DMA Configuration Parameters
	3.3 Configuration of AMBA layers Parameters
	3.4 Channel x configuration Parameters

	4 Signal Descriptions
	4.1 Slave Interface Signals
	4.2 Master N Interface (for N = 1; N <= DMAH_NUM_MASTER_INT) Signals
	4.3 Test Interface Signals
	4.4 Peripheral Handshaking Interface Signals
	4.5 Interrupt Interface Signals
	4.6 Debug Bus Interface Signals

	5 Register Descriptions
	5.1 DMAC/Channel_x_Registers (for x = 1; x <= DMAH_NUM_CHANNELS-1) Registers
	5.1.1 SARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.2 DARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.3 LLPx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.4 CTLx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.5 SSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.6 DSTATx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.7 SSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.8 DSTATARx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.9 CFGx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.10 SGRx (for x = 0; x <= DMAH_NUM_CHANNELS-1)
	5.1.11 DSRx (for x = 0; x <= DMAH_NUM_CHANNELS-1)

	5.2 DMAC/Interrupt Registers
	5.2.1 RawTfr
	5.2.2 RawBlock
	5.2.3 RawSrcTran
	5.2.4 RawDstTran
	5.2.5 RawErr
	5.2.6 StatusTfr
	5.2.7 StatusBlock
	5.2.8 StatusSrcTran
	5.2.9 StatusDstTran
	5.2.10 StatusErr
	5.2.11 MaskTfr
	5.2.12 MaskBlock
	5.2.13 MaskSrcTran
	5.2.14 MaskDstTran
	5.2.15 MaskErr
	5.2.16 ClearTfr
	5.2.17 ClearBlock
	5.2.18 ClearSrcTran
	5.2.19 ClearDstTran
	5.2.20 ClearErr
	5.2.21 StatusInt

	5.3 DMAC/Software_Handshake Registers
	5.3.1 ReqSrcReg
	5.3.2 ReqDstReg
	5.3.3 SglRqSrcReg
	5.3.4 SglRqDstReg
	5.3.5 LstSrcReg
	5.3.6 LstDstReg

	5.4 DMAC/Miscellaneous Registers
	5.4.1 DmaCfgReg
	5.4.2 ChEnReg
	5.4.3 DmaIdReg
	5.4.4 DmaTestReg
	5.4.5 DmaLpTimeoutReg
	5.4.6 DMA_COMP_PARAMS_6
	5.4.7 DMA_COMP_PARAMS_5
	5.4.8 DMA_COMP_PARAMS_4
	5.4.9 DMA_COMP_PARAMS_3
	5.4.10 DMA_COMP_PARAMS_2
	5.4.11 DMA_COMP_PARAMS_1
	5.4.12 DmaCompsID

	6 Programming the DW_ahb_dmac
	6.1 Software Drivers
	6.2 Register Access
	6.3 Illegal Register Access
	6.4 DW_ahb_dmac Transfer Types
	6.4.1 Multi-Block Transfers
	6.4.1.1 Block Chaining Using Linked Lists

	6.4.2 Auto-Reloading of Channel Registers
	6.4.3 Contiguous Address Between Blocks
	6.4.4 Suspension of Transfers Between Blocks
	6.4.5 Ending Multi-Block Transfers

	6.5 Programing Examples
	6.5.1 Programming Example for Linked List Multi-Block Transfer

	6.6 Programming a Channel
	6.6.1 Programming Examples
	6.6.1.1 Single-block Transfer (Row 1)
	6.6.1.2 Multi-Block Transfer with Linked List for Source and Linked List for Destination (Row 10)
	6.6.1.3 Multi-Block Transfer with Source Address Auto-Reloaded and Destination Address Auto-Reloaded (Row 4)
	6.6.1.4 Multi-Block Transfer with Source Address Auto-Reloaded and Linked List Destination Address (Row 7)
	6.6.1.5 Multi-Block Transfer with Source Address Auto-Reloaded and Contiguous Destination Address (Row 3)
	6.6.1.6 Multi-Block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)

	6.7 Disabling a Channel Prior to Transfer Completion
	6.7.1 Abnormal Transfer Termination

	6.8 Defined-Length Burst Support on DW_ahb_dmac

	7 Verification
	7.1 Overview of Vera Tests
	7.2 Overview of DW_ahb_dmac Testbench

	8 Integration Considerations
	8.1 Performance
	8.1.1 Power Consumption, Frequency, and Area Results

	8.2 1KB Boundary Crossing
	8.3 Read Accesses
	8.4 Write Accesses
	8.5 Consecutive Write-Read
	8.6 Accessing Top-level Constraints
	8.7 Coherency
	8.7.1 Writing Coherently
	8.7.1.1 Identical Clocks
	8.7.1.2 Synchronous Clocks
	8.7.1.3 Asynchronous Clocks

	8.7.2 Reading Coherently
	8.7.2.1 Synchronous Clocks
	8.7.2.2 Asynchronous Clocks

	A Error and Warning Messages
	A.1 Warnings During Simulation
	A.2 Warnings During Synthesis

	B Internal Parameter Descriptions
	C Channel Locking and Deadlock
	C.1 Hardware Detection of Deadlock
	C.1.1 Case 1
	C.1.1.1 Channel 0
	C.1.1.2 Channel 1
	C.1.1.3 Case 1 potential deadlock

	C.1.2 Case 2
	C.1.2.1 Case 2 potential deadlock

	C.1.3 Case 3
	C.1.3.1 Example 1
	C.1.3.2 Example 2
	C.1.3.3 Case 3 potential deadlock

	C.1.4 Deadlock Prevention by Hardware

	C.2 Programming Restrictions to Avoid Deadlock

	D DW_ahb_dmac Application Notes
	D.1 Interoperability Between DW_ahb_dmac and PrimeCell Hardware Handshaking Interface
	D.2 Mapping of PrimeCell Software Handshaking Registers to DW_ahb_dmac
	D.2.1 PrimeCell Software Handshaking Registers
	D.2.2 DW_ahb_dmac Software Handshaking Registers
	D.2.3 Register Interface Mapping
	D.2.3.1 Peripheral is Not Flow Controller
	D.2.3.2 Peripheral is Flow Controller

	E Configuring DW_ahb_dmac to Match Arm PrimeCell PL080/PL081
	E.1 ARM PL080 Equivalent
	E.2 ARM PL081 Equivalent

	F Glossary
	Index

