
Eduard Cerny · Surrendra Dudani
John Havlicek · Dmitry Korchemny

SVA: The Power
of Assertions in
SystemVerilog
 Second Edition

SVA: The Power of Assertions in SystemVerilog

Eduard Cerny • Surrendra Dudani • John Havlicek
Dmitry Korchemny

SVA: The Power of
Assertions in SystemVerilog

Second Edition

123

Eduard Cerny
Synopsys, Inc.
Worcester
MA, USA

John Havlicek
Cadence Design Systems
Austin, TX, USA

Surrendra Dudani
Synopsys, Inc.
Newton, MA, USA

Dmitry Korchemny
Intel, Kfar Saba, Israel

ISBN 978-3-319-07138-1 ISBN 978-3-319-07139-8 (eBook)
DOI 10.1007/978-3-319-07139-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942642

© Springer International Publishing Switzerland 2010, 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

This book is the result of the deep involvement of the authors in the development of
EDA tools, SystemVerilog Assertion standardization, and many years of practical
experience. One of the goals of this book is to expose the oral knowhow circulated
among design and verification engineers which has never been written down in
its full extent. The book thus contains many practical examples and exercises
illustrating the various concepts and semantics of the SystemVerilog assertion
language. Much attention is given to discussing efficiency of assertion forms in
simulation and formal verification. We did our best to validate all the examples, but
there are hundreds of them and not all features could be validated since they have
not yet been implemented in EDA tools. Therefore, we will be grateful to readers for
pointing to us any needed corrections. The book is written in a way that we believe
serves well both the users of SystemVerilog assertions in simulation and also those
who practice formal verification (model checking). Compared to previous books
covering SystemVerilog assertions we include in detail the most recent features
that appeared in the IEEE 1800–2009 SystemVerilog Standard and were further
improved and enhanced in the recent IEEE 1800–2012 Standard. In particular, it
concerns the new encapsulation construct “checker” and checker libraries, Linear
Temporal Logic operators, and semantics and usage in formal verification. However,
for integral understanding we present the assertion language and its applications in
full detail.

This second edition of the book not only introduces the enhancements and
corrections present in the 2012 SystemVerilog standard, but also it is reorganized
in a way that facilitates basic assertion understanding, initial deployment in simple
forms, fully detailed exposition of the power of the language, and deployment in
simulation and formal verification. Not to mention corrections to several errors and
inconsistencies in the first edition.

The book is divided into six parts. These parts are organized from introductory
to advanced, as well as separating as much as possible aspects related to simulation
and formal verification. Part I is enough to get basic understanding of SystemVerilog

v

vi Preface

Assertions. By adding Part II, the reader should be able to write typical assertions
and use them in simulation. Parts III and IV provide deep understanding of the
assertion language. Part V is dedicated to formal verification and provides formal
semantics of the language. Finally, Part VI deals with the design of checker libraries
and the use of checkers in formal verification. The Appendix concisely describes
sampling of variables, as it is different than in the previous 2009 Standard and thus
the 1st edition of this book.

Part I, Opening, is an extended introduction to assertions, their use in simula-
tion, formal verification and other tools, and their meaning in relation to the rest of
the SystemVerilog language.

Chapter 1 introduces the concept of assertions, their place in history of design
verification, and discusses the use of assertions in hardware design and verification
flow.

Chapter 2 introduces minimal necessary concepts from the SystemVerilog
language, other than assertions, that are useful for understanding assertions and their
usage.

Chapter 3 provides the basics of SystemVerilog simulation semantics. It dis-
cusses how SystemVerilog processes are executed in the various scheduling regions
and how assertions interact with the simulation of the design model.

Part II, Basic Assertions, goes into sufficient details of the assertion language
to understand and write simple assertions.

Chapter 4 describes the different assertion statements that can be used to ascertain
correctness, provide constraints and collect coverage, both in clocked concurrent
and unclocked immediate (simple and deferred) forms.

Chapters 5 and 6 provide the basic information on how to write simple properties
and sequences that form the operational core of assertions.

Chapter 7 exposes system functions that help to write assertions without having
to resort to additional procedural code and introduces several system tasks for
controlling assertion and action block execution. The main difference with the
earlier version of the standard is the introduction of a more powerful function to
detect the presence of x and z signal values and a unified task for controlling the
execution of assertions.

Part III Metalanguage Constructs
Chapter 8 considers reusability of assertion bodies by showing how Boolean

expressions, sequences, and properties can be defined and parameterized for later
reuse.

Chapter 9 provides a detailed exposition of the encapsulation construct “checker.”
This construct is the basis for forming what could be called a super assertion, that
is, an assertion entity that combines procedural code, modeling variables, variable
assignments, coverage, assertion and assumption statements into one reusable
parameterized unit. Checkers now allow different kinds of procedures as well as
continuous assignments which were illegal previously. Sampling as described in the
Appendix has also changed in checkers.

Preface vii

Part IV Advanced Assertions
Chapters 10 and 11 delve into the full intricacies of property and sequence

operators. The former chapter also defines precisely the notions of vacuous and
non-vacuous evaluations of assertions.

Chapter 12 describes sampling clocks, clock flow through assertions, and
multiclocked assertions.

Chapter 13 provides information on the ways synchronous property evaluation
can be terminated with success or failure using asynchronous and synchronous abort
operators.

Chapter 14 shows how to use concurrent assertions inside always procedures,
and how the leading clock is inferred. It also describes how evaluation attempts are
started depending on the conditional and looping statements inside procedures.

Chapter 15 apologizes for local variables, but in fact shows how local variables
provide much flexibility to assertions, especially in simulation.

Chapter 16 exposes the various forms of local variable declarations and rules of
deployment, including special local variable arguments to properties and sequences.

Chapter 17 shows another facet of SystemVerilog assertions, that of recursive
properties. They provide an alternate and succinct form for expressing complex
properties.

Chapter 18 discusses coverage collection that is needed to measure the verifi-
cation progress. Two forms are described, using assertion cover statements alone
and in combination with test bench covergroups to form powerful data collection
constructs.

Chapter 19 briefly introduces some techniques for debugging assertions, inde-
pendently of services provided by specific EDA tools, and then discusses the
efficiency of various assertion forms in simulation and formal verification.

Part V Formal Verification
Chapter 20 provides an introduction to the treatment of assertions in formal

verification by discussing the different ways formal verification can proceed and
its role in the verification process.

Chapter 21 exposes details of the models and algorithms used in formal
verification, in particular, model checking.

Chapter 22 gives the theoretical base for full and precise understanding of
the meaning of assertions. This chapter is particularly important to anyone who
implements some form of an assertion verification engine, simulation or formal.

Part VI, Advanced Checkers, is primarily concerned with developing effective
reusable verification objects.

Chapter 23 shows how checkers can be used effectively in formal verification.
The chapter also provides deeper understanding of the behavior of checker variables.

Chapter 24 discusses how to create libraries of verification statements based on
assertions, from simple let or property based forms, to the complex ones using
checker encapsulation.
We did our best to verify and compile each and every example and verify the
text, however, not all SystemVerilog constructs introduced in the 2009 and 2012
standards are supported by commercial tools. In spite of the great improvements in

viii Preface

the 2012 SystemVerilog LRM there are still some incomplete or ambiguous points
in the language. We do not guarantee correctness and do not assume any liability
and responsibility for issues resulting from applying the techniques described in the
book.

Acknowledgments

The authors wish to express their gratefulness to many people who reviewed
sections of the draft of the first edition of the book which served as the basis for
this improved edition, in particular, to Shalom Bresticker (Intel), Lena Korchemny
(Inango), Jacob Katz (Intel), Scott Little (Freescale), Zeljko Zilic (McGill Univer-
sity), Christian Berthet (ST Microelectronics), Chris Spear (Synopsys), and Erik
Seligman (Intel). Furthermore, the book was mostly written over the weekends,
vacations, and evenings, hence we are thankful to our spouses and families for their
patience and understanding. We also acknowledge the support of our employers in
this endeavor.

Worcester, MA, USA Eduard Cerny
Newton, MA, USA Surrendra Dudani
Austin, TX, USA John Havlicek
Kfar Saba, Israel Dmitry Korchemny

Contents

Part I Opening

1 Introduction . 3
1.1 The Concept of Assertion . 4
1.2 Assertions in Design Methodology . 9

1.2.1 Using Assertions for High Level Model 10
1.2.2 Using Assertions for RTL Models . 14
1.2.3 Using Assertions Beyond RTL. 17

1.3 Assertions in SystemVerilog . 18
1.4 Checking Assertions . 21

1.4.1 Checking Assertions in Simulation . 21
1.4.2 Checking Assertions Using Hardware Acceleration 22
1.4.3 Checking Assertions Using Formal Verification 23
1.4.4 Assertion Efficiency . 24

1.5 Assertion Reuse . 24
1.6 SVA and PSL . 27
Exercises . 28

2 SystemVerilog Language Overview . 31
2.1 Compilation and Elaboration . 31
2.2 SystemVerilog Procedures . 33

2.2.1 Specialized Always Procedures . 33
2.2.2 Final Procedure . 35

2.3 Clocking Blocks . 36
2.3.1 Clocking Block Declaration. 36
2.3.2 Default Clocking. 37

2.4 Interfaces . 38
2.5 Programs . 40
2.6 Packages . 41
Exercises . 43

ix

x Contents

3 SystemVerilog Simulation Semantics . 45
3.1 Event Based Simulation. 45
3.2 The Simulation Engine . 46
3.3 Bringing Order to Events . 47
3.4 Determinism and Nondeterminism . 49
3.5 Region Sets . 50
3.6 A Time Slot and the Movement of Time . 55
3.7 Simulation Semantics of Assignments . 56
Exercises . 57

Part II Basic Assertions

4 Assertion Statements . 61
4.1 Assertion Kinds . 62
4.2 Immediate Assertions . 63

4.2.1 Immediate Assertion Simulation . 63
4.2.2 Simulation Glitches. 65
4.2.3 Effect of Short-Circuiting . 66

4.3 Deferred Assertions . 66
4.3.1 Deferred Assertion Simulation . 67
4.3.2 Deferred Assertion Actions . 70
4.3.3 Standalone Deferred Assertions . 71
4.3.4 Effect of Short-Circuiting in Deferred Assertions 72

4.4 Concurrent Assertions. 73
4.4.1 Simulation Evaluation Attempt . 74
4.4.2 Clock . 76
4.4.3 Sampled Values for Concurrent Assertion. 79
4.4.4 Reset. 81
4.4.5 Boolean Expressions . 82
4.4.6 Event Semantics for Concurrent Assertions 83

4.5 Assumptions . 86
4.5.1 Motivation . 86
4.5.2 Assumption Definition . 87
4.5.3 Checking Assumptions . 88

4.6 Restrictions . 90
4.7 Coverage . 91

4.7.1 Motivation . 91
4.7.2 Coverage Definition . 91
4.7.3 Checking Coverage . 93

4.8 Summary of Checking Assertions . 94
Exercises . 94

5 Basic Properties . 97
5.1 Boolean Property . 98
5.2 Nexttime Property . 100

Contents xi

5.3 Always Property . 101
5.3.1 Implicit Always Operator . 102

5.4 S_eventually Property . 103
5.5 Basic Boolean Property Connectives . 106
5.6 Until Property . 108
Exercises . 109

6 Basic Sequences . 111
6.1 Boolean Sequence . 112
6.2 Sequential Property . 113
6.3 Sequence Concatenation . 115

6.3.1 Multiple Delays . 115
6.3.2 Top-Level Sequential Properties . 116
6.3.3 Sequence Fusion . 117
6.3.4 Initial Delay . 118

6.4 Suffix Implication . 119
6.4.1 Nested Implication. 121
6.4.2 Examples . 122
6.4.3 Vacuous Execution . 123

6.5 Consecutive Repetition. 124
6.5.1 Zero Repetition . 125

6.6 Sequence Disjunction . 126
6.7 Consecutive Repetition Revisited . 127

6.7.1 Repetition Range . 127
6.8 Sequences Admitting Empty Match . 130

6.8.1 Antecedents Admitting Empty Match . 131
6.9 Sequence Concatenation and Delay Revisited . 132
6.10 Unbounded Sequences . 134
Exercises . 136

7 Assertion System Functions and Tasks . 137
7.1 Bit Vector Functions . 137

7.1.1 Count Bits with Specific Values . 138
7.1.2 Check for Mutual Exclusion . 139
7.1.3 One-Hot Encoding . 139
7.1.4 Number of 1-Bits . 140
7.1.5 Unknown Bits . 140

7.2 Sampled Value Functions . 140
7.2.1 General Sampled Value Functions . 141
7.2.2 Global Clocking Sampled Value Functions 152

7.3 Tasks for Controlling Assertions and Runtime Violations 156
7.3.1 Tasks for Controlling Evaluation Attempts. 156
7.3.2 Tasks for Controlling Action Blocks . 158
7.3.3 General Assertion Control Task. 159

Exercises . 162

xii Contents

Part III Metalanguage Constructs

8 Let, Sequence and Property Declarations; Inference 167
8.1 Let Declarations . 167

8.1.1 Syntax of Let. 175
8.1.2 Uses of Let . 176

8.2 Sequence and Property Declarations . 177
8.2.1 Syntax of Sequence–Endsequence . 180
8.2.2 Syntax of Property–Endproperty. 183

8.3 Disable Expression and Clock Inference . 185
Exercises . 185

9 Checkers . 187
9.1 An Apology for Checkers: Sequential Protocol . 188

9.1.1 Sequential Protocol Specification as Module 188
9.1.2 Sequential Protocol as Checker . 192

9.2 Checker Declaration. 194
9.2.1 Checker Formal Arguments . 195
9.2.2 Checker Contents . 198
9.2.3 Scoping Rules. 202

9.3 Checker Instantiation. 205
9.3.1 Connecting Checker Arguments . 205
9.3.2 Instantiation Semantics . 207
9.3.3 Checker Binding . 209

9.4 Checker Modeling . 211
9.4.1 Checker Variables . 211
9.4.2 Sampling in Checkers . 214
9.4.3 Checker Variables in Final Procedures . 215

9.5 Checkers with Output Arguments . 216
9.5.1 Checker Output Arguments . 216
9.5.2 Returning Assertion Status from Checkers 219
9.5.3 Writing Modular Checkers . 219

Exercises . 222

Part IV Advanced Assertions

10 Advanced Properties . 227
10.1 Sequential Property . 228
10.2 Boolean Property Operators . 229
10.3 Suffix Operators: Implication and Followed-By . 233
10.4 Unbounded Linear Temporal Operators . 235
10.5 Bounded Linear Temporal Operators. 238
10.6 Vacuous Evaluation . 242
Exercises . 243

Contents xiii

11 Advanced Sequences . 245
11.1 Sequence Operators . 245

11.1.1 Throughout. 245
11.1.2 Goto Repetition . 247
11.1.3 Nonconsecutive Repetition . 249
11.1.4 Intersection. 251
11.1.5 Sequence Conjunction . 253
11.1.6 Sequence Containment . 255
11.1.7 First Match of a Sequence. 256

11.2 Sequence Methods . 257
11.2.1 Triggered: Detecting End Point of a Sequence 257
11.2.2 The triggered Method in Checkers . 264
11.2.3 Matched . 264

11.3 Sequence as Events. 265
11.3.1 Sequence Event Control . 265
11.3.2 Level-Sensitive Sequence Control . 266
11.3.3 Event Semantics of Sequence Match . 267

Exercises . 269

12 Clocks . 273
12.1 Overview of Clocks . 274

12.1.1 Specifying Clocks . 274
12.1.2 Multiple Clocks . 278

12.2 Further Details of Clocks . 283
12.2.1 Preponed Value Sampling . 283
12.2.2 Default Clocking. 284
12.2.3 Restrictions in Multiply Clocked Sequences 286
12.2.4 Scoping of Clocks . 286
12.2.5 Finer Points of Multiple Clocks. 292
12.2.6 Declarations Within a Clocking Block . 297

Exercises . 298

13 Resets . 301
13.1 Overview of Resets . 301

13.1.1 Disable Clause . 302
13.1.2 Aborts . 305

13.2 Further Details of Resets . 310
13.2.1 Generalities of Reset Conditions. 310
13.2.2 Aborts as Subproperties . 311

Exercises . 312

14 Procedural Concurrent Assertions . 315
14.1 Using Procedural Context . 316
14.2 Clock Inferencing . 318
14.3 Using Automatic Variables . 322
14.4 Assertions in a For-Loop . 324

xiv Contents

14.5 Event Semantics of Procedural Concurrent Assertions 326
14.6 Things to Watch Out For . 329
14.7 Dealing with Unwanted Procedural Assertion Evaluations 332
14.8 Procedural Checker Instances . 334
Exercises . 341

15 An Apology for Local Variables . 345
15.1 Fixed Latency Data Pipeline . 346
15.2 Sequential Protocol. 347
15.3 FIFO Protocol . 349
15.4 Tag Protocol . 353
15.5 FIFO Protocol Revisited . 358
15.6 Tag Protocol Revisited . 360

15.6.1 Tag Protocol Using a Single Static Bit . 360
15.6.2 Tag Protocol Using Only Local Variables 362

Exercises . 363

16 Mechanics of Local Variables . 367
16.1 Declaring Body Local Variables . 368
16.2 Declaring Argument Local Variables. 371
16.3 Assigning to Local Variables . 375

16.3.1 Assignment Within Repetition . 377
16.3.2 Sequence Match Items . 378

16.4 Referencing Local Variables . 380
16.4.1 Local Variable Flow . 382
16.4.2 Becoming Unassigned . 385
16.4.3 Multiplicity of Matching with Local Variables. 388

16.5 Input and Output with Local Variables . 389
16.5.1 Input with Local Variables . 389
16.5.2 Output with Local Variables . 392

Exercises . 394

17 Recursive Properties . 399
17.1 Overview of Recursion. 400
17.2 Retry Protocol . 405
17.3 Restrictions on Recursive Properties . 411

17.3.1 Negation and Strong Operators . 412
17.3.2 Disable Clause . 413
17.3.3 Time Advance . 413
17.3.4 Actual Arguments . 414

Exercises . 415

18 Coverage . 419
18.1 Immediate and Deferred Coverage . 420
18.2 Sequence and Property Coverage. 421

18.2.1 Sequence Coverage . 421
18.2.2 Property Coverage . 423

Contents xv

18.2.3 Covergroup. 425
18.2.4 Combining Covergroups and Assertions 427

18.3 Covergroups in Checkers . 430
18.4 Coverage on Weak and Strong Properties . 431
18.5 Examples . 432
Exercises . 435

19 Debugging Assertions and Efficiency Considerations 439
19.1 Debugging an Assertion Under Development . 440
19.2 Debugging Assertion Failures from a Test . 444
19.3 Efficiency Considerations . 445
Exercises . 449

Part V Formal Verification

20 Introduction to Assertion-Based Formal Verification 453
20.1 Counterexample and Witness . 454
20.2 Complete and Incomplete Methods . 455
20.3 Approximation . 456

20.3.1 Overapproximation . 456
20.3.2 Underapproximation. 457
20.3.3 Pruning . 459

20.4 Formal Verification Flows . 460
20.4.1 Exhaustive Verification of Model Specification 460
20.4.2 Lightweight Verification. 462
20.4.3 Early RTL Verification . 462

20.5 Assume-Guarantee Paradigm . 463
20.6 Formal Verification Efficiency . 464
20.7 Hybrid Verification . 464
Exercises . 465

21 Formal Verification and Models . 467
21.1 Auxiliary Notions . 468

21.1.1 Relations . 468
21.1.2 Logic Notation and Quantifiers . 468
21.1.3 Languages . 469
21.1.4 Finite Automaton . 469

21.2 Formal Verification Model . 470
21.2.1 Time . 472
21.2.2 Model Language . 473
21.2.3 Symbolic Representation . 473

21.3 Properties . 476
21.3.1 Asserts. 477
21.3.2 Assumes . 477
21.3.3 Coverage . 478
21.3.4 Constraining a Model with Assumptions 479

xvi Contents

21.4 Safety and Liveness . 479
21.4.1 Safety Properties . 480
21.4.2 Liveness Properties . 484

21.5 Weak and Strong Operators . 487
21.6 Embedded Assertions . 490
21.7 Immediate and Deferred Assertions . 492
Exercises . 493

22 Formal Semantics . 495
22.1 Formal Semantics of Properties . 495

22.1.1 Basic Property Forms. 496
22.1.2 Derived Properties . 498

22.2 Formal Semantics of Sequences . 499
22.3 Formal Semantics: Sequences and Properties. 501

22.3.1 Strong Sequential Property . 501
22.3.2 Extension of Alphabet . 501
22.3.3 Weak Sequential Property . 502
22.3.4 Property Negation . 503
22.3.5 Suffix Implication . 504
22.3.6 Suffix Conjunction: Followed-by . 505

22.4 Formal Semantics of Clocks . 505
22.5 Formal Semantics of Resets . 509
22.6 Formal Semantics of Local Variables . 511

22.6.1 Formalizing Local Variable Flow . 511
22.6.2 Local Variable Contexts . 512
22.6.3 Sequence Semantics with Local Variables 512
22.6.4 Property Semantics with Local Variables 513

22.7 Formal Semantics of Recursive Properties . 514
Exercises . 518

Part VI Advanced Checkers

23 Checkers in Formal Verification . 523
23.1 Free Variables . 524

23.1.1 Free Variables in Assertions. 524
23.1.2 Free Variables in Assumptions . 526
23.1.3 Free Variables in Cover Statements . 527

23.2 Checker Modeling with Free Variables . 529
23.2.1 Free Variable Initialization . 529
23.2.2 Free Variable Assignment . 530
23.2.3 Example: Building Abstract Models with Checkers 540

23.3 Free Variables in Simulation . 543
23.3.1 Unconstrained Free Variables . 543
23.3.2 Assigned Free Variables . 543

Contents xvii

23.3.3 Checkers with Assumptions. 544
23.3.4 Limitations Imposed on Free Variables. 547

23.4 Rigid Variables . 548
23.4.1 Rigid Variables in Formal Verification . 548
23.4.2 Rigid Variable Support in Simulation . 550
23.4.3 Rigid and Free Variables Versus Local Variables 551

23.5 Checkers as Generators . 552
Exercises . 557

24 Checker Libraries . 561
24.1 Weaknesses of Existing Checker Libraries. 562
24.2 Kinds of Checkers and Their Characteristics . 563

24.2.1 Temporality . 564
24.2.2 Encapsulation . 564
24.2.3 Packaging . 564
24.2.4 Configurability . 564

24.3 Examples of Typical Checker Kinds . 566
24.3.1 Simple Combinational Checker . 566
24.3.2 A Checker-Based Combinational Checker 567
24.3.3 A Simple Property-Based Temporal Checker 570
24.3.4 A Checker-Based Temporal Checker . 571

24.4 Converting Module-Based Checkers to the New Format 576
Exercises . 576

A Expression Sampling . 577
A.1 Default Sampled Value . 577
A.2 Sampled Value of Variable . 578
A.3 Sampled Value of Expression . 579

References . 581

Index . 585

Acronyms

ABV Assertion-based verification
ALU Arithmetic logic unit
DUT Device under test
FPGA Field-programmable gate arrays
FSM Finite state machine
FV Formal verification
HDL Hardware description language
HDVL Hardware description and verification language
IP Intellectual property
LRM Language reference manual
LSB Least significant bit
LTL Linear temporal logic
MSB Most significant bit
NBA Non-blocking assignment <=
OVL Open verification library
OVM Open verification methodology
PLI Programming language interface
RTL Register transfer level
SoC System on chip
SSA Static single assignment form
SV SystemVerilog
SVA SystemVerilog assertions
SVF Sampled value function
SVTB SystemVerilog testbench
UVM Universal verification methodology
VMM Verification methodology manual for systemverilog
VPI Verification programming interface

xix

Part I
Opening

Chapter 1
Introduction

˘˛� Q!� � Q!� ���� Q!� ’̨�� J� �˛	�
 K�:

The beginning of all arts is difficult.

In comparison with the total chip development effort, the portion of effort spent in
design verification is growing at a faster rate and thus consuming a significantly
larger portion of the development cost. Despite more automation of various
processes and new techniques, the cost containment for verification continues to be
a challenge. There are at least two important cost motivations behind the increased
effort. One is the damaging effects of a late discovery of a bug in the design flow
on project schedules, which ultimately results in product delays. The other is the
enormous manufacturing cost of a chip re-spin due to revelation of a design flaw
after the initial prototype of the chip.

Consequently, there is a strong belief that investing more in developing new
design verification techniques and, correspondingly, increased effort to uncover
design bugs early in the design flow are worthwhile. We now have new techniques,
such as constrained random simulation, verification coverage closure, and assertion
checking, employed by many major organizations with the aim of speeding up
creation of testbenches and uncovering design errors.

SystemVerilog [8] is an extension of Verilog [2],1 a well-known Hardware
Description Language (HDL), to support new verification techniques that have
already shown promising results in various organizations. Whereas Verilog was
oriented primarily to design and test at the Register Transfer Level (RTL) and
gate level, SystemVerilog added means for describing testbenches (SystemVerilog
Testbench, SVTB), defining functional coverage, and specifying assertions

1Until 2009, Verilog and SystemVerilog had separate standards. In 2009 both standards were
merged into the SystemVerilog standard.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__1

3

4 1 Introduction

(SystemVerilog Assertions, SVA).2 By virtue of many new enhancements geared
toward testing and checking, SystemVerilog surpassed Verilog as an HDL to become
an HDVL—Hardware Description and Verification Language.

The assertions technology was developed on the premise that writing specifi-
cations formally plays a critical role in detecting design errors. This is because
tools can automatically detect errors based on the implemented design and its
specification [49]. Keeping this goal in mind, SVA was designed as an integral part
of SystemVerilog.3

This book is dedicated to SystemVerilog Assertions. It teaches how to write
assertions, how to design and use assertion libraries, and it discusses assertion appli-
cations and checking. To read and to understand this book, very basic knowledge of
SystemVerilog is sufficient. A tour of important features of SystemVerilog is pre-
sented in Chap. 2. For an introduction to the basic Verilog layer of SystemVerilog,
see [61].

In this chapter, we introduce SystemVerilog assertions informally, before their
systematic treatment in the subsequent parts. For developing intuition on assertions,
their meaning is explained by way of simple examples. The reader does not have
to understand all the details at this stage, but only to grasp the concepts behind
the examples. This chapter also includes an informal introduction of SVA language
features that are handled in great detail in the rest of this book.

1.1 The Concept of Assertion

An assertion is a positive statement about a property of a design. It is positive
in the sense that, should the statement be found as false, it indicates an error.
Designers place assertions to express the intended behavior as specifications that
can be interpreted and analyzed by tools. Since the property only states the behavior,
it is often used to ensure that the design implementation of the behavior matches the
assertion.

The use of assertions in contemporary hardware design methodologies has
become widespread and matured over the past years. In programming languages,
assertions have had a longer history of use, primarily because the assertions tend
to be simpler, embedded in the code to check Boolean properties. HDLs model
behavior over explicit time domains, with properties synchronous to clocks as well
as asynchronous with specific time delays. This aspect of HDL modeling pushed
forward the development of language techniques for expressing complex temporal
behavior in the form of assertions and algorithms to interpret temporal assertions.
As a result, several commercial languages have emerged to support the growing

2SystemVerilog also introduced many important object-oriented enhancements to Verilog, such as
aggregate data types, classes, and interfaces [5].
3The history of the SVA standardization is described in [25].

1.1 The Concept of Assertion 5

1 module m(input logic c, clk);
2 logic a = 1’b0;
3 logic b = 1’b1;
4 always @(posedge clk) begin
5 a <= c;
6 b <= !c;
7 end
8 // assertion
9 a1: assert property (@(posedge clk) a != b)

10 else $error("a != b does not hold");
11 endmodule : m

Fig. 1.1 A simple assertion

needs of designers to perform design verification with the assistance of assertions,
sometimes as the central groundwork in monitoring the progress of a design project.

By assertions, we mean statements that express properties to be true in a more
general sense, without implying any specific intention or application. Although the
most common application is for checking a design in order to detect bugs, other uses
include making assumptions about the environment and tracking test scenarios for
functional or behavioral coverage. Later in this chapter, we introduce various forms
of applications that are provided by SVA.

SystemVerilog provides assertion features that are declarative. That is, assertions
do not describe how to check, but only what to check. Figure 1.1 shows a simple
example of an assertion in SVA.

Consider module m. Its functionality is implemented in Lines 4–7 using an
always procedure4 and nonblocking assignments.

Assertion a1 checks at each rising edge of clock clk that a != b. If the assertion
does not hold, an error message a != b does not hold is issued. This assertion
may be checked in simulation or by formal verification tools.

The experience of using assertions has shown important benefits described below.

Implementing Checks in Verilog Is Difficult

One could ask how RTL correctness was checked in Verilog before the invention
of SystemVerilog. Checks can be obtained by implementing Verilog code that is
equivalent to writing assertions.

To appreciate why assertion implementation in RTL code is nontrivial and error
prone, consider checking that grant should be asserted four clock cycles after req.
For simplicity we ignore here the reset issue (see Exercise 1.2). A natural solution

4The reader may be used to the term “always block”, but according to the SystemVerilog 2012
standard, this construct is called “always procedure”.

6 1 Introduction

module reqgranted1(input logic req, grant, clk);
bit [2:0] ctr = ’0;
always @(posedge clk) begin
if (req) ctr <= 1;
else if (ctr > 0 && ctr < 4) ctr <= ctr + 1;
else if (ctr == 4) begin
if (!grant) $display("Request not granted.");
ctr <= ’0;

end
end

endmodule : reqgranted1

Fig. 1.2 Checking nonoverlapping evaluations

Fig. 1.3 Two requests before grant

module reqgranted2(input logic req, grant, clk);
bit [3:0] sreg = ’0;
always @(posedge clk) begin
sreg <= {sreg, req};
if (sreg[3] && !grant) $display("Request not granted.");

end
endmodule : reqgranted2

Fig. 1.4 Checking overlapping evaluations

is to activate a counter when req is detected, and when the counter value becomes
4, check for grant, as shown in Fig. 1.2.

What happens if there are two req issued before the first grant is seen, as shown
in Fig. 1.3? We would expect our checker to fail because the first request is not
granted. But, instead, the checker will pass. When the second req comes, we reset
the counter and start counting anew—when we wrote the checker we did not think
about overlapping evaluations!

To take overlapping evaluations into account we can use a shift register instead of
a counter, as shown in Fig. 1.4. When req is asserted it is fed into the shift register
sreg. The Most Significant Bit (MSB) of sreg is set into 1 when there was a req

four cycles ago, and therefore grant must be asserted in this case.

1.1 The Concept of Assertion 7

The same intent may be expressed with a single assertion:

assert property(@(posedge clk) req |-> nexttime[4] grant);

Readers who are not yet convinced by this example can carry out Exercise 1.3.

Assertions Formally Express Design Intent

SVA is a Formal Specification Language. It is used to describe design proper-
ties unambiguously and precisely. Usually properties are written as part of the high
level design specifications in a text document. But writing specification in a natural
language is ambiguous.

Consider the following typical property specification: Each request should be
granted in four clock cycles. This specification is ambiguous:

• Do we count four clock cycles starting from the cycle when the request was issued,
or from the next cycle?

• Do we require that the grant is issued during the first four cycles or exactly at the
fourth cycle?

• May two requests be served by the same grant or should they be served by two
separate grants?

The same specification written in SVA is unambiguous:

assert property (@(posedge clk) request |-> nexttime[4] grant);

This specification defines a clocked, or concurrent assertion, and it reads: when
request is issued, it should be followed by grant in the fourth clock cycle
measured from the clock cycle when request was issued.

Because of the formal nature of SVA, specifications can be interpreted by tools,
and what is more important, understood by humans. When the specifications are
formally defined, there is no place for misunderstanding.

Assertions Improve Bug Detection

Assertions promote systematic methodologies by tapping into several flexible ways
of inserting design checks. Once a methodology is set up to accommodate the needs
of a project and assertion libraries are established for the design style, the effort to
craft assertions becomes on par with writing ordinary code. The use of assertions
proliferates, within the design code and at the interfaces of design units, and thus
the design scrutiny is raised to trap errors. The checks remain in place from test
to test, without expending any additional effort. In a way, writing assertions turns
into something as simple as inserting comments. As a matter of course, bugs get
detected early and efficiently because of the widespread and comprehensive set of
assertion probes.

8 1 Introduction

Assertions Promote Faster Root Cause Analysis

Because assertions can represent temporal behavior, a failure of an assertion that
stretches out over multiple clock cycles detects a bug and concisely isolates it
to the assertion expression. Now, one only needs to examine and analyze the
temporal expression of the assertion to determine the root cause of the failure.
Several modern debug tools support such an analysis to speed up the bug-fixing
process. For example, by providing a precise window of time in which the failure
occurred along with the cycle-by-cycle values of assertion signals, engineers can
direct the analysis in the immediate design area of the failure. This is highly valuable
and efficient.

A similar case with traditional techniques requires engineers to detect the failure
by examining the output results, perhaps a mismatch of a value many cycles after
the occurrence of the failure. A manual trace of values cycle by cycle through the
design, without having specific clues about the behavior that actually caused the
failure, is what the engineer must typically follow. As such, much of the difficult
debugging is confined to the experts who retain intricate knowledge of the design.

Assertions Can Use Simulation and Formal Checking

The essential SVA features that exhibit temporality and clocking are strictly based
on a mathematical framework, well understood and studied in academia. The
availability of formalism made it possible to adopt proven algorithms for simulation
and formal analysis. This enables taking the same assertion and applying both
methods, one in a simulation environment for a set of tests, and the other in formal
verification to conduct thorough proof analysis. Barring the limitations imposed by
the fundamental differences between the two methods, both methods are applied to
the same assertions for benefits within their individual processes.

The great benefit from this symmetry of use is that engineers need to write asser-
tions only once. In most cases, a failure in simulation can be reproduced in formal
analysis, and vice versa. A good methodology provides sufficient adjustments to
take care of the small practical differences and limitations between the two methods.
Besides being efficient, using the same assertions expels the major impediment
to ensuring that the same behavior is checked by simulation and formal methods.
Formal methods would check the critical blocks, and simulation would concentrate
on system integration and the remaining blocks within it.

1.2 Assertions in Design Methodology 9

Assertions Are Part of Design Documentation

Traditionally, design documentation at any level consists of two parts. One
is a stand-alone specification in a natural language, outside the domain of
SystemVerilog. The other is a set of comments spread throughout the code in
SystemVerilog. Neither of these specifications has any executable impact on
the behavior of the design. That is, the behavior shown by the interpretation of
SystemVerilog code does not necessarily correlate with the documented comments
or outside specifications. Another commonly experienced pitfall is the enduring
burden to keep the documentation up to date as the SystemVerilog design code
matures and evolves over the life of a project.

Assertions, on the contrary, are executable statements that check the behavior of
the design, no matter at what stage the design is being interpreted. This enforces the
stipulation that assertions must change in accordance with the changes in the design,
so there is no additional undertaking. As the design progresses, the assertions get
updated to comply with the changes, thereby maintaining the documentation aspect
of the design as well. Any laxness in the process gets caught by an assertion
failure, which must be corrected to move forward. Writing formal specifications
in SVA is not always an easy task, but it usually pays off because it leads to better
understanding of the design, better design quality, and better documentation.

1.2 Assertions in Design Methodology

Assertions are an important part of the design and verification flow. This section
discusses the use of assertions at various stages of the flow.

Figure 1.5 depicts a block diagram of a typical design and verification flow. The
stages in the flow less relevant to assertions are omitted from this block diagram.

Usually, at the project inception hardware designers or architects write a product
specification in a natural language, for example, in English. Based on the product
specification, a high-level architectural model [43] is created in languages such as
SystemVerilog or SystemC [7]. This architectural model may not be anchored with
an accurate model of the design clock cycle; rather, it models functionality at a high
level. The objective is to develop an efficient architecture by performing tradeoff
analysis for time and area estimates, physical and power domain partitioning,
input/output port definitions, etc.

Once an architecture is determined from the high level analysis, the architectural
model is taken as the basis for developing a clock cycle accurate RTL model.
Ultimately, this model evolves into a stable base for driving synthesis and physical
design. In many organizations, the RTL model is considered the golden reference for
the design. This dictates that the model be maintained and updated with any changes
to the design. The RTL model is then synthesized automatically or manually into
a gate or a transistor level with a netlist that specifies the connectivity [56]. This
synthesized netlist is processed further by place and route tools to physically place
and connect the gates on a chip for manufacturing.

10 1 Introduction

System
Specification

High level
model

RTL model

High level model
validation

RTL model
verification

Equivalence
checking

Timing
verification

Gate level
model

Chip model
Post-silicon
Validation

Fig. 1.5 High-level design and validation flow

For each design stage, there is a related verification stage which checks the design
correctness at the corresponding level of abstraction. Below we discuss the role of
assertions at the relevant design and verification stages.

1.2.1 Using Assertions for High Level Model

The design specification is a document usually written in a natural language
describing its architecture and functionality. This document normally includes the
main design components, data formats and communication protocols. Below is a
typical example of a specification:

1.2 Assertions in Design Methodology 11

The system consists of a transmitter and a receiver connected by a point-to-point duplex
channel. The transmitter sends to the receiver packets and gets an acknowledgment from
the receiver upon the packet receipt. The packet contains a header and a body. The header
consists of 8 bits, and the two most significant bits contain information about the transaction
type: data (10), control (01), or void (00). The remaining 6 bits of the header contain the
transaction tag in case of a data transaction, and are 0 in case of a control transaction. For
void packets the tag field may contain any value. The packet body consists of three bytes;
these bytes contain raw data for data transactions and commands for control transactions
. . .
Upon receipt of a data or a control packet the receiver sends back to the transmitter an
acknowledgment signal. The acknowledgment consists of 7 bits: the most significant bit is
set to 1, and the remaining 6 bits contain the tag of the received packet. If a void packet is
received, its contents are ignored and no acknowledgment is sent . . .
The transmitter is not allowed to send a new packet before an acknowledgment is received.
If timeout is reached, the transmitter sends the same packet again. If after three retries it
does not get an acknowledgment, it asserts the error signal and requires a manual reset.

Specifications written in natural languages are ambiguous, and cannot be
processed by tools. If we rewrite the properties from this specification in SVA as
shown in Fig. 1.6, tools are then able to verify model compliance to its specification.
We do not give the complete specification here (for example, we do not specify how
timeout is set, and how a packet is resent), but only a fragment to illustrate the
concept.

We briefly describe the SVA code in Fig. 1.6, derived from the specification, to
get an intuitive idea of how assertions can be extracted from a specification and
used for ensuring model compliance. Lines 1–7 define new types. Line 1 defines an
enumeration type giving names to specific integral values. Types tag_t and data_t

define new names for logic arrays of corresponding bounds. Lines 6 and 7 assign
names to the combined pieces of data.

Lines 8–38 define the specification as a checker. A checker is a special
verification unit containing assertions and their related code. By default, assertions
tx_packet_legal, rx_packet_legal, and no_ack use the clock declared in
Line 17. We discuss the default clocking statement in Sect. 12.2.2. Similarly,
Line 18 describes a default reset for all concurrent assertions in this checker. When
rst is asserted, no concurrent assertion is checked. This is carried out to disable
assertion checking during the reset sequence. Handling clocks and resets is a very
important topic, but we postpone the discussion on the related SVA features until
Chaps. 12 and 13.

Lines 20, 22, and 24 define aliases for different conditions used in the assertions.
Sequence no_ack_thrice defined in Lines 32–34 models the relation-

ship between right_ack and timeout from the specification: “The transmitter
is not allowed to send a new packet before an acknowledgment is received. If
timeout is reached, the transmitter sends the same packet again. If after three retries
it does not get an acknowledgment, it asserts the error signal and requires a manual
reset.” Thus, the whole sequence

(!right_ack[+] ##1 timeout)[*3]

12 1 Introduction

1 typedef enum logic[1:0] {
2 txa_data = 2’b10, txa_control = 2’b01,
3 txa_void = 2’b00, txa_forbid = 2’b11 } txa_t;
4 typedef logic [5:0] tag_t;
5 typedef logic [23:0] data_t;
6 typedef struct packed { txa_t txa; tag_t tag; data_t data; }

packet_t;
7 typedef struct packed { logic ack_received; tag_t tag; } ack_t;
8 checker spec (
9 packet_t tx_packet, // Packet to be transmitted

10 packet_t rx_packet, // Last received packet
11 logic sent, // Packet sent
12 ack_t ack, // Acknowledge
13 logic timeout, // Timeout active
14 logic err, // Error signal
15 event clk, // System clock
16 logic rst); // Reset
17 default clocking @clk; endclocking
18 default disable iff rst;
19 // Legal transaction type
20 let legal_txa(txa) = txa != txa_forbid;
21 // Non-void packet sent
22 let packet_sent = sent && tx_packet.txa != txa_void;
23 // Right acknowledgment received
24 let right_ack = ack.ack_received && ack.tag == tx_packet.tag;
25 // Transmitted packet is always legal
26 tx_packet_legal: assert property (legal_txa(tx_packet.txa))
27 else $error("Transmitted packet is malformed");
28 // Received packet is always legal
29 rx_packet_legal: assert property (legal_txa(rx_packet.txa))
30 else $error("Received packet is malformed");
31 // No acknowledgment thrice
32 sequence no_ack_thrice;
33 (!right_ack[+] ##1 timeout)[*3];
34 endsequence
35 // Despair - raise error flag
36 no_ack: assert property (packet_sent ##1 no_ack_thrice |->
37 always err) else $error("Err indication does not persist");
38 endchecker : spec

Fig. 1.6 System specification

detects a situation when signal timeout is activated three times while awaiting
acknowledgment.5 We discuss sequences in Chap. 6.

5This specification does not provide details about how the timeout condition is formed. Of
course, a complete specification should provide them.

1.2 Assertions in Design Methodology 13

Assertion no_ack in Line 36 states that if upon sending the packet
(packet_sent) there is no acknowledgment (no_ack_thrice), then the error
flag err should be asserted forever, that is, until the system reset occurs.

The above example shows that assertions can be inferred from a system level
description for expressing them in SVA. These assertions can then be applied to a
high level model in SystemVerilog and checked in simulation or proven formally.

Using SVA for system level has some difficulties. The main issue is clocks. The
system description is not always clock accurate, and is often formulated in terms
of transactions and real time. The signal activities are not expressed in terms of
transitions synchronized by design clocks. In contrast, SVA requires an exact clock
specification for every assertion. For example, the SVA specification in Fig. 1.6 is
less abstract than its verbal counterpart with respect to the specification of the clock,
reset, and timeout signals.

However, SVA has an important advantage that the same assertions may be used
directly or after some refinement as checkers in RTL verification, after the high level
model is refined to an RTL model of the design. As long as the high level model
embodies an approximate notion of a clock, it may still be possible to describe
assertions for the model. SVA provides several means for managing abstractions.
For example, we can define clock and reset only once using default clocking and
default disable iff statements. Specifying the exact clocks and resets requires
changing these statements only. The assertion building blocks are encapsulated in
let, sequence, and property statements. System refinement can thus be handled
using appropriate abstraction means. In our example, if the timeout mechanism
needs to be refined, it is enough to modify sequence no_ack_thrice. The mechan-
ics of attaching or substituting one model with another in the refinement process
is further supported by a configuration mechanism of SystemVerilog.6 This is an
iterative step which continues to refine the architecture and to adjust the assertions
according to the modified requirements.

The situation gets more complicated if the language of the model is not
SystemVerilog. For example, high level models of Systems on Chip (SoCs) are often
written in SystemC, as this language can be natively integrated with the C/CCC
code of software components. Unfortunately, SystemC does not yet have its own
formal specification subset for assertions or provide a standard integration with
external formal specification languages [62]. Therefore, using SVA specifications
with SystemC models is tool dependent. There are other languages, such as
TLA [48] designed especially for high level system specification. These languages
are more abstract than SVA, and therefore better suited for this purpose. Detailed
discussion about high level model validation is out of the scope of this book.

There are attempts in the academia and in the industry [21, 55, 68] to synthesize
an RTL model directly from its formal specification, and some promising results
have been demonstrated. Nevertheless, there is still a long way to go for this
approach to become practical, and we do not discuss it in this book.

6Configurations were introduced in Verilog 2001 [1].

14 1 Introduction

1.2.2 Using Assertions for RTL Models

The methodology of using assertions for RTL design verification is commonly
known as Assertion-Based Verification (ABV), [19, 37, 44, 67]. The idea is to
instrument RTL code with assertions to capture the design intent and to check
the local correctness of the design. In the former case, assertions are written for
checking the behavior at the interfaces. In the latter case, assertions are embedded
in the design units, interspersed through the code as needed to check the local
correctness.

Assertions on Interfaces

In this method, assertions are written to express the behavior as seen at an interface.
Customarily, verification engineers write such assertions as they do not require
intimate knowledge of the design details. This method of verification where the
design units are viewed as black boxes, meaning without the knowledge of internal
design details, is called black-box verification.

Verification engineers examine the high level specification of a design unit to
infer rules and properties that must be satisfied by the design unit. Each rule may
translate to one or more assertions. Once written and corrected, these assertions
tend to remain unaffected by the changes in the internal design unit code. They are
nonintrusive to the design units and can be retained physically outside the design
units as well. SystemVerilog provides means of attaching checkers to the design
units whenever needed using the bind statement, without actually modifying the
source code of the design units (see Sect. 9.3.3).

Some examples of the functionality checked by the interface assertions are:

• Bus communication protocols
• Memory transactions
• Data transformations
• Transaction arbitration

Another pivotal use of these assertions is to detect errors when various design
units are assembled into a larger unit. As integration issues emerge, they are effec-
tively captured by these assertions. By maintaining the consistency of interfaces,
individual design units are effectively freed from outside considerations, at least for
verification purposes.

Embedding Assertions Within Design

Most often designers attend to their design units for local correctness. Within the
scope of the design unit, they write assertions as they develop code to ensure signal

1.2 Assertions in Design Methodology 15

1 module shreg (input logic clk, rst, set, logic [7:0] val,
2 output logic [7:0] shift_reg);
3 always @(posedge clk or posedge rst) begin
4 if (rst) shift_reg <= 0;
5 else begin
6 if (set) shift_reg <= val;
7 else begin
8 shift_reg <= shift_reg << 1;
9 shift_reg[0] <= shift_reg[7];

10 end
11 end
12 end
13 check_shift: assert property (@(posedge clk)disable iff (rst)
14 set or
15 nexttime shift_reg == $past({shift_reg[6:0], shift_reg[7]}));
16 check_rst: assert final (rst -> shift_reg == ’0);
17 endmodule : shreg

Fig. 1.7 Checks for a shift register

relationships. When assertions are written over internal signals of a design unit for
performing local checks, the verification process is termed as white-box verification.

A typical example is shown in Fig. 1.7.
Module shreg in Fig. 1.7 implements a shift register shift_reg in RTL code

(Lines 3–12). Two assertions check_shift and check_rst verify the implementa-
tion correctness of the code.

The first assertion check_shift checks that the new value of shift_reg is
obtained by left rotation of its old value unless the new value was set explicitly
when set was asserted. The system function $past used in this assertion returns
the value of its argument evaluated at the previous clock cycle (see Sect. 7.2.1.2).
Note the operator disable iff, which disables the assertion check when the reset
signal is active.

The second assertion check_rst checks that shift_reg is reset correctly. We
use a final assertion which is not clocked, and not a concurrent one here because the
register reset is asynchronous and we need to check it at each simulation step, and
not only at the clock cycles. Section 1.3 and Chap. 4 explain the difference between
deferred and concurrent assertions in more detail.

Below are some typical items to check in white-box verification:

• Compliance of interface
• Finite State Machine (FSM) transitions
• Memory access correctness
• Stack and queue overflow and underflow
• Arithmetic overflow
• Signal stability

The complete list depends on a specific methodology; see [19, 37, 44, 67] for
suggestions.

16 1 Introduction

Although local assertions do not completely verify the design, their advantage is
huge. They make design debugging more effective—a bug is detected and caught
close to its origin. Thus, in Fig. 1.7 an incorrect implementation of the shift register
will be immediately detected, and a failure of assertion check_shift or check_rst
will point to the problematic code because these assertions are physically adjacent to
it. Without these assertions, an implementation bug could manifest itself in another
part of the design and probably several clock cycles later. One can imagine the
difficulty of debugging that error.

Assertion Coverage

When administering a large verification project, one needs to know whether the
intended functionality has been verified in its full scope, covering all functional sce-
narios of interest and all corner cases. Clearly, just making assertions a part of
design flow does not adequately provide confidence in judging that the verification is
complete or even comprehensive. Therefore, assertion coverage plays a critical part
in decision making and tracking progress of the design verification project, keyed to
the inquiry—“Are there enough assertions?”

The question is, what kind of coverage can be obtained from assertions to
provide substantive indications? We note that, generally, there are two ways to
approach this question. In the first approach, inquiries about the functionality
are the central focus. In this regard, behavioral fragments expressed by various
assertions must be matched against the specifications to determine the extent of the
functionality included in the umbrella of the assertions. In the second approach,
structural aspects of the design form the criteria. For example, the number of
design elements (signals, registers, etc.) included in the assertion checks, the number
of input and output signals included in assertions, and the number of assertions
relative to the design code size. Both approaches are useful indicators that provide
meaningful guidance in determining the required level of verification effort.

Coverage-Based Verification

A complementary approach to assertion-based verification is coverage based verifi-
cation. Coverage-based verification starts by taking functional scenarios (coverage
points) from the test plan and then collecting coverage of these scenarios on
available tests. The goal is to refine tests so that all coverage points are hit.
The main problem with this approach is its practical infeasibility: some scenarios
are extremely difficult to cover, and some of them are even impossible. Usually, the
first few tests hit many coverage points, and up to 60 % coverage is quickly reached.
The additional tests cover fewer and fewer new coverage points, while reaching
80 % coverage or higher becomes increasingly challenging [19, 59] and unlikely
in practice. Verification managers usually empirically set the desired coverage
percentage, called the coverage goal. We discuss SVA tools for checking coverage
in Sect. 4.7 and in Chap. 18.

1.2 Assertions in Design Methodology 17

1.2.3 Using Assertions Beyond RTL

Although assertions are most frequently used at the RT level, other areas of
development later in the design phase can also benefit from their specification. Some
analysis tools have already been developed, while others have been explored to take
advantage of the expressibility of the assertion features. We discuss three important
areas here.

Equivalence Verification

Equivalence [45] of two models usually means checking that the synthesized gate-
level netlist is equivalent to the golden RTL model (Fig. 1.5). Equivalence checking
is also needed when local changes are made in the design to improve its performance
or power consumption.

Equivalence checking is usually done by formal verification because comparing
model behaviors in simulation cannot provide good confidence in the correctness
of design transformations. At first, it seems that there is no need for assertions in
equivalence verification, but it turns out that the role of assertions is quite significant
because two models are equivalent only under some assumptions on their inputs.
For example, the input signal go of an RTL model may correspond to two input
signals of the synthesized model: go and its negation ngo. To prove equivalence the
following assumption about signal inversion should be supplied to the tool:

assume final (go ^ ngo);

In addition, assumptions about internal signals are used as hints for formal
equivalence verification. To maintain correctness of the proof of equivalence,
these assumptions must be proven as assertions in the corresponding blocks (see
Sect. 20.5). Assumptions written for formal equivalence verifications are usually
nontemporal; therefore, they are best represented with final assumptions having the
syntax assume final as shown above.

Timing Verification

When an RTL model is synthesized into a gate-level model, a critical step is to
verify its timing to ascertain correct functioning of the circuit [27]. Even though
timing verification significantly differs from RTL verification, assertions are used
there, although for different purposes. For example, RTL assertions are used to
characterize signal paths, as in the following cases:

False Path Elimination Circuit performance is limited by the delay of the longest
combinatorial path. Given the circuit configuration, if the actual signal trans-
mission along this path is not possible then this path should be ignored for
critical path and performance analysis [15, 28].

18 1 Introduction

Clock Domain Crossing When data are transferred from a state element controlled
by one clock to a state element controlled by another clock the data should be
stable long enough to guarantee that it be sampled by the second clock [54].

Multicycle Path A multicycle path is a path between two state elements having a
delay greater than one clock cycle. A multicycle path permits the sum of the
delays of its combinatorial logic elements to be greater than one clock cycle.
In this case, the second state element should be stable during the corresponding
number of clock cycles [15].

We also mention the need for analog assertions [52] to specify the timing
behavior of electrical components and interconnections. This type of assertion is
specific to analog circuit analysis and performance verification, and it is currently
not part of SVA. We do not discuss it further in this book.

Post-Silicon Validation

The advantages of RTL verification, on the one hand, are flexibility and high
observability—all signal values at any time may be observed in simulation. On the
other hand, it is very slow, and does not allow checking many important global
scenarios. With post-silicon validation (and to a great extent in emulation) the
situation is the opposite: chip speed is very high, but signal observability is low
[11, 57, 65].

Postsilicon debugging is challenging because a bug can remain unobserved for
millions of cycles after its actual occurrence. ABV may help coping with this
problem. For example, the most critical RTL assertions may be synthesized into the
chip. Assertions fire immediately upon detecting an error, thus making bug detection
and debugging much more efficient.

1.3 Assertions in SystemVerilog

There are three kinds of assertions in SystemVerilog7:

• Immediate assertions
• Deferred assertions
• Concurrent assertions

7Our terminology for the kinds of assertions matches what we hear customarily in practice, but it
differs from the terminology in the SystemVerilog 2012 LRM. What we call “immediate” is called
“simple immediate” in the LRM, and what we call “deferred” is called “deferred immediate” or
just “deferred” in the LRM. The LRM uses “immediate” to mean either “simple immediate” or
“deferred immediate”, but we will use the phrase “immediate or deferred” for this union. We find
our terminology clear and less verbose than the LRM, and there is usually no confusion in context
about the kind or kinds of assertions being discussed.

1.3 Assertions in SystemVerilog 19

1 module m2(input logic c, d, clk);
2 logic a, b;
3 always_comb begin
4 a = c & d; b = c | d;
5 // Immediate assertion
6 a1: assert (a -> b);
7 // Deferred assertion
8 a2: assert final (a -> b);
9 // Concurrent assertion

10 a3: assert property (@clk a != b);
11 end
12 // Deferred assertion
13 a4: assert final (a -> b);
14 // Concurrent assertion
15 a5: assert property (@clk a != b);
16 endmodule : m2

Fig. 1.8 Kinds of assertions

The simplest assertions are immediate assertions. They act as procedural if

statements and are legal in any place where procedural if statements may appear.
Immediate assertions are nontemporal and are executed when the control flow
reaches them. The main advantage of immediate assertions is that they have unre-
stricted applicability in various kinds of designs, synchronous and asynchronous,
and in testbenches. Their ease of use makes them appealing, but the limited
expressiveness lends their efficacy to detecting only simple bugs. In some cases,
they are also prone to producing spurious failures due to simulation races. This is
explained in Sect. 4.2.

Deferred assertions are an improvement over immediate assertions. They are
similar to immediate assertions in that they are nontemporal and unrestricted in
their use. Two important differences make them immensely useful over immediate
assertions: they do not produce spurious failures, and they can be placed both
inside and outside procedural code. Deferred assertions are further subdivided
into observed and final (sometimes called simply “final”). They are explained in
Sect. 4.3.

The most interesting and complex assertions are concurrent assertions. They are
temporal and can describe design behaviors over time. For example, a concurrent
assertion can state that a request should be granted in two clock cycles. Concurrent
assertions are always clocked. Assertion a1 in Fig. 1.1 is a simple example of a
concurrent assertion. This assertion is Boolean and checked immediately before
the rising edge of clk. Concurrent assertions may appear both inside and outside
procedural code, but they cannot be placed in functions and tasks. The description
of concurrent assertions occupies the major part of this book.

Figure 1.8 illustrates the use of all three kinds of assertions. Here, assertion a1 is
an immediate assertion, a2 and a4 are final deferred assertions, and a3 and a5 are
concurrent assertions. Operator -> used in assertions a1, a2, and a4 is an implication
operator. always_comb used in Line 3 is explained in Sect. 2.2. Notice that deferred

20 1 Introduction

assertions (e.g., a4) are legal outside procedural code, but immediate assertions
would be illegal there. Immediate assertion a1 and deferred assertions a2 and a4

are checked whenever either a or b changes value, while concurrent assertions a3

and a5 are checked only at the clock event clk, which occurs when clk changes
value.

Concurrent assertions use sampled values of their variables. For design signals,
the sampled value is the value of the variable at the beginning of the simulation
step, before any values change in the time step. Therefore, in waveforms it looks as
if concurrent assertions used past values of design signals from the preceding time
steps. This is described in detail in Sect. 4.4.3.

Assertion Statements

Assertion statements specify properties on the behavior of signals. There are three
major assertion statements in SVA: assertions (the keyword assert), assumptions
(the keyword assume), and cover statements (the keyword cover). Each type of
statement directs what to do with the specified property. These statements may be
immediate, deferred, or concurrent.

An assert statement makes sure that the design behaves as the properties in the
statement prescribe. Its purpose is to check the correctness of the system. An assume
statement states assumptions, specifying properties that should hold to enable the
proper functioning of the system. Its purpose is to ensure that the checking is
conducted under a system or environment that complies with the stated conditions.
A cover statement checks that the behavior it specifies is actually exhibited while
testing the system. Unlike assert statements, the interest lies in detecting only
selective cases from all possible cases of valid behavior.

In the following example, the same condition is used in all three types of
assertions (a1,m1,c1) to depict the difference in motivation.

bit ok;
// ...
a1: assert property (@clk ok);
m1: assume property (@clk ok);
c1: cover property (@clk ok);

The difference between a1 and m1 is as follows: a1 states that ok must be 1’b1

for correct behavior. It is a property that the design is obliged to satisfy. m1 states
that it can be taken for granted that ok is 1’b1. Assertions are checked while taking
into account assumptions. Typically, but not necessarily, assumptions are written on
primary inputs of the design, characterizing the behavior of the environment of the
design.

The cover statement c1 states that there exists some valid system behavior
where ok gets value 1’b1. This does not prevent the system from having other
valid behaviors where this condition does not hold. Cover statements are usually
written to ascertain that there exist tests exercising specific scenarios.

SVA assertion statements are further discussed in Chaps. 4 and 18.

1.4 Checking Assertions 21

1.4 Checking Assertions

This section introduces how assertions are checked in different verification
environments:

• Simulation.
• Emulation.
• Formal analysis.

1.4.1 Checking Assertions in Simulation

Simulation [61] is modeling the behavior on a sequence of input stimuli, called a
(simulation) test. Simulation is the most popular method for checking assertions.
All major SystemVerilog simulators, for example, VCS R�, Questa R�, and Incisive R�,
support SVA and can check assertions, assumptions, and cover statements.

Of course, in simulation it is only possible to check whether an assertion is
violated in a given test case. If it is violated, we find a problem. But the absence
of violation does not mean that the design is correct—the same assertion may be
violated in another test case, or it may even be violated later in simulation if the
same test case is extended.

Although in theory no reasonable number of test cases is sufficient
to exhaustively check correctness of real designs, in practice simulation with
coverage measurements does provide significant confidence in system correctness
if no assertion violations are detected.

Typical simulators can report not only assertion violations, but also individual
transaction completions. By a transaction, we mean an individual case of assertion
evaluation. Figure 1.9 illustrates transaction completions for the following assertion:

req_ack: assert property (@(posedge clk) req |-> ##[1:3] ack);

This assertion states that each request req receives an acknowledgment ack in one
to three clock cycles from the moment when req was asserted. Figure 1.9 shows two
transactions, trans1 and trans2. Transaction trans1 starts at time 20 and completes
at time 40, while transaction trans2 starts at time 90 but does not complete before
the end of simulation. An incomplete transaction does not necessarily indicate a
correctness problem because, had simulation lasted longer, the transaction might
complete as expected. However, this situation requires further analysis. When
crafting tests (directed and random) it is desirable to leave no transactions pending
(incomplete). Time points where there are no pending transactions are called
quiescent points. Although it is a good practice to ensure that the simulation always
ends at quiescent points, in reality it is hard to attain such a state for all assertions
at the same quiescent point. In general, it is necessary to analyze incomplete
transactions for any unexpected behavior.

22 1 Introduction

Fig. 1.9 Transactions of assertion req_ack

In Fig. 1.9 the transactions are delayed by one clock cycle with respect to the
times at which req and ack rise. This may seem strange. For example, why does
trans1 last from time 20 until 40, and not from 10 until 30? Concurrent assertions
use sampled values of their variables, that is, the values that these variables have
at the beginning of a simulation step (Sect. 1.3). At the beginning of the simulation
step corresponding to time 10, the sampled value of req is still 0. Assertion req_ack
will use the new value 1 of req only at time 20. This explains the shift in transaction
marking in the figure.

Assertions may also be checked in random simulation [16,19,38] environments.
Random simulation can be achieved using testbenches that generate random stimuli
using constraints or assumptions. While random simulation can hit a large amount of
bugs rather quickly, it is difficult to achieve good coverage of corner cases. Another
drawback of random simulation is its speed—resolving imposed constraints can be
prohibitively slow.

Simulation provides the most intuitive and user-friendly environment for asser-
tion debugging. Even when assertions are not targeted for simulation, simulation
may be used for assertion debugging. It seldom happens that complex assertions
are written correctly the first time. Usually failures in new assertions are caused by
bugs in the assertions themselves, not by design errors. Before checking assertions
in other environments, such as emulation and formal verification, it is highly
recommended to debug them in simulation. We discuss assertion debugging in
Chap. 19.

1.4.2 Checking Assertions Using Hardware Acceleration

Checking assertions in simulation is intuitive and convenient, but unfortunately,
simulation is slow compared to hardware speeds, and as a result, only very short
testing sequences may be checked this way. For example, to check a CPU model, an
operating system and several typical applications should be run on it, but it would
take months or years to simulate a few seconds of the real work.

1.4 Checking Assertions 23

Solutions to bring the speed of simulation closer to that of the hardware being
simulated include hardware acceleration, emulation [39], and rapid prototyping.
In these methods, the design model is synthesized into a logic netlist, and this
netlist is mapped onto a Field-Programmable Gate Array (FPGA) or an equivalent
programmable device. Of course, checking a design in this way is still much
slower than running the real device, but it is significantly faster than simulation.
Because emulation tests are much longer than the simulation ones, they have a better
likelihood of revealing bugs that could not be reached in simulation. To capture these
bugs, assertions need also to be synthesized to become part of the emulation model.
In theory all SVA constructs are synthesizable, enabling the solution to work in most
cases. For some cases, however, this solution falls apart as some complex assertions
synthesize into enormous size, consuming a large amount of available gates.

1.4.3 Checking Assertions Using Formal Verification

Formal Verification (FV) [20] is the most powerful method to check design correct-
ness. It conducts exhaustive proof that the design complies with its specification.
More precisely, formal verification tools prove assertion correctness under the
hypothesis that all assumptions are satisfied. Unlike simulation and emulation, there
is no need to provide input stimuli.8 If a tool can prove the assertion correctness, the
assertion is correct for any set of input stimuli under the specified assumptions.

The main limitation of FV methods is the capacity of FV tools. They can
handle only relatively small models, even though modern FV tools can efficiently
handle designs containing several thousands of state elements, latches and flip-
flops. Another important point to keep in mind is that the model for FV should
be completely specified, requiring all its input assumptions to be explicitly stated. If
some assumptions are missing, spurious assertion failures (so called false negatives)
may be reported, as discussed in Sect. 20.3.

It follows that in simulation the main verification setup effort is modeling the
environment and devising the testbench, while in FV a great deal of effort is spent
on specifying assumptions.

8Actually many verification tools do require some input information, such as a clock pattern or a
reset sequence.

24 1 Introduction

1.4.4 Assertion Efficiency

It is often possible to express the same assertions in multiple ways. A specific
style of assertion implementation may have a major effect on simulation or formal
verification performance. Therefore, it is important to know how to write assertions
efficiently. Unfortunately, in many cases formal verification and simulation impose
different requirements on assertions for efficiency considerations, creating situations
where efficiency tradeoff between the two methods becomes necessary. Possibilities
exist to make a small sacrifice in assertion efficiency in formal verification that
can provide a tremendous boost in simulation speed. Many factors are involved
in making tradeoffs: complexity of assertions, number of assertions, and algorithms
employed by a specific tool. When using a specific simulation or formal verification
tool one should follow tool-specific recommendations about assertion efficiency.

1.5 Assertion Reuse

Although SVA is a powerful specification language, writing assertions is not an
easy task. Even experienced people rarely write complex assertions correctly for
the first time. Debugging assertions is more difficult than debugging RTL because
the assertion language is declarative. Fortunately, many assertions are commonly
encountered and may be reused by adapting them to different situations. For
example, such assertions as “two signals are mutually exclusive”, “a request is
granted in N cycles”, and “an FSM is never stuck” are routine. This presents an
opportunity to define them once and then reuse by customizing as a library unit.

SVA provides many features for assertion reuse. Assertion components may be
named and parameterized. Several related assertions, together with modeling code
may be grouped as a unit for future reuse.

Expression Reuse

Expressions may be named and parameterized using a let statement, as shown in
Fig. 1.10.

In this example, a parameterized expression $onehot(~sig) is named onecold

using a let statement. $onehot is a SVA system function returning true9

when exactly one bit of its argument is set to 1. This let expression checks for one
cold encoding which means exactly one bit of sig is 0. Notice that an instance of
the let expression is used in assertions a1, a2, and a3. a1 is an immediate assertion

9Strictly speaking, true is not defined in SystemVerilog, but we will use it where appropriate as an
alias for 1’b1. Similarly, we will use false for 1’b0.

1.5 Assertion Reuse 25

1 logic a, b, c, d, cond, clk;
2 let onecold(sig) = $onehot(~sig);
3 // ...
4 always_comb begin
5 // ...
6 a1: assert (onecold({a, b, c}) || d);
7 end
8 a2: assert final (onecold({a, b, c}) -> d);
9 a3: assert property (@(posedge clk) cond |=> onecold({a, b, c}));

Fig. 1.10 Expression reuse

1 logic ready, request, grant, clk;
2 // ...
3 sequence falling(x);
4 (x ##1 !x);
5 endsequence
6 a1: assert property (@(posedge clk) falling(ready) |=> ready);
7 a2: assert property(@(posedge clk)request |=> falling(grant));

Fig. 1.11 Sequence reuse

ensuring that exactly one signal among a, b, and c is low when d is low. a2 is a final
assertion ensuring that when exactly one signal among a, b, and c is low, d must
be high. Another variation is the concurrent assertion a3 which specifies that after
condition cond is true, exactly one signal among a, b, and c is 0.

We describe the let statement in Sect. 8.1.

Sequence Reuse

It is possible to assign names to sequences of signal values in time and to reference
these sequences by name in assertions, as shown in Fig. 1.11.

falling is a sequence name, and x is its argument. (x ##1 !x) defines a
sequence of values of signal x in time. Its meaning is that the value x = 1 is
followed by the value x = 0 in the next clock cycle.10 Sequence falling is reused
in concurrent assertions a1 and a2.

Assertion a1 states that ready flag may drop at most for one clock cycle. More
precisely, if ready gets deasserted after being asserted then at the next clock cycle
ready should be asserted again. The operator |=> means “then at the next clock
cycle”, and it is called non-overlapping suffix implication. Assertion a2 states that

10For simplicity, here and in future examples we ignore the possibility of unknown and high-
impedance values X and Z unless explicitly stated.

26 1 Introduction

1 logic end_reset, operational, enter_deadlock_area, stuck, clk;
2 // ...
3 property forever_n(x, n);
4 nexttime[n] always x;
5 endproperty
6 a1: assert property (@(posedge clk)
7 end_reset |-> forever_n(operational, 100));
8 a2: assert property (@(posedge clk)
9 enter_deadlock_area |-> forever_n(stuck, 5));

Fig. 1.12 Property reuse

request should be granted (grant = 1) in the next cycle, and one cycle later grant
should be deasserted.

We describe sequences in Chaps. 6 and 11.

Property Reuse

Like expressions and sequences, properties may also be assigned a name to be used
in concurrent assertions, as shown in Fig. 1.12.

In this example, forever_n is a property specifying that after n clock cycles
(operator nexttime[n]) x should be true forever (operator always). This property
is then reused in assertions a1 and a2. Assertion a1 states that 100 clock cycles after
reset phase was completed (end_reset asserted) the device should be operational
forever (operational should always be high). Assertion a2 states that 5 cycles after
entering a deadlock area (enter_deadlock_area asserted) signal stuck should be
asserted forever.

We describe properties in Chaps. 5 and 10.

Assertion Libraries

Although the language features for naming an expression, a sequence or a property
are beneficial for reuse in writing individual assertions, they are not sufficient
for building a library of assertions. Commonly, an element from an assertion
library encapsulates one or more related assertions, and some code to support the
expressions used within the assertions, such as an FSM state or a variable value
computed from a function.

A more suitable feature than what we have described so far is a checker.
The checker construct is similar to a module in that it can contain assertions
and modeling code, but its instantiation and parameterization accommodate the
flexibility and usage that are specific to assertions.

1.6 SVA and PSL 27

1 checker mytrig (sequence trig, property prop, event clk);
2 a1: assert property (@clk trig |-> prop);
3 c1: cover property (@clk trig);
4 endchecker : mytrig
5 module m (input logic done, ready, clock, output logic idle);
6 ...
7 assign idle = done || !ready;
8 mytrig check_consistency(done, idle, posedge clock);
9 endmodule : m

Fig. 1.13 A simple checker

The example shown in Fig. 1.13 illustrates the concept of checker.
mytrig is a checker which gets three arguments: trig, prop, and clk. trig

should be a sequence, prop should be a property, and clk should be an event.
mytrig consists of assertion a1 checking that whenever trig happens prop is
true (operator |->, called overlapping suffix implication), and a cover statement
c1 monitoring whether trig happens.

The checker is instantiated in module m, Line 8, with actual arguments done,
idle, and posedge clock. Even though done and idle are signals, it is valid
to pass them to the checker as actual arguments because Boolean expressions are
special cases of sequences and properties.

We describe checkers and their use in Chaps. 9, 23 and 24.

1.6 SVA and PSL

Besides SVA, PSL (Property Specification Language) [6] is another standard
assertion specification language that is widely used in the industry. The goal of
PSL is to provide a language subset for assertions that could work in conjunction
with a variety of languages. To that end, the syntax is designed to be as neutral as
possible, customized with a syntactic flavor for the individual language hosting the
PSL features, such as SystemVerilog flavor and VHDL flavor. The semantics related
to the integration of PSL with the host language is left open for the tools to define,
to suit the environment of the tool.

Many of the PSL language features are semantically equivalent to those of SVA,
but there are some differences of importance. One of the PSL features is the Optional
Branching Extension (OBE) which defines operators for temporal properties in
terms of branching time. The OBE features are meant only for formal verification
and do not fit the simulation paradigm. SVA does not have the notion of branching
time [35]; the time used in SVA is always linear (see Chap. 21), but all the linear time
operators in SVA can be simulated. The OBE operators in PSL cannot be simulated.

28 1 Introduction

PSL has an important mechanism of vunits (verification units) for encapsulating
verification code. One vunit may inherit another in order to modify a portion of the
verification environment. SVA has the checker construct and the bind statement.
Vunits and checkers implement two different approaches to verification environment
design: vunits are based on overriding and name matching, while checkers are based
on argument mapping.

In contrast to PSL, SVA provides immediate and deferred assertions. The use
and semantics of assertions in procedural code is undefined in PSL. Also, PSL lacks
any notion of properties being invoked recursively. Since SVA is an integral part of
SystemVerilog, its simulation semantics is well defined and SVA can be used much
more widely within the context of SystemVerilog than is possible with PSL. Some
examples of the benefits are:

• Sequences can be used outside the context of assertions.
• Integration with functional coverage features is powerful.
• Sampling of variables is precisely defined.
• Type compatibility and conversion is handled smoothly.

Exercises

1.1. What is the main difference between the assertion specification language in
SystemVerilog and the language subset used for RTL description?

1.2. Modify the RTL code in Figs. 1.2 and 1.4 to take reset signal rst into account:
when rst is asserted checking of active transactions should be stopped.

1.3. Implement the following assertion

assert property(@(posedge clk) req[*2] |=> grant[*2]);

in RTL: two consecutive requests should be followed by two consecutive grants.

1.4. What kinds of assertions exist in SVA? What is the difference between them?

1.5. Compare formal specification languages with natural languages. What are the
advantages of formal languages?

1.6. What are the main advantages and disadvantages of checking assertions in
(conventional) simulation?

1.7. Why is it useful to check assertions in emulation?

1.8. What are main advantages and disadvantages of checking assertions using
formal verification?

1.9. Why is assertion reuse important? Which constructs exist in SystemVerilog for
assertion reuse?

1.10. What is the intended use of checkers in SystemVerilog?

1.6 SVA and PSL 29

1.11. What are the main similarities and the main differences between SVA and
PSL?

1.12. Simultaneous reads and writes

(a) Express a statement forbidding simultaneous reads and writes as an immediate,
deferred and concurrent assertion. Reuse the common part in all assertions.

(b) Write a checker forbidding simultaneous reads and writes. Also check that both
reads and writes actually happen.

1.13. Request is always granted

(a) Write a concurrent assertion stating that each request should be granted at the
next cycle.

(b) Is it possible to express the same thing as an immediate assertion?
(c) As a deferred assertion?

1.14. Write the following assertion: When reset is deasserted it remains low
forever.

Chapter 2
SystemVerilog Language Overview

The limits of my language mean the limits of my world.

— Ludwig Wittgenstein

Our objective in this chapter is to provide an overview of some SystemVerilog
features that are important for understanding assertions, needed for writing asser-
tions, or used in conjunction with assertions to support other tasks. The System-
Verilog features common with Verilog are considered known and are not discussed
in this chapter.

We begin this chapter with a discussion about compilation and elaboration. Then
we provide a brief overview of several SystemVerilog constructs that are not part of
Verilog, and therefore may be not commonly known, but are referred later in this
book. These constructs include structured procedures, clocking blocks, interfaces,
programs and packages. The SVA-related constructs, such as checkers are not
considered in this section, because they are studied in detail in next chapters.

The reader familiar with the material described here may safely skip this
chapter. A detailed description of SystemVerilog language, of testbench writing,
methodology and design is out of the scope of this book and can be found in the
books [16, 30, 59, 61, 64]. The SystemVerilog Language Reference Manual [8]
(referred in the rest of this book as LRM) is, of course, the most comprehensive
reference.

2.1 Compilation and Elaboration

SystemVerilog code, prior to be simulated or formally verified by a tool, needs to be
preprocessed and loaded. This initial step is divided into two major phases: compi-
lation and elaboration. The goal of compilation is to read one or more source files, to

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__2

31

32 2 SystemVerilog Language Overview

perform syntactic and semantic analysis and to check for syntax or semantics errors.
The source files can be compiled all at once or divided into multiple sets of files so
that each set can be compiled separately into what is known as a compilation unit.

Typically, for simulation the compilation is performed by a separate tool, called a
compiler. This allows compiling the SystemVerilog model only once and checking
it multiple times on different tests. Some simulators, however, contain a compiler as
their integral part and perform compilation anew for each simulation session.

To build the final simulation model, all compilation units together must go
through the elaboration phase which binds all components by evaluating parameter
values and constant expressions, connecting instances, building hierarchies, and
resolving references. For noninterpretive simulators, another step is needed to create
object code from the elaborated model to build the final executable simulation
model.

It is important to distinguish between the computations performed at compile
time, elaboration time and simulation time. For example, compiler directives,
such as ‘include, ‘define and ‘ifdef are evaluated at compile time. As
stated above, evaluation of constant expressions, including parameter evaluation is
done at elaboration time. The same is true for generate constructs. On the other
hand, assignment statements and procedural control statements are evaluated at
simulation time. We clarify the difference between compile time, elaboration time
and simulation time constructs with the following examples.

Example 2.1. Consider the following statements:

‘define k 2 + 3
let m = 2 + 3;
int n = 2 + 3;

All of them seem very similar, and all of them evaluate to 5, but their evaluation
time is different, and so is their semantics. Namely, k is evaluated at compile time,
m is evaluated at elaboration time, and n is evaluated at simulation time.

The declarations logic [‘k:0] a; and logic [m:0] a; are legal, but
logic [n:0] a; is not, because the bounds of a vector must be known at the
elaboration time.

The statement ‘ifdef k is legal, but both ‘ifdef m and ‘ifdef n are illegal,
because ‘ifdef requires a macro identifier.

Note also that the compile time definition is processed syntactically whereas
elaboration time and simulation time constructs are evaluated semantically. For
example, logic [2*‘k:0] a; is equivalent to logic [7:0] a; because 2*‘k is
substituted literally by 2*2 + 3 (therefore, it is recommended to put parentheses in
the ‘define statement: ‘define k (2 + 3)). But logic [2*m:0] a; is equiva-
lent to logic [10:0] a;, because the evaluation is done at elaboration time, and
the values of m is first evaluated to 5, and only then it is multiplied by 2. For a
more detailed discussion on the differences between ‘define and let statements
see Sect. 8.1. ut

2.2 SystemVerilog Procedures 33

Example 2.2. Generate if and procedural if. Consider the following module
declaration:

1 module m #(bit FLAG = 1) (input logic in1, in2, select,
2 output logic out1, out2);
3 if (FLAG) assign out1 = in1;
4 else assign out1 = in2;
5 always_comb
6 if (select) out2 = in1;
7 else out2 = in2;
8 endmodule : m

In this example the if statement on Line 3 is a generate if, because an if

outside a procedural context is recognized as generate. This statement is processed
at elaboration time using the value of FLAG, which is a module parameter. An attempt
to put a non-constant expression, such as select, in this case is illegal.

The if statement on Line 6 is a normal procedural if statement. It is executed at
simulation time, and its argument need not to be an elaboration time constant. The
procedural if statement is recognized by its procedural context of the always_comb
procedure. ut

2.2 SystemVerilog Procedures

Most SystemVerilog design elements (modules, interfaces, programs and checkers)
can contain structured procedures, previously called procedural blocks. There
are the following structured procedures in SystemVerilog: initial, always and
final procedures, functions and tasks. Some design elements have limitations on
the procedures they may contain. For example, programs cannot contain always
procedures; packages can contain no procedures.

Initial and general purpose always procedures are well-known and are not
discussed here. We will limit our consideration by outlining specialized always
procedures and by final procedures.

2.2.1 Specialized Always Procedures

In SystemVerilog there are several specializations of always procedures:

• always_comb

• always_latch

• always_ff

34 2 SystemVerilog Language Overview

These procedures follow the same syntax as general always procedure though
several limitations apply.

2.2.1.1 Procedure always_comb

The always_comb procedure is intended to represent combinational logic. It has
an implicit sensitivity list including all variables read within the block or within
functions called from this block. The always_comb procedure is automatically
executed at time 0 to have its outputs consistent with its inputs. Consult the LRM
for other rules and restrictions imposed on the always_comb procedure.

Example 2.3. The following code illustrates a mux implementation using
always_comb.

logic in1, in2, sel, out;
always_comb
if (sel) out = in2;
else out = in1;

The signal out cannot be assigned anywhere else in the code because it is
assigned within an always_comb procedure. ut

2.2.1.2 Procedure always_latch

The always_latch procedure is intended to represent latched logic. From the
formal point of view there is no difference between the always_comb and
always_latch procedures, and the appropriate procedure should be chosen to
clarify the design intent. However, the tools may impose additional checks. For
example, unlike always_latch, they may enforce that the variables assigned inside
always_comb are fully assigned.

Example 2.4. The following code illustrates a latch implementation using
always_latch.

logic data, clk, q;
always_latch
if (clk) q = data;

The signal q cannot be assigned anywhere else in the code because it is assigned
inside an always_latch procedure. ut

2.2.1.3 Procedure always_ff

The always_ff procedure is intended to represent sequential logic, such as flip-
flops and registers. Unlike the general always procedure, the always_ff procedure
contains exactly one event control and no blocking timing controls (such as delay

2.2 SystemVerilog Procedures 35

control #). Similar to always_comb and always_latch, it is illegal to modify
signals assigned in this procedure from any other place. Consult the LRM for other
restrictions imposed on the always_ff procedure.

Example 2.5. The following code illustrates a flip-flop implementation using
always_ff.

logic data, q, clk, rst;
always_ff @(posedge clk or negedge rst)
if (!rst) q <= 1’b0;
else q <= data;

The signal q cannot be assigned anywhere else in the code because it is assigned
inside an always_ff procedure. ut

2.2.2 Final Procedure

The final procedure is the opposite of the initial procedure. It executes at the
end of the simulation. Often it is used as a clean-up routine and for displaying or
storing information such as simulation final results, statistics, and coverage data.
The users can declare more than one final procedure, in which case, they are
executed sequentially, but in an arbitrary order.1 Effectively, the final procedures
constitute a single process in which the procedures execute sequentially. Because
the final procedure executes in zero time, the statements allowed in a final procedure
are those allowed in a function. Consult the LRM for an exact description of the final
procedure.

Example 2.6. The following code illustrates the use of the final procedure to display
the total number of assertion failures.

logic clk, rdy, rst;
int fCount = 0;
...
always @(posedge clk)
rdy_fail: assert (rdy -> !rst) else fCount++;

final
$display("Number of assertions rdy_fail failed: %d",fCount);

Assertion rdy_fail increments fCount each time it fails. At the end of
simulation, the final procedure prints the total number of the assertion rdy_fail

failures. ut

1SystemVerilog LRM suggests that the order of execution for final procedures be deterministic for
a tool.

36 2 SystemVerilog Language Overview

2.3 Clocking Blocks

2.3.1 Clocking Block Declaration

The clocking block construct is aimed to provide a flexible scheme for synchronizing
and sampling of signals with respect to a design clock. Often the input signals
are driven from a testbench to design units, while the testbench is modeled by a
program (see Sect. 2.5). New values to signals for a test are set in the testbench with
appropriate delays using a clocking block.

It is possible to enclose property and sequence definitions in a clocking block,
using the common event control of the clocking block. This assists in grouping
related properties and sequences as well as it provides the convenience of leaving
out the explicit specification of a clock for each individual declaration of a property
or sequence in the clocking block.

For use of clocking blocks in testbenches, readers are advised to refer to books
on SystemVerilog testbench (such as [59]) or to the LRM. Clocking declarations
may be included in modules, interfaces, programs and checkers. Along with other
information, a clocking block may be declared with

• A name
• An event expression
• Variables sampled and driven by the clocking block
• A list of sequences and properties

There is one restriction on the declarations of properties and sequences: no
explicit clock is allowed in the declarations. Consequently, multiply clocked
properties or sequences cannot be declared inside clocking blocks. Note also that
assertions cannot be written within a clocking block.

Example 2.7. The code below contains a clocking block named cblk declared with
the clocking event @(posedge clk).

logic req, gnt;
// Evaluation of gnt
...

clocking cblk @(posedge clk);
input req, gnt;
property p_req_granted;

req |=> gnt;
endproperty

endclocking
a1: assert property (cblk.p_req_granted)
else $error("Request not granted");

a2: assert property(@(posedge clk) req |=> !req)
else $error("Request asserted during two consecutive cycles");

2.3 Clocking Blocks 37

Variables req and gnt are used as inputs in the clocking block and they get
sampled with the clocking event. The property p_req_granted is declared in
the clocking block. Because a clocking block creates a scope, the assertion a1

refers to property req_granted using its hierarchical name as cblk.req_granted.
The assertion a1 inherits its clock from the property cblk.req_granted (see
Sect. 12.2.6), and therefore no explicit clock specification in assertion a1 is needed.

The property req |=> !req is written directly in the body of assertion a2, and
not declared in the clocking block. Therefore assertion a2 must specify its clocking
event explicitly. ut

2.3.2 Default Clocking

One clocking block may be specified as default for a given design element.
Specifying a default clocking allows to omit clock specification in concurrent
assertions belonging to the same design element (e.g., module, interface, etc.). In
this case the clocking event of the default clocking becomes an implicit clock of the
assertion. When the default clocking is used only for assertion purposes, its body is
usually left empty and no name is given to the default clocking block.

Example 2.8. The following code illustrates a typical usage of the default clocking
with assertions.

module m (input logic req, clk, output logic gnt);
default clocking @(posedge clk); endclocking
// Evaluation of gnt
...
property p_req_granted;
req |=> gnt;

endproperty
a1: assert property (p_req_granted)
else $error("Request not granted");

a2: assert property(req |=> !req)
else $error("Request asserted during two consecutive cycles");

endmodule : m

In this example the body of default clocking is empty and this block is left
anonymous. We could provide it a name:

default clocking dfltclk @(posedge clk); endclocking

but it serves, essentially, no purpose. The concurrent assertions a1 and a2 do
not have an explicit clock specified with them, and therefore a clocking event
@(posedge clk) from the default clocking block is inferred for them.

38 2 SystemVerilog Language Overview

Note the difference between this example and Example 2.7. In Example 2.7
the property p_req_granted is written in the scope of a clocking block, and to
instantiate it assertion a1 needs to specify the name of the clocking block cblk

as part of the hierarchical property name. In this example property p_req_granted

does not belong to the scope of the clocking block, and its name is directly visible by
assertion a1. In Example 2.7 the clocking event of the clocking block is inferred for
property p_req_granted, and assertion a1 inherits this clock from the property.
Assertion a2 there has to specify its clock explicitly. In the current example the
clocking event of the default clocking is inferred for all assertions in the module,
because no assertion here has an explicitly specified clock. ut

2.4 Interfaces

This section contains an introduction to interfaces—design elements aimed to
encapsulate the communication between modules. The reader can find the details
in [61] and the LRM. The interface groups signals together, and it may also contain
assertions and communication logic. Unlike the modules, interfaces may be passed
via ports as a group.

The contents of an interface are not limited to signals. In fact, it may contain
most entities allowed in modules such as

• Data types and variables
• Clocking blocks, functions and tasks
• Initial, always, and final procedures to define additional behavior
• Sequences, properties, and assertions

In the simplest case the interface is just a named bundle of signals, as shown in
Example 2.9.

2.4 Interfaces 39

Example 2.9. Consider two modules: producer and consumer. Their communica-
tion is implemented via interface data.

1 interface data (input logic clk);
2 logic [7:0] a, b;
3 logic active_a, active_b;
4 endinterface : data
5

6 module producer (data i);
7 initial begin
8 i.active_a = 1’b1;
9 i.active_b = 1’b0;

10 end
11 always @(posedge i.clk) begin
12 i.active_a <= !i.active_b;
13 i.active_b <= !i.active_a;
14 i.a <= $random;
15 i.b <= $random;
16 end
17 endmodule : producer
18

19 module consumer (data i, output logic [7:0] out);
20 always @(posedge i.clk) begin
21 if (i.active_a) out <= i.a;
22 if (i.active_b) out <= i.b;
23 end
24 endmodule : consumer
25

26 module top;
27 logic clk = 0;
28 logic [7:0] result;
29 initial repeat (100) #5 clk = !clk;
30 data ifc(clk);
31 producer prod(.i(ifc));
32 consumer cons(.i(ifc), .out(result));
33 endmodule : top

In this example interface data (Lines 1–4) is just a collection of signals. The
values of these signals are generated by the module producer (Lines 6–17) and
then the values of a and b are routed to the output by the module consumer

(Lines 19–24). These modules and the interface are instantiated in module top

(Lines 26–33). Instead of individual signal and port declarations for a, b, active_a
and active_b in the modules, all these declarations are packed in the interface.
Individual signals from the interface are accessed directly from the interface
instance. ut

Interfaces are a natural place to put assertions or to instantiate checkers to
specify the obligations imposed on the modules on one side of the interface and the
expectations of the modules on its other side (see Sect. 1.2.2). This allows to avoid
duplication from specifying the same assertions at the boundaries of each connected
module.

40 2 SystemVerilog Language Overview

Example 2.10. An assertion checking that both active_a and active_b are not
asserted together can be added to interface data from Example 2.9:

interface data (input logic clk);
logic [7:0] a, b;
logic active_a, active_b;
a_active: assert final (!(active_a && active_b))
else $error("a and b cannot be active simultaneously");

endinterface : data

Putting assertion a_active in interface data avoids its duplication if it were
put in the modules. In the latter case it should have been written twice: once as
an assertion in the module producer, and once as an assumption in the module
consumer. Of course, the same effect could be achieved by putting this assertion
in the module top. However, putting the assertion in the interface is preferable:
this assertion will be checked in the unit-level testing or formal verification of
component modules, and not only in the integration testing.

Discussion: Module consumer observes, but does not drive, the interface signals
active_a and active_b. Therefore, in formal verification of consumer it is
desirable to treat a_active as an assumption rather than as an obligation. Formal
verification tools generally treat assert statements as obligations and assume

statements as assumptions, but they also typically provide controls for overriding
the default interpretation. A tool may also provide an automatic mechanism for
characterizing an assertion based on its signal support, e.g. inferring that an assert

referencing only inputs be treated as an assumption rather than as an obligation. ut

2.5 Programs

For writing testbenches SystemVerilog provides special design elements, called
programs. Their primary purpose is to generate and send stimuli to primary inputs
of a DUT and to receive its responses to validate the design behavior. A program is
similar to a module construct in its declaration of ports and body, but has a number
of limitations. For example, a program may contain continuous assignments,
initial and final procedures, but not always procedures. Programs may instantiate
checkers, but not other design elements (e.g., modules or other programs). The
main program feature distinguishing programs from modules is their simulation
semantics intended to avoid most races between the design and the testbench (see
Chap. 3). A detailed description of programs the reader can find in [59] and in
the LRM.

Example 2.11. We assume that the module router consumes request packets and
issues acknowledgment packets in the next clock cycle upon a request packet
reception. The test environment generating 100 request packets with random IDs
and random data is implemented by the program test.

2.6 Packages 41

typedef enum logic {REQ = 1’b1, ACK = 1’b0} dirType;

typedef struct packed {
dirType rq;
logic [6:0] id;
logic [23:0] data;

} packetType;

program test (input logic clk, packetType received,
output packetType sent);

logic [6:0] sent_id;
initial begin
repeat (100) begin
@(posedge clk);
sent_id = $random;
sent = ’{REQ, sent_id, $random};
@(posedge clk);
a1: assert final (received.rq == ACK)

else $error("Corrupted packet");
a2: assert final (received.id == sent_id)

else $error("Lost packet");
end

end
endprogram : test

module router (input packetType inpkt, logic clk,
output packetType outpkt);

...
endmodule : router
module top;
logic clk = 1’b0;
initial repeat (400) #5 clk = !clk;
packetType inpkt, outpkt;
test t(.clk(clk), .received(outpkt), .sent(inpkt));
router r(.*);

endmodule : top

Program test checks also the correctness of the received packets. Assertion
a1 checks that the received packet is an acknowledgment packet, and assertion
a2 checks that the ID of the acknowledgment packet coincides with the ID of the
request packet sent in the previous cycle. ut

2.6 Packages

The design element package is intended for encapsulation and reuse of common
declarations. One can use packages as libraries of useful declarations, such as type
definitions, function, task, let declarations, properties, sequences, and checkers.
A package introduces its own name space to avoid conflicts with local names where
a package element is referenced.

42 2 SystemVerilog Language Overview

Example 2.12. A package is a natural container for common let declarations,
sequences, properties and checkers to be used project-wide, such as the package
common_props shown below.

package common_props;

let one_cold(sig) = $onehot(~sig);

property req_granted (sequence req, property gnt);
req |=> gnt;

endproperty : req_granted
...

endpackage : common_props

In this package it is shown a let declaration for one cold encoding of the bits
of sig, and a property declaration to check that the request req is granted (gnt is
received) in the next clock cycle. In order for the property to be generic, req and
gnt are not limited to signals, but req may be an arbitrary sequence, and gnt may
be an arbitrary property (see Sect. 6.4). ut

To reference a declaration from a package one has to provide the package name
followed by :: within the name declared in the package.

Example 2.13. The code below shows how to use declarations from the package
common_props from Example 2.12.

module m (input logic rq, done, clk, ...);
wire [7:0] data;
...
a1: assert final (common_props::one_cold(data));
...
a2: assert property (@(posedge clk)

common_props::req_granted(rq, done));
...

endmodule : m

In module m the let and the property names from the package are prefixed with
the package name common_props::. ut

To make specific names declared in a package visible in the current scope,
one can use an import statement containing the list of names to be referenced.
Alternatively, one can use a wild card import to make all construct names belonging
to the package visible in the current scope.

Example 2.14. Instead of explicit specification of the name of package
common_props defined in Example 2.12 one can use an import statement in module
m from Example 2.13:

module m (input logic rq, done, clk, ...);
import common_props::one_cold, common_props::req_granted;
wire [7:0] data;
...
a1: assert final (one_cold(data));

2.6 Packages 43

...
a2: assert property (@(posedge clk) req_granted(rq, done));
...

endmodule : m

It is also possible to import all the names defined in the package common_props

into module m using the wild card notation:

module m (input logic rq, done, clk, ...);
import common_props::*;
wire [7:0] data;
...
a1: assert final (one_cold(data));
...
a2: assert property (@(posedge clk) req_granted(rq, done));
...

endmodule : m

The latter version looks more convenient, but the wild card notation may lead to
a clutter with the local name space and with namespaces of other packages when
multiple wild card imports are used. ut

Exercises

2.1. What are the sizes of wires x and y?

‘define a 3 + 5
module m (...);
let b = 3 + 5;
wire [‘a * 4] x;
wire [b * 4] y;
...

endmodule : m

What will happen if the statement let b = 3 + 5; has been substituted by
int b = 3 + 5;?

2.2. What is wrong with the following code?

module m (input logic a, b, c, clk, output logic x, y, z);
initial begin
y = 1’b0;
z = 1’b0;

end
always_comb x = a & b;
always_latch y = a | c;
always_ff @(posedge clk) begin
if (y) x <= a;
@(posedge clk) x <= x & b;

end
final @(posedge clk) z <= x | y;

endmodule : m

44 2 SystemVerilog Language Overview

2.3. Correct the following code to make it legal.

module m(input logic a, b, c, output logic o);
if (a) o = b;
else o = c;

endmodule : m

2.4. What is illegal in the following code?

module m (input logic a, b, clk);
clocking mycblk @(posedge clk);
property p; a |=> b; endproperty
a1: assert property (p);

endclocking
a2: assert property (p);

endmodule : m

2.5. What is the purpose of the following SystemVerilog design elements?

• module
• interface
• program
• checker
• package

Chapter 3
SystemVerilog Simulation Semantics

Imitation is at least 50 percent of the creative process.

— Jamie Buckingham

In this chapter we discuss SystemVerilog simulation semantics: how the
SystemVerilog model simulation is performed. This is necessary to understand
the simulation semantics of assertions described further in this book. We cover
simulation semantics of the language features only as needed to provide a frame of
reference for completing the discussion on semantics of assertions. The exhaustive
description of SystemVerilog simulation semantics may be found in the LRM. See
also books [59, 61].

3.1 Event Based Simulation

SystemVerilog constructs do not exist in isolation and the interaction between them
in simulation is rather complex. The description of their behavior in simulation is
known as the simulation semantics of the language. The simulation semantics of
SystemVerilog is described in terms of events and processes. Examples of processes
are structured procedures (initial and all kinds of always procedures, see Sect. 2.2.1),
continuous assignments, etc. All processes are scheduled concurrently, i.e., they
may be executed in parallel. However, in many cases the result of process evaluation
should be such as if a specific order of process evaluation were imposed.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__3

45

46 3 SystemVerilog Simulation Semantics

Example 3.1. The module procReq contains a series of assignments:

1 module procReq(input logic req, gnt1, gnt2, clk);
2 wire tmp, proceed;
3 logic allow;
4 assign tmp = allow & gnt1;
5 assign proceed = tmp & gnt2;
6 always @(posedge clk) allow <= req;
7 always @(posedge proceed) processData();
8 endmodule : procReq

Assuming that input clk transitions from 0 to 1 and no other input changes at
that time, the result would be as if the following evaluation order were imposed:

1. Assignment to allow in Line 6
2. Assignment to tmp in Line 4
3. Assignment to proceed in Line 5
4. Evaluation of the subroutine (task or function) processData if proceed

becomes true in Line 7

As we will see in this chapter, this order of evaluation is obtained by creating
events, scheduling events, and performing the computations directed by the sche-
duled events, all carried out in the order established by the semantic framework to
obtain the intended result. The parallelism between the continuous assignments and
always statements in this example is broken down into ordered discrete events. Thus,
in this case, the parallelism is unrolled into a sequential order as directed by the
occurrence of events. In other cases, true parallelism may exist between statements,
allowing indeterminate order of statement execution and values of variables. ut

Another important facet of SystemVerilog is Programming Language Interface
(PLI) (or its newer version VPI) described in the LRM, which provides an interface
from the evaluation of language constructs to the external environment using other
programming languages or scripts. The interface is used to inspect values, change
values or get callbacks. There are certain points in the semantic structure where
specific groups of VPI functions are allowed to take place. We, however, do not
delve into the details of that allotment. The rest of the semantics are largely
unaffected by its exclusion.

3.2 The Simulation Engine

There are two types of events that help explain the event-driven simulation engine:
update event and evaluation event. This notion of event should not be confused with
event construct in SystemVerilog which is a data type used to name and trigger
events. An update event occurs whenever there is a change in the value of a variable.
The update event may trigger other activities and events dependent on the change in
value.

3.3 Bringing Order to Events 47

Example 3.2. In Example 3.1, the nonblocking assignment

allow <= req;

causes an update event if the value of variable allow changes as a result of the
assignment. There are many language constructs whose execution is tied to the
occurrence of update events. The continuous assignment statement

assign tmp = allow && gnt1;

in Example 3.1 is executed when and only when either the update event on allow

or preGrant occurs. The always procedure

always @(posedge clk) allow <= req;

executes when and only when the event posedge clk occurs. ut
The execution of a statement may not materialize immediately, but be scheduled

as an evaluation event in a queue corresponding to a region for execution, based
on the type of the statement and its context. By scheduling evaluation events in
various queues and by executing them later from the queues, the intended order
between statements is accomplished. The execution of an evaluation event can result
in further update events or evaluation events which are again scheduled. The creation
and execution of these events, together with their scheduling in queues is what keeps
the simulation engine running. As long as there are scheduling events left to process,
the engine keeps executing statements and progresses through time. The simulation
ends only when there are no more events left in the queues.

Example 3.3. When the evaluation event for the always procedure

always @(posedge clk) allow <= req;

is executed, an evaluation event for the nonblocking assignment allow <= req;

emerges and gets scheduled. When this evaluation event for the nonblocking
assignment is executed, an update event for variable allow is issued. ut

3.3 Bringing Order to Events

Now, we can see the important role of queues in the assembly of discordant events
into a predictable simulation execution model. First, we focus on the execution
of statements specified in the context of design code, rather than assertions, or
programs that represent testbench code. Events issued from the design code are
grouped in a region set called the Active region set. We elaborate upon the notion of
a region set, including the Active region set and other region sets, in Sect. 3.5. For
now, we limit our discussion to the activities within the regions of the Active region
set and to the queues they contain.

The queues represented in Fig. 3.1 belong to the regions from the Active region
set. There are three principal regions and queues corresponding to them in this
region set: Active region, Inactive region and NBA region.

48 3 SystemVerilog Simulation Semantics

Active update
and

evaluation
events

Active queue Inactive queue NBA queue

Events from
#0

assignments

Events from
NBA

assignments

Fig. 3.1 The Active region set

As the name suggests, the Active region queue contains events pending for
immediate execution. Events in this queue may be executed in any order, implying
parallelism between events. After an event from the queue has been executed, such
as updating a variable value, it is removed from the queue. Initially at time 0, the
initial processes are scheduled in the Active region queue.

If a statement is encountered with #0 as the delay control, an evaluation event
for the statement is entered into the Inactive region queue. When all events from the
Active region queue have been executed with the queue becoming empty, the events
from the Inactive queue are transferred to the Active region queue, resulting in an
empty Inactive queue. The execution of the events from the Active region queue
resumes once again.

Finally, if the execution encounters a nonblocking assignment, the expression
on the right-hand side of the assignment is evaluated and an update event for the
variable on the left-hand side with the computed value is appended to the NBA
region queue. The events from this queue start execution only when the Active and
Inactive region queues are empty. Unlike the Active region queue, the events in
the NBA region queue are executed in the same order as they are entered in the
queue. Therefore, the sequential order of nonblocking assignments in a procedure
is replicated in the queue and those statements are executed in order.

Ordinarily, nonblocking assignments model register transfer statements triggered
by the clock derived from its enclosing always procedure. As a result, the register
stores the new value and propagates it. If there is a combinational logic driven by

3.4 Determinism and Nondeterminism 49

the register, its value is further propagated by the new update event entered in the
Active region queue. Algorithmically, the following steps are taken.

1. Execute events from the Active region queue. New events may be issued and
entered in the appropriate queues. Execute until all events are consumed.

2. Transfer events from the Inactive region queue to the Active region queue and
return to Step 1. Skip this step if there are no events in the Inactive queue.

3. Execute events from the NBA region queue. New update events issued from this
execution are entered in the Active region queue. Return to Step 1.

The above algorithm is iterated until there are no more events left in any queue
in the current time.

3.4 Determinism and Nondeterminism

As we saw in the previous section the order of event execution is not always
deterministic. The simulators normally will order the events in an optimal way to
avoid redundant computations, but one cannot rely on that. RTL should be well-
formed: the results of its simulation should be deterministic regardless of the actual
execution order of events.

Example 3.4. To illustrate the concept of determinism, consider the following
continuous assignments:

wire a, b, c, d;
...
assign a = b & c;
assign b = d;

Assume that nets c and d received new values. Then the continuous assignments
to a and b are scheduled for execution. The order of their execution is arbitrary.
If the assignment to a executes first, then it is scheduled for execution again after
execution of the assignment to b since its left-hand side depends on b. At the end of
the simulation step (assuming that the values of c and d do not change anymore)
a and b receive the same values regardless of the actual order of assignment
execution and update event processing. Normally, the simulators will first execute
the second assignment and then the first one to avoid redundant computations. ut

The determinism does not guarantee the absence of glitches. A glitch is a
situation when a signal retains the same value at the end of the simulation tick
as it has at its beginning, but the value changes somewhere in the middle of the
simulation tick.

Example 3.5. The following code may result in a glitch in the signal a.

wire a, b, c;
...
assign a = b | c;

50 3 SystemVerilog Simulation Semantics

Assume that the value of b changes from 1 to 0, and the value of c changes from
0 to 1. Since at the beginning of the simulation tick the values of b and c were
1 and 0, correspondingly, the value of a was 1. At the end of the simulation tick
(assuming no more value transitions for b and c), the values of b and c are 0 and
1, correspondingly, and therefore, the value of a remains 1. In the middle, however,
the situation may be different.

If both b and c change prior to evaluation of a or if c changes first, the value of a
remains unchanged during the entire simulation tick. If the order of evaluation is b,
a, c, a, then the first time a gets value of 0 and the second time it becomes 1 again.
In the latter case we have a glitch: though the initial and the final value of a is 1 in
this simulation tick, it is changed to 0 in the middle of the simulation tick. ut

If the RTL is not well-formed, the final result may depend on the evaluation order.
Such a situation is called a simulation race.

Example 3.6. The following code is an example of a simulation race.

logic clk, a, b;
...
always @(posedge clk) a <= b;

Assume that both b and clk transition from 0 to 1. If the value of b changes
before the change of clk, a will receive 1, the new value of b. If the value of b
changes after the change of clk, a will retain 0, the old value of b. Thus the final
value of a depends on the actual order of the evaluation of events. ut

3.5 Region Sets

The regions Active, Inactive and NBA are all confined to the Active region set. The
execution iterates over the queues in a region set until all events scheduled in any
of its region queues are executed. Certain events, however, may be scheduled in the
other regions.

The processing of events is sequentially ordered into distinct regions, where each
region manages and executes events that are scheduled in the region. The processing
proceeds from one region to the next and can iterate until no further processing is
needed in any region for the given time step.

We discuss the role of the following regions and region sets. Other regions are
not important for the understanding of assertion semantics.

1. Preponed region
2. Active region set
3. Observed region
4. Reactive region set
5. Postponed region

3.5 Region Sets 51

The processing of regions also takes place in the order as shown above.
One region differs from another because of the kind of events that are handled

by it. As we saw in the previous section, the Active region set handles events
from the design code. As we will explain below, concurrent assertion evaluation
is performed in the Observed region. An update event on a port connection to a
program schedules an evaluation event in the Reactive region set. Nevertheless,
events scheduled in other regions cannot be executed from a region which is
currently being processed. This makes a region safe from execution interference
of statements that belong to a semantically different region.

The Preponed region is a precursor to the time slot.1 No value changes or events
occur in this region. In most cases sampling of signal values used in concurrent
assertions is performed in the Preponed region as explained in Sect. 4.4.3. On the
contrary, the Postponed region is the tail end of the time slot meant for finishing
simulation tasks in this slot that do not include value changes or events. In this
region the action blocks for final assertions are executed. Both of these regions are
entered only once.

There are other important regions in the simulation engine to support System-
Verilog features: the Observed region and the regions belonging to the Reactive
region set.

The Observed region is meant for the evaluation of sequences, properties and
concurrent assertions. Signal values remain constant during the Observed region.
The evaluation mechanism and the queues that reside in this region are quite
different than in the Active region. Nevertheless, events originated in this region
do get scheduled into the Active and Reactive regions.

The Reactive region set executes statements from programs and checkers.
Programs are intended for writing testbenches, as external environments for designs,
feeding stimuli, observing design evaluation results and building tests to exercise the
design (see Sect. 2.5). This region set is a mirror image of the Active region set, with
similar events, regions, queues and statement execution to the Active region set. The
corresponding regions and queues are called Reactive, Re-Inactive, and Re-NBA.
These regions can also schedule events to the Active region.

The simulation engine processes one region at a time, and transitions from one
region to the next only after exhausting events and evaluations in a region. The order
of the movement between the regions is fixed as follows: regions from the Active
region set, the Observed region, and regions from the Reactive region set. The
iterative motion between the regions continues until there are no more events or
evaluation tasks left in any region. The regions and their order are depicted in
Fig. 3.2.

1We use terms time slot, time step and simulation step interchangeably.

52 3 SystemVerilog Simulation Semantics

Fig. 3.2 Three main regions and sets

Simulation keeps running until there are no more events to execute.

Example 3.7. To explain how simulation is performed across these regions,
consider module procReq processing requests and program test generating stimuli
for it.

1 module procReq (input logic req, gnt, clk);
2 logic allow;
3 wire proceed;
4 assign proceed = allow && gnt;
5 always @(posedge clk) allow <= req;
6 always @(posedge proceed) processData();
7 a1: assert property(@(posedge clk) req |=> proceed || !gnt);
8 endmodule : procReq
9

10 program test(input logic sync, output logic request, grant);
11 logic oldreq = 1’b0;
12 assign grant = oldreq;
13 initial begin
14 request = 1’b0;
15 for (int i = 0; i < 50; i++) begin
16 @(posedge sync);
17 oldreq <= request;
18 request <= $random;
19 end
20 end
21 endprogram : test
22

3.5 Region Sets 53

23 module top();
24 logic r, g;
25 logic clock = 1’b0;
26 always #5 clock <= !clock;
27 procReq dut(r, g, clock);
28 test tb(clock, r, g);
29 endmodule : top

Signal value changes ordered by regions until time 5 are shown in Table 3.1.2

See also Exercise 3.3.

Table 3.1 Signal value changes (Example 3.7)

Initialization

allow = X (Line 2), proceed = Z (Line 3),

req = X, gnt = X, clk = X (Line 1)

r = X, g = X (Line 24), clock = 0 (Line 25),

sync = X, request = X, grant = X (Line 10), oldreq = 0 (Line 11)

Time 0

Active region

clk = 0 (Line 1), proceed = X (Line 4), sync = 0 (Line 10)

Reactive region

grant = 0 (Line 12), request= 0 (Line 14)

Active region

gnt = 0, req = 0 (Line 1), proceed = 0 (Line 4)

Time 5

NBA region

clock = 1 (Line 26),

Active region

clk = 1 (Line 1), sync = 1 (Line 10)

NBA region

allow = 0 (Line 5)

Observed region

Assertion a1 evaluation. No failure detected (Line 7)

Re-NBA region

oldreq = 0 (Line 17),

request = 1 (Line 18, it is assumed that $random returns an odd number)

Active region

req = 1 (Line 1)

Time 10

� � �

2The LRM is ambiguous about net initialization: The default initialization value for a net shall be
the value Z. Our understanding is that in the beginning of simulation all nets are initialized with Z;
hence proceed initially assumes the value of Z. However, not all simulators implement the net
initialization this way.

54 3 SystemVerilog Simulation Semantics

ut
As we could see, the normal flow between regions: Preponed ! Active

! Inactive ! NBA ! Observed ! Reactive ! Re-Inactive ! Re-NBA !
Postponed often complicates by iterations between regions. For example, the
computations in the Reactive region may schedule a new event in the Active region.
It is also possible that the assertion evaluation in the Observed region is triggered
by events in the Reactive region. One such scenario is when an assertion clock is
modified in the Reactive region set.

Example 3.8. We will modify the code from Example 3.7 to generate the clock by
the program test, instead of the module top.

1 module procReq(input logic req, gnt, clk);
2 logic allow;
3 wire proceed;
4 assign proceed = allow && gnt;
5 always @(posedge clk) allow <= req;
6 always @(posedge proceed) processData();
7 a1: assert property(@(posedge clk) req |=> proceed || !gnt);
8 endmodule : procReq
9

10 program test(output logic request, grant, sync);
11 logic oldreq = 1’b0;
12 assign grant = oldreq;
13 initial begin
14 request = 1’b0;
15 sync = 1’b0;
16 for (int i = 0; i < 100; i++) begin
17 #5 sync <= !sync;
18 if (i % 2) begin
19 oldreq <= request;
20 request <= $random;
21 end
22 end
23 end
24 endprogram : test
25

26 module top();
27 logic r, g, c;
28 procReq dut(r, g, c);
29 test tb(r, g, c);
30 endmodule : top

Since the clock is generated in the Re-NBA region (Line 17), it schedules the
event in the Observed region which will be executed after the completion of the Re-
NBA region. Thus, the order of the simulation regions at time 5 in this case will be:
Reactive region set! Active region set! Observed region. See also Exercise 3.4.

ut

3.6 A Time Slot and the Movement of Time 55

3.6 A Time Slot and the Movement of Time

In Example 3.7, we noted that the events get scheduled at different times, such as
at time 0 and time 5. Each event is associated with a simulation time, which is the
time maintained by the simulator to account for the delays in the design. Without
the delays in the design, the simulation time will not advance and all events will
occur at time 0.

The time delays in the system are specified with a scale and a precision.
Nonetheless, time is discrete and there exists a global time precision which is the
smallest unit of time in the system being simulated. 1step denotes the smallest time
precision.

Example 3.9. In the module m below, the smallest unit of time (one step) is 1ns.

module m(...);
timeunit 1ns;
...

endmodule : m

ut
We have seen how the event queues and the regions establish the order of

processing within a time slot. The time within a time slot remains constant, and
thus, all events scheduled within a time slot refer to the same time. When all events
are processed for a time slot, the simulation control moves to the nearest time slot
containing scheduled events.

Example 3.10. Consider the program test declaration from Example 3.8.

program test(output logic request, grant, sync);
logic oldreq = 1’b0;
assign grant = oldreq;
initial begin
request = 1’b0;
sync = 1’b0;
for (int i = 0; i < 100; i++) begin

#5 sync <= !sync;
if (i % 2) begin
oldreq <= request;
request <= $random;

end
end

end
endprogram : test

When the execution reaches the statement #5, an evaluation event is scheduled
for a future time slot. For example, if the current time is 10, the next statement is
scheduled for time step 15 in the Reactive region set. When the simulation control
transitions to time 15, the scheduled event gets executed, etc. ut

56 3 SystemVerilog Simulation Semantics

The time advances only when the events of the current time slot are exhausted.

3.7 Simulation Semantics of Assignments

We briefly review the impact of assignments on scheduling events. We assume that
the assignments are executed in the Active region set. This happens, for example,
for assignments belonging to a module. The same rules apply to assignments
belonging to a program with an only difference that they are executed in the Reactive
region set.

• A continuous assignment schedules an update event in the Active region to update
the value of its left-hand side, whenever there is a change in the right-hand side
expression value.

• A blocking assignment without a delay executes immediately, and issues update
events for statements dependent on the new value of the left-hand side. An
assignment with 0 intra-assignment delay computes the right-hand side and
schedules an evaluation event in the Inactive region to make the assignment, issue
other update events if necessary, and continue the sequential execution from that
statement. For a greater delay, it schedules like for 0 delay in the Active region
for the future time.

• A nonblocking assignment schedules an update event in the NBA region to update
the left-hand side based on the current value of the right-hand side. For a delayed
statement, it schedules the event for a future time in the NBA region based on the
delay.

The event processing rules discussed in this chapter apply to the Active and
Reactive regions as explained with the use of their corresponding queues. In
the Observed region, only certain special statements are executed. Largely, the
evaluation of concurrent assertions is carried in the Observed region. Chapters 4
and 14 discuss assertion simulation semantics in more detail.

3.7 Simulation Semantics of Assignments 57

Exercises

3.1. Identify all potential cases of glitches and races in the following code. Assume
that clk changes at most once per time step.

module m (input logic in, clk);
wire w, not_w, w_or_not_w;
logic next_w, v, not_v, v_or_not_v, next_v;
logic onev = 1’b1, onew = 1’b1;
assign w = in;
assign not_w = !in;
assign w_or_not_w = w || not_w;

always @(posedge clk) begin
next_w <= w;
onev <= v_or_not_v;
onew <= w_or_not_w;

end
always_comb begin
v = in;
not_v = !in;
v_or_not_v = v || not_v;

end
a1: assert property (@(posedge clk) w_or_not_w);
a2: assert property (@(posedge clk) v_or_not_v);

endmodule : m

3.2. Explain why SystemVerilog requires that all assertion clocks tick at most once
per simulation cycle (= time step).

3.3. Continue Table 3.1 in Example 3.7 for time steps 10 and 15. Assume that in
time step 15 $random returns an even number.

3.4. Fill a table analogous to Table 3.1 for the code in Example 3.8.

Part II
Basic Assertions

Chapter 4
Assertion Statements

Language is a mixture of statement and evocation.

— Elizabeth Bowen

In this chapter, we describe SVA assertion statements:1

• Assert statements
• Assume statements
• Restrict statements
• Cover statements

The term assertion is overloaded in SVA; in a narrower sense it means an assert

statement, and in a broader sense it means any assertion statement listed above.
In this chapter, we use the term assertion in its narrow meaning. We indicate the
meaning explicitly when it is not clear from the context.

Assertion, assumption, and cover statements may be of the following kinds:
immediate and concurrent. Immediate assertions are further subdivided into simple
immediate and deferred. The deferred ones are of two kinds—observed and final.
They are used when filtering of 0-width glitches is needed in simulation. Restrict
statements may only be concurrent.

For convenience, we briefly recapitulate main results of Sect. 1.4, how different
kinds of assertion statements are checked in simulation and in formal verification.
We then describe basic simulation semantics for different kinds of assertion
statements. Their understanding is important to correctly choose the kind of
assertions in each particular case. Knowing principles of assertion simulation is also

1In SVA, there is also expect statement used mostly in testbenches, but we do not describe it in
this book.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__4

61

62 4 Assertion Statements

DUT

i1

im

o1

on

Fig. 4.1 DUT and its environment

important to correctly interpret simulation results on traces and waveform diagrams.
The simulation semantics for concurrent assertions outside procedures is discussed
in Sect. 4.4.6 and for procedural assertions in Sect. 14.5.

4.1 Assertion Kinds

Conventionally, the code representing the hardware design as the object of
verification is called Device Under Test (DUT), while the testbench and other
supplementary code is called environment, as shown in Fig. 4.1. For example, a
CPU as a DUT could have an environment consisting of a program generating the
stimuli, a chipset model and a memory model.

Assertions specify the desired behavior of DUT for checking. Black-box
assertions specify relationships between DUT inputs i1; : : : ; im and DUT outputs
o1; : : : ; om, while white-box assertions specify relationships between internal
signals.

As we mentioned in Sect. 1.3, in SystemVerilog there are two main kinds of
assertions:

• Immediate
• Concurrent

The immediate assertions are

• Simple
• Deferred

The deferred assertions can further distinguish whether to filter glitches that arise
due to statement execution in the active region, the so-called observed deferred
assertions, or arising also due to execution in the active and reactive regions, the
so-called final deferred assertions.

If not specified otherwise, in the rest of the book we refer to simple immediate
assertions as immediate, and to observed and final deferred assertions as deferred.

Assertions have the following syntax.

assertion ::= name: assert_keyword (assertion_body) action_block

The syntax for different types and kinds of assertions differs only by the keyword.
assert_keyword is assert for simple immediate assertions, assert #0 for

4.2 Immediate Assertions 63

observed deferred assertions, assert final for final deferred assertions, and
assert property for concurrent assertions. assertion_body is a non-temporal
expression for immediate and deferred assertions, and a temporal expression for
concurrent assertions. An action block contains code to be performed in case of
assertion success (pass action) and failure (fail action). Both pass and fail actions of
immediate and concurrent assertions (but not deferred) may be blocks with several
statements each. Restrictions apply to the statements that can appear in action
blocks of deferred assertions. If no fail action is specified with an assertion, an
$error system task is called with a default tool specific error message. Although
assertion name is optional, it is highly recommended to always specify it. The
significance of the name is that it gets reported by simulators, FV and debug tools.
If an assertion name is omitted, verification tools assign a tool-specific name to the
assertion. In that case it may be impossible to refer to the specific assertion using
assertion control tasks.

Always specify assertion names.

4.2 Immediate Assertions

Immediate assertions are the simplest kind of assertions. These assertions are
Boolean and unclocked, and they tightly follow the simulation flow. Immediate
assertions may be placed only in procedural code.

4.2.1 Immediate Assertion Simulation

Immediate assertions are akin to other procedural statements and behave like
procedural if statements. The assertion condition is evaluated each time the control
flow reaches the assertion. The evaluation is performed immediately with the values
taken at that moment for the assertion condition variables. If the assertion condition
is true, that is, it has a nonzero known value, the pass action is executed; otherwise,
when the condition is false, that is, it has a zero value, or its value is x or z, the
fail action is executed. Since the assertion condition is non-temporal, its execution
computes and reports the assertion results at the same time.

The region in which immediate assertions execute depends on where these asser-
tions are placed in the source code. From the definition of an immediate assertion,
it follows that normally in modules and in interfaces, the immediate assertions and
their action blocks are executed in the Active region. In programs, they are executed

64 4 Assertion Statements

Fig. 4.2 Immediate assertion

0 10 30 50 70 90 110 130 150 170 190

a

b

Fig. 4.3 Timing diagram for assertion a1

in the Reactive region (Sect. 3.5). Immediate assertions in programs and checkers
execute in the Reactive region.2

Figure 4.2 contains an example of immediate assertion a1, and the corresponding
timing diagram for the values of its expression variables is shown in Fig. 4.3. Recall
(Sect. 2.2.1.1) that the always_comb procedure executes unconditionally at time 0,
and note that at time 0 both a and b have the value 1’b0. Therefore, the pass action
is executed at time 0. The pass action increments counter a1_success and prints
a message a1: a and b have value 0. Because always_comb is sensitive to
the arguments of assertion a1, each time the value of either a or b changes, a
reevaluation of the assertion condition is prompted, followed by the execution of
the appropriate action block. Thus, the pass action is executed at time 50, 150, and
190, while the fail action block is executed at 90.

In practice, the pass action of assertions is seldom used as assertions are expected
to succeed. The success information may provide confidence at the beginning of
design and test development, but quickly becomes superfluous later on. The most
common way is to specify only a fail action to issue an error message:

a1: assert (a == b)
else $error("a1 failure: a = %b, b = %b", a, b);

2The LRM contains contradictory text that should be resolved in the subsequent revision: In Clause
17.5 it states that initial procedures in checkers can contain immediate assertions, but in Clause 17.2
it does not allow immediate assertions in checker body.

4.2 Immediate Assertions 65

1 assign a = ...;
2 assign b = ...;
3 always_comb a1: assert (a == b);

Fig. 4.4 Glitch in immediate assertion

4.2.2 Simulation Glitches

The code in Fig. 4.2 is not as straightforward as it looks; the way variables a and b

get their values greatly affects the behavior of assertion a1. Let us modify this code
by explicitly specifying the assignments of a and b. The resulting code is shown in
Fig. 4.4 where we deleted the assertion action blocks for convenience.

In this case, the continuous assignments and assertion a1 are executed in three
separate processes: each continuous assignment is a separate process by itself and
assertion a1 executes in the scope of always_comb. We had to place assertion a1

there, as immediate assertions are allowed only in procedural code. Consider the
assertion behavior at time 50. SystemVerilog does not impose any predefined order
of process execution for parallel processes such as the ones in this example, so let
us assume the following order:

• Line 1 is executed. a is assigned the value 1, b is still keeping its old value 0.
• Line 3 is executed. Because a and b at this point have different values, assertion
a1 fails, and an error message is issued.

• Line 2 is executed. b is assigned the value 1.
• Line 3 is executed again. Now the assertion passes, and no message is issued.

As a result, the user will think that the assertion failed at time 50, though
essentially it passed, and its failure was just a simulation glitch. Had we assumed a
different simulation order (Lines 1, 2, and 3), no assertion failure would be reported.

This example clearly shows that, due to their vulnerability to 0-delay simulation
glitches, using immediate assertions may be problematic. So, when should immedi-
ate assertions be used? From their simulation semantics it follows that they should
be used in the following cases:

• Debugging simulation results by traversing the simulation flow and detecting
situations such as glitches. However, as we pointed out earlier, immediate
assertions may only discover glitches when they manifest in simulation, and not
the real glitches in the circuit.

• When delay controls are specified that make the code impervious to glitches.
• In program testbenches which observe only the stable values of design variables

because programs execute in the Reactive region set.

In all other cases, we recommend to use deferred assertions.

66 4 Assertion Statements

Immediate assertions are sensitive to simulation glitches. Use them only when
you need to follow exactly the simulation flow, in program-based testbenches,
or when your code contains delay controls. In all other cases when unclocked
Boolean assertions are required use deferred assertions.

4.2.3 Effect of Short-Circuiting

Immediate assertions (simple and deferred) can be placed in functions. Functions
can be called in expressions involving logic operators. This may lead to some
unexpected results because of short-circuiting in the evaluation of the expressions.
Consider the following example:

function bit check3bits (bit [2:0] expr, value);
a2: assert (expr > value) else
$error("a2 failure: expr = %b, value = %b", expr, value);

return (expr > value);
endfunction : check3bits
assign combined = v && check3bits(x, 3’b1);

Suppose that both v and x become 0 at some simulation time step. The continuous
assignment is evaluated, but since the first operand v of && is 0, the simulator
determines that combined is 0 and by the rule of short-circuiting it does not need
to evaluate the function call. Therefore, the assertion is not evaluated either and the
error goes undetected. If the order of operands in the assignment were exchanged, as
in assign combined = check3bits(x, 3’b1)&& v; the error would be detected
because the first operand is always evaluated. A similar situation can arise when &&

is replaced by || and v takes the value of 1.

4.3 Deferred Assertions

The official name of deferred assertions is “deferred immediate assertions” since
they are a variant of immediate assertions. However, we will call them simply
“deferred assertions”, reserving the name “immediate assertions” for immedi-
ate assertions that are not deferred.

Deferred assertions are unclocked Boolean assertions, and they differ from
immediate assertions in the following ways:

• Deferred assertions come in two forms identified by the keywords assert #0

for observed deferred assertions and assert final for final deferred assertions.
In the rest of the book we refer to the latter simply as final assertions.

• Deferred assertions are not sensitive to simulation glitches.
• Deferred assertions may be placed both inside and outside procedural code.

4.3 Deferred Assertions 67

• Default reporting and the execution of action blocks of deferred assertions are
scheduled in the Reactive region in the case of observed deferred assertions and
in the Postponed region for the final deferred assertions.

• An action block of a deferred assertion may only be a subroutine call. The
contents of the body of the subroutine of final deferred assertions is restricted
to passive statements because the subroutine executes in a region that does not
allow any further generation of events in the current time step.

4.3.1 Deferred Assertion Simulation

Deferred assertions evaluate like immediate assertions, but the results are tentative,
contingent upon possible re-execution of the same assertion in the time slot. This
can happen, for example in Fig. 4.4 when the enclosing process of an assertion is
sensitive to variables with values that fluctuate before they stabilize in the Active
region. The immediate assertions shown in that figure would fire on every such
change if the expression a == b becomes false.

The difference between observed and final deferred assertions is in the extent of
glitch filtering. Observed assertions filter glitches that occur in a single scheduling
region set, Active or Reactive. The example in Fig. 4.4 illustrates a glitch occurring
in the Active region. In contrast, final assertions filter glitches that are created by the
interaction between Active and Reactive regions. Such a glitch can be created when
the assignment to a in Fig. 4.4 is made in the Active region (i.e., inside a module)
and that of b in the Reactive region (i.e., inside a program) in the same time slot.
In that case the glitch spans both regions and would not be filtered by the observed
deferred assertion.

The reporting of deferred assertions is delayed (hence their name), and
the deferred assertion actions are placed into a deferred assertion report queue
of the currently executing process. If a deferred assertion flush point is reached in
the process, the queue is cleared and thus no reports will be generated.

When a process in which a deferred assertion exists retriggers in the same time
slot, the results of the assertion, in contrast to immediate assertions, are not reported
immediately. Instead, depending on the kind of deferred assertion, reporting is
scheduled in the Observed region for observed assertions and in the Postponed
region for final assertions, pending further determination. If the process retriggers
in the same time slot before the Observed region, respectively Postponed region, is
reached, the previous result of the assertion is flushed from the deferred assertion
report queue. Therefore, the simulation control in the Observed region, respectively
Postponed region, sees at most one copy of the result of the assertion, which is then
said to mature. In the case of observed assertions, the result and if present the action
block subroutine of the matured entry are scheduled in the Reactive region and
executed in there. For final assertions, once the Postponed region is reached, each
pending report that has not been flushed from the deferred final assertion queue
matures and is executed.

68 4 Assertion Statements

1 module mod1(output b, ...);
2 assign b = ...;
3 ...
4 endmodule
5 module mod2(...);
6 wire a, b;
7 mod1(.*);
8 assign a = ...;
9 a2: assert #0 (a == b);

10 endmodule

Fig. 4.5 Observed Deferred assertion

Let us recall that a deferred assertion is evaluated as a result of a process
execution control reaching the location of the assertion. This linkage of an assertion
with the process is essential when determining whether to flush the assertion from
the deferred assertion report queue. When a process is retriggered it causes only
those previous entries of the assertion results to be flushed that are linked with the
process. To explain this, consider a function containing a deferred assertion. The
function can be invoked from two different processes in the same time slot, resulting
in a separate entry in the deferred assertion report queue for each process, but for the
same assertion. If an entry is later flushed it is determined according to the process
that initiated that action.

The following two examples revisit the example in Fig. 4.4 by replacing the
immediate assertion first with an observed deferred assertion and then with a final
deferred assertion. In the latter case, the scopes of the assertion and the assignments
are also indicated.

Example 4.1. Using observed deferred assertion as shown in Fig. 4.5.
Consider what happens at time 50 for the same simulation order as described in

Sect. 4.2.2.
Active region:

• Line 8 is executed. a is assigned the value 1, b is still keeping its old value 0.
• Line 9 is executed. Since a and b at this point have different values, the fail action

entry of the assertion a2 is placed into the deferred assertion report queue.
• Line 2 is executed and b is assigned the value 1.
• Line 9 is executed again. The previous fail action entry of this assertion is flushed

from the deferred assertion report queue, and the success action entry is placed
there instead. As the success action is void, effectively only the success result is
placed into the entry.

Observed region: The observed deferred assertion report queue entry matures.
Reactive region: All actions from the deferred assertion report queue are executed.
Since in our case the queue entry is without an action block, no actions are executed.
A tool may, however, choose to report a success result for a2.

4.3 Deferred Assertions 69

1 program prog(output b, ...);
2 assign b = ...;
3 ...
4 endprogram
5 module mod2(...);
6 wire a, b;
7 prog(.*);
8 assign a = ...;
9 a3: assert final (a == b);

10 endmodule

Fig. 4.6 Final Deferred assertion

As we can see, in spite of a glitch in simulation, this glitch does not affect the
behavior of deferred assertion a2. ut
Example 4.2. Using final deferred assertion as shown in Fig. 4.6.

Consider what happens at time 50 for the same simulation order as described in
Sect. 4.2.2.
Active region:

• Line 8 is executed. a is assigned the value 1, b is still keeping its old value 0.
• Line 9 is executed. Since a and b at this point have different values, the fail action

entry of the assertion a3 is placed into the deferred assertion report queue.

Reactive region:

• Line 2 is executed and b is assigned the value 1.

Active region:

• Line 9 is executed again due to a change of value in b. The previous fail action
entry of this assertion is removed from the deferred assertion report queue, and
the success action entry is placed there instead. As the success action is void,
effectively only the success result is placed into the entry.

Postponed region: The final deferred assertion report queue entry matures. All
actions from the deferred assertion report queue are executed. Since in our case
the queue entry is without an action block, no actions are executed. A tool may,
however, choose to report a success result for assertion a3.

As we can see, in spite of a glitch in simulation that spanned the Active-Reactive-
Active regions, this glitch does not affect the behavior of deferred assertion a3. If the
final assertion were replaced by an observed one, the glitch would not be filtered out
and the failure caused by a value change of a as well as the success caused by the
value change of b would be reported. ut

The above examples illustrate one case of flushing the results of deferred
assertions. There are other circumstances where the act of flushing is also needed.
In all, flushing should be perceived as unconditional when its enclosing process
encounters one of the following situations.

70 4 Assertion Statements

• Process, which is previously suspended due to a wait statement or an event
control, resumes after its wait statement or event control is enabled.

• Process is retriggered due to a value change of a variable in its sensitivity list.
• Process is explicitly disabled using the disable statement.

Since the deferred assertions are glitch-free, they are the preferable way
to express unclocked Boolean assertions in RTL. However, when the code has
event controls, the behavior of deferred assertions becomes unintuitive, and it may
result in missed failure reporting.

Do not use deferred assertions when the code has delay controls. Use
immediate assertions instead.

Use final deferred assertions instead of observed ones except when the action
block is required to execute some action that is not allowed in the Postponed
region.

Final deferred assertions are more robust in that their reporting will not change
when a portion of a module-based design is replaced by more abstract model in a
program. For example, as illustrated by the replacement of module mod1 in Fig. 4.5
by a program prog in Fig. 4.6.

4.3.2 Deferred Assertion Actions

The complex bookkeeping of deferred assertions explains the restriction imposed
on their actions that they may consist only of a single subroutine call. A subroutine
in SystemVerilog can be either a task or a function.

Example 4.3. The following observed deferred assertions are legal:

int err_cnt = 0;
task err(bit a, b, string s);
err_cnt++;
$error("%s failure: a = %b, b = %b", a, b);

endtask
da1: assert #0 (a == b)
else err("da1", a, b);

da2: assert #0 (a == b) $info("a and b have value %b", a);
da3: assert #0 (a == b) $info("a and b have value %b", a);
else $error("da3 failure: a = %b, b = %b", a, b);

da4: assert #0 (a == b);

4.3 Deferred Assertions 71

The following observed deferred assertions are illegal, as their fail actions
contain either more than one statement, or are not a subroutine call:

da5: assert #0 (a == b) else begin
err_cnt++; $error("p1 failure: a = %b, b = %b", a, b); end

da6: assert #0 (a == b) else ctr++;
da7: assert #0 (a == b) else
begin
$error("da7 failure: a = %b, b = %b", a, b);

end ut
If the above observed deferred assertions are replaced by final ones, then

assertion da1 becomes also illegal because the action block modifies the global
variable err_cnt.

Delayed execution of deferred assertions puts forth a question about which
values of the subroutine arguments are used during action execution. The answer
is twofold:

• If a subroutine argument is passed by value, the argument value is used at the
instant when the deferred assertion expression is evaluated.3

• If a subroutine argument is passed by reference, the argument value from the
reporting region is used. That is, in the Reactive region for observed assertions
and in the Postponed region for the final assertions.

Since system tasks $display, $error, etc. pass their arguments by reference,
it means that when these tasks are used with deferred assertions, the argument
values from the Reactive, respectively Postponed, region are printed. Although these
values in these region may differ from the values used during the deferred assertion
expression evaluation, in practice the values of variables representing actual design
signals remain the same, and thus the deferred assertion reporting provides accurate
reporting of signal values.

4.3.3 Standalone Deferred Assertions

Unlike immediate assertions, deferred assertions may also be placed outside
procedural code. In such cases, a deferred assertion is semantically treated as if
the assertion were enclosed within an always_comb procedure.

This was illustrated in Figs. 4.5 and 4.6. Explicit always_comb statement used
with the immediate assertion in Fig. 4.4 is not necessary. This feature of deferred
assertions makes their usage more intuitive and convenient.

At this point is it useful to point out that immediate assertions of any kind may
behave differently in an always_comb procedure and in an always @* procedure.

3This means that the value of the variable must be stored in the deferred assertion report queue
with the assertion identification.

72 4 Assertion Statements

In both cases the sensitivity list is inferred, but the inference is different leading to
potentially different behavior of the assertions:

• always_comb executes at time 0, while always @* will execute only when
triggered by a value change of a signal in the sensitivity list. Consequently, an
assertion may fire at time 0 in the former case, but not in the latter.

• always_comb is sensitive to changes of static variables read inside a function,
while always @* is not. Therefore, an immediate assertion inside a function may
not fire in the latter case unless the variables read in the assertion are among the
arguments of the function.

• Variables that are both read and written in an always_comb procedure do not
appear on the implicit sensitivity list while in always @* they do. Therefore, an
assertion that refers to such variables in an always_comb procedure may not fire.

In RTL design code use always_comb to model combinational logic and if
needed provide checking using deferred assertions.

4.3.4 Effect of Short-Circuiting in Deferred Assertions

Short circuiting effects on deferred assertions can be even more non-intuitive than
on simple immediate assertions. The following code is similar to that in Sect. 4.2.3
except that an observed deferred assertion is used:

function bit check3bits (bit [2:0] expr, value);
a2: assert #0 (expr > value) else
$error("a2 failure: expr = %b, value = %b", expr, value);

return (expr > value);
endfunction : check3bits
assign combined = v && check3bits(x, 3’b1);

Suppose that at some simulation time v became 1 and x became 2. The conti-
nuous assignment is evaluated, the assertion passes and is enqueued in the deferred
assertion result queue. Later in the time step, v and x change to 0. The continuous
assignment is re-evaluated and the result of the previous execution is flushed.
Since v is 0, the simulator determines that combined is also 0 and by the rule
of short-circuiting it does not need to evaluate the function call. Therefore, the
assertion is not evaluated either and neither success nor failure is reported in
the Reactive region. If the order of operands in the assignment were exchanged, as
in assign combined = check3bits(x, 3’b1)&& v; the error would be detected
because the first operand is always evaluated. Alternately, && can be replaced on
scalar bits by & (a bitwise “and”) in which case short-circuiting does not apply.

4.4 Concurrent Assertions 73

4.4 Concurrent Assertions

Concurrent assertions have the same format as the immediate simple and deferred
ones, however, their action blocks are not limited to subroutine calls as in the case
of deferred assertions. The action blocks may contain any statements and their body
may have a more complex structure:

concurrent_assertion_body ::=
[clocking_event] [disable iff (reset)] property

Here, the square brackets are not part of the syntax, they show that the corresponding
constructs are optional.

Example 4.4. The following concurrent assertion

a1: assert property (@(posedge clk)
disable iff (rst) a |-> nexttime[2] b);

is controlled by clocking event posedge clk and has a disabling condition rst.
The assertion property is a |-> nexttime[2] b. ut

Like immediate assertions of any kind, concurrent assertions can be used inside
modules, interfaces, programs and checkers. They can be placed:

• in always procedures
• in initial procedures
• standalone (also called static)—outside any procedure

For an assertion placed in either of the two procedures, it gets evaluated only
when the control point reaches the assertion statement. Commonly, an assertion is
placed in an initial procedure with the intention of evaluating the assertion only
once. For example, assertion a1 checks that ready is low at the first tick of the
clock:

initial a2: assert property (@(posedge clk) !ready);

In other cases, the assertion is monitored continuously: at each tick of its clock.
For example, assertion a3 checks that ok is high at every tick of the clock:

a3: assert property (@(posedge clk) ok);

Or, an assertion monitored continuously can be placed in an always proce-
dure as:

always @(posedge clk) begin
d1 <= i1 | i2 ;
a4: assert property (d1 |=> i3 | i4);
dout <= f_ecap(d1);

end

Procedural assertions embedded in always procedures are discussed in detail in
Chap. 14. Their use in checkers is discussed in detail in Chap. 9 and in Chap. 24.

74 4 Assertion Statements

Assertions can be viewed as an observer machine that produces pass/fail output.
This would be the case when assertions are included as part of the design in
emulation or in formal verification (see Chap. 21). In simulation, however, a
different view can be taken that is more suited for understanding the assertion
behavior and debugging. In this view, an assertion is considered as a machine that
issues an evaluation attempt or transaction at every tick of the leading clock of
the assertion (while it is enabled) and ends by its success or failure. Each such
transaction thus has a certain duration in time and can be controlled and analyzed
separately from other such evaluation attempts. This chapter discusses this attempt-
based view of assertion evaluation in simulation and examines efficiency issues
connected with this view.

4.4.1 Simulation Evaluation Attempt

To explain the notion of a simulation attempt, let us consider the following assertion:
a1: assert property(@(posedge clk)a ##1 b);

In this case the assertion has only a single clock that determines the instants at
which the assertion evaluation progresses. This is also the so called leading clock of
the assertion. When later we discuss assertions that refer to multiple clocks, the one
clock among them that starts the evaluation attempts (there can be only one such
clock in SystemVerilog Assertions) is also referred to as the leading clock.

The clocking event is the rising edge of clk which is also the assertion leading
clock. In simulation, the assertion will observe the values of signals a and b starting
at every tick of posedge clk. Thus, at clock tick t the evaluation of a is performed,
and if the result is true, it is followed by the evaluation of b at the next tick, t C 1. If
either a==0 at t or b==0 is true at t C 1, the evaluation starting at t fails at time t or
time t C 1, respectively. However, if both a==1 at t and b==1 at t C 1 are true, then
the evaluation that started at t succeeds at t C 1. An evaluation starting at clock tick
t is independent of the evaluations starting at all other clock ticks. Consequently,
the evaluation result of the attempt at t is independent of the results of attempts at
all other clock ticks, and is thus called an evaluation attempt (starting at tick t).

Each such attempt has a start time corresponding to the simulation time of the
leading clock tick, and an end time corresponding to the time of the clock tick at
which the evaluation attempt either succeeds or fails. Furthermore, several attempts
starting at different times may be under evaluation at the same time in a sort of
pipeline fashion. For instance in our simple example, if a and b were true for several
clock ticks, there would be two concurrent attempts. If the sequence definition
spanned more than two cycles, more than two attempts could independently be
evaluated at the same time.

4.4 Concurrent Assertions 75

An evaluation attempt has a start time and an end time. The end time may
also be infinite, but in simulation bounded by the extent of the simulation.
Evaluation of more than one attempt may be in flight at the same time.

If an assertion is always enabled, then there will be a series of evalua-
tion attempts, starting at every tick of the leading clock. This is the case when
the assertion is placed outside any procedure. However, if it is placed in an always
procedure, then the start of an attempt is also controlled by the execution of the
body of the always procedure reaching the position of the assertion. Furthermore,
if an assertion is placed in an initial procedure, there will be only one evaluation
attempt starting at the first tick of the leading clock.

We can thus see that a concurrent assertion outside a procedure will execute
“always”, inside an initial procedure it will execute once, and inside an always

procedure it may execute more than “once”. This is to some extent different
from the more classical interpretation of assertions that are not part of a design
language (e.g., in PSL). There, unless an explicit top-level always operator is
specified in the assertion, the evaluation only starts at the first clock tick. For users
who have been using PSL and plan to use SystemVerilog assertions, care must
be taken not to include this top-level always operator, because it could lead to
some performance penalty in simulation, although the behavior remains correct as
illustrated in Example 4.5.

Example 4.5. Operator always as a top-level property in an assertion.

module m;
bit clk, a, b;
default clocking ccc @(posedge clk); endclocking
a_always: assert property(always (a ##1 b));
//...

endmodule

Assertion a_always does not make practical sense for the following reason: it
will start an evaluation attempt at every tick of it clock. The top-level operator is
always, and thus in each such attempt it will redundantly fork off a new version
of the always operator to perpetually check for every pair of consecutive values of
a and b. Unless the simulator can detect this situation and do something about it,
there may be an ever increasing number of evaluation attempts that never terminate,
causing a heavier and heavier burden on the simulator. See also Sect. 6.3.2. ut

Example 4.6. The following two assertions provide an interesting illustration of the
meaning of an evaluation attempt.

module m;
bit clk, a, b;
a1: assert property(@(posedge clk) a |=> b);
initial
a2: assert property(@(posedge clk) always (a |=> b));

endmodule

76 4 Assertion Statements

Assertion a1 states that if a is true then it must be followed by b true at the
next clock tick. Since the assertion is not in any procedure, it will evaluate attempts
starting at every clock tick.

The body of assertion a2 also states that if a is true then it must be followed by b

true at the next clock tick. However, since a2 is in an initial procedure, there will be
only one attempt started at the first clock tick, but then due to the always property
operator it will evaluate a |=> b continuously starting at every clock tick.

Is there a difference between the two assertions? If we are concerned about the
first failure that may occur during a simulation, i.e., a being true at a clock tick
followed by b false at the next clock tick, then there is no difference in reporting
the failure. However, if we wish to detect any subsequent failures or we wish to
know when the failing sequence of a and b started, then assertion a1 provides this
information while a2 may not. This is because a2 runs only one attempt, and if
a |=> b fails somewhere it is a failure of always and thus a failure of only that
attempt. In the case of a1, the failing evaluation attempt of a |=> b will be reported
with its start and end times. Thereafter, the assertion evaluation continues and may
report other failing attempts. ut

4.4.2 Clock

Concurrent assertions must be controlled by a clocking event, or clock and all
the assertion evaluation attempts are synchronized with this event. Subexpressions
of the property expressions may have their own clocking events. Multiclocked
properties are relatively rare, and we postpone their description until Chap. 12. For
now, we assume that the subexpressions of the assertion property expression do not
use a different clock.

Since concurrent assertions are clocked, the main assertion clock must be present
in the assertion. This clock either should be explicitly specified or inferred from the
context: from an event control in the surrounding always or initial procedure, or
from default clocking. We discuss in detail clock inference rules in Sects. 12.2.2
and 14.2.

All signal values participating in the property expression are sampled at the
assertion clock tick only, and their values between the clock ticks are completely
ignored. For example, the assertion

a1: assert property (@(posedge clk) a);

passes for the signal waveforms shown in Fig. 4.7. Although a is low between time
55 and 65, this is considered to be a glitch and is ignored, because the values of a
are sampled on posedge clk, i.e., at times 10, 20, etc.

The role of a clock in concurrent assertions is to convert the continuous time into
the discrete one. This is important since SVA temporal operators are defined for
discrete time.

4.4 Concurrent Assertions 77

10 20 30 40 50 60 70 80 90 100

clk

a

Fig. 4.7 Signal glitches

10 20 30 40 50 60 70 80 90 100

clk

en

a

Fig. 4.8 Gated clock

The clocking event follows standard SystemVerilog semantics, and it
is based on the clock signal changes: posedge clk triggers when clk becomes
1, negedge clk triggers when clk becomes 0, clk triggers any time when clk

changes value, and edge clk triggers when clk changes to 0 or to 1.4

For example, the assertion

a2: assert property (@clk a);

does not mean that a is checked each time when clk is high, but rather each time
when clk changes.

Gated Clock

An assertion clock may be gated. For example, the following assertion has a gated
clock which is active only when en is high:

a3: assert property (@(posedge clk iff en) a);

When en is low clock ticks are ignored. For example, this assertion passes in the
case shown in Fig. 4.8 because clk is disabled while a is low until time 55.

4clk and edge clk behave the same way when clk is of type bit, but they behave differently
when the type is logic.

78 4 Assertion Statements

1 module top;
2 bit sys_clk;
3 global clocking GCLK @(edge sys_clk);
4 endclocking
5 // code to animate sys_clk in simulation
6 ...
7 mod1 mod1_inst();
8 mod2 mod2_inst();
9 endmodule

10 module mod1();
11 logic a, b;
12 ...
13 m_check m_check_inst(a, b);
14 endmodule
15 module mod2();
16 logic x, y, clk;
17 global clocking @(posedge clk);
18 endclocking
19 ...
20 m_check m_check_inst(x, y);
21 module m_check(input logic a, b);
22 a_simple: assert property (@$global_clock a |=> b);
23 endmodule

Fig. 4.9 Global clocking declaration

Global Clocking

SystemVerilog provides the capability to specify a clocking event for the entire or
parts of the elaborated model as the primary system clock, called also global clock.
This is done with a global clocking declaration, which is a special form of clocking
block declaration. Its purpose is to provide relation to the primary system clock
used in formal verification and emulation. There can be several global clocking
specifications in the design affecting different parts of the design hierarchy, but at
any hierarchical level at most one of them is effective and can be referred to using
the $global_clock system function.

Figure 4.9 illustrates the syntax of a global clocking declaration. One global
clocking is specified in Line 3 within the module top. This declaration says that
the event edge sys_clk is the primary system clocking event for the underlying
hierarchy until another global clocking declaration is encountered (if any). Since
the model has a global clocking declaration, the system function $global_clock

may be used to reference the system clocking event. Such a reference appears in
Line 22. In this model, module m_check is instantiated in mod1 and in mod2. In the
instance mod1_inst $global_clock resolves to the global clocking in the nearest
parent module which is top and behaves the same way as the hierarchical reference
top.GCLK. However, in the instance mod2_inst, $global_clock resolves to the
hierarchically nearest specification in Line 17 within the module mod2. It behaves

4.4 Concurrent Assertions 79

as posedge top.mod2_inst.clk. In this example, the module m_check sees a
different primary system clock depending on where the checker is instantiated in
the design.

Global clocking name is optional, and GCLK in Line 3 could be omitted as shown
in Line 17.

A common purpose of declaring a global clock is to specify the primary clock for
formal verification. The ticks of the primary clock are at the finest granularity of time
in a formal model, and the global clock is assumed to tick forever. Global clocking in
formal verification is discussed in Chap. 21. For consistency with simulation, it is
also recommended that in simulation all events be synchronized with the global
clock. Nevertheless, the simulator is not required to check this property of the global
clock.

The previous SystemVerilog Language Reference Manual (LRM) from 2009 [5]
allowed a single non-hierarchical specification of global clocking. This however
turned out to be insufficient in the context of System on Chip designs where different
subsystems—Intellectually Property blocks may come from different providers and
have their own global clocking declaration. The 2012 LRM [8] corrected this
weakness and provided a way to specify a hierarchical global clocking as illustrated
in Fig. 4.9. Designs that used the 2009 interpretation of global clocking may have
to be slightly modified to conform to the new rules. In particular, global clocking
declared in an autonomous top-level module without any underlying hierarchy will
not be visible in any part of the design.

In the presence of global clocking, a number of sampled value functions may be
used that are synchronized to the global clock. These are discussed in Sect. 7.2.2.
The global clocking declaration also defines a specific event to be referenced by
$global_clock and to govern the global clocking sampled value functions in
simulation. Global clock use cases are examined in subsequent chapters.

4.4.3 Sampled Values for Concurrent Assertion

In simulation, all values of variables appearing in a concurrent assertion used
sampled values of the variables. In most cases, such as static design variables, the
sampled value is the value of the variable in the Preponed region as explained
in Sect. 3.5. It means that concurrent assertions use the values of signals at the
beginning of the simulation step in which the clocking event occurs. Assertion
value sampling makes concurrent assertions insensitive to simulation glitches. The
assertion body is evaluated using values collected in the Preponed region. The action
blocks are executed in the Reactive region.

One should be aware of this peculiarity of concurrent assertions to correctly
analyze their behavior in timing diagrams and simulation traces. Since the assertion
action blocks are executed in the Reactive region, the signal values used in the action
blocks may be inconsistent with the sampled values of the signals used in the
assertion. To remedy this, the sampled value of the variables should be used

80 4 Assertion Statements

0 10 30 50 70 90 110 130 150 170 190

clk

a

b

Fig. 4.10 Timing diagram for assertion a2

explicitly by calling system function $sampled in the action blocks, as explained
in Sect. 7.2.1.1.

Example 4.7. Below, we reuse the example from Sect. 4.2.1 by substituting imme-
diate assertion by a concurrent one.

a2: assert property (@(posedge clk) a == b)
begin
a2_success++;
$info("a2: a and b have value %b", a);

end
else begin
a2_failure++;
$error("a2 failure: a = %b, b = %b", a, b);

end

The timing diagram with the addition of the clk waveform is reproduced in
Fig. 4.10.

The pass action of assertion a2 executes at times 10, 30, 50, 70, 90, 170, and
190. Its fail action executes at times 110, 130, and 150. As an example, consider
assertion status at time 90. Assertion a2 samples values of signals a and b in the
Preponed region, that is before the value of a changes. Both a and b at time 90
have the sampled value 1, the assertion passes at that time, and its pass action
is executed; counter a2_success is incremented by one, and the message a2: a

and b have value 0 is printed. Yes, it is 0 that is printed, not 1 because the
action blocks of concurrent assertions are executed in the Reactive region, and
the value of a there is already 0. The message is misleading, since the assertion
uses the old value of a, while its action block uses the new one! To correct this,
we should explicitly specify the sampled values of a and b in the action blocks:
$info("a2: a and b have value b", $sampled(a)) in the pass action block,
and $error("a2 failure: a = %b, b = %b", $sampled(a), $sampled(b))

in the fail action block. ut
There are several exceptions to the general rule of sampling signal values in

concurrent assertions, such as the sampled values of automatic variables, local
variables and active free checker variables, and in common assertion usage the

4.4 Concurrent Assertions 81

assertion main reset expression (the argument of disable iff statement) which
is never sampled as explained in detail in Sect. 13.1.1. Sampling of variables is
explained in detail in Appendix A.

The value of the main assertion reset is not sampled in concurrent assertions.

4.4.4 Reset

Usually, we are interested in checking an assertion only when the reset signal
is inactive. disable iff operator is used to specify the reset expression of the
assertion. If the main assertion clock is explicitly specified, disable iff should
immediately follow it. If the assertion clock is omitted, disable iff should be the
first operator in the assertion body. There may be at most one disable iff operator
in the whole assertion.

If the disable condition is true between the start of an evaluation attempt in the
Observed region and the end of the evaluation attempt then the overall evaluation of
the property results in disabled. The evaluation attempt is discarded (neither success
nor failure). Such attempts are called disabled. The reset is asynchronous, in the
sense that it is monitored at every time step, and not only at the ticks of the assertion
clock. Therefore, it also makes it sensitive to 0-width simulation glitches. The
sensitivity can be removed by applying $sampled function to the disable expression
(or its component variables). This makes the disable condition insensitive to such
glitches like the body of the concurrent assertion.

Example 4.8. Consider assertion a1

a1: assert property(@(posedge clk) disable iff (rst)
req |-> nexttime[2] ack);

with the timing diagram shown in Fig. 4.11.
In this example, there are three assertion evaluation attempts beginning at times

20, 40, and 70 that satisfy the antecedent signal req.5 First two of them are disabled,
and therefore the assertion does not fail even though there is no ack received. The
last attempt is normal, and it succeeds because ack is received in two cycles after
req is issued. Refer to Chap. 13 for detailed discussion about assertion resets. ut

As we mentioned, the disable iff expression acts asynchronously. Its eva-
luation goes on evaluating regardless of the occurrence of the clock tick of the
associated assertion. And, should it evaluate to true, all evaluation attempts of that
assertion that are “in flight” are declared disabled.

5One could be tempted to say that the attempts begin at times 15, 35, and 65, but recall that the
attempts are synchronized with the rising edge of the clock.

82 4 Assertion Statements

10 20 30 40 50 60 70 80 90 100

clk

rst

req

ack

Fig. 4.11 Assertion with reset

Example 4.9. An example of disable iff.

module reqgen(input logic busy, clk, rst, output logic req);
wire idle;
assign idle = !busy;
always @(posedge clk or posedge rst) begin
if (rst) req <= ’0;
else req <= !busy;

end
req_when_idle: assert property (
@(posedge clk) disable iff (rst) idle |=> req)

$display("req_when_idle completed");
endmodule: reqgen

In the usual way, assertion req_when_idle is scheduled in the Observed
region as a result of the occurrence of its clock (posedge clock) in the Active
region. None of the signals in the assertion expression, namely, idle and req,
have any effect on the assertion outside the time slots in which the clock tick
occurs. The disable iff expression (rst) is an exception to this general rule.
req_when_idle is disabled in the time slot when signal rst becomes true. Its action
block is scheduled in the same Reactive region. ut

Unlike other expressions in the body of a concurrent assertion, the
disable iff expression is not sampled and can affect the result of the
assertion from any scheduling region in which it becomes true.

4.4.5 Boolean Expressions

Boolean expressions are elementary building blocks for assertions. There are two
places in an assertion statement where Boolean assertions are used:

4.4 Concurrent Assertions 83

• operands of property and sequence operators,
• argument of disable iff as the top-level assertion reset or of default disable.

As we saw in the previous sections, Boolean expressions as the operands of
property and sequence operators use the sampled values of variables, while as the
arguments of disable iff or default disable they use the current values of the
variables.

A Boolean expression is composed of SystemVerilog expressions, but with some
restrictions on the operators, variables and their types.

Boolean expressions used in concurrent assertions must satisfy the following
constraints:

• The resulting expression type is cast-compatible with an integral type. Integral
data types include integer data (int and integer), packed array, packed structure,
packed union, enum variable, or time variable.

• Non-static class properties and methods are not referenced.
• Evaluation of the expression has no side effects. For instance, unary increment

and decrement, and binary assignment operators such as ++, --, +=, -= may
not be used.

• chandle.6

• Functions called in Boolean expression may not have output or ref formal argu-
ments (const ref is allowed.) Functions must not preserve any state information
from call to call.

Arrays are commonly compared in the subexpressions of a Boolean expression,
such as

logic [15:0] aA [4], aB[4];
a1: assert property (@(posedge clk)(aA == aB));

Elements of dynamic arrays, queues, and associative arrays accessed in an
assertion must exist within the scope of the assertion until the assertion expression
evaluation completes.

A variable in any subexpression of a Boolean expression, in general, must be
declared as static. The static variable declared in a task, clocking block, module,
program, or interface can be referenced. Limited use of automatic variables is
allowed in procedural concurrent assertions as explained in Sect. 14.3.

4.4.6 Event Semantics for Concurrent Assertions

Let us now consider a concurrent assertion which is not embedded in procedural
code and decompose the assertion execution into various kinds of essential computa-
tional steps in the event semantic framework described in Sect. 3.5 (the triggered

6chandle is a data type used to represent storage for pointers passed to SystemVerilog from C
code.

84 4 Assertion Statements

sequence method signals that the end of a sequence has been reached, and it is
described in Sect. 11.2.1).

sequence ack; @(posedge clk)enable ##[1:10] end_ack;
endsequence
a1: assert property (@(posedge clk)

req |-> busy until ack.triggered)
else $error("Assertion a1 fails");

We can subdivide the activity as follows:

1. Sample signals enable, req, end_ack, and busy which are needed for concur-
rent assertion evaluations.

2. Detect the occurrence of clock @(posedge clk), since sequence ack and
assertion a1 evaluations are activated by the clock.

3. Start a new attempt for sequence ack.
4. Determine whether there is a match for sequence ack.
5. Start a new attempt for assertion a1.
6. Resume evaluation of the previous attempts for this clock tick.
7. For an attempt of a1 resulting in a failure, schedule the action block execution in

the Reactive region.
8. For an attempt of a1 resulting in a success, report a success.
9. Execute action blocks.

These steps are taken in specific regions. Each region contributes to the execution
of concurrent assertions as shown in Fig. 4.12.

Normally, the detection of an assertion clock occurs in the Active region. What
sets a concurrent assertion apart from an immediate assertion is that the former is
triggered by its clock. Consequently, its evaluation resumes at the arrival of the clock
and gets suspended at the end of the time slot in which the clock occurs.

Let us now consider assertions embedded in an always procedure. Beside the
clock, the new attempts of procedural concurrent assertions are bound to the
procedural context in which they are specified. For instance,

function bit f1(bit arg);
//...
endfunction
always @(posedge e1) begin: B1
a <= b + c ;
if (c1_enb)
a2: assert property (f1 (a) ##2 f1(a));

dout <= f1(a);
end

An evaluation attempt of assertion a2 can only be initiated if the simulation
control reaches the statement. In this case, it means that,

4.4 Concurrent Assertions 85

Fig. 4.12 Assertion processing in regions

1. Event (posedge e1) occurs, and
2. Signal ci_enb is true.

Otherwise, a new attempt of a2 is not fired off. However, the previous attempts
of a2 in progress are no longer coupled with (2); they are only sensitive to (1), hence
their evaluation is resumed should (1) occur.

Additional queues are called upon in the Observed region to schedule new
attempts and track other attempts that are in progress. Two queues, procedural
assertion queue and matured assertion queue are added in the Observed region to
dispatch the evaluation. The event semantics of procedural concurrent assertions is
described in greater detail in Chap. 14.

86 4 Assertion Statements

4.5 Assumptions

We have mentioned the existence and general meaning of assumptions in previous
chapters, here we provide a more detailed examination of assumptions.

4.5.1 Motivation

Figure 4.13 shows a module implementing a simple RAM.
When read is asserted, out is assigned the contents of the memory at address

addr. When write is asserted, data is written at address addr. This module also
contains assertion stable_when_write checking that when write is asserted the
module output out does not change. The system function $stable (Sect. 7.2.1.4)
returns true when the current value of the signal is identical to its value at the
previous clock tick, and false, otherwise.

It looks like our design should satisfy this assertion, but if you try to formally
verify the model, you will discover that the assertion fails. Why? The answer
may be surprising: when read and write are asserted together, the value of out
may change. But how can it be? We know that read and write cannot be asserted
together, otherwise the design would not function properly. But how should formal
verification tools guess that this input condition is impossible?

As we can see from this example, to make the design work properly its inputs
should be appropriately constrained. These constraints are called assumptions, and
there is a special notation for assumptions in SVA. In our example, the following
assumption is missing:

Fig. 4.13 Simple RAM

4.5 Assumptions 87

mutex: assume final (rst || $onehot0({read, write}))
else $error("read/write contention");

Or alternately as a concurrent assumption

mutex: assume property (@(posedge clk) disable iff (rst)
$onehot0({read, write})) else $error("read/write contention");

This assumption reads that at all times signals read and write are mutually
exclusive, that is, they cannot have value 1 simultaneously. To express this, we use
the system function $onehot0 (Sect. 7.1.1) returning true when at most one bit of a
vector is 1.

Assumptions are an important part of a design specification. Although we illus-
trated a design specification in Sect. 1.2.1, Fig. 1.6 only with assertions, a real design
specification should have assumptions as well. Assumptions are also important for
ABV, as they document the conditions that guarantee proper functioning of the
module. It is difficult to underestimate the importance of assumptions in system
integration: if each module clearly specifies its interface, most integration errors are
discovered early as assumption violations.

4.5.2 Assumption Definition

The goal of assumptions is to constrain a system behavior. A system is composed
of the DUT (model) and its environment (see Sect. 4.1, Fig. 4.1). The system
behavior may be constrained either by constraining the DUT or by constraining
its environment. If the DUT is deterministic, as normally happens when it is
implemented in RTL,7 there is not much sense in constraining its behavior.
Therefore, assumptions are used to constrain the behavior of the environment.
Assertions and assumptions play dual roles—assertions specify the behavior of the
DUT and assumptions specify the behavior of its environment.

Syntactically assumptions are similar to assertions, but they use the keyword
assume instead of assert.

assumption ::= name: assume_keyword (assumption_body) action_block

Similar to assertions, assumptions may be immediate (keyword assume), deferred
(keyword assume #0 and assume final), and concurrent (keyword
assume property).

Immediate Assumptions. Figure 4.14 shows a typical example of an immediate
assumption:

7In this section, we limit our discussion to deterministic models; study of nondeterministic models
is postponed to Chap. 23.

88 4 Assertion Statements

Fig. 4.14 Immediate assumption

Note that in this case we do need an immediate assumption, the deferred version
would not work. Indeed, even if there is a simulation glitch, we should make sure
that divisor is non-zero.

Deferred Assumptions. We have seen an example of a deferred assumption in
Sect. 4.5.1, and we repeat it here for completeness:

mutex: assume final ($onehot0({read, write}))
else $error("read/write contention");

In this case, the deferred form is preferable as we want this assumption to be
standalone.

Concurrent Assumptions. The following is an example of a concurrent assumption
constraining sig to remain stable for two clock ticks whenever trig is 1.

stable_input: assume property (@(posedge clk) disable iff (rst)
trig |=> $stable(sig))
else $error("sig is not stable");

4.5.3 Checking Assumptions

Checking assumptions has its own specifics: assumptions play different roles in
simulation and in formal verification.

4.5.3.1 Assumptions in Simulation and Emulation

Handling assumptions in simulation and emulation is not different from handling
assertions. In simulation, it is checked that the constraints imposed by assumptions
hold. In case when these constraints are violated, an error is flagged.

In simulation keywords assert and assume are synonymous; their choice
emphasizes the verification intention. Assertions are used to check the DUT
behavior, while assumptions are used to check the environment correctness, that
is, the DUT input values are correct.

4.5 Assumptions 89

4.5.3.2 Assumptions in Formal Verification

Any specific DUT behavior may be described by a corresponding signal trace, a
sequence of all DUT signal values in time. This is what we see in simulation if we
request the dump of all DUT signals.8

In FV, assumptions are used to constrain the set of legal traces of a DUT,
that is, the assumptions are not checked in FV. The role of assumptions and
assertions in FV is absolutely different: assertion satisfaction is checked provided
that all assumptions hold.

Thus, in the example from Sect. 4.5.1, assumption mutex is used to keep
only those traces where read and write are not 1 at the same time. Assertion
stable_when_write holds for those traces, while it fails without this mutex

constraint.

4.5.3.3 Assumptions in Random Simulation

In the case where randomization is done only in the environment, for example, using
constraint solving SystemVerilog Testbench (SVTB), there is no difference between
random and deterministic simulation as far as checking assumptions is concerned.
However, when the DUT input stimuli are generated directly, the assumptions in
random simulation may act as constraints. Therefore, the role of assumptions in
random simulation is similar to their role in FV—to limit the legal traces of DUT.
But if in FV we consider all legal traces simultaneously, in random simulation we
generate only one legal trace.

Tools may eventually provide means for constraining simulations using assump-
tions, but it involves several difficult issues to be resolved and may imply some
restrictions on the form of the assumptions. See also the discussion on free variables
and assumptions in checkers used in random simulation in Sect. 23.3.

A distribution operator dist in SystemVerilog can be used in assumptions for
tuning them for random simulation. It is best to explain its usage on the following
example.

The assumption

m1: assume property (@clk a dist {1 := 2, 3 := 1, 4 := 5});

means that a may only get values 1, 3, or 4. If this assumption is used as a constraint
in a random testbench, the specified weights, or frequencies are taken into account.
In our example, a assumes values 1, 3, and 4 with the respective weights of 2, 1,
and 5.

If the distribution weight is omitted, 1 is assumed by default.

8In simulation all traces are, of course, finite. In FV, we can also consider infinite traces. This is
discussed in Chap. 21.

90 4 Assertion Statements

We are not going to further elaborate the distribution usage in assumptions as it
falls beyond the scope of this book.

In formal verification dist acts as inside operator, and the weight specifications
are ignored. It is also legal, though meaningless, to use distributions in assert and
cover statements, and they are also treated as inside operators there.9

4.6 Restrictions

Sometimes it is difficult to formally verify a block. It becomes necessary to verify
special cases separately and then combine them together. We can take an Arithmetic
Logic Unit (ALU) as an example. ALU can perform several commands, such as
addition, subtraction, arithmetic shift, etc. It thus makes sense to split the verification
process into several cases corresponding to the commands, i.e., we separately verify
addition, subtraction, etc.

To specify the case of addition it is natural to use an assumption, such as

m1: assume property (@clk opcode == OP_ADD);

where opcode is an operation code control variable in ALU, and OP_ADD means
addition.

This will do the job in FV, but in simulation this assumption is likely to fail
because the simulation test cases are not guaranteed to limit the ALU commands
to addition only. The workaround is to wrap such assumptions in ‘ifdef, which
makes the code less readable and dependent on the custom setup.

In SystemVerilog, there is a cleaner solution, called restriction. Other than the
keyword restrict, the restriction syntax is the same as the syntax of assertions and
assumption. Unlike assertions and assumptions, restrictions have only concurrent
form, and they cannot have action blocks:

restriction ::= name: restrict property(property);

Restrictions are treated as assumptions in FV, but they are completely ignored
in simulation. They are meant for limiting formal proofs to particular cases.
Consequently, the above example should be rewritten as:

r1: restrict property (@clk opcode == OP_ADD);

Since restrictions are ignored in simulation, using actions with them is meaning-
less, this is why the restriction syntax does not allow actions.

9It is conceivable that simulators could also check that the values of the expression in the dist
operator used in an assertion or cover satisfy the specified distributions at the end of simulation.

4.7 Coverage 91

4.7 Coverage

The last assertion statement cover has also been mentioned in previous chapters.
In this section, we provide general information about cover statements, while the
detailed discussion about coverage can be found in Chap. 18.

4.7.1 Motivation

Assertions and assumptions define how the DUT and its environment must behave.
It is also highly desirable to document how they can behave. When testing the
design, it is necessary to make sure that the tests cover important scenarios, and
different corner cases. This is achieved by functional coverage—a methodology to
specify the scenarios to be covered. For example, for the model shown in Fig. 4.13
it is useful to check the following scenarios:

• read is asserted.
• write is asserted.
• Both read and write are simultaneously deasserted.

The corresponding coverage statements are shown on Fig. 4.15

4.7.2 Coverage Definition

Cover statement is used to register when a specific scenario happens in the design.
It has the following syntax:

cover_statement ::= name: cover_keyword (cover_body) pass_action

Unlike assertions and assumptions, coverage statements have only pass action
which is executed when the coverage condition (scenario) is met. The corresponding
statistical information is reported by a simulator and is registered in the coverage
database. Like assertions and assumptions, coverage statements may be immediate,
deferred (observed and final), and concurrent.

Fig. 4.15 Coverage statements for simple RAM

92 4 Assertion Statements

Immediate Coverage. The immediate coverage statement acts like an if statement:
when the body expression is true, the pass action is performed. For example,
the following statement prints a message each time when the counter reaches its
maximal value:

c1: cover (ctr_max) $display("Counter reached its maximal
value");

Deferred Coverage. Deferred coverage is similar to immediate coverage, but it is
glitch-free (see Sect. 4.3). In the following example, the message is issued each time
the bus is active. It uses observed deferred cover, but it could also be a final observed
cover if glitches spanning entire time slots should be filtered out. bus_drivers is a
vector of wires driving the bus:

wire [15:0] bus_drivers;
c2: cover #0 (bus_drivers !== 16’bz) $display("Bus is active");

If a final deferred cover is used, the recording of hits in a coverage database by
the simulator would have to take place in the postponed region. The LRM is not
clear whether a change of state of a database is permitted in this region, even though
it does not generate or schedule any event.

4.7.2.1 Concurrent Coverage

There are two versions of concurrent coverage: property coverage and sequence
coverage. Property coverage has the keyword cover property, and its body may
contain an arbitrary property, as concurrent assertions and assumptions.

property_coverage_body ::=
[clocking_event] [disable iff (reset)] property

If an evaluation attempt is successful, the pass action is executed only once for
each evaluation attempt.

The sequence coverage has the similar syntax, but it has the keyword
cover sequence instead of cover property, and its body is limited to
a sequence. 10

sequence_coverage_body ::=
[clocking_event] [disable iff (reset)] sequence

Here, the pass action is executed at each sequence match.
The example in Fig. 4.16 illustrates the difference between the two forms.
The body of both statements is identical, the intention is to cover a scenario

when write followed by several (maybe zero) busy cycles is followed by a read.
But their behavior is different. For the trace shown in Table 4.1 c3 reports the hit

10See Chap. 6.

4.7 Coverage 93

Fig. 4.16 Concurrent coverage

Table 4.1 Stimuli for c3
and c4

Clock cycle write busy read

t 1 0 0

t C 1 0 1 0

t C 2 0 1 1

t C 3 0 0 1

only once per attempt—at time t C 2, while c4 reports the hit twice—at times t C 2

and t C 3.
In practice, property coverage is much more useful than sequence coverage. The

main use of sequence coverage is to react on each sequence match in the pass action
block to trigger some testbench actions.

For functional coverage collection use cover property statements.

4.7.3 Checking Coverage

Usually coverage is checked in simulation, but there is an added value to check
coverage in FV too.

4.7.3.1 Checking Coverage in Simulation

Checking coverage in simulation is somewhat similar to checking transaction
completion for assertions—the simulator reports when a given sequence of signals
happens. For example, for the cover statement

cover property(@(posedge clk) write ##1 read);

the simulator will report each time it detects write signal followed by read.
The simulators usually register successful completion of evaluation attempts in a

coverage database and collect the coverage statistics across available tests.

94 4 Assertion Statements

Table 4.2 Checking assertions in simulation and in FV

Assertion Simulation Formal verification

assert Check whether an assertion is vio-
lated on a given simulation trace

Check whether an assertion can be
violated while respecting all speci-
fied assumptions. If yes, may report
a counterexample

assume Check whether an assumption is vio-
lated on a given simulation trace
(same as for assertions)

Use as a constraint when check-
ing assertions and coverage points.
The assumption correctness is not
checked

restrict Ignore Use as a constraint when checking
assertions and coverage points (same
as for assume)

cover Check whether a coverage condition
is met on a given simulation trace

Check whether the coverage condi-
tion can be met while respecting all
specified assumptions. If yes, may
report a coverage witness

4.7.3.2 Checking Coverage in Formal Verification

In FV, the coverage condition (called also coverage point) is checked for its
feasibility, that is, whether it can be reached when all the assumptions are met. FV
tools either report that a coverage point cannot be reached, or provide a reachability
witness, as discussed in Sect. 20.1.

4.8 Summary of Checking Assertions

Table 4.2 summarizes checking SVA assertions in simulation,11 and in FV.

Exercises

4.1. What do assertions check?

4.2. Write four versions of an assertion checking that all bits of some packed bit
vector are set to 1: immediate, deferred observed, deferred final, and concurrent.
Explain the difference between them.

4.3. What is the purpose of assumptions?

11We ignore here the fact that assumptions may be used as constraints in random simulation. This
feature of assumptions is seldom implemented in commercial simulation tools.

4.8 Summary of Checking Assertions 95

4.4. Write four versions of an assumption stating that the signal parity checksum
is 0: immediate, deferred observed, deferred final, and concurrent. Explain the
difference between them.

4.5. What is the difference between assumptions and restrictions?

4.6. Is it possible to specify actions with restrictions? Why?

4.7. What is the purpose of cover statements?

4.8. What is the difference between assertions and cover statements?

4.9. What is the difference between property and sequence coverage?

4.10. Write the following statements:

• Two inputs of the block must be mutually exclusive.
• Two outputs of the block must be mutually exclusive.
• We will conduct our verification session only in case when two inputs of the block

are mutually exclusive.
• We want to check that two inputs of the block may be mutually exclusive.
• We want to check that two outputs of the block are not necessarily mutually

exclusive.

4.11. What is the difference between the following statements is simulation and in
formal verification:

• p1: assert property(@(posedge clk)a)$display("a is high");

• p2: assume property(@(posedge clk)a)$display("a is high");

• p3: restrict property(@(posedge clk)a);

• p4: cover property(@(posedge clk)a)$display("a is high");

• p4: cover sequence(@(posedge clk)a)$display("a is high");

4.12. Develop a small design that if simulated will illustrate a difference in
assertion firing between an observed deferred assertion and a final one having the
same Boolean expression.

Chapter 5
Basic Properties

Where there is no property there is no injustice.

— John Locke

Properties play a central role in SVA because they form the bodies of concurrent
assertions. A property is a temporal formula that can be either true or false on a given
trace.1 As explained in Sect. 4.5.3, by trace we understand a series of all DUT signal
values in time. Properties are interpreted over traces. In this chapter, we assume that
each point on the trace corresponds to a tick of the clock on which the property
is evaluated. This definition will not work for multiply clocked properties, but we
currently limit our consideration to singly clocked properties only. The more general
case is described in Chaps. 12, 13, and 22. Also, in formal verification (FV) we
may assume that all the traces are infinite, which corresponds to the case when the
property clock ticks infinitely many times. Of course, simulation traces are always
finite. We informally describe the property semantics here, and defer the formal
semantics of properties until Chap. 22.

This chapter is one of the central chapters of the book, and a good grasp of the
material described here will be instrumental in understanding the rest of the book
and in writing basic temporal assertions. Its contents are addressed both to users of
simulation and to users of FV. FV issues are always commented so that the reader
interested in only assertion simulation can skip them. However, we would like to
stress that understanding FV issues may provide a deeper insight into the nature of
temporal assertions, even for those who are not planning to use FV.

1An exception is disabled status of a property when the disable iff operator is used. See
Sect. 13.1.1.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__5

97

98 5 Basic Properties

Table 5.1 Basic property
operators Operator Associativity

not –

nexttime –

and Left

or Left

until Right

until_with Right

always –

s_eventually –

We describe only the elementary and most commonly used property operators
here. The less frequently used and more complex operators are discussed in
Chap. 10.

In this chapter, we use the following convention: letters a, b, c, and, e denote
integral expressions or signals; p and q denote properties. All letters may be
optionally indexed. We enumerate clock ticks with integer numbers starting with 0.
In the diagrams, we mark the ticks where a Boolean expression holds with a black
dot, and the ticks where a property holds with a black triangle.

The property operators described in this chapter are summarized in Table 5.1.
They are grouped by their precedence, from highest to lowest.

Properties can be built from simpler properties in a recursive manner. First we
define “primitive” properties, and then we show how to build new properties using
property operators from existing ones. The primitive properties are constructed from
sequences. However, the notion of a sequence is less intuitive before introducing the
notion of a property. Therefore, in this chapter we consider a Boolean, which is the
simplest form of sequence, as the primitive form, and postpone the introduction of
sequences until Chap. 6. In Chap. 6, we clarify why primitive properties are in fact
sequential properties and that Boolean properties are the simplest case of sequential
properties.

Example 5.1. To illustrate what we mean by recursive definition of properties,
consider property nexttime always e, the meaning of which is explained later.
This property is built by applying property operator nexttime to the simpler
property always e. The latter property, in its turn, is built by applying property
operator always to the primitive property e. ut

5.1 Boolean Property

The simplest property is a Boolean property—an integral expression e, which is
treated as Boolean. A Boolean expression is true if it has at least one bit set to 1,
and false otherwise, i.e., when all its bits have values 0, x or z. Now, extending the
meaning, we define a Boolean property informally for a point on a trace as follows:

5.1 Boolean Property 99

Fig. 5.1 Boolean property

clock ticks

e

Boolean property e is true in clock tick i iff Boolean expression e is true in clock
tick i .

Boolean Expressions and Properties. What is confusing is how we can distinguish
between Boolean expression and Boolean property if they both have exactly the
same syntax? The answer is simple: if a Boolean is used in a context where a
property is expected, then it is a Boolean property. For instance, on the one hand,
e in the property expression nexttime always e from Example 5.1 is a Boolean
property since a property operator always expects a property as its argument. On
the other hand, in the expression ~e, e is a Boolean expression, but not a Boolean
property, since the bitwise negation operator ~ requires a Boolean2 expression, and
it cannot accept a property as its argument.

Our definition of Boolean property explains the meaning of the sentence “e is true
in clock tick i”. However, in the general definition of property given in the beginning
of this chapter we defined the property truth relative to the entire trace, and not in a
specific clock tick. So what does it mean that e is true on a whole trace, and not just
in a specific clock tick of this trace? This question is general and it may be answered
for any property, not just for a Boolean one. Consequently, we give a general answer
to this question for arbitrary property p.

Property p is true on a trace iff it is true in clock tick 0 of this trace.

This implies that Boolean property e is true iff e is true in the clock tick 0, as
shown in Fig. 5.1.

Example 5.2. If a DUT contains three signals a, b, and c, and in clock tick 0 a = 1,
b = 1, and c = 0 then the property a|b holds since a|b is true in clock tick 0. ut

Boolean expressions when used as Boolean properties cannot have side effects.
For example, a++ == b cannot be used as Boolean property.

Although Boolean properties are very common as part of more complex pro-
perties, Boolean properties alone can be used for specifying the initial state of the
system, as in the following example:

2Recall that according to our definition any integral expression is also a Boolean.

100 5 Basic Properties

Example 5.3. Assume that initially the reset rst is active, and check that initially
the value of ready is low.

Solution:

initial begin
m1: assume property (@(posedge clk) rst);
a1: assert property (@(posedge clk) !ready);

end

ut
The behavior manifested by a Boolean property alone when placed in an

initial procedure is useful because only one property evaluation attempt is
executed. Placing such an assertion elsewhere would lead to unconditional evalu-
ation of the Boolean at every assertion clock tick.

5.2 Nexttime Property

Property nexttime p, as its name suggests, is true in clock tick i iff property p is
true in clock tick i C 1. For a trace, according to the general definition (Sect. 5.1),
property nexttime p is true iff property p is true in clock tick 1, as shown in
Fig. 5.2.

If p is a Boolean expression e, nexttime e means that e is true in the clock
tick 1.

Multiple nexttime Operators. What happens if we apply the nexttime ope-
rator twice: nexttime nexttime p? According to the definition, it means that
nexttime p holds in clock tick 1, which is equivalent to the statement that p

holds in clock tick 2. Similarly, nexttime nexttime nexttime p means that p
holds in clock tick 3, and so on. Since having a big chain of nexttime operators
makes the property unreadable, SVA provides a shortcut nexttime[n], where n

is an elaboration time constant. For example, nexttime[3] p is a shortcut for
nexttime nexttime nexttime p. It is also legal to specify nexttime[0] p,
which is roughly equivalent to just p in the case of singly clocked assertions.3 Its
semantics in multiply clocked properties is described in Chap. 12.

nexttime is seldom used on its own. The following example illustrates such
usage.

Fig. 5.2 nexttime
property clock ticks

p

3This is further discussed in Sect. 10.5.

5.3 Always Property 101

Example 5.4. Reset rst should be low in clock clk tick 9.

Solution:

initial a1: assert property(@(posedge clk) nexttime[9] !rst);

Discussion: This property does not say anything about the behavior of rst in clock
ticks 0–8. ut

Finite and Infinite Traces. The definition of property nexttime is not as trivial
as it may seem. When we require a property to be true in the next clock tick we
implicitly assume that the clock ticks at least one more time. This observation holds
when clocks tick infinitely many times, and hence traces are infinite. Infinite traces
allow us to ignore this important question in the definition of property operators,
namely, what happens if the clock stops ticking in the middle of evaluation. Note
that this question is important even for Boolean properties: How can we define the
truth of a Boolean property on the empty trace? We do consider property behavior
on finite traces in Chaps. 10 and 22, but in this chapter we ignore it because we wish
to concentrate on the main behavior of property operators.

Efficiency Tip. nexttime with a big factor is inefficient both in simulation and in
FV. Try to keep the factor small, especially in complex assertions. In simulation, it
is recommended not to exceed several hundred for simple argument properties, and
in FV not to exceed a couple of tens. The common rule is the smaller the better.

5.3 Always Property

Property always p is true in clock tick i iff p is true in all clock ticks j�i . It follows
(see Sect. 5.1) that property always p is true iff property p is true in every clock
tick, as shown in Fig. 5.3.

Property always p defines a series of “instances” of property p starting at
clock ticks 0; 1; : : :. We say that an always property defines a series of evaluation
attempts of the underlying property. For the always property to be true, all of the
underlying attempts must evaluate to true.

Fig. 5.3 always property clock ticks

p p p p p p p

102 5 Basic Properties

Example 5.5. For a Boolean expression e, always e is true iff e is true in every
clock tick. ut
Example 5.6. What is the meaning of nexttime always p?

Solution: According to the definition of nexttime property, always p should hold
in clock tick 1. Therefore, property p should hold in every clock tick starting from
clock tick 1. ut
Example 5.7. What is the meaning of always nexttime p?

Solution: According to the definition of always property, nexttime p should hold
in every clock tick. Therefore, property p should hold in every clock tick starting
from clock tick 1.

Discussion: Properties always nexttime p and nexttime always p (Example
5.6) are equivalent. ut
Example 5.8. What is the meaning of always always p?

Solution: According to the definition of always property, always p should hold in
every clock tick. Therefore, property p should hold in every clock tick.

Discussion: It follows that always always p is equivalent to always p, and that
the outer always in this case is redundant. ut

Efficiency Tip. Simulation performance of always always p may be much
inferior to that of always p (see Sect. 4.4.1) if it is required to maintain information
about all evaluation attempts that are in progress (for example, for debugging
purposes).

5.3.1 Implicit Always Operator

The always operator is useful for specifying system invariants. As we discussed
in Sect. 4.4.6, all concurrent assertions placed outside procedural code are contin-
uously monitored. This means that there is an implicit outermost always operator
which defines a series of evaluation attempts. Consequently, the following assertions
a1 and a2 are equivalent in the sense that either both pass or both fail.

a1: assert property (@clk p);

is equivalent to

initial a2: assert property (@clk always p);

However, simulation reporting may be different, as explained in Sect. 4.4.1,
because a1 has as many evaluation attempts as there are clock ticks, while a2 has
only one attempt.

5.4 S_eventually Property 103

The explicit always operator is rarely used. The vast majority of assertions are
either written outside procedural code or inside always procedures4 and thus have
the implicit outermost always operator.

As in the case of the explicit double always operators, an always property in the
body of a continuously monitored assertion may result in degradation of simulation
performance.

Efficiency Tip. Do not explicitly specify the outermost always in continuously
monitored assertions.

Example 5.9. Check that signal sig may only have values 0, 1, 2, or 4.

Solution:

a1: assert property (@(posedge clk) sig inside {0, 1, 2, 4});

assuming that a1 is a standalone assertion.

Discussion: Following the efficiency tip, this assertion should not be written as

a2: assert property (@(posedge clk)
always sig inside {0, 1, 2, 4});

Although assertions a1 and a2 are equivalent, simulation performance of a2 may be
worse. ut

5.4 S_eventually Property

Property s_eventually p is true in clock tick i iff p is true in some clock tick
j � i . It follows that property s_eventually p is true iff property p is true in some
clock tick, as shown in Fig. 5.4.

The reader may wonder why the keyword s_eventually has a prefix s_ . As
explained in Chap. 10, s_eventually is a strong operator, and in SVA names of
strong operators have a prefix s_ .

Similar to always p, property s_eventually p defines a series of evaluations
of p. But for s_eventually p to succeed only requires that at least one of those
evaluations succeed.

Fig. 5.4 s_eventually
property clock ticks

p

4See Chap. 14 for discussion about procedural concurrent assertions.

104 5 Basic Properties

Example 5.10. Reset rst should eventually be deactivated.

Solution:

initial a1: assert property (@(posedge clk) s_eventually !rst); ut

Checking s_eventually Property. The s_eventually property differs signifi-
cantly from all other properties described in this chapter.5 Consider, for instance,
assertion a1 from Example 5.10. Suppose that we simulated the DUT for 10,000
clock ticks and rst remained high all the time. Does it mean that assertion a1 is
wrong? No, it does not, since it might pass if we simulate few more clock cycles.
The failure of this assertion can only be observed on an infinite trace in which rst

is always high. Such assertions are called liveness assertions, and they are studied in
Chap. 21. Generally speaking, liveness assertions cannot be falsified in simulation,
but only in FV. However, we can say something about property s_eventually

even observing its behavior in simulation: It looks suspicious if the condition of
s_eventually does not happen during simulation. For instance, when executing
any test from the testbench, it is reasonable to expect that in Example 5.10 a zero
value of rst will be observed. In the case when the condition of s_eventually has
never been observed, a simulation tool usually issues a warning message at the end
of simulation.6

Example 5.11. What does s_eventually always p mean?

Solution: According to the definition of s_eventually this property means that
there exists some clock tick where always p is true. This is equivalent to the
statement that p is true from some clock tick on.

Discussion: Strictly speaking, this property can neither fail nor pass in simulation.
As mentioned earlier, a simulation tool may issue a warning message (or failure) at
the end of simulation if in the last clock cycle a Boolean p is false. ut

Efficiency Tip. Checking property s_eventually always p in simulation may be
costly, especially if it is not in the scope of an initial procedure.

5Here, for convenience, we use the terms “property” and “assertion” interchangeably in the context
of failure or success.
6As we explain in Chap. 10, since s_eventually is a strong operator, at the end of simulation
when there are no more clock ticks and rst was high all the time, the simulator may declare
failure of the property.

5.4 S_eventually Property 105

Example 5.12. Reset rst remains low starting from some moment.

Solution:

initial
a2: assert property (@(posedge clk) s_eventually always !rst);

Discussion: Note the difference between assertion a2 and assertion a1 from
Example 5.10. Assertion a2 checks that rst at some moment becomes and remains
low, whereas assertion a1 only checks that rst becomes low.

Exercise 5.5 discusses the meaning of a2 when it is a stand-alone assertion. As
we mentioned above, the stand-alone version of this assertion may be inefficient in
simulation. ut
Example 5.13. What does property always s_eventually p mean?

Solution: According to the definition of always this property means that property
s_eventually p holds in every clock tick i . This is equivalent to saying that for
every clock tick i there is a clock tick j � i where p is true. So,

always s_eventually p

holds if p is true infinitely many times, in other words, p is true infinitely often.

Discussion: This property can only be verified on infinite traces in formal verifica-
tion because simulation traces are finite. ut

Efficiency Tip. Checking property always s_eventually p may be costly in
simulation.

Example 5.14. A pending request req should be eventually granted (gnt is asser-
ted). This includes the case when the request is granted immediately.

More specifically, it is given that when the request becomes active it remains
active until it is granted.

Solution: Consider an arbitrary clock tick i . The assertion should be satisfied in
both of the following cases:

1. req is never asserted in all clock ticks �i .
2. req is asserted for the first time (� i) in some clock tick j�i , and gnt is asserted

for the first time (� j) in some clock tick k � j . In this case, req will also be
pending until clock tick k.

Both cases imply that the attempt of the property s_eventually req -> gnt

starting in the clock tick i is satisfied, and assertion

a1: assert property(@(posedge clk) s_eventually req -> gnt);

covers the desired behavior of the pending request. Note that a1 only checks the
behavior of the grant in response to req. It does not check that a grant is not issued
without a request. It also does not check that request, once issued, persists until
granted.

106 5 Basic Properties

Of course, this assumes that we verify the property on an infinite trace, hence
in FV. In that case it is not difficult to see that the opposite is also true: Assertion a1

implies the required behavior. Indeed, if req goes high in some clock tick i , it will
remain high until granted by definition. The attempt of the property starting

s_eventually req -> gnt

in clock i guarantees that this req is granted.

Discussion: This property is a special case of property always s_eventually p

described in Example 5.13. Assertion a1 is standalone, and therefore it has an
implicit always operator. Its performance in simulation may be poor if req is
asserted and no gnt is asserted for a long time (if ever). Simulation performance
efficiency is discussed in detail in Sect. 19.3.

In this example, we assumed that the request remains pending until granted.
Example 6.23 describes the case of an arbitrary, not necessarily pending request.

ut
Fairness.

Example 5.15. A device must be available infinitely many times. The device
availability is indicated by high value of the ready signal.

Solution:

a1: assert property (@(posedge clk) s_eventually ready);

Discussion: This assertion is standalone, hence there is an implicit top-level always
operator. ut

The property always s_eventually e is very important for verifying liveness
properties in FV. It expresses the notion of fairness. Fairness indicates that some
resource eventually becomes available, as in Example 5.15. The absence of fairness
is called starvation, the situation when the requested resource is never available:
Imagine a car waiting at an intersection forever on the red light when the traffic
lights are broken. We get back to the notions of fairness and starvation in Chap. 21.
In simulation, of course, this assertion cannot be verified (it cannot fail) because
simulation will end in a finite number of clock ticks.

5.5 Basic Boolean Property Connectives

The following Boolean connectives between properties exist in SVA:

• not—negation
not p is true iff p is false.

• and—conjunction
p and q is true iff both p and q are true.

5.5 Basic Boolean Property Connectives 107

• or—disjunction
p or q is true iff either p or q (or both) are true.

The above definitions with obvious modifications apply also to the way property
truth is determined in clock tick i . For example, p and q is true in clock tick i iff
both p and q are true in clock tick i .

In the special case of Boolean properties, it is possible to rewrite Boolean
property connectives in a different way. For example, e1 and e2 means that both
e1 and e2 are true, which can be also expressed as e1 && e2.7 The domain of the
operators && and and is different: && may be used with Boolean expressions only,
while and requires sequence or property arguments. Since Boolean expressions in
this case may also be considered as Boolean properties, both operators may be
applied to them. Note also that && has greater precedence than and.

Similarly, e1 or e2 is equivalent to e2 || e2, but not e is equivalent to !e

only if the property clock eventually ticks (see Chap. 22).8

Example 5.16. The following expression is syntactically illegal: (a and b)|| c.
Although a and b is logically equivalent to a && b, it is not a Boolean expression.
The operator ||, however expects both its operands to be Boolean expressions. ut
Example 5.17. What does not always p mean?

Solution: According to the definition of property not, this property is true iff
always p is false, which means that p is false at least in one clock tick. This is
exactly s_eventually not p. Similarly, not s_eventually p is always not p.

Discussion: For a Boolean expression e, not always e may be rewritten as
s_eventually !e and not s_eventually e as always !e. ut
Example 5.18. Reset rst must be asserted during the first two cycles.

Solution:

initial a1:
assert property (@(posedge clk) rst and nexttime rst);

Discussion: Note that rst && nexttime rst is syntactically illegal: && expects
both of its operands to be Boolean expressions, while nexttime rst is a property,
but not a Boolean expression.

A more elegant way to write the same property is described in Sect. 6.5. ut

7Even though && is a short circuit operator (that is, its second operand is not evaluated if the first
operand is evaluated to false), and and is not, there is no difference between them in this case,
since expressions used in assertions cannot have side effects. See Sect. 5.1.
8The difference may not be observable in simulation depending on whether the simulator takes
into account the strength of properties at the end of simulation. not e is a strong property, while
!e is weak.

108 5 Basic Properties

Example 5.19. What is the meaning of (always p) and (always q)?

Solution: According to the definition of property and this property is true iff both
p and q hold in each clock tick, that is, the original property is equivalent to
always (p and q).

Discussion: (always p) or (always q) is not equivalent to always (p or q).
Consider a case when p holds in all odd clock ticks, and q holds in all even ticks.
Then always (p or q) is true, whereas (always p) or (always q) is false. ut

5.6 Until Property

Property p until q is true in clock tick i iff p is true in every clock tick j � i

until, but not including, the first clock tick k � i where q is true. If there is no such
k, p should be true in all clock ticks j � i .

It follows that property p until q is true iff the property p is true in every clock
tick until (but not including) the first clock tick where q is true. See Fig. 5.5. If q
never happens p should be true forever.

Note that p until q does not mean that p cannot be true starting from the clock
tick when q becomes true. It only means that p does not have to be true after q

becomes true for the first time. Also, the operator until is nonoverlapping: p does
not have to be true when q becomes true for the first time (though, of course, p may
be true at this moment).

There is also an overlapping version of until called until_with. The only
difference between until and until_with is that for until_with to be true p must
be true at the moment q becomes true for the first time, as stated in the following
definition:

Property p until_with q is true iff the property p is true in every clock tick
until (and including) the first clock tick where q is true. See Fig. 5.6. If q never
happens p should be true forever. We leave the definition of the truth of property
until_with in clock tick i as an exercise to the reader.

p until_with q is equivalent to p until (p and q). (Why? See Exer-
cise 5.8.)

Example 5.20. Table 5.2 contains an initial trace fragment of signals a, b, c, d,
and e.

• a until b is true since b is true in clock tick 0.
• a until c is true since a is true in clock tick 0, and c is true in clock tick 1.

Fig. 5.5 until property clock ticks

p p p p p q

Fig. 5.6 until_with
property clock ticks

p p p p p pq

5.6 Until Property 109

Table 5.2 Initial trace
fragment for Example 5.20
.

Clock tick a b c d e

0 1 1 0 0 0

1 1 1 1 0 0

2 0 1 0 1 0

3 0 0 1 1 1

• a until d is true since a is true in clock ticks 0 and 1, and d is true in clock
tick 2.

• a until e is false since a is false in clock tick 2, and e is false in clock ticks 0,
1, and 2.

• b until_with a is true since both a and b are true in clock tick 0.
• b until_with c is true since b is true in the clock ticks 0 and 1, and c is true in

clock tick 1.
• b until_with e is false since b is false in clock tick 3, and e is false in clock

ticks 0, 1, and 2.
ut

Example 5.21. ready should be low until rst becomes inactive for the first time.

Solution:

initial a1: assert property(@(posedge clk) !ready until !rst);

ut
Example 5.22. There cannot be a read before the first write:

Solution:

initial
a2: assert property (@(posedge clk) !read until_with write);

ut

Exercises

5.1. Write a restriction saying that initially all bus drivers are disconnected (have a
high impedance value).

5.2. Write the following assertion: rdy should be low while rst is active.

5.3. What do the following properties mean?

(a) always nexttime always p

(b) nexttime always nexttime p

5.4. Discuss the usage of the always operator in assertions.

110 5 Basic Properties

5.5. What is the meaning of the following assertion (note that it does not belong to
an initial procedure)?

a1: assert property (@(posedge clk) s_eventually always !rst);

5.6. What is the meaning of the following properties?

(a) s_eventually nexttime p

(b) nexttime s_eventually p

(c) s_eventually nexttime always p

(d) always nexttime s_eventually p

5.7. What do the following properties mean?

(a) 1 until q

(b) p until 1

(c) 0 until q

(d) 0 until_with q

(e) p until 0

(f) nexttime(p until q)

(g) (nexttime p)until q

(h) p until nexttime q

(i) p until_with nexttime q

(j) p1 until (p2 until p3)

(k) p1 until_with (p2 until_with p3)

(l) always(p until q)

(m) (always p)until q

(n) p until always q

(o) p1 until (p2 until always p3)

5.8. Prove that p until_with q is equivalent to p until (p and q).

Chapter 6
Basic Sequences

A sequence works in a way a collection never can.

— George Murray

In Chap. 5, we showed how to build complex properties from the elementary
building blocks. We considered Boolean properties as the simplest building block.
SVA provides sequences as more elaborate building blocks for properties. Since the
simplest sequence is a Boolean expression, we could say that properties are built not
from Boolean expressions, but from sequences.

A sequence is a rule defining a series of values in time. A sequence does
not have a truth value, it has one initial point and zero or more match, or tight
satisfaction points. Like properties, sequences are clocked. If the clock is not written
explicitly, we assume that the sequence inherits this clock from the property to
which it belongs. Starting from a specific initial point in a trace, a sequence defines
zero or more finite fragments on this trace, each beginning at the initial point and
ending at a tight satisfaction point. We will call the length of a trace fragment defined
by a sequence match simply the length of the sequence match. In the following
sections, we define the sequence match separately for each kind of a sequence.
Before we proceed to the accurate definitions, we informally illustrate the notion
of a sequence on the following example.

Example 6.1. Sequence a ##[1:2] b defines the following scenario: a is followed
by b in one or two clock ticks. Let the initial point of this sequence be clock tick 2.
Then this sequence has a match if a is true in clock tick 2 and either b is true in
clock tick 3 or b is true in clock tick 4. Thus, the following matching outcomes are
possible:

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__6

111

112 6 Basic Sequences

1. a is false in clock tick 2 or b is false in clock ticks 3 and 4. In this case, the
sequence has no match.

2. a is true in clock tick 2, b is true in clock tick 3, and b is false in clock tick 4. In
this case, the sequence has a single match at clock tick 3.

3. a is true in clock tick 2, b is false in clock tick 3, and b is true in clock tick 4. In
this case, the sequence has a single match at clock tick 4.

4. a is true in clock tick 2 and b is true in clock ticks 3 and 4. In this case, the
sequence has two matches, or two tight satisfaction points: 3 and 4.

Sequence a ##[1:2] b defines 0, 1, or 2 trace fragments. In case 1 it defines
zero fragments, in case 2 it defines one fragment, 2:3, in case 3 it also defines one
fragment, 2:4, and in case 4 it defines two fragments, 2:3. and 2:4. ut

In this chapter, we use the following conventions: letters a, . . . , e denote Boolean
expressions, r and s denote sequences, and p and q denote properties. We numerate
clock ticks with integer numbers starting with 0. In diagrams, we designate trace
fragments defined by sequence matches with ovals.

The sequence and property operators described in this chapter are summarized in
Table 6.1. They are grouped by their precedence, from highest to lowest. Additional
sequence operators are covered in Chap. 11.

6.1 Boolean Sequence

Boolean expression e defines the simplest sequence—a Boolean sequence. This
sequence has a match (or a tight satisfaction point) at its initial point if e is
true. Otherwise, it does not have any satisfaction points at all. This is illustrated
in Fig. 6.1.

Example 6.2. The initial fragment of the trace of signals a and b is shown in
Table 6.2.

Table 6.1 Basic sequence
and property operators Operator Associativity

[*...] –

[*] –

[+] –

Left

or Left

|-> Right

|=> Right

Fig. 6.1 Boolean sequence clock ticks

e

6.2 Sequential Property 113

Table 6.2 Initial trace
fragment from Example 6.2 Clock tick a b

0 1 1

1 0 0

2 0 1

3 1 1

Boolean sequence a && b matches trace fragment 0:0 if its initial point is 0, and
trace fragment 3:3 when its initial point is 3. For initial points 1 and 2 there are no
sequence matches. ut

6.2 Sequential Property

Although a sequence itself cannot be true or false, it is possible to associate with a
sequence a sequential property (or sequence property) in the following way:1

The sequential property defined by sequence s is true in clock tick i iff there is
no finite trace fragment i Wj witnessing inability of sequence s with the initial point i

to have a match. Sequence s should not admit an empty match (the notion of empty
match is explained below in this section).

This definition is applicable only to sequential properties in the context of
assertions or assumptions. In the context of cover statements, the definition of
sequential property is different, as explained in Chap. 18. Except for Chap. 18 we
will assume that in all examples sequential properties are written in the context of
assertions or assumptions.

Although it is not easy to understand the full meaning and the rationale of the
definition of a sequential property at this point, because we have not yet described
the SVA constructs in which all nuances of this definition come into play, we need
this definition now to build properties from sequences. We will explain some of its
aspects here, while the other aspects will become clear to the reader only later.

Consider the most important special case of this definition: if a sequence has
at least one match, then the corresponding sequential property is true. The entire
definition is broader since it allows in some cases sequential properties to be true
even if their sequences do not have any match. However, if there is some number
L > 0 such that all matches of sequence s have a length � L then if s does not
have any match then the sequential property s is false. Indeed, in this case the fact
that sequence s does not have any match on a trace fragment of length L witnesses
its inability to have any match. We will call such sequences bounded sequences.
It is easy to see that all Boolean sequences are bounded, as all their matches are one
clock cycle long.

1Actually, there is more than one way to associate a property with a sequence, as explained in
Chaps. 10 and 22. The definition provided in this section relates to the weak sequential property.

114 6 Basic Sequences

Example 6.3. Sequence a ##[1:2] b informally described in Example 6.1 is
bounded.

Solution: This sequence can only have matches of length 2 or 3, and its match upper
bound L D 3: if this sequence does not have a match on a trace fragment of three
clock cycles, it does not have matches at all. ut

The definition of sequential properties for bounded sequences may be simplified:

The sequential property corresponding to bounded sequence s is true iff
sequence s has at least one nonempty match.

So, what is the nature of unbounded sequences? They should admit arbitrarily
long matches. Examples of unbounded sequences are provided in Sect. 6.10.

Another point to be clarified is the notion of empty match. The match is empty
if the trace fragment it defines is empty. We will provide examples of empty match
in Sects. 6.5.1 and 6.8. Note that a Boolean sequence cannot have an empty match.
It either has a match of size 1 if its Boolean expression is true, or it does not have
matches at all.

Pay attention to the clock tick where the truth value of a sequential property is
defined.

The truth value of sequential property s corresponds to the initial point of
sequence s, and not to the point of its tight satisfaction.

Example 6.4. Let a be true in clock tick 2, and false in all other clock ticks, and b

be true in clock tick 3, and false in all other clock ticks. Then sequential property
a ##[1:2] b is true in clock tick 2 (not 3!), and false in all other clock ticks. ut

Let us apply the definition of a sequential property to a Boolean sequence.
Since Boolean sequences are bounded, Boolean sequential property e is true iff
Boolean sequence e has a match, that is, when e is true. We come to the conclusion
that Boolean sequential properties are exactly Boolean properties we described in
Sect. 5.1. Therefore, sequential properties generalize Boolean properties, and it is
possible to define all property operators from Chap. 5 independently of the general
sequential properties, as we mentioned in the introduction to that chapter.

6.3 Sequence Concatenation 115

6.3 Sequence Concatenation

From two sequences r and s, one can build a new sequence r ##1 s by concate-
nating these two sequences: there is a match of sequence r ##1 s if there is a
match of sequence r and there is a match of sequence s starting from the clock tick
immediately following the match of r, as shown in Fig. 6.2.

In other words, a finite trace matches r ##1 s iff it can be split into two adjacent
fragments, the first one matching r, and the second one matching s. If both operands
of sequence concatenation are bounded sequences, its result is also bounded.

Example 6.5. What is the meaning of a ##1 b, where a and b are Boolean
expressions?

Solution: Let the initial point be clock tick i . Sequence a ##1 b has a match iff a
is true in clock tick i and b is true in clock tick i C 1. Sequence a ##1 b may have
only one tight satisfaction point, in clock tick i C 1. Therefore, this sequence means
that b immediately follows a.

Discussion: Tight satisfaction of sequence a ##1 b depends neither on the value
of b in clock tick i nor on the value of a in clock tick i C 1. Although this looks
obvious, this is a source of confusion for many people who erroneously believe that
for this sequence match b must become true for the first time in clock tick iC1. ut
Example 6.6. Write a sequence capturing the following scenario: request req,
immediately followed by retry rtry, immediately followed by acknowledgment
ack.

Solution: req ##1 rtry ##1 ack. ut

6.3.1 Multiple Delays

We will begin this section with a motivational example.

Example 6.7. Write the following sequence: request req followed by acknowledg-
ment ack in two cycles.

Solution: This description is equivalent to “request, immediately followed by
anything, immediately followed by acknowledgment”. “Anything in a given clock
tick” means a Boolean sequence that has a match in this clock regardless of the
values of req and ack. To match, the corresponding Boolean expression should be
true. Recall (Sect. 5.1) that true may be expressed with any nonzero known value, for
example, value 1. So, the desired sequence may be written as req ##1 1 ##1 ack.

ut

Fig. 6.2 Sequence
concatenation clock ticks

r s

116 6 Basic Sequences

Fig. 6.3 r ##2 s

clock ticks

r s

Example 6.7 illustrates a typical situation when two sequences are not adjoining,
but there is a constant number of clock ticks between them (Fig. 6.3). There is a
special syntax to capture this situation:

r ##n s

n must be a nonnegative elaboration time integral constant. We will call this interval
between two sequences in clock cycles delay (not to be confused with the delay
operator # in SystemVerilog).

Efficiency Tip. Big delay values are inefficient both in simulation and in FV.

Example 6.8. Using this syntax, the sequence from Example 6.7 may be rewritten
as req ##2 ack. ut

6.3.2 Top-Level Sequential Properties

As stated in Sect. 6.2, there is a sequential property associated with each sequence
not admitting an empty match. With the exception of Boolean sequential properties,
top-level sequential properties are relatively rare in assertions and assumptions, and
they are normally used to specify reset sequences.2

Example 6.9. Reset rst must be initially high and be low in clock tick 20.

Solution:

initial a1: assert property (@(posedge clk) rst ##20 !rst);

Discussion: We do not claim anything about the reset behavior in all clock ticks
other than 0 and 20. ut

You should be very careful when using sequential properties in continuously
monitored assertions and assumptions since their meaning may be different from
your intent, as illustrated by the following examples.

Example 6.10. What does the following assertion mean?

a1: assert property (@(posedge clk) a ##1 b);

2Top-level sequential properties are very common in cover statements, see Chap. 18.

6.3 Sequence Concatenation 117

Fig. 6.4 Sequence fusion

clock ticks

r s

Solution: Since this assertion is continuously monitored (has an implicit outermost
always operator), sequential property a ##1 b must be true in each clock tick.
Hence, a must be true in each clock tick, and b must be true starting form clock
tick 1.

Discussion: This assertion does not mean interleaving of a and b. ut
Example 6.11. We want to state that the value of sig toggles every cycle: 0101. . . or
1010. . . . The following assertion

a1: assert property (@(posedge clk) sig ##1 !sig);

does not check this condition. Similar to Example 6.10, it means that sig is true in
each clock tick, and also that sig is false starting from clock tick 1. Therefore,
this assertion is contradictory: it requires that starting from clock tick 1 sig

be simultaneously true and false. Example 7.26 explains how to implement this
assertion correctly. ut

6.3.3 Sequence Fusion

Sequence fusion is an overlapping concatenation. The fusion of sequences r and s,
denoted as r ##0 s, is matched iff for some match of sequence r there is a match of
sequence s starting from the clock tick where the match of r happened (see Fig. 6.4).
Note the difference between sequence concatenation r ##1 s and sequence fusion.
For sequence concatenation, we start matching sequence s from the next clock tick
after a match of r has happened, while for sequence fusion we start matching s from
the same clock tick of the match of r.

Example 6.12. What is the meaning of fusion of two Boolean sequences a and b?

Solution: a ##0 b can have a match iff both a and b are true simultaneously.
Therefore, a ##0 b is semantically equivalent to a && b. Note, however, that
a ##0 b and a && b are not syntactically interchangeable. a ##0 b is a sequence,
so it cannot be used as an operand in a Boolean expression. For example,
a && b || c (where c is a Boolean expression) is legal, whereas (a ##0 b) || c

is syntactically illegal.3 ut
Example 6.13. What is the meaning of (a ##1 b) ##0 (c ##1 d), where a, b,
c, and d are Boolean expressions?

3Also && is not the same as ##0 when match items are attached to the first sequence, see Chap. 16.

118 6 Basic Sequences

Fig. 6.5 ##3 s

clock ticks

s

Solution: Let the initial point of the sequence be clock tick i . Sequence a ##1 b

has a match iff a is true in clock tick i and b is true in clock tick i C 1. The match
of sequence a ##1 b happens in clock tick i C 1. Therefore, for the fusion to have
a match, sequence c ##1 d should have a match starting from clock tick i C 1.
It means that c should be true in clock tick i C 1, and d should be true in clock tick
i C 2. Bringing it all together, we have that sequence (a ##1 b) ##0 (c ##1 d)

is equivalent to sequence a ##1 b && c ##1 d. ut
Example 6.14. Write a sequence describing two back-to-back transactions. The
transactions are represented with sequences trans1 and trans2.

Solution: Consider two interpretations:

• trans2 starts in the clock tick when trans1 finishes.
• trans2 starts in the clock tick next to the endpoint of trans1.

The first scenario may be expressed as trans1 ##0 trans2, while the second
scenario may be expressed as trans1 ##1 trans2. ut

We will provide more examples of sequence fusion in the following sections.

6.3.4 Initial Delay

We will start this section with a motivational example:

Example 6.15. Skip n > 0 cycles before matching sequence s.

Solution: 1 ##n s. Recall that value 1 means true, matching anything at the initial
clock tick of the resulting sequence. ut

The situation described in Example 6.15 is typical, and for convenience there is
a special syntax to specify the number of clock ticks to be skipped before beginning
a sequence match (Fig. 6.5), i.e., to specify initial sequence delay: ##n s. The delay
is the number of clock ticks and must be a nonnegative elaboration time integral
constant. Our definition works for nonzero n. The case of n D 0 is considered in
Sect. 6.9.

Efficiency Tip. Large initial delays are inefficient in FV, and may also negatively
affect simulation performance. See Sect. 19.3 for details.

Example 6.16. The value of a should be always true starting from clock tick 2.

6.4 Suffix Implication 119

Solution:

a1: assert property (@(posedge clk) ##2 a);

Discussion: The same intent may be expressed using property operator nexttime:

a2: assert property (@(posedge clk) nexttime[2] a); ut

6.4 Suffix Implication

In Sect. 6.2, it was shown how properties may be built from sequences by promoting
sequences to sequential properties. There are additional ways to build properties
from sequences, the most important one being the suffix implication. A suffix
implication is built from a sequence (s) and a property (p). s is called the antecedent,
and p is called the consequent. A suffix implication is true when its consequent
is true upon completion of its antecedent. Below we provide a more accurate
definition.

There are two versions of suffix implication: overlapping, denoted as s |-> p,
and nonoverlapping, denoted as s |=> p. In the overlapping implication the
consequent is checked starting from the moment of every nonempty match of the
antecedent. In the nonoverlapping implication the consequent is checked starting
from the next clock tick after each match of the antecedent.

Nonoverlapping implication s |-> p is true in clock tick i iff for every tight
satisfaction point j � i of s with initial point i , property p is true in clock tick j .
For each match of the antecedent, the consequent is separately evaluated. According
to the property truth definition from Sect. 5.1, property s |-> p is true iff it is true
in clock tick 0.

Nonoverlapping implication s |=> p is defined as
(s ##1 @$global_clock 1)|-> p. The meaning of this definition is explained in
Chap. 12. For singly clocked assertions, this definition may be simplified:
s ##1 1 |-> p.

We want to stress that both overlapping s |-> p and nonoverlapping s |=> p

implications and their consequent p are properties, whereas their antecedent is a
sequence, and it is not promoted to a sequential property.

Except for Boolean assertions, suffix implication is the most common way
of building assertions. Antecedent s represents a triggering condition: when this
condition holds, consequent p is checked. The suffix implication is very often used
with stand-alone assertions (having an implicit outermost always operator)—the
antecedent defines “interesting” attempts where we want to check the consequent.

Example 6.17. When rdy is asserted rst must be low.

Solution: We can use the overlapping implication. When rdy is true, Boolean
sequence rdy has a match. At this point we need to check a Boolean property stating
that rst is false:

120 6 Basic Sequences

a1: assert property (@(posedge clk) rdy |-> !rst);

Discussion: When both antecedent and consequent are Boolean, the suffix implica-
tion is equivalent to the logical implication:

a2:assert property (@(posedge clk) rdy -> !rst);

Of course, it is illegal to use a suffix implication in a Boolean expression.
Logical implications may be used in all kinds of assertions: immediate, deferred,
and concurrent, while suffix implications are allowed in concurrent assertions only.

ut
Example 6.18. done must be asserted in the next clock tick after sent has been
asserted.

Solution: This assertion means that if in some clock tick sent has been asserted
then at the next clock tick done should be asserted. There are several possibilities
to divide this property into an antecedent and a consequent. We can say that the
antecedent is sent, and the consequent is done starting from the next clock tick.
The resulting assertion will be:

a1: assert property(@(posedge clk) sent |-> nexttime done);

The same intent may be expressed using sequential property in the consequent:

a2: assert property(@(posedge clk) sent |-> ##1 done);

We can move the delay into the antecedent to get the same effect:

a3: assert property(@(posedge clk) sent ##1 1 |-> done);

Note that assertion

a4_illegal: assert property(
@(posedge clk) sent nexttime 1 |-> done);

is illegal since the antecedent of a suffix implication is a sequence, not a property,
and using property operator nexttime is forbidden in sequences.

Of course, the best way to implement the same assertion is using non-overlapping
implication as shown below.

a5: assert property(@(posedge clk) sent |=> done);

Assertion a5 is equivalent to assertion a3 by the definition of the nonoverlapping
implication. ut
Example 6.19. In Example 6.18 we showed that it is possible to move a unit
delay from antecedent to consequent and vice versa when the first operand in the
consequent (or the last one in the antecedent) is 1. However, in the case of an
arbitrary operand this is wrong. For example, property write ##1 done |=> read

means that if done follows write then read must be asserted in the next clock
tick after done. If there is no done after write the property passes. Property
write |=> done ##1 read means a different thing: each write must be followed
by a series of done and read. If there is no done after write the property fails. ut

6.4 Suffix Implication 121

10 20 30 40 50 60 70 80 90 100

clk

req

ack

err

Fig. 6.6 Overlapping implication

10 20 30 40 50 60 70 80 90 100

clk

req

ack

err

Fig. 6.7 Nonoverlapping implication

Example 6.20. If there is no acknowledgment ack within three clock ticks after
request req was issued, request req must be resent unless an error indicator err
is set.

Solution: From this formulation it is not clear when the request should be resent
exactly: in three or in four clock ticks? We will consider both cases (assertions a1
and a2) differing by the type of the implication:

a1: assert property (@(posedge clk)
req ##1 !ack[*3] |-> req || err);

a2: assert property (@(posedge clk)
req ##1 !ack[*3] |=> req || err);

The corresponding timing diagrams are shown in Figs. 6.6 and 6.7. ut

6.4.1 Nested Implication

Suffix implications can be nested as illustrated in the following example.

Example 6.21. If start is asserted two clock ticks before send, then acknowledg-
ment ack should arrive in three clock ticks after send was asserted.

122 6 Basic Sequences

Solution: This assertion means that if start is asserted and if two clock ticks later
send is asserted, then in three clock ticks after send was asserted, ack must be
asserted. This can be directly mapped into nested implications:

a1: assert property (@(posedge clk)
start |-> ##2 send |-> ##3 ack);

Discussion: Nested suffix implication is unambiguous: the antecedent of the
outermost implication is start, and not start |-> ##2 send because the latter
expression is a property, and not a sequence, whereas the antecedent must be a
sequence.

The same assertion may be reformulated in the following way: each time send

is issued two cycles after start, ack should arrive three cycles after send, and the
assertion can be rewritten as

a2: assert property (@(posedge clk) start ##2 send |-> ##3 ack);

Both forms are equivalent. Usually the form with a single implication is more
intuitive than the one with nested implications, and it is easier to debug.

The rule of transforming nested implications works with appropriate modifi-
cations for any initial delays in the consequent. For example, r |=> s |=> p is
equivalent to r ##1 s |=> p, and r|->s|->p is equivalent to r ##0 s |-> p.

ut

6.4.2 Examples

In this section, we provide several important examples illustrating use of various
sequence and property operators combined with suffix implication.

Example 6.22. Request req should be active until grant is asserted.

Solution: This assertion may be formulated as “Whenever the request is high, it
should remain high until (not including) grant is asserted”:

a1: assert property(@(posedge clk) req |-> req until grant);

Discussion: If the request should remain asserted also in the first clock tick when
the grant is asserted the assertion should be modified as:

a2: assert property(@(posedge clk)
req |-> req until_with grant); ut

Efficiency Tip. Boolean antecedents in suffix implication are efficient in FV, but
they may be not very efficient in simulation when the consequent requires a long
time for its completion. See Chap. 7 and Sect. 19.3 for a detailed discussion.

Example 6.23. Request req must be granted. This assertion means that each time
request req is high, grant gnt should be high in some clock tick in the future.

6.4 Suffix Implication 123

req

gnt

Fig. 6.8 Two requests corresponding to the same grant

Solution:

a1: assert property (@(posedge clk) req |=> s_eventually gnt);

Discussion: This assertion does not distinguish between grants to different requests.
For example, there may be the same grant for several requests, as shown in Fig. 6.8.
This example reflects the fact that the normal semantics of assertions is global,
and not pipelined: there is no easy way to distinguish between different attempts
(transactions) of the same assertion. The pipelined semantics in our case means
that each request should have its own grant. Chapter 15 explains how to implement
pipelined semantics in assertions using local variables. ut
Example 6.24. After request req has been sent, acknowledgment ack should come
before data (data_ready).

Solution:

a1: assert property (@(posedge clk)
req |-> !data_ready until_with ack);

Discussion: In this implementation, the acknowledgment is allowed to be issued
in the same clock tick as the request; see Exercise 6.5 for the case when the
acknowledgment is expected to come strictly after the request. If the request is never
acknowledged – there is neither acknowledgment nor data—the assertion passes.

ut

6.4.3 Vacuous Execution

The definition of the suffix implication states that the consequent is checked starting
from the moment of every nonempty match of the antecedent. It follows that in the
case when the antecedent does not have a match, the suffix implication holds. This
case is called vacuous execution of the implication.

If an assertion is continuously monitored, it is natural that many of its attempts
terminate vacuously. For instance, if in Example 6.22 each attempt is nonvacuous
then the request is always active, which is not likely to happen in practice. But if all
the assertion attempts pass vacuously, it indicates a serious problem in validation.
What would you say about a civil engineer who constructed a bridge, and to the
question “Will this bridge withstand if a heavy truck crosses it?” he will answer

124 6 Basic Sequences

“Of course, it will. There was no truck crossing it until now, and the bridge hasn’t
collapsed yet”?

There exist different definitions of vacuity [13, 36], the LRM provides a
minimal set of rules that the tools are expected to check. We are not going to
provide the entire list of vacuous scenarios in this book. The main source of the
vacuous execution for assertions is the case we described: when the antecedent is
false. Chapter 10 provides further details on vacuity.

Example 6.25. Property ok |-> !err passes vacuously iff ok is false. But the
equivalent property err |-> !ok passes vacuously iff err is false. Therefore, the
assertion vacuity depends on the exact style in which it is written. ut

6.5 Consecutive Repetition

We will begin this section with a motivational example.

Example 6.26. Write a sequence stating that a transmission phase lasting three
consecutive cycles is followed by a receiving phase lasting two consecutive cycles.
The transmission phase is represented by signal trn, and the receiving phase is
represented by signal rcv

Solution: trn ##1 trn ##1 trn ##1 rcv ##1 rcv.

Discussion: This sequence defines a trace fragment of five clock cycles such that in
the first three cycles trn is true, and in the last two cycles rcv is true. For example,
trn may also be true in the fourth or the fifth cycle of the fragment, and also in any
clock cycle outside this trace fragment. ut

The sequence from Example 6.26 looks verbose, but the situation it describes
is typical. In SVA, there is a special operator to denote a consecutive repetition of
a sequence s n times, where n is a nonnegative elaboration time integral constant:
s[*n] (see Fig. 6.9).

Example 6.27. Using the shortcut notation for the consecutive repetition, the
sequence from Example 6.26 may be rewritten as trn[*3] ##1 rcv[*2]. ut

Example 6.28. The assertion from Example 5.18 “Reset rst must be asserted
during first two cycles” may be more elegantly expressed using sequences:

initial a1: assert property (@(posedge clk) rst[*2]); ut

6.5 Consecutive Repetition 125

Fig. 6.9 r[*2]

clock ticks

r r

Example 6.29. Signal sig remains high during five cycles.

Solution:

a1: assert property (@(posedge clk) !sig ##1 sig |=> sig[*4]);

Discussion: This assertion states that once the signal goes high it remains high
during four additional clock ticks. It does not forbid the signal to stay high for
longer time. See Exercise 6.6 for an alternative interpretation. ut

6.5.1 Zero Repetition

It is possible to define zero repetition of sequences: sequence s[*0] is a sequence
admitting only an empty match. In other words, sequence s[*0] matches on any
trace, but the trace fragment it defines is empty—it does not contain any clock tick.
Because of this characteristic of zero repetition, it is also called empty sequence.
Empty sequence is a strange creature, its behavior significantly differs from the
behavior of “normal” sequences. It is rarely written explicitly, but its implicit use in
delay and repetition ranges is rather common, therefore it is extremely important to
understand its behavior. The meaning of empty sequence concatenation and fusion
is not obvious, and it is clarified below.

The empty sequence cannot be promoted to a sequential property, as the
definition of sequential property in Sect. 6.2 excludes sequences admitting an empty
match. Thus, assertion assert property (@(posedge clk)s[*0]); is illegal.

6.5.1.1 Concatenation with Empty Sequence

In this section, we will clarify the meaning of sequence r[*0] ##1 s. Let the
initial point of the resulting sequence be clock tick i . According to the definition of
sequence concatenation (Sect. 6.3), r[*0] ##1 s has a match in clock tick j � i iff
the interval i W j may be split into two consecutive parts, the interval where sequence
r[*0] has a match and the interval where sequence s has a match. Since r[*0]

matches an empty trace fragment, the match of sequence r[*0] ##1 s coincides
with the match of sequence s. In other words, r[*0] ##1 s is equivalent to s.
Similarly, r ##1 s[*0] is equivalent to r.

Concatenation with an empty sequence clarifies the semantics of sequence
concatenation operator ##1.

126 6 Basic Sequences

r ##1 s does not mean “skip one clock tick after match of r and then match
s”, but “start matching s after match of r”.

6.5.1.2 Fusion with Empty Sequence

In this section, we will clarify the meaning of sequence r[*0] ##0 s. According to
the definition of sequence fusion (Sect. 6.3.3), the match of sequence r[*0] ##0 s

requires the clock tick of the match of r[*0] be the first clock tick of sequence s.
Since r[*0] does not match any positive number of clock ticks, a match of sequence
r[*0] ##0 s is impossible. Similarly, sequence r ##0 s[*0] cannot be matched,
either. Therefore, a fusion with an empty sequence does not have a match.

This result reveals a very important fact:

Sequence fusion never admits an empty match.

6.5.1.3 Empty Sequence in Antecedent

What happens when the antecedent of a suffix implication is an empty sequence?
In case of the overlapping implication s[*0] |-> p, its antecedent does not have
nonempty matches, and according to the definition of the overlapping implication,
s[*0] |-> p trivially holds (is a tautology).

The situation with the nonoverlapping implication is completely different.
According to its definition, s[*0] |=> p is equivalent to s[*0] ##1 1 |-> p,
which is, in its turn, equivalent to 1 |-> p (see Sect. 6.5.1.1). The latter is
equivalent to p.

Although it is rarely used in its pure form, this seemingly pathological behavior
of the empty sequence in antecedents is important to understand the semantics of
more complex antecedents admitting empty matches, described in Sect. 6.8.1.

6.6 Sequence Disjunction

Sequence disjunction r or s is a sequence which has a match whenever either r or
s (or both) have a match.

Boolean Disjunction. For Boolean expressions a and b sequence a or b has
a match iff a || b is true. Therefore, in case of Boolean values, a sequence
disjunction behaves as a logical disjunction.

6.7 Consecutive Repetition Revisited 127

Sequence Disjunction versus Property Disjunction. Sequence disjunction and
property disjunction have exactly the same syntax. The following rule shows how
they are distinguished: if both r and s are sequences then r or s is a sequence
disjunction, otherwise, it is a property disjunction. For example, the formula
(a ##1 b)or ##1 c is a sequence disjunction, and (a ##1 b)or nexttime c is
a property disjunction. In the context where both sequences and properties may
appear, the exact decision is not important since in this case both definitions yield
equivalent results. Why?

Example 6.30. There are two types of transactions: the read transaction, in which
read request read is followed by data_ready in three cycles, and the write
transaction, in which write request write is followed by done. Write a sequence
representing a generic transaction.

Solution: The sequence representing the read transaction is read ##3 data_ready;
the sequence representing the write transaction is write ##1 done. The generic
transaction is their disjunction, read ##3 data_ready or write ##1 done. ut
Multiple Matches. All sequences we considered until now could have at most one
match. Sequence disjunction introduces sequences that can have multiple matches.

Example 6.31. Sequence a[*2] or b[*3] may have 0, 1, or 2 matches. ut

6.7 Consecutive Repetition Revisited

In Sect. 6.5, we introduced consecutive repetition with factors n � 0. The rules of
building consecutive repetition may be summarized as follows:

• s[*0] is an empty sequence.
• s[*n], where n > 0 is defined recursively:

s[*n] � s[*n-1] ##1 s.

In this section, we will define repetition ranges.

6.7.1 Repetition Range

Instead of a fixed number of repetitions one can specify a repetition range: finite
s[*m:n] and infinite s[*n:$].m and n should be elaboration time integral constants,
m � n, and $ stands for an “infinite number”.

128 6 Basic Sequences

6.7.1.1 Finite Repetition Range

Consider an example of a finite repetition range first. What is the meaning
of sequence s[*2:4]? Intuitively, it means that sequence s is repeated from
2 to 4 times. More formally, s[*2:4] has a match iff either s[*2] has a
match, or s[*3], or s[*4] has a match. That is, s[*2:4] is equivalent to
s[*2] or s[*3] or s[*4]. This leads us to the following recursive definition:

s[*n:n] � s[*n].
s[*m:n] � s[*m:n-1] or s[*n], m < n.

Efficiency Tip. Big repetition factors, and ranges with big finite upper bounds, are
inefficient both in simulation and in formal verification.

6.7.1.2 Infinite Repetition Range

Consider now an example of an infinite repetition range: intuitively s[*1:$] means
that s happens one or more times. Following the definition of finite repetition range
we would like to define s[*1:$] as s or s[*2] or s[*3]. . . . Unfortunately, such
a definition does not work as it produces an infinite formula. Therefore, we need to
define s[*1:$] directly.

Let the initial point of sequence s[*1:$] be clock tick i . Sequence s[*1:$]

has a tight satisfaction point (match) j � i iff there is some number n > 0 such
that j is the tight satisfaction point of sequence s[*n]. In other words, sequence
s[*1:$] is tightly satisfied on trace fragment i W j if it is possible to divide this
trace fragment into one or more consecutive fragments so that each such fragment
tightly satisfies s.

After we have defined infinite repetition range [*1:$] we can define any infinite
repetition range as follows:

s[*0:$] � s[*0] or s[*1:$].
s[*n:$] � s[*n-1] ##1 s[*1:$], n > 1.

s[*n:$] does not mean that sequence s is repeated infinitely many times, but
that it is repeated n or more (finite) number of times.

There are shortcuts s[*] provided for s[*0:$] (zero or more times), and s[+] for
s[*1:$] (one or more times) that we will widely use.

Example 6.32. Describe a transaction as a sequence. A transaction starts with
Beginning Of Transaction signal (bot) and ends with End Of Transaction signal
(eot). Each transaction is at least two cycles long, and transactions cannot overlap.

6.7 Consecutive Repetition Revisited 129

Table 6.3 Initial trace
fragment in Example 6.34 Clock tick a b c

0 1 0 0

1 1 1 0

2 0 0 1

Solution: Since the transaction is at least two cycles long, bot and eot of the same
transaction cannot be asserted in the same clock cycle. The fact that transactions
cannot overlap means that between bot and the next eot there are no other
occurrences of bot. We allow bot of the next transaction to occur in the same
clock cycle with eot of the previous transactions. Transactions should also be well
formed; therefore no two eot should occur without a bot occurrence between them.
Therefore, the sequence describing the transaction is

bot ##1 (!bot && !eot)[*] ##1 eot. ut
Example 6.33. Write the following assertion: rdy becomes asserted the first time
when the reset sequence is over. The reset sequence is represented by the high value
of rst.

Solution:

initial a1: assert property (@(posedge clk)
rst && !rdy [*] ##1 !rst && rdy);

Discussion: The same assertion may be more intuitively rewritten using property
operator until:

initial a2: assert property (@(posedge clk)
rst && !rdy until !rst && rdy); ut

Example 6.34. We revisit Example 5.21: ready should be low until rst becomes
inactive for the first time.

Solution: This time we are going to implement this assertion using sequences:

initial assert property(@(posedge clk) !ready[*] ##1 !rst);

Discussion: In this case, the property operator until may be implemented as a
sequential property (see also Example 6.33). If a is a Boolean and s is a sequence,
a until s is equivalent to sequential property a[*] ##1 s in the assertion or
assumption context. However, for a general sequence r, r until s and the
sequential property r[*] ##1 s are not equivalent. To understand this, compare
(a ##1 b)[*] ##1 c and a ##1 b until c for values of a, b, and c shown in
Table 6.3. Sequence (a ##1 b)[*] has a match in clock tick 1, therefore sequence
(a ##1 b)[*] ##1 c has a match in clock tick 2, and the corresponding sequential

130 6 Basic Sequences

property passes. Sequential property a ##1 b is false in clock tick 1 (recall that the
truth value of a sequential property relates to the initial point of its sequence), while
c is true the first time in clock tick 2. Therefore, property a ##1 b until c fails.

ut
Example 6.35. When the first operand of until_with is an integral expression,
and the second one is a sequence, a until_with s may be implemented with
sequential property a[*] ##0 s. ut

Efficiency Tip. Infinite repetition ranges may be inefficient in simulation. Their
efficiency is explained in detail in Sect. 19.3. Infinite repetition ranges are efficient
in FV if their lower bound is small.

Previous examples show that sequence and property operators are in some cases
interchangeable in assertions. In such cases, it is a matter of style or of simulator
efficiency, which solution to choose. The sequence operators are often more concise,
but in many cases property operators are more readable. Sequence operators are
more flexible as they can appear in both sequences and properties, whereas property
operators may appear only within another property or assertion. On the other hand,
property operators are more generic, as they can have both sequences and properties
as their operands, while sequences may only have sequence (or Boolean) arguments.
This fact makes property-based implementation more suitable for assertion libraries.

We will end this section with an example illustrating some semantic subtlety of
the use of infinite repetition range in the antecedent.

Example 6.36. What does the following assertion mean?

a1: assert property (@(posedge clk) a[+] |-> p);

Solution: For each evaluation attempt a1 checks that when there is a continuous
series of a, property p holds. For example, if there is a series aa at the beginning of
some attempt, p should hold in the first two clock ticks of this attempt. But checking
p in the second clock tick of this attempt is redundant: it will be checked in the first
clock tick of the next attempt. Therefore, the original assertion is equivalent to

a2: assert property (@(posedge clk) a |-> p);

Discussion: There should be no difference between the efficiency of a1 and a2 in
FV, but a2 is extremely inefficient in simulation. ut
Efficiency Tip. Never implement the property s |-> p as s[+] |-> p.

6.8 Sequences Admitting Empty Match

Sequences admitting an empty match introduce many subtle points that should be
well understood. Unlike other sequences, sequences that admit an empty match
cannot be promoted to properties according to the definition of sequential property
(Sect. 6.2). One such sequence is an empty sequence described in Sect. 6.5.1. The

6.8 Sequences Admitting Empty Match 131

empty sequence is rarely used explicitly, but it is often used implicitly as part of
other sequences, for example, in repetition ranges of the form [*] or [*0:n]. In this
section, we provide several examples illustrating a peculiar behavior of sequences
admitting an empty match.

Example 6.37. The following assertion is illegal:

assert property (@(posedge clk) a[*]);

The reason is that in this assertion the sequence a[*] is promoted to a property
while it admits an empty match. ut
Example 6.38. Sequence a ##1 b[*0:2] ##1 c matches traces ac, abc, and
abbc. Note that in the trace ac there is no gap between a and c: b[*0] does not
have any duration in time! ut
Example 6.39. Sequence a[*] ##0 b[*] is equivalent to a[+] ##0 b[+], since
the sequence fusion does not admit an empty match (Sect. 6.5.1).

Discussion: a[*] ##1 b[*] is not equivalent to a[+] ##1 b[+]. ut

6.8.1 Antecedents Admitting Empty Match

Sequences admitting an empty match have many subtle points when they are used
as antecedents. We will illustrate their behavior on sequence a[*]. Other sequences
admitting an empty match exhibit a similar behavior. Consider overlapping imp-
lication a[*] |-> p first. According to the definition of zero-or-more repetition
(Sect. 6.7.1.2), it is equivalent to a[*0] or a[+] |-> p. All nonempty matches
of the antecedent are matches of a[+], and therefore a[*] |-> p is equivalent
to a[+] |-> p. Therefore, it is possible to limit antecedents of overlapping
implications with sequences that do not admit an empty match. The sequences
admitting empty matches add nothing new in this case.4

Now consider nonoverlapping implication a[*] |=> p. It can be rewritten as
(a[*0] or a[+]) ##1 1 |-> p, which is equivalent to
(a[*0] ##1 1) or (a[+] ##1 1) |-> p (see Exercise 6.2). The first disjunct
of the antecedent is equivalent to 1, and the whole property can be reduced to p

(see Sect. 6.5.1.1). Therefore, in the nonoverlapping implication the antecedents
admitting an empty match are completely redundant when the assertion is contin-
uously monitored. To summarize, antecedents admitting an empty match in suffix
implications usually indicate a problem in the assertion.

4Of course, with the exception of the empty sequence, which has only the empty match.

132 6 Basic Sequences

Never use antecedents admitting an empty match in suffix implication.

Note also that in case of antecedents admitting an empty match, the transfor-
mation described in Example 6.18 is not valid. For example, s[*0] ##1 1 |-> p

(i.e., 1 |=> p) is p, but s[*0] |-> nexttime p is a tautology.

6.9 Sequence Concatenation and Delay Revisited

In Sect. 6.3, we introduced sequence concatenation operators with factors n � 0.
The rules of building sequence concatenation may be summarized as follows:

• r ##0 s is a sequence fusion.
• r ##1 s is a sequence concatenation.
• r ##n s, where n > 1 is defined in terms of repetition:

r ##n s � r ##1 1[*n-1] ##1 s.

We also defined there initial delay operators with factors n > 0. Now we can
provide a definition for any factor n � 0:

##n s � 1[*n] ##1 s.

According to this definition ##0 s is equivalent to s (why? see Sect. 6.5.1.1), which
is intuitive, as ##0 s means “wait 0 clock ticks before the sequence beginning”.

In a fashion similar to consecutive repetition ranges (Sect. 6.7.1), it is possible to
specify delay ranges, finite or infinite, between two sequences, as follows:

r ##[0:0] s � r ##0 s.
r ##[m:n] s � (r ##1 1[*m-1:n-1] ##1 s), where n � m > 0.
r ##[0:n] s � (r ##0 s) or (r ##[1:n] s), where n > 0.
r ##[m:$] s � (r ##1 1[*m-1:$] ##1 s), where m > 0.
r ##[0:$] s � (r ##0 s) or (r ##[1:$] s), where n > 0.

Informally speaking r ##[m:n] s means that there are m to n clock ticks from
the tight satisfaction point of r to the initial point of s. r ##[m:$] s means that
there are m or more clock ticks from the tight satisfaction point of r to the initial
point of s. As in the case with consecutive repetition there is a shortcut r ##[*] s

for r ##[0:$] s (“zero or more clock ticks”), and r ##[+] s for r ##[1:$] s

(“one or more clock ticks”).
It is also possible to define initial delay ranges:

##[m:n] s � 1 ##[m:n] s, where n � m � 0.
##[m:$] s � 1 ##[m:$] s, where m � 0.

6.9 Sequence Concatenation and Delay Revisited 133

Informally speaking ##[m:n] s means skipping from m to n clock ticks before
the initial point of s, and ##[m:$] s means skipping m or more clock ticks before
the initial point of s. As usual, there is a shortcut ##[*] s for ##[0:$] s (“zero or
more clock ticks”), and ##[+] s for ##[1:$] s (“one or more clock ticks”).

Efficiency Tip. Big delay factors, and ranges with big finite upper bound are
inefficient both in simulation and in FV. Infinite delay ranges may also be inefficient
in simulation. Their efficiency is explained in detail in Sect. 19.3. Infinite delay
ranges are efficient in FV if their lower bound is small.

Example 6.40. Write a sequence describing the scenario when ready is asserted at
the end of the transaction (signal etrans asserted) or in the next clock tick after it.

Solution: trans ##[0:1] ready ut
Example 6.41. Write the following sequence: grant gnt asserted from two to four
clock ticks after request req was asserted.

Solution: req ##[2:4] gnt

Discussion: If the initial point is 0, this sequence means: req is true in clock tick
0, and gnt is true either in clock tick 2, 3, or 4. It does not say anything about req
behavior after clock tick 0: req does not have to be deasserted there, though it can
be. Neither does this sequence claim that gnt is false in clock ticks 0, 1, 5, ut
Example 6.42. Request req must be granted (grant gnt should be asserted) within
five clock ticks.

Solution:

a1: assert property (@(posedge clk) req |-> ##[1:5] gnt);

Discussion: In this example, it is also possible to have one gnt issued for several
requests, as shown in Fig. 6.8. ut
Example 6.43. The device should become ready (ready asserted) from 10 to 12
cycles after power-on.

Solution:

initial a1: assert property (@(posedge clk) ##[10:12] ready);

Discussion: This assertion states that ready is asserted either in clock tick 10, 11
or 12. It does not state that ready must be continuously asserted in clock ticks 10,
11 and 12. Neither does it state that ready cannot be asserted before clock tick 10.

ut
Example 6.44. Write a sequence describing a scenario when request req is granted
(gnt is received).

Solution: This means that gnt is asserted in one or more clock ticks after req:
req ##[+] gnt. ut

134 6 Basic Sequences

Example 6.45. Write a sequence describing a scenario when request req is granted
(gnt) in two or more cycles.

Solution: req ##[2:$] gnt.

Discussion: This sequence does not specify that there be no grant in clock tick 1, it
just requires at least one grant to happen in two or more clock ticks. ut
Example 6.46. What is the meaning of the following assertion?

initial a1: assert property (@(posedge clk) ##[*] s |-> p);

Solution: According to the definition of the overlapping implication, at each tight
satisfaction point of sequence ##[*] s property p should be true. This is equivalent
to the requirement that p is true starting at all tight satisfaction points of sequence
s with initial points 0, 1, Therefore, assertion a1 is equivalent to assertions a2
below:

a2: assert property (@(posedge clk) s |-> p);

Discussion: Assertions a1 and a2 are also equivalent to assertion a3.

a3: assert property (@(posedge clk) ##[*] s |-> p);

Although assertions a1, a2, and a3 are logically equivalent, their simulation
performance is likely to be very different. Assertion a2 is the most efficient,
assertion a1 is much less efficient, but using assertion a3 may lead to a tremendous
performance degradation (see Sect. 19.3). FV performance for these three assertions
is generally the same. ut

Efficiency Tip. Never use infinite initial delay in antecedents.

6.10 Unbounded Sequences

In Example 6.42, we discussed the situation when a request had to be granted within
five clock ticks. The suggested assertion was

a1: assert property (@(posedge clk) req |-> ##[1:5] gnt);

We want now to modify the problem and require that the request req be granted
some time in the future, without specifying any upper bound. It may seem that the
only change required is to replace the range upper bound 5 with $:

a2_wrong: assert property (@(posedge clk) req |-> ##[1:$] gnt);

or, equivalently,

a3_wrong: assert property (@(posedge clk) req |=> ##[*] gnt);

However, both assertions a2_wrong and a3_wrong are wrong. To understand
why, recall the definition of sequential property from Sect. 6.2 that we reproduce
here for convenience.

6.10 Unbounded Sequences 135

The sequential property defined by sequence s is true in clock tick i iff there is no finite
trace fragment i W j witnessing inability of sequence s with the initial point i to have a
match. Sequence s should not admit an empty match.

When we introduced this definition, we were familiar only with bounded
sequences—sequences all of whose matches happen within a finite time interval.
For bounded sequences, the definition of sequential property can be simplified: the
sequential property defined by a bounded sequence is true iff the sequence has at
least one match (Sect. 6.2).5 Using the sequence operators described in this chapter,
sequences built on top of infinite delay or repetition ranges are unbounded, i.e., they
can have arbitrarily long matches. For such sequences, the definition of sequential
property cannot be simplified any more.

In our example, sequence ##[*] gnt is unbounded. Any finite trace fragment
does not witness the inability of this sequence to match. Indeed, the fact that gnt
did not assume high value during first 1,000 clock ticks starting from the sequence
initial point, does not prevent gnt to assume high value in the future. Therefore,
sequential property ##[*] gnt is true, regardless of the actual values of gnt, and
assertions a2_wrong and a3_wrong pass even if req is never granted. The correct
solution was provided in Example 6.23:

a4: assert property (@(posedge clk) req |=> s_eventually gnt);

An alternative way to encode this assertion is discussed in Chap. 11.
Although a sequential property of the form ##[*] s is meaningless, since it is a

tautology, the sequence ##[*] s itself is not. We saw in Example 6.46 that operator
##[*] modified the meaning of the implication. Namely, assertion

initial
a_always: assert property (@(posedge clk) ##[*] s |-> p);

checks implication s |-> p in every clock cycle, whereas assertion

initial
a_once: assert property (@(posedge clk) s |-> p);

checks this implication only once.
The definition of sequential property should be clear at this point for both

bounded and unbounded sequences. However, its rationale has not been explained
yet. Even worse, the behavior or assertions a2_wrong and a3_wrong is nonintuitive
according to this definition. Nevertheless, this definition has many advantages that
will be explained only in Chaps. 10 and 22. In this chapter, we will only provide one
additional example, further clarifying the definition of sequential property.

We mentioned in Example 6.34 that a sequential property of the form
a[*] ##1 b is equivalent to property a until b. This equivalence is intuitive,
and it is conditioned by the definition of the sequential property. Indeed, property
a[*] ##1 b fails iff there is a finite fragment of the trace witnessing that sequence
a[*] ##1 b cannot have a match. This only happens if before the first occurrence of

5As follows from the definition, all sequence matches should be non-empty.

136 6 Basic Sequences

b there is a clock tick with a low value of a, i.e., exactly when property a until b

fails. If b never happens and a always happens then any finite fragment of the trace
cannot witness the inability of sequence a[*] ##1 b to match, since potentially b

could happen immediately after the end of this fragment. This is, again, consistent
with the definition of until, which requires a always to happen if b never happens.

Exercises

6.1. Write a sequence implementing the scenario “Asserted request is deasserted in
the next clock tick”.

6.2. Show that if r, s, and t are sequences then

(a) (r or s) ##n t is equivalent to (r ##n t) or (s ##n t)

(b) r ##n (s or t) is equivalent to(r ##n s) or (r ##n t).
Is (r ##n s) or t equivalent to (r or t) ##n (s or t)?

6.3. Modify the transaction definition from Example 6.32 so that the beginning of
the next transaction cannot happen in the same cycle as the end of the previous one.

6.4. During transaction execution the ready flag must be low. The transaction is
delimited by bot and eot signals. What happens if transactions can overlap?

6.5. Modify the assertion from Example 6.24 to account only for the acknowledg-
ment coming strictly after the request.

6.6. Modify the assertion from Example 6.29 to require the signal to be active
during exactly five cycles.

Chapter 7
Assertion System Functions and Tasks

It’s a question of whether we’re going to go forward into the
future, or past to the back.

— Dan Quayle

This chapter describes system functions and tasks designed to be used in assertions.
System tasks control the execution of assertions and their action blocks. Assertion
system functions are divided into two groups:

• Bit vector functions
• Sampled value functions

7.1 Bit Vector Functions

Table 7.1 contains a list of available bit vector functions along with their description.
All bit vector functions, with the exception of $countbits, have a bit vector as their
single argument. Function $countbits requires an additional list of arguments to
specify the control values to match.

It is possible to write user functions that accomplish the same thing, however,
writing them can be rather cumbersome and certainly less efficient in simulation.
This is why the functions are included as part of the standard. The EDA tool
providers can thus implement them in an as efficient way as possible within the
tools.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__7

137

138 7 Assertion System Functions and Tasks

Table 7.1 Bit vector functions

Name Description

$countbits Count number of bits in a vector which match the argument values

$onehot0 Check that at most one bit in a vector is high

$onehot Check that exactly one bit in a vector is high

$countones Count number of bits in a vector with value high

$isunknown Check whether a vector has a bit with value x or z

7.1.1 Count Bits with Specific Values

$countbits returns the number of bits of its argument bit vector having the value
of one of the control bits. Bit vector function
$countbits(e, list_of_control_bits) has the following arguments:

• e — a bit vector, i.e., a packed or unpacked integral expression.1

• list_of_control_bits — a comma separated list of control bit arguments
carrying the values 1’b1, 1’b0, 1’bx or 1’bz.

At least one control bit must be specified. A repetition of a control bit is ignored.
Also, when the width of a control bit argument is bigger than one, its LSB is taken
as the control bit.

Example 7.1. No bus driver should be in high impedance state when signal en is
true.

Solution:

dr_t: assert final (en -> ($countbits(bus_in, 1’bz) == 0)); ut
$countbits is a generalized bit vector function of all other bit vector functions

described in the following sections. The equivalent forms of the other bit vector
functions are shown below. Assume that e is a bit vector expression.

• $countones(e) is same as $countbits(e, 1’b1)

• $onehot(e) is same as $countbits(e, 1’b1)== 1

• $onehot0(e) is same as $countbits(e, 1’b1)<= 1

• $isunknown(e) is same as $countbits(e, 1’bx, 1’bz)!= 0

Note that using functions $countones, $onehot and $onehot0 is not always
safe in the presence of unknown values x or z. In this case using $countbits may
be a better choice.

1It is treated as a vector of equal size assigned from >>{e}, where >>{} is a streaming operator.
See [8].

7.1 Bit Vector Functions 139

7.1.2 Check for Mutual Exclusion

System function $onehot0 checks that all bits of its single argument are mutually
exclusive. More precisely, it returns 1’b1 if at most one bit of its argument is set
to 1. Otherwise, it returns 1’b0. Bits carrying the values x or z are treated as 0.

Example 7.2. All bus drivers, that is, the bits set to 1’b1, of the vector bus_in must
be mutually exclusive.

Solution:

a_mutex: assert final ($onehot0(bus_in)); ut
Example 7.3. read and write requests cannot appear together.

Solution:

a_norw: assert property (@(posedge clk)
$onehot0({read, write}));

We use a concatenation operator to build a bit vector from two signals.

Discussion: If one of the signals, say write, has value x then assertion a_norw

passes, which is problematic, because x may correspond to both 0 and 1, and
$onehot0 does not guarantee the mutual exclusion. Therefore, in order to consider
x and z as possible 1, it is safer to rewrite our assertion using $countbits:

a_norw_x: assert property (@(posedge clk)
$countbits({read, write}, 1’b1, 1’bx, 1’bz) <= 1);

ut

7.1.3 One-Hot Encoding

System function $onehot checks that exactly one bit of its argument is set to 1.
If this condition is met, it returns 1’b1, otherwise, it returns 1’b0. In a similar way,
$onehot0 checks that at most one bit of its argument is set to 1. If this condition is
met, it returns 1’b1, otherwise, it returns 1’b0.

Example 7.4. Check that a control state of an FSM has a one-hot encoding when
rst is low.

Solution:

a_onehot: assert property (@(posedge clk) disable iff (rst)
$onehot(state));

Discussion: To check one-cold encoding use $onehot(~state). In the presence of
unknown values, $countbits function should be used to check one-hot and one-
cold encodings (see Exercise 7.2). ut

140 7 Assertion System Functions and Tasks

7.1.4 Number of 1-Bits

System function $countones returns a value equal to the number of bits of its
argument set to 1.

Example 7.5. The system stores the maximal number of simultaneously active
transmitters in register trmax. The transmitter activity is encoded by vector
transmitters in which each bit represents activity of the corresponding trans-
mitter. Check that the total number of simultaneously active transmitters does not
exceed the number stored in trmax. Assume that all bits of transmitters have
defined values.

Solution:

a_tract: assert property (@(posedge clk)
$countones(transmitters) <= trmax); ut
$onehot0(sig) is equivalent to $countones(sig)<= 1, $onehot(sig) is

equivalent to $countones(sig)== 1. We recommend to use a specific system
function, and not $countones whenever possible since it makes the user intent
clearer and may be handled more efficiently by tools. When there is a danger of
incorrect handling of undefined values x and z as 0, $countones function should
be used.

7.1.5 Unknown Bits

System function $isunknown returns 1’b1 if any bit of its argument has the value
x or z.

Example 7.6. All bits of data should have known values (i.e., 0 or 1) when read is
active.

Solution:

a_valid_data: assert property (@(posedge clk)
read |-> !$isunknown(data)); ut

7.2 Sampled Value Functions

This section describes Sampled Value Functions (SVF)—system functions access-
ing present, past, and future sampled values of an integral expression. One can
divide sampled value functions into two groups: general sampled value functions,
and global clocking sampled value functions. Although sampled value functions
have a temporal nature, they may be used wherever integral expressions are legal
with some exceptions explained below and in later chapters.

7.2 Sampled Value Functions 141

7.2.1 General Sampled Value Functions

Table 7.2 contains the list of available general sampled value functions. Below we
describe each function in more detail.

Table 7.2 General sampled value functions

Name Description

$sampled Return sampled value of expression

$past Return past value of expression

$rose Check whether expression value rose

$fell Check whether expression value fell

$changed Check whether expression value changed

$stable Check whether expression value remained stable

7.2.1.1 Present Sampled Values

System function $sampled takes an integral expression as its argument, and returns
its sampled value. In most cases expression sampling is done in the Preponed region.
See Appendix A for a detailed definition of expression sampling. Using system
function $sampled in concurrent assertions and in checker always_ff procedures
is redundant since the expressions used there are already sampled as explained in
Sects. 4.4 and 9.2.2.2.

Example 7.7. The following deferred cover statement prints a message when signal
sig value changes:

c_changed: cover final (sig != $sampled(sig))
$info("\%t: sig value changed", $time);

In this cover statement, the value of sig from the Observed region (which is
normally the final value of sig in the current simulation step) is compared against
$sampled(sig), the value of sig at the beginning of this simulation tick. If these
values are different, a message is issued. This statement does not work in FV since
in FV all signal values are conceptually sampled (see Chap. 21). There are more
conventional ways to detect signal changes in a clock-based design, which work
both in simulation and in FV as explained later in this chapter. ut
Example 7.8. As mentioned above, the use of $sampled system function in
concurrent assertions is redundant. Assertion

a1: assert property (@(posedge clk) $sampled(a));

is exactly the same thing as

a2: assert property (@(posedge clk) a);

142 7 Assertion System Functions and Tasks

10 20 30 40 50 60 70 80 90 100

clk

a

Fig. 7.1 Assertion violation

The situation with resets is different. In assertion

a3: assert property (@(posedge clk) disable iff (rst) a);

the value of rst is not sampled. To make it sampled, it should be specified explicitly:

a4: assert property (@(posedge clk)
disable iff ($sampled(rst)) a);

For further discussion about disable iff, see Chap. 13 ut
The main use of system function $sampled is in an action block of concurrent

assertions, as illustrated in the following example.

Example 7.9. Assertion

a1: assert property (@(posedge clk) a)
else $error("Error: a = \%b.", a);

is violated at time 40 for the waveform shown in Fig. 7.1 (recall that in the assertion
body the sampled value of a is used, and it is 0 at time 40). But the issued error
message will be Error: a = 1. The reason is that the action block is executed
in the Reactive region (Sect. 4.4) when the value of a is already 1. To make the
reporting consistent, the function $sampled has to be explicitly invoked in the action
block:

a2: assert property (@(posedge clk) a)
else $error(‘‘Error: a = \%b.’’, $sampled(a));

Note that this rule is applicable to action blocks of concurrent assertions only.
Specifying sampled values in action blocks of immediate or deferred assertions will
produce inconsistent error messages because these assertions do not use sampled
values. ut

7.2.1.2 Past Sampled Values

Sampled value function $past(e, n, en, @clk) has the following arguments:

• e — an integral expression.
• n � 1 — a constant expression specifying the number of clock ticks (delay).
• en — a gating expression for the clocking event.
• clk — a clocking event.

7.2 Sampled Value Functions 143

Table 7.3 Sampled and past values of a

Time $sampled(a) $past(a,,,@(posedge clk))

30 0 0

40 1 0

42 0 1

50 0 1

60 1 0

70 1 1

80 0 1

90 0 0

10 20 30 40 50 60 70 80 90 100

clk

en

a

Fig. 7.2 Timing diagram for Examples 7.10, 7.15, 7.19, and 7.23

All arguments but the first one are optional and have default values:

• If the clocking event is omitted, it is inferred from the context as described in
Sect. 7.2.1.5. For example, if $past is invoked in a singly clocked assertion then
the clock of this assertion is assumed, both in the assertion body and in the
assertion action blocks.

• The gating condition defaults to 1’b1 — no clock gating.
• The number of clock ticks defaults to 1.

The last optional arguments may be skipped, like in $past(a). If the intermediate
ones are omitted, a comma should be placed for each omitted argument:

$past(a,,,@(posedge clk))

$past returns the sampled value of e that was n strictly prior time steps ago in
which event @(clk iff en) occurred, i.e., the value is taken n ticks of clk ago,
but counting only those clock ticks in which en was high.

Example 7.10. Table 7.3 contains sampled and past values of a for some time steps
for the waveforms shown in Fig. 7.2. For example, to find $past(a,,,@(posedge

clk)) at time 40 we must take the sampled value of a at time 30, which is 0. To find
$past(a,,,@(posedge clk)) at time 42 we must take the sampled value of a at
the time of the last strictly preceding clock tick, which is 40, and this value is 1. ut

144 7 Assertion System Functions and Tasks

Values Before Initial Clock Tick. The definition of $past given above is incom-
plete: what happens if for a given time step there are not enough previous clock
ticks? In this case, $past(e) returns the initial value of e. The initial value of a
static variable is that as computed using the initial values stated in the declaration
of the variables involved in e. If a static variable has no explicit initialization, the
default value of the corresponding type is used, even if the variable is assigned a
value in an initial procedure.

FV tools may ignore variable initialization everywhere, except in checker

constructs.2 Also, many FV tools consider all variables to be of two-state
value type, and therefore they assume that $past(e) is 0 at clock tick 0 for
any e.

Example 7.11. For the following declaration:

logic a = 1’b1, b = 1’b0;
logic c;
bit d;
wire w = a;
initial c = 1’b1;

the initial value of

• a is 1’b1.
• b is 1’b0.
• a|b is 1’b1.
• c is 1’bx, even though c is assigned a value in the initial procedure.
• d is 1’b0.
• w is 1’bz. w is a net, and wire w = a; is an implicit continuous assignments, and

not initialization.

Beyond clock tick 0 the past values of these signals are their initial values. Note that
we number clock ticks starting from 0. For example,

$past(a,,,@(posedge clk)) = 1’b1

and

$past(c,,,@(posedge clk)) = 1’bx

Beyond clock tick 1 (including)

$past(a, 2,,@(posedge clk)) = 1’b1

2FV tools usually work with the synthesis model of DUT, and variable initialization is non-
synthesizable. However, FV algorithms can deal with initial states and the tools can infer initial
states by analyzing the variable initializations.

7.2 Sampled Value Functions 145

and

$past(c, 2,,@(posedge clk)) = 1’bx

etc. As mentioned in the note preceding this example, some FV tools will assume
the past value of all these expressions to be 1’b0. ut
Example 7.12. Consider the following code fragment.

logic a;
a1: assert property(@(posedge clk) $past(a));

Assertion a1 fails at clock tick 0, since $past(a) returns x—the initial value of a.
This example shows that one should be careful when using $past in assertions

because it may lead to nonintuitive assertion behavior in the initial clock ticks. ut
Example 7.13. Each grant gnt should be immediately preceded by a request req.

Solution:

a1: assert property (@(posedge clk) gnt |-> $past(req));

Discussion: What happens if gnt is active at the initial clock tick? If req has not
been explicitly initialized, $past(req) is x or 0 depending on req type, and the
assertion fails. In this case, this is a desired behavior. ut
Example 7.14. Gray Encoding: Check that signal sig has a Gray encoding, i.e., its
two consecutive values differ in only one bit.

Solution: Here is the first solution:

a1_wrong: assert property (@(posedge clk)
$onehot(sig ^ $past(sig)));

The result of the exclusive OR ^ operator between the current and the past values
of sig contains ones in the bits that changed. We want to make sure that exactly
one bit of the result is 1. But what happens at the initial clock tick? $past(sig)

will return x, the result of the exclusive OR will also be x, and assertion a1_wrong

will fail in the initial clock tick! To handle the initial situation correctly, we need to
delay the first check of the assertion:

a2: assert property (@(posedge clk)
nexttime $onehot(sig ^ $past(sig)));

Here sig may have any value at the initial clock tick.

Discussion: One can argue that a real-life implementation should take into account
the reset sequence during which no check is performed and therefore no initial delay
is necessary:

a3_problematic: assert property (
@(posedge clk) disable iff (rst) $onehot(sig ^ $past(sig)));

but this is also problematic. For example, if during reset and immediately after it
sig was equal to 0, assertion a3_problematic will fail immediately after reset.

146 7 Assertion System Functions and Tasks

Table 7.4 Past values of a
relative to
@(posedge clk)

Time $past(a,1,en) $past(a,2,en)

30 0 0

40 0 0

50 1 0

60 1 0

62 1 0

70 1 0

80 1 1

90 0 1

Therefore, even in the presence of a reset sequence, the initial delay may be
necessary:

a4: assert property (@(posedge clk) disable iff (rst)
nexttime $onehot(sig ^ $past(sig)));

A similar situation occurs when the $assertcontrol system task is used to
disable the assertion execution during the reset sequence (Sect. 7.3.1) ut

Be careful with handling initial clock ticks when using $past. In many cases,
it requires introducing an initial delay.

Gated Clock. The third argument of $past specifies the gating condition. To
compute a past value relative to a gated clock, the third argument should be
explicitly specified. To compute $past(a, n, en, @clk), it is necessary to take
the sampled value of a at n clock cycles strictly prior to the current simulation tick,
where only “enabled” clock ticks in which en is true are counted.

Example 7.15. Table 7.4 contains values of $past(a, 1, en, @(posedge clk))

and of $past(a, 2, en, @(posedge clk)) for the waveforms from the tim-
ing diagram shown in Fig. 7.2. As an example consider simulation time steps
62 and 80. At time 62, the previous clock tick when en was high is at time
40, therefore $past(a, 1, en, @(posedge clk)) is 1—the sampled value of
a at time 40. $past(a, 2, en, @(posedge clk)) at time 62 is the same as
$past(a, 1, en, @(posedge clk)) at time 40, i.e., 0.

$past(a, 1, en, @(posedge clk)) at time 80 is 1—the sampled value of
a at time 70. $past(a, 2, en, @(posedge clk)) at time 80 is the same as
$past(a, 1, en, @(posedge clk)) at time 70. The last enabled clock tick prior
to 70 is at time 40, therefore the result is 1. ut

7.2 Sampled Value Functions 147

Example 7.16. Verify the following implementation of a flip-flop:

always @(posedge clk)
if (en) q <= d;

Solution:

a_ff: assert property (@(posedge clk)
nexttime q == $past(d,, en)); ut

Efficiency Tip. $past(..., n, ...) is not efficient for big delays n. It is
recommended to minimize the number of calls of $past, and to avoid calling it
whenever it is not essential. The width of the expression e in $past(e, ...) is not
critical in simulation, but may significantly affect FV performance: every additional
bit in e introduces performance penalty.

Example 7.17. Given the definition:

logic check;
logic [31:0] a, b, c;

assertion

a1: assert property (@(posedge clk) ##1 check |-> $past(c) ==
$past(a) + $past(b));

is better to rewrite as:

a2: assert property (@(posedge clk) ##1 check |-> $past(c == a +
b));

In fact, assertion a1 has three invocations of $past, while a2 has only one.
Assertion a1 has 32 * 3D 96 application of $past to individual bits, while a2 is
applied to a single bit—the result of comparison. This is essential for FV and helps
in simulation. ut

Sampled Value Functions Outside Concurrent Assertions. $past and other
sampled value functions, except for the global clocking future value functions
described in Sect. 7.2.2, are not limited to concurrent assertions. However, it should
be understood that the values returned are based on the sampled values of the
argument, as discussed in the following example.

Example 7.18. The following code

logic a, b;
always @(posedge clk)
a <= $past(b);

148 7 Assertion System Functions and Tasks

has the same effect as

logic a, b, temp;
always @(posedge clk) begin
temp <= $sampled(b); a <= temp;

end

provided that a is not assigned elsewhere.
To understand this, we need to apply the definition of $past(b)—the sampled

value of b on the prior clock rise. The value of b immediately after the prior clock
rise is modeled by the variable temp, and a is equal to the sampled value of temp at
that time step, i.e., to the value of temp immediately before the clock rise. ut

7.2.1.3 Rose and Fell

Sampled value function $rose(e, @clk) returns true iff the Least Significant Bit
(LSB) of e has changed to 1, and false, otherwise. The sampled value function
$fell(e, @clk) returns true if the LSB of e has changed to 0, and false, otherwise.
More precisely

$rose(e, @clk) �
$past(LSB(e),,,@clk)!== 1 && $sampled(LSB(e))=== 1.

$fell(e, @clk) �
$past(LSB(e),,,@clk)!== 0 && $sampled(LSB(e))=== 0.

System functions $rose and $fell compare the past value with the current
sampled value of the expression. The clocking event argument is optional and if
omitted, its value is inferred from the context as explained in Sect. 7.2.1.5.

Example 7.19. For the timing diagram in Fig. 7.2, $rose(a, @(posedge clk))

returns true for time steps 30 < t � 40 and 50 < t � 60. For all other time steps, it
returns false.

$fell(a, @(posedge clk)) returns true for time steps 40 < t � 50 and 70 <

t � 80. For all other time steps, it returns false. ut
Example 7.20. If an expression changes its value from 3’b100 to 3’b001, $rose
returns true, and fell returns false, since only the LSB counts. If an expression
changes its value from x to 1, $rose returns true, and if it changes its value from x

to 0, $fell returns true. If an expression becomes x, both $rose and $fell return
false. ut
Example 7.21. Assume that sig is of type bit. The assertion from Example 6.29
“signal remains high during 5 cycles” may be rewritten as follows using function
$rose:

a1: assert property (@(posedge clk) ##1 $rose(sig) |=> sig[*4]);

What happens if we omit the initial delay in assertion a1?

a2: assert property (@(posedge clk) $rose(sig) |=> sig[*4]);

7.2 Sampled Value Functions 149

Solution: The behavior of these assertions differs in case sig is high at clock tick 0.
At clock tick 0, the antecedent of a2 is true because the past value of sig prior to the
initial clock tick is 0. Therefore, assertion a2 requires sig to remain true for four
additional clock ticks. Assertion a1 does not have a nonvacuous attempt starting at
clock tick 0, and it skips the comparison with the “prehistoric” value of sig.

Discussion: It is difficult to argue which solution is more natural, but consider the
dual case when we want to check that the signal remains low during 5 cycles:

b1: assert property(@(posedge clk) ##1 $fell(sig) |=> !sig[*4]);
b2: assert property (@(posedge clk) $fell(sig) |=> !sig[*4]);

The behavior of assertions a1 and b1 is similar, but the behavior of assertions a2
and b2 is different! If at clock tick 0 the value of sig is low, $fell(sig) will return
false, so that assertions b1 and b2 are equivalent. One could argue that if sig were
of type logic, the behavior of assertions a2 and b2 would be consistent, as $fell
returns true in case of transition from x to 0. This is true in simulation, but usually
not in FV, because most FV tools treat all variables as two-valued as mentioned
above.

This example shows again that one should be very careful with the behavior of
sampled value functions in the initial clock tick, and that it is better to introduce
an initial delay. Specifying a reset with assertions a2 and b2 makes their behavior
unpredictable at the moment when the reset goes low, as explained in Example 7.14.

To conclude this example, we mention that the assertion suggested in
Example 6.29 is more efficient than assertion a1. ut
Example 7.22. Assertion triggers in Examples 6.23, 6.42, and 6.24 are level-
sensitive events: “When request is high . . . ”. In many cases, it is desirable to
have edge-sensitive triggers: “When request becomes high . . . ”. For instance,
Example 6.42 may be reformulated as: “When request becomes high it should
be granted within 5 cycles.” The corresponding assertion is (note the nexttime

operator!):

a1: assert property (@(posedge clk)
nexttime ($rose(req) |-> ##[1:5] gnt));

or

a2: assert property (@(posedge clk)
##1 $rose(req) |-> ##[1:5] gnt);

The same assertion is probably better written as3:

a3: assert property (@(posedge clk)
!req ##1 req |-> ##[1:5] gnt); ut

3Assertions a1 and a2 are equivalent, but assertions a1 and a3 are not completely equivalent: If
at clock tick 0 req has value x, and in clock tick 1—value 1, the consequent at clock tick 1 is
checked in a1, but not in a3. If the variable values are 2-valued, both assertions are equivalent.
The situation when assertions behave differently in presence of unknown values is quite common,
we will not always explicitly comment on it.

150 7 Assertion System Functions and Tasks

7.2.1.4 Changed and Stable

Sampled value function $changed(e, @clk) returns true iff the past value of e
is different from its current value, and false otherwise. The sampled value function
$stable(e, @clk) returns true if the past value of e is identical to its current value,
and false, otherwise. More precisely,

$changed(e, @clk) � $past(e,,,@clk)!== $sampled(e).
$stable(e, @clk) � $past(e,,,@clk)=== $sampled(e).

$stable(e, @clk) is the same as !$changed(e, @clk). $changed and $stable

compare the past value with the current sampled value of the expression.
As in other clocked sampled value functions, the clock event argument is optional

and if omitted, its value is inferred from the context (Sect. 7.2.1.5).

Example 7.23. For the timing diagram shown in Fig. 7.2, system function
$changed(a, @(posedge clk)) returns true for time steps 30 < t � 60 and
70 < t � 80. For all other time steps, it returns false. The value of $stable is the
inverse. ut
Example 7.24. If e remains x, $stable(e) is true. If e changes from 0 or 1 to either
x or z, $stable(e) is false. ut
Example 7.25. Signal sig should be always stable.

Solution: One can attempt to write this assertion as:

a1_wrong: assert property (@(posedge clk) $stable(sig));

but this implementation is wrong. The problem is, as usual, with clock tick 0. At
clock tick 0 $stable returns true only if the new value of sig coincides with its
initial value. Therefore, assertion a1_wrong checks that sig always preserves its
initial value. As an illustration, consider the case when sig is of type logic, and
when it is not explicitly initialized—the most common case in practice. In this case,
assertion a1_wrong succeeds iff sig is always x, apparently not what was intended
to check. As always in such cases, the solution is to delay the assertion execution:

a2: assert property (@(posedge clk) nexttime $stable(sig));

Discussion: Assertion a2 is still problematic: it checks signal stability only on rising
clk. In many cases in practice it is desirable to ensure absolute signal stability, for
example, in verification of clock domain crossing (Sect. 1.2.3). We postpone this
discussion until Sect. 7.2.2. In this section, we consider signal stability only relative
to some specific clock. ut
Example 7.26. We are now ready to implement the assertion from Example 6.11
with the help of a sampled value function: “sig toggles every cycle: 0101. . . or
1010. . . ”.

Solution:

a_toggle: assert property (@(posedge clk) ##1 $changed(sig)); ut

7.2 Sampled Value Functions 151

Example 7.27. Each time signal sig changes, it should remain stable for four
additional cycles.

Solution:

a1: assert property(@(posedge clk)
##1 $changed(sig) |=> $stable (sig)[*4]);

Discussion: It is possible to specify signal stability at clock phases instead of clock
cycles.

a2: assert property(@(edge clk)
##1 $changed(sig) |=> $stable(sig)[*4]);

ut
Example 7.28. Signal sig is stable between the start and the end events. The events
are represented by the high value of signals start_ev and end_ev.

Solution:

a_stable: assert property (@(posedge clk)
start_ev |=> $stable(sig) until_with end_ev);

Discussion: The limitation that both start_ev and end_ev are signals may be
relaxed. start_event may be an arbitrary sequence, and end_ev may be an
arbitrary property. In such a case, the stability is checked only after sequence
start_ev matches, and until the starting clock tick of a successful evaluation of
property end_ev. ut

7.2.1.5 Clock Inference

All sampled value functions described in Sect. 7.2.1 but $sampled have a clock-
ing event as their argument. This argument may be omitted, in which case the
clocking event is inferred from the context in a similar way to the inference of the
clocking event in properties and sequences (Chaps. 12 and 14):

1. If the function is called from a concurrent assertion, the appropriate clocking
event from the assertion is used.

2. If the function is called from an action block of an assertion statement, the
leading clock of the assertion is used.

3. If the function is called from an always or initial procedure, the procedure
clock is inferred. The rules of clock inference in procedures are described in
Chap. 14.

4. Otherwise, the event from default clocking is used as described in Sect. 12.2.2.

152 7 Assertion System Functions and Tasks

Table 7.5 Past global clocking sampled value functions

Name Description

$past_gclk Return expression value in previous tick of global clock

$rose_gclk Check whether signal value rose from last tick of global clock

$fell_gclk Check whether signal value fell from last tick of global clock

$changed_gclk Check whether signal value changed from last tick of global clock

$stable_gclk Check whether signal value remained stable relative to last tick
of global clock

7.2.2 Global Clocking Sampled Value Functions

Global clocking sampled value functions are sampled value functions controlled
by the global clock. The global clock is the primary system clock, as explained in
Sect. 4.4.2. There are two groups of global clocking sampled value functions: past
and future.

Global clocking sampled value functions may be used only if
global clocking has been defined.

7.2.2.1 Past Global Clocking Sampled Value Functions

Table 7.5 summarizes past global clocking functions. Past global clocking SVF
are simple shortcuts for corresponding general sampled value functions described
earlier.

$past_gclk(e) � $past(e, 1, 1, @$global_clock)

$rose_gclk(e) � $rose(e, @$global_clock)

$fell_gclk(e) � $fell(e, @$global_clock)

$changed_gclk(e) � $changed(e, @$global_clock)

$stable_gclk(e) � $stable(e, @$global_clock)

7.2.2.2 Future Global Clocking Sampled Value Functions

Table 7.6 summarizes future global clocking sampled value functions.
The future global clocking functions provide information about the future

behavior of an expression. Unlike the past global clocking functions, there are no
expressions using the general sampled value functions corresponding to future
global clocking functions. Function $future_gclk(e) returns the sampled value

7.2 Sampled Value Functions 153

Table 7.6 Future global clocking sampled value functions

Name Description

$future_gclk Return expression value in next tick of global clock

$rising_gclk Check whether signal value is rising

$falling_gclk Check whether signal value is falling

$changing_gclk Check whether signal value is changing

$steady_gclk Check whether signal value is not changing

of e at the next tick of the global clock.4 Other future global clocking SVF can be
defined through function $future_gclk:

$rising_gclk(e) �
$sampled(LSB(e))!== 1 && $future_gclk(LSB(e))=== 1

$falling_gclk(e) �
$sampled(LSB(e))!== 0 && $future_gclk(LSB(e))=== 0

$changing_gclk(e) �
$sampled(e)!== $future_gclk(e)

$steady_gclk(e) �
$sampled(e)=== $future_gclk(e)

There are several restrictions imposed on future value functions: they cannot be used
in reset conditions, outside concurrent assertions,5 and they cannot be nested.

Example 7.29. The following use of future functions is illegal:

always @(posedge_clk) a <= $future_gclk(b) && c;
a1_illegal: assert final (a -> $future_gclk(b));
a2_illegal: assert property (@(posedge clk)
disable iff (rst || $rising_gclk(interrupt)) req |=> gnt);

a3_illegal: assert property (@(posedge clk) req |-> $future_gclk
(ack && $rising_gclk(gnt));

In the first statement $future_gclk(b) is used in an assignment, a1_illegal is
not a concurrent assertion, in a2_illegal a future SFV is used in a reset condition,
and in a3_illegal two future SVF are nested. ut

Efficiency Tip. Global clock future value functions are usually more efficient in FV
than past sampled value functions. In simulation, the picture is the opposite.

Stability Assertions. The following examples illustrate how a future sampled value
function may be used to write assertions checking signal stability.

Example 7.30. sig value does not change.

4Formal interpretation of $future_gclk(e) is provided in Chap. 21.
5Future global clocking sampled value functions are legal in let-statements used in concurrent
assertions, and in definitions of sequences and properties.

154 7 Assertion System Functions and Tasks

Solution: We have already considered this assertion in Example 7.25, but the
implementation there had two drawbacks: we had to delay the assertion by one
clock tick to handle the past value correctly at clock tick 0, and we could specify
stability only relative to a clocking event. Controlling the assertion by the global
clock and using a future value function overcomes these drawbacks:

a_stable: assert property (@$global_clock $steady_gclk(sig));

In this implementation, there is no need to have an initial delay since function
$steady_gclk(sig) checks that the sig value is identical to the one in the next
clock tick, hence there is no reference to the values of sig prior to clock tick 0, as
in the case with $stable.

As $global_clock indicates the primary system clock, all signal changes that
we are willing to consider are synchronized with it as explained in Sect. 4.4.2 and
Chap. 21, and if there is a signal change between the ticks of the global clock, it is
considered to be a glitch and is ignored at the RTL level. Recall, however, that it is
the user responsibility to define global clocking. ut
Example 7.31. Signal sig should be stable between two consecutive clock ticks. In
other words, the signal value can change only when the clock is rising.

Solution:

a1: assert property (@$global_clock disable iff(rst)
$changing_gclk(sig) |-> $rising_gclk(clk));

Discussion: In this assertion, we consider the clock to be a regular signal, and not
an event. The same assertion may be expressed using past sampled value function,
but this is less natural and usually less efficient in FV:

a2: assert property (@$global_clock disable iff(rst)
##1 $changed(sig) |-> $rose(clk));

Equivalently, we could use past global clocking function ($changed_gclk(sig),
etc.), but this is more verbose. ut

Clock as a Sampled Signal.

Example 7.32. Enable en should be low when sig is going to change.

Solution: The easiest way to write this assertion is to use sig as a clock:

a1: assert property(@sig !en);

Discussion: This solution works always in FV, but it does not always work in
simulation. The reason is that in simulation it is required that the clock value changes
at most once in any simulation tick, otherwise the simulation of the assertion may
not work correctly.

7.2 Sampled Value Functions 155

To overcome the limitation, the assertion can be rewritten in the following way:

a2: assert property(@$global_clock $changing_gclk(sig) -> !en);

This example shows that the global clock may be used as a “carrier” for other
signals that cannot be used as a clock directly. ut

Clock Fairness.

Example 7.33. Clock is always ticking.

Solution: It is required to check the clock fairness, i.e., that in any given moment
there is some future moment when the clock ticks (see also Example 5.15):

a_fclk: assert property(@($global_clock)
s_eventually $rising_gclk(clk));

Discussion: The assertion clock is $global_clock relative to which the ticking of
clk is checked. This assertion works only if $global_clock ticks on both edges
of clk or faster. If $global_clock is the same as posedge clk, ticking of the
clk cannot be detected: when posedge clk happens the sampled value of clk is
always 0.

Efficiency Tip. Assertion a_fclk is efficient in FV.6 In simulation, this assertion
is not optimal, as it may accumulate several overlapping attempts, as explained in
Sect. 19.3.

However, checking this assertion in simulation is not useful. The simulation
run is finite, and thus by analyzing the run it is not possible to conclude that the
clock is always ticking. It is only possible to check that the clock ticks at least
some predefined number of times during the simulation run (see Exercise 7.8). For
practical needs, it may be sufficient to examine the simulation trace. ut

One could wonder why general sampled value functions contain only the past
version. Why is there no $future(e, @clk) function in the language? The answer
is simple: we do not know whether an arbitrary clock is fair, i.e., never stops ticking.
If clk stops ticking at some moment, the value $future(e, @clk) is undefined. As
for the global clock—the primary system clock—is concerned, it is required to be
fair by definition, and $future_gclk(e) always makes sense. This consideration
is important in FV, where infinite traces are handled. See Sect. 21.2.3.1 for an
additional explanation.7

6This assertion is still rather expensive to check in FV. What we mean that among various versions
of the same assertion, this assertion is one of the most efficient.
7In simulation, the assertion behavior is usually ignored at the last tick of the global clock.

156 7 Assertion System Functions and Tasks

7.3 Tasks for Controlling Assertions and Runtime Violations

During the course of development, assertions often fail because the code is
incomplete or is in the process of getting fixed. Such failures are impediments
to development, particularly when the developer is well aware of the causes of
the failures. This section describes the system control tasks to control assertion
executions, assertion action block executions, expect statement execution and
run time violations for unique, unique0 and priority. Using these tasks, the
developer can selectively turn off assertion or other monitoring checks until the
code is brought to a state where the tests can actually be exercised.

Section 7.3.1 describes tasks for controlling assertion evaluation attempts.
Section 7.3.2 describes tasks for controlling action blocks. Section 7.3.3 describes a
more generalized task $assertcontrol to control both assertion execution as well
as action block execution.

7.3.1 Tasks for Controlling Evaluation Attempts

It is often necessary to stop the evaluation and reporting of unwanted assertion
failures during special initialization, power down, or reset operation phases of the
design under verification. If there is some Boolean expression that characterizes
such a phase, then the expression can be used in a disable iff clause in
subsequent assertions to disable assertion failures during those phases. For other
situations when a testbench initializes the design, the assertions can be disabled
explicitly by using assertion control tasks:

• $asserton

• $assertoff

• $assertkill

By default all assertions are enabled from time 0. To stop the start of any attempts
from time t , it is sufficient to call $assertoff before the Observed region of the
simulator at time t . This, however, does not stop any evaluation attempt that has been
started earlier. To restart the evaluation, at some later time t 0, the task $asserton is
called.

Therefore, to avoid executing all assertions during the initialization phase,
$assertoff should be called from the testbench at time 0, followed by $asserton

when exiting the initialization phase. This is illustrated in the following example.

Example 7.34.
module m;
bit clk;
default clocking ck @(posedge clk); endclocking
a: assert property(...);
initial begin
$assertoff();

7.3 Tasks for Controlling Assertions and Runtime Violations 157

//... await reset activity completed ...
@ck; //synchronize and start assertion from this tick
$asserton();

end
//... other code ..

endmodule

In this case, assertion a will start evaluation attempts starting from the moment
statement @ck unblocks.

What if the call to $asserton() were made in a program that executes in the
Reactive region as in this code snippet?

module m;
bit clk;
prg my_program();
default clocking ck @(posedge clk); endclocking
a: assert property(... some_property ...);
//... other code ..

endmodule
program prg;
initial begin
$assertoff();
//... await reset activity completed ...
@m.ck; //synchronize and start assertion from this tick
$asserton();

end
//... other code...

endprogram

Since the call is made from the Reactive region, the assertion is not yet enabled
when the evaluation of a is to start in the Observed region, the first evaluation of a
will only happen one clock tick later. Also, the $assertoff does not execute until
the Reactive region of time step 0, hence the assertion evaluation attempt at time 0
is enabled and will execute if there is a clock tick. ut

If the initialization phase is to be executed again later in the simulation, we should
again stop the assertions, but in that case we should consider using $assertkill.
It stops the subsequent evaluation attempts, and also any evaluation attempts that
have started earlier (that would still be continuing evaluation during the initialization
phase). Calling this task thus avoids failures of evaluation attempts that do not matter
anymore, even though they started during the“normal” design phase.

The above approach will work well if we need to stop all assertions, but what
if some assertions should run during the special phase? The tasks accept a list
of arguments that define the modules or scopes and the depth down to individual
assertions to which the task call applies. The argument list is of the same form as
for the well-known $dumpvars task:

assert_control_task ::D name[(levels[, list_of_scopes_or_assertions])] ;
name ::=

158 7 Assertion System Functions and Tasks

$asserton

j $assertoff
j $assertkill

list_of_scopes_or_assertions ::= scope_or_assertion, {scope_or_assertion}
scope_or_assertion ::=

scope_identifier
j assertion_identifier
j hierarchical_identifier

The levels argument is a nonnegative integer constant. When set to 0, it applies to
all the items on the list_of_scopes_or_assertions and all the scopes below. When set
to 1, it applies only to the items in the current scope but not to the hierarchy under it.
When set to some n > 1, it applies to the items and to n-1 levels of hierarchy below.
Of course, if the item is a full hierarchical path to an assertion, the task applies only
to that assertion since there are no levels below.

7.3.2 Tasks for Controlling Action Blocks

Assertions have optional action blocks (Chap. 4), that is, blocks of procedural code
that are executed when the assertion attempt succeeds (pass action block) or fails
(fail action block). In the case of covers, only the pass action block is available
because cover failure is not interesting. The following example shows a concurrent
assertion a and a concurrent cover c, each with action blocks.

Example 7.35.
a: assert property(p1)

begin // pass action block
process_pass();
$info("assertion PASSED");

end
else begin // fail action block

process_failure();
$error("assertion FAILED");

end
c: cover property(p2)

begin // pass action block
process_cover();
$info("COVERED");

end ut
By default, the action blocks execute on every success and failure of the assert

and cover statements. This behavior may not be desirable, for example, when the
property passes vacuously or when running massive regression tests where only
failures should be reported.

SystemVerilog provides several tasks for controlling the execution of action
blocks:

7.3 Tasks for Controlling Assertions and Runtime Violations 159

$assertpassoff
$assertpasson
$assertfailoff
$assertfailon
$assertvacuousoff
$assertnonvacuouson

The arguments to the system tasks are the same as for the assertion control system
tasks described in Sect. 7.3.1.

As it can be seen, the assertion action control tasks come in pairs, one for
disabling and one for reenabling the action.

$assertpassoff stops the execution of pass action blocks in the scope specified
by the arguments to the task call until $assertpasson is called affecting the same
scope.

$assertfailoff stops the execution of fail action blocks in the scope specified
by the arguments to the task call until $assertfailon is called affecting the same
scope.

$assertvacuousoff stops the execution of pass action blocks for vacuous
evaluation attempts in the scope specified by the arguments to the task call until
$assertpasson is called affecting the same scope.

All the disabling tasks do not affect evaluation attempts that are already in
progress as well as action blocks that are currently executing.

The following are typical cases of using these tasks:

• In regression tests, disable pass action blocks on assert and assume statements
unless their execution has some functional impact on the testbench behavior.
In covers, it could remain enabled if they provide information for some user-
specific coverage analysis tools.

• Even when pass action blocks are enabled, we recommend to disable their
execution on vacuous evaluation attempts because they may lead to an incorrect
interpretation of the verification results.

• If default failure messages issued by the verification tool are sufficient, and fail
and pass action block execution has no functional impact on the testbench, it may
be preferable to disable the execution of fail action blocks. Verification tools often
have means to control how many failures of assertions are reported by default
reporting mechanisms. This is useful for catching the first few failures without
cluttering the log with redundant repetitions of the same message.

7.3.3 General Assertion Control Task

The preceding sections discussed control tasks that mostly perform a singular func-
tion. For example, $assertoff turns off assertions and $assertpassoff disables
the execution of action blocks associated with assertion successes. Moreover, the
selection of statements by these tasks is limited and not adequate in situations when
only certain categories of statements are needed to be controlled. It is not possible to

160 7 Assertion System Functions and Tasks

Table 7.7 Control type values

Value Control Description

1 Lock Prohibit any control changes

2 Unlock Allow control changes

3 On Enable

4 Off Disable

5 Kill Kill assertions

6 PassOn Enable execution of success action blocks

7 PassOff Disable execution of success action blocks

8 FailOn Enable execution of fail action blocks

9 FailOff Disable execution of fail action blocks

10 NonvacuousOn Enable execution of action blocks on non-vacuous success

11 VacuousOff Disable execution of action blocks on vacuous success

turn off assert statements while leaving cover statements on. Similarly, concurrent
assertions cannot be set apart from immediate assertions when different control is
required for each group. Such fine-grained control is often needed in debugging
during development phases of a design project.

We now discuss $assertcontrol8, a control task that assimilates the function-
ality of the tasks described in the preceding sections as well as provides additional
fine-grained control and flexibility. It has the following syntax:

$assercontrol(control_type[,[assertion_type][,[directive_type]
[,[levels][,list_of_scopes_or_assertions]]]]);

The first argument control_type is an integer which specifies the type of
control that is applied on the selected assertions. The control functions and their
corresponding argument values are enumerated in Table 7.7. The control functions
include all the features of the tasks in the preceding sections.

A model under development in a diverse environment of collaborating engineers
is often entangled with control tasks that are suitable to individual portions of the
design, but may be intruding on other portions when integrated to execute together.
In such cases, the designer often needs to have overriding control to make progress.
A locking feature is provided to assist in overriding control. When lock is enabled
on an assertion, subsequent change in control is prohibited until lock is disabled. For
instance, if an assertion was turned off before lock was enabled, it remains turned off
regardless of any further invocation of $asserton or $assertcontrol to turn it on.
lock can be disabled at a later time to continue controlling the assertion execution.
Similar actions of lock are applicable on controlling action blocks as well. Applying
lock to assertions contained in a power domain while controlling other assertions in
the system is a common application.

8$assertcontrol was introduced in 2012 LRM [8].

7.3 Tasks for Controlling Assertions and Runtime Violations 161

Table 7.8 Assertion type
values

Value Assertion type

1 Concurrent

2 Simple Immediate

4 Observed Deferred Immediate

8 Final Deferred Immediate

16 Expect

32 Unique

64 Unique0

128 Priority

Table 7.9 Directive type
values

Value Directive type

1 Assert

2 Cover

4 Assume

The second argument assertion_type selects the type of statements on which the
control function is applied. Table 7.8 specifies the statement type options and the
associated argument values. The available statements for selection include assertion
types such as concurrent and immediate, unique, unique0 and priority for runtime
violations of case and if statements, and expect statements. Each argument value for
the selected statement type is specified by a single designated bit in the argument
integer, such that more than one type of statement can be selected by computing the
union of the corresponding values. For example, concurrent assertion statements are
selected by value 1, final deferred immediate type is selected by 8, so value 9 selects
both of them. The argument itself is optional, which defaults to value 255 when the
argument is omitted. Value 255 includes all types.

The third argument directive_type selects the assertion directive types and
is useful only when the selection via argument assertion_type is of assertion
statement types. The directive type options are enumerated in Table 7.9. Like the
assertion_type argument, multiple directive types can be selected by computing the
union of the corresponding values. For example, value 3 will select assert and cover
directives. The argument is optional, which defaults to value 7, when the argument
is omitted. Value 7 selects all directive types.

The fourth argument levels specifies levels as described in Sect. 7.3.1. This
argument is also optional and defaults to level 0 when omitted, selecting full
hierarchies of scopes specified by argument list_of_scopes_or_assertions.

The fifth argument list_of_scopes_or_assertions specifies a list of items on which
the selection of previous arguments is applied as described in Sect. 7.3.1. Each item
is either an assertion or a scope to control. If the argument is omitted, then the
selections are applied on all top-level scopes.

Although $assertcontrol requires more arguments to specify, the task offers
comprehensive functionality. It simplifies many situations where a manual grouping
of assertions either by name or other means would be necessary for controlling

162 7 Assertion System Functions and Tasks

Table 7.10 Control task equivalents

Control task Equivalent representation with $assertcontrol

$asserton(level,list) $assercontrol(3,15,7,level,list)

$assertoff(level,list) $assercontrol(4,15,7,level,list)

$assertkill(level,list) $assercontrol(5,15,7,level,list)

$assertpasson(level,list) $assercontrol(6,31,7,level,list)

$assertpassoff(level,list) $assercontrol(7,31,7,level,list)

$assertfailon(level,list) $assercontrol(8,31,7,level,list)

$assertfailoff(level,list) $assercontrol(9,31,7,level,list)

$assertnonvacuouson(level,list) $assercontrol(10,31,7,level,list)

$assertvacuousoff(level,list) $assercontrol(11,31,7,level,list)

them. If a designer is interested in just turning off final deferred immediate,
$assertcontrol can be invoked with statement type argument of value 8. In the
example below, all final deferred immediate statements will be turned off under
scope top.inst1.s1.

$assertcontrol(4,8,1,0,top.inst1.s1);

$assertcontrol subsumes functionality provided by all other control
tasks. Table 7.10 shows the equivalent assertion control task representation to
$assertcontrol. In that table level represents the level of hierarchy and list
represents the list of assertions or scopes.

Exercises

7.1. Write an assertion checking that exactly n bits of a signal are high (low).

7.2. Write an assertion checking one-cold encoding for four-state value variables.

7.3. It was mentioned in Example 7.9 that invoking system function $sampled in
action blocks of immediate or deferred assertions for reporting purposes will result
in inconsistent messages. Explain why.

7.4. Modify the assertions in Example 7.14 to allow sig either remain unchanged
or change in one bit in consecutive clock cycles. Write two versions of this assertion:
one which does not impose any constraints on the initial value of sig, and the other
requiring sig to be 0 upon the termination of the reset sequence.

7.5. Rewrite assertion

b1: assert property(@(posedge clk) ##1 $fell(sig) |=> !sig[*4]);

from Example 7.21 without using sampled value functions.

7.6. What is the assertion behavior in Example 7.26 if the initial delay ##1 is
dropped? Assume that sig is of type bit.

7.3 Tasks for Controlling Assertions and Runtime Violations 163

7.7. What does the following assertion mean?

assert property(@($global_clock)
s_eventually $changing_gclk(clk));

What is the difference between this assertion and the assertion from
Example 7.33

7.8. Write an assertion stating that the clock ticks at least n times, where n is an
elaboration time constant. See Example 7.33.

7.9. There are two clocks: fast (fclk) and slow (sclk), and sclk is 8 times slower
than fclk. Write the following assertion: signal sig may only change on the third
rising edge of sclk after its last change.

Part III
Metalanguage Constructs

Chapter 8
Let, Sequence and Property Declarations;
Inference

The beginning of wisdom is to call things by their right names.

— Chinese proverb

In SystemVerilog, modules, programs, interfaces, checkers, functions, and tasks
provide means for reuse, and for abstracting and hiding details. SystemVerilog
assertions provide such means too. This is achieved using parameterized let,
sequence, and property declarations. Their argument lists as well as instantiation
semantics are quite different from the other reuse features. In addition, certain
kinds of actual arguments can be inferred from the instantiation context. Similar
to sequences and properties, let declarations allow to abstract expressions, making
code more readable and reusable. let can be used anywhere, not only in assertions.
One of their intended uses is for defining reusable parameterizable expressions for
immediate and deferred assertions.

8.1 Let Declarations

let declarations are a way to define parameterizable templates for forming expres-
sions. let can be declared in any declarative scope, wherever variables can be
declared, and can be instantiated wherever expressions can be used. let declarations
are similar to text macros, but they are better adapted for use in SystemVerilog
expressions because they are part of the core language. They follow normal scoping
rules. The formal arguments of a let definition may be typed and can have default
actual arguments. However, there are some practical restrictions to be placed both
on the form of the expression definition and on the arguments, even though they are
not stated explicitly in the SystemVerilog LRM. These will be discussed later in the
section.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__8

167

168 8 Let, Sequence and Property Declarations; Inference

The following example shows some simple let usage and illustrates the effect of
scoping rules applied to these declarations. They are contrasted with similar macro
declarations.

Example 8.1. Effect of scoping rules.

module m;
logic clk, a, b, c, d;
let let_exp = a && b;

always @(posedge clk) begin: B1
let let_exp = c || d;
a <= let_exp;
b <= a;

end
assign c = let_exp;
assign d = b;

endmodule

There are two let declarations of the same name let_exp, but each having a
different expression associated with the name. The first one is defined in the module
scope, and the second one in the always procedure scope. The variables used in the
expression on the right-hand side of the let declaration must be visible at the point
of declaration. Wherever a let is instantiated the nearest visible let declaration is
used. The expression on the right-hand side of the declaration is substituted in the
place of the instance. Module m definition is thus equivalent to the following code:

module m;
logic clk, a, b, c, d;
always @(posedge clk) begin: B1
a <= c || d;
b <= a;

end
assign c = a && b;
assign d = b;

endmodule

Suppose now that we replace the let declarations by macro definitions. The
original module definition becomes

‘define macro_exp a && b
module m;
logic clk, a, b, c, d;
always @(posedge clk) begin: B1

‘define macro_exp c || d
a <= ‘macro_exp;
b <= a;

end
assign c = ‘macro_exp;
assign d = b;

endmodule

8.1 Let Declarations 169

After macro substitution, module m is quite different from the one after let

substitution

module m;
logic clk, a, b, c, d;
always @(posedge clk) begin: B1
a <= c || d;
b <= a;

end
assign c = c || d;
assign d = b;

endmodule

The difference is in the assign statement where in the case of let, it is the
definition from the module scope that is used, whereas in the case of a macro, it
is the latest definition in the lexical order.1 To imitate the scoping of let using
macro definition, the symbol would have to be explicitly undefined when exiting the
scope and again defined to the original expression, as shown next. Clearly, this is
much more tedious and error prone.

‘define macro_exp a && b
module m;
logic clk, a, b, c, d;
always @(posedge clk) begin

‘define macro_exp c || d
a <= ‘macro_exp;
b <= a;

‘undef macro_exp
‘define macro_exp a && b
end
assign c = ‘macro_exp;
assign d = b;

endmodule ut

Unlike macro definitions, let declarations follow normal scoping rules. The
right-hand side expression from the definition is substituted in place of the
instance.

The instantiation of let is quite different from, e.g., calling a function because
the let body is substituted in the place of the instance. Unlike functions, let
instantiations cannot be recursive.

let declarations can have formal arguments. Again, unlike in functions, the
actual arguments are substituted for every occurrence of the corresponding formal
argument when the instance is replaced by the let body. The actual argument
variables must be visible in the instance scope. The formal argument types are

1The compiler may issue a warning for the second macro definition, saying that the symbol has
been redefined.

170 8 Let, Sequence and Property Declarations; Inference

restricted to the event type and the integral types allowed in assertions, and may
be typed or untyped. If untyped, the actual argument expression is enclosed in
parentheses before substitution in the place of the formal argument. The extra pair
of parentheses is added to preserve the precedence of evaluation as indicated by
the parent expression containing the let instance. If the formal argument is typed,
then the self-determined type of the result of the evaluation of the actual argument
must be type cast compatible. Provided that the types are compatible, the actual
expression is cast to the type of the formal argument before being substituted in
place of the occurrences of the formal arguments in the let body.

The following example shows the use of an untyped formal argument.

Example 8.2.
let orReduct(x) = |x;
module m;
logic [2:0] sel;
logic [7:0] [1:0] data;
logic a, b, v, w;
assign v = a && orReduct(sel);
assign w = orReduct(data);
//...

endmodule

After substitution, the code takes the following form:

module m;
logic [2:0] sel;
logic [7:0] [1:0] data;
logic a, b, v, w;
assign v = a && (|sel);
assign w = (|data);
//...

endmodule ut
In the above example, notice that, because the formal is untyped, there is more

latitude in using actual argument expression of different types in the let instance;
no type conversion is performed and the validity of the substituted expression is
completely determined by the expression within which it is substituted.

The formal arguments can also have a default actual argument. When no actual
argument is provided in a let instance, the default one is used. The following
example is similar to the preceding one except that the let is now defined inside
the module and the formal argument x has a default actual expression sel. The first
instance does not provide an actual argument, hence the default sel is taken. The
result is the same as in the preceding example.

Example 8.3.
module m;
logic [2:0] sel;
logic [7:0] [1:0] data;
logic a, b, v, w;
let orReduct(x = sel) = |x;
assign v = a && orReduct();

8.1 Let Declarations 171

assign w = b || orReduct(data);
//...

endmodule ut
When typed formal arguments are used, type checking is performed to ensure

that the actual argument is type cast compatible with the formal argument. If that is
so, then type casting takes place. This is illustrated in the next example.

Example 8.4.
typedef bit [1:0] my_t;
let orReduct(my_t x) = |x;
module m;
logic [2:0] sel;
logic [7:0] [1:0] data;
logic a, b, v, w;
assign v = a && orReduct(sel);
assign w = orReduct(data);
//...

endmodule

The resulting code after substitution is as follows:

typedef bit [1:0] my_t;
module m;
logic [2:0] sel;
logic [7:0] [1:0] data;
logic a, b, v, w;
assign v = a && (|my_t’(sel));
assign w = (|my_t’(data));
//...

endmodule

Because of the type cast, only the low-order 2 bits of either argument are
converted to bit and used in the reduction or operator. ut

Typed arguments enforce type compatibility and casting, but limit flexibility
as compared to untyped arguments.

Let us recapitulate the way the variables in the default argument expression
and the variables in the let body that are not formal arguments are resolved. The
rules are similar to those for function and task declarations. Namely, the default
arguments and the variables that are not formal arguments are resolved in the
declarative context, while the actual arguments are resolved in the instantiation
context.2

2The SystemVerilog LRM provides many examples illustrating the use of let in various scoping
contexts, with and without typed arguments and type casting, as well as the use of sampled value
functions in let definitions.

172 8 Let, Sequence and Property Declarations; Inference

Example 8.5.
module m;
bit clk;
logic a, b;
let x = $past(a && b);
let y = $past(a && b, , ,@(posedge clk));
always_comb begin
a1: assert #0 (x);
a2: assert #0 (y);

end
a3: assert property(@(posedge clk) a |-> x);

endmodule

In this example, let instances are used in three assertions, a1, a2, and a3. While
the form of the instance is legal in a2 and a3, it is illegal in a1. Why?

The sampled value function requires a clocking event for updating the previous
value of its argument. There is no clocking event available and it cannot be inferred
when x is expanded in a1. This results in an illegal use of $past. In a2, the clocking
event is explicitly specified in the sampled value function in the definition of y.
Therefore, after substitution of y into a2, a legal form of the deferred assertion a2

is obtained. Finally, in a3 there is no explicit clocking event in the sampled value
function, after substituting the body of x into a3, the assertion contains the following
body:

a3: assert property(@(posedge clk) a |-> ($past(a && b)));

The property in the assertion that resulted from the substitution is perfectly legal
because the clocking event for the sampled value function is inferred from the
assertion. ut

We now examine some problematic cases. They are not explicitly identified as
illegal in the SystemVerilog LRM, but their use may lead to some unexpected results
and should be considered as illegal. The first case involves explicit or implicit form
of variable_lvalue assignment, that is, the variable or expression on the left-hand
side of an assignment.

Example 8.6.
let inc1(int x) = x++;
let inc2(bit [7:0] y) = y+=2;
let combinetwo(integer v, w) = (v = v + w);
module m;
bit clk;
integer a, b;
a1: assert property (@(clk) inc1(a));
a2: assert property (@(clk) inc2(a) == 1);
property p;
@(clk) combinetwo(a, b);

endproperty
a3: assert property (p);

endmodule

8.1 Let Declarations 173

After substitution of let, we obtain the following code:

module m;
bit clk;
integer a, b;
a1: assert property (@(clk) (int’(a)++));
a2: assert property (@(clk) (((type bit [7:0])’a+=2) == 1));
property p;
@(clk) ((a = a + b));

endproperty
a3: assert property (p);
endmodule

Assertion a1 contains an illegal form—int’(a) is an expression, not a variable,
hence the increment operator cannot be applied to it.

Assertion a2 results in an illegal form because type cast is applied to the whole
implicit assignment, and it is not clear how the type cast is to be interpreted.

Assertion a3 is seemingly legal, but there is a side effect of replacing the current
value of a by its sampled value summed with b. The SystemVerilog LRM does
forbid assignment expressions in Boolean expressions in sequences and properties,
but not let statements. Even if supported by a simulator, the outcome may be
rather unexpected and difficult to understand. Which value is compared with 1 in
assertion a2? The old one or the new one? It would appear that it should be the
old sampled value, but is it? Is the sampled expression just $sampled(a) or is it
$sampled(a + b) in assertion a3?

If the let definitions were written by the same person who writes the assertions,
perhaps the expected outcome is clear to that person. However, if the let declara-
tions are part of a package and the user knows little about its contents, then usage of
such forms with side effects becomes problematic and should be illegal. ut

A similar recommendation applies to passing such expressions as actual argu-
ments to otherwise simple innocuous let definitions. This is illustrated on the next
example.

Example 8.7.
let inc(int x) = x;
module m;
bit clk;
integer a, b;
a1: assert property (@(clk) inc(a++));
a2: assert property (@(clk) inc(a+=1) == 1);
property p;
@(clk) inc((a = a + b));

endproperty
a3: assert property (p);

endmodule

After substitution, the code is as follows

module m;
bit clk;
integer a, b;

174 8 Let, Sequence and Property Declarations; Inference

a1: assert property (@(clk) int’(a++));
a2: assert property (@(clk) (int’(a+=1) == 1));
property p;
@(clk) (int’(a = a + b));

endproperty
a3: assert property (p);

endmodule

The outcome of the let substitution is equally illegal or confusing as in the
preceding example. ut

Do not use expressions with side effects such as increment/decrement
and operator assignment expressions in let actual arguments and in let

definitions.

Another issue that is not sufficiently discussed in the SystemVerilog LRM is
the application of bit and part selects over let instances, part and bit selects over
formal arguments in let defining expressions, and in passing bit or part select as
actual arguments to let instances. The problem is that unless the user is aware of the
let definition details, such use may create illegal expressions once the let body is
substituted in place of the instance. We illustrate some of the problematic situations
on the following example.

Example 8.8.
typedef bit[1:0] bt_t;
module m;
logic [7:0] a;
logic [7:0] [2:0] b;
logic c, d, e, f;
let lt1(bt_t x) = x;
let lt2(x) = x[1:0];
let lt3(x) = x;
assign c = lt2(a)[0];
assign d = lt1(a[4:0])[0];
assign e = lt2(a[4:0]);
assign f = lt3(a)[0];

After substitution of let arguments and bodies into the assignments, we get the
following equivalent code:

typedef bit[1:0] bt_t;
module m;
logic [7:0] a;
logic [7:0] [2:0] b;
logic c, d, e, f;
assign c = (a[1:0])[0];
assign d = (bt_t’(a[4:0]))[0];
assign e = ((a[4:0])[1]);
assign f = (a)[0]; ut

8.1 Let Declarations 175

The assignments to c, d, and e result in illegal expression forms. This is because
a bit or part select is taken from a parenthesized expression which is a part select
itself. Assignment to f is equally illegal even though the argument is just a variable
identifier in which case it would perhaps make sense to allow substitution without
the enclosing parentheses.

Do not apply any select operators on let instances.

8.1.1 Syntax of Let

let declaration and its actual arguments have the following form:

let identifier[(let_port_item{, let_port_item}])]D expression;

let_port_item allows port types that are restricted to integral types and event.
Also, untyped formal arguments may be used to indicate any type. There is no use
of port direction, hence port direction specification is not allowed.

Untyped ports can be used at the beginning of the formal port list, but once a
type is specified on a port, then all subsequent ports must have a type or an explicit
untyped. This is illustrated in the following example:

Example 8.9. Typed arguments.

let my_let(x, bit y, z) = y ? x : z;

The formal argument x is untyped. The arguments y and z are of type bit. This
means that their actual arguments must be type compatible to type bit and is first
cast to bit before substituting in the expression y ? x : z in the let instance. ut

The formal arguments can also have default actual argument expressions
assigned to the formal arguments.

The right-hand side of the definition and the actual arguments (default or
otherwise) are general expression forms. As we discussed earlier, the expression
must be void of implicit and explicit variable assignments.

A let instance can be used wherever an expression can be used. The instance
consists of the let identifier followed in parentheses by a list of actual arguments.
An actual argument can be specified in one of several ways, like in functions and
tasks:

• Missing—when an actual argument is not provided. The default expression for
the corresponding formal argument is used.

• Positional binding—the list of actual expressions is separated by commas. They
are associated with the formal arguments in the order of appearance.

• Named binding .formal_identifier(actual_expression)—the actual argu-
ment is explicitly associated with a named formal argument. The order in which

176 8 Let, Sequence and Property Declarations; Inference

they are written is immaterial. If actual_expression is missing, then again the
default actual expression is used.

If a mix of positional and named binding is used, then the positional form must
precede any named form.

8.1.2 Uses of Let

let is useful for abstracting expressions and for configuring them as templates in
a checker library. A strong case for this abstraction form is when such a template
is picked up from a checker library, and instantiated in immediate and deferred
assertions. The following example illustrates this point, but for detailed discussion
of this topic, see Chap. 24.

Example 8.10.
let onehot0(exp, bit reset = 1’b0) = reset || $onehot0(exp);
let noUnknown(exp, bit reset = 1’b0) = reset || $isunknown(exp);

module check(input
logic rst,
logic [15:0] decoded,
logic [3:0] sel
);

a1: assert #0 (noUnknown({decoded, sel}));
a2: assert #0 (onehot0(sel, rst));

endmodule : check

Module check is a combinational checker that verifies in assertion a1 that the
ports decoded and sel never have an x or z value in any bit position, and in assertion
a2 that the port sel has at most one bit asserted 1 . Assertion a1 is checking the
expression regardless of whether rst is asserted or not because the default value of
0 is used as the actual argument for reset. Assertion a2 is disabled when rst is
asserted 1. ut

Notice that we could have used functions $onehot and $isunknown directly in
the assertions, but then the reset argument would have to be always added in the
expression of the assertion, which can be error prone. The let template in a library
allows to hide this detail and makes the use of the functions more user friendly.
Similarly, we could define a template for $past that provides different default values
for its arguments than those provided by the function definition. The let declaration
can be placed in a package and then imported wherever needed.

let declarations are suitable for libraries of property-like templates in
packages to be used in deferred and immediate assertions.

8.2 Sequence and Property Declarations 177

To conclude this section, we wish to mention that unlike wires, let definitions
can be used to define expressions that are temporarily used and not meant to be
synthesized. For instance,

always_comb w = a & b;
assert #0 (w == 1);

If w is used only in the assert statement, the synthesis tool may or may not
synthesize this signal, even though it is not required in the physical implementation
of the design. Using let w = a & b; instead avoids this problem. The conventional
solution is to use ‘ifdef ... ‘endif to enclose nonsynthesizable code but it is
less elegant.

It will be interesting to see what other uses will be devised for let, and what
kind of support various software tools will provide for debugging code that contains
let statements. Since let is part of the language unlike macros, it may be possible
to trace its evaluations and even collect coverage.

8.2 Sequence and Property Declarations

Sequence and property declarations allow users to compose temporal formulas into
units that can be instantiated in other such units as well as in assertions. This
mechanism thus provides means for abstracting temporal behavior to building more
complex temporal formulas. The declarations of a sequence and property are
named, and available with optional arguments. The formal argument list definition
in sequence declarations is similar to that in property declarations, except that the
latter also allows properties as arguments. The declaration interface and substitution
of an instance by the body of its definition are similar to let, but more complex due
to the presence of clocks and disabling conditions. Furthermore, formal argument
list and the association of the formal with actual arguments differs considerably
from the port list defined for modules, programs, interfaces, functions, and tasks.

We illustrate briefly some of these constructs in the following example. More
details are provided in the subsequent section.

Example 8.11.
sequence sf_after_a(
event clk = $inferred_clk, logic a, sequence sf, int n = 1);
@(posedge clk) a ##n sf;

endsequence

property seq_impl_prop(logic rst = $inferred_disable,
event clk = $inferred_clk, sequence sf, property pf);
disable iff(rst) @clk sf |-> pf;

endproperty

The sequence sf_after_a has as its formal argument a clocking event named
clk. It has a default actual argument which is, in this case, the system function
$inferred_clock. In the absence of an actual argument, it infers the clocking event

178 8 Let, Sequence and Property Declarations; Inference

from the instantiation context of the sequence. The sequence has three additional
formal arguments. The first one is logic a. The type is explicitly specified to
ensure that the actual argument be type compatible with logic. The second one
is sequence sf restricting the actual argument to be an expression or a sequence.
An expression is allowed because it is also a simple (Boolean) sequence. The final
argument is used as a constant in the delay operator and is thus restricted to an
integral type. The body of sf_after_a states that n cycles after a the sequence
sf should start evaluating at the next clock tick. When sf matches, the sequence
sf_after_a matches as well.

Property seq_impl_prop has two formal arguments clk and sf that are of the
same type as in the case of the preceding sequence declaration. It has two additional
arguments, however. The first one of them, rst, is used as the disable iff

expression of the property. It has a default actual argument that is used in the absence
of an actual argument in the property instance. It can infer the disabling expression
from a default disable iff expr declaration. The second one is an argument of
type property and thus the actual argument can be an expression, a sequence or a
property, but it cannot be a clocking event. ut

Suppose now that there are the following declarations in a module (or program
or interface or checker):

Example 8.12.
logic reset, clock, v, w, x, y;
default disable iff !reset;
default clocking ck @(posedge clock);
endclocking
sequence s;
v[*3];

endsequence
a_until: assert property(
seq_impl_prop(, , sf_after_a(, w, s, 1), (x until y));

c_seq: cover property(disable iff (!reset)
sf_after_a(, w, s, 1)); ut
How are the assertion and coverage statements to be interpreted? First, some

basic rules are applied in the order as shown below:

1. Substitute actual arguments for all occurrences of the formal arguments in the
body specifications.

2. Substitute sequence or property instances by their body specifications.
3. Apply inference rules.
4. Apply clock flow rules to determine sampling clocks for all expressions that need

a clocking event (see Chap. 12).

In general, the rules cannot be applied just once as stated, rather it has to
be a recursive application of the rules starting from the top property expression
in the assertion until all the substitutions are completed, resulting in a property
specification containing no unclocked expressions and no instance of another
property or sequence.

8.2 Sequence and Property Declarations 179

Let us apply these rules to the example. First consider assertion a_until. For
substituting seq_impl_prop instance body into the assertion requires to determine
its actual arguments. The first two actual arguments are missing in the instance spe-
cification; therefore, default values are used. In this case, they are inferred. For rst
the argument $inferred_disable is inferred from default disable iff and
thus it is !reset. For clk, $inferred_clock is inferred from default clocking

and thus it is posedge clock.
The third argument is an instance of sequence sf_after_a which itself needs

its actual arguments. The first argument is again inferred from default clocking

as posedge clock. The second one is variable w and the third one is an instance
of sequence s. The last argument is for pf, and it is simply x until y where x

and y are variables declared in the module. The assertion with the actual arguments
substituted has the following form:

a: assert property(seq_impl_prop(!reset, (posedge clock),
sf_after_a((posedge clock), w, s, 1), (x until y));

We can now proceed with the substitution of the arguments into the body of
seq_impl_prop. It becomes

disable iff (!reset) @(posedge clock)
(sf_after_a((posedge clock), w, s, 1)) |-> (x until y)

The next step is to substitute the body of the sequence sf_after_a. Its sequence
expression after substitution of the actual arguments becomes

@(posedge clock) w ##1 (v[*3])

where (v[*3]) is the body of sequence s. The final form of the body of assertion
a_until before clock flow is applied is as follows:

disable iff(!reset) @(posedge clock) (@(posedge clock)
(w ##1 (v[*3])) |-> (x until y)

The top-level clock is pushed into the antecedent sequence of the implication and
then flows into the consequent property as explained in detail in Chap. 12. The result
in this case is a single-clocked property, running on posedge clk.

disable iff(!reset) @(posedge clock)
(w ##1 v[*3]) |-> (x until y)

What is the type of expressions x and y? Since x and y are variables (i.e., Boolean
expressions), these expressions are in fact simple Boolean sequences. They are used
in a property context as the operands of the until operator, hence they are promoted
to properties.

Regarding the cover property statement c_seq, the sequence instance is
identical to one used in the assertion; therefore, the final form of the sequence
expression used in the property expression is as follows:

disable iff (!reset) (@(posedge clock) w ##1 (v[*3]))

180 8 Let, Sequence and Property Declarations; Inference

In the preceding example, the inference was quite simple, both the clock and
the disabling expression were obtained directly from the default declarations. What
happens if an instance of a property or sequence is used directly inside the body of
another property or sequence definition? How is the clock or disabling expression
inferred in such cases? This will be discussed after we examine the syntax for
defining sequences and properties.

8.2.1 Syntax of Sequence–Endsequence

The syntax of a sequence declaration is as follows, where items in [] brackets are
optional:

sequence identifier(sequence_port_list)
{local_variable_declarations}
sequence_expression;

endsequence [: identifier]

The sequence_port_list consists of a possibly empty comma-separated list of
individual port declarations. Each such port can have the following components:

[local [port_direction]] type
identifier {dimension} [= default_argument]

where

• port direction is only allowed when the keyword local is used indicating that it
is a local variable port (see Chap. 16). It can be input, output, or inout.

• type is a type specification. It is obligatory when the port is a local variable port,
otherwise it is optional. In addition to any integral type, the type can also be
an event, sequence, or the keyword untyped. untyped indicates that the port(s)
following the keyword do not have any formal type and is used to explicitly denote
ports as untyped, especially when typed ports precede an untyped port.

• identifier {dimension} is a usual port name which can have an optional specifi-
cation of dimensions provided that it is a local variable port or a typed integral
port.

• default argument is an optional default actual argument. It has to be type
compatible with the port type in the case the type is specified.

The declaration of a sequence is an extension of the interface of let. The main
differences are the addition of types event and sequence, and the possibility to
indicate local variable ports with their direction and type. Keyword untyped can be
used to indicate ports that have no specified type. Let us concentrate on ports other
than local variable ports, the latter are described in detail in Chap. 16. The type of a
port may be specified, but it can also be left without a type like in let declarations.
A port without a type specification or an explicit untyped can be specified only

8.2 Sequence and Property Declarations 181

before any typed ports is stated on the port list. How is the type determined, used,
and verified in that case? For example, consider the following sequence interface:

sequence s_def(a, event b, int c, d, untyped s);

The port a is untyped and its type correctness depends on where it is used in the
sequence. Port b must be a clocking event expression. Ports c and d are of type two-
valued integer. The actual arguments bound to these ports must be type compatible
with int. Finally, since s is preceded by untyped, the actual argument bound to this
port can be anything compatible with its use in the sequence expression. Suppose
that the sequence expression is as follows:

@b a && (c == d) ##1 s

In this case, a is restricted to be an integral expression, and c and d can be any
integral type that can be cast to int. The actual argument bound to the last port, s,
can be an expression or a sequence expression including a sequence instance. This
is because it is used alone as one of the operands of the sequence operator ##1. If it
were used as a in an expression, its type would have been restricted the same way
as for a.

Consider now a different sequence expression:

@b (a + c == d) ##1 s

Let v be a variable of type bit, and the actual arguments of s_def be 2’b11 + v,
(posedge clk), 1, 0, v. When the actual arguments are substituted to the sequence
expression, we obtain

@(posedge clk) ((2’b11 + v) + 1 == 0) ##1 v

Suppose that v is 1’b1 over two clock cycles. Will the sequence match or
not? Before substituting the expression 2’b11 + v for the formal argument, it is
enclosed in parentheses and cast to its self-determined type. Therefore, the result
is an unsigned two-bit expression. When the value of v is 1’b1, it is 0 extended
to 2’b01 before being added to 2’b11. The addition yields the result 2’b00. This
result is then sign extended to int which yields 0 + 1 == 0 as the final Boolean
expression. The sequence thus does not match at the first clock tick. If v were 1’b0
in the first clock cycle and 1’b1 in the second clock cycle, then the result of the
addition is 2’b11, which after sign extension to int yields -1. Therefore, the result
of the addition with 1 is 0. Consequently, the first expression evaluates to true, and
the sequence will match at the second clock tick since v is 1’b1.

Actual arguments to sequences are enclosed in parentheses and cast to
their self-determined type before being substituted for occurrences of formal
arguments in the sequence body. The same applies to actual arguments to
property instances discussed in the next section.

182 8 Let, Sequence and Property Declarations; Inference

The actual argument for s could also be a sequence expression. For example,
suppose that the actual argument is x ##1 y or v ##2 w. This is syntactically cor-
rect sequence expression. The variables x, y, v, w must exist in the instantiating
context otherwise it is an error. Let the list of actual arguments be

2’b11 + v, (posedge clk), 1, 0, x ##1 y or v ##2 w

After substitution for the formal arguments, the resulting expression for sequence
s_def becomes

@(posedge clk) (2’b11 + v + 1 == 0) ##1 (x ##1 y or v ##2 w)

Notice the parentheses around the sequence expression that was substituted for
the occurrence of the formal argument. It is only when the untyped argument is
substituted into the sequence expression that its syntactic and semantic validity
can be ascertained. In this case, all is well. If the same sequence expression were
provided for the untyped formal argument a, it would result in an error, because
after substitution, the actual argument sequence expression becomes an operand of
an addition.

The question is, should untyped arguments be used at all? The advantage of
untyped arguments is that they do not restrict the actual argument to any particular
type. This can be very useful in the case of integral types where the dimensions need
not be specified. The usual type checking is performed after the actual argument has
been substituted wherever the formal argument appeared in the sequence definition.
Therefore, the resulting error message may point to the body of the sequence and
thus may not be easily comprehensible to the user. For instance, the interface of
s_def could be written as

sequence s_def(bit [1:0] a, event b, int c, d, sequence s);

This still leaves much freedom as to the actual argument for s, because it can be
any integral expression or a sequence expression. It would seem that if the sequence
definition s_def above were to be reused, e.g., as part of a library package, then it is
preferable to specify the expected types of the arguments except in the case where
any integral type is allowed and type conversion to int is not desired (see Chap. 9
for further discussion about untyped vs. typed arguments).

The formal argument can also have default actual assignment specified in the
header, as shown in the definition of sequence_port_item. The default argument
specification is resolved in the scope of the sequence declaration. This is different
from the usual actual arguments, which are resolved in the scope of the sequence
instance. For example, let us consider the sequence header for s_def but add default
actual argument specifications:

sequence s_def(
a, event b = $inferred_clock, int c, d, untyped s = x);

In this case, in the absence of actual arguments for the formals b and s, like in
the instance specification s_def(2’b11+v, , 1, 0) or equivalently using named
argument association s_def(.a(2’b11+v), .c(1), .d(0)), we can see that
neither formal b nor s has an actual argument. Therefore, the clocking expression of

8.2 Sequence and Property Declarations 183

the sequence instance will be inferred from the instantiation context (see Chap. 14),
and the formal argument s will be replaced by x. This variable or sequence definition
x must have been declared in the scope of the declaration of s_def.

Next, we discuss property declaration, in particular in its differences from a
sequence declaration.

8.2.2 Syntax of Property–Endproperty

The syntax of a property declaration is quite similar to that of a sequence

declaration. The differences are as follows:

1. The encapsulation keywords are property–endproperty.
2. The formal and actual arguments can also be property expressions. The type of a

formal argument may thus be property.
3. The body of a property declaration may contain property operators and refer

to other property instances.
4. Local variable argument can only be local input (see Chap. 16).
5. The property may contain disable iff (condition) definition. The default

actual argument to a formal of some integral type (or untyped) can be
$inferred_disable (see Sect. 8.3).

The first one is obvious. The second and third differences are a natural extension
from sequences to properties in that a property can receive a property expression
as its argument and can operate on properties. Note also that under the property
expression, sequence expressions and integral expressions are type compatible
actual arguments. The fourth difference is because local variables do not flow out
of properties (see Chap. 16). In properties, local variables have nowhere to flow out
since no concatenation of properties exists. The fifth difference provides means to
pass a default disable expression to a top-level property instance in an assertion.
Some of these points are illustrated in the next example:

Example 8.13.
module m;
bit clock, reset, a, b, c, d;
default clocking @(posedge clock); endclocking
...
property p1(bit rst, event clk = $inferred_clock, untyped x,

property p);
disable iff (rst) @clk !x ##1 x |-> p;

endproperty

property p2;
a |-> (b until c);

endproperty

a_imply: assert property(p1(.rst(reset), .x(d), .p(p2)));
...

endmodule

184 8 Let, Sequence and Property Declarations; Inference

After clock inference, substitutions, and clock resolution are completed, this
combination of properties and their instances results in the following assertion:

a_imply: assert property(
disable iff (!reset)
@(posedge clock) !d ##1 d |-> a |-> b until c); ut
The lack of specified actual argument for clk in the instance of p1 causes to infer

the actual from default clocking declarations. Since p1 is the top-level property
in the assertion, the disable iff specification is legal.

If, on the other hand, disable iff were included in p2 as shown in the next
example, the resulting property expression in the assertion would become illegal.
This is because disable iff would not apply to the top-level property.

Example 8.14.
module m;
bit clock, reset, a, b, c, d;
default clocking @(posedge clock); endclocking
...
property p1(event clk = $inferred_clock, bit x, property p);
@clk !x ##1 x |-> p;

endproperty
property p2;
disable iff (reset) a |-> (b until c);

endproperty
a_illegal: assert property(p1(.x(d), .p(p2)));
...

endmodule

After substitutions are carried out, the result is the following illegal assertion
because disable iff is not applied to the top-level property expression (see
Sect. 4.4.4):

a_illegal: assert property(@(posedge clk) !d ##1 d |->
disable iff (!reset) (a |-> (b until c))); ut

Placing disable iff specifications into property definitions must be planned
carefully, otherwise it can lead to unexpected compilation errors.

Like let definition, sequence and property definitions may be placed in
packages for later reuse. In that case, particularly the use of disable iff into such
reusable properties must be done with even greater care.

In the next sections, we examine the inference of disable iff expression and
of clocking event.

8.3 Disable Expression and Clock Inference 185

8.3 Disable Expression and Clock Inference

The default disable iff statement provides a default disable condition for
assertions where the disable condition is not explicitly specified. Similarly,
default clocking provides a clocking expression that can be inferred when not
explicitly specified. Both default statements can be specified only once in a module,
interface, program, and checker, and their effect extends over the full scope
of the object. It does not extend, however, to any instances of such objects. For a
detailed discussion about clock and disable expression inference see Chaps. 12–14.

Exercises

8.1. Write down a parameterized let definition that can be included in a package
for the following situation. Include means to make the let expression take some
useful default value when the argument rst is 1’b1. Illustrate its use in some
assertion and assignment statement.

(a) Evaluate to 1’b1 only when the vector argument sig has at most one 1 or one
0 and the rest is either X or Z. Otherwise, return 1’b0. Should the argument sig
be typed or untyped? Why?

(b) Is it possible in a single let definition to restrict the above definition to return
1’b1 only if there is at most one 1 or one 0, and the rest are z (i.e., exclude x)?

8.2. Write down a simple module that has the variables clk, reset, a, and b of type
logic, and add a concurrent assertion that fails when a is 1, and at the next clock
tick b is 0, 1, or x. Let the clock and reset be inferred from the module context.

8.3. Provide a solution to Exercise 8.2 such that the property used in the assertion
is first defined outside the module, e.g., in a package.

8.4. What kind of actual arguments can be legally passed to the property that you
defined in Exercise 8.3. Can you generalize the property to accept a wider range of
arguments? How should the specification of the property change?

Chapter 9
Checkers

Contradictions do not exist. Whenever you think you are facing
a contradiction, check your premises. You will find that one of
them is wrong.

— Ayn Rand

In this chapter, we introduce checkers, units for packaging assertion-based
verification code. On the one hand, checkers are similar to modules and interfaces:
they define their own hierarchical scope and they may contain most constructs
allowed in modules and interfaces. On the other hand, checkers generalize properties
and sequences: they are instantiated “in place”, their arguments may be sequences,
properties, and edge-sensitive events. One can also say that checkers generalize
assertions, since they behave as one complex assertion. In the subsequent sections,
we elaborate the checker definition, instantiation and simulation semantics.

Using checkers makes the RTL cleaner: most instrumentation code in modules
may be moved to checkers, which improves the code modularity, makes module
code more readable and less error prone. Synthesis tools are normally supposed
to ignore checkers, thus there is no need in conditional compilation statements to
isolate the instrumentation code for the synthesis tools.

Although synthesis tools ignore checkers, most of the checker code is synthesi-
zable. Checkers may be synthesized for hardware emulation and even in silicon, if
so desired. Since the formal verification tools work on the synthesis model, checkers
are formal verification friendly.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__9

187

188 9 Checkers

9.1 An Apology for Checkers: Sequential Protocol

9.1.1 Sequential Protocol Specification as Module

We will start with an example of a sequential protocol. This protocol may be
informally defined as follows:

• A transaction beginning is defined by start condition, and its end is defined by
complete condition.

• The transactions do not overlap: start can occur again only after the next strictly
subsequent cycle in which complete occurs. complete can occur only after the
next strictly subsequent cycle in which start occurs. The last condition also
implies that there can be no occurrences of complete before the next cycle of
the first occurrence of start.

• Neither start nor complete can occur during two consecutive cycles.
• There are data signals of the same size: dataIn and dataOut.
• Whenever start occurs, dataIn is valid. Whenever complete occurs, dataOut

is valid.
• The value of dataOut at the cycle in which complete occurs must be equal to the

value of dataIn sampled in the strictly preceding cycle where start occurred.

Our goal now is to write a specification checking the protocol correctness.
This specification consists of a control part which ensures the sequential pairing
of occurrences of start and complete, and a data part which checks the data
correspondence between dataIn and dataOut for each such pair. The control
part may be implemented as shown in Fig. 9.1. We do not specify the clock
and the reset in the assertions (except for using reset condition explicitly in
a_initial_no_complete). We will fix this later by adding a corresponding
default clocking and default disable iff statements.

Property match states that between two occurrences of signal x must occur y.
The fact that the transactions do not overlap is captured by assertions a_no_start
and a_no_complete. These assertions are symmetric and are written as direct
instantiations of property match.

property match(x, y);
x |=> !x until_with y;

endproperty : match
a_no_start: assert property (match(start, complete));
a_no_complete: assert property (match(complete, start));
a_initial_no_complete:
assert property ($fell(reset) |-> !complete until_with start);

Fig. 9.1 Encoding of control part of sequential protocol

9.1 An Apology for Checkers: Sequential Protocol 189

1 var type(dataIn) last_dataIn;
2 always @(posedge clk)
3 if ($sampled(start))
4 last_dataIn <= $sampled(dataIn);
5 a_seq_data_check: assert property (
6 complete |-> dataOut == last_dataIn);

Fig. 9.2 Encoding of sequential protocol data check

The fact that there can be no complete before the first occurrence of start

is captured by assertion a_initial_no_complete. Would there be no reset, this
assertion should have been placed within an initial procedure. However, if the
reset ever becomes active, it will kill the only attempt of the assertion, and the
assertion might be never checked. Also, it is natural to interpret the specification
in a way that the entire checking starts anew after each reset. Therefore in our
implementation we check that there may be no complete before start each time
the reset goes low. Unfortunately, our solution has two problems:

1. It does not cover the case when reset is initially inactive.
2. It does not take into account the fact that the disable condition is not sampled in

SVA.

Exercises 9.1–9.3 discuss the solution for these problems.
Now let us move to the data part of the specification. The value of dataIn at an

occurrence of start needs to be stored somewhere, since otherwise it is lost and
the comparison with dataOut cannot be made. Since the protocol is sequential, one
auxiliary storage variable can be used to hold the value of dataIn from the nearest
preceding occurrence of start. The bookkeeping of dataIn and dataOut is done
by auxiliary code. Such auxiliary code required for assertions is called assertion
modeling code. For now, we implement the assertion modeling code in a module.
Its implementation is shown in Fig. 9.2 (Lines 1–4). Line 1 contains declaration
of the auxiliary storage variable last_dataIn whose type should be the type of
dataIn.

Since this code is not part of the design RTL, we have no idea what changes first:
clk or start. To follow the concurrent assertion semantics we must capture the
sampled value of start. This is reflected by the explicit call to the sampled value
function $sampled in Line 3. For the same reason we explicitly sample dataIn

when capturing its value in Line 4. This situation is typical when the assertion
modeling is done in modules or interfaces. Assertion a_seq_data_check in Line 5
checks that at the occurrence of complete the value of dataOut coincides with the
captured valued of dataIn.

It remains to define the module declaration. There are two questions to be
addressed:

• What is the type of dataIn and dataOut?
• How to define a clock?

190 9 Checkers

Because we want to create a generic specification and need to admit any type for
dataIn, we should pass the type of dataIn as a parameter to a module. The clock
may be passed as a signal of logic data type:

module m_seqprotocol #(parameter type dataType = logic)
(input logic start, complete, clk, rst,
dataType dataIn, dataOut);

Consider now the module instantiation. Let the corresponding actual arguments
be go, done, clock, din, dout declared as follows:

logic go, done, clock, reset;
logic [31:0] din, dout;

The instantiation of module m_seqprotocol is as follows:

m_seqprotocol #(.dataType(logic [31:0])) inst1(
go, done, clock, reset, din, dout);

If we want the specification be clocked by negedge clock instead of
posedge clock, we simply need to pass the negation of clock:

m_seqprotocol #(.dataType(logic [31:0])) inst2(
go, done, !clock, reset, din, dout);

But what should we do if we want the specification be checked on each clock
edge? One solution is to duplicate the specification implementation for this case.
Fortunately, we can solve this problem by introducing one more parameter telling
whether we wish to check the specification on each edge of the clock. The resulting
specification is shown in Fig. 9.3.

We use here an additional parameter bothedges to distinguish the case when the
assertions are checked on both edges of the clock, and the case when the assertions
are checked on the rising edge of the clock. Depending on the value of this parameter
we instantiate the corresponding default clocking statement (Lines 6 and 9).
Note that the if statement on Line 5 is a generate if. The assertions use the default
clocking, but the event control on the Line 19 must be explicitly specified. We use
the name dclk of the default clocking event for this purpose.

The protocol instantiation specification for checking data on both edges of the
clock will have the following form:

m_seqprotocol #(.dataType(logic [31:0]), .bothedges(1)) inst3(
go, done, clock, din, dout);

We see that using modules as containers of the verification code is cumbersome:

• Module instantiation is redundantly verbose because it requires explicitly passing
types of actual arguments if types of the corresponding formal arguments have
been parameterized. It also requires a special indication whether the modeling
code and assertions are clocked on one edge of the clock or on both. For a
general-purpose verification code this information should be explicitly provided
as parameters.

• In assertion modeling code the signal values must be explicitly sampled.

9.1 An Apology for Checkers: Sequential Protocol 191

1 module m_seqprotocol #(parameter int bothedges = 0,
2 parameter type dataType = logic)
3 (input logic start, complete, clk, reset,
4 dataType dataIn, dataOut);
5 if (bothedges) begin : L
6 default clocking dclk @clk; endclocking
7 end
8 else begin : L
9 default clocking dclk @(posedge clk); endclocking

10 end
11 default disable iff reset;
12

13 property match(x, y);
14 x |=> !x until_with y;
15 endproperty : match
16

17 var type(dataIn) last_dataIn;
18

19 always @L.dclk
20 if ($sampled(start))
21 last_dataIn <= $sampled(dataIn);
22

23 a_initial_no_complete:
24 assert property ($fell(reset) |-> !complete until_with start);
25

26 a_seq_data_check: assert property (
27 complete |-> dataOut == last_dataIn);
28 a_no_start: assert property (match(start, complete));
29 a_no_complete: assert property (match(complete, start));
30 endmodule : m_seqprotocol

Fig. 9.3 Sequential protocol specification as a module

• The module should explicitly take care of distinguishing between the single and
double edge clocking modes.

There are more drawbacks besides those illustrated in the sequential protocol
example:

• Modules cannot accept sequences and properties as their arguments (ports). This
ability is important for verification code, for example, when some external event
is defined as a sequence.

• Modules cannot be instantiated within procedural code, and therefore cannot be
used for checking correctness of the data within procedural flow.

• Modules cannot infer the clocking event and reset from their instantiation context.
This makes their instantiation more verbose than necessary.

192 9 Checkers

1 checker c_seqprotocol(start, complete,
2 dataIn, dataOut,
3 event clk = $inferred_clock,
4 untyped rst = $inferred_disable);
5 default clocking @clk; endclocking
6 default disable iff rst;
7

8 property match(x, y);
9 x |=> !x until_with y;

10 endproperty : match
11

12 var type(dataIn) last_dataIn;
13

14 always_ff @clk
15 if (start)
16 last_dataIn <= dataIn;
17

18 a_initial_no_complete:
19 assert property ($fell(rst) |-> !complete until_with start);
20

21 a_seq_data_check: assert property (
22 complete |-> dataOut == last_dataIn);
23 a_no_start: assert property (match(start, complete));
24 a_no_complete: assert property (match(complete, start));
25 endchecker : c_seqprotocol

Fig. 9.4 Sequential protocol specification as a checker

9.1.2 Sequential Protocol as Checker

To resolve the problems of assertion packaging and modeling, SystemVerilog
has a special construct called checker. We introduce checkers informally in this
section on the example of the sequential protocol specification, while providing
detailed description in the section that follows. Figure 9.4 shows the checker-based
implementation of the sequential protocol.

The checker syntax is similar to that of the module, but it has several important
differences: instead of module—endmodule the keywords checker—endchecker

are used (Lines 1–25). By default all checker ports are input, and therefore we
do not explicitly specify their direction (Line 1). The checker instantiation follows
the substitution semantics similar to that of sequences and properties, therefore the
explicit type specification of the checker ports is not necessary. For this reason we
omit the type specification of the ports start, complete, dataIn and dataOut,
and their type is inferred from the checker instantiation. The semantics of checker
input formal arguments is similar to the semantics of property arguments, and
almost all formal argument types allowed in properties are also allowed in checkers,

9.1 An Apology for Checkers: Sequential Protocol 193

including property and sequence.1 In this example, we have the argument
clk of type event, and also untyped arguments. As in properties, it is legal to
use $inferred_clock and $inferred_disable system functions for checker
argument initialization (Lines 3 and 4; see Sect. 8.3): these functions return the
inferred values of the clock and reset from the checker instantiation context. By
default clk contains the inferred clock from the checker instantiation context, and
rst contains the inferred reset.

The default statements on Lines 5 and 6 define clk and rst as default clock
and reset for checker assertions. As a result, the values of the clock and reset
inferred at the checker instantiation become known inside the checker. Without these
statements, no clock and reset inference can be achieved inside the checker. This
checker behavior is identical to modules.

The clock clk is passed to the checker as an event2 (Line 3), and not as a signal.
As in the case of properties or sequences we can specify the default value of the
clock to be inferred from the checker instantiation context using system function
$inferred_clock (see Sect. 8.2).

The type of reset rst is also inferred from the type of the corresponding actual
argument, but since the previous port is typed, we need to use explicit untyped
declaration on Line 4. The default value of reset is inferred from the checker
instantiation context using system function $inferred_disable. This is, again,
similar to the reset passing to properties as described in Sect. 8.2.

As we can see, we do not need to specify parameters for checkers, and this is why
the checkers do not have parameters. We do not need to invent tricks to distinguish
between single and double edge clocking model.

Consider now the assertion modeling code (Lines 14–16). Notice that we use
always_ff (see Sect. 2.2.1.3) instead of always in the module. This is because
the plain always is forbidden in checkers.3 The formal port clk designates already
the correct event, and we can use it in the event control directly. We do not need
explicitly sample signals on Lines 15–16, because the checker does all the required
sampling correctly.

Let us proceed now to the checker instantiations, shown in Fig. 9.5.
The checker instantiation syntax (Lines 6–8) is similar to module instantiation.

c_seqprotocol is the name of the checker, inst1, inst2 and inst3 are the names
of the checker instances. Checker instantiation semantics is similar to property
instantiation in an assertion. All argument types that can be used with a property,
can also be used with a checker. For example, it is possible to pass sequences to a
checker (see Sect. 9.2.1.4).

The checker instantiation inst1 (Line 6) is equivalent to the following:

c_seqprotocol inst1(go, done, din, dout, posedge clock, reset);

1Except arguments with local qualifier, see Sect. 16.2.
2Not to be confused with passing events to modules. In case of modules it is possible to pass a
variable of the type event. Here we pass the entire event expression, such as posedge clk by
substitution.
3More exactly, its usage is deprecated in checkers.

194 9 Checkers

1 module m(input logic go, done, clock, reset,
2 logic [31:0] din, dout);
3 default clocking @(posedge clock); endclocking
4 default disable iff reset;
5 ...
6 c_seqprotocol inst1(go, done, din, dout);
7 c_seqprotocol inst2(go, done, din, dout, negedge clock);
8 c_seqprotocol inst3(go, done, din, dout, edge clock);
9 endmodule : m

Fig. 9.5 Invocations of checker c_seqprotocol

However, explicit specification of the clock and reset is redundant because they
can be inferred from the instantiation context (Lines 3 and 4). In instantiations
inst2 and inst3 (Lines 7–8) the clocking event must be specified explicitly
because it is different from the default one.

This example clearly demonstrates the advantages of the checker-based imple-
mentation:

• Checkers are instantiated “in place”, similarly to property instantiations in
assertions. They can have untyped formal arguments. Therefore, there is no need
in passing redundant information about data type and size to them.

• Checkers can infer clock and reset from the instantiation context
• Checker instantiation syntax is uniform. All information is passed to a checker

through ports. There is no need to distinguish between ports and parameters.
• There is no special handling of the double edge clocks. All clocks are passed as

event expressions.
• Checker instantiation is concise, as a result of conventions described in the

previous bullets.
• There is no need for explicit sampling of expressions in assertion modeling code.

The checker does the required sampling automatically.

Checkers also have the following advantages as containers of the verification
code:

• Checkers may accept sequences and properties as their arguments.
• Checkers may be instantiated in procedural code (see Sect. 14.8).

9.2 Checker Declaration

The checker declaration has the following syntax:

checker checker_name (checker_formal_arguments);
. . .

endchecker

9.2 Checker Declaration 195

If a checker has no arguments, the parentheses may be omitted. endchecker may
be qualified with a label of the checker name, similar to other compound constructs
in SystemVerilog. Specifying the checker name with endchecker is a good idea as
it makes the code clearer, and allows the compiler to check that the beginning and
end of the checker match.

Example 9.1. The following checker consists of a single assertion verifying that
request req is granted at the following clock tick.

checker request_granted(req, gnt, clk, rst);
a1: assert property(@clk disable iff (rst) req |=> gnt);

endchecker : request_granted

In this example, all checker formal arguments are untyped. ut

9.2.1 Checker Formal Arguments

9.2.1.1 Argument Direction

Checkers may have input and output arguments. The main use of a checker is to
be an observer to follow the DUT behavior and to verify its correctness. Therefore,
usually a checker has only input arguments, and if no direction qualifier is specified
explicitly, all checker arguments are input by default. However, checkers may have
also output arguments. We discuss them in Sects. 9.5 and 23.5.

Example 9.2. In the checker declaration in Example 9.1 no argument direction has
been specified. Therefore, all its arguments are input. ut

The formal rule for the inference of checker argument direction when it has not
been explicitly specified, is as follows:

• If the direction of the first checker argument is omitted, it is assumed to be input.
• If the direction of another checker argument is omitted, it is inferred from the

direction of the previous argument.

Example 9.3. Consider the following checker argument declaration:

checker check(a, b, output logic c, d,
input event clk, untyped rst);

Here, a is an input argument because it is the first checker argument, and no
direction has been specified. The second argument b is also input, because it has
no explicit direction, and the previous argument a is input. Argument c is output
because its direction has been explicitly specified. The direction of d is output, as
inferred from the direction of c. The direction of arguments clk and rst is input.

ut

196 9 Checkers

9.2.1.2 Default Arguments

Checker input formal arguments may have default values, similarly to formal
arguments of properties and sequences (Sect. 8.2).

Example 9.4. Write the following checker: request req is granted (gnt asserted) in
n clock ticks. By default n = 1.

Solution:

checker request_granted(req, gnt, n = 1, clk, rst);
a1: assert property(@clk disable iff (rst)
req |-> nexttime[n] gnt);

endchecker : request_granted

Discussion: Even though n is untyped, the actual argument must be an elaboration
time constant because it is used in the property operator nexttime[n]. ut

9.2.1.3 Context Inference

As in the case of properties, there are two special default argument values:
$inferred_clock and $inferred_disable. These system functions return the
clocking event and the reset inferred from the checker instantiation context. Section
8.3 explains the context inference rules. We get back to these context inference
functions in Sect. 9.3 where we discuss checker instantiation (see also the checker
motivation example in Sect. 9.1).

Example 9.5. Same example as Example 9.4, with default values for clock and
reset.

checker request_granted(req, gnt, n = 1,
clk = $inferred_clock, rst = $inferred_disable);
a1: assert property(@clk disable iff (rst)
req |-> nexttime[n] gnt);

endchecker : request_granted

Note that $inferred_clock and $inferred_disable provide default actual
arguments to the formal arguments clk and rst only. There is no inference of clock
and reset from these functions in the checker assertions. ut

If clock and reset inference is desired in a checker, default clocking and
default disable iff statements must be specified, as in the case of modules
and interfaces.

Example 9.6. Clock and reset inference in checkers.

checker request_granted(req, gnt, n = 1,
clk = $inferred_clock, rst = $inferred_disable);
default clocking @clk; endclocking
default disable iff rst;
a1: assert property(req |-> nexttime[n] gnt);

endchecker : request_granted

9.2 Checker Declaration 197

In this example, clock and the reset are inferred for assertion a1 from the default
declarations; consequently, the assertion is equivalent to

assert property(@clk disable iff (rst) req |-> nexttime[n] gnt);

ut

The clock and reset inference rules in concurrent assertions inside checkers
are the same as the inference rules in modules. They are resolved in the scope
of the checker definition, not in the scope of its instantiation.

9.2.1.4 Checker Argument Types

Checker formal input arguments may be of the same types as property arguments
(Chap. 8), but they cannot have the local qualifier. The output checker arguments
cannot be untyped, sequence or property. Unlike module ports, checker formal
arguments may not be interfaces.

If a checker argument has an explicit direction qualifier (input or output), its
type must be explicitly specified. Otherwise, the type of a checker argument may be
omitted, and it is inferred according the following rules:

• The first checker argument is assumed to be untyped. Since it does not have a
direction qualifier it is an input argument as explained in Sect. 9.2.1.1.

• The types of other checker arguments are inferred from the type of the previous
arguments, similarly to sequences and properties, as described in Sects. 8.2.1
and 8.2.2.

In Example 9.6, the type of the checker arguments was not specified, that is, all
arguments were untyped. Untyped arguments are flexible, but can lead to poor error
messages. Example 9.7 illustrates using both typed and untyped formal arguments
in a checker.

Example 9.7. We modify the checker from Example 9.5 by ascribing types to its
formal arguments, and by passing it an error message.

checker request_granted(sequence req, property gnt,
untyped n = 1, string msg = "",
event clk = $inferred_clock, untyped rst = $inferred_disable);
default clocking @clk; endclocking
default disable iff rst;
a1: assert property(req |-> nexttime[n] gnt) else $error(msg);

endchecker : request_granted

What would happen if we pass a property expression nexttime go to the formal
argument req? It is likely that we would get an error message similar to the
following one:

198 9 Checkers

The formal argument req of checker request_granted is of type sequence, whereas the actual
argument nexttime go is an expression of type property.

Consider the message we might get if the req argument were untyped, as in
Example 9.5:

Type mismatch in
a1: assert property(req |-> nexttime[n] gnt) else $error(msg);
req is of property type, whereas sequence type is expected.

The user understands the first error message, since it explains the problem
in terms of the interface of the checker. However, the second error message is
confusing because it mentions the checker internals, which are normally hidden
from the user.

Unfortunately, it is not always possible or desirable to provide a specific type
for a checker argument. Although it seems natural to declare n as int, doing so
would exclude the possibility of passing the checker an infinite upper bound $,
since only untyped formal arguments may receive $. In our example, we have to
explicitly declare n as untyped, otherwise its type would be taken from the previous
argument gnt that is of type property. We also have to leave rst untyped because
providing a specific type, say, logic, would require type conversion when the actual
argument is of a different type. This may affect checker correctness or slow down
the simulation. ut

Always specify an explicit type for checker formal arguments that are used
as sequences, properties, events, or strings. Specifying a type for formal
arguments used as Booleans or integral expressions usually limits checker
generality.

9.2.2 Checker Contents

Checker contents are similar, but more restricted than those of a module. For
example, checkers cannot contain declarations of modules, interfaces, programs,
and packages. Modules, interfaces, and programs cannot be instantiated inside
checkers.4 Also general purpose always procedures are deprecated in checkers and
should not be used.5 Consult the LRM for the exhaustive definition of the constructs
allowed in checkers.

4The LRM is not clear about placing immediate assertions in checkers. In any case it should be
safe to place immediate assertions in action blocks of concurrent assertions.
5In the SystemVerilog 2009 standard only general purpose always procedures have been allowed
in checkers. But the SystemVerilog 2012 standard introduced specialized always procedures in
checkers and the general purpose always procedure has been deprecated.

9.2 Checker Declaration 199

For example, let, sequence and property declarations may be freely used in
checkers. As a rule, it is recommended to avoid sequence and property declarations
in modules. If sequences and properties used in modules are general enough,
they should be defined in some global place, for example, in a package, to be
also accessible to different modules. If a module uses several specific sequences
and properties, it is better to encapsulate them in a checker to keep the module
code clean. Unlike modules, checkers are natural containers for sequence and
property encapsulation. Another construct natural in checkers are covergroups (see
Sect. 18.3). For checker modeling, see Sect. 9.4.

As modules, checkers may access elements from their enclosing scope through
their hierarchical names, except the following:

• Automatic and dynamic variables.
• Elements of fork . . .join blocks (including join_any and join_none).

Also, hierarchical references into checkers are forbidden.

Example 9.8. As mentioned above, checkers may reference signals defined in
modules by their hierarchical names. Thus, we can rewrite the checker from
Example 9.1 to address the signal names directly.

module m(...);
logic req, gnt;
...
endmodule : m

module top;
logic clock, reset;
...
m m1(...);
request_granted c1(clock, reset);
endmodule : top

checker request_granted(clk, rst);
a1: assert property(@clk disable iff (rst) m1.req |=> m1.gnt);

endchecker : request_granted

In this example the checker references signals req and gnt declared in module m1
by their hierarchical names, and not through checker ports. This style limits checker
generality and is better to be avoided whenever possible. Its usage is acceptable for
complex checkers dedicated to the verification of large design blocks. ut

9.2.2.1 Generate Constructs

Generate constructs in SystemVerilog are used to perform elaboration time actions
to enable flexible tuning of the design at the elaboration time, as described in
Sect. 2.1. In checkers, the same generate constructs may be used, and the same rules
as everywhere else apply.

200 9 Checkers

Example 9.9. What happens if we pass the value of -1 to n in checker
request_granted (Example 9.5)? Apparently, we should get an error message
about assertion a1 saying that ##-1 is wrong syntax. Since the user is not necessarily
familiar with the checker internals, it may be confusing. It would be much clearer if
we report the error message relative to the checker interface. We can do that using
a generate if statement as follows:

checker request_granted(
sequence req, property gnt, untyped n = 1, ...);
if (!$isunbounded(n) && n < 0)
$error("Delay value n cannot be negative", n);

...
a1: assert property(req |-> nexttime[n] gnt) else $error(msg);

endchecker : request_granted

$isunbounded(n) is a system function returning true if its argument is $. We
need this function to isolate the situation when the unbounded value is provided for
n because we cannot compare $ with 0. When the checker is instantiated with the
negative value for n the error message is issued at elaboration time. ut

Use generate statements and elaboration system tasks to perform custom
elaboration-time checks and to issue custom elaboration error messages.

The ability to use generate statements is an important advantage of checkers over
bare assertions: checkers are more flexible and tunable. Therefore, it often makes
sense to use checkers even when they consist of a single assertion.

Example 9.10. We explain in Sect. 11.1.4 that simulation performance may degrade
when the antecedents have distant matches, or remain unfinished. If in the checker
request_granted, req is a long sequence or if there are incomplete pend-
ing requests, the simulation time may be negatively affected. It is possible to
truncate the antecedent to k clock ticks by intersecting it with 1[*1:k], as
explained in Example 11.16. This truncation is very inefficient in FV, and it should
be avoided there. We can add an optional argument truncate to the checker
request_granted: when a nonzero value, say, 10, is passed to it, the antecedent
req will be truncated after 10 clock ticks, and when $ is passed, no truncation is
performed. The resulting checker is shown in Fig. 9.6.

If truncate has a value $, the conditional generate if in Line 7 will yield
the sequence ante (antecedent) from Lines 8 to 10 in the elaboration model. If
truncate is positive, it will yield the sequence ante from Lines 14 to 16. If
truncate has a nonpositive value, an error message is issued.

The reader may wonder why we suggested this solution instead of always
defining the antecedent of assertion a1 as req intersect 1[*1:truncate].
This is, of course, correct, but both formal and simulation tools may implement
req intersect 1[*1:$] less efficiently than just req. ut

9.2 Checker Declaration 201

1 checker request_granted(sequence req, property gnt,
2 untyped n = 1, string msg = "",
3 event clk = $inferred_clock,
4 untyped rst = $inferred_disable, truncate = $);
5 default clocking @clk; endclocking
6 default disable iff rst;
7 if ($isunbounded(truncate))
8 sequence ante;
9 req;

10 endsequence : ante
11 else if (truncate < 1)
12 $error("truncate value should be positive");
13 else
14 sequence ante;
15 req intersect 1[*1:truncate];
16 endsequence : ante
17 a1:assert property(ante |-> nexttime[n] gnt)else $error(msg);
18 endchecker : request_granted

Fig. 9.6 Optional antecedent truncation

9.2.2.2 Checker Procedures

A checker may contain the following structural procedures: initial, always_comb,
always_latch, always_ff and final.

Initial Procedure. In checkers, initial procedures may contain assertions, let
declarations and a procedural event control statement @. All other statements are
forbidden there. The only purpose of initial procedures in checkers is to enable
assertions that execute a single evaluation attempt starting at the first tick of their
leading clock.

Example 9.11. Write a checker verifying that reset rst is initially high, then
eventually goes low and remains low forever.

Solution:

checker simple_reset(rst);
initial
a1: assert property (@$global_clock rst[+] #=# always !rst);

endchecker : simple_reset

Discussion: We need to check only the first evaluation attempt of a1, hence it should
be placed in the scope of an initial procedure. We do not wish to associate the
behavior of rst with any specific clock; therefore, we chose the global clock, the
fastest clock of the system, to control this assertion. See Exercise 9.5 for further
discussion. ut

202 9 Checkers

Always Procedures. Always procedures in checkers are similar to those in modules.
Note the following restriction: in always_ff procedures only nonblocking assign-
ments are allowed; blocking assignments are forbidden. We postpone examples of
their usage until Sect. 9.4.

Final Procedure. final procedures in checkers are not different from final
procedures in modules (see Sect. 2.2.2). They are executed at the end of simulation.
Their main purpose is to print statistical information and to check the final state of
the simulation.

final procedures may contain everything that functions may contain. There-
fore, checker final procedures may only immediate assertions (including simple,
deferred observed and deferred final).

Example 9.12. We can add a final procedure to the checker request_granted

defined in Example 9.7 to check that at the end of simulation there is no outstanding
request. For simplicity, we assume that both req and gnt are Boolean, and that the
request remains asserted until granted.

checker request_granted(req, gnt, n = 1,
event clk = $inferred_clock,
untyped rst = $inferred_disable);

default clocking @clk; endclocking
default disable iff rst;

a1: assert property (req |-> nexttime[n] gnt);

final begin
a2: assert (!rst -> gnt || !req) else

$warning("Outstanding request at the end of simulation");
end

endchecker : request_granted

ut
It is possible to write an entire checker consisting only of the final procedure.

Its purpose would be to check the quiescent state at the end of simulation to verify
that there are no outstanding transactions, and that some important scenarios were
observed at least once.

9.2.3 Scoping Rules

Checkers may be declared at the top-level, i.e., in the scope of a compilation
unit. All the preceding checker examples in this chapter were top-level checkers.
Checkers may also be declared in other scopes: in modules, interfaces, programs,
generate blocks, packages, and in other checkers. The reason for declaring checkers
in smaller scopes is to make them local to these scopes, and to make the objects

9.2 Checker Declaration 203

1 checker check1(a, b, c, d,
2 event clk = $inferred_clock,untyped rst = $inferred_disable);
3 default clocking @clk; endclocking
4 default disable iff rst;
5 property p1(x, y);
6 x[*2] |-> y;
7 endproperty : p1
8 property p2(x, y);
9 x |-> y[*2];

10 endproperty : p2
11 ...
12 checker check2();
13 property p1(x, y);
14 x[*2] |-> y[*2];
15 endproperty : p1
16 a1: assert property (p1(a, b));
17 a2: assert property (p2(c, d));
18 endchecker : check2
19 check2 check_cd;
20 endchecker : check1

Fig. 9.7 Nested checkers

declared in these scopes and in the higher-level scopes visible inside the checker.
Another reason is to hide the checker from other parts of the design.

Example 9.13. Figure 9.7 shows nested checkers: checker check2 is declared
inside checker check1.

Even though checker check2 does not have arguments, the arguments and the
other objects of checker check1 are visible in its scope. For example, arguments
a, b, c, and d of check1, and property p2 declared in check1 are used in
check2. Property p1 used in assertion a1 (Line 16) is a local property of check2
(Lines 13–15), and not the property p1 declared in checker check1(Lines 5–7).
Property p1 of check1 cannot be directly referenced in check2 because property p1

of check2 masks the visibility of property p1 of check1. If we needed to instantiate
property p1 of check1 in check2, we have to reference it by its hierarchical name
check1.p1.

Checker check2 also inherits the default clocking and default reset definitions
from checker check1 (Lines 3–4), hence clocking event @clk and reset rst are
inferred in assertions a1 and a2. ut

All objects referenced in a checker are resolved in the scope of the checker
definition, and not in the scope of its instantiation.

204 9 Checkers

Example 9.14. The checker mycheck will not compile, even though this checker is
instantiated in module m:

checker mycheck(event clk = $inferred_clock);
a1: assert property (@clk a);

endchecker : mycheck
module m(input logic clk, ...);
logic a = ...;
mycheck check(posedge clk);
...

endmodule : m

This is because a referred to in assertion a1 is resolved in the scope of the checker
definition where no a is declared, and not in the scope of the checker instantiation
where a is visible.

If the hierarchical name of a specific instance of module m is top.unit1.block2
then the checker mycheck could be rewritten as follows to reference a by its
hierarchical name:

checker mycheck(event clk = $inferred_clock);
a1: assert property (@clk top.unit1.block2.a);

endchecker : mycheck

Of course, a cleaner solution would be to pass a as an argument to the checker.
This should be done for small checkers like mycheck. Referencing design signals in
a checker by their hierarchical names is useful in big checkers verifying behavior of
large pieces of a design, however, it limits their reusability in other designs. ut

9.2.3.1 Checkers in Packages

Checkers are natural candidates for units of standard or project-wide verification
libraries. The question is how to package several checkers in a reusable unit. Another
problem is a possible name collision: the name of a library checker may be the same
as a name of another checker or module.

SystemVerilog package construct is well suited for both tasks: it can contain
several checkers (also properties, sequences, let, constants, etc., see Sect. 2.6), and
it also introduces its own name space.

Example 9.15. We can place checker request_granted from Example 9.7 in a
package named check_lib as follows:

package check_lib;
checker request_granted(sequence req, property gnt,
untyped n = 1,
event clk = $inferred_clock, untyped rst = $inferred_disable);
a1: assert property(@clk disable iff (rst)
req |-> nexttime[n] gnt);

endchecker : request_granted
// Other checkers ...

endpackage : check_lib

9.3 Checker Instantiation 205

To instantiate the checker in a module it is necessary to import the package
contents first:

module m(logic clk, rst, send, ack, ...);
import check_lib::*;
...
request_granted ack_received(send, ack, 1, posedge clk, rst);

endmodule : m

The statement import check_lib::* makes the entire contents of the package
visible in m. Instead of importing the entire contents, we could import only this
specific checker using import check_lib::request_granted. It is also possible
to use the fully qualified name of the checker when instantiating it:

check_lib::request_granted ack_received(
send, ack, 1, posedge clk, rst);

without importing the package contents to avoid name collision. ut
Checkers in packages cannot refer to the data that do not belong to the scope

of the package. Thus, (the corrected version of) checker mycheck in Example 9.14
cannot be placed in a package, since it refers to data top.unit1.block2.a in a
module. This is forbidden in packages.

9.3 Checker Instantiation

A checker may be instantiated in any place where a concurrent assertion may appear,
except for fork...join blocks. This means that checkers may be instantiated both
outside and inside procedural code. This is one of the important differences between
checkers and modules, as modules may be instantiated only outside procedural code.
Checker instantiation in procedural code is called a procedural checker instance,
while the checker instantiation outside procedural code is called a static checker
instance.

9.3.1 Connecting Checker Arguments

The association of checker actual arguments with its formal arguments has the same
syntax as module port association. The argument association may be positional or
named, and the name association may be explicit, implicit, and may use wildcards,
the same way as modules, properties, and other similar constructs in SystemVerilog.
Different argument association forms may be mixed. We recapitulate these rules
common for SystemVerilog design elements on the examples of checkers and
illustrate different ways of checker argument associations on the instantiation of
checker request_granted from Example 9.7.

206 9 Checkers

9.3.1.1 Positional Association

In module m1 below, the actual arguments of the checker are passed according to
the order of the corresponding formal arguments. The default values passed to n and
clk are identified by commas, one comma for each unspecified actual argument.
Were these default arguments the last arguments in the list, there would be no need
for these commas. Positional argument association is really convenient only when
the number of checker arguments is small.

module m1(input logic clk, rst, send, ack, ...);
default clocking @(posedge clk); endclocking
...
request_granted check(send, ack,,, rst);

endmodule : m1

9.3.1.2 Explicit Named Association

In module m2 below, the actual arguments of the checker are passed by an explicit
indication of the formal argument names. In the case of the named association, the
order of the actual arguments is not important. Omitting default values does not
require any additional notation. A named association is convenient when the number
of checker arguments is large, or when the default values are passed to the arguments
in the middle of the argument list.

module m2(input logic clk, rst, send, ack, ...);
default clocking @(posedge clk); endclocking
...
request_granted check(.rst(rst), .req(send), .gnt(ack));

endmodule : m2

9.3.1.3 Implicit Named Association

When the names of actual and formal arguments coincide, there is no need to repeat
the argument names. In module m3, argument rst is passed by implicit named
association.

module m3(input logic clk, rst, send, ack, ...);
default clocking @(posedge clk); endclocking
...
request_granted check(.rst, .req(send), .gnt(ack));

endmodule : m3

9.3 Checker Instantiation 207

9.3.1.4 Wildcard Named Association

When the names of several actual and formal arguments coincide, as in module
m4 below, it is convenient to use a wildcard association making all actual and
formal arguments to be connected implicitly by name. Note that in our case it is
incorrect to use only the wildcard association because the clocking event passed
to the checker request_granted check would be clk, and not posedge clk

as intended. We need to explicitly leave the formal argument clk unconnected to
allow using the default value $inferred_clock. We could also explicitly specify
.clk(posedge clk) instead.

module m4(input logic clk, rst, req, gnt, ...);
default clocking @(posedge clk); endclocking
...
request_granted check(.*, .clk());

endmodule : m4

9.3.2 Instantiation Semantics

Roughly speaking, checkers are “inlined” at their instantiation point—the checker
contents are inserted in the place of the checker instance. This is similar to sequence
and property instantiation, but different from a module instantiation and from a
task call.

Actually, checker instantiation is more complicated than straightforward inlining,
hence we need to describe all its subtleties. In this section, we concentrate on
static checker instances, while the peculiarities of procedural checker instances are
discussed in Sect. 14.8.

A static checker is instantiated by substitution “in place” with reservations
concerning checker object naming, clock and reset inference, name resolution,
argument sampling, and checker variable semantics.

9.3.2.1 Object Naming

Example 9.16. Consider the following code:

checker check(a, b, event clk);
a1: assert property (@clk a |=> b);

endchecker : check
module m1(input logic clock, req, ack);
...
check mycheck(req, ack, posedge clock);

endmodule : m1

208 9 Checkers

Instance mycheck of checker check in module m1 is not exactly equivalent to

module m1(logic clock, req, ack);
...
a1: assert property (@(posedge clock) req |=> ack);

endmodule : m1

This is because the true name of the assertion upon the check instantiation in
m1 is mycheck.a1, and not just a1. The checker introduces its own scope. Since
assigning a hierarchical name, such as mycheck.a1 to an assertion directly in the
module is illegal, the checker instantiation “in place” is rather conceptual than real.

ut

9.3.2.2 Context Inference and Name Resolution

As mentioned in Sects. 9.2.1 and 9.2.3, name resolution and context inference are
done at the point of the checker declaration and not of its instantiation.

Example 9.17. Consider instantiation of checker check from Example 9.16 in
module m2:

module m2(input logic clock, rst, req, ack);
default disable iff rst;
...
check mycheck(req, ack, posedge clock);

endmodule : m2

There is no inference possible, hence implicitly the disable condition is 0, and
not rst, because reset is resolved at the declaration point. Thus, assertion a1 is
equivalent to

a1: assert property (@(posedge clock) disable iff (0)
req |=> ack);

If the checker were defined in module m2 (see Sect. 9.2.3), then rst would be
inferred from the default disable iff statement in m2, which is visible in the
declaration of check.

module m2(input logic clock, rst, req, ack);
default disable iff rst;

checker check(a, b, event clk);
a1: assert property (@clk a |=> b);

endchecker : check
//...
check mycheck(req, ack, posedge clock);

endmodule : m2

The assertion would be equivalent to

assert property (@(posedge clock) disable iff (rst)
req |=> ack);

ut

9.3 Checker Instantiation 209

9.3.3 Checker Binding

Sometimes it is desirable to keep verification code separate from the design code.
For example, a validator may want to write several checkers verifying DUT behavior
without modifying RTL (see Sect. 1.2.2). SystemVerilog allows external checker
binding to modules or interfaces using the bind directive. It is forbidden to bind
anything to a checker, not even another checker. Essentially, SystemVerilog allows
to bind other design elements, such as modules and interfaces as well in a similar
way, but we will limit our description to checker binding.

It is possible either to bind a checker to all instances of a module or interface, or
to choose only specific instances where the checker is to be bound.

The following syntax is used to bind a checker to all instances of a module:

bind module_name checker_name checker_inst(args);

The following syntax is used to bind a checker to a specific instance of a module:

bind module_inst checker_name checker_inst(args);

To bind a checker to several instances of a module, the module instances should
be separated by commas:

bind module_name: module_inst_1, ..., module_inst_n
checker_name checker_inst(args);

Binding a checker has the same effect as if it were instantiated at the very end
of the target module or interface. If several checkers are bound to the same module
(interface), then the order of instantiation is arbitrary.

Example 9.18. Consider a module trans instantiated three times in the top-level
module top:

module top;
logic clock, snda, sndb, sndc, rcva, rcvb, rcvc;
...
trans ta(clock, snda, rcva);
trans tb(clock, sndb, rcvb);
trans #(2) tc(clock, sndc, rcvc);

endmodule : top
module trans #(DEL=1) (input logic clock, in,

output logic out);
if (DEL == 1) begin : b
always @(posedge clock)

out <= in;
end
else begin : b
logic [DEL - 2: 0] tmp;
always @(posedge clock) begin

tmp[0] <= in;
for (int i = 1; i < DEL - 1; i++)
tmp[i] <= tmp[i - 1];

210 9 Checkers

out <= tmp[DEL - 2];
end

end
endmodule : trans

This module generates signal out from signal in by delaying it by several clock
cycles specified by the module parameter DEL. Note that the if statement in module
trans is a generate if (see Example 2.2).

The following checker eventually_granted verifies that each request is even-
tually granted:

checker eventually_granted(sequence req, property gnt,
event clk = $inferred_clock);
assert property (@clk req |=> s_eventually gnt);

endchecker : eventually_granted

We can bind this checker to module trans to verify that the high value of signal
in of module trans is eventually transmitted to its output out:

bind trans eventually_granted
check_in2out(in, out, posedge clock);

The bind statement specifies that checker eventually_granted is bound to
each instance of module m. It is equivalent to instantiating the checker at the end of
module trans:

module trans #(DEL=1) (input logic clock, in,
output logic out);

...
eventually_granted check_in2out(in, out, posedge clock);

endmodule : trans

Checker eventually_granted is too general, as it does not check the exact tim-
ing. To make more specific checks, it is possible to use checker request_granted:

checker request_granted(sequence req, property gnt, int n = 1,
event clk = $inferred_clock, untyped rst = $inferred_disable);
a1: assert property(@clk disable iff (rst)
req |-> nexttime[n] gnt);

endchecker : request_granted

This time we cannot bind the checker to all instances of module trans,
since the specific delay values are different in each instance: we need to bind
request_granted with the delay value of 1 to module instances ta and tb, and
with the delay value of 2 to module instance tc:

bind trans: ta, tb request_granted
delay1(in, out,, posedge clock);

bind trans: tc request_granted
delay2(in, out, 2, posedge clock);

ut

9.4 Checker Modeling 211

9.4 Checker Modeling

9.4.1 Checker Variables

Assertion modeling code in checkers is similar to that of hardware modeling in
modules and interfaces: one can declare variables in checkers, assign values to
them using continuous, blocking and nonblocking assignments, etc. However, some
limitations apply. On the other hand, checkers have a mechanism of nondeter-
ministic modeling which is missing in modules and interfaces. This mechanism is
described in Chap. 23.

The variables declared in the checker are called checker variables. Declaring nets
in the checker is illegal. Checker variables may be initialized at their declaration, but
assigning them a value in initial procedures is illegal (see Sect. 9.2.2.2). Checker
variables may be assigned using continuous assignments or in always procedures.
As mentioned in Sect. 9.2.2.2 the following kinds of always procedures may be used
in checkers (these procedures are discussed in Sects. 2.2.1.1–2.2.1.3):

• always_comb

• always_latch

• always_ff

Checker always procedures may contain the following statements:

• assignments (blocking and nonblocking)
• if and case statement
• loops
• function and task calls
• let declarations

Blocking assignments are allowed only in always_comb and always_latch

procedures. Of course, always_ff should contain an event control.
As in programs, all checker variable assignments are executed in the Reactive

region set: continuous and blocking assignments are executed in the Reactive region,
and nonblocking assignments are executed in the Re-NBA region.

Checker variables provide means for carrying auxiliary computations in support
of assertions, called assertion modeling code. Having modeling capability in
checkers is important; it allows separating instrumentation code for assertions from
the RTL code, thus keeping RTL clean and maintainable. This separation is also con-
venient for synthesis tools as it provides an easily identifiable distinction between
RTL and the instrumentation code without the need of conditional compilation.

Example 9.19. Checker stable_for_two_ticks verifies that sig may change
only in clock ticks 2, 4, . . . after the reset rst becomes low, as shown in Fig. 9.8.

212 9 Checkers

10 20 30 40 50 60 70 80 90 100

clk

rst

sig

Fig. 9.8 Signal stable for two clock ticks

1 checker stable_for_two_ticks(sig,
2 event clk = $inferred_clock, untyped rst = $inferred_disable);
3 default clocking @clk; endclocking
4 default disable iff rst;
5

6 bit toggle = 1’b0;
7 always_ff @clk
8 toggle <= rst ? 1’b0 : !toggle;
9 a1: assert property (!toggle |-> $stable(sig));

10 endchecker : stable_for_two_ticks

This checker works as follows. Variable toggle is initially low, and it becomes
low each time rst is deasserted. Otherwise, at each clock tick the value of toggle
is complemented. Assertion a1 allows sig to change only when toggle value is
high.

For the waveform shown in Fig. 9.8 the value of rst on Line 8 becomes low
at time 30 (recall that the value of rst is sampled in the checker), and in the next
clock tick (time 40) the sampled value of toggle is low. Therefore, at time 40, the
sampled value of sig must be stable: the sampled value of sig at time 30 is the same
as its sampled value at time 40. At time 50, the sampled value of toggle becomes 0,
and sig may change in this time step, and so on. ut
Example 9.20. In the checker from Example 9.19 it is illegal to replace

bit toggle = 1’b0;

with

bit toggle;
initial toggle = 1’b0;

Initial procedures in checkers may not contain checker variable assignments (see
Sect. 9.2.2.2). ut

There is an additional restriction imposed on checker variable assignments: it is
illegal to reference checker variables in assignments by their hierarchical names.

9.4 Checker Modeling 213

Example 9.21. The following code is illegal as the checker variable a is referenced
by its hierarchical name mycheck.a in the assignment of b.

checker check(...);
bit a;
...

endchecker : check

module m_illegal(...);
...
check mycheck(...);
...
wire b;
assign b = mycheck.a;

endmodule : m

In other words, it is forbidden to assign or use checker variables from the outside
of the checker (see Sect. 9.2.2). ut
Example 9.22. We can generalize the checker stable_for_two_ticks from
Example 9.19 to check the signal stability for n clock ticks. For this purpose,
we introduce a counter ctr, and we allow sig to change only when ctr is 0. The
system function $clog2 returns the number of bits necessary to store the value of n.

checker stable_for_n_ticks(sig, n,
event clk = $inferred_clock,
untyped rst = $inferred_disable);

default clocking @clk; endclocking
default disable iff rst;
bit [$clog2(n)-1:0] ctr = ’0;

always_ff @clk begin
if (rst) ctr <= 1;
else if (ctr == n - 1) ctr <= 0;
else ctr <= ctr + 1;

end

a1: assert property ($changed(sig) |-> ctr == 0);
endchecker : stable_for_n_ticks

Discussion: We could declare ctr as int unsigned, and this solution would work
perfectly well in simulation. For efficiency of formal verification it is important to
declare all variables with the smallest possible size. This is why we use the system
function $clog2 to designate the smallest variable size. ut

To make checkers efficient in FV, checker variables should be of the smallest
size sufficient to store the desired values.

214 9 Checkers

9.4.1.1 Functions in Checkers

The following restrictions are imposed on functions used on the right-hand side of
checker variable assignments:

• The functions should not contain output or ref arguments (const ref is
allowed).

• The functions should be automatic and not preserve any state information in static
variables. The functions must not have side effects.

These restrictions are the same as imposed on function calls in concurrent
assertions.

9.4.2 Sampling in Checkers

As we saw in Sect. 9.1.2 the expressions in the right-hand side of nonblocking
assignments in checkers are sampled. This is necessary to make assertion modeling
in checkers deterministic and consistent with the behavior of concurrent assertions.

Example 9.23. In the following piece of code there would be a race without variable
sampling: if b changes before clk, variable a would contain the past value of b,
otherwise it would contain the current value of b.

always_ff @(posedge clk) a <= b;

If the value of b is sampled, a would contain the past value of b regardless of the
race between b and clk.

ut
The exact rule of expression sampling in always_ff procedures reads as follows:

All expressions in an always_ff procedure are sampled, except for variables
used in the event control.

From this rule it follows that the expressions in non-temporal assertions (imme-
diate, deferred or final) instantiated in this procedure are also sampled. Expressions
in other always procedures always_comb and always_latch are not implicitly
sampled.

Example 9.24. The code below is a slightly modified example borrowed from the
LRM [8]. In the comments, CV and SV stand for “current value” and “sampled
value” respectively.

9.4 Checker Modeling 215

1 checker check(logic a, b, c, clk, rst);
2 logic x, y, z, v, t;
3 assign x = a; // CV of a
4 always_ff @(posedge clk or negedge rst) // CV of clk and rst
5 begin
6 a1: assert final (b); // SV of b
7 if (rst) // CV of rst
8 z <= b; // SV of b
9 else z <= !c; // SV of c

10 end
11 always_comb begin
12 a2: assert final (b); // CV of b
13 if (a) // CV of a
14 v = b; // CV of b
15 else v = !b; // CV of b
16 end
17 always_latch begin
18 a3: assert final (b); // CV of b
19 if (clk) // CV of clk
20 t <= b; // CV of b
21 end
22 ...
23 endchecker : check

In the values used in the continuous assignment on Line 3, in the statements
belonging to the always_comb procedure (Lines 12–15) and in the statements
belonging to the always_latch procedure (Lines 18–20) are not sampled, accord-
ing to the sampling definition in checkers. This behavior is the same as in modules.

The behavior in the statements of always_ff procedure (Lines 6–9) is different.
The values of clk and rst on Line 7 are not sampled because these variables
belong to the event control of the always_ff procedure. The value of b on Line 6
is sampled, even though it is used in a final assertion because this assertion belongs
to always_ff procedure. The value of rst on Line 7 is not sampled because it is
used in the event control (Line 4). The values of b and c in Lines 8 and 9 are again
sampled, because these statements belong to always_ff procedure. ut

9.4.3 Checker Variables in Final Procedures

In this section we provide an example showing usage of checker variables in a final
procedure.

Example 9.25. In Example 9.12 to check for pending requests at the end of
simulation, we assumed that req remains asserted until the reception of gnt. The
checker may be modified to work properly even without this assumption. For this
purpose, we introduce a checker variable intrans which is set to 1 between the
assertions of req and its gnt, or more precisely, from the clock tick after req until
the clock tick after gnt.

216 9 Checkers

For simplicity, we assume again that both req and gnt are Boolean.

checker request_granted(
req, gnt, n = 1,
event clk = $inferred_clock,
untyped rst = $inferred_disable

);
default clocking @clk; endclocking
default disable iff rst;
bit intrans = 1’b0;

always_ff @clk begin
if (rst || gnt) intrans <= 1’b0;
else if (req) intrans <= 1’b1;

end

a1: assert property (req |-> nexttime[n] gnt);

final begin
a2: assert (!rst -> gnt || !(req || intrans))

else $error("Outstanding request at the end of simulation");
end

endchecker : request_granted

ut

9.5 Checkers with Output Arguments

As we have already mentioned in Sect. 9.2.1, checkers may have output arguments.
There are three main use cases where this checker capability is beneficial:

• Returning assertion status from checkers
• Writing modular checkers
• Using checkers as a testbench

In this section we describe the first two use cases, postponing the discussion of
the third one to Sect. 23.5. Before we proceed to the use cases we need to describe
the rules imposed on checker output arguments. To keep things clear, we illustrate
these rules on the example of a trivial checker containing a single assignment and
no assertions.

9.5.1 Checker Output Arguments

9.5.1.1 Checker Output Argument Typing

Checker output arguments must be typed, and their type cannot be sequence or
property. The last two limitations are obvious, the first one is caused by the

9.5 Checkers with Output Arguments 217

difficulty to automatically infer a type of the output argument. This limitation is
annoying because it prevents checkers with output arguments to be generic.

Example 9.26. The following checker is illegal because its output argument out
has been left untyped:

checker out_illegal (in, output out, input event clk);
always_ff @clk
out <= in;

endchecker : out_illegal

If we know that the type of b is logic [7], we can obviously rewrite this checker
like this:

checker out_concrete (in,
output logic [7] out,
input event clk);

always_ff @clk
out <= in;

endchecker : out_concrete

The drawback of this implementation is that the generality has been lost. One
workaround could be to declare the argument out of a size large enough to suit are
needs, for example, 32 bits: logic [32] out. A better workaround would be using
the type construct within out declaration:

checker out_inferred (in,
output var type(in) out,
input event clk);

always_ff @clk
out <= in;

endchecker : out_inferred

Here it is explicitly stated that the type of out should be the same as the type of
in, and the concrete type of in is inferred from the checker instantiation context.

ut

9.5.1.2 Checker Output Argument Initialization

Since assignments in initial procedures in checkers are illegal, the only place of
assigning an initial value to a checker output argument, like to any other checker
variable, is at its declaration. The syntax of a checker output argument initialization
is the same as for specifying a default value for an input checker argument.

Example 9.27. The output argument out in the checker out_inferred from
Example 9.26 has not been explicitly initialized. According to the default initial-
ization rules in SystemVerilog, the initial value of out will be ’0 if its actual type is

218 9 Checkers

a two-state integral, such as bit, and ’X if its actual type is a four-state integral, such
as logic. If we want it always be initialize it with ’0, we should do it explicitly:

checker out_inferred (in,
output var type(in) out = ’0,
input event clk);

always_ff @clk
out <= in;

ut

9.5.1.3 Semantics of Checker Output Arguments

Actual checker output arguments, of course, must be L-values.

Example 9.28. The instance good of checker out_inferred defined in
Example 9.26 is legal, whereas the instance bad is not:

logic x, y, clock;
...
out_inferred good(x, y, posedge clock);
out_inferred bad(x, !y, posedge clock);

This is because y is an L-value, and !y is not. ut
Checker output argument simulation semantics is similar to that of programs

(see Sect. 3.5). The checker instantiation is treated as if there were continuous
assignments of the checker output formal arguments to their corresponding actual
arguments. These implicit continuous assignments are executed in the Reactive
region.

Example 9.29. Consider the following instantiations of checker out_inferred

defined in Example 9.26:

wire dest;
logic src1, src2, clock;
...
out_inferred inst1(src1, dest, posedge clock);
out_inferred inst2(src2, dest, posedge clock);

Here the net dest is driven by outputs of two instantiations of checker
out_inferred. These outputs are of type logic according to the type of the
checker instantiation inputs. The value conflict is resolved according to the standard
SystemVerilog resolution rules for nets.

The situation described in this example is rare, and in most cases in practice a
checker output is a single driver of the corresponding variable or net. ut

9.5 Checkers with Output Arguments 219

9.5.2 Returning Assertion Status from Checkers

It may be useful to synthesize assertion in the chip, for example, to detect their
violations during post-silicon verification. In this case the corresponding checkers
need to be synthesized on the chip like modules. This may be done by introducing
an output checker argument to capture the assertion status and to return it to the
module where this checker has been instantiated.

Example 9.30. This example, borrowed from the LRM [8] with minor modifi-
cations, describes instantiation of a checker verifying the mutual exclusiveness
condition in a module and passing the assertion result to a scan latch.

1 checker mutex (sig,
2 event clk = $inferred_clock,
3 untyped rst = $inferred_disable,
4 output bit failure = 1’b0);
5 default clocking @clk; endclocking
6 default disable iff rst;
7 a1: assert property ($onehot0(sig))
8 failure = 1’b0; else failure = 1’b1;
9 endchecker : mutex

10

11 module m(input wire bus, logic clock, reset);
12 logic res, scan;
13 ...
14 mutex check_bus(bus, posedge clock, reset, res);
15 always @(posedge clock) scan <= res;
16 endmodule : m

Checker mutex contains a single assertion a1 (Line 7) verifying that in its
argument sig at most one bit is set to 1. Normally assertions have only the fail
action, but this assertion has both pass and fail actions to capture assertion success
and failure (Line 8). Checker output argument failure captures the assertion status.

This checker is instantiated in module m as check_bus (Line 14) and it checks
for mutual exclusion of the bits of bus on each riding edge of clock. The result is
assigned to res in the Reactive region. Then it is fed to scan (presumably a scan
latch) by the nonblocking assignment (Line 15). On each rising edge of clock the
bits of bus are checked for mutual exclusion and the result is assigned to res in
the Reactive region. Note that if clock is changed in the Active region, scan will
capture the value of res generated on the previous rising edge of clock. ut

9.5.3 Writing Modular Checkers

A module representing a complex design block may be split into several simpler
modules representing the component blocks. In this case the higher level module
connects instances of the lower level modules. The information is provided to lower

220 9 Checkers

level modules through their input ports and is obtained from them through their
output ports. Therefore output ports are a key feature in enabling design modularity.
The same is true for the verification IP: splitting a checker into smaller checkers is
made possible using checker output arguments.

Complex checkers are typical in formal verification when they contain a sophis-
ticated modeling and numerous assertions. To make such checker manageable, it
should be split into smaller parts, each part containing either modeling of some
block or assertions and assumptions imposed to this block.

Example 9.31. Suppose that we want to verify an FSM implemented in RTL. This
FSM may be rather complex, have many states, sophisticated logic required to make
this FSM efficient, etc. The complexity of this FSM may prevent its direct formal
verification. For the purpose of verification we may not need to account for all
its complexity. We can build a model of a more abstract FSM that may be easily
verified. For example, the concrete FSM may have two different idle states: IDLE1
and IDLE2. This fact may be irrelevant for formal verification, hence our abstract
FSM has a single idle state AIDLE. Transitions of the abstract FSM may also be
much simpler than those of the concrete FSM, because irrelevant implementation
details may be ignored.

The checker verifying the concrete FSM may be split into the following parts:

• Abstract FSM model
• Assertions verifying that the behavior of the abstract FSM is aligned to the

behavior of the concrete one
• Assertions verifying the behavior of the abstract FSM (and therefore, the relevant

behavior of the concrete one)
• Glue that combines all the above parts together

Let enumeration types state_t and astate_t contain definitions of the concrete
and abstract states, respectively:

typedef enum {IDLE1 = ..., IDLE2 = ..., ...} state_t;
typedef enum {AIDLE, ..., AERR} astate_t;

The checker implementing the abstract FSM will look like that:

checker abstract_fsm(...,
event clk = $inferred_clock,
untyped rst = $inferred_disable,
output astate_t astate); // abstract state

default clocking @clk; endclocking
always_ff @clk begin
if (rst) astate <= AIDLE;
case (astate)

AIDLE: astate <= ...;
...
default: astate <= AERR;

endcase
end

endchecker : abstract_fsm

9.5 Checkers with Output Arguments 221

The checker verify_consistency verifies that the abstract FSM is an abstrac-
tion of the concrete one:

checker verify_consistency(state, astate, ...,
event clk = $inferred_clock,
untyped rst = $inferred_disable);

default clocking @clk; endclocking
default disable iff rst;

aidle: assert property (astate == AIDLE <-> state inside {IDLE1
, IDLE2})

else $error("Idle states inconsistent");
...

endchecker : verify_consistency

The checker verify_abstract_fsm verifies the behavior correctness of the
abstract FSM:

checker verify_abstract_fsm(astate, ...,
event clk = $inferred_clock,
untyped rst = $inferred_disable);

default clocking @clk; endclocking
default disable iff rst;

never_stuck: assert property (s_eventually astate != AIDLE)
else $error("FSM stuck");

unexpected: assert property (astate != AERR)
else $error("Unexpected behavior detected");

...
endchecker : verify_abstract_fsm

Finally the top-level checker is as follows:

checker verify_fsm(state,,
event clk = $inferred_clock,
untyped rst = $inferred_disable);

default clocking @clk; endclocking
default disable iff rst;

astate_t astate;

abstract_fsm afsm(..., astate);
verify_consistency vcons(state, astate, ...);
verify_abstract_fsm vafsm(astate, ...);

endchecker : verify_fsm

Here state is the concrete state generated by the RTL. The ellipses (...) des-
ignate other arguments that should be filled in, and are not part of the syntax. Note,
that we do not have to explicitly pass the clock and reset to the subcheckers because
they may be inferred by default via $inferred_clock and $inferred_disable

system functions. ut

222 9 Checkers

Exercises

9.1. Assertion a_initial_no_complete from Fig. 9.4 does not behave correctly
in the general case when rst is initially low. For what actual arguments corre-
sponding to rst the assertion behaves always correctly? Consider the use cases
of simulation and formal verification. Hint: Consider cases when the corresponding
actual argument is of type logic and bit, and when it is explicitly initialized or
not.

9.2. Fix assertion a_initial_no_complete from Fig. 9.4 to handle the case when
the reset is initially low. Hint: consult Sect. 11.2.1.1.

9.3. In assertion a_initial_no_complete from Fig. 9.4 rst is used both in the
implicit disable iff clause and in the body of the assertion. Which problem
does this cause? How to solve it? Hint: Consider variable sampling in concurrent
assertions.

9.4. Write a checker verifying that each request is followed by a grant, and that the
request happens at least once.

9.5. Example 9.11 introduces a checker simple_reset to verify that the reset
signal is initially high then it eventually goes low and remains low forever.

(a) Modify this checker to make it generic. The new checker should accept the
assertion clock as an optional argument. This argument should default to
$global_clock.

(b) If the reset remains always high, the checker assertion does not fail in simu-
lation. How should the checker be modified to ensure that a more meaningful
scenario is exercised in simulation?

(c) What would the checker verify if followed-by (suffix conjunction) #=# is
replaced with suffix implication |=>?

9.6. Implement the checker check_window borrowed from OVL [10] (with minor
modifications).

This checker ensures that the condition cond is true in a specified window
between a start and complete.

The checker should have the following arguments:

• cond—expression that should be true in the event window
• start—sequence whose completion opens the event window
• complete—sequence whose completion closes the event window
• clk—clock event for the checker. Should be inferred from the context by default
• rst—checker reset signal. Should be inferred from the context by default
• msg—message to be issued in case of the check failure. Default is “Violation”
• collect_cov—elaboration time constant indicating that the coverage about

window should be collected. Default is yes. The following coverage information
is collected.

9.5 Checkers with Output Arguments 223

1. The window has been opened
2. The window has been closes
3. The number of clock cycles in the window

• to_assume—elaboration time constant indicating that the property about the
window condition should be assumed. By default the property must be asserted.

Notes.

1. Consult Sect. 11.2.1 to handle the case when complete is an arbitrary sequence.
Alternatively, you can implement the simplified version of this checker assuming
that complete is a signal.

2. Coverage constructs are described in Chaps. 4 and 18.

Part IV
Advanced Assertions

Chapter 10
Advanced Properties

No man acquires property without acquiring with it a little
arithmetic also.

— Ralph Waldo Emerson

This chapter briefly recapitulates the basic properties discussed in Chap. 5 and
discusses more complex property operators. First, we examine the property equiv-
alents of Boolean operators, namely, not, or, and, implies, iff, if else, and
case. Then we provide a description of temporal operators inspired by Linear
Temporal Logic. The operators are described informally; the reader interested
in formal semantics should consult Chap. 22. Recursive properties are described
in Chap. 17, and the abort operators accept_on, reject_on, sync_accept_on,
sync_reject_on are discussed in Chap. 13. In all examples, we assume that the
properties and assertions are in the scope of a default clocking declaration, hence no
explicit clocks are specified.

Most of the temporal operators come in two forms, weak and strong. The strong
forms are identified by a prefix s_ as in s_nexttime p. In simple terms, the strength
determines the property evaluation result when there are not enough clock ticks to
complete the evaluation of the operator, e.g., at the end of simulation or when the
source stops emitting them. More precise explanation is given in Chap. 21.

Table 10.1 lists all the property operators available in the language. The order
of appearance is in decreasing precedence, beginning with the highest on the top.
Operators appearing in one block of the table have the same precedence. Blocks are
separated by horizontal lines. For example, not, nexttime, and s_nexttime have
the same precedence. Additionally, the precedence of any SystemVerilog expression
operator is higher than any property or sequence operator.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__10

227

228 10 Advanced Properties

10.1 Sequential Property

In addition to the property operators listed in Table 10.1, sequences are promoted
to properties when used in a property context. We call them sequential properties,
or sequence properties (see also Sect. 6.2). This happens when a sequence is used
as the only expression in an assertion or as an operand to a property operator that
requires the operand to be a property. Sequential properties can be weak or strong.
A sequence becomes a strong property when it is the argument to a strong(...)

qualifier, e.g., strong(a ##1 b). A strong sequential property holds if and only if
the underlying sequence has a match. Without this strong qualifier, a sequential
property is weak (see Sect. 6.2, the definition given there corresponds to the week
sequential property) in the assertion or assumption context, and strong in the cover
context. As we shall see, in situations where a sequence is strong by default, it can
be made weak by using the qualifier weak(...). The distinction between strong and
weak sequential properties is reflected in their truth value when there are not enough
clock ticks to complete the evaluation of the sequence: If there are not enough clock
ticks the weak sequence property succeeds, while the strong one fails.

Example 10.1. Consider the following assertions:

initial a1: assert property(a ##[+] b);
initial a2: assert property(strong(a ##[+] b));

a3: assert property(!a ##1 a |-> b[*] ##1 c);
a4: assert property(!a ##1 a |-> strong(b[*] ##1 c));

c1: cover property(a ##[+] b);
c2: cover property(weak(a ##[+] b));

Table 10.1 Property
operators Operator Associativity

not –

nexttime, s_nexttime –

and Left

or Left

iff Right

until, s_until Right

until_with, s_until_with Right

implies Right

|->, |=> Right

#-#, #=# Right

always, s_always –

eventually, s_eventually –

if else, case –

accept_on, sync_accept_on –

reject_on, sync_reject_on –

10.2 Boolean Property Operators 229

Note: Recall that b[*] is a shortcut for b[*0:$] and ##[+] is a shortcut for
##[1:$]. The sequence in assertion a1 is weak because it is used as the property
of an assert statement, and there the default is weak. Therefore, when an attempt
is triggered by a true and b does not become true, that evaluation attempt of
the assertion succeeds. In this situation, however, a2 fails because the sequential
property is explicitly qualified as strong.

Assertions a3 and a4 are a little more complex. Each contains two sequences:
!a ##1 a and b[*] ##1 c. The former sequence is used as the antecedent
(or precondition) of the suffix implication |->. If a thread of evaluation of that
sequence does not complete due to lack of clock ticks or because !a is false or
is not followed by a in the next clock tick, that thread fails, and in the context of the
antecedent it contributes no match. In those cases the assertion attempt has a vacuous
success (Sect. 10.6). The consequent sequence b[*] ##1 c is a weak property in a3

and a strong property in a4. The interpretation is similar to that of a1 and a2. That
is, in the absence of a sufficient number of clock ticks or if b remains true forever
while c is never true, the consequent of a3 succeeds, while that of a4 fails.

In the case of covers c1 and c2, the default strength of a sequence used as the
coverage property is strong. This is done so that a coverage hit is not registered
when the sequence does not complete evaluation, e.g., due to lack of clock ticks. To
override the default behavior, the qualifier weak should be used, as in c2.1 ut

Let us now examine the various property operators from Table 10.1.

10.2 Boolean Property Operators

The following property operators express Boolean connectives between properties:

• not p—negation
• p or q—disjunction
• p and q—conjunction
• p implies q—implication
• p iff q—equivalence
• if(b)p else q—if conditional
• case (b)...—case conditional

Here is their informal description; their formal semantics can be found in
Chap. 22.

1Though cover c2 is rather meaningless.

230 10 Advanced Properties

Negation

The property not p is true iff the property p is false.

Example 10.2. What is not e where e is a Boolean expression? According to the
definition, not e is true iff e is false as a property. If the clock ticks, then e is false
as a property iff !e is true as a Boolean expression at the first clock tick. If the clock
does not tick, then e is false as a property iff it is a strong sequential property at
the first position of the trace. If the property clock is the global clock, then not e is
equivalent to !e (see Chap. 22, Example 21.29). ut

Disjunction

Property p or q is true iff either property p or property q is true (Sect. 5.5).
The syntax is the same as for sequence disjunction discussed in Sect. 6.6. When

the sequence disjunction is used as a property it can be replaced by property
disjunction with the same constraint on the strength of the sequence disjunction
as on both p and q.

Conjunction

Property p and q is true iff both properties p and q are true (Sect. 5.5).
Note that the syntax of property and is similar to that of the sequence and

operator described as s1 and s2 in Sect. 11.1.5. However, they have similar
meaning only when the sequence and is used as a property, and the strength of
both p and q is the same as the strength of the sequence s1 and s2.

For further discussion, refer to Sects. 11.1.5 and 5.5.

Implication

The property p implies q is true iff either property p is false or q is true (see
Chap. 22).

When p and q are Boolean expressions e1 and e2, respectively, then
e1 implies e2 is equivalent to e1 -> e2 provided the clock ticks. This
equivalence holds, e.g., if the sampling clock is the global clock, which is guaranteed
not to stop. For further discussion on the semantics of implies, see Chap. 22.

Previously (Sect. 6.4) we discussed suffix implication |->, which also involves
a property, but only in the consequent. This has to be contrasted with property
implication implies:

10.2 Boolean Property Operators 231

In s |-> q, where s must be a sequence and q some property, the evaluation of
q starts at the time when any evaluation thread of s has a match. In p implies q,
p and q are properties, hence there is no notion of an endpoint and a match. Both p

and q start evaluating at the same time and the truth results are computed using the
logical operator implies. For example, consider

a ##1 b |-> c ##1 d

vs.

a ##1 b implies c ##1 d

In the case of |->, the consequent c ##1 d will start evaluating when a ##1 b

matches. In the case of implies, both a ##1 b and c ##1 d start evaluation at
the same clock tick. Finally, if p is a sequence s, writing strong(s)implies q

is equivalent to s |-> q only when s is a Boolean expression. The Boolean
implication b1 -> b2 is a short-hand for !bit’(b1)|| b2. Therefore, unlike
property and suffix implications, such Boolean expressions have no notion of
vacuity of evaluation. That is, the evaluation of b1 -> b2 as a sequence property is
always nonvacuous (see Sect. 10.6).

An interesting example that uses implies is as follows.

Example 10.3. The signal sig should be high from m >= 0 clock ticks before event
ev happens until n >= 0 clock ticks after it. That is, if ev happens at time 10, m = 2,
and n = 3, then sig should be high at times 8, 9, : : : , 13.

Solution:

a1: assert property (
strong(##m ev) implies sig[*(m + n + 1)]);

We have used a strong sequence strong(##m ev) in the antecedent of implies
so as to require that there are enough clock ticks for ev to become true.

To express the same using |-> the assertion becomes more complex:

a2: assert property (
(!sig |-> !ev[*(m+1)]) and (ev |-> sig[*(n+1)])); ut

Equivalence

The property p iff q is true iff either properties p and q are both true or they are
both false (Chap. 22).

Like the case of implies, when p and q are Boolean expressions e1 and e2,
respectively, then e1 iff e2 is equivalent to e1 <-> e2 provided the clock ticks,
e.g., if the clock is the global clock.

When can iff be used? A very useful application is in verifying that two property
definitions have the same meaning: The same property may be implemented
in different ways because one implementation may be much more efficient in
simulation and the other in formal verification. Often the two properties look and

232 10 Advanced Properties

feel similar, yet they are not equivalent. If we check their equivalence in formal
verification a counterexample explains the difference. Only the assertion comparing
the properties and wire or module input declarations of the variables used in the
assertion are required in this case; neither a model nor assumptions are needed.

Example 10.4. Check that the properties always nexttime e and nexttime

always e are equivalent.

Solution:

wire e;
initial a: assert property (
(always nexttime e) iff (nexttime always e)); ut
The following example is perhaps less evident, yet the two properties are in fact

equivalent:

Example 10.5.
property p1;
not (a[*] ##1 b);

endproperty
property p2;
strong(!b[+] ##0 !a);

endproperty
a1: assert property(p1 iff p2); ut

If [Else]

The property if (b)p is true if Boolean b is false or p is true. The property
if (b)p else q is true if Boolean b is true and p is true, or b is false and q is
true.

Note that is possible to express the same using suffix implication, as
b |-> p, and (b |-> p) and (!(bit’(b))|-> q), respectively.
Clearly, the if-else form is easier to understand than its equivalent using suffix

implication, as illustrated in the following example.

Example 10.6. In assertions a1 and a2, if b is true, a should be false or b should be
false one clock tick later, else if b is false then a must be true, followed by b true one
clock tick later. Clearly, assertion a1 is easier to understand. Assertion a3 uses an
if property without the else clause. In that case, the equivalent formulation shown
in assertion a4 is as easily understood, hence there is no preference between them.

a1: assert property(if (b) not strong(a ##1 b)
else a ##1 b);

a2: assert property(
(b |-> not strong(a ##1 b)) and
(!bit’(b) |-> a ##1 b));

a3: assert property(if (b) a ##1 b);
a4: assert property(b |-> a ##1 b); ut

10.3 Suffix Operators: Implication and Followed-By 233

Case

Property case is a generalization of if-else for a multiple-valued condition b.

case (b)
b1: p1;
...
bN: pN;
default: p;

endcase

The property case (b)... is true iff either pi evaluates to true for the first i
such that the value of bi matches the value of b, or no bi matches the value of b
and if the optional default item property p is specified then it evaluates to true. If
the default case item is not specified and no bi matches the value of b, then the
property case is vacuously true.

A case operator can be used, for example, to define a property in which
a sequence delay varies based on some register value. Of course, for practical
purposes a small range of delays is assumed:

Example 10.7. property p(bit [2:0] delay);
case (delay)
0: a;
1: nexttime[1] a;
2: nexttime[2] a;
3: nexttime[3] a;
4: nexttime[4] a;
default: 1’b0; // delay too large

endcase
endproperty : p ut

The same property could be written using a chain of if-else property operators,
but the meaning of such nested operators is less obvious than when using the case

operator. It is left to the reader as an exercise at the end of the chapter to rewrite the
property in Example 10.7 using if-else.

Many of the following operators have been briefly described in Chap. 5, and
their formal semantics can be found in Chap. 22. Here, we provide an intuitive
recapitulation of the operators, further clarifying the distinction between the strong
and the weak forms and between the bounded and unbounded forms. The bounded
variants evaluate the operand property over finite, bounded numbers of clock ticks,
while the unbounded ones evaluate over indefinite but finite numbers of clock ticks.

10.3 Suffix Operators: Implication and Followed-By

The following are suffix operators:

• Suffix implications |-> and |=>.
• Followed-by operators (also named suffix conjunctions) #-# and #=#.

234 10 Advanced Properties

Table 10.2 Comparison of suffix implication and followed-by

Operator Antecedent match Antecedent no match

|-> |=> Each must yield consequent true Vacuous success

#-# #=# At least one must yield consequent true Failure

Suffix Implication

The suffix implications have been discussed in Chap. 6. We summarize them here
because we need them to describe the followed-by operators.

A suffix implication operator takes a sequence as the left-hand operand and a
property as the right-hand operand: s |-> p and s |=> p. Whenever s matches,
property p must hold. When s has no match then a suffix implication is vacuously
true.

The difference between the two forms is that in the case of |-> the evaluation of
property p starts at the clock tick that occurs at or after the tick when s matches.
In the case of |=> the evaluation of p starts at the clock tick that occurs strictly
after the clock tick when s matches. When the ending clock of s (meaning the
clock of the latest evaluated expression of s) is the same as the leading clock of
p, then in the case of s |-> p property p starts at the same clock tick when s

matches, while in the case of s |=> p, property p starts at the clock tick following
the match of s. This is why |-> is called an overlapping suffix implication, and |=>

is a nonoverlapping one.

Suffix Conjunction (Followed-By)

The followed-by operators #-# and #=# also have a sequence as the left-hand
operand and a property as the right-hand operand: s #-# p and s #=# p. If s

has no match, then followed-by evaluates to false. If s has one or more matches
for a given evaluation attempt, then for the property to evaluate to true, at least
one match of s must result in p evaluating to true (see Table 10.2). In this sense,
the behavior is similar to sequence concatenation with ##0 and ##1 cycle delays.
The difference is that sequence concatenation requires a sequence as the right-hand
side operand, while followed-by accepts a property there. This is also the reason
that followed-by is sometimes called a suffix conjunction or suffix concatenation. If
property p is in fact a strong sequential property (e.g., if s1 #-# s2 appears in a
cover), then s1 #-# strong(s2) is the same as strong(s1 ##0 s2). Similarly,
s1 #=# strong(s2) is the same as strong(s1 ##1 s2). As to when p starts its
evaluation relative to the match of s, the difference between #-# and #=# is the same
as between the two forms of the suffix implication. The former is overlapping and
the latter is nonoverlapping.

10.4 Unbounded Linear Temporal Operators 235

A followed-by operator is a dual operator of suffix implication. The following
equivalences hold:

s #-# p� not (s |-> not p), and s #=# p� not (s |=> not p)

This means that even without the availability of the followed-by operators,
the same behaviors could be obtained using the right-hand sides of the above
equivalences. The intent is, however, more clearly conveyed by the shorter notation
when a followed-by operator is used.

The question is where the use of followed-by is appropriate. Its principal usage
is in cover property statements when the right-hand side argument cannot be
restricted to a sequence. This often occurs in properties that are used in checker
libraries, where the arguments of the checker are not restricted to be Boolean
expressions or sequences only.

Example 10.8. Consider the coverage property: When a “pattern” x is detected it is
followed by a “pattern” y. We may have to restrict x to be a sequence, but y could
be nonrestricted and be any property.

property p(sequence x, untyped y);
x #-# y;

endproperty

Its usage could be

cov: cover property(p((req[*2]), (s_eventually ack))); ut
Example 10.9. Ascertain that a reset condition is true for some m initial clock ticks
and then it remains false forever. Such a property is often used as an assumption on
reset in formal verification.

Solution:

initial a: assume property(reset[*m] #=# always !reset); ut
We now examine the temporal operators inspired by Linear Temporal Logic.

10.4 Unbounded Linear Temporal Operators

Linear temporal logic (LTL) is a modal temporal logic with modalities referring
to time, which in SVA means as measured by the occurrence of clock ticks. In
LTL, it is possible to write formulae about the future of behaviors following a linear
progression of time, such as that a property will eventually be true, that a property
will be true until another property becomes true, and so on. The operators can be
bounded with some specific ranges or unbounded. The following are linear temporal
unbounded property operators available in SVA:

• Weak until and until_with, and their strong forms s_until and
s_until_with.

• Unbounded weak always.
• Unbounded strong s_eventually.

236 10 Advanced Properties

Until

There are only the unbounded forms of these operators:

• Unbounded weak: p1 until p2

• Unbounded strong: p1 s_until p2

The operator comes in two forms, weak until and strong s_until. The formal
semantics is covered in Chap. 22.

The weak until property holds true provided that either p2 is true at the first
clock tick or p1 holds true at all clock ticks as long as p2 is false. If there is no clock
tick at which p2 is ever true, the property evaluates true. The strong form s_until

is similar except when there is no clock tick at which p2 holds true—the strong form
is false in that case.

Example 10.10. Suppose that condition c must hold true between the occurrences
of conditions e1 and e2 but not necessarily including these clock ticks.

a1: assert property(e1 |=> c until e2);
a2: assert property(e1 |=> c s_until e2);

Discussion: Assertion a1 will succeed even if there are not enough clock ticks for
detecting e2 true (provided that c holds till then), while a2 will declare failure in
that situation due to the use of a strong until operator. ut

Always and S_eventually

The following are the unbounded forms of these operators:

• Unbounded weak: always p

• Unbounded strong: s_eventually p

Property always p is true if p holds true at every clock tick. The operator always
is weak, hence when there are no more clock ticks, the property evaluates to true. It
is equivalent to p until 1’b0. Recall that 1’b0 is Boolean false in SystemVerilog.

Property s_eventually p is true if there is a sufficient number of clock ticks to
find one at which p is true.

What if we negate an always property as not always p? According to the
definition this property is true iff always p is false, which means that p is false
at least at one clock tick. This is exactly the property s_eventually not p. It is
a strong eventuality because there must be a clock tick where p is false (otherwise
always p would be true).

It follows that s_eventually p is equivalent to not always not p. And also
s_eventually p is equivalent to 1’b1 s_until p.

Notice how the negation changes the strength of the resulting property. Negating
a weak always we obtain a strong s_eventually. This is because to falsify

10.4 Unbounded Linear Temporal Operators 237

always we require that the operand property p be false somewhere in the future. It
must happen, hence the eventuality is strong. always and s_eventually are dual
properties.

In case of a Boolean property e, not always e may be rewritten as
s_eventually !e.

Until_with

There are only the unbounded forms of these operators:

• Unbounded weak: p1 until_with p2

• Unbounded strong: p1 s_until_with p2

The weak until_with property holds true provided that either p1 and p2 is
true at the first clock tick or p1 holds true at all clock ticks until a clock tick when
both p1 and p2 hold true. If there is no clock tick at which p1 and p2 is true,
the weak property evaluates true. The strong form s_until_with is similar except
when there is no clock tick at which p1 and p2 holds true—the strong form is false
in that case.

As in the case of the dual operators always and s_eventually, until and
s_until_with are dual operators, as are s_until and until_with. The following
equivalences hold:

p s_until q � not ((not q) until_with (not p))

p until q � not ((not q) s_until_with (not p))

Example 10.11. Write an assertion that verifies the following situation: When
Boolean trig is true, property p2 must hold at some clock tick strictly before a
clock tick at which property p1 holds.

Solution:

a1: assert property (
if (trig) (not p1) until_with p2);

The specification is missing one important point, namely, must p2 ever occur? If
not, then the above assertion is correct. If yes, then we should require p2 to be true
at some clock tick by using the strong form

a2: assert property (
if (trig) (not p1) s_until_with p2); ut

Example 10.12. When req becomes true it must hold until and including gnt. In
addition, gnt must happen.

Solution:

a1: assert property(
!req ##1 req |-> req s_until_with gnt);

238 10 Advanced Properties

Discussion: If a new request can start immediately at the clock tick following gnt,
the assertion would have to be modified as follows because there is no rising edge
on req in that situation.

a2: assert property(
(!req || gnt) ##1 req |-> req s_until_with gnt);

The sequence in the antecedent matches when either !req ##1 req happens
(i.e., rising transition of req) or gnt ##1 req happens which is the case of a
continuing request. Note that another assertion should verify that gnt does not occur
without a req.

How should we modify the assertions if it is not required that gnt ever happens
after asserting req? The answer is similar to the preceding example, Example 10.11,
namely, replace the strong form s_until_with by the weak one until_with.
Then, even if gnt never happens after being requested the property will evaluate
true. ut

10.5 Bounded Linear Temporal Operators

Bounded operators are useful when the property to be verified must be satisfied
within some specified range of clock ticks. There is the fixed delay property
operator nexttime, which is similar to ##m in sequences. The operators always

and eventually are provided with ranges in both strong and weak forms.
The behavior of the bounded operators is as follows.

Nexttime

• nexttime p

• s_nexttime p

• nexttime [m] p

• s_nexttime [m] p

The semantics are split according to the value of argument m, which must be an
elaboration constant, and according to the strength of the operator:

1. Weak form: nexttime p is true at tick t if p is true at tick t C 1 or if there is no
tick tC1 or if there are no clock ticks at all. nexttime [0] p has no delay, p has
to be true at tick t or there is no tick t . In that sense it is equivalent to 1 |-> p.
Property nexttime[m] p for some m > 0 is true if p is true at tick t C m or if
there are not enough ticks.

2. Strong form: s_nexttime[m] p, m > 0 is similar to the weak form except that
it does require having a sufficient number of clock ticks, i.e., at least m. It is thus
equivalent to not nexttime[m] not p.

10.5 Bounded Linear Temporal Operators 239

For singly clocked properties nexttime[0] p means “either the clock does not
tick anymore, or p”, and s_nexttime[0] p means “the clock ticks at least once,
and p”.

For example,

initial a: assert property(
nexttime[0] s_eventually e);

means that either the clock does not tick at all, or e holds in some finite number
of clock ticks. However,

initial a: assert property(
s_nexttime[0] always e);

means that the clock ticks at least once and e happens at each clock tick.
When m > 0 the weak form can be defined recursively. This results in a repetitive

application m times of nexttime on p:
nexttime nexttime ... nexttime nexttime p

As mentioned above, the strong form is defined by double negation: Therefore,
for m == 1, nexttime not p says that p does not hold at the next clock tick and
it is a weak form. By negating it, a strong property is obtained saying that “it is not
true that p does not hold at the next clock tick”. That is, it must hold and there must
be at least one clock tick.

Example 10.13. When initial reset rst is deasserted, property p must eventually
hold after 2 clock ticks, and there must be enough clock ticks:

Solution:

initial a: assert property (
rst ##1 !rst |-> s_nexttime [2] s_eventually p); ut

Efficiency Tip. In general, it is recommended to use s_nexttime with strong
operators, and nexttime with weak ones. For instance, nexttime always p

and s_nexttime s_eventually p. It is important to note that p is a property.
This situation is common and important for assertion libraries, where there are
restrictions on the argument type.

Example 10.14. There cannot be two consecutive requests where req is a Boolean
expression. One could be tempted to write the following assertion:

a1: assert property (req and nexttime !req);

but this is wrong. Assertion a1 is contradictory: req and nexttime !req must
be true at every clock tick, i.e., req must be true at each clock tick and !req must
be true starting from the second clock tick. Already at the second clock tick it thus
requires that both req and !req are true!

To write this assertion correctly, we can formulate it as “if there is a request, there
should be no request at the next clock tick”:

a2: assert property (req implies nexttime !req);

240 10 Advanced Properties

Or, since req is a Boolean expression (or a signal), the assertion can be written
more simply as

a3: assert property (req |=> !req);

or as

a4: assert property (not strong(req[*2]);

ut
Example 10.15. If there is no acknowledgment ack after req, then in two clock
ticks rtry should be asserted.

Solution: This can be reformulated as “if there is a request then either at the next
tick there should be an acknowledgment, or in two cycles rtry should be asserted”:

a1: assert property (
req implies (nexttime ack) or nexttime [2] rtry);

The same assertion may be rewritten as:

a2: assert property (
req implies (nexttime (ack or nexttime rtry));

If req, ack, and rtry are Boolean expressions then the assertion can be
simplified as follows:

a: assert property (req |=> (ack or ##1 rtry)); ut

Bounded Eventually and Always Operators

• eventually [m:n] p

• s_eventually [m:n] p

• s_eventually [m:$] p

• always [m:n] p

• s_always [m:n] p

• always [m:$] p

The bounded forms of the operators eventually and always, both weak and
strong, are derived operators that are defined using weak and strong forms of
nexttime, respectively.

1. Let m � 0. eventually[m:m] p is the same as nexttime[m] p. This is a
simple equivalence between weak forms. Similarly, (s_eventually[m:m] p)

is equivalent to s_nexttime[m] p.
2. Let m � 0, n > m. eventually[m:n] p is defined recursively as

eventually[m:n-1] p or nexttime[n] p.
This recursive definition can be expanded into a disjunction of n-m+1 nexttime

properties. For example, eventually[2:4] p is equivalent to
nexttime[2] p or nexttime[3] p or nexttime[4] p.

10.5 Bounded Linear Temporal Operators 241

To define the strong form s_eventually[2:4] p, use s_nexttime.
3. Let m � 0. always[m:m] pis the same as writing nexttime[m] p. Since

the extent where always should hold is only one clock tick, always[m:m] is
the same as eventually[m:m] p as well. The strong forms are defined using
s_nexttime.

4. Let n > m. always[m:n] p is the same as always[m:n-1] p and nexttime

[n] p. The expansion is similar to the expansion of (eventually[m:n] p), but
the series of nexttime properties is formed using conjunctions. For example,
always[2:4] p is equivalent to nexttime[2] p and nexttime[3] p and

nexttime[4] p. The strong form is again defined using s_nexttime.
5. Let m � 0. always[m:$] p is equivalent to nexttime[m] always p. The lower

bound m just shifts the check for property p to hold forever after m clock ticks.
There is no strong form in this case due to the open-ended upper bound, which
requires always p.

6. Let m � 0. s_eventually[m:$] p is equivalent to s_nexttime[m] s_event-

ually p. As in the preceding case, the check for the property p to eventually
hold is just shifted by m clock ticks. As a dual property to always [m:$] p,
there is no weak form.

Like the unbounded case, the form s_eventually [m:n] p can also be defined
using duality with always as not always[m:n] not p. The strong eventuality
requires that p is true within m to n clock ticks and that there are enough clock
ticks to cover this range. In the formulation using always, always[m:n] not p

will succeed when p fails at each clock tick in the range (there need not be
enough clock ticks to cover the range). Again, due to the top-level negation
in not always[m:n] not p, that property will succeed provided p is true at
some clock tick in the range. It is thus equivalent to the strong eventuality
(s_eventually[m:n] p).

Similarly, we can see that (s_always[m:n] p) is equivalent to (not eventu-

ally[m:n] not p). Again, the negation of a weak property becomes a strong
property and vice versa.

One may ask the question why there is the weak eventually [m:n] p with a
fixed range, while the open-ended range is only strong s_eventually [m:$] p.
It works out that if the latter were weak, the property would be in some sense
meaningless because in an assertion it cannot ever fail. If there are not enough clock
ticks before p is true, then the weak form succeeds. Only the strong form can declare
failure in that case. This distinction between open and bounded ranges carries over
by duality to the always operator. Namely,

not eventually [m:n] not p � s_always [m:n] p

not s_eventually [m:$] not p � always [m:$] p.

In the final section of this chapter, we explain how vacuous successes of a property
are determined depending on the type of the operator.

242 10 Advanced Properties

10.6 Vacuous Evaluation

When an assertion fails, it provides good information about the cause of the failure,
often near its source in the design code. However, what happens if no assertion fails?
Does that mean that the design is correct relative to the set of assertions used? In the
chapter on coverage (Chap. 18), we can see that assertion success is not a guarantee;
we still must make sure that the tests cover as much of the functionality of the design
as possible.

Many typical assertions involve one of the following conditional operators:

• suffix implications |->, |=>
• Boolean implication ->

• if - else operator, or
• implication implies

Consider the simple Boolean property x -> y where x and y are some Boolean
expressions. The interpretation of this property is if x is true then y must be true.
If x is false it does not impose any claim on y: the property is true regardless
the truth of y. This success is called a vacuous success. That is, a success that
carries no weight as far as the verification of the design is concerned. In practice,
a more desirable test is the one in which variable x evaluates to true. Therefore,
if an assertion has only vacuous successes in a test, it means that either the test
never stimulates the design in such a way as to make x true, or that the design
may never have a value assignment that makes the expression true. In the former
case, we must make sure that other tests do trigger the assertion so that it does
evaluate nonvacuously. In the latter case, we must examine x and the design to see
whether the problem is a bad formulation of the expression, or something wrong in
the design that prevents the variables from achieving the expected values. Finally,
a nonvacuous success of an assertion evaluation attempt requires that the following
two conditions be met:

• The assertion property attempt evaluates to true, and
• The evaluation attempt is nonvacuous.

The evaluation attempt of any sequential property, weak or strong (Sect. 10.1),
is always nonvacuous since no explicit condition is stated in a sequence. It
is essentially a pattern match based on regular expressions, and the match is
unconditional.

Now we will consider conditional expressions where vacuity is of practical
significance. For properties of the form

• sequence_expr |-> p

• sequence_expr |=> p

the evaluation is nonvacuous if sequence_expr has a match and the evaluation
thread of p that results from the match evaluates nonvacuously.

For property if (expr)p1 else p2, an evaluation attempt is nonvacuous when
expr is true and p1 evaluates nonvacuously, or when expr is false and p2 evaluates
nonvacuously. It follows that vacuity is determined by evaluation of the properties

10.6 Vacuous Evaluation 243

p1 and p2. If expr is true and p1 is a vacuous success, the overall property is a
vacuous success; similarly, when expr is false, p2 determines the result. If the else
clause is missing then the evaluation is nonvacuous if and only if expr is true and
the evaluation of p1 is nonvacuous. When expr is false or when p1 is a vacuous
success, the evaluation of the overall property is a vacuous success.

Most simulation and formal verification tools report vacuous successes when the
top-level property operator is one of the cases listed above. Other more complex
forms where nested property operators are involved become computationally costly
and more importantly, seldom provide results of practical importance. Nonetheless,
the subject of vacuity has been a topic of research, so the interested reader may wish
to consult [13, 24, 47], for instance.

An alternative way to define nonvacuous execution of an assertion that is
suitable for simulation is to define it recursively for each operator. This is how the
SystemVerilog LRM defines nonvacuity. The rules first define nonvacuous attempt
evaluation for weak and strong sequences, and then for all property operators in
terms of the evaluation of their operands.

Exercises

10.1. Rewrite Example 10.7 using a chain of if-else property operators. How
could you verify that the two forms are equivalent?

10.2. Which properties are valid (i.e., always true)? Explain.

(a) ((s_eventually p1) and (s_eventually p2)) iff

s_eventually (p1 and p2)

(b) ((s_eventually p1) or (s_eventually p2)) iff

s_eventually (p1 or p2)

(c) ((always p1) implies (always p2)) iff

always (p1 implies p2)

(d) 1’b1 until 1’b0

(e) 1’b1 s_until 1’b0

10.3. Write a property never_p that states that its argument property p is never
true.

10.4. Write a property next_ev_p(logic b, property p) that evaluates to true
if and only if its argument p holds at the next occurrence of the Boolean expression
b. If there are not enough clock ticks for b to evaluate to true, then the property
should fail.

10.5. Write a property next_ev_a_p(logic b, int m, n, property p) that
generalizes the property from Exercise 10.4 in such a way that p must hold in
the range [m:n] of occurrences of b after the start of evaluation of next_ev_a_p.
The occurrences of b need not be consecutive. For example, if the range is [2:4],

244 10 Advanced Properties

then p must hold from the second to the fourth occurrence of b after the start of
evaluation of next_ev_a_p. If there are not enough clock ticks to cover the range
of occurrences of b, the property should evaluate false.

10.6. Modify the property from Exercise 10.5 to form property
next_ev_e_p(logic b, int m, n, property p) such that p is required to hold
at least once during the range [m:n] of occurrences of b.

Chapter 11
Advanced Sequences

Poe’s saying that a long poem is a sequence of short ones is
perfectly just.

— John Drinkwater

In Chap. 6, we covered basic sequence operators, such as delays, consecutive
repetition and disjunction. In this chapter, we learn about the remaining sequence
operators. Although these remaining operators do not add any additional expres-
sive power to the language, they are very convenient to use, and make assertions
more readable and concise. We also consider sequence methods and discuss using
sequences as events.

In examples throughout this chapter, we assume that a default clocking is
defined, and thus omit the clock in assertions unless there is a need to emphasize a
specific clock usage. We assume that e is a Boolean, r and s are sequences, and p is
a property.

11.1 Sequence Operators

The available sequence operators grouped by their precedence from highest to
lowest are listed in Table 11.1. For convenience, we also list here the operators
covered in Chap. 6.

11.1.1 Throughout

Sometimes it is necessary to make sure that a Boolean condition holds throughout
the whole sequence. For this purpose, it is possible to use the sequence operator

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__11

245

246 11 Advanced Sequences

Table 11.1 Sequence
operators Operator Associativity

[*...] –

[*] –

[+] –

[->...] –

[=...] –

Left

throughout Right

within Left

intersect Left

and Left

or Left

Fig. 11.1
e throughout s

clock ticks

e e e e e

s

throughout. The sequence e throughout s, where e is a Boolean expression and
s is a sequence, has a match in clock tick t iff s has a match at t , and in each clock
tick from the start of the evaluation of s until and including the match of s, the
condition e is true (see Fig. 11.1).

Example 11.1. Write a sequence describing the following scenario: “Three con-
secutive enabled occurrences of read followed by four enabled occurrences of
write”. The occurrences of read and write are enabled if en is asserted.

Solution: The sequence may be implemented as

(read && en)[*3] ##1 (write && en)[*4]

Using the throughout operator, the same sequence may be rewritten in a more
expressive way:

en throughout read[*3] ##1 write[*4] ut
Example 11.1 illustrates the fact1 that throughout is a convenience operator

which does not introduce any additional expressive power to the language. Yet, it
greatly improves assertion readability and makes the intent clear.

Efficiency Tip. The throughout operator is efficient both in simulation and in FV.

1It can be proven formally [23].

11.1 Sequence Operators 247

Fig. 11.2 Sequence e[->2]

clock ticks

!e e !e !e e

11.1.2 Goto Repetition

Motivation Example.

Example 11.2. After request req is serviced by done asserted, signal ready should
be asserted.

Solution: We need to check ready in the clock tick following the clock tick when
done became high for the first time after req is asserted:

a1: assert property (req ##1 !done[*] ##1 done |=> ready); ut
The situation when something should happen for the first time described in

Example 11.2 is very common. There is a special sequence operator, a goto
repetition, stating that the condition e must happen for the first time: e[->1]. For
an arbitrary integer constant n � 0, e[->n], where e is a Boolean, is a shortcut for
(!e[*] ## e)[*n]. This sequence has a match when e happens for the nth time,
as shown in Fig. 11.2.

Unlike the consecutive repetition described in Sect. 6.5 which can be applied to
arbitrary sequences, the goto repetition may be applied only to Boolean values.

Example 11.3. Using goto repetition, the assertion from Example 11.2 may be
rewritten as

a2: assert property (req ##1 done[->1] |=> ready); ut
It is also possible to specify ranges in goto repetition: e[->m:n], 0 � m � n, has

a match when e happens for the mth, mC1st, . . . , and the nth time. The upper bound
of the range may also be open-ended ($). The formal definitions are as follows (we
assume that m � n):

b[->m:n]� (!b[*] ##1 b)[*m:n].
b[->m:$]� (!b[*] ##1 b)[*m:$].
b[->m] � (!b[*] ##1 b)[*m].

Example 11.4. After start is asserted, at each occurrence of request req, starting
from the second and ending with the fifth one, enable en must be asserted.

Solution:

a1: assert property (start ##1 req[->2:5] |-> en); ut
Example 11.5. After start is asserted, at each occurrence of request req, starting
from the second one, enable en must be asserted.

a1: assert property (start ##1 req[->2:$] |-> en); ut

248 11 Advanced Sequences

Eventuality. It is possible to express eventuality using goto repetition. For example,
the property s_eventually e is equivalent to strong(e[->1]). The operator
strong is essential here, without it the property is meaningless in the assertion or
assumption context as explained in Sect. 6.10.

Example 11.6. After start_ev, signal next should be asserted at least twice.

Solution: This example is similar to Example 11.5 and one can be tempted to
implement this assertion as

a1_redundant: assert property (start_ev |=> strong(next[->2:$]));

However, assertion a1_redundant is an overkill. To check that next appears at
least twice, it is sufficient to check that it appears twice:

a2: assert property (start_ev |=> strong(next[->2])); ut
Example 11.7. Event e must happen at least twice in the entire trace.

Solution: As explained in Example 11.6, the assertion may be written as

initial a1: assert property (strong(e[->2]));

Discussion: If we need to express that e should happen exactly twice, we should use
followed-by (suffix conjunction):

initial a2: assert property (e[->2] #=# always !e);

If we need to express that e should happen at most twice, we should use suffix
implication instead of suffix conjunction:

initial a3: assert property (e[->2] |=> always !e); ut
Next Occurrence.

Example 11.8. When en is high, property p must be true in the nearest clock tick
when signal e is true.

Solution:

a1: assert property (en ##0 e[->1] |-> p);

Discussion: A possible satisfying trace is shown in Fig. 11.3.
The situation where at the next occurrence of e property p must hold is a common

situation. We may define a reusable property named next_occurrence as follows2:

property next_occurrence(e, property p);
e[->1] |-> p;

endproperty

We can now use this definition to rewrite assertion a1 as3

a2: assert property (en |-> next_occurrence(e, p));

2In PSL [6], there is a property operator called next_event with a similar behavior.
3See Sect. 6.4.1 for a discussion about nested implications.

11.1 Sequence Operators 249

clk

en

e

p

Fig. 11.3 Next occurrence

Such language extensions using property definitions can be placed in packages
for reuse. ut
Example 11.9. Example 11.8 shows a weak form of the next_occurrence pro-
perty. In the strong version of this property, e[->1] must happen, and property p

should hold when e happens. This means that we must replace the suffix implication
operator used in Example 11.8 with the followed-by (suffix conjunction) operator:

property strong_next_occurrence(e, property p);
e[->1] #-# p;

endproperty ut
Efficiency Tip. Using big factors and ranges in goto repetition is inefficient both
in simulation and in formal verification. In simulation, goto repetition may be
expensive if it causes long or never-ending attempts, and especially for overlapping
attempts, as explained in Sect. 19.3. For example,

assert property (a ##1 b[->1] |=> c);

is efficient if b happens every few clock ticks; it can be extremely inefficient if a
often happens, and b never happens or if its occurrences are rare. The reason is that
many property evaluation attempts may be simultaneously accumulated.

11.1.3 Nonconsecutive Repetition

Motivation Example.

Example 11.10. Between the occurrences of the transmission start start_t and the
transmission end end_t, exactly four packets must be sent. Each time a packet is
sent, sent is asserted. The value of sent is not to be checked when start_t or
end_t is asserted.

250 11 Advanced Sequences

Fig. 11.4 Sequence e[=2]

clock ticks

!e e !e !e e !e e

Solution: Using consecutive repetition this assertion may be written as:

a1: assert property(start_t |=>
(!end_t throughout (!sent[*] ##1 sent)[*4]
##1 !sent[*]) ##1 end_t);

Using goto repetition, this assertion may be rewritten in a more compact way:

a2: assert property (start_t |=>
(!end_t throughout sent[->4] ##1 !sent[*]) ##1 end_t); ut
The situation discussed in Example 11.10 where some Boolean must be true

a predefined number of times between the match of one sequence and the begin-
ning of another is rather common. There is a sequence operator [=...], called
nonconsecutive repetition, that designates it. More precisely, sequence e[=n] has a
match in some clock tick if before this clock tick e occurs exactly n times, as shown
in Fig. 11.4.

Like goto repetition, the nonconsecutive repetition may be applied only to
Boolean (integral) values.

Example 11.11. Using nonconsecutive repetition, the assertion from Example 11.10
may be rewritten as

a3: assert property (
start_t |=> (!end_t throughout sent[=4]) ##1 end_t); ut
It is possible to specify ranges in nonconsecutive repetition: e[=m:n],

0 � m � n, has a match when e is true for the mth, m C 1st, . . . , and the nth
time. The upper bound of the range may also be infinite ($). The formal definitions
are as follows (we assume that m � n):

b[=m:n]� b[->m:n] ##1 !b[*].
b[=m:$]� b[->m:$] ##1 !b[*].
b[=m] � b[->m] ##1 !b[*].

Example 11.12. During one transaction delimited by start_t and end_t, packets
ranging from 2 to 4 should be sent (sent asserted). sent is not to be checked when
start_t or end_t is asserted.

Solution:

a1 assert property (
start_t |=> (!end_t throughout sent[=2:4]) ##1 end_t); ut

Example 11.13. If during one transaction less than two packets are sent (sent
asserted), the shortt bit should be asserted when end_t is asserted. sent is not
to be checked when start_t or end_t is asserted.

11.1 Sequence Operators 251

Fig. 11.5 Sequence
intersection

clock ticks

r

s

Solution:

a1: assert property (
start_t ##1 (!end_t throughout sent[=0:1]) ##1 end_t
|-> shortt); ut

Efficiency Tip. Big factors and ranges in nonconsecutive repetition are inefficient
both in simulation and in formal verification. In simulation, a nonconsecutive
repetition may be expensive if it causes long or never-ending and overlapping
attempts, as explained in Sect. 19.3.

11.1.4 Intersection

Intersection of two sequences r and s is a sequence r intersect s, which has a
match when both sequences have a match simultaneously (see Fig. 11.5).

Example 11.14. A command consists of two in-order read actions and one write
action. After the command is issued (command is asserted), the completion of the
write action (write_complete), and the completion of the second read action
(read_complete) should happen simultaneously.

Solution: To express simultaneous completion, we use the intersect operator:

a1: assert property (
command |->
write_complete[->1] intersect read_complete[->2]); ut

Example 11.15. Each transaction delimited by start_t and end_t should contain
two read requests and three write requests.

Solution: In this case, we need to spot a clock tick t with the following
characteristics:

• There should be exactly two read requests issued before t .
• There should be exactly three write requests issued before t .
• At clock tick t , the first occurrence of end_t should happen.

We can express this using the following assertion:

a1: assert property (start_t |->
read[=2] intersect write[=3] intersect end_t[->1]);

Assertion a1 allows the last read or write request to happen simultaneously
with the end of the transaction end_t and also with start_t. If we require that no

252 11 Advanced Sequences

read or write request happens simultaneously with end_t and start_t, and the
transactions do not overlap, we need to rewrite the assertion as

a2: assert property (start_t |=>
!start_t throughout (read[=2] ##1 !read) intersect
(write[=3] ##1 !write) intersect end_t[->1]);

Exercise 11.8 introduces yet another interpretation of this assertion: read and
write request may happen at any time, but when they happen at the end of the
transaction they are not counted as part of the current transaction. ut

intersect operator does not really add more expressive power to the language,
but it makes formulas exponentially more concise [23]. One can get a feeling why
it is so by attempting to rewrite the assertion in Example 11.14 without intersect
(see Exercise 11.7). Moreover, Example 11.15 is even more convincing. To rewrite
assertions a1 and a2 without intersect, it is necessary to explicitly list all possible
combinations of read and write:

read[=2] ##[0:1] write[=3] or read[=1] ##[0:1] write[=2] ##[0:1]
read[=2] or ...

Efficiency Tip. Operator intersect may be expensive in FV. The reason is that
most FV engines in their internal representation eliminate the intersect operator
and generate all possible combinations of events. The greater the number of these
combinations, the more expensive it is for FV. However, it should be understood that
intersect does not introduce inefficiency by itself (though some FV engines may
process intersect less efficiently than the equivalent explicit representation), but
it allows concise coding of complex sequences. Therefore, if intersect is really
needed, there is no choice but to use it. However, if it is possible to write a more
specific assertion instead, eliminating the need for intersect, this should be the
first choice. For instance, if it is known in Example 11.15 that all write requests
precede the read requests, read[=2] intersect write[=3] should be replaced
by write[=3] ##1 read[=2].

In simulation, the overhead of intersect is acceptable except when sequence is
compiled into an automaton in which case memory blow-up may occur during the
automaton construction (see Sect. 19.3). This blow-up occurs in FV too.

Limiting Sequence Size. Sometimes it is desirable to keep only those sequence
matches that occur during some number of first clock ticks. This can be done
using the idiom s intersect 1[*1:n], where s is a sequence, and n is an integer
constant. Sequence 1[*1:n] has matches in clock ticks 1, . . . , n; therefore, only
matches of s that happen during the first n clock ticks are retained, while all others
are ignored.

This method may be used to truncate the antecedent sequences to boost simula-
tion performance, as shown in Example 11.16. Note, however, that it is inefficient
in FV.

Example 11.16. If acknowledgment ack is received after req, ready should be
asserted simultaneously with the acknowledgment receipt.

11.1 Sequence Operators 253

Fig. 11.6 Sequence
conjunction

clock ticks

r

s

Solution:

a1: assert property (req ##1 ack[->1] |-> ready);

Discussion: As we discussed in Sect. 11.1.2, this assertion may not be efficient
in simulation when req persists until ack, and ack is sent long time after req is
asserted or if ack is not sent at all. It is possible to modify assertion a1 to limit the
time of waiting for ack to some predefined number of clock ticks, for example, 10:

a2: assert property (
(req ##1 ack[->1]) intersect 1[*1:10] |-> ready);

If ack is asserted within 10 clock ticks from req issue, assertion a2 behaves
like assertion a1; otherwise, the assertion evaluation attempt is ignored. If it is
known that ack always arrives within 10 clock ticks, assertion a2 is more efficient
in simulation than assertion a1 for most industrial simulators.

Note that 1[*1:10] could be replaced by 1[*2:10] since the antecedent takes
at least two clock ticks. ut
Efficiency Tip. Antecedent truncation is not efficient for formal verification. As
mentioned in Sect. 20.6, the efficiency requirements for assertion checking in
emulation are usually aligned with the requirements for FV rather than with
simulation. Therefore, in emulation it is also better to avoid antecedent truncation,
though it is less critical than in FV.

Throughout. The sequence operator throughout introduced in Sect. 11.1.1 is a
special case of intersect: e throughout s is equivalent to e[*] intersect s.
Since throughout does not introduce new event combinations, it is efficient both
in simulation and in FV.

11.1.5 Sequence Conjunction

Conjunction of two sequences r and s is a sequence r and s. It has a match in
clock tick t iff one of the sequences r and s has a match in that clock tick, and the
other sequence has a match in some clock tick t1 � t , as illustrated in Fig. 11.6

Sequence conjunction belongs to the intersect family, and r and s is a
shortcut for r ##1 1[*] intersect s or r intersect s ##1 1[*].

254 11 Advanced Sequences

If both a and b are Boolean, a and b has a match iff both a and b are true.
Therefore, in this case a and b has the same meaning as a && b.4

Example 11.17. Two transactions t1 and t2 start at the same time when start_t is
asserted. When both transactions complete, ready should be asserted. Transaction
completion is signaled by end_t1 and end_t2, respectively.

Solution:

a1: assert property (start_t ##1 (end_t1[->1] and end_t2[->1])
|-> ready);

The antecedent matches when the longer of the two transactions completes. ut
Sequence Conjunction Versus Property Conjunction. As the sequence and
property conjunctions have exactly the same syntax, how to distinguish between
a conjunction of two sequential properties and a sequence conjunction promoted
to a property? For example, in property en |-> r and s, where r and s are
sequences, should r and s be interpreted as sequences with and as a sequence
conjunction, or should they be interpreted as properties with and as a property
conjunction? The answer is the same as in the case of disjunction (see Sect. 6.6):
if the conjunction arguments are sequences, it is a sequence conjunction. Note,
however, that essentially the result may be interpreted either way, both definitions
agree (this is also the case with disjunction), provided that the resulting sequence is
promoted a property.

Efficiency Tip. Sequence conjunction has a reasonable overhead in simulation, but
in FV it may be expensive when it defines many different combinations of events
(this is similar to the situation with intersect, see Sect. 11.1.4). However, top-level
conjunction in a sequence promoted to property is not expensive.

Example 11.18. In property en |-> r and s, the sequence conjunction in the
consequent is not expensive in FV, since r and s is promoted to a property, and
and is its top-level conjunction. This is because in that case sequence and can be
converted to a property and with equivalent behavior.

In property en |-> (r and s)##1 a, and is not a top-level conjunction pro-
moted to property, hence the conjunction may be expensive.

In property (r and s)|-> p, the conjunction is in the antecedent of a suffix
implication, the antecedent is never promoted to a property, hence the conjunction
may be expensive. ut

4Except when a or b has a match item, see Chap. 16.

11.1 Sequence Operators 255

Fig. 11.7 Sequence
containment

clock ticks

r

s

11.1.6 Sequence Containment

The operator r within s checks that sequence r is contained within sequence s.
More precisely, r within s has a match in clock tick t iff s begins in clock tick
t0 and has a match in clock tick t , and sequence r beginning in clock tick t2 has a
match in clock tick t3, such that t0 � t1 � t2 � t , as shown in Fig. 11.7.

The sequence containment operator belongs to the intersect family, and
r within s is a shortcut for 1[*] ##1 r ##1 1[*] intersect s. Notice that
r may have more than one match while s is evaluated.

Example 11.19. There should be at least one read request between two write

requests.

Solution:

a1: assert property (write |=> (read ##1 1) within write[->1]);

Discussion: Specifying read ##1 1 and not just read is important when the case
of read appearing together with the second write should be excluded. ut
Example 11.20. Two consecutive write requests cannot appear within a transac-
tion delimited by start_t and end_t (including transaction delimiters).

Solution:

assert property (
start_t |-> not strong(write[*2] within end_t[->1]));

Discussion: We need to specify the strong qualifier here to keep the property
weak because the negation of a weak operator is strong (Chap. 10). Without it,
this assertion would check among other things that each transaction eventually
completes. This is usually not part of the assertion intent. In addition, checking
the eventuality would impose heavy burden on FV tools. ut
Efficiency Tip. within operator has similar overhead as intersect (Sect. 11.1.4).

Example 11.21. The sequence (a ##1 1) within b[->1] is relatively efficient in
FV since it is equivalent to

!b[*] ##1 a ##0 !b[+] ##1 b

In contrast, sequence a[->2] within b[->2] is more expensive since it intro-
duces many combinations of a and b: first a then b then a then b; first two a and
then two b; a and b happening simultaneously, etc. ut

256 11 Advanced Sequences

11.1.7 First Match of a Sequence

It is sometimes convenient to discard all sequence matches but the first one. This
can be achieved using the operator first_match. Sequence first_match(s) has
a match in clock tick t iff sequence s has a match in clock tick t , and it has no match
in any clock tick � < t .

Example 11.22. If a and b have values 1 in clock ticks 0–4 then sequence
a[*1:2] ##1 b[*2:3] has matches in clock ticks 2, 3, and 4. In contrast, sequence
first_match(a[*1:2] ##1 b[*2:3]) has only one match in clock tick 2. ut
Example 11.23. When request req is issued and thereafter the first data chunk is
received as identified by data bit asserted, acknowledgment ack should be sent.

Solution:

a1: assert property(first_match(req ##[+] data) |-> ack);

Discussion: Here, the first_match operator guarantees that the acknowledgment
is only sent when data is asserted for the first time. The same assertion rewritten
using the goto repetition should be more efficient:

a2: assert property(req ##1 data[->1] |-> ack); ut
Example 11.24. Let us modify the requirement of Example 11.23: Acknowledg-
ment ack should be sent in response to a request, when two data chunks are received
in consecutive clock ticks for the first time. The first solution can be easily adapted
as follows:

a3: assert property(first_match(req ##[+] data[*2]) |-> ack);

The second solution can also be modified in the following way:

a4: assert property(req ##1 data[->1] ##1 data |-> ack);

Again, assertion a4 is likely to be more efficient than a3. ut
Trailing first_match in Sequential Properties. Trailing first_match in sequen-
tial properties, both weak and strong is redundant and can be omitted. For
simplicity we explain this statement for strong sequential properties. Property
strong(r ##1 s) is true iff there exists a match of sequence r ##1 s. This match
exists if there exists a match of r followed by a match of s, but this is equivalent
to the statement that there exists a match of r followed by the first match of s.
Therefore, strong(r ##1 s) is equivalent to strong(r ##1 first_match(s)).

Similarly, it can be shown that a trailing first_match in the outermost and or or
branch in a sequential property is redundant. For example, the sequential property
r1 ##1 first_match(s)or r2 is equivalent to r1 ##1 s or r2.

Example 11.25. The property a |-> b ##1 first_match(c[*] ##1 d) is
equivalent to a |-> b ##1 c[*] ##1 d. The following properties are not
equivalent (see Exercise 11.13):

11.2 Sequence Methods 257

1. a |-> b ##1 first_match(c[*] ##1 d)##1 e and
a |-> b ##1 c[*] ##1 d ##1 e.

2. a ##1 first_match(b[*] ##1 c)|-> d and
a ##1 b[*] ##1 c |-> d.

ut
Efficiency Tip. In general, other than as top-level operator in a sequential property,
first_match is expensive both in simulation and in FV, and should be avoided
whenever possible.

11.2 Sequence Methods

There are two methods that may be applied to sequences: triggered5 and matched.
The difference between sequence operators and sequence methods is that the
operators build a new sequence from its operands, whereas the sequence methods
return a Boolean value. The syntax of sequence methods is also different: it has the
form sequence_instance.method_name.

Even though the sequence method matched is targeted for multiclock sequences
(see Chap. 12), we mention it here to explain its behavior in the simple case of a
single clock.

Since sequence methods return a Boolean value (1’b1 or 1’b0), they may be used
where Boolean expression are used. Nevertheless, several limitations apply. For
example, sequence methods cannot be used in sampled value functions (Sect. 7.2).

Sequence methods are evaluated in the Observed region and their sampled value
Appendix A is defined to be the current value.

11.2.1 Triggered: Detecting End Point of a Sequence

Given a sequence s, the method s.triggered returns true in clock tick t if there
exists a clock tick t1 � t such that when s starts evaluating in clock tick t1, it
has a match in clock tick t . s must be an instance of a named sequence. The last
clocking event of s must be the same as the clocking event of the context where
s.triggered is used. A reference to a formal argument may be used instead of
the named sequence, but after actual argument substitution a legal reference to a
sequence must result.

5In SystemVerilog Standard 2005 [3], there was also the sequence method ended, but according to
SystemVerilog Standard 2009 [5] ended is deprecated, and triggered should be used instead.

258 11 Advanced Sequences

Example 11.26. The following code is legal:

logic a, b, c, d;
// ...
sequence s;
@(posedge clk) a ##[1:3] b;

endsequence : s
sequence t(x);
@(posedge clk) x[*5];

endsequence : t
property p(sequence r, untyped y);
a |-> r(y).triggered;

endproperty : p
a1: assert property (@(posedge clk) c |-> s.triggered);
a2: assert property (@(posedge clk) c |-> t(d).triggered);
a3: assert property (@(posedge clk) p(t, d));

s and t(d) are instances of the named sequences. In r(y), r is a formal argument
and so is y. ut
Example 11.27. The following code is illegal:

logic a, b, c;
// ...
a1_illegal: assert property (@(posedge clk)
c |-> (a ##[1:3] b).triggered);

triggered method is applied to sequence expression a ##[1:3] b which is
neither a named sequence instance nor a formal argument. ut
Example 11.28. Consider the following code:

logic a, b, c, d;
sequence s1;
@(posedge clk) a ##1 b;

endsequence : s1
sequence s2;
@(posedge clk1) a ##1 b;

endsequence : s2
sequence s3;
@(posedge clk1) a ##1 @(posedge clk1) b ##1 @(posedge clk) c;

endsequence : s3
a1: assert property (@(posedge clk) d |-> s1.triggered);
a2: assert property (@(posedge clk) d |-> s2.triggered);
a3: assert property (@(posedge clk) d |-> s3.triggered);

The clock for the sequences is governed by the clock flow rules described
in Sect. 12.2.4.1. Each sequence has its clock explicitly specified, so the clock from
the assertion where they are used does not flow in to the sequence. ut
Example 11.29. Table 11.2 contains a trace of a and b, and the values of
s.triggered, where s is defined as

sequence s;
@(posedge clk) a[*1:2] ##1 b[*1:2];

endsequence : s

11.2 Sequence Methods 259

Table 11.2 Sequence end points

Clock tick 0 1 2 3 4 5 6 7 8 9 10 11 12

a 1 1 0 1 1 1 0 1 0 0 0 1 0

b 0 0 1 1 0 0 0 1 1 1 0 0 1

s.triggrered 0 0 1 1 0 0 0 0 1 1 0 0 1

Note that s.triggered returns the same value as r.triggered, where r is
defined as

sequence r;
@(posedge clk) a ##1 b[*1:2];

endsequence : r

Why? ut
Example 11.30. Between request req and acknowledgment ack (inclusive), busy
should be asserted. When both req, ack, and busy are Boolean, the desired
assertion is

a1: assert property (req |-> busy until_with ack);

How should we modify this assertion to allow req and ack be arbitrary
sequences? For instance, these sequences could be defined as follows:

sequence req;
start_req ##1 end_req;

endsequence : req
sequence ack;
enable ##[1:10] end_ack;

endsequence

To make the assertion work, in this case we need to assure that busy is asserted
starting from the last clock tick of req until the last clock tick of ack. There is
no need to make any changes in a1 related to req handling, as the overlapping
implication checks the consequent from the last clock tick of its antecedent.
However, ack handling requires a modification because otherwise the assertion
will check that busy is asserted only until the first clock tick of ack. The required
modification is simple: we need to replace ack with ack.triggered:

a2: assert property (req |-> busy until_with ack.triggered);

Now suppose that we wish to take reset rst into account:

a3: assert property (disable iff (rst)
req |-> busy until_with ack.triggered);

It should be noted that disable iff does not affect the behavior of the
triggered method, and if sequence ack started before req was asserted and before
rst was deactivated, it will not be aborted. However, in this case it would be natural
to ignore ack. The easiest way to do this is to modify sequence ack to take rst into
account as follows:

260 11 Advanced Sequences

Table 11.3 Past temporal operators

Operator Description
sofar p Holds in clock tick t iff p holds in all clock ticks t1 � t (Fig. 11.8).
once p Holds in clock tick t iff p holds in some clock tick t1 � t (Fig. 11.9).
p since q Holds in clock tick t iff q holds in some clock tick t1 � t , and p holds in

all clock ticks t2, t1 < t2 � t (Fig. 11.10).
p backto q A weak version of p since q: if q has not happened yet, p should hold in

all clock ticks t1 � t .
previously p Holds in clock tick t iff t ¤ 0, and p holds in clock tick t �1 (Fig. 11.11).
before p Holds in clock tick t iff either t D 0 or p holds in clock tick t � 1. Thus,

the only difference between previously p and before p is that previously p

is false in clock tick 0, whereas before p is true.

sequence ack;
!rst throughout enable ##[1:10] end_ack;

endsequence

One problem remains: the reset specified by the disable iff operator is
asynchronous (see Chap. 13), while the behavior of the throughout operator is
synchronous: it is checked only at clock ticks. Usually, this difference is not
important. When it is, the sequence to which the method triggered is applied as
well as the assertion should be controlled by the global clock if it exists. ut

To make the sequence to which the method triggered is applied sensitive to
the assertion disabling condition reset, include !reset throughout as the
top operator in the sequence. The sequence is disabled synchronously with
the clock ticks of the sequence, however.

Fig. 11.8 sofar property clock ticks

p p p p p p

t

Fig. 11.9 once property clock ticks

p

t

Fig. 11.10 since property clock ticks

q p p p

t

11.2 Sequence Methods 261

Fig. 11.11 previously
property

clock ticks

p

t

11.2.1.1 Past Temporal Operators

In SVA, all property operators are directed to the future. For example, always p

means that from the current clock tick on the property p holds, s_eventually p

means that p happens in the current or in a future clock tick, p until q means that
p holds from now on until q happens, nexttime p means, that p holds in the next
clock tick, etc.

There exists also past temporal logic [34] in which the operators are directed or
operate on past values of signals. We illustrate such past operators in Table 11.3.

It may be shown that past temporal operators do not add any additional expressive
power to the language. Everything that may be expressed with future and past
temporal operators may be expressed with future temporal operators only. Using
past temporal operators just makes the formulas more succinct.

The past temporal operators are not part of SVA; nevertheless, it may be of
interest to find an appropriate work-around. In the special case when the operands
are Boolean, and not arbitrary property expressions, it is natural to use sequence
method triggered as shown in Fig. 11.12. The figure shows property definitions
that implement several past temporal operators applied to Boolean values.6 Besides
the operators listed in Table 11.3, the figure contains the operator first that is not
part of a past temporal logic, but is closely related to it. This operator does not have
arguments; it returns true in clock tick 0, and false in all other clock ticks.

Figure 11.12 illustrates several points that we mentioned earlier:

• Sequence methods can be applied to sequence instances only; therefore, we had
to create auxiliary sequences, such as seq_previously, seq_once, etc.

• Sequence methods return Boolean values true (1Šb1) and false (1Šb0). It is cor-
rect to use Boolean negation !seq_once(!e).triggered in the implementation
of sofar instead of property negation not seq_once(!e).triggered. This also
applies to the implementation of first.

• It is legal to apply sequence methods to a sequence with arguments, such as
seq_previously(e).triggered.

Figure 11.12 does not contain implementations of operators before and backto.
Their implementation is left to the reader as exercise (Exercises 11.15 and 11.16)

6For some tools, it may be more efficient to implement seq_not_first using modeling code
to set a flag after clock tick 0.

262 11 Advanced Sequences

sequence seq_previously(e);
e ##1 1;

endsequence : seq_previously
property previously(e);
seq_previously(e).triggered;

endproperty : previously

sequence seq_not_first;
##1 1;

endsequence : seq_not_first
property first;
!seq_not_first.triggered;

endproperty : first

sequence seq_once(e);
e ##[*] 1;

endsequence : seq_once
property once(e);
seq_once(e).triggered;

endproperty : once

property sofar(e);
!seq_once(!e).triggered;

endproperty : sofar

sequence seq_since(e1, e2);
e2 ##1 e1[*];

endsequence : seq_since
property since(e1, e2);
seq_since(e1, e2).triggered;

endproperty : since

Fig. 11.12 Past temporal properties

11.2.1.2 Triggered Outside Assertions in RTL

Using triggered method is not limited to assertions, it is also legal in procedural
code. For example, if a and b are wires, and s is a sequence, the following statement
is legal:

assign a = s.triggered || b;

Even though this code looks innocent, it is dangerous in modules and interfaces
to use a in a concurrent assertion. Consider the following assertion:

a1: assert property (@(posedge clk) a);

The semantics of the assign statement evaluation with respect to a change in the
value of s.triggered is not well defined. We know that the value of s.triggered
persists only until the end of the simulation tick, and at the beginning of the next
simulation tick the new value of s.triggered is reset to 0. However, it is not

11.2 Sequence Methods 263

1 module m(input logic clk, a, b, ...);
2 logic c;
3 sequence ab;
4 @(posedge clk) a ##1 b;
5 endsequence
6 always @(posedge clk) begin
7 c <= ab.triggered;
8 //...;
9 end

10 //...
11 endmodule : m

Fig. 11.13 triggered method in procedural code

clear whether these changes in value cause events to trigger the assign statement
evaluations.

If the intent of the assignment statement is to provide a name for the expression
s.triggered || b to be reused in other contexts, for example, in concurrent
assertions, then a better solution is to use let which does not perform any
assignment, but only associates a name with an expression:

let a = s.triggered || b;

Then assertion a1 is internally expanded into

a1: assert property (@(posedge clk) s.triggered || b);

which yields the desired result.
Using the triggered method in procedural code in modules or interfaces is often

meaningless, as shown in the following example.

Example 11.31. In the code in Fig. 11.13, the value assigned to c in Line 7 is always
0 because the value of ab.triggered is evaluated in the Observed region, while the
nonblocking assignment is evaluated in the NBA region, before the ab.triggered

has been evaluated. Since the sequence match event is not in the sensitivity list of
the event control in Line 6, there will be no reevaluation of the always procedure in
the same clock tick. ut

triggered method may be safely used in procedural code in programs and
checkers because the procedures are executed after the Observed region. The value
of triggered has the correct value at that moment.

Do not use the triggered sequence method in procedural code in modules
and interfaces outside concurrent assertions. triggered method may be
safely used in procedural code in programs and checkers.

Using the triggered sequence method in let definition with subsequent
let instantiation in concurrent assertions is safe.

264 11 Advanced Sequences

11.2.2 The triggered Method in Checkers

In Sect. 11.2.1.2 we stated that using triggered sequence method on the right-
hand side of a nonblocking assignment in modules is meaningless because the
nonblocking assignment is performed in the NBA region, while the triggered

method is evaluated only later in the Observed region.
This is not true for checkers: the triggered sequence method may be safely

used in checker variable assignments, because checker variables are assigned in the
Re-NBA queue of the Reactive region, after the evaluation of triggered.

It is safe to use the triggered sequence method in checker variable
assignments.

Example 11.32. Disable checking assertions in a checker between the match points
of sequences stop_check and start_check.

Solution:

checker toggle_check(sequence stop_check, start_check,
event clk = $inferred_clock);
bit rst = 1;
default clocking @clk; endclocking
default disable iff rst;

always @clk begin
if (stop_check.triggered) rst <= 1’b1;
else if (start_check.triggered) rst <= 1’b0;

end

a1: assert property(...);
// More assertions here ...

endchecker : toggle_check

Discussion: We defined a checker variable rst which is 1 between the match point
of sequence stop_check until the match point of sequence start_check. For
example, if the stop sequence consists of two consecutive stop signals, and the
start sequence consists of two consecutive start signals, then the actual checker
arguments would be stop[*2] and start[*2]. ut

11.2.3 Matched

The method matched returns the status of sequence termination but in the strictly
subsequent clock tick. Therefore, in the case of single clock, s.matched is
equivalent to s1.triggered, where s1 is defined as follows:

11.3 Sequence as Events 265

sequence s1;
s ##1 1;

endsequence

Internally, matched stores the result of its source sequence match until the arrival
of the next destination clock tick after the match. There are no limitations imposed
on the last clocking event of sequence s.

There is not much sense in using matched in singly clocked assertions, but it is
helpful in multiply clocked assertions where triggered might not be directly used.
We explore this topic in depth in Chap. 12.

Unlike s.triggered, s.matched cannot be used outside sequences.

11.3 Sequence as Events

Sequences may be used as events, both edge sensitive and level sensitive.

11.3.1 Sequence Event Control

The syntax of the sequence event control is @sequence_instance; where
@sequence_instance is an instance of a named sequence. Arbitrary sequence
expressions cannot be specified with the event control. For example, @(@(posedge
clk)a ##1 b) is illegal, as @(posedge clk)a ##1 b is a sequence expression,
but not an instance.

Sequence event control is especially convenient in programs (see Sect. 2.5)
to specify starting points of testbench execution. For example, we may wish
to start some testbench activity when the initialization of the subsystem is com-
plete (ready is asserted), and when the system has entered the normal power
mode (pmode == normal when the last power mode switch pswitch occurred).
The resulting code is shown in Fig. 11.14.

When program test starts executing, it immediately blocks until sequence
operational matches. At that point, the program execution is resumed, task
run_test is called, followed by Test started message display.

Note the following:

• Since sequence operational is stand-alone, and not part of a property or of
an assertion, it cannot infer its clocking event from an enclosing property or
assertion. Therefore, the sequence clocking event @(posedge clk) must be
explicitly specified unless the sequence belongs to the scope of a clocking block,
or default clocking is specified.

• The sequence event occurs if any attempt of the sequence has a match.
This is why the sequence matching starts only from moments when
pswitch && pmode == normal is true, and not from the first clock tick.

266 11 Advanced Sequences

task run_test;
// ...

endtask : run_test

typedef enum bit [1:0] {NONE, NORMAL, SLOW, FAST} Mode;

program test(input logic clk, ready, pswitch, Mode pmode, ...);
// ...
sequence operational;
@(posedge clk) pswitch && pmode == NORMAL ##1 !pswitch[*]

##0 ready;
endsequence : operational

initial begin
@operational;
run_test;
$display("Test started");
// ...

end
endprogram : test

Fig. 11.14 Using sequence event control in programs

• The sequence may have many matches, but only the first one will have an effect in
this specific case: when the sequence matches for the first time, the task run_test

is executed, and control flow never returns to this point.

Sequence Event Controls in Modules and Interfaces. Sequence event control
usage is not limited to programs only, it can also be used in modules and interfaces.
Using sequence controls in modules may sometimes greatly simplify the design—
it is similar to the situation with assertions, between their SVA specification and
their manual implementation in procedural form. Unfortunately, industrial synthesis
tools do not support this construct; therefore, the value of using it in modules
and interfaces is only in nonsynthesizable (more abstract) models. However, using
sequence event controls may be convenient in checkers.

11.3.2 Level-Sensitive Sequence Control

The execution of procedural code may be delayed until some event happens, using
wait statement. The wait statement can also be used with the sequence method
triggered (but not matched!).

For example, the code in Fig. 11.14 can be rewritten using the wait statement as
shown in Fig. 11.15.

11.3 Sequence as Events 267

task run_test;
// ...

endtask : run_test

typedef enum bit [1:0] {NONE, NORMAL, SLOW, FAST} Mode;

program test(input logic clk, ready, pswitch, Mode pmode, ...);
// ...
sequence operational;
@(posedge clk) pswitch && pmode == NORMAL ##1 !pswitch[*]

##0 ready;
endsequence : operational

initial begin
wait(operational.triggered);
run_test;
$display("Test started");
// ...

end
endprogram : test

Fig. 11.15 Using level-sensitive sequence event control in programs

When control flow reaches the wait statement, process execution is suspended until
operational.triggered becomes true.

wait statement with sequence triggered is more verbose than sequence event
control, but it may be more convenient when awaiting a Boolean expression
containing a sequence triggered method to become true.

Example 11.33. Suspend the execution of the code until the command is complete
(sequence command_compete has a match) or until an interrupt intr is asserted.

Solution:

wait(command_complete.triggered || intr); ut

11.3.3 Event Semantics of Sequence Match

Like assertions, sequences are also evaluated in the Observed region in much the
same way. Sequence match points play a significant role in assertions as well as
in other descriptions. Two situations are of particular importance. One is when a
sequence match is used as a subexpression subsidiary to the assertion evaluation,
whose result is used as a Boolean value true or false in the enclosing expression.
The other situation is when it appears as an event control, likely used as a trigger for
a process or a delayed statement.

268 11 Advanced Sequences

Let us consider the first situation:

Example 11.34. A sequence match used as a subexpression

default clocking @(posedge clk);
endclocking
sequence req;
start_req ##1 end_req;

endsequence: req
sequence end_ack;
empty_slot[->1] ##1 no_conflict;

endsequence
sequence ack;
enable ##[1:10] end_ack.triggered;

endsequence
a2: assert property (req |-> busy until_with ack.triggered); ut

In this example, sequences req, end_ack and ack, and assertion a2 are all
triggered by the same clock. The match point of sequence ack is at work in
the consequent property of the assertion. Hence, there is an obvious contingency
of sequence ack to the property, creating an order for evaluating the sequence
prior to the assertion evaluation in the same time slot in which the clock occurs.
Furthermore, sequence ack is dependent upon the match point of end_ack. The
final order of evaluation is: end_ack, ack, a2.

Note that sequence req is simply substituted in a2 and becomes part of the
assertion property antecedent. The match point of req is not explicitly needed.

We should clarify here that the order of sequence evaluation is statically
determined at compile time. Also, any cyclic dependency between sequences is
semantically illegal, ensuring that a proper order of evaluation can always be found.
This order remains constant throughout the evaluation.

A sequence match is determined in the Observed region.

The value of method triggered on a sequence is set in the Observed region as
soon as it is evaluated. Thereupon, the method can be safely used in the Observed
region and in the Reactive region. At the end of the time slot, the value of triggered
is reset to false, and remains false until a match point of the sequence is detected in
some future Observed region. Clearly, its use in the Active region is not advised as
discussed earlier.

But, sequence match points do contribute to an important application in the
Active region. This brings us to the second situation: using a sequence match point
as event control in procedures.

Example 11.35. A sequence match used as a process trigger or a delay statement

module normal;
sequence begin_mode;

11.3 Sequence as Events 269

@(posedge clk) (pswitch && pmode == normal ##1 !pswitch[*]) ##0
ready;

endsequence : begin_mode
initial begin: I1
@begin_mode setup(mode);
$display("Mode started");

end
//...
endmodule ut

In this example, sequence begin_mode is used as event control in initial
procedure I1. The event control subjects its execution to obtaining a match point
of sequence begin_mode. Accordingly, the initial process gets suspended as it must
wait until the Observed region where the sequence is evaluated. If the match point is
attained there, the simulation control makes its way back to the Active region again
following the normal course via the Reactive region. Now in the Active region, the
initial procedure resumes to execute the $display statement.

Exercises

11.1. Two consecutive requests should be separated with four ack_wait, one
acknowledgement (ack), and two idle cycles (in this order).

11.2. What is the difference between the assertion from Example 11.6 and the
assertions below?

a1: assert property (start_ev |=> strong(next[->2:$] ##1 end_ev
));

a2: assert property (start_ev ##1 next[->2:$] |=> end_ev);

11.3. In this exercise, e is a Boolean expression, m and n are integer constants, p is
a property. Implement the following PSL operators as SVA property definitions:

(a) next_event e [n] p
This property holds in the current clock tick iff e does not hold at least n times,
starting at the current clock tick, or p holds at the nth occurrence of e.

(b) next_event! e [n] p
This property holds in the current clock tick iff e holds at least n times, starting
at the current clock tick, and p holds at the nth occurrence of e.

(c) next_event_a e [m:n] p
This property holds in the current clock tick iff p holds at the mth through
nth occurrences, inclusive, of e, starting at the current clock tick. If there are
less than n occurrences of e then p holds on all of them, starting from the mth
occurrence.

270 11 Advanced Sequences

(d) next_event_a! e [m:n] p
This property holds in the current clock tick iff e holds at least n times, starting
at the current clock tick, and p holds at the mth through nth occurrences,
inclusive, of e.

(e) next_event_e e [m:n] p
This property holds in the current clock tick iff p holds at some occurrence of
e among its mth through nth occurrences, inclusive, starting at the current clock
tick, or there are less than n occurrences of e.

(f) next_event_e! e [m:n] p
This property holds in the current clock tick iff p holds at some occurrence of
e among its mth through nth occurrences, inclusive, starting at the current clock
tick, or there are less than n occurrences of e.

11.4. Write the following assertions:

(a) For each request, an acknowledgment should be sent from 2 to 5 times
(b) For each request, an acknowledgment should be sent 2 or 5 times

11.5. Implement the following assertion: In the transaction delimited by the
start_t and end_t, there should be an even number of actions (act).

11.6. What is the meaning of the following assertions?

a1: assert property (a[=1]);
a2: assert property (strong(a[=1]));
a3: assert property (a[=1] |-> b);

Discuss their efficiency in simulation and in FV.

11.7. Implement the assertion from Example 11.14 without using operators from
the intersect family.

11.8. Implement the assertion from Example 11.15 to ignore read and write
requests happening simultaneously with the end of the transaction end_t.

11.9. During a memory transaction (delimited by start_t and end_t), the snoop
request (snoop_req), and the credit update message (credit_update) must be sent
in any order. The transaction must terminate in the clock tick when the later of these
two events happen.

11.10. Which of the following assertions is equivalent to the assertion from
Example 11.19?

a1: assert property(
write |=> read[=1] intersect write[->1]);

a2: assert property(
write |=> read[=1] ##1 1 intersect write[->1]);

a3: assert property(
write |=> read[=1:$] intersect write[->1]);

a4: assert property(
write |=> read[=1:$] ##1 1 intersect write[->1]);

a5: assert property(
write |=> ##[*] read ##1 1[*] intersect write[->1]);

11.3 Sequence as Events 271

a6: assert property(
write |=> ##[*] read ##1 1[+] intersect write[->1]);

a7: assert property(
write |=> ##[+] read ##1 1[*] intersect write[->1]);

a8: assert property(
write |=> ##[+] read ##1 1[+] intersect write[->1]);

11.11. Implement the following assertion: if a transaction contains at least two read
requests, there should be at least three clock tick delay between it and the following
transaction. Assume that the transactions cannot overlap.

11.12. Write the following assertions:

(a) After start is asserted, at least one of the following events should happen: two
consecutive read or two consecutive write. When the first such event happens
(e.g., if two consecutive write happen first then in the clock tick of the second
write), done must be asserted.

(b) When after start is asserted, one of the following events happens for the first
time: two consecutive read or two consecutive write, done must be asserted
(e.g., if two consecutive write happen first then in the clock tick of the second
write).

(c) After start is asserted either read or write request should arrive, and in the
clock tick when the first of them arrives, done must be asserted.

(d) In the clock tick when one of the read or write requests arrives for the first
time, done must be asserted.

11.13. Show that the following properties are not equivalent (Example 11.25):

(a) a |-> b ##1 first_match(c[*] ##1 d)##1 e and
a |-> b ##1 c[*] ##1 d ##1 e

(b) a ##1 first_match(b[*] ##1 c)|-> d and a ##1 b[*] ##1 c |-> d

11.14. Read transaction (delimited by start_read and end_read) may only be
issued if a write transaction (delimited by srart_write and end_write) finished
beforehand.

11.15. Implement the past temporal operator before for a Boolean argument (see
Sect 11.2.1.1).

11.16. Implement the past temporal operator backto for Boolean arguments (see
Sect 11.2.1.1).

11.17. Modify the sequence event control example in Sect. 11.3.1 to take the reset
rst into account in the sequence.

Chapter 12
Clocks

The only reason for time is so that everything doesn’t happen
at once.

— Albert Einstein

Concurrent assertions are fundamentally temporal in nature. The evaluation of a
concurrent assertion, and of its constituent subsequences and subproperties, evolves
over time in a discrete way. Clocks, or, more precisely, clocking events, are the
constructs that define the discretization of time. Clocking events form a rich
subset of general SystemVerilog events. These include familiar edge events, such
as posedge clk, declared events, as well as more general and complex event
expressions.

In SVA, clocking events are declarations with scopes, not operators. As such, they
do not have strengths. Rather, they determine the measurement of time and the times
of evaluation of operators and expressions within their scopes. Within the scope of a
clocking event, one unit, or cycle, of discrete time is measured from one occurrence
of the clocking event to the next. Occurrences of a clocking event are also called
ticks of the clock, or simply clock ticks. The intervals between successive clock
ticks can be regular or irregular in length, but in all cases they constitute one unit
of discrete time. This reckoning gives meaning to operators such as ##1, |=>, and
nexttime, whose semantics involves the notion of the “next point in time”. The
leading clocking event of a concurrent assertion, together with the context in which
the assertion is written, determine when evaluation attempts of the assertion begin.

This chapter discusses the mechanics of declaring clocks and the rules that
determine their scoping, including default clocking. Many concurrent assertions
of practical interest are singly clocked, meaning that all parts of the assertion are

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__12

273

274 12 Clocks

governed by a single clocking event. Other concurrent assertions have portions
that fall under the scopes of two or more clocking events and are called multiply
clocked.1

12.1 Overview of Clocks

This section gives an intuitive overview of clocks based on examples.
Clocks, or, more precisely, clocking events, define the discretization of time

within concurrent assertions. They are declarations with scopes, not operators.
A clocking event for a concurrent assertion must not occur more than once per time
step. If a clocking event occurs more than once in a time step, then the LRM defines
no behavior for the assertion and a tool may issue an error. It is the assertion writer’s
responsibility to ensure that the clocks for assertions are “glitch-free” in this sense.
Within the scope of a clocking event, one unit, or cycle, of discrete time is measured
from one occurrence of the clocking event (i.e., clock tick) to the next. Since the
clocking event must be glitch-free, one unit of discrete time is at least one time
step. Clocks also influence the sampling of values within a concurrent assertion. In
most cases the sampled value of a variable or net is the value from the Preponed
region of a time step (see Sect. 4.4.3 and Appendix A). If a reference to a variable
or net appears within the scope of a clocking event, then the time steps relevant for
sampling are those in which the clocking event occurs.

12.1.1 Specifying Clocks

This section describes various ways to specify clocks for concurrent assertions,
illustrated by singly clocked examples.

The concurrent assertion in Fig. 12.1 specifies an explicit clocking event control,2

@(posedge clk), in Line 3. The scope of the clocking event is the entire property
expression a |=> b, so a1 is an example of a singly clocked assertion. This implies
that the references to a and b in Line 4 are evaluated using sampled values in time
steps in which posedge clk occurs. The one cycle delay specified by |=> from its
antecedent to its consequent is from one occurrence of posedge clk to the next.
Finally, the leading clocking event of a1 is also posedge clk. Since a1 is a static
concurrent assertion (i.e., one that is not in a procedural context), a new evaluation
attempt of a1 begins at each occurrence of posedge clk.

1The SystemVerilog LRM avoids the phrase “multiply clocked”, using instead the grammatically
suspicious adjectives “multiclock” and “multiclocked”.
2We use the phrase “clocking event control” to emphasize the inclusion of the @ symbol in the
syntax.

12.1 Overview of Clocks 275

1 module simple_clock(input logic clk, a, b);
2 a1: assert property(
3 @(posedge clk)
4 a |=> b
5);
6 endmodule

Fig. 12.1 Module with explicitly clocked concurrent assertion

10 20 30 40 50 60 70 80 90 100

clk

a

b

Fig. 12.2 Waveform for module simple_clock

Figure 12.2 shows a possible waveform for the signals in this example. The
event posedge clk occurs at times 20, 30, 50, 75, and 95. The intervals from
time 20 to 30, from time 30 to 50, etc. each constitute one cycle of discretized
time, although their lengths vary in units of simulation time. This illustrates the fact
that the clock ticks do not have to be regular as measured against simulation time.
From among these clock ticks, the sampled value of a is 1’b1 only at times 20
and 75. Therefore, the evaluation attempts of a1 that begin at times 30, 50, and 95
succeed vacuously. The attempt that begins at time 20 checks the sampled value of b
at time 30 and finds it to be 1’b1, so this attempt succeeds. The attempt that begins
at time 75 checks the sampled value of b at time 95 and finds it to be 1’b0, so this
attempt fails. The fact that the sampled value of b is 1’b1 at the clock tick at time 50
is irrelevant for the evaluation of a1.

Clocking events form a rich subset of general SystemVerilog events and are
specified using a limited event control syntax:

clocking_event ::=
@ identifier

j @ (event_expression)

The event expression in the form @(event_expression) can be a familiar edge event,
such as posedge clk, the name of a declared event, or a more general, and possibly
complex, event expression. The identifier in the form “@ identifier” can be the name
of a declared event or the name of a clocking block, the latter specifying the clocking
event of the referenced clocking block.

Figure 12.3 illustrates some of the different forms of the clocking event control
syntax in a module with various explicit concurrent assertion clocking declarations.
Assertion a2 is clocked by an explicit edge event expression and is similar to a1

in the previous example. Assertion a3 is clocked by named event e. The always

276 12 Clocks

1 module various_clocks(input logic clk1, clk2, a, b, c);
2 event e;
3 always @(negedge clk1) ->e;
4 clocking PCLK2 @(posedge clk2); endclocking
5 a2: assert property(@(negedge clk1) a |=> b);
6 a3: assert property(@e a[*2] |=> c);
7 a4: assert property(@PCLK2 a |=> b);
8 endmodule

Fig. 12.3 Module with various explicit concurrent assertion clocking declarations

1 module various_clocks(input logic clk1, clk2, a, b, c);
2 default clocking NCLK1 @(negedge clk1); endclocking
3 clocking PCLK2 @(posedge clk2);
4 endclocking a2: assert property(a |=> b);
5 a3: assert property(a[*2] |=> c);
6 a4: assert property(@PCLK2 a |=> b);
7 endmodule

Fig. 12.4 Module with default clocking

procedure in Line 3 triggers e at every occurrence of negedge clk1, so a3 behaves
equivalently to the following variant:

a3_v2: assert property(@(negedge clk1) a[*2] |=> c);

The clocking event for a4 is PCLK2, the name of the clocking block in Line 4, and
so a4 is clocked by the event posedge clk2 of that clocking block.3

Often, many assertions within a module, interface, program, or checker share the
same clock. In this situation, it is convenient to specify a default clocking block
(see also Sect. 2.3.2). The module various_clocks from Fig. 12.3 is recoded in an
equivalent way in Fig. 12.4. Line 2 declares NCLK1 to be the default clocking for
the module, with event negedge clk1. As a result, explicit clocking events can be
omitted on assertions a2 and a3: the default is understood to apply to them. The
default can be overridden by an explicit clocking event, as in a4.

Default clocking applies to concurrent assertions, not to sequence and property
declarations. This convention allows a sequence or property to be declared without
clocks and to inherit the clock from the context in which it is instantiated.
Figure 12.5 shows another equivalent encoding of module various_clocks illus-
trating this style. This encoding also dispenses with the declaration of clocking
block PCLK2, putting the event expression posedge clk2 directly in a4.

Clocks may also be declared within named sequence or property declarations.
A clock in the declaration of a named sequence or property declaration applies to all

3According to the SystemVerilog LRM, Clause 14.13, the event associated with the clocking block
name, here PCLK2, occurs in the Observed region, while posedge clk2 occurs in the Active
region. In singly clocked assertions that use sampled values from the Preponed region, there is no
observable difference in behavior between the two forms.

12.1 Overview of Clocks 277

1 module various_clocks(input logic clk1, clk2, a, b, c);
2 default clocking NCLK1 @(negedge clk1); endclocking
3 property p1; a |=> b; endproperty
4 a2: assert property(p1);
5 a3: assert property(a[*2] |=> c);
6 a4: assert property(@(posedge clk2) p1);
7 endmodule

Fig. 12.5 Module with default clocking and unclocked property declaration

1 module various_clocks(input logic clk1, clk2, a, b, c);
2 default clocking NCLK1 @(negedge clk1); endclocking
3 property p1; @(posedge clk2) a |=> b; endproperty
4 a2: assert property(a |=> b);
5 a3: assert property(a[*2] |=> c);
6 a4: assert property(p1);
7 endmodule

Fig. 12.6 Module with default clocking and clocked property declaration

1 module various_clocks(input logic clk1, clk2, a, b, c);
2 default clocking NCLK1 @(negedge clk1); endclocking
3 property p1(event ev = $inferred_clock);
4 @ev a |=> b;
5 endproperty
6 a2: assert property(p1);
7 a3: assert property(a[*2] |=> c);
8 a4: assert property(p1(.ev(posedge clk2)));
9 endmodule

Fig. 12.7 Module with default clocking and clocked property declaration with event argument

instances of the named sequence or property, overriding any clock from the context
in which it is instantiated. Figure 12.6 illustrates this style with another equivalent
encoding of module various_clocks. The named property p1 can no longer be
instantiated in a2 because the clocking event posedge clk2 in the declaration of
p1 would override the default clocking in the instance.

Another approach for specifying clocks in declarations of named sequences
and properties is to pass the clocking events as arguments. This can be done
with untyped arguments or with arguments of type event. The system function
$inferred_clock can be used as a default actual argument. If no actual argument
is passed to the formal in an instance, then $inferred_clock as default actual
specifies that the clock from the instantiation context applies. Figure 12.7 illustrates
this usage with a final equivalent coding of module various_clocks. a2 instanti-
ates p1 without an actual, so $inferred_clock specifies that the default clocking
applies. a4 instantiates p1 and passes the event expression posedge clk2 to the
event argument ev.

278 12 Clocks

1 module multiply_clocked(input logic clk1, clk2, a, b, c);
2 a5: assert property(
3 @(posedge clk1) a |=> @(posedge clk2) b
4);
5 endmodule

Fig. 12.8 Module with multiply clocked assertion

10 20 30 40 50 60 70 80 90 100

clk1

a

clk2

b

Fig. 12.9 Waveform for assertion a5 in module multiply_clocked

12.1.2 Multiple Clocks

All examples of concurrent assertions in the preceding section were singly clocked.
Figure 12.8 gives an example of a multiply clocked assertion. The leading clocking
event for a5 is posedge clk1, and the reference to a is within the scope of this
clock. The reference to b is within the scope of posedge clk2.

The multiply clocked behavior of a5 merits further explanation. Since the
leading clock is posedge clk1 and since a5 is a static concurrent assertion, a new
evaluation attempt of a5 begins at each tick of posedge clk1. Let t0 be such a time.
If the sampled value of a at t0 is 1’b0 (or 1’bx or 1’bz), then the attempt succeeds
vacuously. Otherwise, the antecedent of |=> is matched at t0, and evaluation of the
consequent is obligated. Since the consequent is governed by a different clock, |=>
does not specify advancement to the next tick of posedge clk1 after t0. Rather,
|=> serves as a synchronizer between the two clocks. It specifies that evaluation of
the consequent begin at the nearest tick of posedge clk2 that is strictly after t0. In
that time step, the sampled value of b is checked, and if it is 1’b1, then the overall
attempt succeeds. Otherwise, the overall attempt fails.

Figure 12.9 shows a possible waveform for a5. An attempt of a5 begins at every
tick of posedge clk1. The sampled value of a is 1’b1 at times 20, 40, 60, and 80,
so in each of these time steps the antecedent of |=> matches. The attempt beginning
at time 20 looks for the nearest tick of posedge clk2 that is strictly later than
time 20. This clock tick is at time 35, where the sampled value of b is found to
be 1’b0, and so the attempt fails. Because the operator |=> has been used, it does
not matter that posedge clk2 occurs at time 20 since this occurrence is not strictly
later. The attempts beginning at times 40 and 60 both find the nearest strictly future

12.1 Overview of Clocks 279

tick of posedge clk2 at time 65, where the sampled value of b is 1’b1, and so these
attempts succeed. The attempt beginning at time 80 finds the nearest strictly future
tick of posedge clk2 at time 95, where the sampled value of b is again 1’b1, and
so it succeeds. As before, the fact that posedge clk2 occurs at time 80 is irrelevant
because the operator |=> has been used.

The overlapping suffix implication |-> can also be used as a synchronizer
between different clocks. Suppose that the following assertion is added to the
module in Fig. 12.8:

a6: assert property(
@(posedge clk1) a |-> @(posedge clk2) b

);

If a match of the antecedent of |-> ends at time t0, then the consequent will be
checked at the nearest time greater than or equal to t0 in which posedge clk2

occurs. Comparing with the waveform in Fig. 12.9, the attempt of a6 beginning at
time 20 succeeds because posedge clk2 occurs at time 20 and the sampled value
of b at that time is 1’b1. The attempts of a6 beginning at times 40 and 60 behave
the same as the corresponding attempts of a5. Finally, the attempt of a6 beginning
at time 80 fails because there is a tick of posedge clk2 at this time and the sampled
value of b is 1’b0.

The operators ##1 and ##0 can be used as synchronizers between different clocks
in sequences. The timing associated with ##1 as a synchronizer is the same as that
of |=>. Here is an example:

sequence s1;
@(posedge clk1) a[*2] ##1 @(posedge clk2) b;

endsequence

Referring again to Fig. 12.9, s1 matches over the intervals from times 20 to 65, 40
to 65, and 60 to 95. The following variant replaces ##1 with ##0:

sequence s2;
@(posedge clk1) a[*2] ##0 @(posedge clk2) b;

endsequence

The timing associated with ##0 as a synchronizer is the same as that of |->.
Therefore, the intervals in Fig. 12.9 over which s2 matches are from times 20 to 65
and 40 to 65. There is no match of s2 beginning at time 60 because the subsequence
a[*2] matches ending at time 80 and there is an tick of posedge clk2 at this time
with the sampled value of b equal to 1’b0.

##1 and ##0 are the only sequence operators that can be used as synchronizers
between different clocks. For all other sequence operators, the operands must be
singly clocked sequences clocked by the same clocking event. Here is an example
of an illegal sequence declaration:

sequence s3_illegal;
@(posedge clk) a[*2] within @(negedge clk) b[->1];

endsequence

This sequence is illegal because the operands of within are clocked by different
clocking events.

280 12 Clocks

1 property p2(event ev1, ev2, bit a, b);
2 @(ev1) a[*2] |=>
3 (
4 !a
5 and
6 @(ev2) b
7);
8 endproperty

Fig. 12.10 Logical operator joining differently clocked properties

In addition to |=> and |->, the property operators #=# and #-# can be used
as synchronizers between different clocks. The timing of #=# (resp., #-#) as a
synchronizer is the same as that of |=> (resp., |->). if-else and case can also
serve as synchronizers, with timing the same as that of |->. Here is an example:

a7: assert property(
@(ev1)
if (a)

@(ev2) b[*2]
else

@(ev3) c
);

In a7, the scope of ev1 is the condition a of the if-else. Assuming that a is of type
bit, the following variant behaves equivalently to a7 and explains how the timing
of if-else as a synchronizer is the same as that of |->:

1 a7_v2: assert property(
2 @(ev1)
3 (a |-> @(ev2) b[*2])
4 and
5 (!a |-> @(ev3) c)
6);

This encoding also illustrates some of the clock flow rules of clock scoping. The
scope of ev1 distributes to the two operands of and and flows into the parenthesized
subproperties in Lines 3 and 5. As a result, a in Line 3 and !a in Line 5 are both
under the scope of ev1.4

The LTL operators nexttime, always, s_eventually, until, and their variants
can also be used as synchronizers. When this is done, the time advance specified by
the LTL operator is determined by the incoming clock, not by the leading clock or
clocks of the operands. See Sect. 12.2.5.1 for more details.

The logical property operators and, or, iff, and implies can be used to join
differently clocked properties. Figure 12.10 gives an example. The scope of ev1

includes the antecedent a[*2] of |=> and the operand !a of and in Line 4 and joins

4If a were of type logic, to preserve the semantics of if-else in the presence of X/Z values
the negation of a in a7_v2 would have to be written as (!bit’(a)|-> @(ev3)c).

12.1 Overview of Clocks 281

one operand clocked by ev1 and one clocked by ev2. The antecedent of |=> matches
if the sampled value of a is 1’b1 at two successive ticks of ev1. Suppose that such a
match ends at t0. Line 4 of the consequent says that at the nearest tick of ev1 strictly
after t0, the sampled value of a must be 1’b0. Line 6 of the consequent says that at
the nearest tick of ev2 strictly after t0, the sampled value of b must be 1’b1.

A multiply clocked concurrent assertion is required to have a unique leading
clock. If the concurrent assertion is static (i.e., not within a procedural context),
then it has implicit “always” semantics and the leading clock determines when new
evaluation attempts of the assertion begin. If the concurrent assertion is procedural,
then the leading clock determines when evaluation begins of an attempt that
has matured from the procedural assertion queue (see Sect. 14.5). The following
example is illegal:

a8_illegal: assert property(
@(ev1) a or @(ev2) b

);

The assertion is illegal because it has two leading clocks, ev1 and ev2. There is a
simple way to get around this restriction as shown in the modified example:

a8_illegal: assert property(
@(ev1 or ev2) 1’b1 |-> @(ev1) a or @(ev2) b

);

The restriction and the workaround forces the author of the assertion to be aware
of the events that trigger the evaluation attempts. Note that the detection of
simultaneous clocking events is guaranteed in simulators even if the events occur
in different scheduling regions.

The remainder of this section discusses a few abstract, but practically motivated,
examples of multiply clocked properties.

Example 12.1. Write an assertion to check that the time from any occurrence of EV1
to the nearest strictly subsequent occurrence of EV2 is at least MINTIME simulation
time steps.

Solution: This encoding uses local variables (see Chap. 15) to capture timestamps
for comparisons. Because of the use of timestamps, it is not so well suited for formal
verification.

1 property p_mintime(event ev1, ev2, time mintime);
2 time basetime;
3 @(ev1) (1’b1, basetime = $time)
4 |=> @(ev2) $time >= basetime + mintime;
5 endproperty
6 a_EV1_EV2_MINTIME: assert property(
7 p_mintime(.ev1(EV1), .ev2(EV2), .mintime(MINTIME))
8);

The expectation is that MINTIME is a constant, perhaps a parameter, that has
been coordinated with the simulation timescale. Line 2 declares the local variable

282 12 Clocks

basetime. Line 3 specifies that when ev1 occurs, the value of $time is stored in
basetime. According to Line 4, at the nearest strictly subsequent occurrence of
ev2, the value of $time must be at least the sum of basetime and mintime. ut
Example 12.2. Write an assertion to check that after an occurrence of event
ev_start, event ev_wait cannot occur any earlier than the time step of the first
occurrence of event ev_enable.

Solution: This solution assumes that in any time step these events will occur before
the Observed region.

1 sequence s_ev(event ev);
2 @(ev) 1’b1
3 ##0 @(ev_enable or ev_wait) 1’b1;
4 endsequence
5 a_order: assert property(
6 @(ev_start) 1’b1
7 |=> @(ev_enable or ev_wait) (
8 s_ev(ev_wait).triggered
9 ->

10 s_ev(ev_enable).triggered
11)
12);

The basic idea of this solution is as follows. If ev_start occurs, then advance to
the nearest strictly subsequent occurrence of either ev_enable or ev_wait. In that
time step, if ev_wait has occurred, then ev_enable must also have occurred.

In Line 6, the antecedent of |=> matches at an occurrence of ev_start. The con-
sequent is clocked by the compound event expression “ev_enable or ev_wait”,
so it advances to the nearest strictly subsequent occurrence of either ev_enable or
ev_wait. Lines 8 through 10 use the Boolean implication -> to encode the check
that if ev_wait has occurred in the current time step, then ev_enable must also
have occurred in the current time step. The job of s_ev is to detect whether its event
formal argument ev occurs. The detection is accomplished by applying sequence
method triggered to instances of s_ev in Lines 8 and 10.

In Line 2, s_ev begins a match at an occurrence of its event formal argument
ev. Line 3 is counterintuitive. It addresses the following restriction on the use of
triggered: the ending clock of a sequence instance to which triggered is applied
must be identical to the clock governing the context in which the application of
triggered appears. In Lines 8 and 10, triggered is applied in a context clocked
by ev_enable or ev_wait, so Line 3 ensures that s_ev ends on this clock. Line 3
does not actually cause any time advance for matches of the instances of s_ev in
Lines 8 and 10. The reason is that the actual event arguments in these instances are
ev_wait and ev_enable. If one of these events occurs in a time step, then a fortiori
the compound event “ev_enable or ev_wait” occurs in that time step. ut

12.2 Further Details of Clocks 283

12.2 Further Details of Clocks

This section delves into further details of specifying clocks, their scoping, and the
use of multiple clocks.

12.2.1 Preponed Value Sampling

In general, references to variables and nets that appear in a concurrent assertion use
sampled values, i.e., in most cases the values from the Preponed region of the time
step (see Appendix A). The following are exceptions for this rule:

• Disable condition of disable iff.
• Clocking event expressions.
• Actual arguments passed to ref or const ref arguments5 of subroutines

attached to sequences.
• Assertion action blocks.

References in the other contexts above always use current values unless they appear
within the system function $sampled. Since subroutines attached to sequences and
action blocks execute in the Reactive region, this means that references in the last
two contexts use Reactive region values.

If Preponed value sampling applies to a reference to a variable or net and the
reference appears within the scope of a clocking event, then the time steps in which
the reference is evaluated are those in which the clocking event occurs. References
in the abort condition of an asynchronous abort (accept_on or reject_on) use
sampled values, but the abort condition is not governed by a clock.6

As a simple example, consider the following:
1 a_strange_clk: assert property(
2 @(posedge clk)
3 clk
4) else $error("FAIL: clk=%b", clk);

For simplicity, assume that clk is of type bit and that it changes value at most once
in any time step. The reference to clk within the clocking event in Line 2 uses the
current value, while the reference in Line 3 uses the sampled value. In a time step
in which posedge clk occurs, the sampled value will always be 1’b0. Therefore,
at each such clock tick, a_strange_clk will fail and the action block in Line 4
will execute. The reference to clk after the control string in the display statement

5ref and const ref both specify that the actual argument is passed by reference. External
changes to the actual argument are visible to the subroutine. A ref argument can also be modified
by the subroutine, while a const ref argument cannot.
6Technically, one could say that disable conditions and asynchronous abort conditions are not
within the scope of any clock.

284 12 Clocks

uses the current, Reactive region value. Since there was a tick of posedge clk in
the current time step, prior to the Observed region, the value of clk in the Reactive
region is 1’b1. Therefore, there is a mismatch between the value in Line 3 that
causes the assertion failure and the value written by the display statement. Changing
the action block error call to

$error("FAIL: clk=%b", $sampled(clk));

fixes the mismatch. The assertion remains counterintuitive, though, because of the
relationship between Lines 2 and 3. Care must always be taken when interpreting
assertions that reference the same variable in contexts where sampling is and is not
used.

There are the following kinds of references within concurrent assertions that use
current values as the sampled values:

• Local variables.
• const cast expressions or automatic variables in a concurrent assertion within

procedural code.
• Free checker variables.

References within a const cast expression or to an automatic variable in a
concurrent assertion within procedural code resolve to the values that existed when
the assertion was placed in the procedural assertion queue. See Sect. 14.2 for more
details. References to free checker variables use current values, which may reflect
the result of randomization in the current time step. See 23.1 for more details.

Preponed value sampling in a concurrent assertion is not allowed to conflict with
other sampling defined within a clocking block. In particular, if a clocking block
input variable is referenced in a concurrent assertion, then the variable must be
sampled with #1step7 in the clocking block and the clock governing the reference
in the assertion (if there is one) must be the same as that of the clocking block.

12.2.2 Default Clocking

A clocking block may be declared as the default within a given module, interface,
program, or checker. There are two syntactic forms for specifying default clocking.
One prepends the keyword default to the clocking block declaration, as in the
following example:

default clocking PCLK @(posedge clk); endclocking

The other uses a separate top-level declaration to specify the default clocking, as in
the following example:

clocking PCLK @(posedge clk); endclocking
...
default clocking PCLK;

7#1step specifies Preponed value sampling.

12.2 Further Details of Clocks 285

1 module various_clocks(input logic clk1, clk2, a, b, c);
2 default clocking NCLK1 @(negedge clk1); endclocking
3 clocking PCLK2 @(posedge clk2); endclocking
4 a2: assert property(a |=> b);
5 a3: assert property(a[*2] |=> c);
6 module nested_1;
7 default clocking PCLK2;
8 a4: assert property(a |=> b);
9 endmodule

10 module nested_2;
11 a9: assert property(a |=> @PCLK2 c);
12 endmodule
13 endmodule

Fig. 12.11 Module and nested modules with default clocking declarations

The scope of a default clocking declaration is the entire module, interface, program,
or checker in which it appears, including nested declarations of modules, interfaces,
or checkers. A nested module, interface, or checker may, however, have its own
default clocking declaration, which overrides a default from outside. The scope of a
default clocking declaration does not descend into instances of modules, interfaces,
or checkers.

The clocking event of a default clocking block will be called the default clocking
event, or simply the default clock. Throughout the scope of a default clocking
declaration, the default clock applies to all cycle delay operations whose clocking is
not otherwise specified. In particular, the default clock serves as the leading clock of
all concurrent assertions whose leading clock is not explicitly specified or otherwise
inferred (see Sect. 14.2 for rules of inference of clocks for procedural concurrent
assertions).

If the default clock is the leading clock for a concurrent assertion, then the rules
of clock flow (see Sect. 12.2.4.1) determine what subsequent parts of the concurrent
assertion are also clocked by the default clock. If the concurrent assertion has no
explicit or otherwise inferred clocking event, then it is singly clocked by the default
clock.

Figure 12.11 shows a variant of module various_clocks that illustrates these
ideas. a2 and a3 are singly clocked by the default clock NCLK1. Module nested_1

has its own default clock, so a4 is singly clocked by PCLK2. Module nested_2

inherits the default clock NCLK1 from its parent. a9 is multiply clocked. Its leading
clock is the default clock NCLK1, but its consequent is clocked by PCLK2.

A default clock does not apply to declarations of sequences or properties. Clock
scoping rules apply to instances of such declarations in the context of instantiation.

286 12 Clocks

12.2.3 Restrictions in Multiply Clocked Sequences

The only synchronizers allowed in sequences are ##0 and ##1. Therefore, the
general form of a multiply clocked sequence s is

s D r0 ##n1 r1 ##n2 � � � ##nk rk

where k � 1, each ri , 0 � i � k, is a singly clocked sequence, and each ni ,
1 � i � k, is either 0 or 1. We may assume that in this form ri and riC1 are
differently clocked for each 0 � i < k, since otherwise they could be combined
into a larger singly clocked subsequence. Then the sequences ri are the maximal
singly clocked subsequences of s.

SVA requires that the maximal singly clocked subsequences of a multiply
clocked sequence not admit empty match. This guarantees that each ri has unam-
biguous starting and ending clock ticks for any match, thereby ensuring that there
is a well-defined leading clock and that the clock changes for each synchronizer are
well defined.

For example, the following multiply clocked sequence is illegal:

@(ev1) a[*] ##1 @(ev2) b

The maximal singly clocked subsequences are @(ev1)a[*] and @(ev2)b, and the
former admits empty match. In this situation, we cannot be sure whether the leading
clock is ev1 or ev2, and this ambiguity is disallowed. Changing the sequence to

@(ev1) a[+] ##1 @(ev2) b

makes it legal. The first maximal singly clocked subsequence is now @(ev1)a[+],
which does not admit empty match. Now we can be sure that the leading clock of
the sequence is ev1 and that ##1 synchronizes between a tick of ev1 and a tick
of ev2.

12.2.4 Scoping of Clocks

In SVA, clocking event controls are declarations with scopes, not operators. As such,
clocks have no strengths. The scoping rules for clocks have been designed to allow
the scopes of clocks to extend intuitively through the structure of the assertions,
sequences, and properties and to reduce the need for parenthesizing and repetition
of clocking event controls.

There are actually two sets of rules that work together to determine how each
part of a concurrent assertion is clocked. The first set of rules, called clock flow
rules, defines how scopes of clocks descend from the outside in, beginning with
the default clock or inferred clock, if it exists. A basic idea in clock flow is that
the scope of a clocking event cannot flow across another clocking event control. In
other words, the inner clock blocks and takes precedence over a clock flowing in

12.2 Further Details of Clocks 287

from above or outside. The second set of rules defines the set of semantic leading
clocks for a sequence or property expression. These rules work from the inside out
and capture the notions that inner clocks take precedence over outer clocks and that
some expressions require an incoming clock.

In the presence of instances of named sequences and properties, both sets of
rules are understood to apply to the assertions, sequence expressions, and property
expressions that result from expanding the instances.8

12.2.4.1 Clock Flow

The clock flow rules define how scopes of clocks descend from the outside in.
They are intended to be intuitive and to reduce the need for parenthesizing and
repetition of clocking event controls. Reliance on the rules can always be reduced by
adding explicit clocking event controls, although doing so in sequence or property
declarations may reduce their reusability. Here are the clock flow rules:

CF1 A default clock flows to every concurrent assertion in its scope.
CF2 An inferred clock for a procedural context (see Sect. 14.2) overrides a default

clock and flows to every concurrent assertion in its scope.
CF3 Clock c flows out of @(c).
CF4 A clock c that flows to a clocking event control @(d) does not flow across

the clocking event control. Instead, the scope of c is halted by @(d), and the
scope of d begins after @(d).9

CF5 A clock that flows to an instance of a named property flows into the body of
the corresponding declaration. A clock that flows to an instance of a named
sequence flows into the body of the corresponding declaration, whether or
not a sequence method is applied to the instance. Furthermore, if the instance
is of a sequence, then the clock also flows across the instance, regardless of
whether a sequence method is applied. A clock in the body of a declaration
does not flow out of an instance.

CF6 A clock that flows to a parenthesized subexpression (either a subsequence or a
subproperty) flows into the subexpression. If the subexpression is a sequence,
then the clock also flows across the parenthesized subexpression. A clock
inside the subexpression does not flow out of the enclosing parentheses.
This rule applies to parentheses enclosing a sequence to which one or more
sequence match items are attached. Analogous rules apply to operators with
explicit parentheses: strong(), weak(), first_match().

CF7 A clock that flows to a maximal Boolean expression b governs b and flows
across b. Analogous rules apply to Boolean repetitions b[->n], b[=n], etc.

8See the Rewriting Algorithms in Annex F.4 of [8].
9Rule CF2 can be thought of as a special case of CF4 if the inferred clock is understood to specify
a clocking event control at the beginning of each of the concurrent assertions in its scope.

288 12 Clocks

CF8 A clock that flows to one of the operators ##n, [*n], |->, |=>, #-#, and
#=# flows across the operator. If the operator is not a synchronizer, then the
clock also governs time advances associated with the operator. Analogous
rules apply to ranged variants of [*n].

CF9 A clock that flows to the left operand of one of the infix operators or,
and, intersect, within, throughout, iff, implies, and until flows to
the operator and distributes to (i.e., flows into) both operands. The clock
also governs time advance for until. Analogous rules apply to the various
variants of these operators.

CF10 A clock that flows to one of the prefix operators not, nexttime, always, and
eventually flows to the operand of the operator. The clock also governs time
advance in nexttime, always, and eventually. Analogous rules apply to
all the variants of these operators.

CF11 A clock that flows to an if-else governs the test condition of the if-else.
The clock also flows into each of the underlying properties of the if-else.
Analogous rules apply to case.

CF12 A clock that flows to a disable iff, accept_on, or reject_on flows into
the underlying property. The clock does not govern the reset condition.

CF13 A clock that flows to a sync_accept_on or sync_reject_on governs the
abort condition and flows into the underlying property.

The following examples illustrate the clock flow rules.

Example 12.3. Analyze the clock flow in the following property:

@(ev1) a |=> b ##1 @(ev2) c

Solution: By CF3, ev1 flows to a. By CF7, ev1 governs a and flows to |=>. By CF8,
ev1 flows across |=> to b. By CF7, ev1 governs b and flows to ##1. By CF8, ev1
flows across ##1 to @(ev2). By CF4, the scope of ev1 does not flow across @(ev2).
Therefore, ##1 is a synchronizer between ev1 and ev2. By CF3, ev2 flows to c.
By CF7, ev2 governs c. In summary, the property is equivalent to the following, in
which each of the Booleans is explicitly clocked:

@(ev1) a |=> @(ev1) b ##1 @(ev2) c

ut
Example 12.4. Analyze the clock flow in the following property:

@(ev1) a ##1 (b ##1 @(ev2) c) |=> d

Solution: By CF3, CF7, and CF8, ev1 flows to and governs a and flows across
##1 to the parenthesized subsequence (b ##1 @(ev2)c). By CF6, ev1 flows into
and across the parenthesized subsequence. Therefore, ev1 flows to and across
|=> (CF8), and so it flows to and governs d (CF7). Within the parenthesized
subsequence, ev1 flows to, governs, and flows across b (CF7), flows across ##1

(CF8), and ends at @(ev2) (CF4). Therefore, the ##1 within the parenthesized

12.2 Further Details of Clocks 289

subsequence synchronizes between ev1 and ev2. By CF3, ev2 flows to and governs
c, but ev2 does not flow out of the enclosing parentheses by CF6. As a result, |=>
is a synchronizer between ev2 and ev1. In summary, the property is equivalent to
the following, in which each of the Booleans is explicitly clocked:

@(ev1) a ##1 @(ev1) b ##1 @(ev2) c |=> @(ev1) d

ut
Example 12.5. Analyze the clock flow in the following module:

1 module m1 (logic a, b, c, d, event ev1, ev2);
2 default clocking EV1 @(ev1); endclocking
3 sequence s4; b ##1 @(ev2) c; endsequence
4 a10: assert property(a ##1 s4 |=> d);
5 endmodule

Solution: By CF1, ev1 flows to a10, hence flows to and governs a (CF7) and flows
across ##1 to the instance of s4 (CF8). By CF5, ev1 flows into the body of s4 for
this instance and also across the instance (CF5). Within the body of s4, ev1 flows
to and governs b (CF7), flows across ##1 (CF8), and stops at @(ev2) (CF4). ev2
governs c (CF3, CF7), but ev2 does not flow out of the instance of s4 (CF5). ev1
flows across |=> (CF8), and so it flows to and governs d (CF7). In summary, a10
behaves the same as the property in the preceding example. ut

After application of the clock flow rules, each Boolean expression that stands as a
subsequence within a concurrent assertion must be governed by a clock. Otherwise,
the assertion is not legal. The following example illustrates an illegal assertion:

1 module m2 (logic a, b, event ev1);
2 a11_illegal: assert property(
3 (@(ev1) a) implies b
4);
5 endmodule

By CF3 and CF7, ev1 governs a, but by CF6 ev1 does not flow out of the enclosing
parentheses. There is no default clock, so no clock governs b.

12.2.4.2 Semantic Leading Clocks

The rules of semantic leading clocks define how the leading clock or clocks of a
sequence or property are determined from the inside out. One of the basic ideas of
clock flow is that an outer clock is replaced by, rather than flowing through, an inner
clock. This means that @(c)@(d) p behaves semantically the same as @(d) p.
Syntactically, the leading clock of @(c)@(d) p appears to be c, but semantically
it is d .

Another principle of concurrent assertions is that every subsequence, in particular
every Boolean that stands as a subsequence, must be clocked. When examining
semantic leading clocks from the inside out, though, there may be no clock at hand.

290 12 Clocks

For example, in the presence of default clocking, the following concurrent assertion
is legal:

c1: cover property (a ##1 b);

When examining the underlying sequence a ##1 b, there is no clock at hand in
the expression. Therefore, the definition of semantic leading clocks uses a device
to indicate that a clock needs to be provided from outside, namely the inherited
semantic leading clock.

The rules of semantic leading clocks propagate these ideas through the various
sequence and property forms. They appear below and define the set LC of semantic
leading clocks for a sequence or property. In the rules, b denotes a Boolean; n

denotes a natural number; r , r1, r2 denote sequences; item denotes a sequence match
item; p, p1, p2 denote properties; x denotes either a sequence or a property; and c

denotes a clocking event.

LC1 If inherited 2 LC.x/, then LC.@(c) x/ D fcg [.LC.x/ � finheritedg/.
Otherwise, LC.@(c) x/ D LC.x/.

LC2 LC.(x)/ D LC.x/.
LC3 : LC.b/ D LC.b[->n]/ D LC.b[=n]/ D finheritedg. Analogous rules

apply to variants of these operators.
LC4 LC.b throughout r/ D finheritedg [LC.r/.
LC5 LC.r1 and r2/ D LC.r1/[LC.r2/. The same rule applies if and is replaced

by any of or, intersect, and within.
LC6 LC.r1 ##n r2/ D LC.r1/. Analogous rules apply to variants of ##n.
LC7 LC.r[*n]/ D LC.r/. Analogous rules apply to variants of [*n].
LC8 LC.(r, item))D LC.r/.
LC9 LC.first_match(r))D LC.r/. The same rule applies if first_match()

is replaced by strong() or weak().
LC10 LC.not p/ D LC.p/.
LC11 : LC.p1 and p2/ D LC.p1/ [LC.p2/. The same rule applies if and is

replaced by any of or, iff, and implies.
LC12 LC.r |-> p/ D LC.r/. The same rule applies if |-> is replaced by any of

|=>, #-#, and #=#.
LC13 LC.nexttime p/ D finheritedg. The same rule applies if nexttime

is replaced by always or s_eventually or by variants of any of these
operators.

LC14 LC.p1 until p2/ D finheritedg. Analogous rules apply to the variants of
until.

LC15 If p is an if-else or case property, then LC.p/ D finheritedg.
LC16 LC.accept_on(b) p/ D LC.p/. The same rule applies if accept_on is

replaced by reject_on or disable iff.
LC17 LC.sync_accept_on(b) p/ D finheritedg. The same rule applies when

sync_accept_on is replaced by sync_reject_on.

12.2 Further Details of Clocks 291

Rule LC1 captures the fact that an outer clock applied to x is semantically
significant if, and only if, something within x requires an incoming clock, as
evidenced by the presence of inherited in LC.x/. Rule LC3 says that Booleans
require incoming clocks.

Rules LC1 through LC9 account for semantic leading clocks in sequences. They
do not enforce the various restrictions on the clocking of sequences, such as those
from Sect. 12.2.3. Rather, they allow for partial clocking of sequences that still
requires an incoming clock, as in

(a[*2] and @(ev1) b[->1]) ##1 c

LC of this sequence is finherited; ev1g, where inherited records the fact that a[*2]
requires an incoming clock. Since and is not a synchronizer for sequences, the
incoming clock must be identical to ev1 for the concurrent assertion in which this
sequence appears to be legal.

Rules LC1, LC2, and LC9 through LC17 account for semantic leading clocks in
properties. LC13 and LC14 capture the fact that the incoming clock governs time
advancement in the temporal operators of the nexttime, always, s_eventually,
and until families. LC15 indicates that the condition of an if-else or case is
governed by the incoming clock, while LC16 indicates that the reset condition of an
asynchronous abort is independent of the incoming clock.

Rule LC17 reflects the definition in the LRM for synchronous aborts, namely,
that the incoming clock governs the abort condition and serves as leading semantic
clock. However, the LRM leaves ambiguous whether and how synchronous abort
operators may be used as synchronizers.10 Therefore, it is advised to use syn-
chronous aborts only when there is at most one explicit (i.e., non-inherited) semantic
leading clock of the underlying property and this clock is identical to the incoming
clock.

The top-level property of a concurrent assertion is always required to have a
single semantic leading clock after the resolution of clock scoping. If p is such
a top-level property, then this means that LC.p/ must have one of the following
forms:

• fcg. In this case, c is the unique, explicit semantic leading clock of p, and no
incoming clock is required or has any effect.

• finheritedg. In this case, p has no explicit semantic leading clock and requires an
incoming clock, either from default clocking or from a procedural context.

• finherited; cg. In this case, c is an explicit semantic leading clock of p, but p also
requires an incoming clock, which must be identical to c.11

10In fact, various rewrite rules in Annex F.5 of the LRM lead to the conclusion that, while the abort
condition of a synchronous abort is governed by the incoming clock, the set of semantic leading
clocks is determined from the underlying property, in contradiction to LC17.
11The LRM does not define precisely the criterion “identical”, but through examples it indicates
that syntactically identical events are “identical”, while syntactically distinct, but semantically
equivalent, events are not “identical”.

292 12 Clocks

Example 12.6. Compute the set of semantic leading clocks in the following asser-
tion and determine any requirements on the context in which the assertion appears:

a12: assert property(
a or @(ev1) b and nexttime @(ev2) c

);

Solution:

LC.b and nexttime @(ev2) c/

= LC.b/ [LC.nexttime @(ev2) c/ (LC11)
= finheritedg (LC3, LC13)

Therefore by LC1,

LC.@(ev1) b and nexttime @(ev2) c/ D fev1g

By LC3, LC.a/ D finheritedg, and so by LC11, the set of semantic leading clocks
for the entire assertion is fev1; inheritedg. This means that the assertion must be in a
context that guarantees an incoming clock, either by default clocking or by inference
from a procedural context, and the incoming clock must be identical to ev1. ut

12.2.5 Finer Points of Multiple Clocks

This section covers a few finer points regarding the use of multiple clocks in
sequences and properties.

12.2.5.1 Clocking LTL Operators

When LTL operators nexttime, always, s_eventually, until, and their variants
are used as synchronizers, it is important to remember that the time advance
specified by the LTL operator is determined by the incoming clock, not by the
leading clock or clocks of the operands. Consider the following:

module m3 (logic a, b, clk1, clk2);
a13: assert property(

@(posedge clk1) a |-> nexttime @(posedge clk2) b
);
a14: assert property(

@(posedge clk1) a |-> ##1 @(posedge clk2) b
);

endmodule

Assertions a13 and a14 look similar, but they behave differently. In both, the
antecedent of |-> matches whenever the sampled value of a is 1’b1 at an occurrence
of posedge clk1. Suppose that this occurs at time t0. In a13, posedge clk1

12.2 Further Details of Clocks 293

10 20 30 40 50 60 70 80 90 100

clk1

a

clk2

b

Fig. 12.12 Waveform for assertions a13 and a14 of module m3

flows to nexttime, and so the nexttime causes advance to the next occurrence
of posedge clk1 strictly after t0 before looking for a concurrent or subsequent
occurrence of posedge clk2 at which to evaluate b. In a14, ##1 is a synchronizer
between the occurrence of posedge clk1 at t0 and the earliest strictly subsequent
occurrence of posedge clk2, where it evaluates b.

This difference is illustrated in the waveform of Fig. 12.12. The solid arrows
represent evaluations of a13, while the dashed arrows represent evaluations of a14.
The evaluation attempt of a13 beginning at time 20 matches the antecedent of
|-> at time 20 and then advances to time 40 because of the nexttime clocked
by posedge clk1. At time 40, the attempt begins looking for the next concurrent
or future occurrence of posedge clk2, which is at time 65. At time 65, the sampled
value of b is checked and found to be 1’b1, so the overall evaluation passes. The
evaluation of a14 beginning at time 20 behaves differently. After matching the
antecedent of |-> at time 20, the synchronizer ##1 causes this evaluation to begin
looking for the next strictly future occurrence of posedge clk2, which is at time 35.
At time 35, the evaluation checks b and fails. The evaluation of a13 beginning at
time 60 advances to time 80 due to the nexttime. Since posedge clk2 also occurs
at time 80, b is checked at this time, and the evaluation fails. Again, the evaluation of
a14 beginning at time 60 behaves differently. This evaluation finds the next strictly
future occurrence of posedge clk2 at time 65, checks b there, and passes.

The structure of a13 ensures that evaluation of nexttime always begins in a
time step in which posedge clk1 occurs and therefore is already aligned to the
governing (i.e., incoming) clock for nexttime. It is possible to use nexttime as
a synchronizer in a way that need not start in a time step aligned to its governing
clock. In such a case, nexttime specifies both of the following temporal actions:12

12It may seem strange that nexttime specifies both alignment and advancement to the next
tick. This behavior is aligned with PSL and is needed in order for the behavior of nexttime
as a synchronizer to converge to the singly clocked behavior of nexttime under certain clock
convergence scenarios. See Sect. 12.2.5.3 and Exercise 12.5.

294 12 Clocks

10 20 30 40 50 60 70 80 90 100

clk1

a

clk2

b

Fig. 12.13 Waveform for assertion a13_v2 of module m3_v2

• First proceed to the nearest current or future tick of the governing clock (i.e., first
align with the governing clock).

• From that point, advance to the next tick of the governing clock.

Here is an example illustrating such use of nexttime:

module m3_v2 (logic a, b, clk1, clk2);
a13_v2: assert property(

@(posedge clk1) a |-> @(posedge clk2) nexttime b
);

endmodule

Figure 12.13 shows a waveform with solid arrows representing the temporal actions
of nexttime in the evaluation of a13_v2. Note that all signals are the same as
in Fig. 12.12 except for clk2, which no longer has a posedge at time 65. For
the evaluation attempt beginning at time 20, alignment with posedge clk2 does
not advance time. Advancing to the next tick carries the attempt to time 35,
where it fails. For the evaluation attempt beginning at time 60, alignment with
posedge clk2 carries the attempt to time 80. For the attempt beginning at time 80,
alignment with posedge clk2 does not advance time. For both of these attempts,
advancement to the next tick carries the attempt to time 95, where the result is pass.
Because posedge clk1 and posedge clk2 both occur at times 20 and 80, these
evaluation attempts behave the same as a14.

The operator nexttime[0] specifies only alignment with its governing (i.e.,
incoming) clock. For any property p, nexttime[0] p is equivalent to 1’b1 |-> p.
This operator can be used, e.g., if p may have a leading clock different from the
incoming clock and it is desired to ensure that alignment with the incoming clock
occurs first. Examples of such usage are given in Sect. 17.1.

Similar considerations apply when other LTL operators are used as synchroni-
zers: time advance specified by the LTL operator is always with respect to the clock
governing (i.e., incoming to) the LTL operator, and evaluation of the LTL operator
first specifies alignment to that clock in case its evaluation is not guaranteed to begin
at such a point. See Exercise 12.4.

12.2 Further Details of Clocks 295

12.2.5.2 Unclocked Synchronizers and Logical Operators

The synchronizers if-else, case, and the LTL operators must always be within
the scope of a clock because the incoming clock determines when the condition of
the if-else or case is evaluated and when the time advance of an LTL operator
occurs.

The other synchronizers are ##1 and ##0 for sequences and |=>, |->, #=#, #-#
for properties. These operators can synchronize between clocks specified by their
operands and are not themselves actually required to be within the scope of a clock.
In a similar way, the logical operators and, or, iff, and implies can join differently
clocked operands and do not themselves require a clock.

The situation of an unclocked synchronizer or logical operator occurs when the
synchronizer or operator is the top-level operator of a concurrent assertion in a
context where there is no incoming clock. Of course, the concurrent assertion must
still have a single semantic leading clock.

The following example illustrates an unclocked synchronizer and an unclocked
logical operator in static concurrent assertions within a module with no default
clocking:

module m4 (logic a, b, c, event ev1, ev2);
a15: assert property((@(ev1) a) |=> (@(ev2) b));
a16: assert property((@(ev1) b) or (@(ev1) c));

endmodule

Both a15 and a16 have ev1 as semantic leading clock. In a15, the synchronizer |=>
is not within the scope of any clock, and in a16 the logical operator or is not within
the scope of any clock.

The following example is illegal because an operator that is not a synchronizer
remains unclocked:

module m5 (logic a, b, event ev1, ev2);
a17_illegal: assert property(

(@(ev1) a) |-> ##2 (@(ev2) b)
);

endmodule

The operator ##2 is not a synchronizer and requires a clock to determine how time
is advanced, but in this module it is not within the scope of a clock.

12.2.5.3 Continuity Under Clock Convergence

The semantics of multiple clocks has been designed so that it has a quality of
continuity with respect to convergence of clocks. In other words, as the different
clocks coordinated by synchronizers or logical operators become semantically
equivalent, the behavior of the multiply clocked sequence or property converges
to the behavior of the singly clocked sequence or property obtained by aligning all
the clocks to a single clock. As an example of this idea, consider the following:

296 12 Clocks

module m6 (logic a, b, event ev1, ev2);
a15: assert property((@(ev1) a) |=> (@(ev2) b));
a18: assert property(@(ev1) a |=> b);

endmodule
module m7;

logic A,B;
event EV;
...
m6 m6_inst(.a(A), .b(B), .ev1(EV), .ev2(EV));

endmodule

The instance of m6 within m7 connects the same event EV to both of the ports ev1
and ev2. Therefore, ev1 and ev2 are equivalent in this instance, and so a15 and a18

behave identically.

12.2.5.4 Sequence Methods

SystemVerilog provides two methods for detecting the endpoint of match of an
instance of a named sequence: triggered and matched. triggered is discussed
in detail in Sect. 11.2. Both of these methods may be used in multiply clocked
sequences and properties, but their behaviors are very different.

Whenever triggered is used in a Boolean expression of a sequence, the clock
governing that Boolean expression must be the same as the ending clock of the
sequence instance to which triggered is applied. This restriction was illustrated in
Example 12.2 from Sect. 12.1.2.

matched can, and should, be used when the ending clock of the instance to
which it is applied is different than the clock governing the Boolean expression
in which matched appears. matched serves as a synchronizer between these two
clocks. Upon completion of a match of the underlying instance, this fact is stored
until the earliest strictly subsequent time step in which there is a tick of the clock
governing the context in which matched appears. In that time step, the value of the
application of matched to the instance is true.

As an example, suppose that we need to check that if dvalid is true at an
occurrence of posedge dclk, then the sequence req ##1 ack must have already
completed a match clocked at posedge rclk, but the match must not have
completed before the nearest strictly prior occurrence of posedge dclk, if such
an occurrence exists. It does not matter when the match starts. This can be encoded
using matched as shown in Fig. 12.14. Line 7 illustrates the syntax for applying
method matched to an instance of a sequence.

Figure 12.15 shows a waveform for a_matched. There are two matches of the
instance s_req_ack(posedge rclk). The first is from times 20 to 40 and causes
Line 7 to be true at time 55. The second is from times 60 to 80 and causes Line 7 to
be true at time 105. As a result, the evaluation of a_matched that starts at time 55
succeeds. However, the evaluation of a_matched that starts at time 80 fails. The
match of s_req_ack(posedge rclk) completing at time 80 is too late because it is
not strictly before time 80. The other evaluations of a_matched succeed vacuously.

12.2 Further Details of Clocks 297

1 sequence s_req_ack(event ev);
2 @(ev) req ##1 ack;
3 endsequence
4 a_matched: assert property(
5 @(posedge dclk)
6 dvalid |->
7 s_req_ack(posedge rclk).matched
8);

Fig. 12.14 Assertion using matched

10 20 30 40 50 60 70 80 90 100

rclk

req

ack

dclk

dvalid

Fig. 12.15 Waveform for assertion a_matched

Note that if s_req_ack(posedge rclk).matched were used in two or more
different clocking event scopes, then there are effectively as many different
.matched end points because their validity ends at different clocking events.

12.2.6 Declarations Within a Clocking Block

Sequences and properties may be declared within a clocking block. No explicit
clocking event control can be written in such a declaration. Instead, all instances of
the named sequence or property are understood to be singly clocked by the clocking
event of the clocking block. If a declaration of a sequence or property within a
clocking block itself instantiates a sequence or property, then that instance must be
singly clocked by a clock that is identical to the clock of the clocking block.

Concurrent assertions cannot be written within a clocking block. Therefore, to
instantiate a named sequence or property that is declared within a clocking block,
the clocking block must be named and the named sequence or property must be
referenced hierarchically.

Here is an example:

298 12 Clocks

module decl_in_clocking_block (logic a, b, c, clk);
clocking PCLK; @(posedge clk);

property p3; a |=> p4; endproperty
endclocking
property p4; b until c; endproperty
a19: assert property(PCLK.p3);

endmodule

Since p4 is declared without clocks, the instance of p4 within the declaration of p3
is legal. The clock of p3 is posedge clk, which flows into and clocks this instance
of p4.

Exercises

12.1. Write an assertion to check that after an occurrence of event ev_start,
there is no occurrence of event ev_wait until strictly after an occurrence of event
ev_enable (cf. Example 12.2).

12.2. Without using the nexttime operator, rewrite assertion a14 from
Sect. 12.2.5.1 so that its behavior is identical to that of a13.

12.3. Using the waveform in Fig. 12.12, analyze the behavior of the following
assertion:

a1: assert property(
@(posedge clk1) a |=> @(posedge clk2) nexttime b

);

12.4. Using the waveform in Fig. 12.12, analyze the behavior of the assertions in
the following module for the evaluation attempts beginning at times 20 and 60:

module m (logic a, b, clk1, clk2);
a1: assert property(

@(posedge clk1) a |->
(@(posedge clk2) a) until (@(posedge clk2) b)

);
a2: assert property(

@(posedge clk1) a |-> @(posedge clk2) a[*] ##1 b
);

endmodule

12.5. Consider the assertion

a1: assert property(
@(posedge clk1) a |-> @(posedge clk2) nexttime b

);

Create waveforms in which clk2 converges to clk1 from the right to explain why
the synchronizing behavior of nexttime must both align and advance to the next
tick in order for the multiply clocked semantics to converge to the singly clocked
semantics. What happens if clk2 converges to clk1 from the left?

12.2 Further Details of Clocks 299

12.6. Analyze the clock flow in each of the following expressions.

1. @(ev1) a |=> @(ev2) b until c .
2. @(ev1) a |=> (@(ev2) b) until c .
3. not(@(ev1) a) #-# (@(ev2) b) implies (@(ev3) c) .
4. @(ev1) (a ##1 @(ev2) b) |=> if (c) @(ev3) d else e .
5. @(ev1) sync_accept_on(a) b until @(ev2) c and nexttime @(ev3)

d.

12.7. Compute the set of semantic leading clocks for each of the following
properties.

1. (@(ev1) a ##1 b[*]) |=> c .
2. if (a) @(ev1) p else q .
3. @(ev1) if (a) p else q .
4. @(ev1) a implies (@(ev2) b) or c .
5. (@(ev1) a) implies (@(ev2) b) or c .
6. accept_on(a) (@(ev1) b) and strong(c throughout @(ev2) d) .

12.8. Using rules of clocking, determine for each of the following whether it is
legal, illegal, or its legality depends on the existence or nature of an incoming clock.
For those in the last category, identify the conditions on an incoming clock to make
the expression legal. Assume that a, b, c, etc. are Boolean expressions with no
embedded clocking event controls.

1. @(ev1) a ##1 b[*] |=> c .
2. (@(ev1) a ##1 b[*]) |=> c .
3. @(ev1) a within @(ev2) b[->1] .
4. (@(ev1) a) within b[->1] .
5. assert property(if (a) @(ev1) b else c); .
6. assert property(@(ev1) if (a) b else c); .
7. assert property(@(ev1) a implies (@(ev2) b) or c); .

12.9. Suppose that Fig. 12.14 is modified as follows:

sequence s_req_ack;
req ##1 ack;

endsequence
a_triggered: assert property(

@(posedge dclk)
dvalid |->
s_req_ack.triggered

);

Is the assertion legal? If no, why? If yes, interpret the behavior of the assertion on
the waveforms in Fig. 12.15.

Chapter 13
Resets

The Metropolis should have been aborted long before it became
New York, London or Tokyo.

— John Kenneth Galbraith

As the evaluation of a concurrent assertion evolves over time, certain conditions
may occur upon which it is desired to stop the present evaluation attempt in a
preemptive or abortive way. The prototypical example is the occurrence of design
reset: most concurrent assertions should not continue evaluation across reset of the
design. As a result, such preemptive or abortive conditions have come broadly to
be termed reset conditions. It is cumbersome, at best, to instrument every step
of a concurrent assertion with sensitivity to a reset condition. Therefore, SVA
provides reset constructs with which reset conditions can be declared and their
scopes specified.

This chapter covers declaration, scoping, and semantics of reset constructs. There
are abort property operators which come in both synchronous and asynchronous
forms, and in both passing and failing flavors. These are in addition to the existing
asynchronous disable iff construct at the top-level of a concurrent assertion.

13.1 Overview of Resets

This section gives an intuitive overview of resets based on examples.
A reset condition is a condition upon which it is desired to stop evaluation

of a concurrent assertion or subproperty in a preemptive or abortive way. The
prototypical example is the occurrence of design reset: most concurrent assertions
should not continue evaluation across reset of the design under test. Encoding a
concurrent assertion to be sensitive throughout its evaluation to occurrence of a reset

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__13

301

302 13 Resets

1 a_disable: assert property(
2 disable iff (reset)
3 @(posedge clk) a |=> b
4) else $error("FAIL");

Fig. 13.1 Simple concurrent assertion with a disable clause

condition is cumbersome, so SVA provides various reset constructs with which to
declare reset conditions and specify their scopes.

A reset is asynchronous if the associated reset condition is checked at every
time step during the evaluation of the underlying property. SVA provides three
asynchronous resets: disable iff, accept_on, and reject_on. A reset is syn-
chronous if the associated reset condition is governed by a clock and checked only
in time steps in which the clocking event occurs. SVA provides two synchronous
resets: sync_accept_on and sync_reject_on. Apart from disable iff, all of
the resets are referred to collectively as abort operators.

13.1.1 Disable Clause

A disable clause is specified with the compound keyword disable iff. It defines
a top-level asynchronous reset condition that applies throughout the evaluation
of a concurrent assertion. The reset condition is called the disable condition of
the disable clause. With the exception of overriding an incoming default disable
condition (see below), all nesting of disable clauses is illegal.

The meaning of a disable clause is that the current (not the sampled) value
of the disable condition is checked continuously throughout the evaluation of the
underlying property of the concurrent assertion. If the disable condition is true in
any time between the start of an evaluation attempt in the Observed region and the
end of the evaluation attempt then the evaluation attempt is disabled. The evaluation
of the property thus stops and neither passes nor fails. Instead, the overall result of
the evaluation is disabled. If the disable condition neither is nor becomes true during
the evaluation, then the evaluation either passes or fails according to the result of the
evaluation of the underlying property.

Figure 13.1 gives a simple example. A disable clause may be specified either
before or after an explicit clocking event control in a concurrent assertion, but it
must precede all other terms of the underlying property. In this example, the disable
condition is reset. The underlying property appears in Line 3 and is singly clocked
by posedge clk.

Figure 13.2 shows a possible waveform for a_disable. The attempt that begins
at time 20 is disabled by the transition to 1’b1 of reset at time 35. In the absence
of the disable clause, this attempt would have failed at time 40, but, because it is
preempted, no failure occurs and the failing action block in Line 4 does not execute.

13.1 Overview of Resets 303

10 20 30 40 50 60 70 80 90 100

clk

reset

a

b

Fig. 13.2 Waveform for a_disable

The attempt that begins at time 40 is also disabled. Exactly when it is disabled
depends on the behavior of reset at time 40. According to the waveform, the
sampled value of reset at time 40 is 1’b1, but a disable condition is evaluated
using current values, not sampled values. If the value of reset remains 1’b1 until
the beginning of the assertion evaluation attempt at time 40, then that attempt
is preempted at time 40. Otherwise, the attempt is disabled by the brief, glitchy
transition to 1’b1 of reset at time 55.1 Again, because of the preemption, this
attempt neither passes nor fails, even though, in the absence of the disable clause,
the evaluation of the underlying property would have passed at time 60. The attempts
that begin at times 60, 80, and 100 are not disabled. The first fails at time 80, the
second passes at time 100, and the third passes vacuously at time 100.

To avoid preemption on glitches in the disable condition, such as the pulse at
time 55 in Fig. 13.2, $sampled can be used to force evaluation using only sampled
values. Suppose that Line 2 of Fig. 13.1 is changed to

disable iff ($sampled(reset))

The disable condition is still monitored continuously, but the use of $sampled
means that, in any time step, only the sampled value of reset is relevant, and
this value is persistent throughout the time step. As a result, the glitch in reset

at time 55 is no longer visible to the disable condition. And the behavior at time 40
is more predictable: the sampled value of reset at time 40 is 1’b1, which persists
as the sampled value throughout the time step and preempts the attempt beginning
at time 40.

A disable clause may be specified within the declaration of a named property.
The disable clause must follow any local variable declarations (see Sect. 16.1). It
may be specified either before or after an explicit clocking event control in the body
of the property declaration, but it must precede all other terms of the underlying
property. If a named property specifies a disable clause, then instances of the
property must ensure that, after elaboration,2 the disable clause is at the top-level

1 It is presumed that this impulse is a glitch, although, technically, the graphical representation
does not imply this without further information, e.g., concerning the timescale. A waveform tool
can identify glitches unambiguously.
2See the Rewriting Algorithms specified in Annex F.4 of the LRM [8].

304 13 Resets

of each concurrent assertion in which it appears, preceded only by local variable
declarations and leading clocking event controls. The following variant of the code
in Fig. 13.1 behaves equivalently:

1 property p_disable;
2 disable iff (reset) a |=> b;
3 endproperty
4 a_disable: assert property(
5 @(posedge clk) p_disable
6) else $error("FAIL");

A disable clause may not be specified within the declaration of a named
sequence.

13.1.1.1 Default Disable Condition

Like a clocking event, a disable condition may be shared by many concurrent
assertions. In this situation, it is convenient to be able to specify a default disable
condition. A default disable condition applies throughout the generate block,
module, interface, or program in which it appears, including nested scopes except
those with their own default disable condition. The default applies to all concurrent
assertions within the scope that do not have disable conditions otherwise specified.
It does not apply to declarations of named sequences or properties. The following
example illustrates the syntax:

1 module m_default_disable(logic reset, a, b, clk);
2 default disable iff reset;
3 a_disable: assert property(
4 @(posedge clk) a |=> b
5) else $error("FAIL");
6 a_override: assert property(
7 disable iff (1’b0)
8 @(posedge clk) reset |=> !reset
9);

10 endmodule

The default disable condition, reset, applies to a_disable. Since a_override

has an explicit disable condition, the disable condition 1’b0 applies to it and
overrides the default.

Nesting of disable conditions is only allowed when the inner disable condition
overrides an incoming default disable condition. The overriding by the disable
clause in Line 7 above is a legal example. Figure 13.3 shows an illegal example.
Line 8 results in a nesting of disable conditions, the outer one from the concurrent
assertion a_disable in Line 4 and the inner one from the instantiated property
p_disable in Line 7. The outer disable condition is not a default. Therefore, the
nesting is illegal, despite the fact that the two disable conditions are identical.

The disable condition can also be inferred from the instantiation context using
the system function $inferred_disable which can be used in place of a default

13.1 Overview of Resets 305

1 module m_illegal_disable_nesting(logic reset, a, b, clk);
2 default clocking PCLK @(posedge clk); endclocking
3 property p_disable;
4 disable iff (reset) a |=> b;
5 endproperty
6 a_disable: assert property(
7 disable iff (reset)
8 p_disable
9) else $error("FAIL");

10 endmodule

Fig. 13.3 Illegal nesting of disable conditions

argument value of a property declaration. This is especially useful when creating
reusable properties for a library. For example,

1 property p_inferred_disable(x, y,
2 event ck = $inferred_clock,
3 logic rst = $inferred_disable);
4 disable iff (rst) @ck x |=> y;
5 endproperty
6 module m_inferred_disable(logic reset, a, b, clk);
7 default disable iff reset;
8 default clocking @(posedge clk); endclocking
9 a_inferred_disable:

10 assert property(p_inferred_disable(a, b))
11 else $error("FAIL");
12 endmodule

The property declaration p_inferred_disable uses the inferred value functions
to specify that in the absence of the actual argument for ck or for rst, the value of
the argument should be inferred from the instantiation context. In the case of rst,
it can only be inferred from the default disable declaration. If there is none then
the inferred value is 1’b0. The assertion a_inferred_disable does not specify
these arguments; therefore, the clocking event is inferred from the default clocking
declaration as posedge clk, and the disabling condition is inferred from default
disable declaration as reset.

13.1.2 Aborts

The term abort refers to resets specified by the following property operators:
accept_on, reject_on, sync_accept_on, and sync_reject_on. The first two of
these are asynchronous aborts, while the last two are synchronous aborts. Each of
these property operators has two operands. The first is the abort condition, which is
enclosed in parentheses, and the second is the underlying property governed by the
abort operator. Here is an example of the syntax:

306 13 Resets

1 a_accept: assert property(
2 @(posedge clk)
3 accept_on (retry)
4 a |=> b
5) else $error("FAIL");

Fig. 13.4 Simple concurrent assertion with an asynchronous abort

1 a_simple_abort: assert property (
2 @(posedge clk)
3 start
4 |=>
5 accept_on(retry) check_trans_complete
6);

Line 5 specifies an asynchronous accept_on with retry as abort condition. The
underlying property is the instance check_trans_complete.

Aborts behave similarly to a disable clause in the way that they preempt evalua-
tion of the underlying property, but there are a number of important differences:

• The scope of an abort condition is limited to its underlying property operand,
not the entire concurrent assertion. A thread or subthread of evaluation does
not become sensitive to the abort condition until it reaches the associated abort
operator.

• Abort conditions are always checked using sampled values. Therefore, unlike a
disable condition, an abort condition is not sensitive to glitches.

• If the sampled value of an abort condition is 1’b1 in any time step in which an
evaluation is sensitive to it, then the evaluation of the underlying operand property
is aborted. This rule applies even in the same time step that the underlying
property evaluation would complete.

• An abort is a property, so the result of an evaluation is either pass or fail. An
aborted evaluation results in pass for the “accept” operators and fail for the
“reject” operators. This result applies only to the abort property itself. If the
abort property is a subproperty, then this result must be combined with the results
of other subevaluations in the usual ways to determine the overall result of the
concurrent assertion evaluation.

• Abort operators may be nested arbitrarily.
• There are no default abort conditions.

13.1.2.1 Asynchronous Aborts

Figure 13.4 shows a simple concurrent assertion with an asynchronous abort. It is
similar to the assertion a_disable of Fig. 13.1, but its abort condition is retry.
The underlying property is a |=> b, and the entire concurrent assertion is clocked
by posedge clk. At each occurrence of this clocking event, evaluation of the abort

13.1 Overview of Resets 307

10 20 30 40 50 60 70 80 90 100

clk

retry

a

b

Fig. 13.5 Waveform for a_accept

property begins. This starts monitoring of the abort condition, using sampled values
of retry, and also starts evaluation of the underlying property. Because the abort is
asynchronous, the sampled value of retry is checked in every time step, including
the first, that the evaluation of the underlying property is ongoing and has neither
been aborted nor already completed on its own. If the sampled value of retry is
1’b1 in any of these checks, then the evaluation is aborted and passes in that time
step. If the evaluation is not aborted, then it completes when the underlying property
evaluation completes (i.e., at the next occurrence of posedge clk) and the result of
the evaluation is the same as that of the underlying property.

The difference between Figs. 13.1 and 13.4 is that in the former the condition is
not sampled and the outcome of evaluation when the condition is true is disabled,
and in the latter the sampled value is used and the outcome is success.

Figure 13.5 shows an example waveform for a_accept. It is similar to Fig. 13.2
and will illustrate differences between an asynchronous abort and a disable clause.
The evaluation attempt of a_accept that begins at time 20 is aborted in the first
time step after time 35 and passes at that time. The evaluation does not abort at
time 35 because sampled value of retry is 1’b0 in that time step. The sampled
value of retry at time 40 is 1’b1, so the attempt beginning at time 40 immediately
aborts and passes in that time step. The 0-width glitch on retry at time 60 does not
affect any sampled value, so the evaluation beginning at time 60 is not aborted. This
evaluation fails at time 80. The evaluation beginning at time 80 is also not aborted
and passes at time 100.

Abort operators may be nested. The scope of the outer abort condition includes
any nested abort property. The scope of the nested abort condition is limited to the
underlying property of that abort operator. While evaluating the inner abort property,
the outer abort condition takes precedence over the inner abort condition in case both
conditions occur in the same time step.

Figure 13.6 shows a concurrent assertion with nested asynchronous aborts. The
outer abort is an accept_on with abort condition retry whose scope is the entire
property of the concurrent assertion. The inner abort is a reject_on with abort
condition bad whose scope is the consequent of |=>. The entire assertion is singly
clocked by posedge clk. The inner abort does not begin evaluation until after

308 13 Resets

1 a_accept_reject: assert property(
2 @(posedge clk)
3 accept_on (retry)
4 a |=> reject_on(bad) b[*2]
5) else $error("FAIL");

Fig. 13.6 Concurrent assertion with nested asynchronous aborts

10 20 30 40 50 60 70 80 90 100

clk

retry

bad

a

b

Fig. 13.7 Waveform for a_accept_reject

matching the antecedent a and advancing to the next occurrence of posedge clk,
as specified by |=>. Only at that point does the evaluation become sensitive to the
inner abort condition.

Figure 13.7 shows a waveform for a_accept_reject. The evaluation attempt
that begins at time 20 begins executing the outer abort, becomes sensitive to the
abort condition retry, and matches the antecedent of |=> at time 20. The evaluation
then advances to time 40 and begins executing the inner abort. At that time, it
becomes sensitive also to the abort condition bad and tests that the sampled value of
b is 1’b1. The evaluation then continues toward time 60 and encounters both retry

and bad in the time step after time 55. In this situation, the outer abort condition
takes precedence. Therefore, the evaluation of the outer abort property aborts and
passes in that time step, and hence the overall evaluation of the concurrent assertion
also passes. The evaluation that begins at time 60 starts similarly. The fact that the
sampled value of bad is 1’b1 at time 60 is irrelevant because this evaluation is not
yet sensitive to the inner abort condition. After matching the antecedent of |=>, the
evaluation advances to time 80. The glitch on retry at time 65 is not observable
by the abort operator. The evaluation does not abort in the time step after time 75
because, again, it is not yet sensitive to bad. At time 80, though, the evaluation
becomes sensitive to bad. Since the sampled value of bad is 1’b1 at time 80, the
evaluation of the inner abort property aborts and fails in that time step. This causes
the consequent of |=> to fail. Therefore, the overall evaluation of the concurrent
assertions fails at time 80 and the failing action block executes.

13.1 Overview of Resets 309

1 a_sync_accept: assert property(
2 @(posedge clk)
3 sync_accept_on (retry)
4 a |=> b
5) else $error("FAIL");

Fig. 13.8 Concurrent assertion with synchronous aborts

1 a_sync_accept_reject: assert property(
2 @(posedge clk)
3 sync_accept_on (retry)
4 a |=> sync_reject_on(bad) b[*2]
5) else $error("FAIL");

Fig. 13.9 Concurrent assertion with nested synchronous aborts

13.1.2.2 Synchronous Aborts

The synchronous abort operators sync_accept_on and sync_reject_on behave
the same as their asynchronous counterparts with the exception that their abort
conditions are only checked in time steps in which there is an occurrence of the
clocking event.

Figure 13.8 shows a concurrent assertion with a synchronous abort. The assertion
behaves like a_accept in Fig. 13.4 except that the abort condition retry is only
checked in time steps in which posedge clk occurs. In the waveform in Fig. 13.5,
the evaluation of the synchronous abort property for the attempt of a_sync_accept
that begins in time 20 is aborted, but not in the time step after time 35 as in the case
of the asynchronous abort. Instead, the synchronous abort occurs at time 40, where
there is an occurrence of posedge clk and the sampled value of retry is 1’b1.
This illustrates the fact that if the sampled value of an abort condition is 1’b1 in the
same time step that the underlying property evaluation would complete, the abort
condition takes precedence and the evaluation is aborted. Since the abort is of the
“accept” form, the evaluation of the synchronous abort property passes at time 40,
hence there is an overall pass for the concurrent assertion.

Figure 13.9 shows the result of rewriting a_accept_reject from Fig. 13.6
using synchronous aborts. Figure 13.10 shows the same waveform as Fig. 13.7,
but with arrows adjusted for the evaluations of a_sync_accept_reject. The pulse
on retry beginning at time 55 is not relevant to the synchronous abort because it
does not affect the sampled value at a tick of the clock. Therefore, the evaluation
beginning at time 20 is aborted at time 60. The clock ticks at this time, and the
sampled value of bad is 1’b1. Therefore, the inner abort condition causes failure of
the consequent of |=>, hence failure of the overall concurrent assertion, and the
failing action block executes. The evaluation that begins at time 60 behaves the same
as that of a_accept_reject because both evaluations become sensitive to bad at
time 80, which is a tick of the clock at which the sampled value of bad is 1’b1.

310 13 Resets

10 20 30 40 50 60 70 80 90 100

clk

retry

bad

a

b

Fig. 13.10 Waveform for a_sync_accept_reject

13.2 Further Details of Resets

This section covers a few further details of specifying resets.

13.2.1 Generalities of Reset Conditions

The examples of reset conditions so far in this chapter have been simple references
to variables or nets. Reset conditions can be general expressions, with the following
provisos:

1. Reset conditions may not reference assertion local variables.
2. A disable condition may reference a sequence instance to which the sequence

method triggered is applied. An abort condition may not make such a
reference.

3. If a reset condition references a sampled value function other than $sampled,
then the clock of the sampled value function must be explicitly specified.

4. Reset conditions may not contain instances of sequences to which the sequence
method matched is applied.

The rationale for the first rule is that the meaning of such a reference may be
unclear at the beginning of evaluation or as subevaluation threads create copies of
local variables and assign independent values to them. The second rule reflects the
fact that the sampled value of triggered is not useful—it is always 1’b0. The
third and fourth rules echo the fact that the asynchronous reset conditions are not
governed by a clock.3

As an example of a more general reset condition, suppose that design reset is
synchronous and occurs only if the sampled value of reset is 1’b1 in a time step

3These rules exist in the LRM [8], although they could be relaxed for synchronous aborts.

13.2 Further Details of Resets 311

1 a19: assert property(
2 @(posedge clk)
3 sync_accept_on(reset || $past(reset, , , @(posedge clk)))
4 dOut == $past(dIn)
5);

Fig. 13.11 Abort with a compound abort condition

1 a_abort_subproperties: assert property(
2 @(posedge clk)
3 a |=>
4 (accept_on (retry) b[*2])
5 and
6 (reject_on (bad) c |=> !c)
7);

Fig. 13.12 Assertion with multiple abort subproperties

in which posedge clk occurs. If we need to check that dOut is equal to last cycle’s
value of dIn, but only if no reset occurred in either cycle, this can be accomplished
by the code in Fig. 13.11 (see also Exercise 13.3).

13.2.2 Aborts as Subproperties

Since an abort is a property, it participates in the determination of the result of
evaluation of an enveloping property in the same way as other subproperties,
regardless of whether the disposition of the abort is due to occurrence of the abort
condition.

In the assertion of Fig. 13.12, the consequent of |=> in Line 3 is the conjunction
of two abort subproperties.

Consider the waveform of Fig. 13.13. The attempt of a_abort_subproperties
beginning at time 20 starts subevaluations of Lines 4 and 6 at time 40. The
occurrence of retry in the time step after time 45 causes the evaluation of Line 4 to
pass. The evaluation of Line 6 continues, and the occurrence of bad in the time step
after time 55 causes the evaluation of Line 6 to fail. The overall assertion therefore
fails. The attempt of a_abort_subproperties beginning at time 60 passes because
Line 4 results in success at time 100 and Line 6 results in vacuous success at time 80.

312 13 Resets

10 20 30 40 50 60 70 80 90 100

clk

retry

bad

a

b

c

Fig. 13.13 Waveform for a_abort_subproperties

Exercises

13.1. Explain why assertions a1 and a2 below have the same passing and failing
evaluation behavior:

a1: assert property(@(posedge clk) sync_accept_on(a)
b[*2] |=> c

);
a2: assert property(@(posedge clk)

!a throughout b[*2] |=> a || c
);

Rewrite the following coverage assertion without using sync_reject_on:

c1: cover property(@(posedge clk) sync_reject_on(a)
b[*2] ##1 c

);

13.2. In the module below, determine for each occurrence of a nested disable
condition whether or not the nesting is legal. Also, for each concurrent assertion that
is not involved with an illegal nested disable clause, identify the disable condition
that governs it, if any.

1 module #(parameter BAD) m (
2 logic a, b, c, clk, reset, retry, bad
3);
4 default clocking PCLK @(posedge clk); endclocking
5 default disable iff reset;
6 property p; disable iff (retry) b |=> c; endproperty
7 a0: assert property(a |=> b);
8 a1: assert property(disable iff (retry) a |=> b);
9 a2: assert property(p);

10 a3: assert property(a |=> p);
11 generate if (BAD)

13.2 Further Details of Resets 313

12 begin: GEN_BAD
13 default disable iff bad;
14 a0: assert property(a |=> b);
15 a1: assert property(disable iff (retry) a |=> b);
16 a2: assert property(p);
17 a3: assert property(a |=> p);
18 end
19 endgenerate
20 module m_nested;
21 default disable iff reset && bad;
22 a0: assert property(a |=> b);
23 a1: assert property(disable iff (retry) a |=> b);
24 default disable iff retry;
25 a2: assert property(p);
26 a3: assert property(a |=> p);
27 endmodule
28 endmodule

13.3. Give an alternative encoding of the assertion in Fig. 13.11 that uses a simpler
abort condition.

13.4. Explain the meaning of the following properties:

1. accept_on(a) reject_on(b) p.
2. reject_on(a) accept_on(b) p.

Chapter 14
Procedural Concurrent Assertions

My use of language is part and parcel of my message.

— Theo Van Gogh

A traditional way of writing assertions is to place them and consider them
as procedural statements. Various programming languages already provide some
syntactic forms to express assertions, either as first class language features or
as language extensions [4, 50, 53, 60] expressed using pragmas or comments.
Depending on the objectives of a language, assertions can vary from being simple
Boolean checks that ensure the sanctity of variable values to being event or time
based for expressing checks over temporality of values. We have already seen the
immediate and deferred assertions in Sects. 4.2 and 4.3 of SystemVerilog that are
written as procedural statements.

A concurrent assertion written in a procedure is called a procedural concur-
rent assertion.

Clearly, concurrent assertions are more complex than immediate or deferred
assertions. The influence of clocks and synchronous delays in the assertion evalua-
tion is appreciable. Such evaluations may require more than a single simulation time
step, sometimes open ended with no predetermined time span. Yet, a concurrent
assertion attempt behaves in a similar way to a task, that, once started, carries on
its execution of statements with no predetermined time span. Another procedural
statement that is similar in its behavior is fork..join, which starts executing parallel
processes with individual threads of evaluation that possibly terminate without a
coordinated end point between the threads.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__14

315

316 14 Procedural Concurrent Assertions

In this chapter, we describe how concurrent assertions can be placed in
procedural code and how one can make use of the code context in which they
are placed. There are many nuances that need to be understood for proper usage of
procedural concurrent assertions. We discuss a commonly used form for replicating
assertions by placing them in a for-loop. We describe in detail the simulation
semantics, that is, how procedural assertions are evaluated in simulation. We
describe the use of the disable statement to abort evaluations of procedural
concurrent assertions that have been invoked but not yet committed. Finally, we
explain how the instantiation of a checker in procedural code creates procedural
concurrent assertions, from both static and procedural concurrent assertions in the
checker declaration.

14.1 Using Procedural Context

Due to the temporal behavior of concurrent assertions, they are restricted to
be placed either in an always procedure or an initial procedure. Contrary
to functions and other constructs which must not incur any time delays, these
procedures allow evaluations to continue past a single time unit. The always

procedure may be of any kind, including always_comb, which has an implicit event
expression for controlling the execution of the procedure. Concurrent assertions
cannot be placed in a function, task, or a class.

Concurrent assertions may only be placed in an always or initial

procedure.

Let us start with a simple example of placing a concurrent assertion in an always

procedure.

Example 14.1. A concurrent assertion in an always procedure:

module e1Unit(input logic clk, ...);
logic i1, i2, d1, dout;
always @(posedge clk) begin
d1 <= i1|i2;
dout <= d1;
a1: assert property (nexttime[2] dout == $past(i1|i2, 2));

end
...

endmodule

A new evaluation attempt of assertion a1 is started each time a clock tick
posedge clk occurs, and this clocking event is used to reckon time within a1.
a1 evaluates to make sure that the current value of i1|i2 becomes the value of

14.1 Using Procedural Context 317

dout two clock ticks later. This reflects the intent of the cascade of non-blocking
assignments to d1 and dout. The values of d1 and dout may be changing at
successive clock ticks. Each evaluation attempt of a1 provides its own results,
without interfering in the evaluation of other attempts. ut

Placing an assertion in procedural code can greatly improve the understanding
of the purpose of the procedural code. The surrounding code forms the context
for and motivates the placement of the assertion. This naturally leads to greater
readability and maintainability of the code and the assertion. When the assertion
fails, debugging is improved because the context of the assertion is readily available.
In the above example, it is clear that assertion a1 is placed to ensure the correctness
of propagation of i1|i2 through d1 to dout. If the temporal propagation of values is
violated, an error message is generated to indicate the precise point of failure. This
is immensely useful to the user as the debugging of the failure is made by inspecting
the values of the variables dout, i1, i2, and the intermediate quantity d1.

The context of a procedural concurrent assertion affects the semantics of its
execution in two ways. First, the assertion is treated as a statement by the event
simulation semantics to start an evaluation at the point it is reached in procedural
execution. We shall say that a procedural concurrent assertion is invoked at the point
when it is reached in the flow of procedural execution. Second, the leading clock of
the assertion is inferred from the enclosing procedure and used to mark the passage
of time, just as in any concurrent assertion. These two effects are illustrated in the
following modification of Example 14.1.

The clock of a procedural concurrent assertion is inferred from its context.

Example 14.2. A concurrent assertion under an enabling condition:

module e1Unit(input logic clk, ...);
logic i1, i2, d1, dout, out_en;
always @(posedge clk) begin
d1 <= i1|i2;
if (out_en) begin

dout <= d1;
a2_1: assert property (nexttime dout == $past(i1|i2, 2));

end
else

a2_2: assert property (nexttime $stable(dout));
end
...

endmodule

Assertion a2_1 gets invoked if the value of out_en is true. Otherwise a2_2 gets
invoked. Both assertions infer the clocking event posedge clk from context. ut

318 14 Procedural Concurrent Assertions

In an initial procedure, the flow of execution is initiated at the beginning of
simulation, and is carried on until the end of the procedure, without ever returning
to the initial point again. During this flow of execution, an assertion is invoked
whenever it is reached. Embedding a concurrent assertion in an initial procedure
is shown in Example 14.3.

Example 14.3. A concurrent assertion in an initial procedure:

module b1Unit(input bit clk, rst, ...);
bit running;
initial begin: B1
if (!rst) begin

a3: assert property (@(posedge clk) running until rst);
...

end
end
...

endmodule

Procedural block B1 is executed at time 0. Suppose that rst is initially low. At that
point, assertion a3 is initiated. It waits until the clock tick posedge clk occurs, and
then starts an evaluation attempt. No more new assertion attempts are started, but
the initial attempt will continue its evaluation until completed in accordance with
the normal assertion semantics. ut

14.2 Clock Inferencing

When an assertion leading clock is not explicitly specified, this clock is inferred
from the assertion context. For concurrent assertions outside procedural code, the
clock inference rules have been discussed in Chap. 12. For procedural concurrent
assertions, the inferred clock is derived from the preceding event control statement
in the procedure. In the examples seen so far, the inferred clock has been the entire
event expression of the event control. The rules for clock inference follow synthesis
guidelines to provide for more general extraction of an inferred clock. There is some
subtlety to the rules, and in some cases the form of the procedure will not admit any
inferred clock.

Clock inferencing closely follows common design synthesis guidelines.

We say that an event expression is inferable if the entire expression has one of
the following forms:

I1 An event variable or a clocking block event.

14.2 Clock Inferencing 319

I2 edge_op expr1 [iff expr2], where edge_op is one of posedge, negedge,
or edge.1

We say that an inferable event expression E is valid for an always or initial

procedure provided is satisfies the following:

V1 The procedure has one and only one event control, and E is an expression
appearing in that event control.

V2 There is no other blocking timing control in the procedure.
V3 If E is an event variable or a clocking block event, then E does not appear

in the body of the procedure, except in a clocking event or within an assertion
statement.

V4 If E has the form edge_op expr1 [iff expr2], then no term in expr1 appears
in the body of the procedure, except in a clocking event or within an assertion
statement.

V5 If E has form edge_op expr1, then a larger event expression E iff expr2 does
not appear in the event control of the procedure.

Now we can state the Rule of Clock Inferencing:

Event expression E is the clock inferred for an always or initial procedure
provided E is the one and only valid inferable event expression for the procedure.
If the number of valid inferable event expressions for the procedure is zero or
greater than one, then no clock is inferred for the procedure.

If no clock is inferred, then clocks may be explicitly specified for the assertions.
Another alternative is to declare a default clock, which provides the clock for
assertions that would otherwise remain unclocked.

The following examples illustrate some details of clock inferencing.

Example 14.4. Clock inferencing with iff in the event control:

always @(posedge clk iff en) begin
d1 <= i1|i2;
a4: assert property (d1 |=> i3|i4);
dout <= f_ecap(d1);

end

The entire expression posedge clk iff en is inferred as the clock, not just
the subexpression posedge clk. According to V5, the smaller event expression
posedge clk is not valid. ut

1Note that while edge v is semantically the same as posedge v or negedge v,
these forms are not interchangeable for clock inferencing. edge v is inferable, while
posedge v or negedge v is not.

320 14 Procedural Concurrent Assertions

Example 14.5. No clock inferred – logic variable without an edge operator:

logic clk;
...
always @(clk) begin
d1 <= i1|i2 ;
a5: assert property (d1 |=> i3|i4);
dout <= f_ecap(d1);

end

clk is just a logic variable, without any edge operator, so it is not an inferable event
expression. Therefore, clk is not inferred as the leading clock for assertion a5. ut
Example 14.6. Event variable inferred as clock:

event ev;
...
always @(ev) begin
d1 <= i1|i2;
a6: assert property (d1 |=> i3|i4);
dout <= f_ecap(d1);

end

ev is an event variable and is inferred as the clock for a6. ev would also be inferred
if it were a reference to a clocking block event. ut
Example 14.7. No clock inferred—a variable in the event expression is used in the
procedure:

always @(posedge(e1|e2) iff !reset) begin
d1 <= i1|i2;
e1N = ~e1;
a7: assert property (d1 |=> i3|i4);
dout <= f_ecap(d1);

end

Because term e1 is used in the blocking assignment, Rule V4 specifies that
posedge(e1|e2) iff !reset is not valid. This restriction, however, does not
apply to terms in the right-hand operand expression of operator iff. Term reset

could be used in the always procedure without affecting validity. ut

Terms in the right-hand operand expression of iff may be used freely in the
procedural block without affecting validity.

Example 14.8. Terms referenced in an assertion statement do not affect validity:

always @(posedge(e1|e2)) begin
d1 <= i1|i2;
a8_1: assert property (d1 |=> i3|i4);
a8_2: assert property (@(negedge e1) !e2);

14.2 Clock Inferencing 321

dout <= f_ecap(d1);
end

By V4, the references to terms e1 and e2 in the assertion a8_2 do not affect
validity, so posedge(e1|e2) is inferred as the leading clock for assertion a8_1.
Such a reference can be in the body property or in an action block of the assertion
statement. ut

Terms from an event expression may be used within assertion statements in
the procedural block without affecting validity.

When the event control of a procedure consists of a list of event expressions,
separated either by comma or by operator or, then the Rule of Clock Inferencing
requires that there be only one event expression from the list that is inferable and
valid for the procedure. Otherwise, no clock is inferred from the procedure.

Example 14.9. No clock inferred—two valid inferable event expressions:

always @(posedge e1 or posedge e2) begin
d1 <= i1|i2 ;
a9: assert property (d1 |=> i3|i4);
dout <= f_ecap(d1);

end

The Rule of Clock Inferencing is violated. ut

A clock is inferred only if a single valid inferable event expression is specified
in the event control.

In the following example, asynchronous reset is specified as an event expression.
Even though the event control has two inferable event expressions, only one is valid.

Example 14.10. A common use of asynchronous reset event:

always @(posedge e1 or posedge reset) begin
if (reset)
d1 <= 0;

else begin
d1 <= i1|i2;
a10: assert property (d1 |=> i3|i4);
dout <= f_ecap(d1);

end
end

322 14 Procedural Concurrent Assertions

The clock posedge e1 is inferred for assertion a11 since it is the only valid
inferable event expression. By V4, event expression posedge reset is not valid
due to the use of term reset inside the procedure. ut

In the example below, the additional event control @(posedge e2) violates V1
and prevents any clock inferencing for assertion a11.

Example 14.11. No clock inferred—additional event control:

always @(posedge e1) begin
d1 <= i1|i2 ;
@(posedge e2) egL <= sL & sL1;
a11: assert property (d1 |=> i3|i4);
dout <= f_ecap(d1);

end ut

Only one event control may appear in the procedure for clock inferencing.

In the example below, the inclusion of a delay statement #6 violates V2 and bars
clock inferencing for assertion a12.

Example 14.12. No clock inferred—presence of a delay statement:

always @(posedge e1) begin
d1 <= i1|i2 ;
#6;
a12: assert property (d1 |=> i3|i4);
dout <= f_ecap(d1);

end ut
Whether a concurrent assertion is placed in an always procedure or an initial

procedure, the assertion is invoked, like any other statement, only if the simulation
execution reaches the assertion statement. From that moment onward, the temporal
assertion evaluation is driven by its leading clock as if the assertion were placed
outside its enclosing procedure. If the leading clock is the same as the contextually
inferred clock, then the evaluation for that clock tick happens in the same time
step as its invocation. Otherwise, the evaluation waits further until the leading
clock occurs. We discuss the precise semantics of scheduling procedural concurrent
assertions later in this chapter.

14.3 Using Automatic Variables

An important consideration in constructing a procedural concurrent assertion is
the presence of variables declared in the procedure that are part of the simulation
execution reaching the assertion statement. Static variables are treated differently

14.3 Using Automatic Variables 323

than the automatic variables. Even though the values of static variables are in
progress during the simulation execution, references to those variables in the
assertion expression use the Preponed region values, following the same paradigm
as all other concurrent assertions. Using Preponed region values is essential to
obtaining a deterministic result. This is due to the fact that continuing temporal
evaluation from one clock tick to the next takes place in its own thread of execution,
which is apart from the execution of the enclosing procedural block.

The value of an automatic variable is captured at the time a procedural
concurrent assertion is invoked.

The semantics for an automatic variable in a procedural concurrent assertion
is, however, to capture its value at the time the assertion is invoked, i.e., when
procedural execution reaches the assertion. The captured value is used for the
variable throughout that evaluation attempt of the assertion.

In the next examples, we assume that store and ptr are static variables and that
ev is an event variable.

Example 14.13. Automatic variable in a procedural assertion and a timing problem:

always @(ev) begin
automatic dataT d = pipeline.pop_front();
store[ptr] = d;
a13: assert property (@(posedge clk) store[ptr] == d);
ptr = next_ptr(ptr);

end

Each time a13 is invoked, the value of automatic variable d is recorded at that point,
and this value is used to compare to store[ptr] at posedge clk. Since store and
ptr are static variables, their references in a13 use Preponed region values. This
causes a timing problem because ptr will typically have been updated before the
time step of the next posedge clk, so the value of d is compared to the wrong
element of store. ut

The following variant solves the timing problem by using another automatic
variable to capture the value of ptr for use in the assertion.

Example 14.14. Automatic variables in procedural assertion:

always @(ev) begin
automatic dataT d = pipeline.pop_front();
automatic ptrT ptr_copy = ptr;
store[ptr] = d;
a14: assert property (@(posedge clk) store[ptr_copy] == d);
ptr = next_ptr(ptr);

end

324 14 Procedural Concurrent Assertions

Since both d and ptr_copy are automatic, their values are captured at the invocation
of a14. The reference to store still uses Preponed region values in the time step of
posedge clk, but ptr_copy holds the value that ptr had when the assignment to
store was made in the preceding line of the procedure. ut

Another good option exists to control whether a procedural assertion uses
Preponed region values of static variables or captures their values at invocation
of the assertion. By using const cast, as in const’(v), the value of variable v

is captured when procedural execution reaches the assertion, and this value is used
throughout that evaluation attempt, regardless of the way v may be updated. In this
way, a static variable can be treated as automatic in assertion evaluation without
having to create an auxiliary automatic variable.

Example 14.15. Use of const cast for a static variable:

always @(ev) begin
automatic dataT d = pipeline.pop_front();
store[ptr] = d;
a15: assert property (@(posedge clk) store[const’(ptr)] == d);
ptr = next_ptr(ptr);

end

By using const cast for static variable ptr, the behavior of assertion a15 is the
same as a14. ut

The same rules apply to references to automatic variables and const cast
expressions in the action blocks of procedural concurrent assertions. The values
of automatic variables and const cast expressions are captured when the assertion
is invoked, and these values are used in the assertion evaluation and when any action
blocks execute for that attempt. Recall that at the time of execution of action blocks,
references to static variables use Reactive region values, not Preponed region values.

14.4 Assertions in a For-Loop

So far we have seen how clocks and values are applied to procedural assertions.
In this section, we show a form in which an assertion is replicated and activated
under nested conditions. This form is well suited and natural to express a variety of
scenarios and is based on dynamic values of the surrounding procedural conditions.

Example 14.16. Replication of assertions using for-loop:

logic treg;
logic [3:0] dreg;
logic [7:0] tr;
//...
always @(posedge clk) begin
if (treg) begin
for (int i = 0; i < 4; i++) begin

14.4 Assertions in a For-Loop 325

dreg[i] <= tr[i + 1];
c16: cover property (dreg[i] ##[1:8] tr[i + 1]);

end
end

end

Four evaluation attempts of c16 are initiated when the for-loop gets executed, each
with a different value of index i, from 0 to 3. Following their invocations, the
inferred clock, posedge clk, drives each evaluation attempt to progress and finish
independently of the others. Since variable i is an automatic variable, its value is
captured separately at each invocation of c16 and used throughout the respective
evaluation attempt. Thus, c16 behaves like four covers:

always @(posedge clk) begin
if (treg) begin
for (int i = 0; i < 4; i++) begin

dreg[i] <= tr[i + 1];
end
c16_0: cover property (dreg[0] ##[1:8] tr[1]);
c16_1: cover property (dreg[1] ##[1:8] tr[2]);
c16_2: cover property (dreg[2] ##[1:8] tr[3]);
c16_3: cover property (dreg[3] ##[1:8] tr[4]);

end
end

The four covers c16_0, c16_1, c16_2, and c16_3 are started whenever the condition
treg is true for a clock tick of posedge clk. An FV tool may actually split the
single assertion into four equivalent assertions as shown here. This technique is
well suited for formal verification, where analysis of assertion behaviors generally
accounts for evaluation attempts differently than simulation. ut

In the following example, the number of for-loop iterations is controlled by signal
count, resulting in a varying number of assertion invocations from clock tick to
clock tick. Again, the value of the automatic variable i is captured whenever c17 is
invoked.2

Example 14.17. A variable for-loop index replicating of assertions:

always @(posedge clk) begin
if (treg) begin
for (int i = 0; i < count; i++) begin

dreg[i] <= tr[i + 1];
c17: cover property (dreg[i] ##[1:8] tr[i + 1]);

end
end

end

ut

2FV tools may not be able to handle assertions in procedural loops that cannot be statically
unrolled.

326 14 Procedural Concurrent Assertions

14.5 Event Semantics of Procedural Concurrent Assertions

Before delving into the details of semantics, let us first review event simulation
semantics that are important for the execution of procedural concurrent assertions.
The event semantics of assertion simulation is mostly carried out in three regions:
Active region, Observed region, and Reactive region. Although scheduling evalu-
ation, performing evaluation, and detecting events take place in all three regions,
each region has a unique role in these activities for assertions. The majority of
actual evaluation of assertion expressions takes place in the Observed region, the
scheduling is largely performed in the Active region, and the Reactive region is used
for processing the action blocks. The role of the regions and their order is depicted
in Fig. 3.2.

To support procedural concurrent assertion evaluation within the event simu-
lation semantics, two new semantic objects are introduced: procedural assertion
queue and matured assertion queue.

A procedural assertion queue is used as a temporary holding place for instances
of assertions that have been invoked, together with any captured values of variables.
These assertion instances pend in the procedural assertion queue until it is deter-
mined in the Observed region that they should mature for evaluation. Thereupon,
the assertions are transferred to the matured assertion queue to await the arrival of
their respective leading clocks. Each procedure, such as always or initial, that
contains procedural concurrent assertions has its own procedural assertion queue.
There is only one matured assertion queue for all procedures. While in a procedural
assertion queue, prior to maturing, an instance of an assertion can get purged, as we
will illustrate later in the examples.

Note that these semantic objects have no explicit representation in the language.
Their sole purpose is to explain the semantics of procedural concurrent assertions.

Here are the roles of the two queues for processing an assertion:

1. In the Active region, when procedural execution reaches a concurrent assertion,
an instance of the assertion is entered in the procedural assertion queue of the
process, together with any captured values of variables for that instance.

2. During the execution in the Active region, an assertion instance waiting in the
procedural assertion queue may get purged.

3. In the Observed region, all surviving assertion instances from the procedural
assertion queues mature and are transferred to the matured assertion queue.

4. If the leading clock of a matured assertion instance did trigger in the Active
region, then the evaluation attempt of that assertion begins and the assertion
instance is removed from the matured assertion queue to follow its normal course
of evaluation. Otherwise, the assertion instance waits in the matured assertion
queue until its leading clock triggers in some future time step.

14.5 Event Semantics of Procedural Concurrent Assertions 327

Fig. 14.1 The role of queues for procedural assertions

Each procedure containing a concurrent assertion uses its own procedural
assertion queue to enter and purge the assertion attempts.

Figure 14.1 illustrates the role of the two queues.
We will see later how an assertion gets removed from the procedural assertion

queue. First, let us follow an example to see how events cause assertion evaluation.

Example 14.18. Implicit events triggering assertion evaluation:

always @(*) begin: B1
r11 <= v11;
if (c1_long) begin
r12 <= v12 & v13;
a18: assert property (@(posedge clk) r11 |=> r12);

end
end

328 14 Procedural Concurrent Assertions

When always procedure block B1 gets triggered because of its sensitivity to implicit
events, the nonblocking assignment to r11 gets scheduled. Next, if c1_long is
false, no further action takes place. Otherwise, nonblocking assignment to r12 is
scheduled. An instance of assertion a18 is now placed in the procedural assertion
queue associated with B1. Assume that no other implicit events occur in the Active
region. Eventually the simulation control moves to the Observed region. In the
Observed region, the instance of a18 is still in the procedural assertion queue, so it is
moved to the matured assertion queue. If the leading clock posedge clk occurred
in the Active region, then an evaluation attempt of a18 is initiated in the current time
step in the Observed region. Otherwise, a18 stays in the matured queue pending a
tick of posedge clk in a future time step. Once an evaluation attempt matures, it
continues its evaluation at every clock tick until it completes, independently of any
other attempt that may be initiated. ut

Now, let us see how an extraneous assertion attempt is blocked from evaluation.
Suppose in Example 14.18 that multiple right-hand terms of the nonblocking
assignments are updated in the Active region of a time step. This causes multiple
occurrences of the implicit event for B1. Assume also that c1_long is true
throughout the time step. To be specific, assume that first v11 gets a new value, and
then later in the Active region processing v12 get a new value. When v11 changes,
B1 gets triggered, and, as above, an instance of a18 is placed in the procedural
assertion queue for B1. Then, when v12 changes, B1 is again triggered. This second
trigger of B1 causes all pending instances in the procedural assertion queue for B1
to be purged. Since we are assuming c1_long remains true, the second procedural
execution of B1 causes an instance of a18 to be placed in the procedural assertion
queue for B1. In general, whenever a procedural block is triggered, all assertions
pending in the procedural assertion queue for that block are purged. No matter how
many times B1 is triggered in the Active region, only the instance of a18 from the
last execution of B1 can remain in the procedural assertion queue at the end of the
Active region. The one surviving instance subsequently matures in the Observed
region and awaits arrival of a tick of posedge clk to continue evaluation. By
purging pending assertions each time the procedural block is triggered, the effect
of zero-width glitches within a single time step is eliminated.

Triggering a procedural block causes immediate purging of its procedural
assertion queue. This prevents multiple invocations of the same procedural
concurrent assertion due to zero-width glitches.

Furthermore, the semantics also takes care of the situation where multiple
invocations are made to an assertion within a for-loop. The procedural assertion
queue for a block is purged only on triggering of that block. Multiple executions
of a statement within the block, as in the body of a loop, do not themselves cause
purging of the queue.

14.6 Things to Watch Out For 329

Example 14.19. Event semantics for assertions in a for-loop:

always @(*) begin
if (c1_long) begin
for (int i=0; i<4; i++) begin

dreg[i] <= tr[i+1];
a19: assert property (@(posedge clk) dreg[i] |=> r12);

end
end

end

In this example, if the for-loop executes then four instances of assertion a19 are
entered in the procedural assertion queue. Each assertion instance is considered
distinct for the purpose of evaluation and has its own value of the automatic loop
index variable i. ut

14.6 Things to Watch Out For

There are many subtle situations that can arise due to unscrupulous placement
of procedural concurrent assertions. Interspersing assertions with timing control
statements (i.e., delay control, event control, or wait statements) can be especially
tricky and counterintuitive because of flushing of the queue. In general, the
procedural assertion queue is flushed any time execution of the procedure resumes
after being suspended, not just when the procedure is re-invoked from the beginning.

The procedural assertion queue is flushed any time execution of the associated
procedure resumes after being suspended, not just when the procedure is re-
invoked from the beginning.

The next example illustrates interspersing procedural assertions with a delay
control statement.

Example 14.20. Assertions interleaved with a positive delay control statement:

always @(*) begin: B1
r11 <= v11 | v12;
a20_1: assert property (@(posedge clk) v11 |=> v12);
#5;
r12 <= v12 & v13;
a20_2: assert property (@(posedge clk) r11 |=> r12);

end

Consider a time step in which block B1 starts evaluating. An instance of assertion
a20_1 enters the procedural assertion queue for B1. The evaluation of the delay

330 14 Procedural Concurrent Assertions

control #5 blocks further evaluation in the Active region. In the Observed region the
instance of a20_1 is transferred to the matured assertion queue, pending the arrival
of its clock. Due to the blocking effect of the delay control statement, multiple
triggerings of B1 in the same time step cannot occur since the process is suspended.

The behavior of a20_2 is quite different. After the delay of five units of time,
the procedural block restarts its evaluation in the Active region, and an instance
of a20_2 enters the procedural assertion queue for B1. If B1 is not triggered again
prior to the Observed region in the same time step, then a20_2 is transferred to
the matured assertion queue. Otherwise, triggering B1 causes assertion a20_2 to be
purged from the procedural assertion queue. Execution of B1 would continue until
the delay control statement, without rescheduling a20_2 in that time step. ut

The following variant of Example 14.20 switches the delay control from #5 to
#0, significantly changing the assertion evaluation behavior.

Example 14.21. Assertions interleaved with a #0 delay control statement:

always @(*) begin: B1
r11 <= v11 | v12;
a21_1: assert property (@(posedge clk) v11 |=> v12);
#0;
r12 <= v12 & v13;
a21_2: assert property (@(posedge clk) r11 |=> r12);

end

When B1 is triggered, an instance of a21_1 is placed in the procedural assertion
queue for B1. Execution of #0 suspends the procedure and schedules its resumption
in the Inactive region of the current time step. When the Active region processing
finishes, Inactive region events are moved to Active and the procedure resumes. At
that point, the instance of a21_1 is flushed from the procedural assertion queue.
Because of this flushing, a21_1 can never survive to the Observed region to mature.
After the #0 delay, an instance of a21_2 is placed in the queue. That instance will
mature provided B1 is not triggered again before the Observed region. ut

Another peculiar situation transpires when the event control of the always

procedure is different than the clock of the assertion, as in the example below.

Example 14.22. An assertion with a different clock than its always procedure:

always @(posedge clk) begin
i3 <= lb1 && lb8;
i4 <= lb2 && lb11;

end
always @(posedge e1) begin
d1 <= i1 + i2 ;
a22: assert property (@(posedge clk) d1 |=> (i3 || i4));
dout <= f_ecap(d1);

end

14.6 Things to Watch Out For 331

The number of evaluations of a22 is determined by the rate of occurrences of event
posedge e1 and of the assertion clock, posedge clk. There is one instance of a22
scheduled per occurrence of event posedge e1, even if the assertion clock occurs
more frequently. This seems reasonable. The same rule applies if posedge e1

occurs much more frequently than the assertion clock. In that case, a22 is placed
into the matured assertion queue more than once, waiting for the next occurrence
of posedge clk, and all those instances get evaluated in parallel for the same
occurrences of the assertion clock. Indeed, the evaluation behavior of a22 is the
same as the following multiply clocked, non-procedural concurrent assertion:

a22_non_proc: assert property (
@(posedge e1) 1 |->
@(posedge clk) d1 |=> (i3 || i4)

); ut

When the leading clock of a procedural concurrent assertion is not inferred,
multiple redundant evaluation attempts may be possible.

We have seen how the procedural assertion evaluation framework can filter out
superfluous assertion evaluations due to the transient value changes in signals in the
Active region. This glitch protection can be lost if the signals change in the Reactive
region rather than the Active region. One such case is shown below.

Example 14.23. An assertion trigger due to a change in Reactive region:

1 program prg();
2 integer i;
3 initial
4 for (i=0; i<8 ; i++) begin
5 mod.v11= 1; #5;
6 mod.v11 = 0;
7 end
8 endprogram
9

10 module mod(input sig2,clk);
11 bit v11,r11,r12;
12 wire v12;
13 assign v12 = sig2;
14 always @(posedge v11 or posedge v12) begin: B1
15 r11 = v11 | v12;
16 a23: assert property (@(posedge clk) v11 |=> v12);
17 r12 = v11 & v12;
18 end
19 endmodule

When the event posedge v12 occurs due to the assign statement in Line 13,
block B1 is evaluated. As expected, an instance of assertion a23 is entered in the

332 14 Procedural Concurrent Assertions

procedural assertion queue, with a transfer to the matured assertion queue in the
Observed region, assuming no more triggers of B1 in this Active region. Now, in
the Reactive region, when variable v11 is assigned 1, it causes the initiation of the
Active region once again, re-triggering block B1. The procedural assertion queue for
B1 is purged, but the previous instance of a23 has already matured, so the purging
has no effect. Then another instance of assertion a23 is entered in the procedural
assertion queue. Finally, that assertion evaluation is also transferred to the matured
queue when the Observed region is entered for the second time. At that point, there
are now two instances of a23 in the matured assertion queue that await their clock
tick. ut

14.7 Dealing with Unwanted Procedural Assertion
Evaluations

As we learnt from Example 14.23, there are some situations where redundant
evaluations of assertions occur. The user is provided with an explicit means to stop
such cases. The procedural assertion queue can be purged entirely or for a specific
assertion with the disable statement. But, the evaluation attempts already advanced
to the matured queue or the ongoing attempts that were started in previous time steps
are not affected.

The example below modifies Example 14.23 by adding a disable statement
for the assertion to prevent the extra evaluation of a24 in case both posedge v11

and posedge v12 occur in the same time step. Crafting the conditions for such a
disable statement can be delicate.

Example 14.24. A disable statement purging an assertion evaluation:

program prg();
integer i;
initial
for (i=0; i<8 ; i++) begin

mod.v11= 1;
#5;
mod.v11 = 0;

end
endprogram
module mod(input bit sig2,clk);
bit v11,r11,r12;
wire v12;
assign v12 = sig2;
always @(posedge v11 or posedge v12) begin: B1
r11 = v11 | v12;
a24: assert property (@(posedge clk) v11 |=> v12);
r12 = v11 & v12;
if (v11 && !$sampled(v11) && v12 && !$sampled(v2))

disable a24;

14.7 Dealing with Unwanted Procedural Assertion Evaluations 333

end
endmodule

The entry of assertion a24 is removed by the disable statement under the condition
that both v11 and v12 are high and posedge events have been seen on both in the
time step so far. ut

Evaluation attempts already in the matured queue or ongoing from previous
time steps are not affected by the disable statement.

In some cases, purging of all assertions for a block may be appropriate. This
can be accomplished by executing a disable statement with the block name as its
target. Bear in mind that such a disable applies to all code in the block, not just
the procedural concurrent assertions.

Example 14.25. A disable statement purging all assertion evaluations in a block:

always @(*) begin: B2
a25_1: assert property (@(negedge clk) !(dreg & tr));
if (c1_long) begin
for (int i=0; i<4; i++) begin

dreg[i] = tr[i+1];
treg = flogic (dreg[i]);
a25_2: assert property (@(posedge clk) dreg[i] |=> r12);

end
end
if (retry_cond) disable B2;

end

Assume that retry_cond signals a condition under which all instances of assertions
of block B2 should be purged from the procedural assertion queue. This can be
accomplished with the disable targeting the whole block B2. If retry_cond is true,
then the instance of a25_1 and all instances of a25_2 are purged from the procedural
assertion queue. Otherwise, the instances mature and are evaluated normally. By
placing the disable at the end of the block, it doesn’t disturb any of the assignments
made in the block. ut

To conclude this section, we mention that a formal verification tool may extract
the procedural assertions from the procedures as shown in Example 14.16, including
the enabling conditions, and evaluate them as regular concurrent assertions. Such
extraction may create differences between the simulation and formal verification
semantics. For more details on formal verification, see Chap. 21.

334 14 Procedural Concurrent Assertions

14.8 Procedural Checker Instances

Checkers are generalizations of concurrent assertions that also serve as containers
for verification code that supports the assertions. As such, it is desirable to be able to
instantiate checkers wherever concurrent assertions can be written, including within
procedures. Supporting this capability comes with some challenges to define how
various checker constructs interact with the surrounding procedural context. The
instantiation rules formulated for static checker instances hold also for procedural
checker instances, but there are additional rules applicable to procedural instances,
as well as considerations for their effective use. These are the subjects of this section.

Static Assertions

Static assertions in a checker declaration (i.e., those checker assertions that are not
in the scope of any checker procedure) become procedural assertions as the result
of a procedural instantiation of the checker.

Example 14.26. Assertion a1 is static in checker check1:

checker check1(a, event clk = $inferred_clock);
a1: assert property (@clk a);

endchecker : check1

The instantiation c1 of checker check1 in module m

module m(input logic clock, b, en, ...);
// ...
always @(posedge clock) begin
if (en) begin

// ...
check1 c1(b);

end
end

endmodule : m

is conceptually3 equivalent to

module m(input logic clock, b, ...);
// ...
always @(posedge clock) begin
if (en) begin

// ...
a1: assert property (@(posedge clock) b);
end

end
endmodule : m

That is, the static assertion a1 in checker check1 behaves as a procedural assertion
in checker instantiation c1 in module m. ut

3We use the term “conceptually” because of the hierarchical assertion naming in the checker, as
explained in Sect. 9.3.2.

14.8 Procedural Checker Instances 335

Checker Procedures

Straightforward inlining cannot work for checker procedures: it is illegal to have
nested procedures in SystemVerilog. One should regard checker procedures as if
they were instantiated outside the procedural code. Therefore, always procedures in
checkers are sort of screens “protecting” their contents from the procedural code at
the place of the checker instantiation.

Example 14.27. Consider the following checker check instantiated in module m.

checker check(a, event clk);
always_ff @clk
a1: assert property (@clk a);

endchecker : check
module m(input logic clock, b, en);
// ...
always @(posedge clock) begin
if (en) begin

// ...
check mycheck(b, negedge clock);

end
end

endmodule : m

This checker instantiation is conceptually equivalent to the following code:

module m(input logic clock, b, en);
// ...
always @(posedge clock) begin
if (en) begin

// ...
end

end
always_ff @(negedge clock)
a1: assert property (@(negedge clock) b);

endmodule : m

The always_ff procedure in the checker screens assertion a1 from the direct
effect of the always procedure in the module: assertion a1 is controlled by
negedge clock and does not depend on the value of en. This behavior is different
from the behavior of static assertion a1 in checker check1 from Example 14.26. ut
Example 14.28. Assertion a1 in the following checker is instantiated in the scope
of an initial procedure.

checker check(a, event clk = $inferred_clock);
initial
a1: assert property (@clk s_eventually a);

endchecker : check
module m(input logic clock, b, en);
// ...
always @(posedge clock) begin
if (en) begin

// ...

336 14 Procedural Concurrent Assertions

check mycheck(b, negedge clock);
end

end
endmodule : m

This checker instantiation is conceptually equivalent to the following code:

module m(input logic clock, b, en);
// ...
always @(posedge clock) begin
if (en) begin

// ...
end

end
initial
a1: assert property (@(negedge clock) s_eventually b);

endmodule : m

Even though the checker is instantiated in an always procedure of module m,
assertion a1 is monitored only once. ut

Monitoring of procedural checker assertions is done according to the place-
ment of the assertions in the checker, not according to the placement of the
checker instantiation in a module or in an interface.

Checker Instantiation in Procedural Loops

Procedural loops are just a particular case of procedural code, and thus all the rules
of checker instantiation in procedural code are applicable here too. Note, however,
that if a checker actual argument depends on a loop variable, the loop variable should
have automatic lifetime or const’ cast should be applied to the actual argument.

Example 14.29. Consider the following checker instantiation:

checker check(a, b, event clk = $inferred_clock);
a1: assert property(@clk a |=> b);

endchecker : check
module m(input logic clock, logic [7:0] req, ack);
// ...
always @(posedge clock) begin
for (int i = 0; i < 8; i ++)

if (i != 3) begin
// ...
check mycheck(req[i], ack[i]);

end
end

endmodule : m

According to the instantiation semantics in procedures, the checker instantiation is
conceptually equivalent to

14.8 Procedural Checker Instances 337

module m(input logic clock, logic [7:0] req, ack);
// ...
always @(posedge clock) begin
for (int i = 0; i < 8; i ++)

if (i != 3) begin
// ...
a1: assert property(req[i] |=> ack[i]);

end
end

endmodule : m

It is important that the loop variable i be automatic. If the loop in the module m were
written as:

always @(posedge clock) begin
int i; //Static lifetime
for (i = 0; i < 8; i ++)
// ...

the resulting assertion would be multiply and redundantly evaluated as

assert property(req[$sampled(i)] |=> ack[$sampled(i)]);

This is unlikely to have been intended (see also the discussion about assertion
instantiation in loops in Sect. 14.4). If for some reason it is necessary to have the
loop variable with static lifetime, the const’ cast should be explicitly applied:

check mycheck(req[const’(i)], ack[const’(i)]); ut
Example 14.30. Consider now a checker that contains procedural assertions:

checker check(a, b, c, event clk = $inferred_clock);
default clocking @clk; endclocking
always_ff @clk begin
a1: assert property(a);
a2: assert property(b |=> c);

end
endchecker : check
module m(input logic clock, ok, logic [7:0] req, ack);
// ...
always @(posedge clock) begin
for (int i = 0; i < 8; i ++)

if (i != 3) begin
// ...
check mycheck(ok, req[i], ack[i]);

end
end

endmodule : m

The checker instantiation is conceptually equivalent to the following code:

module m(input logic clock, ok, logic [7:0] req, ack);
// ...
always @(posedge clock) begin
for (int i = 0; i < 8; i ++)

if (i != 3) begin

338 14 Procedural Concurrent Assertions

// ...
end

end
always_ff @(posedge clock) begin
a1: assert property(@(posedge clock) ok); // Legal
a2: assert property(@(posedge clock) req[i] |=>

ack[i]); // Illegal
end

endmodule : m

There is only one instance of each procedural checker assertion a1, a2 regardless of
the checker instantiation in the loop. Even though the instantiation of assertion a1

is meaningful, the instantiation of a2 is not because variable i is not visible in the
context where the procedural checker assertion is rewritten. ut

The code in checker always procedures should not depend on procedural loop
control variables.

Procedural Checkers with Checker Variables

The behavior of procedural checkers containing checker variables complies with
the rules described thus far: the always procedure in a checker remains a separate
process after instantiation.

Example 14.31. Consider the following instantiation of checker
stable_for_two_ticks defined in Example 9.19:

module m(input logic clock, reset, logic [7:0] en, ...);
default disable iff reset;

logic cond;
logic [7:0] driver;
// ...
always @(posedge clock) begin
for (int i = 0; i < 7; i++) begin

if (en[i] && cond) begin
driver[i] <= ...;
stable_for_two_ticks check_driver(driver[i]);

end
end

end
endmodule : m

This is roughly equivalent to the following code:

module m(input logic clock, reset, logic [7:0] en, ...);
default disable iff reset;
logic cond;
logic [7:0] driver;
bit toggle = 1’b0;

14.8 Procedural Checker Instances 339

// ...
always @(posedge clock) begin
for (int i = 0; i < 7; i++) begin

if (en[i] && cond) begin
driver[i] <= ...;
a1: assert property (!toggle |-> $stable(driver[i]));

end
end

end
always @(posedge clock)
toggle <= reset ? 1’b0 : !toggle;

endmodule : m

As usual, the real names toggle and a1 have a different hierarchy than in
the inlined version of the checker. Also, the non-blocking assignment to checker
variable toggle is performed in the Reactive region, and not in the Active region as
in modules.

The resulting assertion a1 remains in the scope of the for-loop. In fact, this
assertion is checked for all indices i for which en[i] && cond is true. The
assignment of the checker variable toggle is performed in a separate process, and
does not depend on the values of i and the condition en[i] && cond.

Checker stable_for_two_ticks may be safely instantiated in a procedural
loop because the checker variable does not depend on the loop control variables.
Otherwise, the checker instantiation in the loop would be illegal. ut

If a checker is instantiated in procedural loop, its variables should not depend
on the loop control variables.

Clock Inference in Checker Procedures

Consider the following checker:

checker mycheck(a, event clk);
always_ff @clk begin
a1: assert property (a);

end
endchecker : mycheck

Will a clock be inferred for a1 from the checker procedural context of the
always_ff? It depends on the actual argument passed to the formal argument clk.
The Rule of Clock Inferencing cannot be applied to @clk. It must instead be applied
after the substitution of the actual argument for clk from the instance of mycheck.
If, for example, the actual argument of clk is posedge clock, then always @clk

becomes always @(posedge clock). From the Rule of Clock Inferencing it
follows that in this case the assertion infers its clocking event from the always

procedure. Suppose now that the actual argument of clk is just clock, where
clock is not an event variable or clocking block event, hence not an inferable event

340 14 Procedural Concurrent Assertions

expression. Then always @clk becomes always @clock after substitution, and the
assertion clock cannot be inferred from the procedural context of the always. The
assertion might still get its clock otherwise, as from a default clock that applies in
the context of the checker declaration.

Example 14.32. In the following checker, the inferred clock for assertion a1 is
posedge clk.

checker check1(a, clk);
always_ff @(posedge clk)
a1: assert property(a);

endchecker : check1

This inference is due to the structure of the checker itself. The event control of the
checker procedure is an edge expression posedge clk. ut
Example 14.33. Consider checker check2 and its instantiations c1 through c5:

checker check2(a, event clk = $inferred_clock);
always_ff @clk
a2: assert property(a);

endchecker : check2
module m(input logic clock, b, ...);
// ...
check2 c1(b, posedge clock);
check2 c2(b, clock); // Illegal
always @(edge clock) begin: B1
check2 c3(b);

end
always @(edge clock or negedge b) begin: B2
check2 c4(b, edge clock);
check2 c5(b); // Illegal

end
endmodule : m

Assume that no default clock applies to the checker or within the module.
The clock of assertion a2 inferred in the instance c1 is posedge clock since

this is the actual argument passed to clk and it is inferable.
Instance c2 will not compile since the actual argument corresponding to clk is

clock, which is not inferable. In the absence of a default clock, c2.a2 remains
unclocked.

The clock edge clock is inferred for procedural block B1, so this clock is
passed through $inferred_clock as default actual argument to clk in instance
c3. edge clock is then inferred for the always_ff procedure in check2 and is the
clock for c3.a2.

No clock is inferred for procedural block B2 because edge clock and
negedge b are both valid inferable event expressions, so uniqueness is violated
in the Rule of Clock Inferencing. The instance c5 is therefore illegal because there
is no actual argument for clk. ut

14.8 Procedural Checker Instances 341

Exercises

14.1. Add some procedural assertions to represent your understanding of the intent
of following code examples.

1. module m #(W=8, D=32) (
input logic clk,
input logic [W-1:0] d_in,
output logic [W-1:0] d_out

);
logic [D*W-1:0] sh;
assign d_out = sh[D*W-1:(D-1)*W];
always @(posedge clk) begin

sh <= {sh[(D-1)*W-1:0], d_in};
end

endmodule : m

2. typedef logic[31:0] natT;
module m (

input logic clk, rst_n, load, incr,
input natT a_in, b_in,
output natT d_out

);
natT a, b;
assign d_out = a;
always @(posedge clk or negedge rst_n) begin

if (!rst_n) begin
a <= 0;
b <= 0;

end else if (load) begin
a <= a_in;
b <= b_in;

end else if (incr) begin
a <= a + b;
b <= a;

end
end

endmodule : m

14.2. For each of the following procedures, determine whether or not a clock is
inferred. If so, give the inferred clock. If not, explain why not. Assume the following
declarations throughout:

logic clk, en, rst_n;
logic [7:0] a, b, d_in;
event ev;
clocking CLK @(posedge clk); endclocking

1. always @(edge clk) begin
a <= d_in;
A_STABLE: assert (a != d_in)

342 14 Procedural Concurrent Assertions

else $display("d_in=%h, clk=%b", d_in, clk);
end

2. always @(edge clk) begin
if (clk)

a <= a_in;
else

b <= a_in;
end

3. always @((posedge clk iff en) or negedge rst_n) begin
if (!rst_n)

a <= 0;
else if (!en) $error("en expected");
else

a <= d_in;
end

4. always @((posedge clk iff en) or negedge rst_n) begin
if (!en) $error("en expected");
else

a <= d_in;
end

5. always @(posedge clk) begin
a <= d_in;
@(negedge clk) b <= d_in;

end

6. always @(ev iff en) begin
a <= d_in;

end

7. always @(CLK or negedge rst_n) begin
if (!rst_n)

a <= 0;
else

a <= a_in;
end

8. always @(CLK or (ev iff en)) begin
a <= a_in;

end

14.3. A shift register sh has data width W and depth D. Whenever load is true, the
entries of sh shift up one index, with new data shifted into entry sh[0] from d_in

and the last data in entry sh[D-1] shifted out to d_out. Code for the shift register
is shown below:

logic clk, load;
logic [W] d_in, d_out;
logic [D][W] sh;

14.8 Procedural Checker Instances 343

always @(posedge clk) begin
if (load) begin

sh[0] <= d_in;
for(int i=1; i<D; i++)

sh[i] <= sh[i-1];
d_out <= sh[D-1];

end
end

1. Write a procedural concurrent assertion to check that if load is true, then the
current value in position j of the shift register is the next value in position j+1,
where j ranges from 0 to D-2.

2. Write a procedural concurrent assertion to check that after D+1 occurrences of
load, d_out holds the value that was originally in d_in. [Hint: Use const cast
to capture the value of d_in when your assertion is invoked.]

14.4. In Example 14.18, what assertion evaluation results in a time step in which
c1_long changes value from true to false? Be sure to consider that the change in
c1_long may be neither the first nor the last event in the time step that triggers
procedural block B2.

14.5. Consider the following variant of Example 14.21:

always @(*) begin: B1
a <= a_in;
a_1: assert property (@(posedge clk) a == const’(a_in));
@(edge clk) b <= b_in;
a_2: assert property (@(posedge clk) b == const’(b_in));

end

Describe scenarios in which triggering B1 causes:

1. An instance of a_1 that gets purged and an instance of a_2 that matures.
2. An instance of a_1 that matures and an instance of a_2 that gets purged.
3. Instances of a_1 and a_2 that both mature.
4. Instances of a_1 and a_2 that both get purged.

14.6. Consider the following checker declaration:

checker chk(a, b, event ev = $inferred_clock);
a1: assert property(@ev a);
always_ff @ev begin

a2: assert property(b);
end

endchecker : chk

For each of the following instances of checker chk, either give a rewrite that is
conceptually equivalent and eliminates the checker instance or explain why the
checker instance is illegal.

1. always @(posedge clk) begin
A <= A_in;

344 14 Procedural Concurrent Assertions

B <= B_in;
chk chk_1(A, B);

end

2. always @(posedge clk) begin
for (int i=0; i<8; i++) begin

A[i] <= A_in[i];
chk chk_2(A[i], B);

end
B <= B_in;

end

3. always @(posedge clk) begin
automatic logic T <= B_in;
A <= A_in;
chk chk_3(A, T);

end

4. always @(posedge clk or negedge B_in) begin
A <= A_in;
B <= B_in;
chk chk_4(A, B);

end

5. always @(posedge clk or negedge B_in) begin
A <= A_in;
B <= B_in;
chk chk_5(A, B, posedge clk or negedge B_in);

end

6. always @(posedge clk or negedge rst_n) begin
A <= A_in;
B <= B_in;
chk chk_6(A, B);

end

Chapter 15
An Apology for Local Variables

Local color has a fatal tendency to remain local; but it is also
true that the universal often borders on the void.

— DuBose Heyward and Hervey Allen

Local variables are a powerful feature of SystemVerilog Assertions that enable an
assertion to capture the value of an expression at a specified point in its evaluation
and store that value for later reference, perhaps after further modification. This
feature makes the encoding of many assertions much easier and helps to eliminate
the need for auxiliary state machines to support assertions.

A local variable must be declared within the declaration of a named sequence
or property, and the scope of a local variable does not extend outside the sequence
or property in which it is declared. Local variables are, therefore, not a first-class
construct of SVA. Each evaluation attempt of a named sequence or property has its
own copies of the local variables declared within it. In this sense, local variables are
“local” to these individual evaluation attempts.

This chapter gives an intuitive introduction to local variables based on examples.
For each example, an alternative encoding is shown that does not use local variables.
By comparing the encodings, the reader should gain an appreciation for the
semantics and, in most cases, the benefits of local variables. Throughout this chapter,
we assume that all assertions are clocked at posedge clk and that there is a default
clocking specification.

The examples described in this chapter can be implemented naturally as checkers.
However, in order to make the study of local variables independent of checkers,
we have rendered all the examples as modules or module fragments. Section 9.1
contains a detailed discussion of both module- and checker-based implementations
of the sequential protocol of Sect. 15.2. Exercise 15.11 explores checker-based
implementation of the protocols of this chapter.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__15

345

346 15 An Apology for Local Variables

15.1 Fixed Latency Data Pipeline

To get started, suppose that there is a fixed latency data pipeline whose data checking
requirement is specified by the following English:

1. start is a signal of type logic. dataIn and dataOut are signals of type
dataType.

2. LATENCY is a positive integer parameter.
3. Whenever start is high, dataIn is valid.
4. The value of dataIn when start is high must equal the value of dataOut

LATENCY cycles later.

The specification can be encoded without using local variables as shown in
Fig. 15.1.

By using $past(dataIn,LATENCY), one should expect performance in simula-
tion and formal verification to be similar to that of encoding a cascade of LATENCY
delay variables of type dataType. If LATENCY equals three, then the cascade of delay
variables is

dataType dataIn_D1, dataIn_D2, dataIn_D3;
always @(posedge clk) begin

dataIn_D1 <= $sampled(dataIn);
dataIn_D2 <= dataIn_D1;
dataIn_D3 <= dataIn_D2;

end

and the reference to $past(dataIn,LATENCY) is like a reference to dataIn_D3

(see also the discussion of $past in Sect. 7.2.1.2).
Using a local variable, the pipeline data check can be encoded as shown in

Fig. 15.2. The local variable data of type dataType is declared on Line 2 within

a_pipeline_data_check: assert property (
start
|->
##LATENCY dataOut == $past(dataIn, LATENCY)

);

Fig. 15.1 Encoding of pipeline data check without local variables

1 property p_pipeline_data_check;
2 dataType data;
3 (start, data = dataIn)
4 |->
5 ##LATENCY dataOut == data;
6 endproperty
7 a_pipeline_data_check: assert property (p_pipeline_data_check);

Fig. 15.2 Encoding of pipeline data check with a local variable

15.2 Sequential Protocol 347

the declaration of property p_pipeline_data_check. Local variable declarations
follow the same format as other variable declarations in SystemVerilog. Line 3 is
an example of attaching a local variable assignment to a Boolean expression. The
Boolean start is separated from the local variable assignment data = dataIn by
a comma, and the two are enclosed in parentheses. (start, data = dataIn) is a
sequence (not a Boolean) with the following meaning:

• The value of start is tested when evaluation of the sequence begins.
• If the value of start is high, then the value of dataIn is assigned to the local

variable data and the sequence matches at that point.
• Otherwise, the sequence fails to match and no assignment to the local variable
data occurs.

If start is high when evaluation of p_pipeline_data_check begins, then the
value of dataIn is assigned to data and the antecedent of the implication |-> in
Line 4 matches. Therefore, the consequent specified in Line 5 must match. Line 5
says that LATENCY cycles should be advanced and then the value of dataOut must
equal the value stored in the local variable data. In summary, when start is high,
the value of dataIn is captured in the local variable data, and this value is compared
LATENCY cycles later to the value of dataOut.

From a data storage perspective, the simulation performance of the encoding with
the local variable should never be worse than that of the encoding using $past. This
is because at most LATENCY threads of evaluation of p_data_pipeline_LATENCY
can be active simultaneously, each with its own copy of the local variable data.
The storage needed for the local variable encoding varies in direct proportion to the
frequency of occurrences of start, while the storage needed for the encoding using
$past is fixed by the parameter LATENCY.

15.2 Sequential Protocol

Now let us switch from a fixed latency pipeline to a protocol that is sequential in
the sense that its transactions do not overlap. This is the same protocol that was
discussed in Sect. 9.1. We repeat here, with minor modifications, the sequential
protocol description and the module-based implementation without local variables.

In the sequential protocol, there is not a constant latency from dataIn to
dataOut. Instead, a Boolean signal complete determines when dataOut is valid.
Here is the English description:

1. start and complete are signals of type logic. dataIn and dataOut are signals
of type dataType.

2. Whenever start is high, dataIn is valid. Whenever complete is high, dataOut
is valid.

348 15 An Apology for Local Variables

1 a_no_start: assert property (
2 start |=> !start throughout complete[->1]
3);
4 a_no_complete: assert property (
5 complete |=> !complete throughout start[->1]
6);
7 initial
8 a_initial_no_complete: assert property (
9 !complete throughout start[->1]

10);

Fig. 15.3 Encoding of control part of sequential protocol

3. If start is high, then the value of dataIn at that time must equal the value of
dataOut at the next strictly subsequent cycle in which complete is high.

4. If start is high, then start must be low in the next cycle and remain low until
after the next strictly subsequent cycle in which complete is high.

5. complete may not be high unless start was high in a preceding cycle and
complete was not high in any of the intervening cycles.

The last two English rules specify that the protocol is sequential. Let us say that
a Boolean occurs if it is high. Then these rules say that a second start cannot
occur until after the complete for the first start occurs, and an occurrence of
complete corresponds to the nearest preceding occurrence of start. A transaction
spans the set of cycles from an occurrence of start to its corresponding occurrence
of complete, and two transactions do not overlap.

Note that this specification decomposes into a control part, which ensures the
sequential pairing of occurrences of start and complete, and a data part, which
checks the data correspondence between dataIn and dataOut for each such pair.
The control part of the specification does not involve data or local variables and can
be encoded as shown in Fig. 15.3.

Assertion a_no_start checks Rule 4. Rule 5 is checked by a_no_complete

and a_initial_no_complete. The first two assertions are symmetric in start

and complete, while the last is not. Since the last assertion is within an initial

procedure, only one evaluation attempt of a_initial_no_complete is begun at
the first occurrence of the clocking event. That evaluation checks that there is no
occurrence of complete until after the first occurrence of start.

Now let us move to the data part of the specification and begin without using local
variables. Since the latency from an occurrence of start to the next subsequent
occurrence of complete is not fixed, $past will not work. The value of dataIn at an
occurrence of start needs to be stored somewhere, though, since otherwise it is lost
and the comparison with dataOut cannot be made. Since the protocol is sequential,

15.3 FIFO Protocol 349

1 dataType last_dataIn;
2 always @(posedge clk)
3 if ($sampled(start))
4 last_dataIn <= $sampled(dataIn);
5 a_seq_data_check: assert property (
6 start ##1 complete[->1]
7 |-> dataOut == last_dataIn
8);

Fig. 15.4 Encoding of sequential protocol data check without local variables

1 property p_seq_data_check;
2 dataType data;
3 (start, data = dataIn) ##1 complete[->1]
4 |-> dataOut == data;
5 endproperty
6 a_seq_data_check: assert property (p_seq_data_check);

Fig. 15.5 Encoding of sequential protocol data check with a local variable

one auxiliary storage variable can be used to hold the value of dataIn from the
nearest preceding occurrence of start. Figure 15.4 shows such an encoding.1

Using local variables, we can follow the same data capture idiom from the
pipeline data check. The encoding is shown in Fig. 15.5. Note the similarity between
Lines 6 and 7 from Fig. 15.4 and Lines 3 and 4 from Fig. 15.5.2 The encoding with
local variables avoids the auxiliary modeling code to define how last_dataIn is
updated, and it makes clear the timing of the data capture because the local variable
assignment data = dataIn is attached to the Boolean start.

15.3 FIFO Protocol

Next, let us generalize the sequential protocol to a FIFO (i.e., in-order) protocol by
allowing multiple occurrences of start prior to the next occurrence of complete
and multiple occurrences of complete before the next occurrence of start. The
occurrences of start and complete pair up by order, so that for each n � 1, the

1The use of $sampled specifies that sampled values of start and dataIn are used in
the always procedure, maintaining consistency with the implicit use of sampled values in
a_seq_data_check. See the detailed discussion in Sect. 9.1.1.
2The antecedent written in Line 6 of Fig. 15.4 is more verbose than the one in Line 22 of Fig. 9.4.
This has been done to help highlight the similarities of the code in Figs. 15.4 and 15.5.

350 15 An Apology for Local Variables

1 bit [0:$clog2(MAX_OUTSTANDING)] outstanding;
2 initial
3 outstanding <= ’0;
4 always @(posedge clk)
5 outstanding <= outstanding + $sampled(start - complete);

Fig. 15.6 Encoding of the number of outstanding transactions

nth occurrence of start pairs with the nth occurrence of complete. Here are the
English rules:

1. start and complete are signals of type logic. dataIn and dataOut are signals
of type dataType.

2. Whenever start is high, dataIn is valid. Whenever complete is high, dataOut
is valid.

3. MAX_OUTSTANDING is a positive integer parameter.
4. start may be high if and only if complete is not high and the number of

preceding occurrences of start minus the number of preceding occurrences of
complete is less than MAX_OUTSTANDING.

5. complete may be high if and only if start is not high and the number of
preceding occurrences of start minus the number of preceding occurrences of
complete is positive.

6. For all n � 1, at the nth occurrence of complete, the value of dataOut must
equal the value of dataIn at the nth occurrence of start.

As with the sequential protocol, this specification decomposes into a control part,
governing the signals start and complete, and a data part. The control part of the
specification must keep track of the difference between the number of preceding
occurrences of start and the number of preceding occurrences of complete.
Let us call this difference the number of outstanding transactions. One way to keep
track of this number is to encode an auxiliary variable to store it. Figure 15.6 shows
how this can be done.

Line 1 references the $clog2 system function, which returns the ceiling of the
base-2 logarithm of its argument. This declaration ensures that outstanding has
enough bits to store the number MAX_OUTSTANDING (see Exercise 15.3). (Question:
Why is it important that outstanding be able to store MAX_OUTSTANDING?) The
always procedure updates outstanding, incrementing it whenever start occurs
and decrementing it whenever complete occurs. Of course, if start or complete
does not obey the control part of the specification, then outstanding may overflow
or underflow.

Using outstanding, the control part of the FIFO protocol specification can be
encoded as shown in Fig. 15.7. Without using local variables, the various values of
dataIn for the outstanding transactions need to be stored in some data structure. A
bounded queue of maximum size MAX_OUTSTANDING is a good choice because of the
in-order pairing of corresponding occurrences of start and complete. Figure 15.8

15.3 FIFO Protocol 351

1 a_start_valid: assert property (
2 start |-> !complete && outstanding < MAX_OUTSTANDING
3);
4 a_complete_valid: assert property (
5 complete |-> !start && outstanding > 0
6);

Fig. 15.7 Encoding of control part of FIFO protocol

1 dataType dataQ[$:MAX_OUTSTANDING-1] = {};
2 always @(posedge clk)
3 if ($sampled(start))
4 dataQ.push_back($sampled(dataIn));
5 else if ($sampled(complete))
6 dataQ.pop_front;
7 a_fifo_data_check: assert property (
8 complete |-> dataOut == dataQ[0]
9);

Fig. 15.8 Encoding of FIFO protocol data check without using local variables

shows the declaration and management of such a queue, as well as the simple data
check assertion that references it.

Note the use of the built-in queue methods push_back in Line 4 and pop_front

in Line 6. Because of this update policy, the data needed for comparison with
dataOut at the next occurrence of complete is always in dataQ[0], which is
referenced in the assertion in Line 8. The execution of pop_front in Line 6 does not
lose the data needed for the comparison in Line 8 because the reference to dataQ[0]

within the assertion is to the sampled value, which is not affected by the execution
of the queue method in the same time step.

Using local variables, the same data capture idiom we have seen for the pipeline
and sequential protocol examples continues to work. The challenge is to determine
when the corresponding complete occurs. To accomplish this, we capture not only
dataIn when start occurs, but also the value of outstanding. The value of
outstanding determines how many occurrences of complete must be skipped
before arriving at the occurrence of complete at which the data comparison should
be performed. As occurrences of complete are observed, they are accounted for so
that the assertion detects when the corresponding complete occurs. An encoding
following this approach is shown in Fig. 15.9.

Property p_fifo_data_check has two local variables, data declared in Line 2
and numAhead declared in Line 3. The type of numAhead is the same as that of
outstanding. In general, any number of local variables may be declared within
the declaration of a named sequence or property. In Line 4, two local variable
assignments are attached to the Boolean start. The first stores the value of dataIn
in the local variable data, just as we have seen before. The second stores the value of
outstanding in the local variable numAhead. If multiple local variable assignments
need to be performed on successful test of a Boolean, then the assignments are
simply separated by commas and are performed in the order in which they are
written. When Line 4 completes, numAhead holds the number of occurrences of
complete that need to be skipped before arriving at the occurrence of complete

352 15 An Apology for Local Variables

1 property p_fifo_data_check;
2 dataType data;
3 bit [0:$clog2(MAX_OUTSTANDING)] numAhead;
4 (start, data = dataIn, numAhead = outstanding)
5 ##1 (numAhead > 0 ##0 complete[->1], numAhead--)[*]
6 ##1 (numAhead == 0 ##0 complete[->1])
7 |->
8 dataOut == data;
9 endproperty

10 a_fifo_data_check: assert property (p_fifo_data_check);

Fig. 15.9 Encoding of FIFO protocol data check using local variables

at which the data check will be performed. Lines 5 and 6 cause the evaluation to
advance to the cycle of the data check and are discussed in detail below. Finally,
Line 8 performs the simple data comparison.

Line 5 does the job of advancing the evaluation through the occurrences of
complete that need to be skipped. This line deserves careful study. It begins with
##1, which simply advances to the cycle after the occurrence of start. The rest of
the line is a repetition of zero or more occurrences of the sequence

(numAhead > 0 ##0 complete[->1], numAhead--)

Let us call this sequence the skipping sequence. The top-level structure of
the skipping sequence attaches the local variable assignment numAhead-- to the
subsequence

numAhead > 0 ##0 complete[->1]

In general, local variable assignments may be attached to any sequence that does
not admit an empty match. The assignment numAhead-- uses the decrement opera-
tor -- and behaves the same as numAhead = numAhead - 1. The subsequence to
which it is attached begins with the Boolean condition numAhead > 0, which is true
if and only if there remain occurrences of complete that need to be skipped. This
Boolean is fused via ##0 to the sequence complete[->1], which advances to the
next occurrence of complete. Each match of the skipping sequence in the repetition
therefore behaves as follows:

• Confirm that numAhead > 0, hence that there remains at least one occurrence of
complete that needs to be skipped.

• Advance to the next occurrence of complete by matching complete[->1].
• Decrement numAhead.

Because numAhead is decremented for each match in the repetition, the skipping
sequence is matched at most a number of times equal to the value that was stored
in numAhead in Line 4. In fact, as explained below, Line 6 forces the skipping
sequence to be matched exactly this number of times. It is possible that this number
is zero, meaning that no occurrences of complete need to be skipped. In this case,
no matches of the skipping sequence are possible, and the zero repetition case is
used to match Line 5.

15.4 Tag Protocol 353

Line 6 does two jobs. The first is to prevent the repetition of Line 5 from stopping
early. This is done by enforcing the Boolean condition numAhead == 0. If the
evaluation tries to proceed from Line 5 to Line 6 when numAhead > 0, then the
Boolean numAhead == 0 will be false and the evaluation must revert to Line 5 to
attempt another repetition of the skipping sequence. The second job of Line 6 is
to advance to the next occurrence of complete by matching complete[->1]. This
occurrence is the one that corresponds to the occurrence of start in Line 4 and at
which the data check should be performed.

As an intuitive summary, the matching of Lines 5 and 6 accomplishes the
following:

• While numAhead is positive, advance to the next occurrence of complete and
decrement numAhead.

• When numAhead becomes zero, advance to the next occurrence of complete and
stop.

Managing a local variable counter such as numAhead within a repetition as shown
in this example may seem daunting at first. After fully understanding a few such
patterns, the reader will acquire the skill and confidence to put them into practice.

Exercise 15.6 explores the storage requirements of the encodings of the FIFO
protocol data check with and without local variables.

15.4 Tag Protocol

In this section, we switch from an in-order protocol to an out-of-order protocol in
which two occurrences of complete do not have to be in the same order as the
corresponding occurrences start. Additional data are needed to determine which
occurrence of complete corresponds to a given occurrence of start. This protocol
uses a tag to do the matching. The signal tagIn is valid with an occurrence of start
and determines the tag of the transaction. The tag is active for that transaction while
the transaction is outstanding. The signal tagOut is valid with an occurrence of
complete, and matching of the values of tagIn and tagOut is used to define the
correspondence. While a tag is active for a transaction, it must not be reused by
another transaction. Here are the English rules:

1. start and complete are signals of type logic. dataIn and dataOut are signals
of type dataType. tagIn and tagOut are signals of type tagType.

2. Whenever start is high, dataIn and tagIn are valid. Whenever complete is
high, dataOut and tagOut are valid.

3. In each cycle, each tag value is either active or inactive, according to the
following rules:

• Every tag value begins inactive.
• If there is no occurrence of start or complete in a cycle, then no tag value

changes state in the next cycle.

354 15 An Apology for Local Variables

1 bit active[tagType];
2 always @(posedge clk)
3 if ($sampled(start)) begin
4 a_no_tag_reuse: assert final (
5 !active.exists($sampled(tagIn))
6);
7 active[$sampled(tagIn)] <= 1’b1;
8 end
9 else if ($sampled(complete)) begin

10 a_comp_tag_ok: assert final (
11 active.exists($sampled(tagOut))
12);
13 active.delete($sampled(tagOut));
14 end

Fig. 15.10 Encoding of tag protocol control check

• A tag value becomes active the cycle after an occurrence of start at which
tagIn held that value.

• A tag value becomes inactive the cycle after an occurrence of complete at
which tagOut held that value.

4. start may be high if and only if complete is not high and the value of tagIn is
inactive in that cycle.

5. complete may be high if and only if start is not high and the value of tagOut
is active in that cycle.

6. An occurrence of start corresponds to an occurrence of complete if and only
if the following conditions are all satisfied:

• The occurrence of start is strictly before the occurrence of complete.
• The value of tagIn at the occurrence of start equals the value of tagOut at

the occurrence of complete.
• There is no earlier occurrence of complete satisfying both of the two

preceding conditions.

7. If an occurrence of start corresponds to an occurrence of complete, then the
value of dataIn at that occurrence of start equals the value of dataOut at that
occurrence of complete.

The control part of the tag protocol specification is more complicated than in
our previous examples. As for the FIFO protocol, auxiliary variables can help in
encoding the control part of the specification. In the tag protocol, we need to keep
track of which tags are active. An associative array of bits can be used to do this
as shown in Fig. 15.10. This encoding uses final assertions to perform the control
checks specified in Rules 4 and 5. Note that the value associated to a tag in the
associative array active is not important, only whether or not the tag exists in the
array.

15.4 Tag Protocol 355

1 dataType data[tagType];
2 always @(posedge clk)
3 if ($sampled(start)) begin
4 a_no_tag_reuse: assert final (
5 !data.exists($sampled(tagIn))
6);
7 data[$sampled(tagIn)] <= $sampled(dataIn);
8 end
9 else if ($sampled(complete)) begin

10 a_comp_tag_ok: assert final (data.exists($sampled(tagOut))
);

11 a_data_check: assert final (
12 $sampled(dataOut) == data[$sampled(tagOut)]
13);
14 data.delete($sampled(tagOut));
15 end

Fig. 15.11 Encoding of tag protocol control and data check

1 property p_tag_data_check;
2 tagType tag;
3 dataType data;
4 (start, tag = tagIn, data = dataIn)
5 ##1 (complete && tagOut == tag)[->1]
6 |-> dataOut == data;
7 endproperty
8 a_tag_data_check: assert property (p_tag_data_check);

Fig. 15.12 Encoding of tag protocol data check using local variables

Without using local variables, a similar associative array can be used to store
the data values for the active tags. This array keeps track of which tags are active
and their associated data, so the active array is no longer needed in this approach.
Another final assertion can perform the data check specified in Rule 7. Such an
encoding is shown in Fig. 15.11.

The data check can be encoded using local variables in a style similar to that
of the FIFO data check with local variables, as shown in Fig. 15.12. At start, the
property captures the values of both tagIn and dataIn in the local variables tag

and data. The property then advances to the nearest occurrence of complete at
which tagOut equals the value stored in tag, and at that point compares dataOut
to the value stored in data. This encoding still relies on the final assertions in
Fig. 15.10 to perform the control checks.

Associative arrays are convenient for encoding the checks of the tag protocol, but
because of their dynamic and unbounded nature, they will typically not be supported
in formal verification tools. To provide an encoding for formal verification, the
auxiliary variables should be declared in a way that is explicitly bounded. If the
number of tag values is not too large, then the active associative array can be

356 15 An Apology for Local Variables

1 bit active[0:MAX_TAG];
2 initial
3 active <= ’0;
4 always @(posedge clk)
5 if ($sampled(start))
6 active[$sampled(tagIn)] <= 1’b1;
7 else if ($sampled(complete))
8 active[$sampled(tagOut)] <= 1’b0;
9 a_no_tag_reuse: assert property (start |-> !active[tagIn]);

10 a_comp_tag_ok: assert property (complete |-> active[tagIn]);

Fig. 15.13 Encoding of tag protocol control check without associative arrays

recoded as a bounded array. For simplicity, suppose that the tag values range from
0 to MAX_TAG. Then the array of active bits can be encoded as shown in Fig. 15.13.
There we use concurrent assertions to illustrate a coding style suitable for formal
verification.3 The code of this figure, together with that of the data check using
local variables shown in Fig. 15.12, gives a complete encoding of the tag protocol
checks suitable for formal tools.

If the number of tag values times the number of bits needed to store a data value
is also not too large, then a similar bounded array of elements of type dataType can
be used to store the data of the active transactions, replacing the associative array of
Fig. 15.11.

In practice, it may be that the number of tag values or the product of the number
of tag values times the number of bits needed to store a data value will be too large
for static allocation and formal verification. If the number of active transactions can
be bounded by a number significantly smaller than the number of tags, then smaller
arrays that store the tag and data values for each active transaction can be encoded.
Such arrays are essentially RTL implementations of bounded associative arrays.

Suppose that the positive integer parameter MAX_ACTIVE is an upper bound for
the number of simultaneously active transactions. Figure 15.14 shows an encoding
of the tag protocol control checks assuming this bound. Line 1 defines indexType,
which can store values from 0 through MAX_ACTIVE (cf. Exercise 15.3). An array
tags indexed from 0 to MAX_ACTIVE is used to store the tags of the active
transactions. Each element of the array has a validity bit (valid) and a tag data field
(activeTag). If the validity bit is 1’b1, then the tag data field stores the value of an
active tag. If the validity bit is 1’b0, then the tag data field is not meaningful and that
position in the array is considered free. The data for an element are organized in a
structure (Line 2) with type name extendedTagType (Line 5). In Line 6 the array of
structures is declared with a declaration assignment initializing its elements to zero.
The expression ’{default: ’{1’b0, ’0}} is an assignment pattern that says that
each element in the array is initialized to value ’{1’b0, ’0}, which in turn specifies
that the valid member of the structure gets value 1’b0 and the activeTag member
of the structure gets value ’0. The assignment pattern accomplishes initialization

3A formal tool may also accept procedural concurrent assertions or final assertions.

15.4 Tag Protocol 357

1 typedef bit[0:$clog2(MAX_ACTIVE)] indexType;
2 typedef struct {
3 bit valid;
4 tagType activeTag;
5 } extendedTagType;
6 extendedTagType tags[0:MAX_ACTIVE] = ’{default: ’{1’b0, ’0}};
7

8 function automatic indexType freeIndex;
9 for (indexType i=0; i < MAX_ACTIVE; i++)

10 if (!tags.valid[i]) return i;
11 return MAX_ACTIVE; // no free index
12 endfunction : freeIndex
13

14 function automatic indexType tagIndex (tagType tag);
15 for (indexType i=0; i < MAX_ACTIVE; i++)
16 if (tags.valid[i] && tags.activeTag[i] == tag)
17 return i;
18 return MAX_ACTIVE; // tag not found
19 endfunction : tagIndex
20

21 always @(posedge clk)
22 if ($sampled(start))
23 tags[freeIndex] <= ’{1’b1, $sampled(tagIn)};
24 else if ($sampled(complete))
25 tags.valid[tagIndex($sampled(tagOut))] <= 1’b0;
26

27 a_no_tag_reuse: assert property (
28 start
29 |-> tagIndex(tagIn) == MAX_ACTIVE // tagIn not found
30);
31 a_comp_tag_ok: assert property (
32 complete
33 |-> tagIndex(tagOut) < MAX_ACTIVE // tagOut found
34);

Fig. 15.14 Encoding of tag protocol control check with bound on number of active transactions

of the array without explicitly enumerating values or iterating over indices.4 We
allocate MAX_ACTIVE+1, and not just MAX_ACTIVE, array elements and reserve the
top element as a sink in case our assumed bound on the number of active transactions
is violated.

The auxiliary function freeIndex returns the smallest index that is not currently
storing a tag, if there is one. Otherwise, it returns MAX_ACTIVE. The auxiliary
function tagIndex returns the smallest index of the entry that is currently storing

4The initialization could be skipped because the valid members are of data of type bit, which
is initialized by default to 1’b0. The explicit initialization clarifies the intention. The initial values
of the activeTag members are not important. Note also that only the first MAX_ACTIVE entries
of the array need be initialized.

358 15 An Apology for Local Variables

a tag and whose activeTag field is equal to the function’s argument tag. If the
tag protocol control checks are satisfied, then there will be at most one such index.
If there is no such index, then the function returns MAX_ACTIVE. These functions
have been declared with automatic lifetime to guard against undesired contention
on their internal loop counter variables in the event of multiple calls in the same
time step.

A similar array can be encoded to store the data values for the active transactions
and used to encode the tag protocol data check in a way that is suitable for formal
verification. See Exercise 15.9. The complexity of the data management in such
arrays is striking in comparison with the simplicity of the data check using local
variables.

15.5 FIFO Protocol Revisited

This section shows an alternative encoding of the FIFO protocol control and data
checks that uses only local variables.

The encoding with local variables from Sect. 15.3 makes use of only one nonlocal
variable, namely, outstanding as defined in Fig. 15.6. Thus, the present encoding

1 typedef bit [0:$clog2(MAX_OUTSTANDING)] counterType;
2 property p_fifo_data_check(local input counterType numAhead);
3 dataType data = dataIn;
4 ##1 (numAhead > 0 ##0 complete[->1], numAhead--)[*]
5 ##1 (numAhead == 0 ##0 complete[->1])
6 |->
7 dataOut == data;
8 endproperty
9 property p_fifo_all_checks;

10 counterType outstanding, nextOutstanding = ’0;
11 (
12 (start || complete)[->1],
13 outstanding = nextOutstanding,
14 nextOutstanding += start - complete
15)[+]
16 |->
17 if (start) (
18 (!complete && outstanding < MAX_OUTSTANDING)
19 and p_fifo_data_check(.numAhead(outstanding))
20) else (// complete
21 !start && outstanding > 0
22);
23 endproperty
24 initial
25 a_fifo_all_checks: assert property (p_fifo_all_checks);

Fig. 15.15 Encoding of all FIFO protocol checks using only local variables

15.5 FIFO Protocol Revisited 359

needs to keep track of the number of outstanding transactions internally by using
local variables. This encoding is shown in Fig. 15.15.

The style of this encoding is somewhat more complicated than those shown in
Sect. 15.3, although each of its parts corresponds to a part of the encoding using
local variables that appears in that section. This encoding uses a typedef on
Line 1 to provide the type counterType that simplifies the declarations on Lines 2
and 10. The top-level property p_fifo_all_checks is responsible for accounting
for the number of outstanding transactions, performing the control checks, and
calling property p_fifo_data_check to perform the data check. The accounting
of the number of transactions is done in the repetition in Lines 11–15, and this
approach, which will be explained in more detail below, assumes that there is
only one evaluation attempt of p_fifo_all_checks running. For this reason the
assertion a_fifo_all_checks on Line 24 appears in an initial procedure. See
Exercise 15.7.

The data checking property p_fifo_data_check is very similar to the property
of the same name from Sect. 15.3, so we focus on the differences. In Line 2,
numAhead is declared as a formal argument. The keywords local input in this
declaration specify that the formal argument numAhead is in fact a local variable
that will receive an initial value from its actual argument. p_fifo_all_checks
computes the value of outstanding in Line 13 and passes it in to numAhead through
the instantiation in Line 19. In all other respects, numAhead behaves the same here as
it did in Sect. 15.3. In Line 3, the local variable data is declared, and the declaration
includes a declaration assignment to the value of dataIn. The meaning of this
assignment is that whenever evaluation of p_fifo_data_check begins, the copy
of data for that evaluation begins with the value of dataIn at that time. Line 17
guarantees that p_fifo_data_check is called only when start occurs, so dataIn

is valid whenever the declaration assignment of Line 3 is performed. The rest of
p_fifo_data_check is identical to the encoding from Sect. 15.3 and behaves the
same.

The structure of p_fifo_all_checks is an implication whose antecedent is an
unbounded repetition (Lines 11–15) and whose consequent enforces the control
checks (Lines 18 and 21) and the data check (Line 19). There are two local variables,
outstanding and nextOutstanding, both declared in Line 10. The reason for
having two local variables will be explained below. Note that nextOutstanding is
declared with a declaration assignment to the value ’0. This assignment corresponds
to the nonblocking assignment on Line 3 of Fig. 15.6.

The repetition in Lines 11–15 uses a pattern similar to the decrementing counter
from Line 5 of Fig. 15.9. In this case, successive iterations of the repetition match
each time a start or complete occurs. The assignments in Lines 13 and 14
are executed for each iteration and are performed in the order that they appear.
The assignment to nextOutstanding is analogous to Line 5 of Fig. 15.6 and
accomplishes the basic accounting of the number of outstanding transactions.

The reason for using the two local variables is that when outstanding is
declared as a static variable as in Sect. 15.3, references to it from within sequences
and properties resolve to the sampled value for that cycle. On the contrary, when

360 15 An Apology for Local Variables

outstanding is declared as a local variable, then any assignment to it is imme-
diately visible to subsequent parts of the sequence or property. Thus, the present
encoding uses nextOutstanding to compute the new number of outstanding
transactions, and outstanding is assigned the old value of nextOutstanding

just before nextOutstanding is updated. The result is that the local variable
outstanding has the same timing as the static variable from Sect. 15.3. Of course,
the local variable outstanding can be eliminated from p_fifo_all_checks (see
Exercise 15.8). An alternative encoding using recursive properties also avoids the
use of two local variables (see Fig. 17.11).

15.6 Tag Protocol Revisited

This section shows two alternative encodings of the tag protocol control and data
checks using local variables. One uses a single-bit auxiliary static variable, and the
other requires no auxiliary static variable. These encodings also do not rely on the
existence of the small bound, MAX_ACTIVE, on the number of active transactions.

15.6.1 Tag Protocol Using a Single Static Bit

An encoding of the tag protocol control and data checks using local variables and
a single-bit auxiliary static variable is shown in Fig. 15.16. It is unlikely that this
encoding is supported in current formal verification tools because assignment to the
static variable is done within a task that is called from within a property. Neverthe-
less, there is nothing in the encoding that is essentially beyond the capabilities of
formal verification tools. Its simplicity and elegance stand in contrast to the more
cumbersome data management of the encodings that rely on MAX_ACTIVE (e.g., as
shown in Fig. 15.14 and explored in Exercise 15.9).

Property p_start_and_data_checks captures the values of tagIn and dataIn

in the local variables tag and data whenever start occurs (Line 11). Lines 14–16
check that, beginning in the next cycle, there is not another occurrence of start
with the same tag until after the nearest occurrence of complete with the same
tag. These lines enforce the rule that an active tag cannot be reused, as specified
in Rule 4 of the tag protocol. When the corresponding complete occurs, Line 19
compares dataOut with the local variable data. This comparison performs the data
check specified in Rule 7 of the tag protocol.

It remains to explain how this encoding performs the check specified in Rule 5:
complete may occur only if tagOut is an active tag. To gain some insight into why
checking Rule 5 is more difficult than checking the Rule 4, it is helpful to note that
there is an incomplete symmetry between start and complete in the tag protocol.
The symmetry can be described by the following statements:

15.6 Tag Protocol Revisited 361

1 bit complete_justified;
2 always @(posedge clk)
3 complete_justified = 1’b0;
4 task t_justify_complete;
5 @(negedge clk)
6 complete_justified = 1’b1;
7 endtask : complete_justified
8 property p_start_and_data_checks;
9 tagType tag;

10 dataType data;
11 (start, tag = tagIn, data = dataIn)
12 |=>
13 (
14 !(start && tagIn == tag)
15 throughout
16 (complete && tagOut == tag)[->1]
17)
18 ##0 (1’b1, t_justify_complete)
19 ##0 dataOut == data;
20 endproperty
21 a_start_and_data_checks: assert property (
22 p_start_and_data_checks
23);
24 a_complete_check: assert property (
25 complete |=> complete_justified
26);

Fig. 15.16 Encoding of all tag protocol checks using local variables and a single-bit static variable

• Once start occurs for a given tag, another start may not occur for that tag until
after complete occurs for that tag.

• Once complete occurs for a given tag, another complete may not occur for that
tag until after start occurs for that tag.

These statements can be encoded in a straightforward way using local variables:
the first is represented in Lines 11 through 17 of Fig. 15.16; for the second, see
Exercise 15.10. The asymmetry is that initially there can be a start on any tag, but
there cannot be a complete on a tag until after an occurrence of start on that tag.
Accounting for the tags for which no start has occurred is the challenging part,
and doing so explicitly is essentially encoding a data structure to represent all the
tags in a particular state, similar to the data structures discussed in Sect. 15.4.

The novelty of the present encoding is that it entirely avoids explicit
representation of such a data structure. Instead, it makes use of the fact that
there is one evaluation thread of property p_start_and_data_checks tracking
each active tag. When a complete occurs, we need to determine whether or
not there is such a thread tracking the tag value in tagOut. SystemVerilog
provides no way to query such information from a set of threads of evaluation.
Instead, p_start_and_data_checks is encoded so that the relevant thread,

362 15 An Apology for Local Variables

if it exists, announces itself. The medium of communication is the static bit
complete_justified.

The communication mechanism works as follows. In every time step in which
posedge clk occurs, the communication bit is cleared by writing the value 1’b0

into complete_justified in Line 3. This assignment does not change the sampled
value of complete_justified in that time step. If complete occurs and there is
a thread of evaluation with tag == tagOut, then that thread will finish match of
Lines 14–16 and execution will proceed to Line 18, where t_justify_complete

is called. Line 18 illustrates attachment of a subroutine call to a sequence. The
sequence in this case is just the Boolean 1’b1. Like local variable assignments,
subroutine calls may appear in such a comma-separated list, and they are scheduled
to execute in the Reactive region in the order that they appear. When it executes,
the task t_justify_complete advances to negedge clk (Line 5) and then writes
the value 1’b1 into complete_justified (Line 6). The value 1’b1 will remain in
complete_justified until after the Preponed region of the next time step in which
posedge clk occurs. Thus, a thread announces itself as justifying a complete by
causing the sampled value of complete_justified to be 1’b1 in the time step of
the next occurrence of posedge clk. Later in that time step, the value 1’b0 will
again be written into complete_justified by Line 3, clearing the communication
bit.

The assertion a_complete_check simply looks for an announcement by
requiring that complete_justified be high the cycle after each occurrence of
complete. Because the reference to complete_justified in Line 25 uses the
sampled value, it is able to see the announcement even though the communication
bit is also cleared in the same cycle. This accomplishes the validation of complete
as specified in Rule 5 of the tag protocol.

This encoding shows management of complete_justified by clearing it at
posedge clk (Line 3) and setting it at negedge clk (Line 5). Other schemes will
work provided the value 1’b1 set in task t_justify_complete persists to the
Preponed region of the time step of the next occurrence of posedge clk.

15.6.2 Tag Protocol Using Only Local Variables

In the previous solution, the mechanism for announcing the existence of a justifying
thread relies somewhat delicately on the SystemVerilog scheduling semantics in the
way the static bit complete_justified is updated. Another approach is to code
an auxiliary sequence that will match exactly when a justifying thread exists and
finishes matching Lines 14–16 of Fig. 15.16. The existence of a justifying thread
is then detected by reference to the endpoint of match of this sequence using the
sequence method triggered (see Sect. 11.2.1). No auxiliary static bit is needed.
Such an encoding is shown in Fig. 15.17.

The auxiliary sequence is s_start_and_complete. It simply mimics the tem-
poral patterns of Lines 11–18 of Fig. 15.16. In order to maximize the sharing

15.6 Tag Protocol Revisited 363

1 sequence s_start_and_complete;
2 tagType tag;
3 (start, tag = tagIn)
4 ##1 (
5 !(start && tagIn == tag)
6 throughout
7 (complete && tagOut == tag)[->1]
8);
9 endsequence

10 property p_start_and_data_checks;
11 dataType data;
12 (start, data = dataIn)
13 |->
14 s_start_and_complete
15 ##0 dataOut == data;
16 endproperty
17 a_start_and_data_checks: assert property (
18 p_start_and_data_checks
19);
20 a_complete_check: assert property (
21 complete |-> s_start_and_complete.triggered
22);

Fig. 15.17 Encoding of all tag protocol checks using only local variables

of sequential code between the auxiliary sequence and the correctness property
p_start_and_data_checks, the latter has been reorganized to instantiate the
former in Line 14 as part of the consequent of the operator |->. The result is
equivalent to the version of the property in the previous encoding. Sequence method
triggered is applied to the instance of the auxiliary sequence in Line 21. This
method converts the sequence instance into a Boolean that is true in any cycle
in which the sequence finishes a match and is false otherwise, accomplishing the
communication of the announcement.

Because there are two instances of the auxiliary sequence, this solution incurs a
nominal doubling of the local variable storage for tags as compared to the previous
encoding. A tool could mitigate or eliminate this storage overhead by recognizing
that the antecedent start of |-> in Line 12 is not restrictive on the possible matches
of s_start_and_complete in the consequent.

Exercises

15.1. Show that if the three assertions of Fig. 15.3 hold, then the following assertion
also holds:

a_mutex: assert property (!(start && complete));

364 15 An Apology for Local Variables

15.2. Suppose that the sequential protocol is relaxed to allow an occurrence of
complete to be concurrent with the corresponding occurrence of start. If this
happens, then start may occur again in the subsequent cycle.

1. Modify the precise English description of the protocol to account for this
relaxation.

2. Modify the encodings given in Figs. 15.3, 15.4, and 15.5 to align them with this
relaxation.

15.3. Show that for any positive value of MAX_OUTSTANDING that does not overflow
$clog2, the declaration of outstanding in Fig. 15.6 has enough bits to store
the number MAX_OUTSTANDING. Show that if MAX_OUTSTANDING is not a power
of two, then this declaration has more than enough bits to store the number
MAX_OUTSTANDING. Find a declaration that always allocates the minimum number
of bits required to store the number MAX_OUTSTANDING.

15.4. Will the behavior of p_fifo_data_check in Fig. 15.9 change if the ##1 in
Line 5 is changed to ##0? If so, does the new behavior correctly advance to the cycle
at which the data comparison of Line 8 needs to be performed? What happens if the
##1 in Line 6 is changed to ##0?

15.5. The encoding of p_fifo_data_check in Fig. 15.9 uses the decrementing
local variable counter numAhead. Give an alternative encoding that uses an incre-
menting local variable counter. [Hint: Use three local variables, one to capture
dataIn, another to capture outstanding, and the other to serve as the incrementing
counter.]

15.6. Assume that storage for the queue declared in Line 1 of Fig. 15.8 is
allocated at compile time. (This is likely an accurate assumption for a formal
verification tool, although it might not be accurate for a simulation tool.) Compare
the storage requirements for the encodings of a_fifo_data_check with local
variables (Fig. 15.9) and without local variables (Fig. 15.8). Consider the storage
requirements for the local variables if outstanding remains small compared to
MAX_OUTSTANDING and if outstanding becomes close to MAX_OUTSTANDING.

15.7. What will happen if the assertion a_fifo_all_checks of Fig. 15.15 is
written as a module item instead of within an initial procedure?

15.8. Show how to recode p_fifo_all_checks from Fig. 15.15 to eliminate the
local variable outstanding.

15.9. Suppose that the product of the number of tag values times the number of bits
needed to store a data value in the tag protocol is too large to allocate storage for the
data associated with every tag. Enhance the encoding shown in Fig. 15.14 to store
also the data for each active transaction. Show how to encode the tag protocol data
check without using local variables.

15.10. Write a property using only local variables that checks that once complete

occurs for a given tag, another complete may not occur for that tag until after start
occurs for that tag.

15.6 Tag Protocol Revisited 365

15.11. Implement protocol specifications provided in this chapter as checkers.
[Hint: A checker-based sequential protocol implementation was discussed in detail
in Sect. 9.1.]

Chapter 16
Mechanics of Local Variables

I think I can safely say that nobody understands quantum
mechanics.

— Richard Feynman

The previous chapter introduced local variables by illustrating their use in intuitive
and realistic examples of increasing richness. This chapter covers the mechanics of
declaring, assigning, and referencing local variables in a more complete way. Input
and output with local variables, and behavior of local variables with LTL operators,
multiple clocks, and resets are discussed.

Local variables are divided into two kinds. A body local variable is one that
is declared in the body of a named sequence or property, whereas an argument
local variable is one that is declared as a formal argument of a named sequence or
property. The second kind is especially helpful for writing recursive properties (see
Chap. 17) in which local variable values need to be passed into recursive property
instances. In most respects, local variables of both kinds behave the same, and
the term local variable is used to refer to one of either kind. Another usability
feature enables initialization of a local variable to be specified in the local variable’s
declaration.

Certain sequence and property operators (e.g., or, and, always) cause the
evaluation of an assertion to fork into subevaluation threads. Depending on the
operator and its context, the forked subevaluation threads may or may not later
join. Local variables have been designed to work well in this multithreaded setting.
When evaluation forks, each of the subevaluation threads receives its own copy of
all the local variables together with all the values currently stored in them. As the
subevaluations continue, each thread independently manages its copies of the local
variables.

Forked subevaluation threads of property operators never join back, so the local
variables in the forked threads remain independent. For a sequence operator, the
nature of the operator (or vs. and, e.g.) determines how the subevaluations join

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__16

367

368 16 Mechanics of Local Variables

when the sequence matches. A system of rules defines which local variables may
be referenced after match of that sequence. These rules ensure that a local variable
that might have inconsistent values in a thread of evaluation ensuing from the match
may not be referenced after the match until an unambiguous value is stored into it.
The rules can be checked at compile time and do not depend on the particular values
stored in the local variables in the evaluation threads.

There are mechanisms for passing values of local variables into instances of
named sequences or properties and out of instances of named sequences. Argument
local variables enable improved type checking and self-documentation of code
intent for these mechanisms.

We continue to assume that, unless otherwise specified, all assertions are clocked
at posedge clk and there is a default clocking specification.

16.1 Declaring Body Local Variables

Body local variables are declared immediately after the header of the named
sequence or property in which they appear. Here is an example:

sequence s1;
logic l_a, l_b[4];
dataType l_data;
@(posedge clk)
...

endsequence

This example declares l_a to be a local variable of type logic, l_b to be a local
variable that is an unpacked array of four elements of type logic, and l_data to be
a local variable of the user-defined type dataType. Body local variable declarations
precede the main sequence or property of the declaration. In particular, they precede
any clocking event or disable iff specified in the declaration.

The form of a body local variable declaration is a special case of the form of a
SystemVerilog variable declaration. The data type of a local variable declaration
must be explicit and must be one of the types allowed in assertion Boolean
expressions (see Clause 16.6 of the LRM [8]). The following example shows some
illegal local variable declarations.1

property p_illegal_loc_var_decl;
logic l_a, [3:0] l_b; // packed dimension not in data type
l_c; // no explicit data type
bit l_d []; // dynamic array type not allowed
...

endproperty

1Note that dynamic array elements can appear in expressions as long as the type of the expression
is cast compatible with an integral type. However a local variable itself cannot be of dynamic array
type.

16.1 Declaring Body Local Variables 369

Unlike other SystemVerilog variables, local variables have no default initial
values. A body local variable may optionally be declared with a declaration
assignment. Declaration assignments are also called initialization assignments
because in each evaluation they provide the initial values to the associated local
variables. Consider the following example:

sequence s2(logic start, b[4]);
logic l_a = 1’b0, l_b[4] = b;
dataType l_data;
@(posedge clk)
start ##1 ...

endsequence

The local variables l_a and l_b have declaration assignments. The expression on
the right-hand side of a declaration assignment can be any expression that may be
assigned to the local variable. It need not be constant. For a given evaluation of
s2, the declaration assignments are performed in the first time step in which there
is an occurrence of the leading clocking event, posedge clk. At that point, l_a
is assigned the value 1’b0 and l_b is assigned the value of the unpacked array
formal argument b. The local variable l_data, however, has no value at that point
and is said to be unassigned. If evaluation of s2 begins in a time step in which
posedge clk has occurred, then the declaration assignments are performed at that
point.2

Evaluation of the right-hand side of a declaration assignment follows the rules
for evaluation of the right-hand side of an ordinary local variable assignment, as
discussed in Sect. 16.3. The delay, as necessary, of the performance of a declaration
assignment until occurrence of the leading clocking event of the sequence or
property implies that these assignments are semantically equivalent to ordinary local
variable assignments performed at the appropriate points. For example, s2 above is
semantically equivalent to the following variant:

sequence s2_v2(logic start, b[4]);
logic l_a, l_b[4];
dataType l_data;
@(posedge clk)
(start, l_a = 1’b0, l_b[4] = b) ##1 ...

endsequence

The local variable declaration assignments have been moved and attached to the first
Boolean expression, start, of the sequence. Alternate interpretation is prefixing the
original sequence using ##0:

sequence s2_v2(logic start, b[4]);
logic l_a, l_b[4];
dataType l_data;

2In a singly clocked setting, where all timing is aligned to the same clocking event, evaluation of a
sequence or property always begins in a time step in which the clocking event has occurred.

370 16 Mechanics of Local Variables

@(posedge clk)
(1, l_a = 1’b0, l_b[4] = b) ##0 start ##1 ...

endsequence

Or, in the case of a property by using (1, l_a = 1’b0, l_b[4] = b)|-> ...

or (1, l_a = 1’b0, l_b[4] = b)#-#
Declaration assignments are performed in the order that they appear, so there can

be dependency of the right-hand side of a later assignment on a local variable whose
declaration assignment is performed previously. It is illegal, though, for the right-
hand side of the later assignment to depend on a local variable for which there
is no declaration assignment. Here is an example of legal declaration assignments
illustrating such a dependency:

property p1(byte data);
byte l_byte = data, l_byteMasked = l_byte & mask;
...

endproperty

When the declaration assignments are performed, l_byte is first assigned the value
of data, and then l_byteMasked is assigned the bitwise-and of the value just
assigned to l_byte and the value of mask. The following example shows illegal
declaration assignments:

property p1_illegal;
byte l_byte, l_byteMasked = l_byte ^ mask;
...

endproperty

The declaration assignments are illegal because the right-hand side of the
assignment to l_byteMasked references l_byte, for which there is no declaration
assignment.

The timing of declaration assignments involves some subtlety in the presence
of multiple clocks. The key principle is that a declaration assignment is always
performed after aligning with a leading clocking event. This ensures that the
value stored by the declaration assignment comes from a known sampling point.
If a property has multiple leading clocking events,3 then separate local variables
are created for each leading clocking event and the corresponding declaration
assignments are performed upon reaching alignment with each of those various
clocking events.

Figure 16.1 shows declaration of a property with a local variable dec-
laration assignment and multiple leading clocks. Suppose evaluation of
p_mult_leading_clks begins at time t0. At that time, two copies of l_v are
created. One copy is used in the evaluation of the subproperty on Line 3 and
the other copy is used in the evaluation of the subproperty on Line 5. The
assignment l_v = e for the first copy is performed in the first time step concurrent
or subsequent to t0 in which posedge clk1 occurs. Similarly, the assignment

3According to SystemVerilog 2012, only properties can have multiple leading clocking events.
Sequences always have a unique leading clocking event and so do assertions.

16.2 Declaring Argument Local Variables 371

1 property p_mult_leading_clks;
2 byte l_v = e;
3 (@(posedge clk1) a1 until b1 == l_v)
4 and
5 (@(posedge clk2) a2 until b2 == l_v);
6 endproperty

Fig. 16.1 Property with local variable declaration assignment and multiple leading clocks

l_v = e for the second is performed in the first time step concurrent or subsequent
to t0 in which posedge clk2 occurs. The behavior of p_mult_leading_clks is
therefore equivalent to the following variant, in which the declaration assignment
has been eliminated:

1 property p_mult_leading_clks;
2 byte l_v;
3 (@(posedge clk1) (1’b1, l_v = e) #-# a1 until b1 == l_v)
4 and
5 (@(posedge clk2) (1’b1, l_v = e) #-# a2 until b2 == l_v);
6 endproperty

16.2 Declaring Argument Local Variables

The preceding section presented the following example:

sequence s2(logic start, b[4]);
logic l_a = 1’b0, l_b[4] = b;
dataType l_data;
@(posedge clk)
start ##1 ... // assume no further reference to b

endsequence

The body local variable l_b has a declaration assignment whose entire right-hand
side is a reference to the like-typed formal argument b. The declaration assignments
are performed when the evaluation reaches alignment with posedge clk, and at that
point the value in the formal argument b is assigned to l_b. Assume that the body of
s2 makes no further reference to b. Then the sole use of this formal argument is to
provide the local variable l_b its initial value, which is determined from the actual
argument expression associated with b in the relevant instance of s2.

In such a case, it is convenient to be able to declare the formal argument itself as a
local variable. SystemVerilog provides this capability in argument local variables.4

Under the assumption that the only reference to b in s2 is in the declaration
assignment to l_b, the following variant is semantically equivalent to s2:

4 In the LRM[8], argument local variables are called local variable formal arguments.

372 16 Mechanics of Local Variables

sequence s2_v3(logic start, local input logic l_b[4]);
logic l_a = 1’b0;
dataType l_data;
@(posedge clk)
start ##1 ...

endsequence

The keyword local specifies that l_b is an argument local variable, while the
direction input specifies that l_b will receive its initial value from the associated
actual argument expression, after casting to the type of l_b. The keyword local

prevents preceding data type information from applying to the associated formal
argument, so the data type logic must be repeated for l_b.

The semantic equivalence of s2 and s2_v3 is exact. In general, an argument
local variable of direction input behaves exactly like a body local variable of the
same type, together with a dummy formal argument of the same type, where the
body local variable has a declaration assignment whose entire right-hand side is
a reference to the dummy formal argument. As a result, an input argument local
variable gets its initial value at the same time step in which body local variable
declaration assignments are performed.

Argument local variables are considered to precede body local variables. If a
sequence or property has both input argument local variables and body local
variables with declaration assignments, then the initialization assignments of the
input argument local variables are performed first. It is legal for the right-hand
side of a body local variable declaration assignment to reference an input argument
local variable. Figure 16.2 shows a variant of property p1 from the preceding section
illustrating this capability.

Argument local variables can also be declared of direction output or inout,
but only in a sequence declaration. An argument local variable of a property must
be of direction input. An output argument local variable outputs its value to the
actual argument whenever the sequence matches. The actual argument must itself
be a local variable. An inout argument local variable behaves as a combination of
an input and an output argument local variable—it receives its initial value from
the actual argument and also outputs its value back to the actual argument whenever
the sequence matches. The actual argument must again be a local variable.

Figure 16.3 gives an example of a sequence s_arg_dirs with argument local
variables of all three directions and a property p_arg_dirs that instantiates it. The
instance of s_arg_dirs on Line 12 passes the expression e_i to l_s_i and passes
the local variables l_p_io and l_p_o to l_s_io and l_s_o, respectively. In the
evaluation of s_arg_dirs, l_s_i gets its initial value from e_i, while l_s_io gets

property p1_v2(local input byte l_byte);
byte l_byteMasked = l_byte & mask;
...

endproperty

Fig. 16.2 Body local variable declaration assignment referencing argument local variable

16.2 Declaring Argument Local Variables 373

1 sequence s_arg_dirs(
2 local input byte l_s_i,
3 local inout byte l_s_io,
4 local output byte l_s_o
5);
6 ... // l_s_o must be assigned in the body
7 endsequence
8

9 property p_arg_dirs;
10 byte l_p_io, l_p_o;
11 (start, l_p_io = e_io)
12 |-> s_arg_dirs(e_i, l_p_io, l_p_o)
13 |-> results_ok(l_p_io, l_p_o);
14 endproperty

Fig. 16.3 Sequence with argument local variables of all directions

its initial value from l_p_io, which is assigned the value of e_io in Line 11. l_s_o
gets no initial value. Whenever s_arg_dirs matches, the values of l_s_io and
l_s_o are output to l_p_io and l_p_o, respectively, and these values are used in
the check of results_ok in Line 13. Further details on output and inout argument
local variables will be discussed in Sect. 16.5.

The following rules apply in declaration of argument local variables: If a
direction is specified for an argument, then the keyword local must also be
specified, and if the keyword local is specified, then the data type must be explicitly
specified, including any packed dimensions. Unpacked dimensions may also be
specified. Since the arguments of s_arg_dirs have distinct directions, they must
each specify the keyword local and therefore must also repeat the data type byte.

It is allowed to specify the keyword local without a direction, and in this
case the direction input is understood. Thus, the following variant is semantically
equivalent to s_arg_dirs:

sequence s_arg_dirs_v2(
local byte l_s_i,
local inout byte l_s_io,
local output byte l_s_o

);
...

endsequence

Consecutive declarations of argument local variables can share the same specifi-
cations of the keyword local, the direction, and the data type (including any packed
dimensions), but only if the following conditions are satisfied:

1. The first of the declarations specifies local, specifies the direction either
explicitly or implicitly, explicitly specifies the data type (including any packed
dimensions), and does not specify any unpacked dimensions.

2. Subsequent declarations specify only the formal argument identifier. No
packed or unpacked dimensions may be specified together with the subsequent
identifiers.

374 16 Mechanics of Local Variables

Here is an example of legal declarations illustrating this capability and the
restrictions:

sequence s3(
local input byte l_a, l_b,
local input byte l_c[8],
local input byte l_d,
local inout byte l_e,
local input bit l_f,
local input bit [0:3] l_g, l_h

);
...

endsequence

l_a and l_b are both of direction input and data type byte. l_c is of direction
input and is an unpacked array of eight bytes. Because of the unpacked dimension,
the declaration of l_c cannot share the keyword local and direction with either
the preceding or the subsequent declaration. Because the direction of l_e does not
match the preceding direction, the declaration of l_e must specify the keyword
local and the direction and data type. l_g and l_h are both packed vectors of
4 bits. Even though l_g has the same direction and base data type as l_f, it has
different packed dimension and so must have its own specification of the keyword
local, direction, and data type.5

An input argument local variable may be declared with an optional default
actual argument, which can be any expression that may be assigned to the argument
local variable. An output or inout argument local variable may not be given a
default actual argument because the actual argument must specify the local variable
that will receive the output value. The syntax for a default actual argument is
the same as that for ordinary formal arguments of sequences or properties (see
Sect. 8.2). The default actual argument serves as the actual argument in any instance
of the sequence or property that does not otherwise specify the actual argument. As
usual, names in the default actual argument expression resolve in the context of the
sequence or property declaration, not in the context of its instantiation. Here is a
modification of property p1 that specifies a default actual argument:

property p1_v3(local input byte l_byte = data);
byte l_byteMasked = l_byte & mask;
...

endproperty

The default actual argument for l_byte is data.

5The rules of sharing components of declarations are more stringent than necessary. Future versions
of SystemVerilog may relax them.

16.3 Assigning to Local Variables 375

16.3 Assigning to Local Variables

The fundamental capability provided by local variables is to enable an assertion
to capture the value of an expression at a specified point in its evaluation and
store that value for later reference, perhaps after further modification. This section
discusses rules for assigning to local variables. The declaration and initialization
assignments introduced in Sects. 16.1 and 16.2 are particular cases of assignments
to local variables. They must follow the rules presented here.

A local variable assignment may be attached to a subsequence of a named
sequence or property. The local variable assignment is written after the subsequence,
separated by a comma, and the pair is enclosed in parentheses. The subsequence
must not admit an empty match. Whenever the subsequence matches in the course
of evaluation of the named sequence or property, the local variable assignment is
performed. The result of attaching a local variable assignment to a subsequence is
always a sequence, even if the subsequence were itself a Boolean. Here is a simple
example:

property p_ttype_vs_data;
transType l_ttype;
(start, l_ttype = ttype)
##1 (dataValid within complete[->1])
|-> ttypeAllowsData(l_ttype);

endproperty

The local variable assignment l_ttype = ttype has been attached to the Boolean
subsequence start. Whenever start is tested and evaluates to true, the Boolean
subsequence matches and the local variable assignment is performed, capturing the
value of ttype for later reference in the call to the function ttypeAllowsData. This
property checks that if dataValid occurs after start and not later than complete,
then the transaction type specified in ttype at the time of start is one that allows
data as encoded in ttypeAllowsData.

Multiple local variable assignments may be attached to a single subsequence.
The local variable assignments are performed in order whenever the subsequence
matches.

sequence s_compare_two_data_and_parity;
dataType l_data;
parityType l_parity;
start
##1 (dataValid[->1], l_data = data, l_parity = parity)
##1 dataValid[->1]
##0 data == l_data && parity == l_parity;

endsequence

This sequence compares the values of data and parity from the first two occur-
rences of dataValid after start. Two assignments have been attached to the first
goto subsequence dataValid[->1]: l_data = data and l_parity = parity.
The local variables capture the values of data and parity from the first occurrence

376 16 Mechanics of Local Variables

1 property p_data_and_parity;
2 dataType l_data;
3 parityType l_parity;
4 start ##1
5 (
6 (dataValid, l_data = data, l_parity = parity)
7 within complete[->1]
8)
9 |-> parityOK(l_data, l_parity);

10 endproperty

Fig. 16.4 Data and parity check

of dataValid and hold them for comparison with the corresponding values at the
second occurrence of dataValid. If the corresponding values are equal, then the
overall sequence matches.

In general, the evaluation of the right-hand side of a local variable assignment
follows the rules for evaluation of expressions within a concurrent assertion. After
resolving the terms of the expression through elaboration (including argument
passing, module instantiation, bind instantiation, etc.), sampled values are used for
those terms that are not local variables, while current values are used for terms
that are local variables. These rules apply to declaration assignments for body local
variables and initialization assignments for argument local variables.

Each evaluation attempt of a named sequence or property gets its own, private
copy of all the declared local variables for use within that evaluation. Local variables
are thus “local” to an individual thread of evaluation, and variables for one thread
of evaluation cannot be referenced in another thread of evaluation. The examples
presented so far in this chapter have required only one copy of each local variable
per evaluation attempt. In general, evaluation of a sequence or property may involve
branching into subevaluations. Part of the power of local variables is that their
semantics includes automatic allocation of additional copies when needed to store
multiple values arising from such subevaluations. Consider the example in Fig. 16.4.
This property checks that for every occurrence of dataValid that happens after
start and not later than complete, the values of data and parity that are present
with dataValid satisfy the condition encoded in the function parityOK. The local
variable assignments are attached to the Boolean subsequence dataValid, and the
resulting sequence is the first operand of the within operator. The within sequence
is itself part of the antecedent of |->. The semantics of |-> requires that every match
of its antecedent result in a check of its consequent. Because dataValid may occur
at multiple points within the interval of matching of complete[->1], there may be
multiple matches of the antecedent, and each such match will have its own copy of
the local variables to store the values of data and parity from the particular point
that dataValid occurred for that match.

Figure 16.5 shows a possible waveform for this property. Only the values of data
and l_data are shown, since the timing of the local variable capture for l_parity
is the same. start occurs at time 20 and complete occurs at time 90. Between
them there are three occurrences of dataValid, at times 30, 50, and 70. Therefore,

16.3 Assigning to Local Variables 377

10 20 30 40 50 60 70 80 90 100

clk

start

complete

dataValid

data 4’ha 4’hb 4’hc 4’hd

l-

-

-

data30
undefined 4’ha undefined

l data50
undefined 4’hb undefined

l data70
undefined 4’hc undefined

Fig. 16.5 Waveform for data and parity check

the evaluation of p_data_and_parity that starts at time 20 will obtain three copies
of l_data, one for each of the three occurrences of dataValid. These copies are
shown as l_data30 , l_data50 , and l_data70 in the waveform, along with the values
of data that they capture.

16.3.1 Assignment Within Repetition

If the operand of a sequence repetition is a subsequence with a local variable
assignment attached, then the local variable assignment executes on each iterative
match of the subsequence. Such assignments can be used to count the number of
iterations or to compute aggregate values based on increments that are observable at
the successive matches of the subsequence.

Figure 16.6 shows an example of counting the number of iterations. 6 When
start occurs, the property stores the transaction type in the local variable l_ttype
(Line 4). The property checks that the number of occurrences of dataValid that
happen after start and not later than complete is allowable for the transaction type
according to the function numBeatsOK. The number of occurrences of dataValid
is counted in the local variable numBeats. numBeats is initialized to zero in its dec-
laration on Line 3. The various occurrences of dataValid are matched by the goto
dataValid[->1] within the repetition on Line 6, and numBeats is incremented

6For formal verification, the int type of numBeats should be replaced with the type of smallest
bitwidth needed for the counter.

378 16 Mechanics of Local Variables

1 property p_ttype_vs_beats;
2 transType l_ttype;
3 int numBeats = 0;
4 (start, l_ttype = ttype) ##1
5 (
6 (dataValid[->1], numBeats++)[*]
7 ##1 !dataValid[*]
8 intersect
9 complete[->1]

10)
11 |-> numBeatsOK(l_ttype, numBeats);
12 endproperty

Fig. 16.6 Counting using a local variable assignment within a repetition

for each of these matches. The increment expression numBeats++ illustrates the
fact that local variable assignments may be specified by increment and decrement
expressions. They may also be specified by general operator assignments (+=, &=,
etc.). The subsequence of Lines 6 and 7 is intersected with the goto complete[->1]

of Line 9 to ensure that only the relevant occurrences of dataValid are counted.
The zero repetition option for [*] in Line 7 allows the last dataValid to be
concurrent with complete. The zero repetition option for [*] in Line 6 allows for
the possibility that there is no occurrence of dataValid.

16.3.2 Sequence Match Items

A local variable assignment attached to a sequence is an example of a sequence
match item, i.e., an item to be performed upon match of the sequence. The other
kind of sequence match item is a subroutine call. A subroutine called as a sequence
match item can be a task, a task method, a void function, a void function method, or
a system task.

Sequence match items may be attached to any sequence that does not admit
empty match. The first match item is separated from the sequence by a comma, and
further match items may be written as a comma-separated list. The sequence and
list of match items are enclosed in parentheses. Whenever the sequence matches,
the match items are processed in the order of the list. Local variable assignments
are performed immediately in the Observed region. Subroutine calls are scheduled
for execution in the Reactive region in the order that they appear. The assertion
evaluation does not wait on or get information back from a subroutine.

Arguments passed to a subroutine call must be passed either by value as inputs or
by reference (ref or const ref). Local variables may be passed only by value and
must flow to the point of the subroutine call (see Sect. 16.4.1). Actual arguments
passed by value are evaluated in the Observed region like other expressions in

16.3 Assigning to Local Variables 379

1 property p_data_and_parity_v2;
2 dataType l_data;
3 parityType l_parity;
4 start ##1
5 (
6 (
7 dataValid,
8 l_data = data, l_parity = parity,
9 $display("time=%0d data=%h parity=%h",

10 $time,l_data,l_parity)
11)
12 within complete[->1]
13)
14 |-> parityOK(l_data, l_parity);
15 endproperty

Fig. 16.7 Property with subroutine call attached to a sequence

assertions: current values are used for local variables, whereas sampled values are
used otherwise. Actual arguments passed by reference are evaluated using Reactive
region values when the subroutine executes.

A common use of subroutine calls as sequence match items is to export infor-
mation from the assertion evaluation thread, especially values of local variables.
The export can be for debugging, to communicate with other parts of a testbench,
or to populate a coverage model. The capability to place the subroutine call
as a sequence match item is essential to get visibility to the local variables,
which cannot be referenced from an action block. Figure 16.7 shows a variant of
p_data_and_parity illustrating this usage. In each time step that dataValid is
matched in Line 7, the local variable assignments are performed in Line 8 and
then the $display is called. The arguments to $display are inputs. Their values are
computed in the Observed region, using the values assigned to the local variables in
Line 8 and the current value of $time.

As another example, suppose that startCode is a signal of type startType that
is valid with start, while endCode is a signal of type endType that is valid with
complete. Suppose that we want to collect coverage on the pairs of startCode
and endCode values that occur for transactions of the sequential protocol (see
Sect. 15.2). This can be done using a covergroup and calling its sample method
as a sequence match item. Figure 16.8 shows an encoding. The signature of the
covergroup sample method is declared in Line 2, and the covergroup is instantiated
in Line 7. The sequence s_SEC has a local variable to capture the value of
startCode. Once complete is reached in Line 13, the covergroup sample method is
called in Line 14. The signal endCode is valid at this time, while the startCode has
been stored in l_startCode. See Sect. 18.2.3 for further discussion of covergroups
and Sect. 18.2.4 for more examples of this kind.

380 16 Mechanics of Local Variables

1 covergroup cg_SEC_type
2 with function sample(startType startCode, endType endCode);
3 SC: coverpoint startCode;
4 EC: coverpoint endCode;
5 SEC: cross SC, EC;
6 endgroup
7 cg_SEC_type cg_SEC = new();
8 sequence s_SEC;
9 startType l_startCode;

10 (start, l_startCode = startCode)
11 ##1
12 (
13 complete[->1],
14 cg_SEC.sample(l_startCode, endCode)
15);
16 endsequence
17 c_SEC: cover property(s_SEC);

Fig. 16.8 Collecting coverage using a local variable and a subroutine call

16.4 Referencing Local Variables

A local variable that is assigned a value may be referenced within the same named
sequence or property. Local variables can be referenced in expressions such as:

• Boolean expressions.
• Bit-select and part-select expressions.
• Array indices.
• Arguments of task and function calls.
• Arguments of sequence and property instances.
• Expressions assigned to local variables.

Local variables cannot be referenced in the following kinds of expressions:

• Expressions that are required to be compile-time constants, such as n in each of
the following operators: ##n, [*n], [->n], [=n]. Local variables also may not
be referenced in the constant expressions of ranged forms of these operators and
bounded property operators.

• Clocking event expressions.
• The reset expression of a disable iff.
• The abort condition of a reset operator (accept_on, sync_accept_on, and the

reject forms of these operators).
• An argument expression to a sampled value function ($rose, $fell,
$past, etc.).

A local variable that is unassigned may not be referenced.
Each evaluation attempt of a sequence or property has its own, private copies of

the local variables declared in that sequence or property. Further copies of the local
variables may be created as the evaluation evolves, branching into subevaluation

16.4 Referencing Local Variables 381

10 20 30 40 50 60 70 80 90 100

clk

start

ttype INV PRG INV READ

l-

-

ttype20
undefined INV undefined

l ttype40
undefined PRG undefined

Fig. 16.9 Waveform for transaction type check

threads. In general, a local variable assigned in a thread of evaluation may be
referenced later in that thread or in a descendent of that thread. However, System-
Verilog provides no mechanism for externally referencing or cross-referencing a
local variable. One evaluation attempt cannot reference the copies of a local variable
from another evaluation attempt. Similarly, a subevaluation thread cannot reference
updates to a sibling’s copy of a local variable. If the siblings are subsequence
evaluations that later join (e.g., subevaluations of operands of sequence and or
intersect), then structural rules described below determine whether or not the
thread of evaluation that proceeds from the join can reference the updates from one
of the siblings. Hierarchical references to local variables are illegal.

As a simple example to illustrate these ideas, suppose ttype is valid with start

and that if there is an occurrence of start with ttype == INV or ttype == PRG,
then at the next two occurrences of start, ttype must not have the same value that
it has at the current occurrence of start. This check can be coded as

1 property p_ttype_check;
2 transType l_ttype;
3 (start && (ttype == INV || ttype == PRG), l_ttype = ttype)
4 |=> start[->1:2]
5 |-> ttype != l_ttype;
6 endproperty

Consider the waveform shown in Fig. 16.9. The evaluation attempt of property
p_ttype_check that begins at time 20 observes an occurrence of start together
with ttype == INV, and so it stores INV in its copy of the local variable l_ttype.
This copy of the local variable is represented by the row labeled l_ttype20 in
the waveform. Another evaluation attempt of p_ttype_check begins at time 40,
observes an occurrence of start together with ttype == PRG, and stores PRG in
its copy of the local variable, which is labeled l_ttype40 in the waveform. The
evaluation that begins at time 20 sees only l_ttype20 , not l_ttype40 . At time
40, this thread observes the first subsequent occurrence of start, and the check

382 16 Mechanics of Local Variables

1 property p_ttype_vs_beats;
2 transType l_ttype;
3 int numBeats = 0;
4 (start, l_ttype = ttype) ##1
5 (
6 (dataValid[->1], numBeats++)[*]
7 ##1 !dataValid[*]
8 intersect
9 complete[->1]

10)
11 |-> numBeatsOK(l_ttype, numBeats);
12 endproperty

Fig. 16.10 Illustrating local variable flow, reference, and reassignment

ttype != l_ttype in Line 5 compares PRG != INV and succeeds. At time 80,
though, this thread fails since Line 5 compares INV != INV, and so the overall
evaluation beginning at time 20 fails. The evaluation that begins at time 40 succeeds
since its two checks of Line 5 compare INV != PRG at time 80 and READ != PRG

at time 90.

16.4.1 Local Variable Flow

To understand more thoroughly where a local variable may be referenced and what
value will be yielded, we need to explore in more detail how the scope of the
local variable extends into various subsequences and subproperties and how the
value stored in the local variable is carried along and changed in the corresponding
subevaluations. A local variable is said to flow into a subsequence or subproperty if
it is assigned (i.e., has a value) when evaluation of the subsequence or subproperty
begins. A local variable is said to flow out of a subsequence if it is guaranteed to be
assigned (i.e., to have a value) upon reaching the end of a match of the subsequence.

In general, if a local variable flows into a subsequence or subproperty, then the
local variable may be referenced within that subsequence or subproperty provided
the local variable remains assigned at the point of reference. (See Sect. 16.4.2 for a
discussion of how a local variable may become unassigned.) A reference to a local
variable yields the latest value assigned to it in the evaluation or subevaluation that
reaches the point of the reference. The latest assignment may have occurred in the
current time step. A local variable reference is always to the current value stored in
the variable.

As an example of local variable flow, reference, and reassignment, let us revisit
the property p_ttype_vs_beats, which is copied here in Fig. 16.10. The property
has two local variables: l_ttype has no declaration assignment, while numBeats

has a declaration assignment initializing its value to 0. Therefore, l_ttype is
unassigned and does not flow into the body of the property in Line 4, while

16.4 Referencing Local Variables 383

numBeats does flow into Line 4. If start evaluates to true in Line 4, though, then
l_ttype is assigned the value of ttype. Therefore, both l_ttype and numBeats

flow into Line 5. The subsequence of Lines 5–10 makes no reference to and no
reassignment of l_ttype. Therefore, l_ttype flows with value unchanged into
Line 11, where it is referenced as an argument to the call to function numBeatsOK.
In contrast, the subsequence on Line 6 makes reference to and reassigns numBeats
for each consecutive match of dataValid[->1] in the repetition. The reference to
numBeats is implicit in the increment operator ++. As a result, numBeats flows out
of the subsequence of Lines 6 and 7. Because numBeats is reassigned in only one of
the operands of the intersect operator appearing on Line 8, numBeats also flows
out of the entire subsequence of Lines 5–10. Therefore, numBeats flows with its last
reassigned value into Line 11, where it is also referenced as an argument to the call
to function numBeatsOK.

The rules of local variable flow have been designed to be intuitively reasonable
and also computable at compile time, rather than varying dynamically with the
course of evaluation. The rules do not depend on the specific value stored in a local
variable at a particular point, only on whether the local variable is guaranteed to be
assigned some value at that point. Because the rules depend only on the structure of
the sequences and properties and where the assignments to the local variables occur,
they can be checked at compile time.

Below are the rules of local variable flow for declaration, instance, sequence,
and property forms. In these rules, v, w stand for local variables; r , s stand for
sequences; p, q stand for properties; e stands for an expression; and b stands for a
Boolean expression.

DF A local variable declared in a named sequence or property flows into the body
sequence or property expression of that declaration iff it is assigned in an
initialization assignment.

IF1 A local variable that flows into an instance of a named sequence or property
does not flow into the body sequence or property expression in the declaration
of that instance. The value of the local variable may be passed into the instance
through an argument (see Sect. 16.5.1).

IF2 A local variable that flows out of the body sequence expression of the
declaration of a named sequence7 does not flow out of an instance of the
named sequence. If the local variable is an untyped formal argument or an
argument local variable of direction output or inout, then its value may be
passed out of the instance (see Sect. 16.5.2).

IF3 v flows out of b iff v flows into b. Analogous rules apply when b is replaced
by Boolean repetitions b[->n], b[=n], etc.

7More precisely, that flows out of the sequence expression that results from the body sequence
expression of the declaration by substituting actual arguments from an instance for formal
arguments, as described in the rewriting algorithms of Annex F.4 of the LRM [8].

384 16 Mechanics of Local Variables

IF4 v flows out of (r, v = e). If w flows into (r, v = e), then w flows into r .
w flows out of (r, v = e) iff w flows out of r . If e references w, then w must
flow out of r .

IF5 If v flows into r ##n s, then v flows into r . If v flows out of r , then v flows
across ##n into s. v flows out of r ##n s iff v flows out of s. Analogous
rules apply to the variants of the binary concatenation operator. The flow rules
for unary concatenation are obtained from those for binary concatenation by
replacing r with 1’b1.

IF6 If v flows into r or s, then v flows into both r and s. v flows out of r or s

iff v flows out of both r and s.
IF7 If v flows into r and s, then v flows into both r and s. v flows out of r and s

iff either v flows out of r and there is no assignment to v in s or v flows out of
s and there is no assignment to v in r . Analogous rules apply to intersect

and within.
IF8 If v flows into b throughout r , then v flows into both b and r . v flows out

of b throughout r iff v flows out of r .
IF9 If v flows into first_match(r), then v flows into r . v flows out of

first_match(r) iff v flows out of r .
IF10 v flows out of r[*0] iff v flows into r[*0]. The value of v does not change as

a result of empty match of r[*0].
IF11 If v flows into r[*n], where n is positive, then v flows into the first iteration

of r . v flows out of r[*n] iff v flows out of r , in which case v flows into and
out of each iteration of r . If v does not flow out of r , then v does not flow into
any iteration of r after the first. Analogous rules apply to ranged forms of the
repetition operator. If the lower range is zero, then the flow rule is obtained by
decomposing r[*0:n] as r[*0] or r[*1:n] (n positive or $).

PF1 If v flows into strong(r), then v flows into r . An analogous rule applies to
weak.

PF2 If v flows into not p, then v flows into p.
PF3 If v flows into p or q, then v flows into both p and q. Analogous rules apply

to and, implies, and iff.
PF4 If v flows into r |-> p, then v flows into r . If v flows out of r , then v flows

across |-> and into p. Analogous rules apply to |=>, #-#, and #=#.
PF5 If v flows into if (b) p else q, then v flows into b, p, and q. An analogous

rule applies to case.
PF6 If v flows into nexttime p, then v flows into p. Analogous rules apply to

s_nexttime and to the indexed forms of these operators.
PF7 If v flows into always p, then v flows into p. Analogous rules apply to

s_always and to the ranged forms of these operators.
PF8 If v flows into p until q, then v flows into both p and q. Analogous rules

apply to s_until, until_with, and s_until_with.
PF9 If v flows into s_eventually p, then v flows into p. Analogous rules apply

to the ranged form of this and the weak eventually operator.

16.4 Referencing Local Variables 385

1 property p_flow_analysis;
2 byte l_v;
3 (
4 (a[->1], l_v = e)
5 within
6 b[->1]
7)
8 #=#
9 (

10 (c == l_v)
11 until
12 (
13 (d == l_v)
14 and
15 nexttime(c != l_v)
16)
17);
18 endproperty

Fig. 16.11 Property illustrating local variable flow

PF10 If v flows into disable iff (b) p, then v flows into p. Analogous rules
apply to accept_on, reject_on, sync_accept_on, and sync_reject_on.

As an example of analyzing local variable flow using these rules, consider the
property in Fig. 16.11. By Rule DF, l_v does not flow into Line 3. By Rule IF4,
l_v flows out of Line 4, and so by Rule IF7, l_v flows out of Line 7. Rule PF4 then
says that l_v flows into Line 9, and so by Rule PF8, l_v flows into both Line 10
and Line 12. This implies that the reference to l_v in Line 10 is legal. By Rule PF3,
l_v flows into both Line 13 and Line 15. This implies that the reference to l_v in
Line 13 is legal. Finally, by Rule PF6, l_v flows into the expression c != l_v, so
the reference to l_v in Line 15 is also legal.

16.4.2 Becoming Unassigned

Once assigned, local variables only become unassigned upon match of subsequences
formed from certain sequence operators. Code in which local variables become
unassigned is of poor style and should be avoided.

Figure 16.12 shows an example in which the local variable l_v becomes
unassigned upon match of an and subsequence. The semantics of the and sequence
operator requires the subevaluations of the operands to join together once both
have matched. This requires all local variables that are assigned to have consistent,
unambiguous values in the continuing thread of evaluation. There are assignments
to l_v in both operands of the and (Lines 4 and 6), so l_v may not have a single

386 16 Mechanics of Local Variables

1 sequence s_and_ambiguous;
2 bit l_v;
3 (
4 (a[->1], l_v = e)
5 and
6 (b[->1], l_v = f)
7) // SF5: l_v does not flow out, becomes unassigned
8 ##1 c == l_v; // illegal
9 reference to l_v endsequence

Fig. 16.12 Local variable becomes unassigned due to ambiguity of value after and

1 sequence s_and_unambiguous;
2 bit l_va, l_vb;
3 (
4 (a[->1], l_va = e)
5 and
6 (b[->1], l_vb = f)
7)
8 ##1 c == l_va || c == l_vb;
9 endsequence

Fig. 16.13 Assigning to distinct local variables in the operands of and

1 sequence s_or_ambiguous;
2 bit l_v;
3 (// DF: l_v does not flow in
4 (a[->1], l_v = e)
5 or
6 b[->1] // SF1: l_v does not flow out
7) // SF4: l_v does not flow out, becomes unassigned
8 ##1 c == l_v; // illegal reference to l_v
9 endsequence

Fig. 16.14 Local variable becomes unassigned due to ambiguity of value after or

value upon match of the and. According to Rule IF7, l_v does not flow out of the
and subsequence, and as a result l_v becomes unassigned in Line 7. The reference
to l_v in Line 8 is therefore illegal.

SF5 applies similarly to sequence operators intersect and within. Therefore,
when coding local variable assignments in operands of sequence and, intersect,
or within, do not make assignments to a single local variable in more than
one operand. The ambiguous example from Fig. 16.12 can be recoded using
two local variables as shown in Fig. 16.13. Note, in particular, that the compa-
rison to c in Line 8 has been disambiguated in Fig. 16.13 as the disjunction
c == l_va || c == l_vb.

Figure 16.14 shows a different problem occurring with assignments in operands
of a sequence or. In this example, l_v is not assigned before the or, and it is
assigned in only one operand of the or (Line 4). The semantics of sequence or

specifies that if either operand subsequence matches, then there is a match of the

16.4 Referencing Local Variables 387

1 sequence s_or_unambiguous;
2 bit l_v = 1’b0;
3 (
4 (a[->1], l_v = e)
5 or
6 b[->1]
7)
8 ##1 c == l_v;
9 endsequence

Fig. 16.15 Local variable assigned before or

1 sequence s_nested_ambiguity;
2 bit l_v = 1’b0;
3 (
4 (a[->1], l_v = e)
5 or
6 (
7 (b1[->1], l_v = f1)
8 and
9 (b2[->1], l_v = f2)

10) // SF5: l_v does not flow out
11) // SF4: l_v does not flow out, becomes unassigned
12 ##1 c == l_v; // illegal reference to l_v
13 endsequence

Fig. 16.16 Nested structure results in local variable becoming unassigned

or, and evaluation continues for each such match. After Line 7, it is not known
which operand of the or matched, and so it is not known whether l_v has been
assigned. According to Rule IF6, l_v does not flow out of the or, and l_v becomes
unassigned in Line 7. The reference to l_v in Line 8 is therefore illegal.

The situation in Fig. 16.14 can be remedied by ensuring that l_v will be assigned
a value no matter which operand of the or matches. This can be done by assigning
a value to l_v prior to the or or by assigning a value to l_v in the second operand
(Line 6). Figure 16.15 uses a declaration assignment to provide a value to l_v prior
to the or.

The flow rules must be applied recursively to sequences and properties with
nested structure. Figure 16.16 shows an example in which the second operand of
an or subsequence is itself an and subsequence. According to IF7, l_v does not
flow out of the and (Line 10). Even though l_v is assigned before the or (Line 2)
and is assigned within each operand of the or, IF6 then implies l_v does not flow
out of the or and becomes unassigned in Line 11. The reference to l_v on Line 12
is therefore illegal.

388 16 Mechanics of Local Variables

16.4.3 Multiplicity of Matching with Local Variables

Without local variables, multiple matches of a sequence over the same interval of
a trace can usually be treated as the same.8 For example, consider the following
assertion:

a_mult_match: assert property(
(a[*1:2] or b[*1:2]) |-> c

);

For each evaluation attempt, the antecedent sequence can either not match or match
over one or two cycles. If a and b are not mutually exclusive, then each match could
be of multiplicity either one or two. Checking of the consequent is obligated for
each match of the antecedent, but the consequent evaluation is the same for multiple
matches over the same interval. Therefore, a tool can simply keep track of which
intervals are matched by the antecedent and not distinguish multiple matches over
the same interval.

With local variables, the values stored in them can differentiate matches over the
same interval of a trace. If there are subsequent references to the local variables,
then tools must keep track of the different values in the local variables for multiple
matches over the same interval. The following code illustrates this situation:

property p_mult_match_loc_var;
byte l_v;
((a[*1:2], l_v = e) or (b[*1:2], l_v = f)) |-> g != l_v;

endproperty
a_mult_match_loc_var: assert property(p_mult_match);

Property p_mult_match_loc_var has the same possibilities for matching of its
antecedent as assertion a_mult_match. However, because different expressions are
assigned to the local variable l_v in the two operands of or, this local variable
can distinguish multiple matches over the same interval. Since l_v is referenced
in the consequent, tools must keep track of all of the various multiple matches
of the antecedent and the associated values of l_v. The checking performed by
a_mult_match_loc_var is equivalent to the following assertion:

a_mult_match_2: assert property(
(a |-> g != e)

and (b |-> g != f)
and (a[*2] |-> g != $past(e))
and (b[*2] |-> g != $past(f))

);

8When collecting coverage for a cover sequence assertion statement, all matches must be
counted with the appropriate multiplicities.

16.5 Input and Output with Local Variables 389

16.5 Input and Output with Local Variables

This section describes the mechanisms provided by SystemVerilog for passing
values of local variables into instances of named sequences and properties and out
of instances of named sequences. Special rules apply when passing values into an
instance of a named sequence to which a sequence method (triggered or matched)
is applied. There is no notion of passing values of local variables out of instances of
named properties.

16.5.1 Input with Local Variables

In general, any local variable that is assigned a value at the point of instantiation
of a named sequence or property may have its value passed into that instance
simply by referencing the local variable as an entire actual argument expression
of the instance or as a proper subexpression of an actual argument expression of the
instance. The local variable itself cannot be referenced from within the instance, so
the instance does not track changes to the local variable or to copies of it that might
occur in the instantiating context. Rather, the value of the local variable passed into
the instance remains constant throughout the evaluation of the instance.

The following simple example illustrates input of a local variable to an instance
of a named property:

1 property p_no_repeat_ttype(
2 transType varying_ttype, captured_ttype
3);
4 start[->1:2]
5 |-> varying_ttype != captured_ttype;
6 endproperty
7 property p_ttype_check;
8 transType l_ttype;
9 (start && (ttype == INV || ttype == PRG), l_ttype = ttype)

10 |=> p_no_repeat_ttype(
11 .varying_ttype(ttype), .captured_ttype(l_ttype)
12);
13 endproperty

This example is an equivalent recoding of the property p_ttype_check from
Sect. 16.4. It uses an auxiliary property, p_no_repeat_ttype. In the instance
of p_no_repeat_ttype in Lines 10–12, the signal ttype is passed to the
formal argument varying_ttype, while the local variable l_ttype is passed
to the formal argument captured_ttype. During an evaluation of this instance
of p_no_repeat_ttype, the formal argument captured_ttype behaves as
a constant equal to the value of the local variable l_ttype at the time the
evaluation begins. Referring back to the waveform in Fig. 16.9, the evaluation of
p_ttype_check beginning at time 20 causes an evaluation of p_no_repeat_ttype

390 16 Mechanics of Local Variables

to begin at time 30. This evaluation continues until time 80, and throughout it
the formal argument captured_ttype has the value INV. By contrast, argument
varying_ttype tracks changing values of the actual argument ttype because
ttype is a signal rather than a local variable. Therefore, the evaluation of
p_no_repeat_ttype that begins at time 30 fails at time 80, where it observes the
second occurrence of start together with varying_ttype and captured_ttype

both equal to INV.
Note that the preceding example is also equivalent to the following:

1 property p_no_repeat_ttype(
2 transType varying_ttype, captured_ttype
3);
4 start[->1:2]
5 |-> varying_ttype != captured_ttype;
6 endproperty
7 property p_ttype_check;
8 transType l_ttype;
9 (start && (ttype == INV || ttype == PRG), l_ttype = ttype)

10 |=>
11 (
12 (1’b1, l_ttype = ttype) // no effect on instance below
13 and
14 p_no_repeat_ttype(
15 .varying_ttype(ttype), .captured_ttype(l_ttype)
16)
17);
18 endproperty

In this variant, l_ttype is modified in Line 12. Flow rules PF4 and IF7 say that
the value of l_ttype that flows into Line 14 is determined by the assignment to
l_ttype in Line 9. The assignment in Line 12 does not affect the instance of
p_no_repeat_ttype in Lines 14–16. This emphasizes the fact that changes to a
local variable in the instantiating context that do not flow into an instance do not
affect the evaluation of the instance (cf. Exercise 16.7).

It can be useful for the value of a local variable passed into an instance
to be further modified within the evaluation of the instance. The example of
Fig. 16.17 passes a local variable to an argument local variable of direction input.
It modularizes the encoding of the FIFO protocol data check from Fig. 15.9 so
that an instance of sequence s_skip accomplishes the skipping of occurrences of
complete to get to the occurrence that is relevant for the current evaluation attempt
of p_fifo_data_check. The local variable numAhead is assigned in Line 10, and
its value is then passed to the argument local variable numToSkip in Line 11.

SystemVerilog also allows untyped formal arguments to be l values in assign-
ments and thereby function as local variables. The sequence s_skip from Fig. 16.17
can be recoded as follows:

sequence s_skip(numToSkip);
(numToSkip > 0 ##0 complete[->1], numToSkip--)[*]
##1 (numToSkip == 0 ##0 complete[->1]);

endsequence

16.5 Input and Output with Local Variables 391

1 sequence s_skip(
2 local input bit [0:$clog2(MAX_OUTSTANDING)] numToSkip
3);
4 (numToSkip > 0 ##0 complete[->1], numToSkip--)[*]
5 ##1 (numToSkip == 0 ##0 complete[->1]);
6 endsequence
7 property p_fifo_data_check;
8 dataType data;
9 bit [0:$clog2(MAX_OUTSTANDING)] numAhead;

10 (start, data = dataIn, numAhead = outstanding)
11 ##1 s_skip(.numToSkip(numAhead))
12 |->
13 dataOut == data;
14 endproperty
15 a_fifo_data_check: assert property (p_fifo_data_check);

Fig. 16.17 FIFO protocol data check using a subsequence

The usual rules of passing actual arguments to untyped formal arguments apply
in this case: the bit width of numToSkip for a given instance is determined
by the corresponding actual argument, and there is no type checking to ensure
compatibility between the formal and actual argument.

Exception for Sequence Methods

There is an exception to all of the preceding discussion of this section: it does
not apply to a local variable passed to an instance of a named sequence to which
a sequence method (triggered or) is applied. SystemVerilog does not allow
the value of a local variable passed into such an instance to be observed by the
instance.9 This means that the declaration of the sequence must not reference the
corresponding formal argument unless the formal argument has been assigned as
a local variable within the sequence body. This restriction is important for the
preservation of forward progress of time and causality because, in general, it is not
known how the time of assignment to a local variable in the instantiating context
relates to the start time of a match of the sequence to which a sequence method is
applied. For example, the following contrived code is not legal:

9In addition, a local variable passed to a sequence instance to which a sequence method is applied
must be the entire actual argument passed to the corresponding formal argument and must not be
passed to an argument local variable of direction input or inout.

392 16 Mechanics of Local Variables

1 sequence s_3_in_a_row(bit signal, goal);
2 (signal == goal)[*3];
3 endsequence
4 property p_illegal_causality;
5 bit l_v;
6 (start, l_v = a)
7 |-> s_3_in_a_row(.signal(b), .goal(l_v)).triggered;
8 endproperty

In Line 7, this code attempts to pass the value of local variable l_v into an instance
of sequence s_3_in_a_row to which sequence method triggered is applied. The
intended meaning of the code is that if start occurs, then b must equal a now
and b must now have held this value for at least three cycles, including the current
one. This encoding is forbidden by SystemVerilog because it requires evaluation of
s_3_in_a_row to be aware of the future value of a when looking for a match to
satisfy the instance to which triggered is applied (cf. Exercise 16.8).

16.5.2 Output with Local Variables

Values of local variables can be output only from instances of named sequences.
There is no notion of passing values of local variables out of instances of named
properties because:

• The evaluation of a property or subproperty is terminal in the sense that there is
no ensuing thread of assertion evaluation.

• In general, property evaluation has no well-defined finite endpoint.

There are two mechanisms for passing the value of a local variable out of an
instance of a named sequence. The first is to pass the value out through an argument
local variable of direction output or inout. The following rules apply to named
sequences with argument local variables of direction output or inout and their
instances:

1. The entire actual argument bound to an argument local variable of direction
output or inout must itself be a local variable to whose type the type of the
formal argument can be cast. The actual argument is called the receiver local
variable for the corresponding formal argument.

2. In a given sequence instance, a local variable may not be referenced more than
once as a receiver local variable.

3. The structure of the declaration of the named sequence must guarantee that
each argument local variable of direction output or inout be assigned at the
completion of a match of the instance of the named sequence.10

4. The instance of the named sequence must not admit empty match.

10In particular, each argument local variable of direction output or inoutmust flow out of every
match of the sequence expression that results from the body sequence expression of the declaration

16.5 Input and Output with Local Variables 393

1 sequence s_cnt_occurrences(bit a, local output int num_a);
2 (1’b1, num_a = a)
3 ##1 (a[->1], num_a++)[*]
4 ##1 !a[*];
5 endsequence
6 property p_num_dataValid_check;
7 transType l_ttype;
8 int num_dataValid;
9 (start, l_ttype = ttype)

10 ##1
11 (
12 s_cnt_occurrences(.a(dataValid), .num_a(num_dataValid))
13 intersect
14 complete[->1]
15)
16 |->
17 num_dataValid_OK(l_ttype, num_dataValid);
18 endproperty
19 a_num_dataValid_check: assert property (p_num_dataValid_check);

Fig. 16.18 Checking the number of occurrences of dataValid using local variable output

If these conditions are satisfied, then at the endpoint of any match of the sequence
instance, the values of the argument local variables of direction output or inout are
cast-converted and assigned to the corresponding receiver local variables. If there
are multiple matches of the sequence instance, then each match results in an ensuing
thread of evaluation in the instantiation context with its own copies of the receiver
local variables, and for each such match the receiver local variables are assigned the
values of the corresponding argument local variables for that match. Rule 2 ensures
that the result of these assignments is independent of the order in which they are
performed. Rules 3 and 4 ensure that each receiver local variable is assigned upon
match of the instance of the sequence.

As an example, suppose that we need to count the number of occurrences of
dataValid that are strictly after start and not later than complete, perhaps so
that a validity check can be performed based on this number and the value of
ttype that appeared with start. The code in Fig. 16.18 shows how this can be
done using a sequence, s_cnt_occurrences, with an argument local variable of
direction output.11 s_cnt_occurrences monitors the argument a of type bit

and accumulates the number of occurrences of a in the output argument local
variable num_a. The sequence begins in Line 2 by assigning the value of a to
num_a, which accounts for an occurrence of a in the first cycle of match of the
sequence. The sequence continues in Line 3 with repetition of going to the next
occurrence of a and incrementing num_a. This accounts for subsequent occurrences

by substituting actual arguments for formal arguments, as described in the rewriting algorithms of
Annex F.4 of the LRM [8].
11For formal verification, the int type of num_a and num_dataValid should be replaced with
the type of smallest bitwidth needed for the counters.

394 16 Mechanics of Local Variables

of a. The sequence ends with !a[*], which allows any number of cycles without
occurrences of a at the end. Within property p_num_dataValid_check, an instance
of s_cnt_occurrences, which binds dataValid to a and num_dataValid to
num_a, is intersected with the goto complete[->1]. The intersection ensures that
the instance of s_cnt_occurrences only counts those occurrences of dataValid
that occur after start and not later than complete. In Line 17, a function (or
property) num_dataValid_OK is called to check that the number of occurrences
of dataValid is allowable for the given transaction type captured in l_ttype in
Line 9.

The second mechanism for passing out values of local variables uses untyped
formal arguments. This mechanism is discouraged unless the flexibility of untyped
arguments is required. If an untyped formal argument of a named sequence is
used an l value in a local variable assignment, then that formal argument is
understood to represent a local variable. The entire actual argument passed to
such a formal argument must be a local variable (the receiver local variable). The
formal argument behaves like an untyped version of an argument local variable of
direction either output or inout. The following variant encoding of the sequence
s_cnt_occurrences exhibits this style and can be substituted in Fig. 16.18 to
achieve an equivalent effect:

1 sequence s_cnt_occurrences(bit a, untyped num_a);
2 (1’b1, num_a = a)
3 ##1 (a[->1], num_a++)[*0:$]
4 ##1 !a[*0:$];
5 endsequence

The value of a local variable can be output from an instance of a named sequence
to which a sequence method (triggered or matched) is applied. The rules above
apply, with the additional conditions that argument local variables of direction
input or inout cannot appear in the declaration of such a named sequence, and
the sequence instance must be a maximal expression (i.e., there is no negation or
other expression operator applied to it.)

Exercises

16.1. A default actual argument for an input argument local variable may refere-
nce preceding arguments in the port list of the sequence or property provided that
none of the arguments referenced is an output argument local variable. Explain the
rationale for this restriction.

16.2. For each of the following sequences, explain why the syntax is not legal and
give an example of a legal sequence that, arguably, captures the same intent as the
illegal one.

16.5 Input and Output with Local Variables 395

1. sequence s1(bit a, b, c);
bit l_b;
(a, l_b = b) throughout c[->1];

endsequence

2. sequence s2(bit a, b, c);
bit l_b;
a throughout (c, l_b = b)[->1];

endsequence

3. sequence s3;
byte l_numBeats;
(start, l_numBeats = numBeats) ##1
(

(dataValid[->1])[*l_numBeats] ##1 !dataValid[*]
intersect
complete[->1]

);
endsequence

16.3. Explain why the following is not legal:

sequence s_illegal(local input bit l_a, l_b = l_a);
bit l_c, l_d = l_c;
(t, l_c = l_a) ##1 {l_a,l_b} != {l_c,l_d};

endsequence

16.4. For each of the following declarations, analyze the local variable flow and
determine whether any references to local variables are illegal. Use rules of local
variable flow to justify your analysis.

1. sequence s1;
byte l_v;
a ##1 (b, l_v &= e);

endsequence

2. property p2;
byte l_v;
(a, l_v = e)
|->
s_nexttime s_eventually (b == l_v);

endproperty

3. property p3;
byte l_v;
(a, l_v = e)
implies
s_nexttime s_eventually (b == l_v);

endproperty

4. property p4;
bit [1:0] l_v = e;

396 16 Mechanics of Local Variables

a |=>
case(l_v[0])

1’b1: s_eventually(b == l_v);
1’b0: c != l_v;

endcase;
endproperty

5. sequence s5;
byte l_v;
(

((a[->1], l_v = e) and b[->1])
or
(c, l_v = f)[*1:2] ##1 !c

)
##1 (d == l_v);

endproperty

16.5. The nonoverlapped followed-by operator #=# is defined such that for a
sequence R and a property P, the passing or failing of the following two properties
is equivalent:

1. R #=# P.
2. not (R |=> not P).

Use flow rules to show that local variable flows through these two properties is also
equivalent.

16.6. Use rules of local variable flow to show that v flows out of R[*0:1] iff both
of the following two conditions are satisfied:

1. v flows into R[*0:1].
2. If v flows into R, then v flows out of R.

What can you say about the conditions for v to flow out of R[*0:n], where n is
positive? What about R[*]?

16.7. Consider the following variant of p_ttype_check:

1 property p_ttype_check;
2 transType l_ttype;
3 (start && (ttype == INV || ttype == PRG), l_ttype = ttype)
4 |=>
5 (
6 (1’b1, l_ttype = ttype)
7 #-#
8 p_no_repeat_ttype(
9 .varying_ttype(ttype), .captured_ttype(l_ttype)

10)
11);
12 endproperty

Explain the local variable flow. Does the assignment in Line 6 affect the instance of
p_no_repeat_ttype? Compare or contrast the behavior of this property with the
encoding that results by replacing #-# with and.

16.5 Input and Output with Local Variables 397

16.8. Give a legal encoding of the intent of p_illegal_causality from
Sect. 16.5.1.

16.9. Recode the example of Fig. 16.18 so that the antecedent of |-> in property
p_num_dataValid_check is replaced by an instance of a named sequence to which
method triggered is applied. In this instance, the local variables l_ttype and
num_dataValid should both be bound to output argument local variables.

Chapter 17
Recursive Properties

There is repetition everywhere, and nothing is found only once
in the world.

— Johann Wolfgang von Goethe

SystemVerilog allows named properties to be recursive. A named property is
recursive if its declaration instantiates itself. More generally, a set of named
properties may be mutually recursive, which means that there is a cyclic dependency
in the way that they instantiate themselves and one another. Recursion provides a
very flexible framework for coding properties. In general, from a flow diagram for a
desired check an encoding can be created in which certain nodes of the flow diagram
correspond to named properties. If the flow diagram contains cycles, then some of
the named properties will be recursive or mutually recursive. This situation occurs,
for example, if the check involves retry scenarios. Unlike recursion in programming
languages, property recursion does not return. It simply specifies that a thread of
evaluation should begin executing the named property again. As a result, there is no
stack associated with property recursion, and infinite property recursion is possible
on an infinite trace. As a theoretical matter, an instance of a recursive property can be
rewritten to avoid recursion.1 However, for complex properties, it is often simpler
to write and maintain a recursive encoding, either because it is more succinct or
because the assertion writer can think about the properties in a more procedural
way.

1An instance of a recursive property can be rendered as an alternating automaton. See [40] for a
sketch; restrictions on the actual arguments to recursive instances play a role. LTX augmented with
regular expressions is known to be as expressive as alternating automata (see [12], e.g.).

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__17

399

400 17 Recursive Properties

17.1 Overview of Recursion

This section gives an intuitive overview of recursion based on examples.
A named property is recursive if its declaration instantiates itself. Figure 17.1

shows a simple example. The instance my_always(p) behaves equivalently to
always p. Whenever evaluation of my_always(p) begins, Line 2 causes alignment
with the incoming clock, followed by evaluation of p. Line 4 has a recursive instance
and causes evaluation of my_always(p) to begin again after advancing to the next
occurrence of the incoming clock. The use of nexttime[0] in Line 2 ensures that
the first evaluation of p begins after alignment with a tick of the incoming clock.2

From the beginning of an evaluation of my_always(p), property p is checked
starting at each tick of the incoming clock. Indeed, the following is an unrolling
of the instances of the recursive form:

nexttime[0] p
and nexttime[1] p
and nexttime[2] p
...

Checking this is exactly the same as checking always p. In particular, the recursion
need not end: on a trace with infinitely many ticks of the incoming clock, there are
infinitely many recursive evaluations.

Suppose now that we want to get the effect of always[low:high] p in a
situation where low and high are not constants. In such a case, always cannot
be used. Instead, we can use a recursive property and capture the values of the
expressions defining the range bounds into local variables when the property begins.
Figure 17.2 shows an encoding. The recursive property ranged_always_recur

is called from the wrapper property ranged_always, which passes its arguments
through and passes 0 as actual argument to cnt. The wrapper is not necessary, but it
hides cnt, simplifying instantiation and usage. In the recursive property, low, high,
and cnt are argument local variables. As a result, the values of the actual arguments
passed to low and high are captured when evaluation of the wrapper begins. If low
and high were not local variables, then changes to their actual arguments would

1 property my_always(property p);
2 (nexttime[0] p)
3 and
4 nexttime my_always(p);
5 endproperty

Fig. 17.1 Recursive encoding of always

2Alignment with a tick of the incoming clock is necessary for equivalence of my_always(p)
and always p in case p has one or more leading clocks that differ from the incoming clock. See
Sect. 12.2.5.1 for more on nexttime[0].

17.1 Overview of Recursion 401

1 property ranged_always(int unsigned low, high, property p);
2 ranged_always_recur(low, high, 0, p);
3 endproperty
4 property ranged_always_recur(
5 local input int unsigned low, high, cnt,
6 property p
7);
8 if (cnt <= high)
9 (

10 (if (cnt >= low) p)
11 and
12 nexttime ranged_always_recur(low, high, cnt+1, p)
13);
14 endproperty

Fig. 17.2 Recursive encoding of ranged always allowing non-constant range bounds

1 property my_until(property p, q);
2 (nexttime[0] q)
3 or
4 ((nexttime[0] p) and nexttime my_until(p, q));
5 endproperty

Fig. 17.3 Recursive encoding of until

affect the meaning of the range while evaluation of the recursive property was
underway (see Exercise 17.1). cnt is an incrementing counter that keeps track of
the number of cycles that have elapsed. Line 8 checks that cnt has not yet exceeded
high. When it does, the recursion ends. When cnt reaches low, checking of p is
caused by Line 10. The recursive instance in Line 12 increments cnt in the actual
argument expression.

Figure 17.3 shows a recursive encoding of until. Each time evaluation of
my_until begins, either property q must evaluate to true (Line 2) or both property
p must evaluate to true and also evaluation of my_until must start again in the
next cycle (Line 4). The use of nexttime[0] in Lines 2 and 4 ensures that the
first evaluations of q and p begin after alignment with a tick of the incoming
clock. Satisfaction of q results in satisfaction of my_until without evaluation of the
recursive instance in Line 4, and so it allows the recursion to stop. Until q is satisfied,
Line 4 must be satisfied, which implies that p must be satisfied. It is possible that q
is never satisfied, in which case p must be satisfied always. Thus, my_until(p,q)
has the same semantics as p until q.

Suppose that we need to check a ranged form of p until q, in which satisfaction
of q must occur within a range [low:high] of cycles from the start of the
evaluation. Let us denote this property p until[low:high] q. Note that this is not
legal SVA code, just a notation. The property p until[low:high] q is satisfied iff
there exists k, low � k � high, such that q is satisfied in the kth cycle from the
start of evaluation and p is satisfied in every prior cycle from the start of evaluation.
Figure 17.4 shows a recursive encoding of this property.

402 17 Recursive Properties

1 property ranged_until(int unsigned low, high, property p, q);
2 if (low > high) 1’b0 // required k does not exist
3 else
4 ranged_until_recur(low, high, 0, p, q);
5 endproperty
6 property ranged_until_recur(
7 local input int unsigned low, high, cnt,
8 property p, q
9);

10 if (cnt == high) q // last chance to satisfy q
11 else
12 (
13 (q and (cnt >= low))
14 or
15 (p and nexttime ranged_until_recur(low,high,cnt+1,p,q))
16);
17 endproperty

Fig. 17.4 Recursive encoding of ranged until

1 property even;
2 (nexttime[0] p) and nexttime odd;
3 endproperty
4 property odd;
5 q and nexttime even;
6 endproperty

Fig. 17.5 Mutually recursive encoding of even–odd checks

Line 2 requires low to be at most high. If low exceeds high, then the required k

does not exist and ranged_until fails. Otherwise, ranged_until_recur is called
in Line 4. This recursive property is an adaptation of the ideas of the encoding of
ranged always from Fig. 17.2 to the recursive form of my_until in Fig. 17.3. cnt is
an incrementing counter of the cycle number, and it is initialized to 0 by the actual
argument in Line 4. Lines 13–15 mimic Lines 2–4 of my_until. Line 13 adds the
condition cnt >= low. This ensures that satisfaction of q discharges the evaluation
only if cnt is in the range [low:high]. Line 10 requires q to be satisfied no later
than the last cycle of this range.

For the next example, suppose that we want to check that p holds in every even
tick of the incoming clock and q holds in every odd tick of the incoming clock, both
reckoned from the start of evaluation.

Figure 17.5 shows an encoding with two mutually recursive properties. Property
even checks p, after alignment with the incoming clock, and in the next cycle calls
property odd. Property odd checks q and in the next cycle calls property even.
Figure 17.6 shows a single recursive property that performs the same check as
property even.

17.1 Overview of Recursion 403

1 property even_odd (property p, q);
2 (nexttime[0] p) and nexttime even_odd(q, p);
3 endproperty

Fig. 17.6 Recursive encoding of even–odd checks

1 property even_odd_stall(property p, q);
2 if (stall) nexttime even_odd_stall(p, q)
3 else
4 p and nexttime even_odd_stall(q, p);
5 endproperty

Fig. 17.7 Recursive encoding of even–odd checks with stall

1 property p_fifo_data_check;
2 dataType data;
3 bit [0:$clog2(MAX_OUTSTANDING)] numAhead;
4 (start, data = dataIn, numAhead = outstanding)
5 ##1 (numAhead > 0 ##0 complete[->1], numAhead--)[*]
6 ##1 (numAhead == 0 ##0 complete[->1])
7 |->
8 dataOut == data;
9 endproperty

Fig. 17.8 Encoding of FIFO protocol data check using local variables

Suppose now that we want to modify the check so that cycles in which stall is
true are skipped—i.e., no new check of p or q is started in such a cycle and it does
not count for the reckoning of even and odd cycles. Figure 17.7 shows an encoding.

The remaining examples of this section give recursive encodings of several
checks for the FIFO protocol from Sect. 15.3. Recall that the FIFO protocol
requires dataIn at an occurrence of start to equal dataOut at the corresponding
occurrence of complete. According to FIFO ordering, the nth occurrence of start
corresponds to the nth occurrence of complete. An auxiliary variable outstanding
(see Fig. 15.6) keeps track of the number of outstanding transactions, i.e., the
difference between the number of preceding occurrences of start and the number
of preceding occurrences of complete. The encoding of the FIFO protocol data
check property from Fig. 15.9 is repeated here for reference in Fig. 17.8.

A drawback of this encoding is that the management of the local variable
numAhead in Lines 5 and 6 involves a somewhat tricky pattern. Figure 17.9 shows a
recursive encoding of the same property.

p_fifo_data_check_recur has argument local variables data and numAhead.
The instance of this property in Line 2 initializes data to the value of dataIn and
numAhead to the value of outstanding. Line 8 advances to the nearest strictly
future occurrence of complete. At that point, if numAhead is zero, then dataOut

404 17 Recursive Properties

1 property p_fifo_data_check;
2 start |-> p_fifo_data_check_recur(dataIn, outstanding);
3 endproperty
4 property p_fifo_data_check_recur(
5 local input dataType data,
6 local input bit [0:$clog2(MAX_OUTSTANDING)] numAhead
7);
8 ##1 complete[->1]
9 |->

10 if (numAhead == 0)
11 dataOut == data;
12 else
13 p_fifo_data_check_recur(data, numAhead--);
14 endproperty

Fig. 17.9 Recursive encoding of FIFO protocol data check

is compared to data (Line 11). Otherwise, the evaluation recurs, decrementing
numAhead in the actual argument in Line 13. The overall encoding of Fig. 17.9
occupies more lines than the nonrecursive encoding, but the pattern in the body of
the recursive property (Lines 8–13) may be more accessible than the trickier pattern
in Lines 5 and 6 of the nonrecursive encoding.

Figure 17.10 is a copy of Fig. 15.15 for reference. It shows the encoding
from Sect. 15.5 of all of the FIFO protocol checks using only local variables.
This encoding is subtle in the use of two local variables of type counterType

in p_fifo_all_checks. Because outstanding is managed as a local variable
and updated in the repetition of Lines 11–15, it is necessary to have it shadow
nextOutstanding so that the appropriate value will still be available for use in
the consequent (Lines 17–22).

With recursion, there is more flexibility in where local variables are updated.
As a result, the shadow variable can be eliminated. A recursive encoding is given in
Fig. 17.11. Property p_fifo_data_check_recur is the same as in Fig. 17.9, except
that the user-defined type counterType is used for numAhead. The main recursive
property is p_fifo_all_checks_recur. It has a single argument local variable,
outstanding, which is initialized to ’0 in the instance in Line 32. Line 16 advances
to the next occurrence of start or complete. Lines 18–21 of the consequent update
outstanding and, in the next cycle, recur with the new value of outstanding.
This part of the code keeps the ongoing check running. Rules of local variable flow
(see Sect. 16.4) ensure that the new value of outstanding from Line 19 is not
visible in Lines 23–28. This is how the shadow variable is eliminated. Lines 23–28
perform the same checks as Lines 17–22 of the nonrecursive encoding. Again, the
overall number of lines is a bit greater in the recursive case, but the code patterns
are easier to understand.

17.2 Retry Protocol 405

1 typedef bit [0:$clog2(MAX_OUTSTANDING)] counterType;
2 property p_fifo_data_check(local input counterType numAhead);
3 dataType data = dataIn;
4 ##1 (numAhead > 0 ##0 complete[->1], numAhead--)[*]
5 ##1 (numAhead == 0 ##0 complete[->1])
6 |->
7 dataOut == data;
8 endproperty
9 property p_fifo_all_checks;

10 counterType outstanding, nextOutstanding = ’0;
11 (
12 (start || complete)[->1],
13 outstanding = nextOutstanding,
14 nextOutstanding += start - complete
15)[+]
16 |->
17 if (start) (
18 (!complete && outstanding < MAX_OUTSTANDING)
19 and p_fifo_data_check(.numAhead(outstanding))
20) else (// complete
21 !start && outstanding > 0
22);
23 endproperty
24 initial
25 a_fifo_all_checks: assert property (
26 p_fifo_all_checks
27);

Fig. 17.10 Encoding of all FIFO protocol checks using only local variables

17.2 Retry Protocol

This section presents a write protocol with retry. The protocol involves complex
checks that are handled well with recursive properties. The protocol is a variant
of the retry protocol from Sect. 16.12.17 of the SystemVerilog 2012 LRM. The
LRM version includes transaction tags, which allow multiple write transactions
to be in flight concurrently, distinguished by their tags. Tags have already been
discussed at a high level in the Tag Protocol of Sect. 15.4. The tags are orthogonal
to the retry, so they have been abstracted away for simplicity. As a result, the
present protocol is sequential, meaning that a new transaction cannot start while
the previous transaction remains in flight. We assume that the protocol is clocked at
posedge clk, as specified by default clocking. Here are the English rules:

1. start, dataValid, complete, and retry are signals of type logic. data is a
signal of the integral type dataType.

2. Start of a write transaction is signaled by occurrence of start.
3. A write transaction has between one and MAX_BEATS data beats, where

MAX_BEATS is a positive integer parameter. Data for a single beat is of type
dataType.

406 17 Recursive Properties

1 typedef bit [0:$clog2(MAX_OUTSTANDING)] counterType;
2 property p_fifo_data_check_recur(
3 local input dataType data,
4 local input counterType numAhead
5);
6 ##1 complete[->1]
7 |->
8 if (numAhead == 0)
9 dataOut == data;

10 else
11 p_fifo_data_check_recur(data, numAhead--);
12 endproperty
13 property p_fifo_all_checks_recur(
14 local input counterType outstanding
15);
16 (start || complete)[->1]
17 |->
18 (
19 (1’b1, outstanding += start - complete)
20 |=> p_fifo_all_checks_recur(outstanding)
21)
22 and
23 if (start) (
24 (!complete && outstanding < MAX_OUTSTANDING)
25 and p_fifo_data_check_recur(dataIn, outstanding)
26) else (// complete
27 !start && outstanding > 0
28);
29 endproperty
30 initial
31 a_fifo_all_checks: assert property (
32 p_fifo_all_checks_recur(’0)
33);

Fig. 17.11 Recursive encoding of all FIFO protocol checks using only local variables

4. At an occurrence of start, expected data for the associated write transaction
is available in the array dataModel. dataModel is an unpacked array of
MAX_BEATS entries, each of type dataType. It is declared as

dataType dataModel [MAX_BEATS];

The beats of the transaction must transfer the data in the sequence
dataModel[0], dataModel[1], : : : .

5. Subsequent to start, an occurrence of dataValid signals a data beat. Data
beats do not have to be consecutive. In a cycle in which dataValid occurs, the
data for the beat is carried on the signal data.

6. The last data beat for the data transfer is signaled by occurrence of complete
together with dataValid. complete is meaningful only together with
dataValid. If complete occurs without dataValid, then it is ignored.
dataValid may not occur in the cycle after the last data beat.

17.2 Retry Protocol 407

10 20 30 40 50 60 70 80 90 100

clk

start

dataValid

complete

retry

Fig. 17.12 Waveform for retry protocol

7. At any time subsequent to start and no later than the cycle after the last
data beat, an occurrence of retry signals that the data transfer is forced to
retry. This means that no further data beats in the current sequence may be
transferred, and the data transfer must begin the sequence again, starting with
dataModel[0]. The transaction itself does not restart after retry, only the data
transfer. Specifically, the transaction does not reassert start and dataModel is
not observable after retry. There is no limit to the number of times the data
transfer may be forced to retry.

8. The overall write transaction completes in the cycle after the last data beat
provided retry does not occur in that cycle. A write transaction is said to be in
flight beginning in the cycle after start and continuing up to and including the
cycle that the transaction completes.

9. Write transactions must be sequential. More precisely, start must not occur
while a write transaction is in flight.

10. If dataValid, complete, or retry occurs while no write transaction is in flight,
then it is ignored.

Figure 17.12 shows a waveform for the control signals of the retry protocol.
A transaction starts at time 20. Two data beats occur at times 30 and 40, and
complete is signaled at time 40. At time 50, retry occurs, so the data transfer
must start again. Two data beats are repeated at times 70 and 90, and complete is
signaled at time 90. Since retry does not occur again, the transaction completes at
time 100.

Note that the protocol makes no requirement on the number of data beats in a
retried data transfer. A retried data transfer might have fewer or more data beats
than a previous data transfer, even if the previous data transfer signaled complete.
However, for each beat that occurs in a retried data transfer, the data must match the
value predicted by dataModel.

Figure 17.13 shows a flow diagram to check the retry protocol. The flow begins
with start. In the cycle of start, dataModel is captured. The flow then advances
to the next cycle and invokes synchronous reject on start. If start occurs while
the check is ongoing, then the check fails (rule 9). The counter i is then initialized

408 17 Recursive Properties

start

capture
dataModel

goto next cycle

synchronous
reject on start i = 0

goto
dataValid or

retry

goto next cycle
check data

==
dataModel[i]

check i <
MAX-BEATS-1;

i = i+1
retry goto next cycle

goto next cycle;
check

!dataValid
retry

done

yes

no

yes

yes

no

no

yescomplete

dataValid

Fig. 17.13 Flow diagram for retry protocol checks

to zero, indicating that the check expects the first data beat. The flow then advances
to the nearest occurrence of dataValid or retry. If dataValid occurs, the flow
checks that data equals dataModel[i]. If retry occurs, the flow advances to
the next cycle and resets i to zero to begin the data transfer again. If complete
has not also occurred, then the flow increments i, checks that the result is not too
big in comparison with MAX_BEATS, advances a cycle, and returns to look for the
next dataValid or retry. If complete has also occurred, then the data transfer
is complete and the flow advances one more cycle, where it checks that dataValid
does not occur and checks for retry at the last opportunity. If retry does not occur,

17.2 Retry Protocol 409

1 property p_retry_check;
2 dataType l_dataModel [MAX_BEATS];
3 (start, l_dataModel = dataModel)
4 |=>
5 sync_reject_on(start) p_retry_check_recur(dataModel, 0);
6 endproperty
7 property p_retry_check_recur(
8 local input dataType l_dataModel [MAX_BEATS],
9 local input int unsigned i

10);
11 (dataValid || retry)[->1]
12 |->
13 (dataValid |-> data == l_dataModel[i]) and
14 if (retry)
15 nexttime p_retry_check_recur(l_dataModel, 0)
16 else if (complete)
17 nexttime (
18 !dataValid and
19 if (retry)
20 nexttime p_retry_check_recur(l_dataModel, 0)
21)
22 else (
23 (i < MAX_BEATS-1) and
24 nexttime p_retry_check_recur(l_dataModel, i+1)
25);
26 endproperty
27 a_retry_check: assert property (p_retry_check);

Fig. 17.14 Recursive encoding of retry protocol checks

then the flow is done. Otherwise, the flow advances a cycle and resets i to zero to
begin the data transfer again.

Figure 17.14 shows a recursive encoding of the retry protocol checks. The
encoding follows closely the flow diagram of Fig. 17.13. The outer property
p_retry_check corresponds to the whole diagram, beginning from the start

figure. The recursive property p_retry_check_recur corresponds to the subflow
that is downstream from the node “goto dataValid or retry”. There are three
cycles in the flow diagram, and these correspond to the three recursive instances of
p_retry_check_recur. The cycle on the left of the flow diagram corresponds
to the recursive instance on Line 24. The smaller cycle on the right of the flow
diagram corresponds to the recursive instance on Line 15. And the larger cycle on
the right of the flow diagram corresponds to the recursive instance on Line 20. Note
that management of the counter i is accomplished in the actual arguments to the
instances of p_retry_check_recur. With careful study of these correspondences,
the reader should gain an appreciation for the simplicity of encoding flow diagrams
into sets of properties, where cycles correspond to recursion.

410 17 Recursive Properties

1 property p_check_data_xfer(
2 local input dataType l_dataModel [MAX_BEATS]
3);
4 int unsigned j = 0;
5 (
6 (!retry && !(dataValid && complete))
7 throughout dataValid[->1],
8 j++
9)[*]

10 ##1 (!retry && !dataValid)[*]
11 ##1 (dataValid, j++)
12 |->
13 (
14 j <= MAX_BEATS
15 and data == l_dataModel[j-1]
16 and if (!retry && complete)
17 nexttime !dataValid
18);
19 endproperty
20 property p_check_retried_data_xfer(
21 local input dataType l_dataModel [MAX_BEATS]
22);
23 (
24 (!(dataValid && complete) throughout retry[->1])
25 or
26 (
27 (!retry && !(dataValid && complete))[*]
28 ##1 dataValid && complete
29 ##0 first_match(##[0:1] retry)
30)
31)[+]
32 |=> p_check_data_xfer(l_dataModel);
33 endproperty
34 property p_retry_check_non_rec;
35 dataType l_dataModel [MAX_BEATS];
36 (start, l_dataModel = dataModel)
37 |=>
38 sync_reject_on(start)
39 (
40 p_check_data_xfer(l_dataModel)
41 and
42 p_check_retried_data_xfer(l_dataModel)
43);
44 endproperty
45 a_retry_check_non_rec: assert property(p_retry_check_non_rec);

Fig. 17.15 Nonrecursive encoding of retry protocol checks

The remainder of this section provides an alternative, nonrecursive encoding of
the retry protocol checks. The encoding is shown in Fig. 17.15. The main property,
p_retry_check_non_rec, is similar to p_retry_check. It captures the data model

17.3 Restrictions on Recursive Properties 411

into a local variable when start occurs. Evaluation of the consequent begins in
the next cycle, where sync_reject_on(start) is invoked and two properties are
instantiated and conjoined.

The first property is p_check_data_xfer, which checks the current data transfer
up to its completion or to an occurrence of retry. The antecedent of |-> in Lines 5
to 11 is crafted to match at each occurrence of dataValid in the current data
transfer that is not strictly subsequent to an occurrence of retry or an occurrence of
dataValid && retry. Lines 5–9 match zero or more occurrences of dataValid,
none together with complete. Throughout match of these lines, retry must not
occur. Lines 10 and 11 match one more occurrence of dataValid. In these lines,
retry must not occur strictly before dataValid. The consequent of |-> checks that
the counter j has not grown too large and that data is correct. Also, it checks that
if dataValid and complete occur without retry, then dataValid does not occur
in the next cycle.

The second property is p_check_retried_data_xfer. This property is respon-
sible for restarting p_check_data_xfer each time a data transfer is forced to retry.
The overall antecedent of |=> is a repetition of one or more matches of the sequence
in Lines 24 to 30. That sequence encodes the condition that a data transfer is forced
to retry. The occurrence of retry may be strictly before dataValid && complete,
which matches Line 24. Or the occurrence of retry may be concurrent with or
in the cycle after dataValid && complete. These cases match Lines 27 to 29.
The antecedent has been arranged to avoid multiple matches, which could result in
redundant checking of the consequent. The consequent of |=> simply instantiates
p_check_data_xfer to begin checking the data transfer again.

It should be clear that the sequential conditions in the antecedents of these
two properties are complex and prone to error in comparison with the recursive
encoding.

17.3 Restrictions on Recursive Properties

The coding flexibility afforded by recursive properties is tempered by four
restrictions on their use. The restrictions are intended to avoid recursive declarations
and instances that are problematic or whose semantics involves subtleties that are
beyond the scope of the current semantic framework for recursion. This section
quotes the restrictions from the LRM and elaborates briefly on the rationale
for them.

412 17 Recursive Properties

17.3.1 Negation and Strong Operators

RESTRICTION 1: The negation operator not and the strong operators
s_nexttime, s_eventually, s_always, s_until, and s_until_with can-
not be applied to any property expression that instantiates a recursive property.

In view of the Rewriting Algorithms in Annex F.4 of the LRM, this restriction
also forbids the application of these operators to an expression that, through
instances of nonrecursive properties, ultimately depends on an instance of a
recursive property.

Restriction 1 avoids the subtle interplay between negation and recursion.
Consider the following example:

property confounding;
nexttime not confounding;

endproperty

A naïve approach to the semantics of this property leads to contradiction. For
simplicity, consider the unclocked semantics (see Chap. 22) of confounding over
an infinite trace w D `! , where ` is a normal letter (i.e., ` 62 f>;?g). Then also
w1:: D `! D w and Nw D w. Naïvely,

w ˆ confounding

iff w ˆ nexttime not confounding

iff w1:: ˆ not confounding

iff [w1:: D w]
w ˆ not confounding

iff [Nw D w]
w 6ˆ confounding

Clearly, something is wrong with this argument.3 SVA currently avoids the problem
by imposing Restriction 1.

The strong operators are related to negation because negation interchanges weak
and strong. For example, s_eventually can be defined as a derived operator
according to

s_eventually p � not always not p

3[40] provides an approach to negation and recursion that allows their free interplay. Additional
information is provided in the declarations of recursive forms that enables the interpretation
of satisfaction using either a co-Büchi or Büchi acceptance criterion. With this approach,
negation need not result in language complementation. For co-Büchi acceptance, one gets
w 6ˆ confounding and w 6ˆ not confounding. For Büchi acceptance, one gets w ˆ
confounding and w ˆ not confounding. [40] gives sufficient conditions on recursive
forms to ensure that co-Büchi and Büchi acceptance are equivalent and that negation results in
language complementation. Of course, confounding does not satisfy these conditions.

17.3 Restrictions on Recursive Properties 413

Creating a framework for recursion that interacts well with the strong operators
involves dealing with negation and liveness in recursive forms. Again, SVA
currently avoids these issues through Restriction 1.

17.3.2 Disable Clause

RESTRICTION 2: disable iff cannot be used in the declaration of a
recursive property.

disable iff cannot be nested, so its use within a recursive property declaration
is forbidden. If a disable clause is needed, it should be put in a wrapper property
around the recursive property or in an assertion statement. For example, the
following is illegal:

property illegal_disable(logic b, property p);
disable iff (b)
p and nexttime illegal_disable(b, p);

endproperty

The effect of the disable can be obtained using a wrapper, as in

property always_with_disable(logic b, property p);
disable iff (b)
my_always(p);

endproperty

where my_always is the recursive property from Fig. 17.1.

17.3.3 Time Advance

RESTRICTION 3: If p is a recursive property, then, in the declaration of p,
every instance of p must occur after a positive advance in time. In the case of
mutually recursive properties, all recursive instances must occur after positive
advances in time.

Briefly, recursion must occur after a positive advance in time. This restriction
is intended to avoid recursive forms that get “stuck” at a single point in time. For
example, the following is illegal:

property illegal_stuck(property p);
p and nexttime[0] illegal_stuck(p);

endproperty

414 17 Recursive Properties

nexttime[0] does not guarantee an advance in time, and infinitely many evalua-
tions of p are specified beginning in the same time step.

17.3.4 Actual Arguments

RESTRICTION 4: For every recursive instance of property q in the declara-
tion of property p, each actual argument expression e of the instance satisfies
at least one of the following conditions:

• e is a formal argument of p.
• No formal argument of p appears in e.
• e is bound to a local variable formal argument of q.

This restriction is intended to avoid problematic recursive instances that result
from passing compound actual argument expressions. Such instances can lead
to an explosion of distinct actual argument expressions as the recursion unfolds.
Such explosion has undesirable consequences for the complexity and tractability of
checking the properties.

As an example of a problematic recursive instance, consider the following
example that violates Restriction 4:

property illegal_arg(longint unsigned u, v, w);
u == v*w and nexttime illegal_arg(u, v+w, v*w);

endproperty

Since the formal arguments of illegal_arg are not local variables, they are treated
as reference arguments. This means that successive recursive instances require
composition of the compound actual argument expressions. Tracking the evolution
of the recursion, the comparison u == v*w expands to

cycle comparison
0 u == v*w

1 u == (v+w)*(v*w)

2 u == ((v+w)+(v*w))*((v+w)*(v*w))

3 u == (((v+w)+(v*w))+((v+w)*(v*w)))*
(((v+w)+(v*w))*((v+w)*(v*w)))

and so on, where the arithmetic is performed modulo 264, as specified by the
unsigned longint type of the formal arguments and the rules for bitwidths in
expressions. Even though the data type is bounded, the management of these
expressions quickly gets out of hand.4

4See [22] for an example, due to D. Bustan, that shows how a recursive form violating the
restrictions can represent a language that is not omega-regular.

17.3 Restrictions on Recursive Properties 415

Having seen how recursion can get out of hand when Restriction 4 is violated, let
us consider the intuition for why it does not when at least one of the three conditions
is satisfied by each actual argument expression in a recursive instance.

If the first condition is satisfied, then the actual argument e is itself a formal
argument of the declaration of p. In this situation, e is simply being passed into the
recursive instance of q, modified at most by being cast to the type of the associated
formal argument of q. Iterated castings can involve some complexity, but it is benign
compared to expression explosion described above.

If the second condition is satisfied, then the actual argument e makes no reference
to any formal argument of p. As a result, e is composed of references to local
variables of p and references to entities outside of the declaration of p. Those entities
could be static variables, named sequences or properties, functions, etc. In any case,
whatever the local variables or external entities are, the meanings of references
to them are the same every time the recursive instance of q is encountered. Of
course the value stored in a local variable or an external static variable, e.g., may be
different, but the way in which these terms are combined to form e is not changing.
There is, thus, no expression explosion associated with e.

Finally, if the third condition is satisfied, then the formal argument to which
e is passed is an argument local variable. Argument local variables do not have
the expression explosion problem because they behave like value arguments, not
reference arguments. At each recursive instance, the value of the actual argument
expression is computed and stored in the corresponding argument local variable,
after which the form of the actual argument can be forgotten.

Exercises

17.1. The following is a variant of the encoding of ranged always from Fig. 17.2:

1 property ranged_always(int unsigned low, high, property p);
2 ranged_always_recur(low, high, 0, p);
3 endproperty
4 property ranged_always_recur(
5 int unsigned low, high,
6 local input int unsigned cnt,
7 property p
8);
9 if (cnt <= high)

10 (
11 (if (cnt >= low) p)
12 and
13 nexttime ranged_always_recur(low, high, cnt+1, p)
14);
15 endproperty

In this encoding, the arguments low and high of the recursive property are not local
variables. How does this difference affect the meaning of the property?

416 17 Recursive Properties

17.2. Recode the property ranged_always of Fig. 17.2 as a single recursive pro-
perty with argument local variables low and high and no other local variables. [Hint:
Manage low and high as decrementing counters instead of using the incrementing
local variable cnt.]

17.3. Recode the property ranged_until of Fig. 17.4 as a single recursive property
with argument local variables low and high and no other local variables. [Hint:
Manage low and high as decrementing counters instead of using the incrementing
local variable cnt.]

17.4. Figure 17.4 gives a recursive encoding of p until[low:high] q for general
properties p and q. Give a nonrecursive encoding under the restriction that p and q

are Booleans. Try to find a nonrecursive encoding for general properties p and q.

17.5. Write a recursive property (or a set of mutually recursive properties) to check
that properties p0, p1, and p2 hold in cycles from the start of evaluation that are
congruent to 0, 1, and 2 modulo 3, respectively.

17.6. Write a nonrecursive property to perform the check of property even_odd

from Fig. 17.6. Write a nonrecursive property to perform the check of property
even_odd_stall from Fig. 17.7.

17.7. Explain why p_fifo_data_check_recur in Fig. 17.9 becomes illegal if ##1
is deleted from Line 8. Assuming that ##1 is deleted from Line 8, explain how and
why the property can be repaired by adding nexttime in Line 10. [Hint: Use the
fact that start and complete are mutually exclusive.]

17.8. Modify the recursive encoding of the retry protocol in Fig. 17.14 so that there
is a failure if dataValid, complete, or retry occurs while no write transaction
is in flight. Also, check that there is never an occurrence of complete without
dataValid while a write transaction is in flight.

17.9. Make the same modifications specified in Exercise 17.8 for the nonrecursive
encoding in Fig. 17.15.

17.10. Let a and b be Booleans. Determine whether any of the following declara-
tions or instances violates the restrictions on recursive properties.

1 property p1;
2 a |-> p2;
3 endproperty
4 property p2;
5 p4 and (b |-> p1);
6 endproperty
7 property p3;
8 disable iff (reset)
9 p4 and nexttime(a |-> p2);

10 endproperty
11 property p4;
12 reject_on(bad)
13 a |=> not p1;
14 endproperty

17.3 Restrictions on Recursive Properties 417

Which properties are recursive and which are nonrecursive?

17.11. Let a and b be Booleans. Determine whether any of the following declara-
tions or instances violates the restrictions on recursive properties.

1 property p1(sequence s, property p);
2 s |=> p;
3 endproperty
4 property p2(property q);
5 q or p1(a, q or p1(b, p2(q)));
6 endproperty
7 property p3(sequence s);
8 s |=> p2(weak(s)) and p3(s ##1 s);
9 endproperty

Which properties are recursive and which instances are recursive?

17.12. Explain why the following code is illegal:

1 property fib(int unsigned a, b, n, sig);
2 if (n > 0)
3 sig == a and nexttime fib(b, a+b, n-1, sig);
4 endproperty

How can the declaration be modified to make it legal, while preserving the intent of
the original code?

Chapter 18
Coverage

Verification may not ever be complete, but we should know what
was verified.

— Unknown.

An important mechanism for determining whether design validation has sufficiently
verified the design on hand is to collect “coverage” information, both structural and
functional. This chapter describes how assertions can be used to gather functional
coverage information using cover property and cover sequence statements.
It is mainly suitable to collect information about the occurrences (or not) of some
sequences of events. SystemVerilog provides another mechanism for collecting
coverage, called covergroups. They are particularly suitable for gathering infor-
mation about the occurrence of data patterns and their cross correlation. Often, it
is important to detect a particular sequence of events and then initiate collecting
coverage on data patterns. This can be achieved by combining assertion coverage
with that of covergroups.

As we have seen, assertions and assumptions provide a precise way to state
functional specification of a design and its environment. While these assertion
statements may nonvacuously pass in our tests, we may still find that the design
contains errors. Why is that? The answer is quite simple: In simulation, we may have
not exercised all functional modes of the design, and the bugs may be hiding there.
In formal verification which is exhaustive with respect to each assertion, the problem
may lie in the fact that the assumptions representing the behavior of the environment
are more strict than the actual usage of the design, or because the search space was
restricted due to memory limitations. In either situation, we should have means to
determine the extent to which the design functionality has been exercised. There
are essentially two main methods for measuring this extent: Code Coverage and
Functional Coverage. Code coverage is concerned with measuring the percentage
of lines of code executed, which conditional blocks were executed and caused by
which conditions, etc. These measures indicate how much the implementation was

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__18

419

420 18 Coverage

structurally exercised. It does not tell us whether some functionality is missing.
Functional coverage, however, derives for the most part its coverage targets from
the functional specification of the design.

18.1 Immediate and Deferred Coverage

The simplest form of functional coverage measurement can be obtained using
immediate and deferred cover statements. Like the immediate and deferred assert

statements, they can be placed in procedural code. The immediate cover is useful in
high-level functional models and test benches, while the deferred form is preferred
in RTL models because of its ability to filter out 0-width glitches. Given that the
argument to a cover statement is a Boolean expression and is associated with the
design model, it is mostly suitable to measure whether some specific expression
values, or their combinations have been encountered in the model. That is, like
immediate and deferred assert statements, they are closer to the implementation
level than to the purely functional level.

The syntactic form of the immediate and deferred cover statements is as follows:

cover (expression) statement_or_null

and
cover #0 (expression) statement_or_null

and
cover final (expression) statement_or_null1

Notice that the action block is limited to an optional pass action block since there
is no notion of failure. In addition, as in deferred assertions, the action block of a
deferred cover statement is limited to a single subroutine call; that is, it cannot be a
block of statements. In the case of deferred final cover, like in deferred final asserts,
the action block may contain only passive statements. The coverage database will
record the total number of evaluations of the statement and the number of times
it succeeded (i.e., the expression evaluated true). The coverage database and the
analysis and presentation tools built around it play an important role in assessing
the quality of verification of the design. The tools usually provide means to merge
coverage information from different tests, indicate which areas of the design have
not yet been verified (or have no coverage collection statements), display the trend
in coverage over different tests and time, and present the information in a concise
and graphical manner.

In immediate covers, the statement in the pass action block executes immediately
upon success of the cover statement. In deferred cover statements, however, the pass
statement is limited to a single subroutine and is scheduled to execute in the Reactive

1In fact, in both cases of deferred covers this should specify “subroutine call or null” due to the
restrictions placed on action blocks in deferred assertions.

18.2 Sequence and Property Coverage 421

region following the evaluation of the cover statement. Why is that so different
from the simpler immediate cover? This is due to the glitch filtering mechanism
inherent in deferred assertions. In any given simulation time step, if a particular
cover instance evaluates several times without exiting a scheduling region (Active
or Reactive), only the last result upon entry to the following Observed region is
reported. The pass action subroutine is scheduled in the subsequent Reactive region
in the case of deferred observed covers, and in the Postponed region in the case
of deferred final covers. For more details on simulation semantics, see Sect. 3.3.
The semantics of immediate and deferred cover statements is the same as for the
corresponding assert statements. See also Sect. 4.7.

18.2 Sequence and Property Coverage

Concurrent assertion coverage statements come in two forms: cover sequence and
cover property. Let us first consider the former.

18.2.1 Sequence Coverage

The syntactical form of this statement is defined in Sect. 4.7.
The body of cover sequence must be a sequence expression; that is, it may only

contain an expression constructed using clock specifications, Boolean expressions,
sequence instances, sequence operators, and possibly sequence match items. It may
optionally contain a disable iff specification. A clocking event is optional if it
can be inferred from the context. The optional pass action is executed when the
sequence matches. In this case, the pass action may be any procedure and is not
limited to a single subroutine call.

Example 18.1. Detect that a is followed by b within 100 clock ticks.

default clocking ck @(posedge clk); endclocking
int my_count = 0;
seq_cov: cover sequence (disable iff (reset)

a ##[1:100] b
) begin

my_count++;
$display("match of seq_cov at time %t", $time);

end ut
In simulation, an evaluation attempt is started at every tick of the clocking

event, posedge clk. If a is true, then the evaluation will continue searching for
all occurrences of b being true within 100 clock ticks. For each such occurrence
of b a match is recorded in the coverage database. It is important to note that each
match of b will be recorded as a coverage success for seq_cov. The simulator will

422 18 Coverage

also record how many attempts were started. What happens if either a is false at the
beginning of an attempt or b is false throughout the range? In that case, there is no
match and the coverage count is not incremented in the database. Thus, unlike those
of assert statements, failures of covers are ignored.

The body of cover sequence may have a disable iff (expression) at the
top. As with assert property statements, the evaluation of the expression is
asynchronous to the evaluation of the sequence and uses the current values of
the variables appearing in the expression. Whenever the expression is true, all the
evaluation attempts currently in flight or starting are disabled and record no match.
In other words, in cover statements, disable iff behaves similarly to reject_on

(Chap. 13), but unlike reject_on it does not use sampled values and a success is
reported as “disabled”.

In the above Example 18.1, whenever the sequence a ##[1:100] b matches,
and provided that reset is false, the increment of my_count and the $display

statement are scheduled to execute in the Reactive region.
Despite its powerful expressive power, one has to be careful when writing

such cover sequence statements. This is because the total coverage count of the
matches includes multiple matches for a single attempt whenever they occur, and
thus get mixed with matches from other attempts in the total coverage count. In the
above example, consider a situation where a occurs at the first and then at every
fifth clock tick, and b at every tenth clock tick. Suppose that there are 101 clock
ticks. How many matches will be recorded? The attempts associated with the first
two occurrences of a will match each ten times, on all the occurrences of b. The
subsequent two occurrences of a will match nine times, etc. It can be easily seen
that the total number of matches will considerably exceed the number of attempts.
Furthermore, the same occurrence of b being true will account for several matches.
When looking at the final count in the coverage database, the result may be difficult
to interpret.

A more useful case of coverage determination is whether a was followed by a b

within 100 clock ticks without any other intervening occurrence of a. The result of
the coverage in Example 18.1 does not provide this information.

The coverage database for coverage on a sequence contains the number of
evaluation attempts started and the total number of sequence matches. This total
number of matches does not distinguish among the attempts, hence even if the total
number of matches exceeds the total number of evaluation attempts, there could be
attempts that had no match. Simulation tools may optionally provide a count of first
matches, in which case it is possible to see whether there were evaluation attempts
that were disabled or had no match.

The question is then where is the cover sequence statement useful? Our
experience suggests that it is useful when an action needs to be taken for all the
matches. For example to trigger evaluation of some tasks or increment counts used
elsewhere in the test bench.

18.2 Sequence and Property Coverage 423

Efficiency Tip. Unless necessary, avoid using cover sequence on sequence
expressions that may result in multiple matches, such as those containing delay and
repetition ranges or sequence disjunction (or).

If the total number of matches is not of interest, the cover statement can be stated
using cover property as discussed next (Sect. 18.2.2).

18.2.2 Property Coverage

The syntax of this statement is cover property(property_spec) state-
ment_or_null We have seen a description of assert property in Sect. 4.4.
Similarly, the body of cover property may consist of a disable iff

specification, a clocking event, and a property expression. If the property expression
is a sequence, it is promoted to a property, meaning that the first occurring match
of the sequence is transformed into a success of the property for that particular
evaluation attempt, and any further evaluation within that attempt is curtailed.

The coverage from Example 18.1 is rewritten using cover property in the
following example.

Example 18.2.

default clocking ck @(posedge clk); endclocking
int my_count = 0;
prop_cov1: cover property (disable iff (reset)

a ##[1:100] b
) begin

my_count++;
$display("success of prop_cov1 at time %t", $time);

end ut
In this case, my_count will be incremented and the $display statement will be

executed for only the first match of the sequence in any evaluation attempt. The
total number of recorded successes will thus be less than or equal to the number
of evaluation attempts of the cover property. Contrast this with the behavior of
cover sequence, for which the total number of recorded matches can exceed the
number of evaluation attempts.

Property successes are classified as vacuous and nonvacuous (see Sect. 10.6 for
discussion of vacuous and nonvacuous successes). Vacuous and nonvacuous suc-
cesses are recorded separately in the coverage database. Therefore, the information
obtained from the coverage database consists of the number of evaluation attempts
started, the number of attempts in which the property succeeded nonvacuously,
and the number of attempts in which the property succeeded vacuously. Attempts
that were disabled are not counted as either vacuous or nonvacuous successes.
A simulation tool may optionally provide a separate count for disabled attempts.

424 18 Coverage

While much can be expressed using sequences only, property operators can
provide additional expressive power. The combination of (simple) sequences and
property operators helps to state clearly the intent of the coverage statement.

Example 18.3. Cover with a property expression:

prop_cov2: cover property (disable iff (reset)
@(posedge clk) a |-> s_eventually[1:100] b

) begin
my_count++;
$display("success of prop_cov2 at time %t", $time);

end ut
The disadvantage of this form is that when a is false, there is a vacuous success

of the property. Coverage of vacuous successes is not useful. The property can be
reformulated using the followed-by operator, which is better suited for this purpose.

Example 18.4.

prop_cov3: cover property (disable iff (reset)
@(posedge clk) a #-# s_eventually[1:100] b

) begin
my_count++;
$display("success of prop_cov3 at time %t", $time);

end ut
This example illustrates two ideas: (1) the use of the operator followed-by #-#

for concatenating sequences with properties (the Boolean a on the left-hand side of
#-# is a simple sequence), and (2) the use of strong bounded eventuality requiring
the simple sequence b (implicitly cast to property) to occur within 100 clock ticks
after a and due to its strength not to record a hit if there are not enough clock ticks
to complete an evaluation attempt at the end of simulation.

Efficiency Tip. Use cover property unless all matches are absolutely needed.

Avoid using implications in cover property statements. Instead, either use
sequences or replace the implication with a followed-by operator.

The followed-by operator is necessary when the consequent is expected to be a
property or when you wish to indicate clearly the trigger sequence in the antecedent.
Followed-by is particularly useful in checker libraries where the checker arguments
may not be restricted to sequences only.

It is often of interest to obtain information on the conditions under which a
particular coverage scenario occurred. For instance, in the above example it may

18.2 Sequence and Property Coverage 425

be of interest to know which of the delays between a and b occurred. A simple
solution is to place the coverage statement in a generate loop spanning the 100
possible delay values:

Example 18.5.

for (genvar i = 1; i <= 100; i++) begin : loop_delays
prop_cov4: cover property (disable iff (reset)

@(posedge clk) a #-# s_nexttime[i] b
) $display(

"prop_cov4 success, time %t, delay %0d", $time, i
);

end : loop_delays ut
There will be 100 cover property statements to evaluate, each one triggering

on a and then searching for the occurrence of b at the exact time specified
by s_nexttime[i]. For small delay range values this is an acceptable solution.
However, for larger values, like in this example, it rapidly degrades the performance
in simulation. For FV, the performance impact may not be as heavy, as the individual
covers become targets for reachability analysis.

For simulation there is an alternative, simpler solution. We can combine the
power of temporal properties to detect patterns of signals over time with covergroups
to record data and characteristics of the signal patterns. First we provide a brief
introduction to the covergroup construct.

18.2.3 Covergroup

Coverage on properties and sequences is an excellent mechanism for detecting the
occurrence of some specific series of Boolean values. It is not as useful for collecting
data values, delays, etc. For that purpose the covergroup object is available in
SystemVerilog. Not only does it allow collecting information from simple temporal
sequences, but its main power is in collecting and correlating information from
multiple data points. The information sampling is triggered either by some clocking
event or by calling the sample method of the covergroup.

We do not present a detailed account of all the features of the covergroup

object. The reader can find further details in the LRM and also in [19, 59]. We only
introduce a small set of features by means of an example to illustrate the usage of
covergroups jointly with cover properties to achieve an efficient implementation of
coverage collection with data. The coverage collection is triggered by the successes
of a cover property, and data collected from within the evaluation attempt of the
property is stored using a covergroup. First let us see an example of a covergroup
where sampling is triggered by a clock.

426 18 Coverage

Example 18.6.

covergroup cover_delay @(posedge clk);
dl_pt: coverpoint delay {

bins delays [100]: {[10:110]};
}
dt_pt: coverpoint data;
dlXdt: cross dt_pt, dl_pt;

endgroup
cover_delay cover_delay_inst = new(); ut

The covergroup definition is named cover_delay. The covergroup tracks two
variables, delay and data. They are identified by using the keyword coverpoint

and by labeling them dl_pt and dt_pt, respectively. The variable values are
read whenever the clocking event @(posedge clk) occurs and are recorded into
individual bins according to their values.

For dl_pt, there is an array delays of 100 bins into which the occurrence counts
of values of delay in the range [10:110] are maintained. In other words, when the
recorded value of delay is 10 the bin delays[0] is incremented; if it is, say, 100
then the bin delays[90] is incremented; etc.

For dt_pt, the bins are allocated automatically. By default, there are at
most 64 bins, but that value can be changed by an optional specification
auto_bin_max=number of the covergroup. If the value range of the sampled
variable is less than the specified maximum, the number of bins is that of the
variable range. If the range is larger than the maximum, then the variable values are
uniformly distributed over the bins.

The cross correlation dlXdt of the values of delay and data is specified using
the keyword cross. This defines a set of pairs of values consisting of the Cartesian
product of the sets of bins of coverpoints of dl_pt and dt_pt. In this way, the
user can observe the correlated pairs of values of data and delay that occurred
during the simulation.

The clocking event can be replaced by an interface definition of the sample

method as follows:

covergroup cover_delay
with function sample(int unsigned delay, logic [7:0] data);

In this case, the coverage is triggered when the method sample is called. The
actual arguments must be type-compatible with the formal arguments of the method.
Note that the formal argument names match exactly those of the coverpoint

variables delay and data. In this way, the same covergroup instance can read
different variables passed as actuals to instances of the sample function and collect
the coverage information in the same bins. Using the method is especially helpful
when new instances of the variables are created over and over, as in the example
in the following section where local variables are passed to a covergroup instance.
When no clocking event or sample method is explicitly specified, the default sample
method is available to trigger sampling of coverpoint variable values.

18.2 Sequence and Property Coverage 427

There are many variations on how to define parameterized covergroups, bins,
crosses, conditional selection, etc. They are beyond the scope of this book, but the
information provided here should be sufficient to illustrate their combined power
with assertions.

18.2.4 Combining Covergroups and Assertions

We can use a covergroup to collect information on the delays in Example 18.5.
The generate loop in that example can be disposed of as follows:

Example 18.7.

default clocking ck @(posedge clk); endclocking
covergroup delay_cg

with function sample(int unsigned delay);
dl_pt: coverpoint delay {

bins delays [100]: {[1:100]};
}

endgroup
delay_cg delay_cg_inst = new();
property p_delay_coverage;

int unsigned ticks_l;
disable iff (reset)
(a, ticks_l = 0)
#-# (ticks_l < 100, ticks_l++)[+]
##1 (

b,
delay_cg_inst.sample(ticks_l), // match item
$display("prop_cov4 success, time %t, delay %0d",

$time, ticks_l) // match item
);

endproperty
prop_cov4: cover property(p_delay_coverage); ut

The main components of this form of coverage collection are:

• covergroup delay_cg definition that specifies a coverpoint on the formal
argument of the method sample.

• A covergroup instance delay_cg_inst that creates the actual coverage object.
• A cover on property p_delay_coverage, which uses a local variable ticks_l of

the same type as the formal argument of the sample method to count the number
of clock ticks until b matches.

• When b matches, sample is called to classify the current value of the local
variable in the coverage database.

Whenever prop_cov4 is triggered by the occurrence of a, the local variable
ticks_l is initialized to 0. ticks_l is incremented at each clock tick thereafter
until b occurs, provided it is within 100 clock ticks. When b matches, sampling of
tick_l by the covergroup takes place. The coverage database thus has two entries,

428 18 Coverage

one for prop_cov4 that records the total number of successes of the property and a
second one for the cover point dl_pt of the covergroup instance delay_cg_inst.
dl_pt has 100 bins, one for each value in the delay range [1:100].

Note that in this formulation of the property, the property operator followed-by
#-# could have been replaced by the overlapping sequence concatenation ##0

because the consequent of #-# is a sequence. The effect is the same.
When should one use one or the other? We believe that this depends on the

property to be covered. If the consequent is a sequence, use ##0 and ##1. If it is
a property, use #-#, and #=#, respectively. Followed-by is also useful even with
sequences when it is desired to identify clearly the trigger condition (the antecedent
of followed-by) in the cover property statement.

We cannot simply substitute s_eventually in place of the sequence operators.
The reason is that s_eventually provides no way to increment the local variable
when the clock advances. We can still extend the formulation with s_eventually

by adding extra code to keep a global count of clock ticks outside the assertion.
We initialize the local variable to the current count of the global counter when a

matches, and when b matches we pass the difference between the global counter
and the local variable value to the sample function call. This is shown in the next
example.

Example 18.8.

default clocking ck @(posedge clk); endclocking
int unsigned tick_counter = 0;
covergroup delay_cg with function sample (int unsigned delay);

dl_pt: coverpoint delay {
bins delays [100]: {[1:100]};

}
endgroup
delay_cg delay_cg_inst new();
always @ck

tick_counter <= tick_counter+1;
property p_delay_coverage;

int unsigned start_tick;
disable iff (reset) @(posedge clk)
(a, start_tick = tick_counter)
#-# s_eventually[1:100] (

b,
delay_cg_inst.sample(tick_counter-start_tick),
$display("prop_cov5 success, time %t, delay %0d",

$time, tick_counter-start_tick)
);

endproperty
prop_cov5: cover property(p_delay_coverage); ut

The compression of many generated cover property statements into one
together with a covergroup can be applied in other situations too. For example,
it is common to write the same cover statement on all bits of a vector. Instead, we
can use a generalized cover property on the vectors, save the bit indices that were
triggered in a local variable, and finally update the database using a covergroup.

18.2 Sequence and Property Coverage 429

This is illustrated in the next example, where first we show the coverage collection
using a generate loop and then rewrite it using a covergroup.

Example 18.9. On 32-bit vectors, cover that a rising transition on x[i] is eventually
followed by y[i] asserted.

Solution: Using generate:

bit [31:0] x, y; bit clk;
default clocking ck @(posedge clk); endclocking
for (genvar i=0; i<32; i++) begin : loopi

prop_cov6: cover property (
!x[i] ##1 x[i] ##1 y[i][->1]

);
end : loopi

Solution: Using a covergroup:

default clocking ck @(posedge clk); endclocking
covergroup cg_vect

with function sample (bit [31:0] covered);
vct: coverpoint covered {

bins x0 = {covered[0]};
... // enumerate all bit positions
bins x31 = {covered[31]};

}
endgroup
cg_vect cg_inst = new();
property p_vector_cov;

bit [31:0] rose_x, covered;
(1, rose_x = x)

##1 (1, rose_x = x & ~rose_x)
##0 (|rose_x, covered = 0)
##1 (

(y & rose_x & ~covered)[->1],
covered |= (y & rose_x)

)[+]
##0 (covered == rose_x, cg_inst.sample(covered));

endproperty
prop_cov7: cover property (p_vector_cov); ut

Property p_vector_cov is much more complex than the one used in prop_cov6.
There are two local variables: rose_x to record the bits of x that had a ris-
ing transition at the start of the property; and covered, which maintains the
set of bits of y & rose_x that have been covered so far. The final condition,
covered == rose_x, indicates that all the rising transitions recorded in rose_x

have been covered by high values on the corresponding bits of y. When that occurs,
the covered bits are sent to the covergroup instance and recorded.

There are two issues with this encoding that need some remedy. First, if for one
of the bits of x that had a rising transition the counterpart bit of y is never asserted,
then no coverage is recorded. It is better always to sample when some match occurs
inside the repetition loop. The second issue is in the declaration of the covergroup.

430 18 Coverage

There is no way to “generate” a set of bins in a loop; they must be enumerated.
To remedy this issue, a task can be created that decodes which bits are set in
covered, and then calls method sample for each such bit, passing its index. The task
is then called from the property in place of the sample method. The covergroup

must be modified so that the index into the vector is the coverpoint variable and it
has as many bins as the width of the vector. Both of these improvements are left as
an exercise at the end of the chapter.

18.3 Covergroups in Checkers

Checkers can be used to encapsulate coverage collection statements. Both assertion
cover statements and covergroup constructs are allowed in checkers. We show an
example of using cover statement in checkers in Example 24.4. In this section, we
focus on covergroups.

Example 18.10. Check that all states of the FSM are visited. Let the FSM states be
described by the following enumeration:

typedef enum {
INIT,
IDLE,
SEND,
WAIT,
RECEIVE,
TO

} state_t;

The following checker collects coverage information about FSM states.

checker cover_fsm(
state_t state,
event clk = $inferred_clock,
untyped rst = $inferred_disable

);
covergroup cg_state @clk;

coverpoint state iff (!rst);
option.per_instance = 1;

endgroup : cg_state
cg_state cg = new();

endchecker : cover_fsm

This checker contains a covergroup cg_state triggered by the clocking event
@clk. Coverage is collected in bins defined by the values of the enumeration type
state_t, but only when rst is low. Recall that for actual coverage collection to
take place, it is required to instantiate the covergroup using the new operator. ut

It is possible to use checker variables in covergroups contained in the same
checker.

18.4 Coverage on Weak and Strong Properties 431

Example 18.11. Cover the time interval distribution between request req and
acknowledgment ack.

Solution:

checker req_ack_window2(
req, ack,
event clk = $inferred_clock,
untyped rst = $inferred_disable

);
default clocking @clk; endclocking
default disable iff rst;
int unsigned n = 0;

always_ff @clk
if (rst || ack) n <= 0;
else if (req) n <= 1;
else if (n == 0) n <= 0;
else n <= n + 1;

covergroup cg_win @(clk);
coverpoint n iff (ack && !rst);

endgroup : cg_win
cg_win cg = new();

endchecker : req_ack_window2

Capture of the value of n in the covergroup happens when the clocking event
@clk takes place, i.e., before n is reset to 0 by nonblocking assignment.

We mentioned earlier that for efficiency reasons in FV, checker variables should
have the smallest possible size. In this example, n is defined as an unsigned int,
which is of size 32 bits. One reason for this declaration is that we do not know
the maximal size of the time window, yet we need to reserve a large enough upper
bound. More importantly, the goal of this checker is to collect coverage information
in the covergroup in simulation, where int variables are efficient. The checker is
not intended for use in FV. ut

In the following section, we examine effects of strong and weak properties in
cover property statements.

18.4 Coverage on Weak and Strong Properties

An important enhancement to SystemVerilog Assertions is the explicit notion of
property strength (see Chaps. 10 and 21). In simulation, the impact of strength
is seen on the result of property evaluation at the end of simulation, or more
specifically, when there is no further clock tick. In the case of cover property

statements, an evaluation attempt of a strong property for which there are not enough
clock ticks to reach a definitive decision yields the result not covered. This is unlike
in assert property statements, where such a situation leads to a failure of the
evaluation attempt.

432 18 Coverage

When a sequence s is implicitly promoted to a property by using it in
the statement cover property(s), the interpretation is as cover property

(strong(s)). It means that if the first match of the sequence is not reached
when the last clock tick occurs, that attempt is not counted as covered. Recall
that the statement assert property(s) interpretation is as assert property

(weak(s)), meaning that if a match is not reached when clock ticks stop, the result
is a success of the assertion.

An interesting situation occurs if a cover property statement is placed in a
conditional branch of an always procedure, as shown in the following example.

Example 18.12. Cover in an always procedure

always @(posedge clk) begin
if (!en) ... some code...;
else begin

c: cover property(a ##1 b);
... some other code ...

end
end ut

The cover property is sampled using posedge clk, but an evaluation attempt
will only start when control reaches the location of c in the procedure. That
may or may not ever happen, hence the overall effect of the cover within the
procedural code is similar to having written a static cover containing the property
s_eventually((en && a)##1 b). The eventuality occurs when the procedure
does execute the corresponding branch.

The next and final section provides two more complex examples.

18.5 Examples

Example 18.13. Recall the specification from Chap. 1, Fig. 1.6:

The system consists of a transmitter and a receiver connected by a point-to-point duplex
channel. The transmitter sends to the receiver packets and gets an acknowledgment from
the receiver upon the packet receipt. The packet contains a header and a body. The header
consists of 8 bits, and the two most significant bits contain information about the transaction
type: data (10), control (01), or void (00). The remaining six bits of the header contain the
transaction tag in case of a data transaction, and are 0 in case of a control transaction. For
void packets the tag field may contain any value. The packet body consists of three bytes;
these bytes contain raw data for data transactions and commands for control transactions : : :.
Upon receipt of a data or a control packet the receiver sends back to the transmitter an
acknowledgment signal. The acknowledgment consists of 7-bits: the most significant bit is
set to 1, and the remaining 6 bits contain the tag of the received packet. If a void packet is
received, its contents are ignored and no acknowledgment is sent : : :

The transmitter is not allowed to send a new packet before an acknowledgment is received.
If timeout is reached, the transmitter sends the same packet again. If after three retries it
does not get an acknowledgment, it asserts the error signal and requires a manual reset.

18.5 Examples 433

We can now enhance the checker in Fig. 1.6 to include collection of coverage
information to make sure that the behavior of the design is sufficiently exercised by
simulation tests. The enhancements are shown in Fig. 18.1.

Property tx_rx_ack describes a situation in which a packet sent of the type
kind_t having a particular tag eventually receives an acknowledgment. The corre-
spondence between the sending packet tag and the acknowledged tag is assured by
using the local variable tag in the property. It is assigned the tag of the transmitted
packet at the time when sent is true and then checked when an acknowledgment
arrives. Only when the tags match does the property succeed, and then the coverage
count in the database is incremented. ut

The next example illustrates another important point regarding the combined
power of cover property and the covergroup construct. It shows that this
scheme can save on coding effort, reduce simulation time, and consolidate reporting.
The example uses a simplified N �N switch.

Example 18.14. A switching device has N � 256 8-bit input ports and N � 256

8-bit output ports arranged in packed arrays:

logic [N-1:0] [7:0] dataIn;
logic [N-1:0] [7:0] dataOut;

A packet consists of 256 8-bit bytes. Each packet enters the switch on one of
the input ports and leaves the switch on one of the output ports. Packet data is
transmitted one byte at a time across a port. The first byte of a packet contains the
source ID where the packet originated. The second byte contains the destination
ID where the packet is to be routed after it leaves the output port. A 1-bit signal is
associated with each input and output port indicating the start of a packet. Vector
bit [N-1:0] startIn is used for input ports, while bit [N-1:0] startOut is
used for output ports. Bit i of either port is set to one when the first byte arrives.
At all other times the bits are set to 0. The incoming data are all synchronized to
posedge clkIn, the outgoing data are synchronized to posedge clkOut. There is
a delay of at least 2 clkIn cycles before a packet can emerge on an output port. For
simplicity, we assume more specifically that the first byte of a packet will appear on
one of the output ports at the first posedge of clkOut at or after the posedge of clkIn
when the second byte of the packet appeared on its input port.

It is required to construct a coverage collection system such that correlated
information is collected about which source ID and destination ID appeared in a
packet, together with the input port and output port through which the packet was
routed in the switch.

Discussion: A simple approach is to define a property that characterizes one path
of a packet from one input port to one output port, and use a generate loop to build
as many instances of a cover property as there are possible combinations of paths
through the switch and IDs. This is shown in Fig. 18.2.

While the definition of this coverage model is quite concise and simple to encode,
it will impose a heavy burden on the simulator and will most likely produce a
coverage report that is long and difficult to analyze. Even with a small N D 4, the

434 18 Coverage

1 typedef enum {
2 info = 2’b10, control = 2’b01, void = 2’b00, forbid = 2’b11
3 } kind_t;
4 typedef logic [5:0] tag_t;
5 typedef logic [23:0] data_t;
6 typedef struct {
7 kind_t kind; tag_t tag; data_t data;
8 } packet_t;
9 typedef struct { logic ack_received; tag_t tag; } ack_t;

10

11 checker spec (
12 packet_t tx_packet, // Packet to be transmitted
13 rx_packet, // Last received packet
14 logic sent, // Packet sent
15 ack_t ack, // Acknowledge
16 logic timeout, // Timeout active
17 logic err, // Error signal
18 event clk, // System clock
19 logic rst // Reset
20);
21 default clocking @clk; endclocking
22 default disable iff rst;
23

24 ...same as before...
25

26 // coverage of different packet types
27 let packet_sent_type(packet_t packet, kind_t kind) =
28 sent && packet.kind == kind;
29 cov_kinds_tx_info: cover property (
30 packet_sent_type(tx_packet, info));
31 cov_kinds_tx_void: cover property (
32 packet_sent_type(tx_packet, void));
33 cov_kinds_tx_control: cover property (
34 packet_sent_type(tx_packet, control));
35

36 // coverage of packet types transmission and acknowledgment.
37 property tx_rx_ack(kind_t kind);
38 tag_t tag;
39 (sent && tx_packet.kind == kind, tag = tx_packet.tag)
40 #=# s_eventually(ack.ack_received && ack.tag == tag);
41 endproperty
42

43 cov_sent_ack_info: cover property(tx_rx_ack(info));
44 cov_sent_ack_void: cover property(tx_rx_ack(void));
45 cov_sent_ack_control: cover property(tx_rx_ack(control));
46

47 endchecker : spec

Fig. 18.1 System specification with coverage

18.5 Examples 435

1 parameter N = 4;
2 property path_cover(inIdx, outIdx, sourceId, destId);
3 @(posedge clkIn)
4 (startIn[inIdx] && sourceId == dataIn[inIdx]) ##1
5 (destId == dataIn[inIdx])
6 ##0
7 @(posedge clkOut)
8 (startOut[outIdx] && dataOut[outIdx] == sourceId) ##1
9 (dataOut[outIdx] == destId);

10 endproperty
11

12 generate
13 for (genvar pIn = 0; pIn < N; pIn++) begin : PORT_IN
14 for (genvar pOut = 0; pOut < N; pOut++) begin : PORT_OUT
15 for (genvar sId = 0; sId < 256; sId++) begin : SOURCE_ID
16 for (genvar dId = 0; dId < 256; dId++) begin : DEST_ID
17 cover_path:
18 cover property(path_cover(pIn, pOut, sId, dId));
19 end
20 end
21 end
22 end
23 endgenerate

Fig. 18.2 Coverage using generate loops

packet path coverage for this 4 � 4 switch will generate 4 � 4 � 256 � 256 D 220

cover properties, all running at the same time.
Perhaps it is not necessary to track all source and destination IDs, hence the

number of cover properties can be reduced. Still, the overhead may be large.
A better and more elegant solution can be obtained by combining N cover property
statements, one for each output port of the switch, with a covergroup that collects
the coverage of paths. This is shown in Fig. 18.3.

The combination of N cover properties with a single covergroup provides a
speed up of up to 218 for a 4 � 4 switch over the simplistic solution using nested
generate loops. Furthermore, the coverage report generated for the covergroup will
nicely summarize which paths were covered and how many times. This is due to the
cross statement in the covergroup. ut

Exercises

18.1. For Example 18.13, write a cover property that records that a retry
occurred.

18.2. For Example 18.13, write several cover property statements that record
the number of retries that occurred (from 1 to 3).

436 18 Coverage

1 parameter N = 4;
2 covergroup pathCg with function sample
3 (bit [7:0] inIdx, outIdx, logic [7:0] sourceId, destId);
4 cross inIdx, outIdx, sourceId, destId;
5 endgroup
6 pathCg pathCg_inst = new();
7 task samplePathInfo(
8 bit [N-1:0] inIdx_lv,
9 bit [7:0] outIdx,

10 logic [N-1:0][7:0] sourceId_lv, destId_lv); logic [7:0]
outSourceId_lv, outDestId_lv;

11 int i;
12 for (i=0; i<N; i++) begin
13 if (inIdx_lv[i] && (sourceId_lv[i] == outSourceId_lv))

begin
14 && (destId_lv[i] == outDestId_lv)
15 pathCg_inst.sample(i, outIdx, sourceId_lv[i], destId_lv[i

]);
16 break;
17 end
18 end
19 endtask
20 property path_cover(outIdx);
21 logic [N-1:0][7:0] sourceId_lv, destId_lv;
22 bit [N-1:0] inIdx_lv; logic [7:0] outSourceId_lv;
23 @(posedge clkIn)
24 ((|startIn), inIdx_lv = startIn,
25 sourceId_lv = dataIn) ##1
26 (1’b1, destId_lv = dataIn)
27 ##0
28 @(posedge clkOut)
29 (startOut[outIdx], outSourceId_lv = dataOut) ##1
30 (1’b1, samplePathInfo(inIdx_lv, outIdx,
31 sourceId_lv, destId_lv,
32 outSourceId_lv, dataOut));
33 endproperty
34 generate
35 for (genvar i = 0; i < N; i++) begin : PORT_OUT
36 cover_path: cover property(path_cover(i));
37 end
38 endgenerate

Fig. 18.3 Coverage of packet paths using a cover property and a cover group

18.3. Write a single cover property that records the same information as Exer-
cise 18.2 with the help of a covergroup.

18.4. Write a cover property and a covergroup that record which tags were
used with which tx packet kind.

18.5. Modify the cover property and the covergroup in Example 18.8 to
remedy the two issues raised there.

18.5 Examples 437

18.6. Write two cover property statements that record whether between two
conditions, a and b, where b follows a by some indefinite number of clock ticks,
the condition c occurred and not occurred, respectively.

18.7. Modify the code in Fig. 18.1 to add a covergroup recording the kinds of the
transactions that are witnessed. Fold the three cover property statements into a
single cover property that collects this coverage.

18.8. The covergroup solution for Example 18.14 shown in Fig. 18.3 uses a
strategy of running N parallel threads, one for each output channel. Each thread
captures into local variables the packet start vector startIn, all bytes of dataIn
for two consecutive cycles of clkIn, and the one byte of dataOut for the channel
being tracked in the subsequent cycle of clkOut. At the next cycle of clkOut, the
thread passes all this data, together with another byte of dataOut for its channel,
to samplePathInfo to sort out which coverage data paths ending at the tracked
channel have been witnessed.

1. Discuss the redundancy of data across the various threads running in parallel.
2. What redundancy is there, if any, in the processing of the calls to task

samplePathInfo across the parallel threads?
3. Write a new encoding that uses the same covergroup, but which only runs a

single thread for all the data channels. Make the single thread collect all the
data from dataIn for two consecutive cycles as before, and make it collect all
the bytes of dataOut in the subsequent cycle of clkOut. At the next cycle of
clkOut, pass this data, together with all the bytes of dataOut, to a call to a new
task that analyzes the data path coverage for all channels.

4. Discuss the savings in data capture with the new encoding and compare the
processing complexity for its single task call with the N parallel calls to
samplePathInfo in Fig. 18.3.

Chapter 19
Debugging Assertions and Efficiency
Considerations

If everything seems to be going well, you have obviously
overlooked something.

— Steven Wright

Properties and sequences allow us to describe complex behaviors in a very compact
declarative form. That form is quite different from the procedural style used for
writing RTL and other design models as well as test benches. Thus, assertions may
also need a different style for debugging them. Issues related to the run time and
memory overheads for complex temporal assertions also need to be addressed. The
same behavior may be expressed using different assertions. Each may have different
efficiency in formal verification and simulation. We discuss both debugging and
efficiency in this chapter.

There are two kinds of situations to consider (see also [19]):

• A failure for an assertion from a checker library or a user-written one. Failure
of an assertion from a library usually points to its incorrect usage or a problem
in the design under verification, assuming that the library was validated. User-
written assertion failure may be due to a design error or an incorrect formulation
of the assertion.

• A failure for an assertion under development or during regression that needs to
be analyzed. Failure of an assertion under development usually means a failure
during specific simulation tests created to validate the assertion before use in
verifying a design. Failure during regression is more likely to be due to an error
in the design, assuming that the assertion was validated.

Developing assertion-based checkers uses similar techniques as for developing
custom assertions. The main difference is that the testing and documentation must
be quite extensive as demonstrated, for example, in the Accellera OVL checker
library [10]. In either situation, effective means must be provided to pinpoint the
source of the problem. Verification tool vendors often provide various mechanisms

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__19

439

440 19 Debugging Assertions and Efficiency Considerations

to view and debug assertions, however, in this book we are tool-agnostic and assume
only that tools generally provide waveforms for viewing with some marking that
identifies the start time and the end time of an evaluation attempt. To gather a more
insightful view of the failure, we rely on means within the SV language to provide
us with further information on the progress of the failing attempt. Debugging is
usually done in simulation, even though the assertion may be developed for or may
have failed in formal verification.

In the following sections, we address two scenarios: one, for debugging an
assertion during its development, and the other, for debugging a failing assertion
in a regression test for a design.

19.1 Debugging an Assertion Under Development

The starting point of any debugging effort while developing a custom assertion is a
good requirement specification that states the trigger conditions and the sequence of
signal combinations that must hold following the trigger. Based on this information,
a simple test bench should be developed. If the assertion is complex, a random
test bench is preferable, since a completely exhaustive test may be impractical.
This guideline is similar to developing a test bench for verifying a design. While
inspecting the results from simulating the assertion with the test bench, we must
be careful to identify and verify any unwanted vacuous successes and incomplete
evaluations.

The next step is to change the test bench to generate erroneous situations that
induce assertion failures, while avoiding the acceptable ones as much as possible.
This step is much harder, because the number of possibilities of failure may be quite
large and the resulting test bench may unavoidably contain acceptable situations
in which the assertion succeeds. It is these successes that must be scrupulously
analyzed for validity.

Suppose that either an invalid success or failure is detected. Now, one needs to
isolate the particular invalid attempt so as to not clutter the debugging information
by data from other attempts, and to observe the progress of the evaluation of
that attempt. Since most simulators provide information about the start time of
a failing/succeeding attempt, that time can be used to control the starting and
stopping of the assertion using the control system tasks $assertoff and $asserton
(see Sect. 7.3). Assuming that the test bench is repeatable, the assertion should be
stopped from time 0 using $assertoff till just before the start time of the attempt
of interest at which point it should be started using $asserton for just one clock
tick, and thereupon stopped again using $assertoff. This will start exactly the
single attempt of interest.

Once the invalid attempt is isolated, we can instrument the assertion by adding
local variables for collecting data, using match items in sequences to assign and
display signal values, and use action blocks to display any additional information

19.1 Debugging an Assertion Under Development 441

about the failure or success of the assertion. The number of possibilities is quite
large to describe it in all generality; therefore, we shall illustrate the process using
an example.

Suppose that we need to debug an assertion written according to the following
requirements: When req becomes asserted for one clock cycle it is associated with
a transaction id req_tag, the acknowledgment ack is also associated with a similar
id ack_tag that establishes correspondence with the request having the same id.
ack must arrive no later than 18 cycles after the req. Acknowledgments can arrive
out of the requesting order.

Let us assume that the assertion has the following form:

Example 19.1.

property p;
logic [3:0] tag;
@(posedge clk) (req, tag = req_tag)
|=>
s_eventually [1:18] ack && (ack_tag == tag);

endproperty
a: assert property (p); ut

Clock ticks occur at times 1, 3, 5, : : : . An unexpected failure happened for the
attempt starting at 105, ending at 141. That is, the failure occurred at the limit of 18
clock cycles after req was received. Is the failure genuine?

Making association between the failure and the sequence of values is laborious,
so we opt for instrumenting the assertion and the test bench.

Example 19.2.
default clocking ck @(posedge clk);
endclocking
initial begin // add to the test
$assertoff();
#104;
// start assertion just before
// the start time of failure
$asserton();
#2;
// stop assertion right after
// the failing attempt at time 105
$assertoff();

end

property p;
logic [3:0] tag;
(
req, tag = req_tag, // make sure it triggered
$display("[%t] req asserted, tag %0d", $time, tag)

)
|=>
s_eventually [1:18] ack && (ack_tag == tag);

endproperty
a: assert property (p);

442 19 Debugging Assertions and Efficiency Considerations

property p_cover;
logic [3:0] tag;
(
req, tag = req_tag,
$display("[%t] req asserted, tag %0d", $time, tag)

)
##[*]
(
ack && tag == ack_tag,
display("[%t] ack asserted, ack_tag %0d", $time, ack_tag)

);
endproperty
c: cover property (p_cover); ut

The additional code stops the assertion at the beginning, starts it for one clock
tick, and then again stops it. We added $display to the assertion to make sure that it
does trigger (and fail) as observed originally. Finally, we added a cover property that
searches for ack with the matching tag indefinitely from the time of the occurrence
of req. The objective is to see whether ack ever arrives.

After running the simulation, we observe that the assertion and the cover
triggered as expected, the assertion failed and the cover matched very quickly
on the next clock tick at time 107. Assuming that the test is generating legal
situations only, it suggests that the assertion missed the arrival of ack associated
with the matching req. By examining the assertion, we can see that in fact the
bounded eventuality starts checking only 2 cycles after the req arrival due to the
one cycle delay introduced by |=>, and then another cycle by the lower bound of 1
in s_eventually. An easy correction is as follows:

Example 19.3.
property p;
logic [3:0] tag;
(req, tag = req_tag)
|=>
s_eventually [0:18] ack && (ack_tag == tag);

endproperty
a: assert property (p); ut

The solution brings out a question: Can the acknowledgment arrive with 0 delay?
The requirement specification did not mention anything about the earliest arrival.
This issue has to be clarified. If the answer is that the acknowledgment can be
generated combinatorially with 0 clock tick delay, then |=> should be replaced by
|-> in the assertion. What should happen if ack arrives at the same time as req and
with the same ack_tag value as the value of req_tag? If this situation is illegal,
then the assertion should be modified to reject it as shown in the next example.

Example 19.4.
property p;
logic [3:0] tag;
(req, tag = req_tag)

19.1 Debugging an Assertion Under Development 443

|->
(
s_eventually [1:18] ack && (ack_tag == tag)
and
!(ack && (ack_tag == tag))

);
endproperty
a: assert property (p);

ut
Or even more simply as

property p;
logic [3:0] tag;
(req, tag = req_tag)
|->
strong(
!(ack && (ack_tag == tag)) ##1
##[1:18] ack && (ack_tag == tag)

);
endproperty
a: assert property (p); ut

An alternative that may be more efficient with formal verification tools is to
separate the two cases into two independent assertions.

Example 19.5.
property p1;
logic [3:0] tag;
(req, tag = req_tag)
|->
s_eventually [1:18] ack && (ack_tag == tag);

endproperty
property p2;
logic [3:0] tag;
@(posedge clk) (req, tag = req_tag)
|->
!(ack && (ack_tag == tag));

endproperty
a1: assert property (p1);
a2: assert property (p2); ut

Finally, what if the lower bound is greater than 1 clock cycle, e.g., 3? A possible
solution to eliminate the unwanted early arrivals is to use a bounded always operator
as follows:

Example 19.6.
property p;
logic [3:0] tag;
(req, tag = req_tag)
|->
(s_eventually [3:18] ack && (ack_tag == tag))
and
(s_always [1:2] !(ack && (ack_tag == tag)));

444 19 Debugging Assertions and Efficiency Considerations

endproperty
a: assert property (p);

This could again be written using a strong sequence as follows:

property p;
logic [3:0] tag;
(req, tag = req_tag)
|->
strong(
!(ack && (ack_tag == tag))[*2]
##[1:16]
(ack && (ack_tag == tag))

);
endproperty
a: assert property (p); ut

An option is to separate the two clauses into two independent assertions as shown
in Example 19.5.

In the following section, we briefly discuss debugging assertion failures that
occur during a test of a design.

19.2 Debugging Assertion Failures from a Test

Without specialized debugging tools that vendors may provide, a similar technique
to the one in the preceding section can be used to debug assertion failures as a result
of running a test. The failure can be due to either an incorrect assertion or an error in
the design. One difference in debugging is that there may be many assertions (that
fail or not) and that rerunning the test may become quite demanding on resources
and time. In this scenario, we do not construct a new test bench, but continue with
the same failing test.

Assuming that rerunning the test either with its original design or from a saved
signal dump is possible, we can concentrate on the particular assertion failure. If
there are more than one failure of the same assertion in the run, we start with the
first one that is not due to some clearly apparent reason like neglecting to stop the
assertion during the reset phase.

There are three possible ways to approach the debugging problem:

1. To concentrate on that failure, we should stop all assertions at time 0, and then
start only the one of interest just before the clock tick associated with the start
time of the failing attempt. We will thus need to specify the complete path to the
assertion in the call to $asserton as well as to the subsequent $assertoff that
shuts it off just after the attempt started. These calls can be placed in a new top-
level module that is used only for this assertion control. We also instrument the
assertion following the ideas shown in Example 19.2.

2. An alternative is to shut off all assertions and add a copy of the instrumented
failing assertion into the new top-level module. The actual arguments then must

19.3 Efficiency Considerations 445

be stated as hierarchical references to the signals in the original assertion. This
approach has the advantage that we do not modify the design in any way.

3. Alternately, we could make the new control module with ports that correspond to
the signals used in the assertion, and instrument the same assertion but referring
to these ports. We bind the new control module to the module instance that
contains the failing assertion. Care must be taken to control just the instrumented
assertion using the $asserton and $assertoff calls.

19.3 Efficiency Considerations

Depending on whether an implementation of assertions in simulation takes the
attempt-based view, different forms of assertions expressing the same requirements
may have different compile time and run time performance. Each simulator may
have different forms of implementation; nevertheless, there are some general situa-
tions that can be exposed. We base this exposition on three abstract implementations
of the assertions:

1. Assertion is an observer that issues only the fail result with no information about
attempt start time of failure. No failure in simulation means success.

2. Assertion issues only the fail result with information about the earliest or latest
attempt start time of the failure at a specific time (more than one attempt can
reach a failure at the same time by the same condition). No failure in simulation
means success.

3. Assertion is evaluated by maintaining information about all attempts, their start
times and fail/pass times.

An abstract implementation of the first kind may be achieved by compiling
the assertion into a single automaton of the negated property, as typically done
for formal tools (Sect. 21.4.1). When the automaton is evaluated it may only
provide information on the first failure detected and its failure time and perhaps
the earliest/latest start time as indicated by the 2nd bullet above. Only on Boolean
assertions of the form assert property (expr); both times would be exact.

For the third kind of implementation, it is possible to compile the assertion into
processes that interpret the syntactic form of the property. An evaluation attempt
would start at every tick of the leading clock, noting its time and then, when it
succeeds or fails, it would report the result and the start and fail times.

Naturally, these are descriptions of abstract implementations, and a particular
simulator may have a mixture of approaches. For example, there may be a different
algorithm to evaluate Boolean concurrent assertions than for evaluating complex or
recursive properties (Chaps. 10 and 17). Local variables may be another dimension
to the implementation spectrum (Chap. 15).

When local variables are involved, the purely automaton-based evaluation may
not be feasible for at least two reasons. First, determinizing the automaton may not

446 19 Debugging Assertions and Efficiency Considerations

always be practically feasible, and second, evaluating a nondeterministic automaton
requires keeping track of which transitions are to be combined with the same set of
local variable values.

Compile Time Performance

In general, the complexity of the automaton needed in implementations (1) and (2)
can grow exponentially with the size of the property as measured by the number
of operators and expressions in the property. However, implementation (3) based
on the interpretation of the syntactic structure remains linear in size. This implies
that form (1) for really complex properties involving nested property and sequence
operators may take prohibitive time to generate. The final representation may also
consume large amounts of memory, especially when large delay ranges are involved
or there is a large set of choices due to an or operation or large ranges. This is one
of the important efficiency considerations for formal verification to limit the size of
ranges of delays (##) and repetitions of all kinds ([*[..]) (see Sect. 21.4.1).

Run Time Performance

In general, evaluation based on automata, especially if the automata are deter-
minized, will yield higher performance, because there is minimum work involved
in evaluating an expression and then advancing to the next state. When failure is
detected, the simulator just reports the result and aborts further evaluation.

For the evaluation that keeps track of attempts, the simulator must maintain
information about attempt start times, the local variable values if any, as well as
information about multiple threads of evaluation within an attempt. This consumes
both time and memory.

In the following, we examine several typical cases that may have different run
time performance based on the algorithm scheme used for the implementation. In
the preceding chapters, we often raised performance issues as “efficiency tips”. We
thus revisit some of them and provide explanation why it is so based on the abstract
implementations.

• Fixed delay or repetition values ##N as well as [*N] for some large N.

In an automaton-based implementation, large values used in these operators
that also include [->N], [=N] create at least N states with transitions arranged
in a similar way as in counters. If used within other operators such as
intersect, within, and, or the memory requirements both at compilation
and at run time can rapidly grow.

19.3 Efficiency Considerations 447

In a process-based implementation, compilation may not be costly, but if such
structures are part of an assertion that can create many overlapping attempts or
threads then the result can be a growing number of concurrent processes and/or
data structures that have to be allocated and evaluated at run time.

• Ranges ##[M:N] b as well as [*M:N], for some large N > M

The problem is similar to the preceding case, yet somewhat worse because of
the implied nondeterminism representing a disjunction of fixed delay or repetition
ranges. In this case, not only the value of N is of importance but also the
span N-MC1 of the range itself. The consequences on compilation and run time
performance are significant.

• Unbounded delay at the beginning of an antecedent ##[*] s |-> p

The interpretation of this property reads as follows: Upon each occurrence of
sequence s, property p must hold. If this property is used in an assertion outside
an initial procedure, the assertion will evaluate the whole implication at every
clock tick.

In an implementation that does not keep track of attempts and reports failures
only, it may not cause problems since the multitude of evaluation threads that
have equivalent next states is collapsed into one evaluation. However, the assertion
evaluation may not complete in simulation if it does not fail in one of the evaluation
attempts of p. The presence of a local variable further complicates the task of
reducing the number evaluation threads, as the value of the local variable may not
be the same in all threads.

The situation is quite different in process-based evaluation that does keep track of
attempts. Here, if s and p are of temporal nature spanning several clock ticks, there
can be a rapid accumulation of processes, each doing essentially the same thing,
but needing to keep track of the attempt start times. Notice that unless p fails all
attempts will keep evaluating till the end of simulation.

Possible solutions are:

• Place the assertion into an initial procedure thus creating only one evaluation
attempt. Only the first failure will be reported.

• Remove ##[*] from the antecedent because it is redundant for assertions that
trigger at every clock tick.

Another problematic case is the occurrence of large delays in $past:

• Sampled value function $past(exp, N), for some large N.

The sampled value function can be viewed as a shift register of length N. The
first stage is loaded by the sampled value of exp at every clock tick. The last stage
provides the value of the function $past. Therefore, the number of state bits is
equal to $bits(exp)* N. This may create a large state space for formal verification
(Chap. 21). For simulation, the issue is more related to the cost of updating the N

registers.

• Using $rose(exp, $global_clock) or $rising_gclk(exp)

448 19 Debugging Assertions and Efficiency Considerations

As the names of these functions imply, they differ by the clock tick at which they
indicate that the least significant bit of exp changed to 1’b1. $rose evaluates to true
at the clock tick when the least significant bit of exp has risen, while the future value
function $rising_gclk evaluates to true at the tick that precedes the tick when the
signal rises, i.e., when the least significant bit of exp is to rise.

Future value functions are more efficient in FV because in the automata
representation of the overall property, the next-state is already encoded in the
automaton. If past-value functions, e.g., $rose are used, then the implied past-value
register is created independently of the property automaton and thus adds one state
bit to the overall state space. If many such functions are used, it may impact the
performance of FV. For future-value functions, no such extra registers are needed.
Furthermore, the future value functions often simplify the formulation of stability
properties, make them more easily understandable, e.g., Example 7.31.

In simulation however, the effect on performance can be quite different. Simu-
lation cannot know the value a signal will have at the next clock tick, it can only
evaluate the present and store the past values. Therefore, if a future value function
is used in a property, the compiler must shift the entire property evaluation by
one global clock tick into the past. Furthermore, the reported failure times must
be adjusted to values as if the evaluations were actually based on the future value
functions, i.e., shifted by one clock period of the global clock. However, in general
that global clock period is not known and must be computed by the simulator. This
processing adds overhead in simulation.

• Ranges in always [M:N] p as well as eventually [M:N] p, for some large
N > M (see Sect. 10.5).

As before, large upper bounds N and large span N-M+1 increase the state space,
and, in an attempt-based evaluation, if the assertion retriggers while previous
evaluations are still in progress, the run time performance can be significantly
affected.

• Trigger by level req |-> p or by value change $rose(req)|-> p

In many situations, $rose(req) is a more efficient form as it only triggers
evaluation on a change.

As mentioned earlier, the use of sampled value functions implies additional
registers. However, to avoid false firing at time 0, it may be necessary to shift the
antecedent as ##1 $rose(req) (see Sect. 7.2.1).

• Property and versus sequence and in seq_1 and seq_2 (see Sect. 10.2)

In an automata-based implementation, sequence and requires performing
intersection of the argument sequences. Depending on the complexity of these
sequences, the resulting automaton may be quite large, thus requiring more memory
to represent, as well as slowing down the compilation. Therefore, if and is the
top-level operator in the consequent property then it is more efficient in both
simulation and formal verification to replace the sequence and with a property and.
It is also likely that the verification tool, formal or simulator, does the replacement
automatically.

19.3 Efficiency Considerations 449

• Properties ending with open-ended intervals such as
##[M:$] s and s_eventually p.

An open-ended interval in a property implies that the tool will be searching for
satisfying the arguments s and p, till the end of evaluation. If it cannot be satisfied in
simulation it will run till the end. Depending on the strength of the operator, it will
report a success (weak property) or failure (strong property). That is, the property
cannot fail (if at all) until the end of simulation. If the evaluation of such an open-
ended operator is repeatedly retriggered, this will cause accumulation of attempts
and threads. In simulation, open-ended intervals should be replaced by a reasonably
bounded range, while in FV, open ranges are much preferred because they add only
few states to the automaton.

Exercises

19.1. Assertion a: assert property(en ##1 !y[+] |-> x) had attempts start
at 1, 2, 3, 4 all of which succeeded at time 5, but the attempt that started at time 5
failed at time 6. What could be the problem? Is it a problem in the design or in the
assertion formulation? Explain each of the cases.

19.2. Assertion a: assert property(trig |-> s_eventually(sig)); failed
at the end of simulation for several attempts. What is the reason for the failure and
what could be the remedy(ies)?

19.3. The example in Chap. 17, Fig. 17.14 fails. How would you debug the failure
in simulation?

19.4. If a checker like the assert_handshake in Chap. 24 fails, how could you
approach debugging the failure (a) if you have access to the source code of the
checker, and (b) if you do not have access to the source code.

19.5. Suppose that the assertion in Exercise 19.1 failed in formal verification by
model checking. What means you may have to debug it?

19.6. Will property req |-> s_eventually ack be efficiently evaluated in simu-
lation if it is required to provide full attempt information (start and fail/success
times)? Does it depend on the protocol? That is, when req is a single clock tick
pulse vs. when req should hold asserted until and including the assertion of ack?
How would it perform in formal verification?

19.7. In the preceding problem, if req is to remain asserted until ack is asserted, is
it important to you that an assertion using the preceding property reports all the start
times of attempts that succeeded at the same time when ack is asserted? Should it
report the earliest or the latest such start time only?

450 19 Debugging Assertions and Efficiency Considerations

19.8. Suppose that req must remain asserted until and including ack is asserted,
how could you modify the property in Exercise 19.6 to trigger only once for a given
req - ack pair?

19.9. Can you identify other properties that may have impact on simulation
performance depending on the form of evaluation and the amount of detail provided
about the start and fail times of succeeding and failing attempts of the associated
assertion(s)?

Part V
Formal Verification

Chapter 20
Introduction to Assertion-Based
Formal Verification

The man of science has learned to believe in justification, not by
faith, but by verification.

— Thomas Huxley

In this and the following chapter, we probe deeper into the principles of formal
assertion-based verification: its methods of application, formal semantics of asser-
tions, and underlying models and algorithms. In this chapter our objective is to
familiarize the reader with the terminology as well as the methodologies that have
proven to be indispensable for many design groups.1

There is a common opinion that only experts can do formal verification (FV), but
nobody claims that to simulate an RTL design one has to be an expert in simulation.
Indeed, it is not that difficult to run a simulator, but in some forms it is not more
difficult to run an FV tool either. Therefore, even people without special expertise
can carry out FV to some extent.

To run lightweight FV on an RTL block, it is only necessary to formulate
adequate assumptions constraining the inputs of the block. This is the trickiest
and the most effort consuming step in the verification. After that, running a formal
verification tool is not very different from running a simulation.

In contrast, an exhaustive formal verification of a design is a full-time job.
It requires model reduction and pruning, often writing abstract models for parts
of the design, checking specification completeness, iterative refinements, and
algorithm tuning. Perhaps in the future, if FV tool capacity drastically grows
or FV-friendly design methodologies are developed, exhaustive FV will become
automated, but currently it is not. Therefore, exhaustive verification is performed

1This chapter and the next discuss special questions of formal verification and may be skipped.
However, this chapter explains further the nature of assertions, and it should be useful even for
readers who are interested only in simulation.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__20

453

454 20 Introduction to Assertion-Based Formal Verification

only for the most critical blocks, where correctness is crucial and simulation is too
unreliable. Examples include multipliers, dividers, other arithmetic units, arbiters,
coherency managers, branch predictors, critical controllers, bus protocols, etc.

Verifying that assertions hold on a design is the primary purpose of FV, yet
checking coverage is also useful for several reasons:

• To make sure that the FV model is not overconstrained, i.e., that the assumptions
are not too strong and allow meaningful model behavior.

• To assist dynamic validation. If a coverage point is proven to be unreachable in
FV, there is no point in trying to construct test cases for it. The benefit of checking
coverage points in FV may be very significant.

• To evaluate new FV algorithms and tools. It is difficult to evaluate a new algorithm
by trying to discover assertion violations in a real mature design. Hitting tough
coverage points is more meaningful because the intended design behavior is
known.

20.1 Counterexample and Witness

If an assertion fails in FV, the FV tool reports a counterexample, often abbre-
viated as CEX, a sequence of input stimuli leading to the assertion failure. For
convenience, the tool usually also shows the values of relevant internal signals.
Suppose that a right shift operator >> were specified instead of the left shift
operator << on Line 8 of Fig. 1.7. The FV tool could produce the counterexample
shown in Table 20.1. Indeed, we can see that at clock cycle 3 our assertion fails:
shift_reg is 8’b00000000, while $past({shift_reg[6:0],shift_reg[7]})

is 8’b00000010.
Note that some values in the counterexample are not important. For example,

the value of val is important only at clock cycle 1, at other clock cycles it may
assume any value without affecting the result. The FV tool may explicitly report a
don’t care (X) value in this case.

Cover statements may also be checked in FV: if a coverage point can be hit,
the FV tools report a witness. A witness is a sequence of input stimuli leading to
the coverage point hit, while satisfying all the specified assumptions. Otherwise,
if the coverage point cannot be hit FV tools report that this coverage point is

Table 20.1 Counterexample for check_shift

Clock cycle set rst val shift_reg

0 1’b0 1’b1 8’b00000000 8’b00000000

1 1’b1 1’b0 8’b00000001 8’b00000000

2 1’b0 1’b0 8’b00000000 8’b00000001

3 1’b0 1’b0 8’b00000000 8’b00000000

20.2 Complete and Incomplete Methods 455

Table 20.2 Witness for cov_shift

Clock cycle set rst val shift_reg

0 1’b0 1’b1 8’b00000000 8’b00000000

1 1’b1 1’b0 8’b10000000 8’b00000000

2 1’b0 1’b0 8’b00000000 8’b10000000

3 1’b0 1’b0 8’b00000000 8’b00000001

unreachable under the specified assumptions. It may also be impossible to hit the
coverage point if the FV tool runs out of memory or allocated run time.

Consider the following cover statement for the shift register in Fig. 1.7:

cov_shift: cover property (@(posedge clk) disable iff (rst)
shift_reg == 8’b10000000 && !set
##1 shift_reg == 8’b000000001);

The cover statement states that we wish to cover two consecutive clock cycles such
that in the first cycle shift_reg has the value 8’b10000000 and set is inactive, and
in the second cycle shift_reg has the value 8’b000000001. A possible witness is
shown in Table 20.2.

As with assertion counterexamples, coverage point witnesses may contain don’t
care values. In our example, all values of val are actually don’t cares except for the
one in clock cycle 1.

20.2 Complete and Incomplete Methods

So far we discussed complete FV methods: these methods report for each assertion
whether it passes or fails. Of course, this is the best thing to have, but because of
capacity limitations, incomplete FV methods are often used. These methods have
three possible outcomes: passed, failed, or unknown. Strictly speaking, even the
methods we called complete can also report an unknown status for assertions when
they time out or exceed memory limitations. The difference is that the complete
methods are intended to find the exact solution, while the incomplete methods may
give up even when computing resources are still available. Usually incomplete FV
methods are much faster than complete ones.

Typically, incomplete methods are bounded FV methods: given a verification
bound n they check that there is no assertion violation with a counterexample shorter
than n cycles starting from an initial state. The initial state need not be the reset state.
These methods do not guarantee that an assertion is correct, but only that it cannot
be violated “too soon”. Bounded FV methods are widely used, and they can provide
good confidence in design correctness. For example, if the design is pipelined, then
the bound n equal to or a little bigger than the depth of the pipeline is usually
sufficient.

456 20 Introduction to Assertion-Based Formal Verification

20.3 Approximation

Sometimes approximation [18] is used in formal verification. While exact methods
should always return accurate results, approximation-based methods can return an
inaccurate result due to approximation error: either a false negative, in which case
failure is reported for an assertion that should pass, or a false positive, in which case
success is reported for an assertion that should fail. According to the error types
introduced by the approximation, one distinguishes between overapproximation,
which may introduce false negatives, and underapproximation, which may intro-
duce false positives. Overapproximation is sound, meaning that a result of success
is always accurate (i.e., free of approximation error). Underapproximation is safe,
meaning that a result of failure is always accurate.

20.3.1 Overapproximation

Overapproximation occurs either automatically as part of the verification strategy
of FV tools, in which case it is transparent to the users, or manually when a design
model is abstracted. The abstract model is usually simpler than the original one
and allows more behaviors. If the assertion is proven on this abstract model, it
also holds on the original model. If the assertion fails on the abstract model, the
counterexample may be spurious, i.e., impossible in the original model. Manual
checking of whether counterexamples are spurious may be difficult, especially
when there are many of them. Therefore, overapproximation may lead the user to
ignore assertion failures, thus missing true bugs. The benefit of model reduction that
enables a successful FV run has its cost in the analysis and elimination of spurious
counterexamples. This is discussed in more detail below.

Overapproximation may also happen inadvertently, for example, when one or
more assumptions is missing. In this case the model allows for more unintended
behaviors, hence false negatives are likely to occur. This is why a validated thorough
system specification is important.

Another common case of overapproximation happens when we try to formally
verify only a part of a bigger model by removing some subcomponents or blocks of
statements. Figure 20.1 shows a toy module generating signal req: req is asserted
only when the system state is idle. Assertion req_when_idle checks that if idle
is asserted, then in the next clock cycle req is asserted unless rst happens.

Let us assume that we wish to verify a smaller model. We manually delete the
assignment statement on Line 3. What we obtained is an overapproximated model.
Now the assertion will fail since idle may assume any value at any time.2 This toy

2It is possible to argue that since idle is now unassigned it will keep the value X all the time.
This is true in simulation, but FV tools usually consider undriven variables, like idle, as a free
variable which may assume any value at any time.

20.3 Approximation 457

1 module reqgen(input logic busy, clk, rst, output logic req);
2 wire idle;
3 assign idle = !busy;
4

5 always @(posedge clk or posedge rst) begin
6 if (rst) req <= 1’b0;
7 else if (busy) req <= 1’b0;
8 else req <= 1’b1;
9 end

10 req_when_idle: assert property (
11 @(posedge clk) disable iff (rst) idle |=> req);
12 endmodule : reqgen

Fig. 20.1 Request generator

example illustrates a very important problem encountered in FV: on the one hand it
is desired to reduce the model to fit the capacity of FV tools, and on the other hand,
it cannot be done by a naïve, mechanical deletion. The boundary around the missing
model part must be carefully characterized by adding relevant assumptions. In our
case, the following assumption needs to be added to define the behavior of idle:

idle_when_not_busy: assume final (idle == !busy);

Of course, in this toy example we just replaced an assignment by an assumption,
and the abstract version can hardly be more efficient than the original one.
In realistic cases, however, model abstraction may bring significant performance
improvement because the benefit of the model reduction outweighs the cost of the
boundary assumptions.

20.3.2 Underapproximation

Underapproximation is very commonly used, although most people do not realize
when they are using it. The most common example is simulation: we check the
model behavior only on a given simulation trace, while other possible traces
remain unchecked. Simulation is safe: if the assertion fails in simulation, the model
is definitely wrong (presuming, of course, that the assertion is written correctly
and no assumption is violated). There may be false positives, however: if the
assertion passes in simulation, it does not mean that the design is correct. Therefore,
simulation is not sound.

Another common example of underapproximation is bounded verification: if the
assertion fails within the verification bound, a bug is discovered and can be analyzed
using the generated counterexample. If the bug cannot be stimulated within the
bound, no assertion violation is reported and we cannot conclude anything about
the validity of the assertion.

458 20 Introduction to Assertion-Based Formal Verification

There is nothing wrong with underapproximation. It is convenient because all
failures are correct and no spurious counterexamples are reported. One should,
however, keep in mind that the underapproximation is not sound: if no bugs are
reported the model is not necessarily correct. Of course, everybody understands this
when running simulation, but it is possible to get confused with FV. Therefore, FV
tools usually issue an appropriate message in case underapproximation is used, such
as “the assertion has not been violated up to bound 50 clock cycles”, rather than “the
assertion passed”.

Underapproximation happens inadvertently when we overconstrain the model by
writing stronger assumptions than intended. If we add the following assumption to
the original model in Fig. 20.1

always_busy: assume final (busy);

assertion req_when_idle will hold trivially, or vacuously, because idle is never
asserted in this case. This situation is dangerous because we may believe that
everything is checked, but essentially nothing is verified. Many FV tools report
assertion vacuity to help spot such cases. Unfortunately, overconstraining is usually
less obvious, and it cannot always be discovered by automatic tools. Therefore, it
is important to validate the assumptions, as discussed in Sect. 20.5. As mentioned
earlier, trying to hit coverage points also helps to discover overconstraining.

Empty Model

An extreme case of model overconstraining occurs when there are contradictory
assumptions added to the original model, such as adding

always_busy: assume final (busy);

and

always_idle: assume final (idle);

to Fig. 20.1.
It is possible to think that in this case all the assertions will fail in FV, but the

opposite is true—all of them will pass, vacuously. This is because the hypothesis of
the FV proof is that all the assumptions are satisfied, but this hypothesis does not
hold due to the contradiction in the assumptions. We have in fact created an empty
model—the entire constrained model contains no state due to the contradiction.

An empty model may occur not only when two assumptions are mutually
contradictory. There may be a larger set of contradictory assumptions in which no
two of them are mutually contradictory. For example,

m1: assume property (@(posedge clk) a |=> c);
m2: assume property (@(posedge clk) b |=> !c);
m3: assume property (@(posedge clk) a && b);

Assumption m1 states that if a is true then c will be true in the next clock cycle.
Assumption m2 states the same thing about b and !c, while assumption m3 states

20.3 Approximation 459

1 logic a;
2 always @(posedge clk) a <=!a;
3 a_stable: assume property (@(posedge clk) nexttime $stable(a));

Fig. 20.2 Empty model example

that a and b are always true. Therefore, overall the set of assumptions implies that c
and !c should be true simultaneously! Clearly, this is an impossible situation.

An empty model may also occur when assumptions contradict the behavior of
the design, as shown in Fig. 20.2. Here, the statement in Line 2 causes a to toggle
every clock cycle, while assumption a_stable requires that a remain stable all the
time. Therefore, it is recommended that every assumption has some design input or
a free variable3 in its support. Otherwise, the assumption is likely to collide with the
behavior of the design.

Many FV tools have the capability to report an empty model, but usually their
ability is limited to several basic cases, as exhaustive empty model discovery is very
costly.

20.3.3 Pruning

Since FV tool capacity is limited, it is important to reduce the model size. We have
mentioned that this operation should be done carefully. A blind removal of a part
of the model will likely result in numerous false negatives. Pruning (see, e.g., [58])
provides a more controlled model size reduction for FV purposes.

The main pruning directives are set and free. set assigns a constant value (for
example, 0 or 1) to a given signal, while free disconnects a signal from its fan-in.
There is no standard SystemVerilog support for pruning directives,4 hence FV tools
usually provide some custom directives for model pruning. With these directives, the
user can prune a model without actually changing the design. For instance, to verify
data propagation through a queue, it may be sufficient to watch the propagation of
a single bit, while all other bits may be set to zero. Furthermore, if there is some
complex logic defining the behavior of a signal, and an assertion should hold for
every value of this signal, there is no need to keep this complex logic. It is possible
to free the signal. For example, to verify a pipeline stage that performs addition, the
verification does not depend on the functionality of the preceding stages. Therefore,
the logic driving the data incoming to this stage can be safely pruned.

All FV tools automatically prune most of the irrelevant parts of the model.
Manual pruning is needed only for those signals that affect the checked assertion

3Recall that free variables can take any value of its type at any time
4The SystemVerilog force statement is the best candidate, but it is usually ignored by FV tools.

460 20 Introduction to Assertion-Based Formal Verification

or the assumptions in some indirect way that the automatic pruning algorithms
cannot determine. The verification engineer must thus have detailed knowledge of
the design.

Note that the pruning directives relate to different types of approximation:

• Setting an input signal is underapproximation—we eliminate some model behav-
iors, which can lead to false positives but not to false negatives. Setting input
signals is thus safe but not sound.

• Freeing any signal in the model is an overapproximation—it can only introduce
more behaviors than allowed by the original model. Therefore, it can only
introduce false negatives, but not false positives. Freeing is sound but not safe.

• Setting an internal signal may forbid some behaviors of the original model, but
may also introduce new behaviors (for example, when in the original model a
signal is toggling, and now it is set to a constant value). This kind of pruning may
introduce both false positives and false negatives, and it is neither safe nor sound.

Often there are additional pruning directives provided by the tools, such as black-
boxing parts of the model, but they are beyond the scope of this book.

20.4 Formal Verification Flows

We now have the necessary background to discuss formal verification flows in RTL
design and verification. There are many possible scenarios; we focus on three of
them:

• Exhaustive verification of model specification.
• Lightweight verification.
• Early RTL verification.

20.4.1 Exhaustive Verification of Model Specification

Figure 20.3 represents a block diagram of the typical FV flow for exhaustively
verifying model compliance to its specification.

The flow starts with writing the specification for the design. The specification
consists of a set of assumptions on the primary inputs and a set of assertions
describing the expected behavior under these assumptions. The specification is
checked first for sanity and debugging in simulation. If there is no simulation
environment available, it is possible to check parts of the specification on manually
created traces. Upon completion of sanity checks and debug, a formal verification
tool is applied. There may be three outcomes of checking a specific assertion:

20.4 Formal Verification Flows 461

RTL
Create

specification

Specification

Fix specification
or RTL

Check
specification in

simulation

OK

Run
FV

Check
CEX

Check
results

Tune
verification

model or FV
options

Done

Refine
verification

model

yes

passed

no

failed

real CEX

unknown

spurious CEX

Legend: CEX — Counterexample.

Fig. 20.3 Exhaustive formal verification flow

Success: The assertion is true for any input sequences for which all the assumptions
hold. In this case, it is tempting to say that the model is correct, but the assertion
may pass because of overconstraining assumptions or because the assertion itself is
too weak (e.g., vacuous).

Failure: A counterexample (CEX) is generated consisting of an explicit or implicit
input sequence for which all assumptions hold, but on which the assertion fails.
There may be several reasons for assertion failure. For example, the assertion may
be wrong. If the assertion is correct, the model may be underconstrained, e.g., the
applied abstraction may be too coarse. If it is not clear whether the counterexample
is real or spurious, the assertion failure should be reproduced in simulation. This
may be challenging since it requires propagating the counterexample from the inputs
of the FV model to the inputs of the simulation model. Usually, this task is done
manually or with the support of debugging tools. A fully automatic solution for
the problem of counterexample propagation is as hard as formal verification of the

462 20 Introduction to Assertion-Based Formal Verification

simulation model. If the assertion appears to be correct, the problem may lie in the
design. Further probing using simulation should then lead to the identification of the
source of the problem.

Unknown: The verification result is inconclusive. This can happen because of
timeout, memory overflow, or because of an incomplete verification algorithm. To
obtain conclusive results, it becomes necessary to refine the verification model:
to use a more aggressive or a smarter abstraction, reduce the model size, or add
auxiliary assertions. These auxiliary assertions are called lemmas: they may be
easier to prove, and when proved, they can be used as assumptions to prove the
original assertion. Another possibility is to tune the FV tool options—to choose a
specific FV algorithm, adjust its parameters, etc.

Note that it is also important to verify the completeness of the specification, that
is, whether the assertions fully represent the desired behavior and assumptions. We
leave this rather sophisticated problem out of the scope of this book. The interested
reader may consult for example [32].

20.4.2 Lightweight Verification

Figure 20.4 represents a block diagram of the lightweight FV flow for verifying
local assertions inserted in the RTL code. Unlike in the exhaustive verification flow
where the goal is to prove formally the correctness of the model, here the objective
is to obtain a greater confidence in the overall model correctness and to detect bugs
in the design. The lightweight verification flow is much less effort-consuming than
the exhaustive verification flow.

The main purpose of this flow is bug hunting, hence only assertion failures are
investigated. Failure investigation in this case is much simpler than in exhaustive
verification; spurious counterexamples (CEX) are due only to missing assumptions.
There is no need for model refinement or tool tuning.

Lightweight verification is usually faster than the exhaustive flow because only
small parts of the RTL design affect the behavior of the local assertions.

20.4.3 Early RTL Verification

Another application of FV is early RTL verification [66]. The flow is essentially the
same as in lightweight verification, but it runs in the early stages of the design using
fast verification algorithms, such as bounded FV with small verification bounds.
The goal of this flow is to clean up obvious bugs quickly, before the simulation
environment is ready. It is well known that building a simulation environment is
a complex task, and using FV in the early stages of the design allows starting
verification earlier, thus reducing the time to market.

20.5 Assume-Guarantee Paradigm 463

RTL with
embedded
assertions

Fix RTL
Check

specification in
simulation

OK

Run
FV

Check
CEX

Check
results

Done

Add missing
assumptions

yes

passed or unknown

no

failed

real CEX

spurious CEX

Fig. 20.4 Lightweight formal verification flow

Block1

a1:

assert final (o1 != o2);

Block2

m1:

assume final (i1 != i2);

o1 i1

o2 i2

Fig. 20.5 Assume-guarantee paradigm

20.5 Assume-Guarantee Paradigm

As we have seen, the correctness and completeness of FV of a design block depends
very much on the specification of assumptions. To check assumptions for the block,
it is necessary to prove them as assertions on the parts of the design that drive the
block, as shown in Fig. 20.5.

In this example, we verify Block2 using assumption m1 stating that the two inputs
i1 and i2 are complements of each other. This assumption should be proven as an
assertion a1 on the outputs o1 and o2 when verifying Block1.

464 20 Introduction to Assertion-Based Formal Verification

Unfortunately, it is not always possible formally to verify assumptions as
assertions on another block:

• the other block may be more complex,
• the drivers of the signals participating in the assumption may belong to different

blocks which then must be taken together, thus increasing the complexity of the
model,

• the signals in the assumptions may be generated by an Intellectual Property (IP)
block, etc.

In all these cases, the assumptions should at least be checked in simulation.
Furthermore, the assumptions should also be checked in simulation of larger models
in which the design is integrated.

20.6 Formal Verification Efficiency

For any FV flow, and especially for exhaustive verification, the quality of assertions
is critical. If in simulation inefficient assertions increase the simulation time, in
FV assertion efficiency may be a question of life and death: an FV session with
an inefficient assertion may not produce a conclusive result. Of course, assertion
efficiency in FV, as in simulation, is a matter of specific algorithms and tools, but
there are common principles that should be understood in order to write efficient
assertions.

Unfortunately, the requirements for assertion efficiency imposed by simulation
and FV are often different, sometimes even contradictory. The good news is that in
many cases a reasonable compromise can be found. When no compromise exists,
one should go after intended assertion usage—simulation or FV. If an assertion is
targeted for both modes, then efficiency in FV should be preferred. In rare critical
cases the same assertion can have different implementations for simulation and for
FV. These cases should be avoided whenever possible because it may be difficult to
ensure assertion equivalence.

The assertion efficiency requirements in emulation are usually more aligned with
FV than with simulation since both emulation and FV require assertion synthesis,
while assertion simulation algorithms may be implemented in a different way that
does not require synthesis. Note, however, that assertions synthesized for FV can be
nondeterministic, while for emulation they must be deterministic.

20.7 Hybrid Verification

There exist also hybrid methods combining simulation and FV for checking
assertions. These methods provide better coverage than simulation but are less
exhaustive than FV. The methods can usually handle much bigger designs than

20.7 Hybrid Verification 465

sim
ulati

on

trace
t1

t2

FV FV

— detected bug

Fig. 20.6 Hybrid verification

pure FV. Actually, hybrid verification is a special case of underapproximation. There
are many variations of hybrid verification methods, but usually their main idea is to
interleave conventional or random simulation and FV [17, 42].

The concept of hybrid verification is illustrated in Fig. 20.6. The design is
simulated until simulation time t1, and starting from the system state in time t1
bounded FV is performed. Then the system is simulated until another time moment
t2, and bounded FV is performed again starting from the new state of the system, and
so on. Figure 20.6 shows a case when no bugs have been found during the proper
simulation, but two bugs are detected by bounded FV in neighborhoods of states of
the simulation trace.

Hybrid verification requires that state information from the design and assertions
can be mapped between the simulation and formal model. In turn this may require
that the design and the assertions be synthesizable.

Exercises

20.1. What are counterexamples and witnesses? What is the purpose of reporting
counterexamples and witnesses in formal verification?

20.2. Assume that in Fig. 1.7 Line 9 is omitted. Provide a counterexample exhibit-
ing violation of check_shift.

20.3. Based on the shift register shown in Fig. 1.7, provide a witness for the
following cover statement:

cover property (@(posedge clk) disable iff (rst)
shift_reg == 8’b10000000 && ##1 8’b000000010);

20.4. What are complete and incomplete methods in formal verification?

20.5. What is the meaning of abstraction as used in formal verification?

466 20 Introduction to Assertion-Based Formal Verification

20.6. What kinds of approximation do you know? When are they used? What kind
of approximation can result in false positives? In false negatives? What kind of
approximation is simulation?

20.7. What kind of approximation is produced because of a missing assumption?
A redundant assumption?

20.8. What result will be produced by FV in the case of contradictory assumptions?
In the case when an assumption contradicts the model?

20.9. What is an empty model?

20.10. What is pruning? Why is it used in FV?

20.11. One of the additional pruning methods is black-boxing, in which a sub-
model is considered to be a black box. What kind of approximation is introduced by
black-boxing?

20.12. What is the easiest way to debug specification correctness?

20.13. Why are spurious counterexamples produced by FV tools? How can one
check whether a counterexample is spurious?

20.14. What should be done if the FV result is inconclusive for an assertion?

20.15. How can assumption correctness be checked?

20.16. What is hybrid verification and when could it be used?

Chapter 21
Formal Verification and Models

Hope is a great falsifier. Let good judgment keep her in check.

— Baltasar Gracian

The scope of this book does not admit detailed explanation of formal verification
algorithms. Instead, we provide hints about the way formal verification is conducted
and explain how assertions are interpreted in formal verification (FV). The material
in this chapter is primarily useful to people who deal with formal verification.
If you are interested in assertion simulation only you may skip the chapter, but we
recommended to read the chapter if you want to obtain a deeper understanding of
SystemVerilog assertions.

The DUT is represented as a set of states and a set of transitions between these
states. In FV, all DUT transitions are synchronized by the global clock, which is
the fastest clock in the particular part of the design hierarchy. See discussion about
possible multiple global clocks within a design in Sect. 4.4.2. All other clocks are
synchronized with it.

Throughout this chapter, we make the following assumptions unless otherwise
stated:

• We use the following conventions: the letters a, b, and e designate Boolean
expressions; the letters r and s designate sequences; and the letters p and q

designate properties.
• We freely switch between the abstract research notation and SystemVerilog

notation depending on the context. For example, when explaining theoretical
background we denote the disjunction of Boolean variables as a _ b. Illustrating
the same formula in SystemVerilog, we write it as a || b. Analogously, in
the research notation we use : for negation (Boolean NOT), ^ for conjunction
(Boolean AND),! for implication, and˚ for exclusive disjunction (modulo two
addition, or XOR).

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__21

467

468 21 Formal Verification and Models

• For temporal logic operators we may also use the research notation: G for always,
F for s_eventually, and X for nexttime.

• All variables and expressions are 2-state, even if their type is explicitly specified
as logic. The values x and z are interpreted as 0.

• All properties are clocked by the global clock.

21.1 Auxiliary Notions

In this section, we briefly describe logical and mathematical notions that will be
used later in this chapter. The reader familiar with them may skip this section.

21.1.1 Relations

The Cartesian product of two sets, A and B , is the set A�B consisting of all ordered
pairs .a; b/ such that a 2 A and b 2 B .

Example 21.1. If A D fx; yg, and B D f0; 1; 2g, then A � B D f.x; 0/, .x; 1/,
.x; 2/, .y; 0/, .y; 1/, .y; 2/g. ut

A Cartesian product of an arbitrary number of sets A1 �A2 � : : :�An is defined
as the set of all tuples .a1; : : : ; an/, where a1 2 A1; : : : ; an 2 An.

A binary relation R between two sets A and B is any set of ordered pairs .a; b/

such that a 2 A and b 2 B . In other words, R is a binary relation iff R � A � B .

Example 21.2. The order � of integer numbers Z is a binary relation: �� Z � Z.
For example, .3; 5/ 2�, but .6; 4/ …�. Of course, we are accustomed to writing
3 � 5 instead of .3; 5/ 2� and 6 — 4 instead of .6; 4/ …�. ut

It is possible to define relations of an arbitrary arity: an n-ary relation R between
the sets A1; : : : ; An is any set of tuples .a1; : : : ; an/ such that a1 2 A1; : : : ; an 2 An.
In other words, R is an n-ary relation between A1; : : : ; An iff R � A1 � � � � � An.

21.1.2 Logic Notation and Quantifiers

Boolean Logic: In logical formulas, we are using the following notation for
Boolean operators: : for negation (Boolean NOT), ^ for conjunction (Boolean
AND), _ for disjunction (Boolean OR),! for implication, and ˚ for XOR.

21.1 Auxiliary Notions 469

Quantifiers: In mathematical logic, there are two quantifiers: a universal quantifier
8 and an existential quantifier 9. If P.x/ is a formula dependent on some variable x

then 8x P.x/ is true iff P.x/ is true for all values of x. 9x P.x/ is true iff P.x/ is
true for some value of x. Of course, the result of the quantification depends on the
variable domain.

Example 21.3. Suppose that the domain of x is the set of integers. The formula
8x9y x D 2y is true if the domain of y is the set of real or rational numbers, but it
is false if the domain of y is the set of integers or natural numbers. ut

21.1.3 Languages

We call a finite set ˙ D f�1; : : : ; �kg an alphabet, and its elements �1; : : : ; �k

letters. Any sequence of letters is called a word, or a trace, and we use these terms
interchangeably. If the word does not contain any letters, it is called the empty word
and is denoted ". We distinguish between finite and infinite words (traces).

Any set L of words is called a language. If all the words of the language are
finite, the language is called finitary, if all the words of the language are infinite, the
language is called infinitary.

Example 21.4. The words of written English form a finitary language according to
our definition. Its alphabet consists of 26 Latin letters “a” through “z”,1 and for
every sequence of Latin letters we can say whether it is an English word or not. For
example, building is an English word, whereas buildign is not. ut

21.1.4 Finite Automaton

A finite automaton A is a tuple h˙; S; S0; �; F i, where ˙ is an alphabet, S D
fs1; : : : ; sng is a finite set of states, S0 � S is the set of initial states, � � S �˙ �S

is the transition relation, and F � S is the set of the accepting states.
It is convenient to represent a finite automaton as a directed graph in which

vertices are automaton states and edges are labeled with the alphabet letters to
represent the transition relation. If si ; sj 2 S and � 2 ˙ , then there is a labeled

edge si

�! sj in the graph iff .si ; �; sj / 2 �. We mark the initial states with a double
incoming arrow and the final states with a double circle.

1For our purpose, there is no need to distinguish between small and capital letters. We also ignore
the fact that there exist words with spaces, hyphens, etc.

470 21 Formal Verification and Models

Fig. 21.1 Finite automaton

s1 s2 s3
1 0,1

0,1

Example 21.5. The alphabet of the automaton depicted in Fig. 21.1 consists of two
letters: 0 and 1. The automaton has three states: s1, s2, and s3. There is one initial
state, s1, and one final state, s3. The transition relation � consists of the following
triples: .s1; 0; s1/, .s1; 1; s1/, .s1; 1; s2/, .s2; 0; s3/, and .s2; 1; s3/.

This automaton is nondeterministic in the following sense: from state s1 on
letter 1, the automaton can transition either to s1 or to s2. ut

A finite automaton A accepts a word w on ˙ iff there is a path from one of its
initial states to one of its final states such that the successive transitions are labeled
by the consecutive letters from w. The set of the words accepted by the automaton
A forms the language L.A /, called the language of the automaton A .

Example 21.6. The automaton A defined in Example 21.5 accepts all words over
the alphabet f0; 1g that have length of at least two and 1 as the penultimate letter.

ut

21.2 Formal Verification Model

The DUT in FV is represented as a formal verification model, also known as a
Kripke structure.

The formal verification model M is a tuple hQ; I; V; Ri, where Q is a set of
states,2 I � Q is the set of initial states, V is a finite set of Boolean variables, and
R � Q �Q is the transition relation. We also assume that the transition relation R

is total, i.e., for any q 2Q there exists q0 2Q such that .q; q0/ 2 R. In other words,
the relation is such that from any state there is at least one transition (possibly to the
same state).3

Each state is characterized by the set of variables that are true in it. If two different
states have exactly the same set of variables true in them, then these states may be
merged into one. R contains all state pairs such that it is possible to transition from
the first state of the pair to the second one.

2The definition does not require having a finite number of states, but we assume that their number
is finite since this is true for any RTL model.
3In general, one includes in the definition of a Kripke structure a labeling function L W Q ! 2V ,
which defines which Boolean variables are true in each state. In our case we just identify Q with
2V , assuming that each state corresponds to some specific valuation of the variables.

21.2 Formal Verification Model 471

Fig. 21.2 Formal verification
model corresponding to
module m i ic io ioc

c o oc

Example 21.7. Consider the module m defined by

module m(input logic i, c, output o);
wire a = !i;
always @(posedge c)
o <= a;

endmodule : m

This module can be represented as an FV model. It seems at first that V should
consist of the four variables i; a; c, and o. But it is easy to see that the value of a is
uniquely determined by the value of i . Therefore, the variable a is redundant. This
situation can be generalized:

Only state variables and primary inputs should be included in the variable set
V of an FV model. The signals that are Boolean functions of other signals
should not be included in the variable set.

For the FV model of m, we thus have V D fi; c; og and Q consists of the eight states
;, fig; fcg; fog; : : : ; fi; c; og. The transitions of this model are depicted in Fig. 21.2.

Note that the input signals i and c may have any initial values, and that the
initial value of o is unknown. In simulation, this unknown value is designated as
x, while in the FV model the unknown value just means that both initial values 0
and 1 for o are possible. All the eight combinations of these variables may occur at
system initialization. It follows that all the states of this model are also initial states,
i.e., I D Q.

We now explain the transitions on several examples. Note that the output o can
change only when c changes from 0 to 1. Therefore, if no input changes then neither
does the output change. Consequently, from any state there is a transition to the
same state in Fig. 21.2, a self-loop. The input i may change independently of c

and o. Therefore, transitions for all values of i are possible. This explains why there
are vertical bidirectional edges in Fig. 21.2. When c changes from 0 to 1, the next
value of o must be equal to the negation of the current value of i . This yields the
transitions ; ! fo; cg, ; ! fi; o; cg, fig ! fcg, and fig ! fi; cg. We leave the
explanation of the other transitions as an exercise to the reader. ut

472 21 Formal Verification and Models

Fig. 21.3 Formal verification
model explicitly clocked by
$global_clock

i io

o

21.2.1 Time

To complete the picture, we need to introduce the notion of time. We assume that
RTL models are synchronous, i.e., that there is a global clock, called also the primary
system clock that synchronizes all the system transitions. Any signal change may
happen only at a tick of the global clock. This assumption is applicable even if
the system has several clock domains. For example, if there are two clock domains
controlled by clocks clk1 and clk2, then the global clock should be defined as
an event clk1 or clk2. In SystemVerilog, the global clock is introduced with
global clocking, and it can be referenced as $global_clock (Sect. 4.4.2). The
mapping of the global clock to events using global clocking is important in
simulation, but in FV this mapping is not necessary. In this chapter, we refer to
the global clock even if global clocking has not been defined in the design.

One might wonder why ticks of the global clock are not identified with simulation
ticks. Sometimes this is a good idea, but if all interesting signals are synchronized
by a relatively slow clock, then this mapping is too inefficient. Another reason may
be that we need to map the system clock to some clock in simulation to ignore
transitions that happen between ticks of the global clock.

The time in FV of RTL is discrete, and it is defined in terms of the ticks of
the global clock. Time 0 corresponds to the initial tick of the global clock, time 1
corresponds to the next one, etc. It is also assumed that the global clock never stops
ticking. Therefore, unlike in simulation, the time in FV is infinite.

All transitions in formal verification models are synchronized by
$global_clock.

Example 21.8. The model in Example 21.7 is controlled by an arbitrary clock
posedge c. If posedge c is the global clock, as in the code snippet below, then
the FV model can be simplified: V D fi; og, Q D f;; fig; fog; fi; ogg, I D Q. The
transitions of this model are depicted in Fig. 21.3:

module m(input logic i, c, output o);
wire a = !i;
global clocking @(posedge c); endclocking

21.2 Formal Verification Model 473

always @($global_clock)
o <= a;

endmodule : m

This model is much simpler than that in Example 21.7. While the simulation model
remains exactly the same, c is no longer a variable of the FV model. To understand
the transition diagram, consider the state fig as an example. In this state, i D 1 and
o D 0. In the next tick of the system clock o must be 0, while i may assume any
value. Thus, we have two transitions: fig ! ;, and fig ! fig. ut

21.2.2 Model Language

We can interpret each state of an FV model as a letter in the alphabet ˙ D 2V . The
notation 2V is used to designate the set of all subsets of the set V . For instance, the
alphabet of the FV model from Example 21.8 is ˙ D f;; fig; fog; fi; ogg.4

According to its transition relation, the FV model accepts some sequences,
or paths, of its states, while it prohibits others. For instance, the model from
Example 21.8 accepts the sequence of states fig; fig; : : : because it has the transition
fig ! fig”, whereas the model forbids the sequence ;;;; : : : because it does not
have the transition ; ! ;. Therefore, an FV model defines an infinitary language
(see Sect. 21.1.3) over ˙ consisting of all the paths it accepts. The path q0; q1; : : :

is accepted by the FV model if it starts in an initial state: q0 2 I , and each pair of
consecutive states qi and qiC1 is connected by the transition relation: .qi ; qiC1/ 2 R.
These paths are exactly the words of the model language L.M/. According to the
terminology introduced in Sect. 21.1.3, the words are also called traces, and they are
traces as also understood by hardware engineers. Indeed, a trace may be considered
as a dump of all variable values at each tick of the global clock. The main difference
between these traces and conventional simulation traces is that the simulation traces
are finite, whereas the FV model defines infinite traces.

21.2.3 Symbolic Representation

In the above examples, we built explicit representations of FV models: each state
and each state transition appeared separately. This approach is feasible only when
the number of variables is very small. Even a modest design containing 300 state
elements (latches and flip-flops) may have more states than there are atoms in the
universe! To address this problem, a symbolic state representation is used.

4We distinguish between the alphabet ˙ and the set of states Q since in the general Q does not
need to contain all combinations of variables, whereas ˙ does.

474 21 Formal Verification and Models

It is possible to represent each state as a Boolean function that has the value 1 in
this state and 0 in all other states. Such a function identifying a single state from 2V

can be written as a conjunction of literals, one for each variable: if a variable is false
in the state then the corresponding literal is the negation of the variable; otherwise
the corresponding literal is the variable itself. A conjunction of this form is called
a minterm over V . It is easy to see that the minterms over V are in one-to-one
correspondence with the elements of 2V .

Example 21.9. The states ;; fig; fog, and fi; og from Example 21.8 may be repre-
sented by the minterms :i ^ :o; i ^ :o;:i ^ o, and i ^ o, respectively. ut

Boolean functions may also be used to represent sets of states. Given a set
S � 2V , each element of S can be represented symbolically by its corresponding
minterm, and the Boolean function representing S itself is then just the disjunction
of these minterms. This function returns the value 1 on the elements of S and the
value 0 on elements not in S . For this reason, the function is called the characteristic
function of the set S , and it is denoted as �S .

Example 21.10. The set of states S D ffog; fi; ogg from Example 21.8 has the
characteristic function �S D .:i ^ o/ _ .i ^ o/ D o. The empty set has the
characteristic function �; D 0, while the set of all states has the characteristic
function �Q D 1. ut

The same principle may be applied to symbolically represent transition relations
with their characteristic functions. Recall that the transition relation R is a binary
relation, that is, a set of pairs (sect. 21.1.1): R � Q �Q. To build the characteristic
function of a pair, it is necessary to distinguish between the variables describing
the first state of the pair and those describing the second state. This is achieved by
duplicating the set of variables for the second set and distinguishing the variables
with a prime. We call the original variables current state variables and the primed
variables next state variables. We also expand this notation to variable expressions:
if e is an expression built from the current state variables, then e0 is the expression
obtained from e by replacing each current state variable by the corresponding next
state variable.

If a pair p 2 R, then p D .c.p/; n.p//. c.p/ is the current state of p, and n.p/

is the next state of p. Let �c.p/ and �n.p/ be the characteristic functions of c.p/

and n.p/, respectively. Using our convention of primes for next state variables, the
characteristic function of p is �c.p/ ^ �0

n.p/ and the characteristic function of the
transition relation R as a whole is

_

p2R

�c.p/ ^ �0
n.p/:

Example 21.11. The symbolic representation of the transition relation R from
Example 21.7, Fig. 21.3 is

21.2 Formal Verification Model 475

:i ^ :o ^ :i 0 ^ o0_
:i ^ :o ^ i 0 ^ o0_

i ^ :o ^ i 0 ^ :o0_
i ^ :o ^ :i 0 ^ :o0_
:i ^ o ^ :i 0 ^ o0_
:i ^ o ^ i 0 ^ o0_

i ^ o ^ i 0 ^ :o0_
i ^ o ^ :i 0 ^ :o0 D

:i ^ :o ^ o0_
i ^ :o ^ :o0_
:i ^ o ^ o0_

i ^ o ^ :o0 D

.:i ^ o0/ _ .i ^ :o0/ D

i ˚ o0

To understand how this symbolic representation is obtained, consider the state fig
as an example. From Fig. 21.3, there are two transitions from fig: fig ! fig, and
fig ! ;. To symbolically represent the transition fig ! fig, we encode fig from
the source of the transition with the current state variables and fig from the target of
the transition with the next state variables, and then form a conjunction. This yields
i ^ :o ^ i 0 ^ :o0. Similarly, the symbolic encoding of the transition fig ! ; is
i ^ :o ^ :i 0 ^ :o0. The set of these two transitions is represented as a disjunction
.i ^ :o ^ i 0 ^ :o0/ _ .i ^ :o ^ :i 0 ^ :o0/. Although the further transformations
simplifying the characteristic function of the transition relation are routine, it is
instructive to understand an interpretation of these transformations. For example,
i^:o^i 0^:o0_i^:o^:i 0^:o0 D i^:o^:o0 means that all the transitions from
state fig lead to states where o is false. This agrees with the behavior of module m:
if the current value of i is high then the next value of o is low.

The series of simplifications yields a compact formula for the entire transition
relation: i˚o0. This result expresses the essence of the whole model: the next value
of o is the negation of the current value of i . ut

21.2.3.1 Sampled Value Functions

The next state v0 of a variable v 2 V may be interpreted as the value of v
in the next tick of the global clock, and therefore in SystemVerilog v0 corre-
sponds to $future_gclk(v). Using global clocking future sampled value functions
(Sect. 7.2.2.2), it is possible to explicitly express a transition relation in System-
Verilog.

476 21 Formal Verification and Models

Example 21.12. The transition relation i ˚ o0 of the module m from Example 21.8
may be represented in SystemVerilog as i != $future_gclk(o), and the module
m is equivalent to the following assumption m1

m1: assume property (@$global_clock i != $future_gclk(o));

This equivalence should be understood in the following sense: the set of infinite
traces (relative to the global clock) consistent with the module m is identical to the
set of the traces satisfying the assumption m1. ut

The global clocking future sampled value functions do not require any additional
modeling. They are already built into the FV model. On the contrary, the past
sampled value functions do require additional modeling. For example, the function
$past(a,,,@(posedge clk)), is represented as follows:

type(a) pa;
always @(posedge clk) pa <= a;

As we have seen, each past value of a one-bit expression effectively adds a new
variable to the FV model, and thus doubles the total number of the model states!

Efficiency Tip. In FV, future value functions are more efficient than their past value
counterparts.5

Note, however, that using future value functions in simulation may have the
opposite effect. It may increase the simulation load. Therefore, when writing
assertions keep in mind the target verification tool.

21.3 Properties

In Sect. 21.2, we saw that an FV model M defines an infinitary language L.M/, the
set of infinite traces it accepts. Each property p also defines an infinitary language
L.p/, the set of infinite traces that satisfy it.

Example 21.13. If V D fa; b; cg, the property p D always a defines a language
L.p/ D fa!g, that is, a set of all infinite traces aa : : :. The notation a! means
repetition of a infinitely many times.

The alphabet of this language is ˙ D 2V , the set of all subsets of the set fa; b; cg.
aa : : : is therefore not a single trace, but a family of traces, as a is a symbolic
representation of the set of the letters ffag; fa; bg; fa; cg; fa; b; cgg. As a disjunction

5Some FV tools represent the transition relations not between current and next variables, but
between past and current variables. However, this approach is inconsistent with the SystemVerilog
semantics requiring the past value of a bit variable be 0 at the initial moment.

21.3 Properties 477

of minterms, a D .a^:b^:c/_.a^b^:c/_.a^:b^c/_.a^b^c/. The property
p requires a to be true at each position of the trace, whereas the variables b and c

may have arbitrary values. ut
We say that M satisfies the property p, or that M is a model for p, or that p is

valid on M , and write M ˆ p, iff all traces that M accepts also satisfy p.

Example 21.14. Let p be defined as the property always i |=> !o. The FV
model M corresponding to the module m from Example 21.8 satisfies p, i.e.,
M ˆ p, since every trace accepted by M satisfies p. ut

There are two important special cases of properties: true and false (correspond-
ing to SystemVerilog 1’b1 and 1’b0, respectively). The property true is satisfied
on any trace. Therefore, its language consists of all possible traces defined by a
given set of variables. The property false is not satisfied on any trace. Therefore, its
language is empty.

In Chap. 4, we introduced SystemVerilog assertion statements: assertions,
assumptions, and cover. From the formal point of view, all these statements are
properties used in different contexts. Below we discuss their formal meaning.

21.3.1 Asserts

When we check the validity of a property, it plays the role of an assert, as explained
in Chap. 4. From the definition of M ˆ p, it follows that the property is valid iff
the language defined by this property contains the language defined by the model,
i.e., iff L.M/ � L.p/. For any model M ˆ true, and M 6ˆ false.

21.3.2 Assumes

As a property defines its own infinitary language, it is possible to check validity of an
assertion relative to this property instead of checking its validity on a model. We say
that the property p is valid assuming the property q, and write q ˆ p, iff all traces
satisfying q also satisfy p. When the validity of a property is assumed, it plays
the role of an assumption, as explained in Chap. 4. Note that for any assertion p,
false ˆ p since ; � L.p/.

q ˆ p is equivalent to L.q/ � L.p/. As we have seen in Example 21.8, an
assumption may replace a model in the sense that it defines the same language
(i.e., set of traces) as the model. More formally, the FV model M DhV; Q; I; Ri
is equivalent to the following assumption:

initial assume property (I and always R);

478 21 Formal Verification and Models

If all states of the model are initial, i.e., I D Q, then this assumption is just an
invariant represented by the transition relation:

assume property (R);

An assumption may be composed with a model, which is written as M jj q. This
composition defines the set of traces that are common for both M and q. In other
words, L.M jj q/ D L.M/ \ L.q/. The assertion p is valid on the composition
M jj q, written as M jj q ˆ p, iff L.M jj q/ � L.p/.6

Example 21.15. The assertion always nexttime o is valid on the composition of
the module m from Example 21.8 and the assumption always !i; ut

If assumption q and model M are contradictory, that is, there is no common
trace satisfying them, then L.M/ \ L.q/ D ;. In this case, M jj q ˆ p for any
assertion p. In this situation, the composite model M jj q is empty (Sect. 20.3.2).
An empty composite model also results when several assumptions are contradictory.
It is a common mistake to think that formal verification fails when a model is empty,
in fact the opposite is true:

If a model is empty then formal verification declares success for any assertion.

Example 21.16. Adding the assumption always i |=> o to Example 21.8, both
assertions always o |=> !o and always i != o hold (as do any other assertions)
because the model is empty. ut

FV tools may report when an contradictory set of assumptions is detected. If
not, deploying coverage on some key properties of the design can provide useful
information.

21.3.3 Coverage

If a property p is used as an assertion, we verify its validity on a model M , that is,
every trace accepted by M satisfies p. If we replace the requirement of validity by
the requirement of satisfiability, we obtain the notion of coverage (Sect. 4.7).

We say that a property p is satisfiable, or that p is covered, on M if there exists
a trace accepted by M that satisfies p. In other words, p is satisfiable, or covered,
on M iff L.M/ \ L.p/ ¤ ;. The notions of satisfiability and of validity are dual:
p is satisfiable on M iff M 6ˆ :p.

6In this case M jj q represents the so-called parallel composition of M and q and not the Verilog
Boolean OR.

21.4 Safety and Liveness 479

It follows that a contradictory model will make cover properties unsatisfiable,
indicating to the user that something is not correct in the model if the expectation is
that the cover should be reachable.

Example 21.17. Property s_eventually o is satisfiable on model M from
Example 21.8 because the trace :i; : : : satisfies p (in this trace the value of i

at time 0 is 0, and thus the value of o at time 1 is 1). The same property is not
valid on M because it is not satisfied on any trace of the form i! , which are legal
traces of M. The failure of the assertion on i! indicates that some assumption on
the behavior of the input i is needed, such that i may not stay constant 1 from some
point in time on. ut

21.3.4 Constraining a Model with Assumptions

If assertion p holds on model M then it also holds on M composed with
assumption q. This is because the composition M jj q may not accept more traces
than model M alone does.

The situation with coverage is the opposite: if property p is covered on a
composition M jj q, then it is also covered on model M alone, since M accepts
all traces that M jjq does.

Informally speaking, adding assumptions increases the chances of a property to
become valid, but decreases its chances of being covered. This does not necessarily
mean that adding assumptions makes FV easier for assertions and more difficult
for coverage goals. For example, adding assumptions may make the formulas used
in FV more complicated, and thus make the work of FV tools much harder. See
Sect. 20.3 for a discussion on approximation and abstraction.

21.4 Safety and Liveness

Compare the following two assertions a1 and a2:

a1: assert property (always a);
a2: assert property (s_eventually a);

Can these assertions fail in simulation? Assertion a1 certainly can if in some global
clock tick the value of a is 0. We can even say that if this assertion is violated on
some infinite trace then there is a finite prefix of this trace where this assertion is
violated, namely, the trace fragment until (including) the first occurrence of a = 0.
But what about assertion a2? We can simulate this assertion during millions of ticks
and never see a taking on the value 1. Does it mean that assertion a2 is violated in
simulation? Obviously not: had we simulated a2 a few more ticks we might discover
that a holds. Assertion a2 cannot fail in simulation except at the end as discussed in
Chap. 10.

480 21 Formal Verification and Models

We can formulate our findings in terms of the counterexamples: every coun-
terexample of a1 has a finite prefix such that all its extensions are counterexamples.
On the contrary, in the case of a2, every finite trace has an extension that is not a
counterexample. Informally speaking, all the counterexamples of the assertion a1

are finite, whereas all the counterexamples of the assertion a2 are infinite. In fact all
the counterexample of the assertion a2 have the form w D :a! .

This leads us to the following property classification. Property p is safety if
each counterexample has a finite prefix, and all its extensions are counterexamples.
Such a prefix is a bad prefix. The property p is (pure) liveness if every finite trace
has an extension that is not a counterexample. Speaking informally, we can say
that safety properties check that something bad never happens, whereas liveness
properties check that something good eventually happens. Safety properties may
fail in simulation, whereas pure liveness properties cannot. Only FV can fully check
liveness properties as FV can deal with infinite traces.7 The vast majority of all
properties used in practice are safety.

Are there properties that are neither safety nor liveness? Yes, such properties
exist. As an example, consider the property a s_until b. The trace w1 D .:a ^
:b/b : : : has a bad prefix .:a ^:b/; all the extensions are counterexamples, while
the trace w2 D .a ^:b/! provides an infinite counterexample, such that each finite
prefix has an extension that is not a counterexample. Indeed, on w1 there is no a

before the first occurrence of b, and on w2 b never happens. Such properties are
called hybrid or general liveness properties. These properties have both a liveness
and a safety component.

For our purpose, the distinction between the pure and general liveness properties
is not that important, and we will reserve the term liveness for both pure and general
liveness properties. We explicitly use the terms “pure” or “general” when we need
to distinguish between these two types of liveness.

The notions of safety and liveness are fundamental in FV. The users of FV tools
should be able to determine for any property whether it is safety or liveness, and try
to use safety properties as much as possible. This is necessary for FV to be efficient,
as checking safety is generally more efficient than checking liveness. To help the
user write efficient properties, some FV tools report the type of each property, safety,
or liveness.

21.4.1 Safety Properties

Algorithms for formal verification of assertions are called model checking. A sys-
tematic description of model checking is beyond the scope of this book, and we

7Some liveness properties may pass in simulation, like property s_eventually a if a is
observed to hold at one point in time. However, there are liveness properties that can neither fail
nor pass in simulation, like the property s_eventually always a.

21.4 Safety and Liveness 481

Fig. 21.4 Automaton for
complement of property
always a |=> b

s1 s2 s3

a ¬b

true

discuss here only a simple special case to give an idea of how an FV tool works
for safety properties. Some basic understanding will give insight into assertion
efficiency.

The basic idea of model checking of safety properties is simple. All states of the
FV model are partitioned into good and bad. Entering a bad state signifies a failure
of the property. Model checking of a safety property can thus be formulated as a
reachability problem: is there a path from one of the initial states of the FV model
to one of its bad states? If such a path exists, the property fails, if not, it holds. This
path, if it exists, represents a bad prefix of the property, or, informally speaking, its
finite counterexample.

Property always a provides the simplest example. All states of the FV model
containing a are good, while those not satisfying a are bad. The good states are those
in the set fv 2 V ja 2 vg, while the bad states are those in the set fv 2 V ja 62 vg.

An arbitrary safety property may be reduced to a property of this form. The
common algorithm is to build a finite nondeterministic automaton A (Sect. 21.1.4)
corresponding to the complement of the safety property. The language of this
automaton consists of bad prefixes of the safety properties, or, in other words, this
automaton recognizes bad prefixes of the safety property8. The accepting states
of A are called the bad states. It can be shown [63] that it is always possible to
construct A with a single bad state. The automaton A may be synthesized into
RTL [14] such that each automaton state becomes a new RTL variable. This results
in an augmented FV model M 0 containing both variables of the original model M

and the variables corresponding to the states of A . If the bad state is represented by
variable b then the original safety property is equivalent to the property always b

of the augmented model.
The exact description of building the automaton of the complement of a safety

property is beyond the scope of this book. Instead, we illustrate the idea on the
following examples.

Example 21.18. Build an automaton for the complement of the property always

a |=> b.

Solution: The automaton for the complement is shown in Fig. 21.4.

Discussion: The automaton in this example is nondeterministic. It remains in the
initial state s1 until it follows one of the evaluation attempts of a |=> b. The attempt

8It is not required that the language L.A / of this automaton coincide with all bad prefixes of the
safety property, it is sufficient if L.A / contains some of its bad prefixes [46].

482 21 Formal Verification and Models

Fig. 21.5 Automaton for
complement of property
always a |=> ##2 b

s1 s2 s3 s4 s5
a true true ¬b

true

may start whenever. It will be non-vacuous only if a holds when it starts. Then, the
automaton moves to state s2. If in the next tick of the global clock b does not hold,
the automaton moves to state s3, which is the bad state of the automaton. ut
Example 21.19. Synthesize the automaton from Fig. 21.4 (Example 21.18) into
RTL.

Solution:

logic s1 = 1’b1, s2 = 1’b0, s3 = 1’b0;
always @$global_clock begin
s1 <= s1;
s2 <= s1 && a;
s3 <= s2 && !b;

end

Discussion: This code implies that s1 always equals to 1’b1 and therefore its
computation is redundant. The optimized code is:

logic s2 = 1’b0, s3 = 1’b0;
always @$global_clock begin
s2 <= a;
s3 <= s2 && !b;

end

s3 == 1 is a bad state: if s3 becomes 1’b1, the assertion fails . ut
The fact that a safety property may be synthesized into RTL reflects the well-

known practice of implementing assertions in RTL as an instrumented code. This
practice was common before the assertion specification languages became widely
accepted (Chap. 1).

Example 21.20. Build an automaton for the complement of the property always

a |=> ##2 b.

Solution: Its automaton is depicted in Fig. 21.5. ut
As we can see from the comparison of Examples 21.18 and 21.20, the more

complex the property is and the bigger its bounded time windows are, the more
states its automaton has. Interestingly, infinite time windows do not introduce many
additional states as illustrated in the following example.

Example 21.21. Build an automaton of the complement of the property always

a[+] ##1 b |=> c.

21.4 Safety and Liveness 483

Fig. 21.6 Automaton for
complement of property
always a[+] ##1 b |=> c

s1 s2 s3 s4
a b ¬c

true a

Solution: See Fig. 21.6.

Discussion: This automaton contains only 4 states. Compare it with the automaton
for the complement of the property a[*3] ##1 b |=> c (Exercise 21.2). ut

Efficiency Tip. The general trend is as follows: The more complex the automaton
for a property, the less efficient it is in FV.

How can a safety property be recognized? In the case the property does not
contain negations, the property is safety if it uses the following operators only:

• weak sequence
• suffix implications
• nexttime

• always

• until, until_with
• Boolean connectives and and or.

If the above operators are in the scope of a negation (or of an odd number of
negations) the resulting property is usually not safety. However, operators such as
strong sequences, s_eventually, s_until, and s_until_with become safety
properties when negated.

Example 21.22. Property nexttime (a until_with b) is a safety property
because it consists of the operators nexttime and until_with that are not in
the scope of any negation.

Property not strong (a[*] ##1 b) is a safety property since the strong
sequence is negated.

Property strong (a[*] ##1 b)implies weak (c ##[+] d) is a safety pro-
perty because it contains a strong sequence under negation in the antecedent, and
a weak sequence without negation in the consequent. Recall that A implies B is
equivalent to not A or B.

Property not (not weak(a[*] ##1 b)or not weak(c ##[+] d)) is
a safety property because both weak sequences are in the scope of two negations.

ut
Note that most FV tools recognize safety and liveness properties syntacti-

cally. For example, even though a until b is by definition the same thing
as (a s_until b) or always a, it is likely that most FV tools report the former
property as safety, while the latter as liveness (see [33, 46]).

484 21 Formal Verification and Models

21.4.2 Liveness Properties

Model checking of liveness properties is significantly more complex than model
checking of safety properties. Liveness properties cannot be verified using direct
reachability analysis. This is because for safety properties any path to a bad state
is finite, and all counterexamples found this way are necessarily finite, while liveness
properties have infinite counterexamples. Checking liveness properties is much less
efficient than checking safety properties because the tool must search (explicitly or
implicitly) for infinite cycles in the model that do not satisfy the property.

Efficiency Tip. Avoid writing liveness properties unless they are absolutely neces-
sary.

Example 21.23. To check that some condition c holds between two events ev1 and
ev2 implemented as Boolean expressions, we can write the following property:
always ev1 |-> c s_until_with ev2. Before we proceed further, we should
ask ourselves whether this property is one that we really need to check. It verifies
two things:

1. c holds between ev1 and ev2, and
2. Each time that ev1 holds, ev2 also eventually holds.

Do we really want to check the second condition which is liveness?
Usually, the answer is “no”. If not, we should rewrite the property as
always ev1 |-> c until_with ev2. This property is safety, and it only checks
for the first condition.9 ut
Example 21.24. To check that each request is granted, we can write the following
property: always req |=> s_eventually gnt. This property is liveness, and in
this case liveness is what we actually want. Although this property is expensive, we
are prepared to pay for it. ut

21.4.2.1 Why Write Liveness Properties?

Why should we write liveness properties if they are expensive? There may be several
reasons for doing so. One common reason is to check that there is no starvation in
the system. For example, if a CPU needs to access some resource, this resource
should be eventually available.

Another common reason to use liveness properties is specification abstraction.
For example, we might need to ensure that each request is eventually granted. The
following liveness property is suitable for this purpose:

always req |-> s_eventually gnt

9By a chance the operator s_until_with has a clumsier syntax in SVA than the operator
until_with: this was done to make the safety property until_with a natural choice.

21.4 Safety and Liveness 485

Of course, in a real system there is always an upper bound on the request service
time, but if the system implementation changes or if the upper bound is large, then
a liveness property can be more appropriate.

For example, suppose we know that the request service time is bounded by 600
clock ticks, and also that the system implementation may be modified in which case
the upper bound may grow to 700. To make it a safety property, we could have
written the property as

always req |-> ##[1:701] gnt

However, we are not really interested in the exact time bound, and the efficiency of
this bounded safety property in FV is very poor. We thus have a tradeoff between
the safety property, with an automaton comprising more than 700 states and with
about twice as many edges, and the liveness property, with only a couple of states.
Checking the liveness property is likely to be more efficient in this case.

21.4.2.2 Counterexamples for Liveness Properties

There is an important question about liveness property checking: How can infinite
counterexamples be found and reported? Obviously, tools and humans can deal with
finite representations only. Fortunately, it can be shown [29] that if a property has
an infinite counterexample, then it also has a lasso-shaped counterexample, that is, a
counterexample of the form w1w!

2 . Here, w1 and w2 are finite words, w1 is a prefix,
and w2 is an infinitely repeated part. For instance, .a^b/ba.ab/! has the form w1w!

2

for w1 D .a^b/ba and w2 D ab. The lasso-shaped counterexample stems from the
fact that the model has a finite number of states, hence it must in a bounded number
of transitions enter some previously visited state thus forming the lasso loop.

21.4.2.3 Assumptions and Liveness

So far we have considered property classification into safety and liveness from the
point of view of assertions. It turns out that even the simplest assumptions introduce
liveness into the system.

Example 21.25. Given assertion a1 and assumption m1 not in the scope of an
initial procedure, they are equivalent to the assertion a2

m1: assume property (a);
a1: assert property (b);
initial a2: assert property ((always a) implies (always b));

as explained in Example 22.1.
For conciseness, we switch now to the notation of the research literature, where

operator always is designated as G, and operator s_eventually as F . Using
this notation, the property corresponding to the assertion a2 may be written as
Ga! Gb. This property is equivalent to .:Ga/ _ Gb, which is, in its turn,

486 21 Formal Verification and Models

equivalent to .F:a/ _ Gb. The latter form explicitly contains an eventuality, and
shows that a2 is a general liveness assertion. Hence, the combination of m1 and a1

introduces liveness condition into the system. ut
Example 21.25 shows that all assumptions of the form always q, that is, the

vast majority of all assumptions, introduce liveness.10 To understand why, consider
some assertion p and an assumption of the form Ga stating that a is an invariant
of the system. Assume, for simplicity, that p is a safety property. Suppose that at
some time i assertion p fails on trace w. In other words, the trace prefix w0;i is
a counterexample of p: w0;i 6ˆ p. We are ignoring the assumption Ga for a
moment. Assume now that the assumption Ga holds on the trace prefix w0;i , that
is, a holds at each position of w from 0 to i (inclusive). Does it mean that w0;i is
a real counterexample of p? Strictly speaking, no: if a D false at some point in
time j > i , then assumption Ga does not hold, and therefore assertion p holds
(vacuously).

In practice, invariant assumptions are always used, which means that the model
checking of safety properties is not relevant at all—if we take assumptions into
account, all our properties become liveness! In spite of this, the FV tools usually
ignore the liveness component introduced by assumptions when checking safety
properties and only check that until the time of an assertion failure no assumptions
have been violated. Some tools even check that the assumptions are not violated
a few more global clock ticks after the assertion violation. Strictly speaking, this
is incorrect, but it is a reasonable compromise. Also, this method is safe: if the
assertion passes then the subsequent behavior of an assumption is not important.

21.4.2.4 Automata of Clocked Properties

In Sect. 21.4.1, we showed that safety properties may be represented as finite
automata. How will the property automaton change if we take the property’s clock
into account?

Consider property @c a |=> b. We assume that occurrence of clocking event
@c has been resolved to testing of a Boolean expression c with respect to the global
clock (see Sect. 20.4). The automaton for the property complement is shown in
Fig. 21.7 (the corresponding unclocked version is shown in Fig. 21.4).

Fig. 21.7 Automaton for
complement of property
@c always a |=> b

s1 s2 s3

a∧c ¬b∧c

true ¬c

10We are not talking about corner cases such as when the same property is used both as an
assumption and as an assertion.

21.5 Weak and Strong Operators 487

The automaton in Fig. 21.7 differs from the automaton in Fig. 21.4 in several
points:

• There is a self-loop in the state s2 labeled with :c, which reflects the automaton
waiting for the clock c to transition to the state s3.

• There is an additional guard c on the edges s1 ! s2 and s2 ! s3 allowing the
state transitions only at a clock tick.

The automaton reaches its accepting state s3 iff the property fails. For the
property to fail, the clock must tick enough times to allow the transition from the
initial state to the accepting state.

It is quite natural that the automaton of the complement of the clocked property
is more complex than that of the unclocked property, and therefore FV of clocked
properties is more expensive than FV of the unclocked ones. The main penalty of the
verification of the clocked properties is due to the fact that their clock is considered
to be an arbitrary signal. In practice, however, the waveform of the clock is often
well known, and can be expressed through the system clock in a regular manner.
For example, the clock may tick each second tick of the global clock. In such a case,
FV of clocked properties can be made much more efficient. Therefore, many FV
tools ask for a clock pattern. Some of them may also derive this information from
the global clocking statement and RTL. However, some FV tools may ignore the
global clocking statement.

21.5 Weak and Strong Operators

Temporal operators behave differently relative to their clock: some of them require
their clock to tick enough times to witness success, whereas others just require no
evidence of failure while the clock is ticking. The operators belonging to the first
group are called strong, and the operators from the second group are called weak.

The weak operators considered so far are weak, |->, |=>, nexttime, always,
until, and until_with. The operators strong, s_nexttime, s_eventually,
s_until, and s_until_with are strong. The suffix conjunction operators #-#

and #=# are also strong. All strong operators denoted by keywords have a special
mnemonics: their names begin with the prefix s_, except for the operator strong.
The weak operators, when they are not in the scope of a negation, yield only safety
properties.

Example 21.26. Consider the following properties:

1. @clk s_nexttime a

2. @$global_clock s_nexttime a

3. @clk a s_until b

4. @$global_clock a s_until b

5. @clk (a s_until b)or always a.

488 21 Formal Verification and Models

Property (1) is a liveness property, as it checks that clk ticks at least twice.
Property (2) is a safety property even though it has a strong operator. As the global
clock is fair11 according to its definition, the operators nexttime and s_nexttime

mean the same thing when they are controlled by the global clock.
Property (3) is a liveness property as it checks that b eventually happens and that

clk ticks enough times to witness the occurrence of b. Property (4) is also liveness,
even though it is controlled by the global clock, as it checks that b eventually
happens. Property (5) is a safety property since it is equivalent to a until b.
However, it is likely that most FV tools will not recognize it as safety, as it contains
a s_until operator, and it looks syntactically like a general liveness property. ut

Most property operators have both weak and strong versions, such as until and
s_until. However, the unbounded operator always has only a weak form, and
the unbounded operator s_eventually has only a strong form. When we say that
eventually a happens, our intent is that a happens in some clock tick, and therefore
the clock cannot stop ticking before a has been detected. When we say that a always
happens, our intent is that a happens at each clock tick. If there are no clock ticks,
the value of a is not checked. Therefore, in this case there is no requirement that the
clock ticks.

Suffix Implication

Why is suffix implication a weak operator? Suffix implication requires its conse-
quent to be true for each match of its antecedent. There is no requirement that the
antecedent match, and therefore there is no requirement that the clock ticks enough
times to witness a match of the antecedent.

Negation

Negation reverses the strength of an operator.

Example 21.27. Property @clk not weak(a) is equivalent to @clk strong(!a).
Indeed, according to the clock rewriting rules, explained in Sect. 20.4, @clk not

weak(a) is equivalent to not weak(@clk a). The latter property holds iff property
weak(@clk a) fails. This property fails iff either clk does not tick at least once or a
is false at the first clock tick clk. This is in its turn equivalent to @clk strong(!a).

ut

11I.e., the clock never stops.

21.5 Weak and Strong Operators 489

Example 21.28. Property not (a until b) is strong. It checks that the clock
ticks enough times to witness that a until b does not hold. Property not

(a s_until b) is weak. If the clock stops ticking early, property a s_until b

will fail, and its negation will pass. ut
Since property implication p implies q is equivalent to (not p) or q, the

strength of the antecedent is reversed and the strength of the consequent is preserved.
Therefore, for the implication to be weak, property p should be strong and property
q should be weak.

Example 21.29. Consider the following assertions:

a1: assert property (@clk !a);
a2: assert property (@clk not a);
initial a3: assert property (@clk !a);
initial a4: assert property (@clk not a);

Assertions a1 and a2 are equivalent. Property @clk not a is equivalent to property
@clk strong(!a) (Example 21.27). In the context of assertion a2, properties
@clk strong(!a) and @clk weak(!a) are equivalent as we check them only at
all the ticks of clk due to the implicit top-level always.

Assertions a3 and a4 are not equivalent: a3 is satisfied if clk never ticks, whereas
assertion a4 fails in this case. ut

The implicit always in continuously monitored assertions causes the clock to
be treated weakly at the top-level.

Operator Composition

We know that strong operators require their clock to tick enough times, while there
is no such restriction in weak operators. To interpret the semantics of a property
containing both weak and strong operators, one should refer to the formal semantics
of these operators and to their clock rewriting rules.

Example 21.30. Which requirements are imposed on the clock in property @clk

always s_eventually p? Property @clk always s_eventually p holds if in
each tick of clk property @clk s_eventually p holds. This means that if there is
an i th tick of clk, then there must exist a j th tick of clk, j � i , at which property
p holds. To summarize, property @clk always s_eventually p is satisfied if one
of the following conditions holds:

• Clock clk does not tick at all.
• Clock clk ticks finitely many times and p holds when the clock ticks for the last

time.

490 21 Formal Verification and Models

• Clock clk ticks infinitely many times, and p holds in infinitely many ticks of the
clock.

ut
Sometimes mixing weak and strong operators in the same property is unavoid-

able, as in the case of always s_eventually p, or s_eventually always p.
However, when there is no special reason to mix weak and strong operators,
it is more efficient and more intuitive to use operators of the same strength
in the property. For example, instead of p until s_nexttime q, use either
p until nexttime q or p s_until s_nexttime q, depending on whether or
not it is important to prove that q eventually happens.

Do not mix weak and strong operators in the same property unless it is
unavoidable.

21.6 Embedded Assertions

Thus far we have considered the formal semantics of stand-alone assertions (i.e.,
concurrent assertions placed outside procedural code) and properties. In this section,
we discuss how embedding concurrent assertions in procedural code modifies their
formal semantics. The simulation semantics of embedded assertions is described in
Chap. 14. In FV, the support of embedded assertions is restricted, but it covers most
cases of importance.

As explained in Chap. 5, if an assertion is in the scope of an initial procedure,
it is monitored only once, and if it is in the scope of an always procedure, it
is monitored continuously. In other words, if an assertion or an assumption is
embedded in an always procedure, an outermost always property operator is
implicitly added to this assertion.12

If an assertion or an assumption is placed in the scope of one or several
procedural conditional statements, such as if or case, in the FV model an implicit
suffix implication is added to this assertion with the overall condition in the
antecedent.12

Example 21.31. Consider the following code fragment:

always @(posedge clk) begin : b1
if (en) begin : b2
// ...
if (cond) begin : b3

// ...

12See Chap. 18 for the semantics of embedded coverage statements.

21.6 Embedded Assertions 491

end : b3
else begin : b4

// ...
a1: assert property (p);

end : b4
// ...

end : b2
// ...

end : b1

Assertion a1 is equivalent to the following stand-alone assertion:

assert property (@(posedge clk) en && !cond |-> p);

This equivalent assertion has an additional suffix implication operator |-> with
the antecedent en && !cond. The condition en && !cond is the entry condition
of the block b4 to which the assertion a4 belongs. This is quite natural since we
expect the assertion attempt to be triggered only when the block b4 is activated. ut

As we know, assertions may also be placed in the scope of a looping statement.
To be tractable for FV, the looping statement must be statically unrollable, and the
assertion is replicated according to the iterations.

Example 21.32. Consider the following code fragment:

property p(int i, j);
a[i] |-> ##[1:2] b[j];

endproperty : p

always @(posedge clk) begin : b1
// ...
for (int i = 0; i < 5; i++) begin : b2
// ...
for (int j = 0; j < i; j++) begin : b3

// ...
a1: assert property (p(i, j));

end : b3:
end : b2

end : b1

The assertion a1 is equivalent to the following 10 stand-alone assertions:

assert property (@(posedge clk) p(1, 0));
assert property (@(posedge clk) p(2, 0));
...
assert property (@(posedge clk) p(4, 3));

Note that the loops b2 and b3 are statically unrollable in spite of the fact that the
upper bound of the loop b3 is not a constant. ut

492 21 Formal Verification and Models

21.7 Immediate and Deferred Assertions

So far in this chapter we have dealt only with concurrent assertions. Immediate
and deferred assertions (both observed and final) are also meaningful for FV when
they are instantiated in synthesizable code and when the data they reference are
synthesizable. For FV, there is no difference between immediate and deferred
assertions (observed and final). Therefore, we limit our discussion to deferred
assertions.

For FV, a possible implementation of deferred assertions is to transform them into
(possibly embedded) concurrent assertions using the following scheme: assertion
assert final (e); is transformed into assertion assert property (@clk e);

for some clock clk. Assumptions and cover statements are transformed similarly.
It remains to define the clock for the transformed assertions.

If the deferred assertion is not in the scope of an always procedure such that
the clock is inferable from it for concurrent assertions, the global clock is inferred.
The global clock is inferred even if there is no global clocking definition in the
design: recall that global clocking is only required to map the global clock into
an event for simulation, and in FV models the global clock is inherently defined .

Example 21.33. Consider the following code fragment:

a1: assert #0 (e1);

always_comb begin
// ...
if (en) begin
// ...
a2: assert #0 (e2);

end else // ...
end

For FV, this code is rewritten using concurrent assertions as follows:

a1: assert property (@$global_clock e1);

always_comb begin
// ...
if (en) begin
// ...
a2: assert property (@$global_clock e2);

end else // ...
end

ut
If the deferred assertion is in the scope of an always procedure with an inferable

clock then this deferred assertion is treated in FV as a concurrent assertion.

21.7 Immediate and Deferred Assertions 493

Example 21.34. Consider the following code fragment:

always @(posedge clk) begin
// ...
if (en) begin
// ...
a1: assert #0 ($onehot0({a, b});

end
end

In FV, the deferred assertion a1 is interpreted as a concurrent assertion:

always @(posedge clk) begin
// ...
if (en) begin
// ...
a1: assert property ($onehot0({a, b});

end
end

ut

Exercises

21.1. Write a module implementing a counter modulo 4 and build the correspond-
ing FV model. Write a symbolic representation of its transition relation.

21.2. Build an automaton for the complement of the property always a[*3]

##1 b |=> c. Compare it with the automaton for the complement of the property
always a[+] ##1 b |=> c

21.3. What do the following properties mean?

(1) @clk s_eventually always p.
(2) @clk s_nexttime nexttime p.
(3) @clk nexttime s_nexttime p.
(4) @clk p until s_nexttime q.
(5) @clk p s_until nexttime q.

21.4. Rewrite the following properties without using negation:

(a) @clk not weak(a ##1 b)

(b) @clk not strong(s[->2]).

21.5. What is the meaning of the property @clk p s_until_with always q?

494 21 Formal Verification and Models

21.6. What is the meaning of the embedded assertion a1?

always @(posedge clk) begin
// ...
for (int i = 0; i < 4; i++) begin
// ...
if (en[i]) begin

// ...
a1: assert property (a[i][*2]);

end
end

end

21.7. Suppose that assertion a1 in Exercise 21.6 is changed to assert final

(a[i]). What could be its possible implementation in FV?

Chapter 22
Formal Semantics

I don’t want to get bogged down in semantics causing problems.

—Pervez Musharraf

To enable formal verification of assertions, the assertions must be formally defined:
it must be possible to unambiguously tell whether a specific DUT behavior satisfies
a given assertion or not. The formal definition of the meaning of an assertion is
called its formal semantics. Our intuition works well for simple assertions, but
to understand the exact meaning of complex assertions requires knowledge of
the formal semantics. This chapter is dedicated to the description of the formal
semantics of sequences, properties, and assertions.

This chapter can be skipped on the first reading, but those who wish to obtain
deep insight into SystemVerilog assertions need to carefully study it. Some of
the aspects of this chapter are useful primarily to people who deal with formal
verification, but others are important also for simulation. Throughout this chapter,
unless otherwise specified, we make the same notational assumptions as in Chap. 21.
We also continue to assume that variables and expressions are 2-state and that global
clocking applies to all properties unless otherwise specified.

22.1 Formal Semantics of Properties

We have seen that a property defines its own language, we now need to describe this
language precisely for every property that can be expressed in SVA. The formal defi-
nition of the language is called the formal semantics of the property. Understanding
the formal semantics of each SVA property is important to understanding the exact
meaning of each temporal formula. In Chaps. 5 and 10 we described the semantics
of the properties informally. In this chapter, we provide the formal description.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__22

495

496 22 Formal Semantics

We use the following notation:

• w is a (finite or infinite) word, or trace, over alphabet ˙ D 2V .
• Each letter in the word w is numbered by a nonnegative integer number; the i th

letter is denoted as wi . The numbering starts from 0, so that the first letter is w0.
• If w is a finite word, its length is denoted as jwj.
• The empty word is denoted as ". The empty word does not contain any letters,

and its length is 0.
• wi:: is the suffix of the word w starting from the letter wi . More precisely, wi:: is

the word obtained from w by deleting its first i letters. If jwj � i then wi:: D ".
• wi;j , where i � j is the finite segment of the word w starting from the letter wi

and ending at the letter wj . More precisely, wi;j is the finite word obtained from
the word w by deleting its i first letters and also deleting all its letters after the
j C 1st (i.e., after the letter j).

We also use symbolic notation for the letters. For example, assuming that V D
fa; bg, then w0 D a ^ :b means that in the first position of the word (trace) a is 1
and b is 0.

To denote that the word w satisfies the property p, we write w ˆ p. In the context
of property satisfaction, w is assumed to be infinite. Finally, we assume that all the
properties in this section are unclocked (or controlled by the global clock).

22.1.1 Basic Property Forms

We consider first basic SVA property operators: Boolean property, negation, con-
junction, nexttime, and s_until. Their formal semantics is defined recursively,
starting from the Boolean property.

22.1.1.1 Boolean Property

The Boolean property e, where e is a Boolean expression over variables in V is
satisfied on all words such that e holds on their first letter:

w ˆ e iff w0 ! e.

w0 ! e means that if the values of the variables of V specified in w0 are substituted
into e, then the result is true. Equivalently, w0! e means that this Boolean formula
is a tautology over valuations of the variables in V . In this case, we also write
w0ˆ e.

For example, if w0 D a ^ :b then w ˆ a, and w ˆ a _ b, but w 6ˆ a ^ b.
In what follows, we assume that we know the formal semantics of each

subproperty, and thus we define the semantics of compound properties recursively
in terms of the semantics of their components.

22.1 Formal Semantics of Properties 497

22.1.1.2 Negation Property

The property not p holds on w iff the property p does not hold on w:

w ˆ not p iff w 6ˆ p:

In the research literature, not p is usually denoted as :p. We continue the
discussion on the formal semantics of negation in Sect. 22.3.4.

22.1.1.3 Conjunction Property

The property p and q holds on w iff both properties p and q hold on w:

w ˆ p and q iff w ˆ p and w ˆ q:

In the research literature, p and q is usually denoted as p ^ q.

22.1.1.4 Nexttime Property

The property nexttime p holds on w iff the property p holds on w1:::

w ˆ nexttime p iff w1:: ˆ p

In the research literature, nexttime p is usually denoted either as Xp or as	p.
Derived forms of this property are described in Sect. 10.5.

22.1.1.5 Strong Until Property

The property p s_until q holds on w iff there exists i � 0 such that p holds in all
positions of w up until, but not including, position i , and q holds in position i :

wˆp s_until q iff there exists i so that wi ˆ q and for every 0� j < i , wj:: ˆ p.

In the research literature, p s_until q is usually denoted1 as pUq.

1In the research literature, the operator s_until is called simply until, and the operator until
is called weak until.

498 22 Formal Semantics

22.1.2 Derived Properties

The rest of the SVA property operators that do not operate on sequences are derived.
They can be expressed through the basic operators defined in Sect. 22.1.1. In this
section, we provide the list of these operators, except for the operators if and case

because their derivation was explained in Sect. 10.2.

22.1.2.1 Boolean Connectives

In addition to and, SVA defines the Boolean property connectives or, implies,
and iff.

Disjunction Property: w ˆ p or q iff either w ˆ p or w ˆ q. p or q is a shortcut
notation for not(not p and not q). In the research literature, p or q is usually
denoted as p _ q.

Implication Property: w ˆ p implies q iff either w 6ˆ p or w ˆ q. p implies q

is a shortcut notation for not.p or not q/. In the research literature, p implies q

is usually denoted as p ! q.
Given an assertion p, an assumption q, and a model M , it is possible to rewrite

the relation M jjq ˆ p2 using an implication property as M ˆ q!p. Indeed, the
first formula means that all words satisfying both M and q also satisfy p, and
the second formula means that all words satisfying M either satisfy p or do not
satisfy q.

Example 22.1. Consider the following assertion statements:

m1: assume property (a);
a1: assert property (b);
a2: assert property (a implies b);

Assertion a1 together with assumption m1 are not equivalent to assertion a2 if they
are not in the scope of an initial procedure. The reason is that assertions and
assumptions out of scope of an initial procedure are interpreted as having an
implicit outermost always operator. At module level, for example, a1 together with
m1 is equivalent to the following:

initial a3: assert property ((always a) implies (always b));

Assertion a3 is weaker than a2. ut

Equivalence Property: w ˆ p iff q iff either both w ˆ p and w ˆ q, or w 6ˆ p

and w 6ˆ q. p iff q is a shortcut notation for .p implies q/ and .q implies p/.
In the research literature, p iff q is usually denoted as p $ q or as p � q.

2Recall that in this context jj represents parallel composition of the two models.

22.2 Formal Semantics of Sequences 499

22.1.2.2 Eventually Property

The property s_eventually p holds on w iff the property p holds on wi:: for some
i � 0. s_eventually p is a shortcut for true s_until p. Indeed, since the property
true holds on any trace, true s_until p only checks that p eventually holds. In the
research literature, s_eventually p is usually denoted as Fp or as Þp. Bounded
forms are described in Sect. 10.5.

22.1.2.3 Always Property

The property always p holds on w iff the property p holds on wi:: for every i � 0.
always p is a shortcut for not s_eventually not p. Indeed, p always holds iff
the fact that not p holds at some time is false. In the research literature, always p

is usually denoted as Gp or as �p. Bounded forms are described in Sect. 10.5.

22.1.2.4 Until Properties

The property p until q holds on w iff either (1) there exists i � 0 such that
p holds in all positions of w up until, but not including, position i; and q holds
in position i , or (2) p holds in all positions of w. p until q is a shortcut for
.p s_until q/ or always p. The remaining two properties from until family
are also simple shortcuts:

• p until_with q is a shortcut for p until (p and q).
• p s_until_with q is a shortcut for p s_until (p and q).

The property always p can also be directly expressed through until as
p until false. Since false never holds, p must always hold.

22.2 Formal Semantics of Sequences

Like a property, a sequence defines a language, namely, the set of words (traces) that
match the sequence. Unlike the language of a property, the language of a sequence
is finitary.

Example 22.2. Given the set of variables V D fa; bg, the sequence a[*2] ##1 b

defines the language faabg over the alphabet ˙ D 2V . aab is a shortcut for the
following traces: fagfagfbg, fabgfagfbg, fagfabgfbg, fagfbagfabg, fabgfabgfbg,
fabgfbagfabg, fbagfabgfabg, fabgfabgfabg. ut

500 22 Formal Semantics

We say that sequence s is tightly satisfied on word w, and write w j� s, iff w
matches s. In Chaps. 6 and 11, we have informally defined a match for each type of
sequence. Here, we provide the formal semantics of sequence match. As in the case
of properties, the formal semantics of sequences is defined recursively from the base
case of a Boolean sequence. We describe here only the formal semantics of the
basic sequence forms. The derived sequence forms have been defined as shortcuts
in Chaps. 6 and 11.

In the context of sequence tight satisfaction, we assume that w is a finite word.
By ˙�, we understand the language consisting from all finite words over the
alphabet ˙ .

Boolean Sequence: The Boolean sequence e is tightly satisfied on w iff jwj D 1

and e is true on w:

w j� e iff .jwj D 1/ and .w0 ˆ e/:

Concatenation: The concatenation r ##1 s of the sequences r and s is tightly
satisfied on the word w iff it is possible to break w into two words x and y such
that r is tightly satisfied on x and s is tightly satisfied on y:

w j� r ##1 s iff there exist x, y so that w D xy, and x j� r and y j� s:

Fusion: The fusion r ##0 s of the sequences r and s is tightly satisfied on the word
w iff it is possible to break w into three words x, y, and z, where the size of y is 1,
such that r is tightly satisfied on xy and s is tightly satisfied on yz:

w j� r ##0 s iff there exist x, y, z so that w D xyz and jyj D 1, and xy j� r and
yz j� s.

Disjunction: The disjunction r or s of the sequences r and s is tightly satisfied on
the word w iff either sequence is tightly satisfied on w:

w j� r or s iff .w j� r/ or .w j� s/.

Intersection:
The intersection r intersect s of the sequences r and s is tightly satisfied on

the word w iff both sequences are tightly satisfied on w:

w j� r intersect s iff .w j� r/ and .w j� s/.

Empty Sequence: The empty sequence s[*0] is tightly satisfied on the word w iff
w is empty:

w j� s[*0] iff jwj D 0.

22.3 Formal Semantics: Sequences and Properties 501

Iteration: The sequence s[+] (also written as s[*1:$]) is tightly satisfied on the
word w iff it is possible to break w into one or more words so that each of them
tightly satisfies s:

w j� s[+] iff there exist words w1; w2; : : : ; wj .j � 1/ so that w D w1w2 : : : wj

and for every i so that 0 < i � j wi j� s.

First Match: The first match first_match.s/ of the sequence s is tightly satisfied
on the word w iff s is tightly satisfied on some prefix x of w then the suffix y of w
must be empty:

w j� first_match(s) iff w j� s and there exist x, y so that w D xy and Nx j� s

then y D " . Nx is explained in 22.3.2).

22.3 Formal Semantics: Sequences and Properties

In Sect. 22.1, we defined how to build up the semantics of properties recursively,
starting from Boolean properties. However, from Chap. 6 we know that properties
are built on top of sequences and that the sequential property serves as the basic
building block for other properties. In this section, we define the formal semantics
of the properties built on top of sequences.

22.3.1 Strong Sequential Property
w ˆ strong.s/ iff there exists i � 0 so that w0;i j� s.

Note the condition i � 0—tight satisfaction on the empty word does not make the
strong sequential property hold. In fact, the LRM [8] states that a sequential property
admitting empty match is illegal.

Example 22.3. strong(e[*]) is illegal according to the LRM [8] because eŒ
�
admits empty match. Even so, consider applying the rule above for its semantics
on the trace w D :e! where at each position e evaluates to 0. The only match
of eŒ
� on a prefix of w is empty, but the rule above requires nonempty match for
property satisfaction. ut

22.3.2 Extension of Alphabet

Before we proceed to the definition of the formal semantics of weak sequential
properties, we need to revisit the alphabet definition. In Sect. 21.2.2, we defined the
model alphabet as the set of all variable valuations: ˙ D 2V . For the purposes of
the weak sequence definition discussed in Sect. 22.3.3, and of the reset definition
discussed in Chap. 13, we need to extend the alphabet ˙ with two special letters:

502 22 Formal Semantics

> and ?. The letter > satisfies every Boolean expression, even false, and the letter
? does not satisfy any Boolean expression, not even true. In other words, for any
Boolean e,> ˆ e and? 6ˆ e. These letters are mathematical devices useful only for
defining the formal semantics; there are no corresponding SystemVerilog constructs
to express them directly.

Example 22.4. Let s denote the sequence ##1 a[*2]. s is tightly satisfied on the
trace w1 D :aa>, but it is not tightly satisfied on the traces w2 D :a:a> and
w3 D ?aa.

Note that w0
1 D :a ˆ true, as true is satisfied by every letter except ?. Also,

w1
1 D a ˆ a. And w2

1 D > ˆ a since > satisfies every Boolean expression.
Therefore, w1 j� s.

w2 6j� s since w1
2 D :a 6ˆ a. The > at time 2 does not help match the sequence.

At time 1, we already have the evidence that the sequence s cannot be matched
regardless the trace content at future time moments.

w3 6j� s since w0
3 D ? 6ˆ true: ? does not satisfy any Boolean, not even

true. The sequence started with unary ##1. The important point is that this does
not simply mean to skip the first letter. Rather, the first letter must satisfy true. ut
Example 22.5. Let s denote the sequence a ##1 0. Sequence s is tightly satisfied
on the trace w D a>, i.e., w j� s, since w0 D a ˆ a and w1 D > ˆ 0. The latter
holds because > satisfies every Boolean expression, even 0 (or, false). Note that the
sequence s cannot be tightly satisfied on any trace that does not contain > since no
other letter satisfies false. ut
Example 22.6. The property a until b is satisfied on the trace a ^ :b > :a ^
:b : : :. Indeed, at time 0 a is true, and at time 1 all Boolean expressions are satisfied.

ut
Example 22.7. The property always a holds on the trace w D a>:a : : : because
always a is a shortcut for a until 0 and 0 (or false) is satisfied by > (see
Example 22.6), even though a does not hold in time 2. ut

22.3.3 Weak Sequential Property

Now that we have defined the extension of the alphabet, we are ready to define the
formal semantics of weak sequences:

w j� weak(s) iff for every i � 0 w0;i>! ˆ strong(s):

Informally, this definition means that no finite prefix of the trace can be evidence
that the sequence cannot match. As in the case of a strong sequential property the
sequence must not admit an empty match.

22.3 Formal Semantics: Sequences and Properties 503

Example 22.8. weak(a[*2]) is satisfied on any trace of the form aa : : :. Indeed, the
sequence a[*2] is tightly satisfied on the traces a> and aa where the match of the
sequence a[*2] can be witnessed.

However, weak(a[*2]) is not satisfied on the trace a:a : : :, as the sequence
a[*2] is not tightly satisfied on the trace a:a. ut

Consider an infinite trace and suppose that there is some time T such that any
prefix matching the sequence is of length at most T . Then there is no difference
between the weak and the strong satisfaction of the sequence on the trace. This is
the case of bounded sequences described in Sect. 6.2.

For instance, the sequence a[*2] from Example 22.8 satisfies these conditions,
provided it is controlled by the global clock since only traces of length 2 may
match it. Therefore, there is no difference between the properties weak(a[*2]) and
strong(a[*2]) when they are controlled by the global clock.

Example 22.9. The property weak(##[*] a) holds on any trace without any
special letter > or ?. Indeed, since > ˆ a, w0;i> j� ##[*] a for any w2˙!

and for any i (recall that ˙! is an infinite sequence of the letters from the alphabet
of the language defined by the FV model, see Sect. 21.2.2). However, property
strong(##[*] a) is equivalent to s_eventually a.

The property weak(##[*] a ##1 0) also holds on any infinite trace without any
special letter > or ?. Since > ˆ a and > ˆ false.D 0/, w0;i>> j� ##[*] a ##1 0

for any w 2 ˙� and any i . On the contrary, the property strong(##[*] a ##1 0)

is a contradiction, as false does not match any letter from the original unextended
alphabet. ut

22.3.4 Property Negation

In Sect. 22.1.1.2, we gave the following definition of property negation:

w ˆ not p iff w 6ˆ p.

This definition is only correct if w does not contain special letters> or?. According
to that definition, if w D >! then, for any a, w ˆ a, and thus w 6ˆ not a. This is
counterintuitive since we expect not a to behave the same way as !a when the
property is controlled by the global clock. !a is satisfied on w since > satisfies
every Boolean expression.

We need to modify the formal semantics of negation to eliminate this counterin-
tuitive behavior. Given a word w we build the word w by interchanging the letters>
and ? in w and leaving all other letters unmodified. Then we can define the formal
semantics of property negation as follows:

w ˆ not p iff w 6ˆ p.

504 22 Formal Semantics

Example 22.10. If w D >! , then w D ?! 6ˆ a for any a. Therefore, according to
this modified definition, w ˆ not a. ut
Example 22.11. w ˆ not weak(##[*] a) iff w 6ˆ weak(##[*] a). The
latter means that there exists i � 0 such that w0;i>! 6ˆ strong(##[*] a).
This is impossible if w does not contain special letters. Therefore, we have that
not weak(##[*] a) cannot hold on a trace without special letters, which agrees
with our intuition.

w ˆ not strong(##[*] a) iff w 6ˆ strong(##[*] a). The latter means
that the sequence ##[*] a does not match any finite prefix of w. Assuming that
w has no special letter, this is equivalent to wi 6ˆ a for all i , or, equivalently,
to wi ˆ !a for all i . This, in turn, means that always !a holds on w. This is
not surprising, since strong(##[*] a) is equivalent to s_eventually a, and the
negation of s_eventually a is always !a for Boolean a (Chap. 5). ut

22.3.5 Suffix Implication

The formal semantics of suffix implication is as follows:

w ˆ s|->p iff for every i � 0;
�
w0;i j� s

�! �
wi:: ˆ p

�
.

This definition means that for each finite prefix of trace w matching sequence s,
the suffix of the trace satisfies property p. The prefix and the suffix overlap at the
letter i . This definition agrees with the informal definition of the overlapping suffix
implication from Sect. 6.4.

Note the interchange of the letters > and ? in the antecedent. This is necessary
to make the formal semantics intuitive, as illustrated in the following examples.

Example 22.12. It is natural to expect that a |-> b behaves the same as a implies b

when a and b are Booleans. Assume that jwj � 1. Then w ˆ a implies b iff
w ˆ not a or b iff w 6ˆ a or w ˆ b iff w0;0 j� a implies w0:: ˆ b. ut
Example 22.13. Given the trace wD a^:b>a^:b : : : and the property
a[*3] |-> b we can see that b does not belong to the first three letters of the
trace. However, the property holds on w, as w D a ^ :b?a ^ :b : : :, and a[*3]

does not match any finite prefix of w.
This example is important for understanding the behavior of implication under

reset discussed in Chap. 13. ut
Is the sequence in the antecedent of a suffix implication strong or weak? The

question is malformed since weak and strong sequences are properties, whereas the
antecedent of a suffix implication is a sequence.

22.4 Formal Semantics of Clocks 505

As explained in Sect. 6.4, nonoverlapping implication is a shortcut:

.s |=> p/ � .s ##1 1 |-> p/:

22.3.6 Suffix Conjunction: Followed-by

The formal semantics of followed-by (also called suffix conjunction) is as follows:

w ˆ s #-# p iff for some i � 0; w0;i j� s and wi:: ˆ p.

Followed-by and suffix implication are dual operations (Chap. 10.3):

.s #-# p/ � .not(s|-> not p)/:

Indeed, property s |-> p is false iff at some tight satisfaction point of sequence s

property p does not hold.
Nonoverlapping followed-by is defined as a shortcut:

.s #=# p/ � .s ##1 1 #-# p/:

22.4 Formal Semantics of Clocks

The following notations, with and without subscripts, are used throughout this
section: b, c, d , x, y, and z denote Boolean expressions; e denotes an event
expression; r denotes a sequence; p denotes a property; v denotes a local variable
(see Chap. 15); h denotes an expression.

The formal semantics treats clocks like Boolean expressions. If e is a clocking
event, then �.e/ denotes the associated Boolean expression. The semantics of �.e/

is that ` ˆ �.e/ iff there is a tick of e in letter `. In this way, the question of whether
e occurs at a particular tick of the global clock is transformed into the question of
whether the Boolean expression �.e/ is true at that tick of the global clock. � is
defined as follows:

C1 If e is a named event, then �.e/ is assumed to be understood as a Boolean
expression at the granularity of the global clock.3

C2 �.$global_clock/ D 1’b1.
C3 �.b/ D $changing_gclk(b), where b is not $global_clock.

3The formal semantics does not attempt to expand the meaning of a named event in terms of the
various code that may trigger the event.

506 22 Formal Semantics

C4 �.posedge b/ D $rising_gclk(b).
C5 �.negedge b/ D $falling_gclk(b).
C6 �.edge b/ D �.posedge b/ || �.negedge b/.
C7 �.e iff b/ D �.e/ && b.
C8 �.e1 or e2/ D �.e1/ || �.e2/.
C9 �.e1 , e2/ D �.e1/ || �.e2/.

For example,

�.posedge clk iff enable/ D $rising_gclk(clk) && enable

After transforming clocking events into Boolean expressions, the formal seman-
tics eliminates the clocking event controls by folding the associated Boolean
expressions into the underlying sequences and properties. The resulting unclocked
sequences and properties are then interpreted over traces (i.e., finite and infinite
words). The elimination of the clocking event controls is accomplished by a system
of clock rewrite rules. The rewrite rules define a function T s that transforms a
sequence and the Boolean expression for a clock into an unclocked sequence. They
also define a function T p for transforming properties similarly. The clock rewrite
rules are as follows, where c denotes a clocking event:

SCR0 T s.(r); c/ D (T s.r; c/).
SCR1 T s.b; c/ D !c[*] ##1 c && b.
SCR2 T s.(1, v = h); c/ D T s.1; c/ ##0 (1, v = h).
SCR3 T s.@(c2)r; c1/ D T s.r; c2/.4

SCR4 T s.r1 op r2; c/ D T s.r1; c/ op T s.r2; c/, where op can be any of the
operators ##0, ##1, or, and intersect.

SCR5 T s.first_match(r); c/ D first_match(T s.r; c/).
SCR6 T s.r[*n]; c/ D T s.r; c/[*n]. The same rule applies to ranged repetition

operators.

PCR0 T p.(p); c/ D (T p.p; c/).
PCR1 T p.op(r); c/ D op(T s.r; c/), where op is either strong or weak.
PCR2 T p.@(c2)p; c1/ D T p.p; c2/.5

PCR3 T p.op p; c/ D op T p.p; c/, where op is any of not, disable iff (b),
accept_on(b), and reject_on(b).

PCR4 T p.p1 op p2; c/ D T p.p1; c/ op T p.p2; c/, where op can be any of the
operators and, or, implies, and iff.

PCR5 T p.sync_accept_on(b) p; c/ D accept_on(b && c) T p.p; c/. An
analogous rule applies to rewrite the synchronous reject in terms of the
asynchronous reject.

4This rule can be applied only after applying the clock flow rules in Sect. 12.2.4.1.
5See footnote 4.

22.4 Formal Semantics of Clocks 507

PCR6 T p.r op p; c/ D T s.r; c/ op T p.p; c/, where op is any of |->, |=>, #-#,
and #=#.6

PCR7 T p.nexttime p; c/ D
!c until (c and nexttime (!c until (c and T p.p; c/))).

PCR8 T p.p1 until p2; c/ D
(c implies T p.p1; c/) until (c and T p.p2; c/).

Rule PCR7 is the most complicated. It contains two alignments to c, performed
by the idiomatic subproperty !c until c. The first brings evaluation to alignment
with a tick of c, and the second performs the advance to the next tick of c, as
specified by nexttime (see Sect. 12.2.5.1). The first alignment is needed to get the
proper semantics when the clock is changing. If evaluation of nexttime p begins
in a tick of c, then the first alignment does not advance time.

The clock rewrite rules above cover all the primitive operators and a number
of derived operators. For other derived operators, rewrite rules are obtained by
applying the rules above to the definition of the derived operator in terms of more
primitive operators.

Example 22.14. Calculate a clock rewrite rule for b[->1].

Solution: b[->1] is defined to be equivalent to !b[*] ##1 b. Therefore,

T s.b[->1]; c/

D T s.!b[*] ##1 b; c/

D T s.!b[*]; c/ ##1 T s.b; c/ [SCR4]
D T s.!b; c/[*] ##1 T s.b; c/ [SCR6]
D (!c[*] ##1 c && !b)[*] ##1 !c[*] ##1 c && b [SCR1]

ut
Example 22.15. Calculate a clock rewrite rule for r1 within r2.

Solution: r1 within r2 is defined to be equivalent to

(1[*] ##1 r1 ##1 1[*]) intersect r2

Therefore,

T s.r1 within r2; c/

D T s.(1[*] ##1 r1 ##1 1[*]) intersect r2; c/

D T s.(1[*] ##1 r1 ##1 1[*]); c/ intersect T s.r2; c/ [SCR4]
D (T s.1[*] ##1 r1 ##1 1[*]; c/) intersect T s.r2; c/ [SCR0]
D (T s.1[*]; c/ ##1 T s.r1; c/ ##1 T s.1[*]; c/)

intersect T s.r2; c/ [SCR4]
D (T s.1; c/[*] ##1 T s.r1; c/ ##1 T s.1; c/[*])

intersect T s.r2; c/ [SCR6]

6See footnote 4.

508 22 Formal Semantics

D (

(!c[*] ##1 c && 1)[*]

##1 T s.r1; c/

##1 (!c[*] ##1 c && 1)[*]

)

intersect T s.r2; c/ [SCR1]
� ((c[->1])[*] ##1 T s.r1; c/ ##1 (c[->1])[*])

intersect T s.r2; c/

ut
Example 22.16. Calculate a clock rewrite rule for always p.

Solution: always p is defined to be equivalent to p until 1’b0. Boolean
operands of a weak operator like until are automatically weakened, as though
they were within implicit instances of weak. Therefore

T p.always p; c/

D T p.p until 1’b0; c/

D (c implies T p.p; c/) until (c and T s.1’b0; c/) [PCR8]
D (c implies T p.p; c/) until

(c and (!c[*] ##1 c && 1’b0)) [SCR1]
� (c implies T p.p; c/) until (c && 1’b0)

� (c implies T p.p; c/) until 1’b0

ut
Example 22.17. Show that the following equivalence is preserved under T p.�; c/:

r #-# p � not(r |-> not p) (*)

Solution: Compute:

T p.not(r |-> not p); c/

D not(T p.r |-> not p; c/) [PCR3]
D not(T s.r; c/ |-> T p.not p; c/) [PCR6]
D not(T s.r; c/ |-> not T p.p; c/) [PCR3]
� T s.r; c/ #-# T p.p; c/ [.
/]
D T p.r #-# p; c/ [PCR6]

ut
It is important to understand that the clock rewrite rules do not account for

scoping of clocks as defined by the clock flow rules. The addition of clocking event
controls consistent with the clock flow rules may be necessary before the clock
rewrite rules may be applied.

Example 22.18. Assume that c is the incoming clock to x ##1 @(d) y |=> z.
Show that application of T p.�; c/ to this property does not correctly account for
clock flow. Add clocking event controls to the property so that application of
T p.�; c/ yields the correct rewrite.

22.5 Formal Semantics of Resets 509

Solution: By CF3, CF7, and CF8, d governs y and z, while the incoming clock c

governs x. Compute

T p.x ##1 @(d) y |=> z; c/

D T s.x ##1 @(d) y; c/ |=> T p.z; c/ [PCR6]
D T s.x; c/ ##1 T s.@(d) y; c/ |=> T p.z; c/ [SCR4]
D T s.x; c/ ##1 T s.y; d/ |=> T p.z; c/ [SCR3]

Thus, according to the rewrite, d governs only y, while c governs x and z. To fix
the problem, add the clocking event control @(d) after |=>:

T p.x ##1 @(d) y |=> @(d) z; c/

D T s.x ##1 @(d) y; c/ |=> T p.@(d) z; c/ [PCR6]
D T s.x; c/ ##1 T s.@(d) y; c/ |=> T p.@(d) z; c/ [SCR4]
D T s.x; c/ ##1 T s.y; d/ |=> T p.z; d / [SCR3, PCR2]

ut

22.5 Formal Semantics of Resets

The special letters > and ? play an important role in the formal semantics of
resets. If a reset condition occurs at some point in a trace w, then the disposition
of the evaluation depends on replacement of the suffix of w beginning at that point
by >! , ?! , or both, depending on the particular reset. The intuition is that all
properties hold on >! , while no properties hold on ?! .7 Therefore, replacing a
suffix of w by >! precludes failure after the point of replacement, while replacing
the suffix by ?! forces success to be complete prior to the point of replacement.
Abort operators of the “accept” kind replace the suffix beginning at the occurrence
of the abort condition by >! , whereas abort operators of the “reject” kind replace
the suffix by ?! . For disable iff, the disposition on occurrence of the disable
condition is neither “pass” nor “fail”, but “disabled”, so the formal semantics uses
both replacements: the replacement of the suffix by >! confirms that failure did
not occur before the disable condition, whereas the replacement of the suffix by ?!

confirms that success also did not occur before the disable condition.

7There are some theoretical subtleties involved. It is possible to write a sequence that does not
match any word, even when interpreted over the alphabet extended with > and ?. An example is a
sequence involving a length mismatch, such as r D 1’b1 intersect (1’b1 ##1 1’b1).
From r , one can create a property, such as weak(r), that is not satisfiable, even by the word >! .
However, by restricting each maximal sequence appearing in a concurrent assertion to be non-
degenerate, i.e., to match at least one nonempty finite word when interpreted over the extended
alphabet, this problem is avoided. The SystemVerilog LRM requires maximal sequences to be
nondegenerate in the appropriate circumstances to avoid such problematic cases.

510 22 Formal Semantics

Exposition of the semantics is simplified by the fact that only disable iff and
accept_on need be treated as primitive operators. The other resets are derived by
the following rules:

• reject_on(b) p � not accept_on(b) not p.
• sync_reject_on(b) p � not sync_accept_on(b) not p.
• T p.sync_accept_on(b) p; c/ D accept_on(b && c) T p.p; c/.

The formal semantics of accept_on is simpler than that of disable iff

because it involves only the two dispositions “pass” and “fail”. It is defined as
follows:

w ˆ accept_on(b) p

iff either
w ˆ p

or
there exists 0 � i < jwj such that wi ˆ b and w0;i�1>! ˆ p.

The first case allows w to satisfy accept_on(b) p if w satisfies p itself, regardless
of the abort condition. The second case accounts for an occurrence of the abort con-
dition and replaces the suffix of w beginning at the letter where the abort condition
occurs by >! before checking for satisfaction of the underlying property p.

Example 22.19. Derive direct semantics for reject_on(b) p.

Solution:

w ˆ reject_on(b) p

iff w ˆ not accept_on(b) not p

iff Nw 6ˆ accept_on(b) not p

iff both
Nw 6ˆ not p

and
for all 0 � i < jwj such that Nwi ˆ b W Nw0;i�1>! 6ˆ not p

iff both
w ˆ p

and
for all 0 � i < jwj such that Nwi ˆ b W w0;i�1?! ˆ p

ut
It thus follows that reject_on.b/p succeeds when w satisfies p and this happens
before the earliest occurrence of b.

The “pass” and “fail” dispositions of a disable iff are defined formally as
follows:

w ˆ disable iff(b) p

iff either
w ˆ p and no letter of w satisfies b

or
for some i , wi ˆ b, and w0;i�1?! ˆ p for the least such i .

22.6 Formal Semantics of Local Variables 511

The “disabled” disposition of a disable iff is defined formally as follows:

w ˆd disable iff(b) p

iff for some i , wi ˆ b, and for the least such i , both
w0;i�1>! ˆ p

and
w0;i�1?! 6ˆ p.

Intuitively, the requirement that w0;i�1>! ˆ p ensures that p has not failed prior to
the occurrence of the disable condition, while the requirement that w0;i�1?! 6ˆ p

ensures that p has not succeeded prior to the occurrence of the disable condition.

22.6 Formal Semantics of Local Variables

This section gives an overview of the formal semantics of local variables. For
more details, see the LRM [8]. The technical report [41] is another good reference,
covering details of theoretical results that are not presented in the LRM. [23]
presents complexity results for local variables. Only the unclocked semantics is
discussed here. As usual, the clocked semantics is obtained by first transforming
to unclocked forms using the clock rewrite rules and then applying the unclocked
semantics.

22.6.1 Formalizing Local Variable Flow

If X is a set of local variables and r is a sequence, let flow.X; r/ denote the set
of local variables that flow out of r given that the local variables in X flow into r .
From the local variable flow rules in Sect. 16.4.1, one obtains the following recursive
representation of flow.X; r/:

SF1 flow.X; b/DX . Analogous equalities hold for Boolean repetitions b[->n],
b[=n], etc.

SF2 flow.X; (r, v = e)/ D flow.X; r/ [fvg.
SF3 flow.X; r ##n s/ D flow.flow.X; r/; s/. Analogous equalities hold for vari-

ants of the binary concatenation operator.
SF4 flow.X; r or s/ D flow.X; r/ \ flow.X; s/.
SF5 flow.X; r and s/ D .flow.X; r/ � assign.s// [.flow.X; s/ � assign.r//.

Here assign.r/ (resp., assign.s/) denotes the set of local variables assigned
anywhere within r (resp., s). Analogous equalities hold for intersect and
within.

SF6 flow.X; b throughout r/ D flow.X; r/.
SF7 flow.X; first_match(r)/ D flow.X; r/.
SF8 flow.X; r[*0]/ D X .

512 22 Formal Semantics

SF9 flow.X; r[+]/ D flow.X; r[*n]/ D flow.X; r/, provided n is positive.
Analogous equalities apply to ranged forms of the repetition operator, provided
the lower range is positive. If the lower range is zero, then the flow rule is
obtained by decomposing r[*0:n] as r[*0] or r[*1:n] (n positive or $).

22.6.2 Local Variable Contexts

The principal technical device introduced to define the semantics of local variables
is the local variable context. A local variable context is a partial function mapping
local variables to values. It can be written as a set of ordered pairs:

L D f.v1; a1/; .v2; a2/; : : : ; .vn; an/g
L specifies that for each i , 1 � i � n, the local variable vi is assigned and has
the value ai . It is customary to say that fv1; v2; : : : ; vng is the domain of L, written
dom.L/. Thus, the domain of a local variable context is the set of local variables
that are assigned in that context. Any local variable not in the domain of the local
variable context is unassigned in that context. A local variable context may be
empty, in which case its domain is also empty and all local variables are unassigned
in that context.

If D � dom.L/, then LjD denotes the local variable context obtained by
restricting L to the domain D. For example, with L as above and D D fv1; v3g,

LjD D f.v1; a1/; .v3; a3/g
L n v denotes Ljdom.L/�fvg. It is the local variable context that results from L by
removing v from the domain, if it was there to begin with.

22.6.3 Sequence Semantics with Local Variables

The semantics of matching (i.e., tight satisfaction) of unclocked sequences can now
be defined as a four-way relation:

w; L0; L1 j� r

The relation holds if r matches the finite word w starting with incoming local
variable context L0 and resulting in outgoing local variable context L1. Whenever
the relation holds, dom.L1/ D flow.dom.L0/; r/. This fact is proven in [41]. The
substance of defining the relation is to capture how the local variable contexts
evolve, as a result of assignments to local variables, local variables becoming
unassigned according to the flow rules, and inductively through intermediate local
variable contexts. Here are the definitions for basic sequence operators:

22.6 Formal Semantics of Local Variables 513

• w; L0; L1 j� b iff jwj D 1 and w0 ˆ bŒL0� and L1 D L0. Here, bŒL0� denotes
the expression obtained by substituting values from L0 for any references in b to
local variables in dom.L0/.

• w; L0; L1 j� (r, v = e) iff there exists L such that w; L0; L j� r and L1 D
Lnv[fv; eŒL; w0�g. Here, eŒL; w0� denotes the expression obtained by substituting
values from L0 for any references in e to local variables in dom.L0/ and then
using values from w0 to evaluate remaining references in e. If w0 is a special
letter > or ?, then eŒL; w0� can be any value.

• w; L0; L1 j� r ##1 s iff there exist x; y; L such that w D xy and x; L0; L j� r

and y; L; L1 j� s.
• w; L0; L1 j� r ##0 s iff there exist x; y; z; L such that w D xyz and jyj D 1

and xy; L0; L j� r and yz; L; L1 j� s.
• w; L0; L1 j� r or s iff there exists L such that both

– either w; L0; L j� r or w; L0; L j� s, and
– L1 D LjD , where D D flow.dom.L0/; r or s/.

• w; L0; L1 j� r intersect s iff there exist L; L0 such that w; L0; L j� r and
w; L0; L0 j� s and L1 D LjD [L0jD0 , where

– D D flow.dom.L0/; r/ � assign.s/

– D0 D flow.dom.L0/; s/ � assign.r/

• w; L0; L1 j� first_match(r) iff both

– w; L0; L1 j� r , and
– if there exist x; y; L such that w D xy and Nx; L0; L j� r , then y is empty.

• w; L0; L1 j� r[*0] iff jwj D 0 and L1 D L0.
• w; L0; L1 j� r[+] iff there exist L.0/ D L0; w1; L.1/; : : : ; wk; L.k/ D L1, k � 1,

such that w D w1 � � �wk and wi ; L.i�1/; L.i/ j� r for every i , 1 � i � k.

22.6.4 Property Semantics with Local Variables

Local variables do not flow out of properties, so the semantics of property
satisfaction with local variables is simpler than that of sequence matching. The
relation is three-way:

w; L0 ˆ p

The relation holds if p is satisfied by word w starting with the incoming local
variable context L0. Here are the definitions for the basic property operators:

• w; L0 ˆ not p iff Nw; L0 6ˆ p.
• w; L0 ˆ strong(r) iff there exists 0 � j < jwj and L such that

w0;j ; L0; L j� r . r must not admit an empty match.

514 22 Formal Semantics

• w; L0 ˆ weak(r) iff for every 0 � j < jwj, w0;j>!; L0 ˆ strong(r). r must
not admit an empty match.

• w; L0 ˆ r |-> p iff for every 0 � j < jwj and L such that Nw0;j ; L0; L j� r ,
wj::; L ˆ p.

• w; L0 ˆ p or q iff either w; L0 ˆ p or w; L0 ˆ q.
• w; L0 ˆ p and q iff both w; L0 ˆ p and w; L0 ˆ q.
• w; L0 ˆ nexttime p iff either jwj D 0 or w1::; L0 ˆ p.
• w; L0 ˆ p s_until q iff there exists 0 � j < jwj such that wj::; L0 ˆ q and

for every 0 � i < j , wi::; L0 ˆ p.
• w; L0 ˆ accept_on(b) p iff either

– w; L0 ˆ p and no letter of w satisfies b, or
– for some 0 � i < jwj, wi ˆ b and w0;i�1>!; L0 ˆ p.8

It is worth noting that in the rule for |->, the intermediate local variable context
L is universally quantified. This is how the formal semantics specifies that multiple
matches over the same interval that result in distinct values of the local variables
must be treated as separate matches, each obligating a check of the consequent with
the corresponding local variable values.

22.7 Formal Semantics of Recursive Properties

This section gives a brief description of the formal semantics of recursive properties.
The main idea is to define the semantics of a recursive property in terms of the
semantics of associated non-recursive properties. Intuitively, these non-recursive
properties are approximations to greater and greater depth of the unrolling of the
recursion. There is some subtlety to the definition because recursive properties may
instantiate non-recursive properties and vice versa. This section presumes that the
semantics of instantiation of non-recursive properties is understood, at least at the
intuitive level of substituting actual arguments for formal arguments, while avoiding
aliasing that is contrary to the rules of name resolution. For further discussion, see
Annex F.4 of the LRM.

First, let us say more precisely what constitutes a recursive property and a
recursive instance. Consider the source code for a SystemVerilog model. Within
it are finitely many declarations of named properties and finitely many instances
of named properties. The dependency digraph is the directed graph hV; Ei formed
as follows. The node set V consists of the named properties that appear in the
source code. Each named property has a unique name, where the name may be
expanded as a hierarchical name, e.g., as needed for disambiguation. If p and q are
two named properties, then there is a directed edge from p to q in the edge set E

iff there is an instance of q within the declaration of p. A named property is said

8In case i D 0, w0;�1 is understood to denote the empty word.

22.7 Formal Semantics of Recursive Properties 515

to be recursive iff it belongs to a nontrivial strongly connected component of the
dependency digraph. An instance of a named property p is said to be recursive iff
it appears within the declaration of a named property q such that p and q belong to
the same nontrivial strongly connected component of the dependency digraph. This
condition is satisfied iff there is a loop in the dependency digraph that has at least
one arc and that passes through both p and q.9

Example 22.20. Compute the dependency digraph for the following named pro-
perty declarations:

property p1;
a and nexttime p2(p2(p3));

endproperty
property p2(property p)

eventually[0:1] p;
endproperty
property p3;

b and nexttime p1;
endproperty

Identify which named properties are recursive and which instances are recursive.

Solution: The node set of the dependency digraph is V D fp1; p2; p3g. The dec-
laration of p1 instantiates p2 (twice) and p3, so there are directed edges p1 ! p2

and p1 ! p3 in the edge set E. Similarly, there is a directed edge p3 ! p1 in E.
Below is a graphical representation of the dependency digraph. There is a single

p1 p2 p3

nontrivial strongly connected component in the digraph consisting of the nodes
fp1; p3g. Therefore, p1 and p3 are recursive properties. The instance of p3 in the
declaration of p1 and the instance of p1 in the declaration of p3 are both recursive
instances.p2 is a non-recursive property. It is worth noting that, under rewriting, the
instance p2(p2(p3)) expands to

eventually[0:1] eventually[0:1] p3;

which is equivalent to eventually[0:2] p3. ut
For k � 0, the k-fold approximation to a named property p is denoted pŒk� and

is defined as follows:

• pŒ0� is a named property whose declaration is obtained from that of p by replacing
the body property by 1’b1.

9In case p D q, the loop can be a self-loop on p.

516 22 Formal Semantics

• For k > 0, pŒk� is a named property whose declaration is obtained from that of p

by the following replacements:

– Each instance of a recursive property q in the declaration of p is replaced by
the instance of qŒk � 1� obtained by passing the same actual arguments.

– Each instance of a non-recursive property q in the declaration of p is replaced
by the instance of qŒk� obtained by passing the same actual arguments.

For any property
 , the k-fold approximation to
 is denoted
Œk� and is obtained
from
 by replacing each instance of a named property p by the instance of pŒk�

obtained by passing the same actual arguments. For a trace w and a local variable
context L, unclocked satisfaction of
 is defined by w; L ˆ
 iff w; L ˆ
Œk� for
all k > 0.

Several examples are given below to illustrate how these definitions work.

Example 22.21. Show that for k > 0, my_always[k](q) is equivalent to

(always[0:k-1] q) and nexttime[k] 1’b1;

where my_always is as declared in Fig. 17.1.

Solution: The definitions above imply the following declarations:

property my_always[0] (property p);
1’b1;

endproperty
property my_always[k] (property p);

(nexttime[0] p) and nexttime my_always[k-1](p);
endproperty

for k positive. Then we get

my_always[1](q) � (nexttime[0] q) and nexttime 1’b1

� (always[0:0] q) and nexttime[1] 1’b1

Suppose inductively that

my_always[k](q) � (always[0:k-1] q) and nexttime[k] 1’b1

Then

my_always[k+1](q) � (nexttime[0] q) and nexttime my_always[k](q)

� (nexttime[0] q) and

nexttime(

(always[0:k-1] q) and nexttime[k] 1’b1

)

� (always[0:k] q) and nexttime[k+1] 1’b1

ut

22.7 Formal Semantics of Recursive Properties 517

Example 22.22. Let
 D my_always(a), where a is a Boolean. Show that for w a
word without any special letter > or ?, w ˆ
 iff w ˆ always a in the unclocked
semantics.

Solution: By definition, w ˆ
 iff for all k > 0, w ˆ
[k]. Also by definition,

[k] D my_always[k](a)

By the preceding example, for all k > 0,

my_always[k](a) � (always[0:k-1] a) and nexttime[k] 1’b1

Since w has no special letter, w ˆ nexttime[k] 1’b1 for all k > 0, and so

w ˆ
 iff for all 0 � i < jwj; wi ˆ a

On the contrary, always a is formally defined as a until 0 in Annex F of the
LRM. Since w has no special letter, wi:: 6ˆ 0 for all 0 � i < jwj. Therefore,

w ˆ always a iff for all 0 � i < jwj; wi ˆ a

ut
Example 22.23. Let a and b be Booleans, and let q be declared by

property q(property p);
a |-> p;

endproperty

Determine the unclocked formal semantics of the property

 D q(my_always(q(b)))

Solution: By definition, w ˆ
 iff for all k > 0, w ˆ
[k]. Also by definition,

[k] D q[k](my_always[k](q[k](b)))

The declaration of q instantiates no named property, so for all k > 0, q[k] D q.
Therefore, for all k > 0,

[k] � q(my_always[k](q(b)))

� a |-> my_always[k](a |-> b)

� a |-> ((always[0:k-1] a |-> b) and nexttime[k] 1’b1)

w ˆ nexttime[k] 1’b1 iff either jwj < k or wk 6D ?. Therefore, w ˆ
 iff

either
1. jwj D 0, or
2. Nw0 6ˆ a, or
3. both

518 22 Formal Semantics

a. for all 0 � i < jwj such that Nwi ˆ a, wi ˆ b, and
b. for all 0 < i < jwj, wi 6D ?.

ut

Exercises

22.1. Write the explicit formal semantics for the operators or, always,
s_eventually, until, until_with, and s_until_with.

22.2. Prove the following semantic equivalences:

(a) not (p until q)� (not q)s_until_with (not p)

(b) not (p s_until q)� (not q)until_with (not p).

22.3. Write the explicit formal semantics for the following sequences: s[*n], s[*],
##[*] s, r ##[*] s. Here r and s are sequences, and n is a positive integer
number.

22.4. Prove that c[->1] ##0 c[->1]� c[->1] as unclocked sequences.

22.5. Prove that s_nexttime p� not nexttime not p as unclocked properties.

22.6. Define the clock rewriting rules for the operators until_with and
s_until_with.

22.7. For each of the event expressions below, compute the Boolean expression that
results from applying � .

1. $global_clock iff b.
2. (posedge c) or (negedge d).
3. (edge c), b.
4. (negedge c) or (negedge d iff b).

22.8. Compute clock rewrite rules for the following derived forms:

1. b[->n] � (b[->1])[*n].
2. b[=n] � (b[->n] ##1 !b[*].
3. (1, v1 = h1, v2 = h2) � (1, v1 = h1) ##0 (1, v2 = h2).
4. b throughout r � b[*] intersect r .
5. r1 and r2 �

((r1 ##1 1[*]) intersect r2) or (r1 intersect (r2 ##1 1[*])).
6. s_eventually p � not always not p.
7. s_nexttime p � not nexttime not p.
8. if (b) p1 else p2 � (b |-> p1) and (weak(b) or p2).

22.9. Show that the following equivalences are preserved under T p.�; c/:

1. r #=# p � not(r |=> not p).
2. reject_on(b) p � not accept_on(b) not p.
3. p1 iff p2 � (p1 implies p2) and (p2 implies p1).

22.7 Formal Semantics of Recursive Properties 519

22.10. The following facts about the SVA formal semantics can be proved:

a. If w ˆ p and w0 results from w by changing zero or more letters to >, then
w0 ˆ p.

b. If w ˆ p and w0 results from w by changing zero or more letters away from ?,
then w0 ˆ p.

Use these facts to prove the following:

1. If 0 � i < j < jwj and w0;j �1>! ˆ p, then w0;i�1>! ˆ p.
2. If 0 � i < j < jwj and w0;i�1?! ˆ p, then w0;j �1?! ˆ p.

How do these implications relate to the formal semantics of resets?

22.11. Let a, b, and c be Booleans. Determine the dependency digraph for the
following declarations.

1 property p1;
2 case(a)
3 1’b0: p2;
4 1’b1: p3;
5 endcase
6 endproperty
7 property p2;
8 p4 or (b and nexttime p1);
9 endproperty

10 property p3;
11 p4 and nexttime(a |-> p2);
12 endproperty
13 property p4;
14 a |=> c;
15 endproperty

Which properties are recursive and which are non-recursive?

22.12. Let my_until be as declared in Fig. 17.3. Let a and b be Booleans. Show
that for k > 0, my_until[k](a,b) is equivalent to

weak((a[*0:k-1] ##1 b) or (a[*k] ##1 1))

Show that my_until(a,b) is equivalent to

weak(a[*] ##1 b)

22.13. Let a be a Boolean. Show that for any word w, including special letters >
and ?, w ˆ my_always(a) implies w ˆ a until 0. Show that the converse can
fail if > is a letter in w. (cf. Example 22.22.)

Part VI
Advanced Checkers

Chapter 23
Checkers in Formal Verification

Hope is a great falsifier. Let good judgment keep her in check.

— Baltasar Gracian

This chapter discusses applications of checkers to formal verification. Checkers
were introduced in Chap. 9, where we described their primary use as an instantiable
container for assertions and associated modeling code. This chapter presents an
additional feature of checkers that is important for formal verification—free vari-
ables. Free variables support the construction of abstract nondeterministic models
and reasoning about them. Recall from Chap. 20 that an abstract model is an over-
approximation of the DUT. If an assertion has been proven for an abstract model,
then it also holds for the DUT. Good abstraction hides irrelevant details and yields
a simpler model on which to conduct formal verification. For example, to reason
about a pipeline latency, the exact data passed through the pipeline and the exact
operations at specific pipeline stages may be immaterial and may be abstracted
away. Checkers provide natural building blocks for these abstract models, and their
usage in FV modeling is similar to the usage of modules in RTL.

Another important application of checkers with free variables is to build abstract
models of the DUT environment. Such models may be supported both in simulation
and in FV, in contrast to traditional software testbenches that are not FV-friendly.
Careful modeling of the environment, avoiding false negatives and false positives
(see Sect. 20.3), is a major and effort-consuming problem in FV. Of course, carefully
crafting the environment and writing tests is also important for simulation. Usually
there is no reuse of the environment between simulation and FV. Checkers with free
variables provide an approach to environment modeling that can, in many situations,
be used by both engines and eliminate redundant effort.

Checker free variables, including constant free variables (also called rigid
variables), can be used in an alternative coding style instead of assertion local
variables. Each style has advantages and disadvantages.

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__23

523

524 23 Checkers in Formal Verification

This chapter is mainly intended for people interested in FV. However, it is also
useful for people interested in creating testbenches that can be processed by FV
tools.

23.1 Free Variables

Free variables in checkers have the same syntax as regular checker variables, but
they are prefixed with the keyword rand. If a free variable is unrestricted, it may
assume any value at any time. Essentially free variables are similar to primary inputs
to the model.

Free variables may only be declared in a checker body. They cannot be used as
checker formal arguments (ports).

23.1.1 Free Variables in Assertions

We will study first the behavior of free variables in an assertion context, introducing
the main ideas with examples. The following statement characterizes the semantics
of free variables in the absence of assumptions:

The behavior of a free variable in an assertion context corresponds to universal
quantification over its domain in each clock tick.

Example 23.1. Consider the following checker:

checker failure;
default clocking @$global_clock; endclocking
rand bit v;
a1: assert property(v);

endchecker : failure

Since v may assume any value in any clock tick, it may assume value 0 (i.e., false)
in clock tick 0, and therefore assertion a1 fails.

Here is a more formal explanation. The formal semantics of the assertion
always a, where a is a regular variable, is 8i wi ˆ a, which means that a holds
in each clock tick on the trace w. If we want to stress that the value of a depends
on the clock tick i, we can rewrite this formula as 8i wi ˆ ai . In this formula,
we assume that a is well defined, i.e., the values of a are given in each clock tick.
In our case, when v is a free variable, it may assume any value in any clock tick,
and therefore the formal semantics of the assertion a1 is 8i8vi wi ˆ vi , which is

23.1 Free Variables 525

apparently false. The important consideration here is that the formal semantics of
the free variable is obtained from a universal quantification over its domain in each
clock tick. ut
Example 23.2. Assertion a2 in the following checker passes:

checker success;
default clocking @$global_clock; endclocking
rand bit v;
a1: assert property(v || !v);

endchecker : success

The reason for the success of this assertion is that its underlying expression is a
tautology: it holds for any values of v. The formal semantics of this assertion is
8i8vi wi ˆ vi _ :vi, and this formula is true. ut

This example illustrates the general principle that at any given time, all references
to the same free variable within the same assertion have consistent values. In FV,
references to the same free variable in different assertions need not have consistent
values, even at the same time. Put another way, referencing the same free variable in
two assertions does not introduce any relation between the assertions.1 We have
the same situation as in first-order logic: the names of bound variables are not
important.2 For example, both statements 8x x � 0 and 8x x > 0 are false, though
there is no single x that falsifies both x � 0 and x > 0.

Example 23.3. In the following checker

checker check;
default clocking @$global_clock; endclocking
rand bit v;
a1: assert property (s_eventually v);
a2: assert property (s_eventually !v);

endchecker : check

both assertions a1 and a2 fail. A counterexample for assertion a1 is v D 0; 0; : : : ,
whereas a counterexample for a2 is v D 1; 1; : : : . These two assertions do not have
a common counterexample: on an infinite trace either v or !v must occur infinitely
often. This fact does not prevent failure of both assertions because the references to
v in different assertions need not have consistent values. ut
Formal Semantics. We consider here only assertions without assumptions. The
effect of assumptions is discussed in the next section. For simplicity we limit our
discussion to variables of type bit.

We partition the set V of all model variables into the subset A of regular variables
and the subset F of free variables: V D A [F and A \ F D ;. Since we have
assumed all the variables to be of type bit, a valuation of the variables is just an

1This is not true in simulation, where free variables are randomized and hold consistent values
across all assertion statements. See Sect. 23.3.
2Ironically enough, bound variables in first-order logic correspond to free variables in SVA.

526 23 Checkers in Formal Verification

assignment to each variable in V of either 0 or 1 as a value. We can identify the
valuations of V naturally with the power set 2V , where U 2 2V corresponds to
the valuation that assigns 1 to each element in U and 0 to each element in V n U .
Since V D A[F is a partition, 2V D 2A�2F and there is a projection
 W 2V ! 2A

defined by
.U / D U \ A. In terms of valuations,
 retains the values assigned
to the regular variables A and forgets the values assigned to the free variables F .
For example, suppose A D fa1; a2g and F D ff1; f2g. Let U D fa1; f2g. As a
valuation, U assigns a1 D 1, a2 D 0, f1 D 0, f2 D 1. Then
.U / D fa1; f2g\A D
fa1g. As a valuation,
.U / assigns a1 D 1, a2 D 0, and we simply drop the values
assigned to f1 and f2.

We consider two kinds of traces, reduced and extended. A reduced trace is a trace
w whose letters are valuations of regular variables only: wi 2 2A; i D 0; 1; : : :. An
extended trace is a trace W whose letters are valuations of all variables, both regular
and free: W i 2 2V ; i D 0; 1; : : :. The projection
 W 2V ! 2A can be applied letter-
wise to define projection of an extended trace to a reduced trace. We use the same
notation
 for this projection of traces: if W is an extended trace, then
.W / is the
reduced trace obtained from W by forgetting the values assigned to the free variables
in each letter. In other words,
.W / D w iff
.W i / D wi for all i D 0; 1; : : :.

Assertion satisfaction is naturally defined in terms of extended traces, where
all variables that may be referenced by the assertion are included (see Sect. 21.3).
To define formal semantics for free variables, we need to define assertion satisfac-
tion in terms of reduced traces, which contain regular variables only. The definition
is as follows. Assertion p is satisfied on reduced trace w, written w ˆ p, iff p is
satisfied in the usual sense on all extended traces W that project to w. In other words,

w ˆ p iff 8 W s.t.
.W / D w W W ˆ p

This universal quantification over extended traces makes precise the sense in which
free variables are universally quantified over their domains.

23.1.2 Free Variables in Assumptions

What happens if free variables are referenced within assumptions? To keep the
notation clear, we will assume that there is one free variable v, two assumptions
q1 and q2 and two assertions p1 and p2. We will talk only about the meaning of the
evaluation attempt starting at the beginning of the trace. Property p1 in the presence
of the assumptions is equivalent to property q1 ^ q2 ! p1. Analogously, p2 is
equivalent to property q1 ^ q2 ! p2. As we discussed in Sect. 23.1.1, the values of
v in formulas q1 ^ q2 ! p1 and q1 ^ q2 ! p2 are taken independently. In order for
q1 ^ q2 ! pj to hold, it is sufficient to check on a given trace that pj holds for all
values of v that satisfy both assumptions q1 and q2.

23.1 Free Variables 527

Assumptions with free variables constrain the free variable domains for all
assertions using these free variables.

Example 23.4. Consider the following checker:

checker check;
default clocking @$global_clock; endclocking
rand bit[5:0] v;
m1: assume property (v > 2);
m2: assume property (v < 7);
a1: assert property (v > 1);
a2: assert property (s_eventually v <= 5);
a3: assert property (s_eventually v > 5);

endchecker : check

Assumptions m1 and m2 constrain free variable v such that v may only assume values
3, 4, 5 and 6 in all global clock ticks for all assertions. For all other values of v, all the
assertions are understood to hold vacuously under the assumptions. This statement
means that if v assumes some other value violating the assumptions, then we don’t
even need to check the assertions for that value.

Assertion a1 holds since it holds for the constrained values of v. Assertions a2
and a3 fail, as explained in Example 23.3. ut
Formal Semantics. The formal semantics of an assertion relative to a set of
assumptions in the presence of free variables is as follows. Let Q be the set
of assumptions, and let Q D V

Q be their conjunction. Reduced trace w satisfies
assertion p relative to Q, written w;Q ˆ p, iff w ˆ Q implies p, where
Q implies p is treated as an assertion without assumptions. From the preceding
section, w ˆ Q implies p iff for every extended trace W such that
.W / D w,
W ˆ Q implies p. Now, W ˆ Q implies p means that if W ˆ Q, then W ˆ p.
We will say that an extended trace W is Q-feasible iff W ˆ Q, i.e., iff W ˆ q for
all q 2 Q. Then we can say that

w;Q ˆ p iff 8Q-feasible W s.t.
.W / D w W W ˆ p

If the set Q of assumptions is understood, it may be dropped from the notation, and
we may say more briefly that in the presence of assumptions,

w ˆ p iff 8 feasible W s.t.
.W / D w W W ˆ p

23.1.3 Free Variables in Cover Statements

As defined in Sect. 21.3.3, the property p is covered iff there is a trace that
satisfies p. If p depends on a free variable v then in order for p to be covered

528 23 Checkers in Formal Verification

it should be possible to choose values of v in each position on the trace so that
p becomes satisfied. Therefore, we come to the following characterization of free
variables in the coverage context:

The behavior of a free variable in a coverage context is obtained from
existential quantification over its domain in each clock tick.

Example 23.5. Consider the following checker:

checker check(bit a);
default clocking @$global_clock; endclocking
rand bit v;
c1: cover property ((a && v)[*2]);
c2: cover property ((a || v)[*2]);

endchecker: check

If a is always low, c1 is not covered, while c2 is. There are no values of v that could
cause sequence (a && v)[*2] to match. If v is 1 in clock ticks 0 and 1, sequence
(a || v)[*2] has a match in clock tick 1. ut

If free variables are constrained with assumptions, these assumptions should be
taken into account when evaluating the coverage.

Example 23.6. Consider the following checker:

checker check;
default clocking @$global_clock; endclocking
rand bit v;
m1: assume property ($steady_gclk(v));
c1: cover property (v ##1 !v);

endchecker : check

Cover statement c1 cannot be satisfied because of assumption m1 imposed on free
variable v, which requires it to keep the same value all the time. Without m1, c1 is
covered in clock tick 1: it is sufficient to choose the value of v to be 1 in clock tick
0 and 0 in clock tick 1. ut
Formal Semantics. Cover statement c is satisfied on reduced trace w iff there exists
a feasible extended trace W that projects to w and satisfies c. In other words,

w ˆ c iff 9 feasible W W
.W / D w and W ˆ p

This existential quantification over extended traces makes precise the sense in which
free variables are existentially quantified over their domains in the semantics of a
cover statement.

23.2 Checker Modeling with Free Variables 529

23.2 Checker Modeling with Free Variables

Free variables may participate in regular checker modeling, though some limitations
apply. In this section we discuss the semantics of free variables in the context of
checker modeling and the specifics of their usage.

23.2.1 Free Variable Initialization

Free variables may be initialized with a declaration assignment. Initialization
constrains only the initial value of a free variable; its values at other times are not
affected by the initialization.

Example 23.7. Consider the following checker:

checker check1;
rand bit rst = 1’b1;
bit a = 1’b0;
bit b = 1’b0;

default clocking @$global_clock; endclocking
default disable iff rst;

always_ff @$global_clock
a <= 1’b1;

a1: assert property (a);
a2: assert property (b);

endchecker : check1

The first tick of the global clock happens at time 0, and both assertions a1 and a2 are
disabled since the value of rst at time 0 is 1. At the next tick of the global clock, a1
either is disabled or passes because the value of a has been set to 1. On the contrary,
the assertion a2 fails because b is always 0 (it is not a free variable, so it keeps its
value until it is again assigned), while rst is constrained only in global clock tick 0.
For example, the trace rst D 1; 0; : : : violates assertion a2.

Now, let us modify our checker to be controlled by some general clock:

checker check2(event clk);
rand bit rst = 1’b1;
bit a = 1’b0;
bit b = 1’b0;

default clocking @clk; endclocking
default disable iff rst;

always_ff @clk a <= 1’b1;

a1: assert property (a);
a2: assert property (b);

endchecker : check2

530 23 Checkers in Formal Verification

In checker check2, assertion a2 fails for the same reason as in checker check1.
The behavior of assertion a1 now depends on the waveform of clk: if clk ticks
for the first time at time 0 then assertion a1 will not fail, as in the checker check1.
Otherwise, it will also fail since the value of rst is constrained only in global clock
tick 0. ut

Assignment to checker variables, including free variables, is forbidden in
initial procedures to avoid contention. For example, if the code

bit v; // or rand bit v
initial v = 1’b0;
initial v = 1’b1;

were legal, what would the resulting initial value of v be?

Formal Semantics. A free variable initialization

rand some_type v = e;

is equivalent to the following assumption:

initial
assume property (@$global_clock v === e);

Essentially, there is nothing specific for free variables here. The same definition is
applicable to the initialization of any variable.

Using notation from research literature, we will also write the initialization as

init v D e;

and the initial assumption is just the Boolean property v D e.

23.2.2 Free Variable Assignment

A free variable may be written as the left-hand side of a nonblocking assignment
(NBA). It is also possible to assign expressions containing free variables to regular
variables in blocking, nonblocking and continuous assignments. A free variable may
not be written as the left-hand side of a blocking or continuous assignment.

It is illegal to assign to a free variable in a blocking or continuous assignment.

23.2 Checker Modeling with Free Variables 531

23.2.2.1 Unconditional Assignment to Free Variables

We consider first the case when the free variable assignment does not belong to
the scope of any conditional or looping statement. Let us start with the following
example.

Example 23.8. The following checker fragment defines a periodic clock, myclk:

rand bit myclk;
always_ff @$global_clock

myclk <= !myclk;

In this example, myclk is assigned, but uninitialized. myclk changes its value with
each tick of the global clock. Nevertheless, myclk is nondeterministic. Since myclk
is uninitialized, it has two possible patterns: 0101 : : : and 1010 : : : . ut
Formal Semantics (Global Clock). The formal semantics of a free variable NBA
controlled by the global clock

rand some_type v;
always_ff @$global_clock v <= e;

is defined as:

assume property (@$global_clock $future_gclk(v) === e);

For readability, we extend the formal notation from Chap. 21. Free variable assign-
ment will be designated as v0 e, meaning that the next state variable v0 is
assigned the value e. This is just a shortcut notation for the invariant defined by
the assumption G.v0 D e/. This invariant defines a transition relation that happens
to be a function: the value of next state variable v0 is uniquely determined from
the values of the current state variables forming the expression e. Such a transition
relation is called a next state function. Because of their explicit unidirectionality, free
variable assignments may be handled more efficiently by FV tools than an equivalent
set of assumptions.3

Example 23.9. The assignment form Example 23.8 can be rewritten as

assume property (@$global_clock $changing_gclk(myclk));

but this version might be less efficient since the explicit unidirectionality of the
assignment of the free variable myclk has been lost. ut
Formal Semantics (Arbitrary Clock). The semantics of free variable assignment
v0 @(edge clk) e, which is controlled by clocking event @(edge clk), is defined
as v0 .clk ¤ clk0/ ? e : v. This means that v gets the value e only when
the clock ticks, and it retains its old value when the clock does not tick. In this

3Note that NBAs in a checker may conflict with assumptions, but not with other assignments. In
a checker, NBAs are allowed only within always_ff procedures (Sect. 9.2.2.2), and thus their
targets cannot be overridden by other processes (Sect. 2.2.1.3).

532 23 Checkers in Formal Verification

case, the transition is v0 f .e; v; clk; clk0/, where the next state function is
f .e; v; clk; clk0/ D .clk ¤ clk0/ ? e : v. This is a more general form than in the
case of the global clock. There the right-hand side of the free variable assignment
depended only on the current state variables, while here it depends also on the next
state variable clk0. From a theoretical point of view, there is no problem allowing
next state variables on the right-hand side of an NBA. SystemVerilog does not,
however, allow explicit specification of next state variables on the right-hand side,
and therefore they can be referenced there only implicitly, as through an event
control.

Free variable assignments controlled by other forms of clocking event are treated
in similar ways (see Exercise 23.1).

Example 23.10. We revisit Example 23.8 to define myclk to be synchronized by
some specific clock clk:

rand bit myclk;
always_ff @clk myclk <= !myclk;

Here, myclk ticks every tick of clk. Since the initial value of myclk is undefined, the
code allows two patterns: 0101 : : : and 1010 : : : . Note that according to the formal
semantics of the free variable assignment, myclk holds a stable value between two
consecutive ticks of the clock clk.

It is possible to replace the assignment with the following equivalent, but less
efficient, assumption:

m1: assume property (@$global_clock
$future_gclk(myclk) == ($changing_gclk(clk) ? !myclk : myclk)

);

One might be tempted to write the following assumption instead:

m2: assume property (@clk ##1 $changed(myclk));

m2 states that myclk changes from every tick of clk to the next,4 but assumption
m2 is not equivalent to the free variable assignment. m2 only states that myclk

has different values at consecutive ticks of clk, imposing no restrictions on the
free variable behavior between the ticks of clk. The assignment semantics requires
keeping the free variable stable between the ticks of clk. ut
Efficiency Tip. It is preferable to assign free variables than to constrain them with
assumptions.

What happens if there are several unconditional assignments to the same free
variable within the same always_ff procedure? We assume that the free variable
is one bit wide, because we can treat different bits of a free variable as different
free variables. Recall that in checker always_ff procedures only nonblocking
assignments are allowed (see Sect. 9.2.2.2). Therefore we have the following
situation for free variable v:

4Recall (Sect. 7.2.2) that it is illegal to use future sampled value functions with arbitrary clocks, so
we use a past value function here delayed by one clock tick.

23.2 Checker Modeling with Free Variables 533

v <= ...;
...
v <= ...;

Since nonblocking assignments are executed in order, only the last assignment
counts and the preceding assignments to v are simply ignored.

23.2.2.2 Conditional Assignment to Free Variable

The formal semantics of a free variable assignment within a conditional or looping
statement is not elaborated in the LRM. The description here is according to
our understanding. We limit our consideration to the case when the always_ff

procedure in which the free variable is assigned is controlled by the global
clock.5 The case of an arbitrary clocking event is obtained using the generalization
described in Sect. 23.2.2.1 and is left to the reader (see Exercise 23.2). We limit our
discussion to plain if and if...else statements. Other conditional statements of
SystemVerilog can be rewritten using these forms. If a free variable assignment is
within the scope of a looping statement, directly or otherwise, we assume that the
looping statement is statically unrollable. We also assume that the loop management
does not cause side effects.

Formal Semantics. The formal semantics is obtained by the recursive application
of the following rewriting rules for free variable v.

1. Unroll all loops containing a free variable assignment (directly or otherwise).
As a result, the free variable is not within the scope of any looping statement,
directly or otherwise.

2. Here and in the remaining rules we consider direct scopes only. If v has multiple
assignments within the same clause of a conditional statement, eliminate all
the assignments except the last one (see Sect. 23.2.2.1). Recall that we consider
different bits of a free variable as different free variables.
For example,

if (cond) begin
... // sequence of statements 1
v <= expr1;
... // sequence of statements 2
v <= expr2;

end

is rewritten as

if (cond) begin
... // sequence of statements 1

5Since free variables may be assigned only within always_ff procedures and since a variable
assigned in an always_ff procedure cannot be assigned in any other process (see Sect. 2.2.1.3),
we can focus on a single always_ff procedure.

534 23 Checkers in Formal Verification

... // sequence of statements 2
v <= expr2;

end

3. Uniformize all conditionals to be of the form if...else by adding trivial
else begin end to any if statement with no else clause. Further uniformize
so that if v is assigned in a conditional statement, then v is assigned in both the
then and the else clauses. Do this by adding the trivial assignment v <= v; to
any clause where assignment to v is missing but needed.

4. If v is assigned in both clauses of a conditional statement

if (cond) begin
... // sequence of statements 1
v <= expr1;
... // sequence of statements 2

end
else begin

... // sequence of statements 3
v <= expr2;
... // sequence of statements 4

end

extract it out of the scope of the conditional operator as follows:

v <= cond ? expr1 : expr2;
if (cond) begin

... // sequence of statements 1

... // sequence of statements 2
end
else begin

... // sequence of statements 3

... // sequence of statements 4
end

The semantic soundness of this extraction follows from the fact that only NBA
can be written in a checker always_ff, and so the statements preceding the NBA
in the conditional do not affect the value of its RHS.

23.2.2.3 Fully Assigned Free Variables

As we have seen, assignment to a free variable leaves it little freedom: only its
initial value contributes nondeterminism.6 If we also initialize it, there remains no
freedom introduced by this variable. Such a free variable is said to be fully assigned.
Essentially, there is no difference between a fully assigned free variable and a
regular checker variable.

6If we assign one free variable to a second free variable, the second one may still be completely
nondeterministic by virtue of the nondeterminism of the first. The point is that a free variable that
is assigned loses its “own” nondeterminism. See also Sect. 23.2.2.4.

23.2 Checker Modeling with Free Variables 535

Example 23.11. Consider the following code:

checker check1(a, b, event clk = $inferred_clock);
rand var type(b) v = a;
always_ff @clk v <= b;

endchecker : check1

In checker check1 free variable v is fully assigned, and it may be replaced with a
regular checker variable, as in the checker check2:

checker check2(a, b, event clk = $inferred_clock);
var type(b) v = a;
always_ff @clk v <= b;

endchecker : check2

ut
Thus, regular checker variables may be considered a special case of free

variables, and the formal semantics of their NBA is a special case of the formal
semantics of free variable NBA provided that the same limitations are imposed (e.g.,
they are not assigned in tasks, etc.)

23.2.2.4 Assigning Free Variables to Checker Variables

It is legal to assign an expression containing free variables to a regular checker vari-
able; it is also possible to initialize a regular variable with an expression containing
free variables. This means that the regular variables may also be nondeterministic.
However, the regular variables do not introduce any new nondeterminism to the
system; their values are completely defined by the values of the variables on which
they depend.

Example 23.12. Consider the following checker fragment:

bit [3:0] a;
rand bit [3:0] v;
always_ff @clk a <= v;

If the value of v is nondeterministic, then starting from clock tick 1 the value of a is
also nondeterministic. The initial value of a is 0 by default—only a free variable can
introduce nondeterminism through its initial value, and then only if it has not been
explicitly initialized. Nevertheless, a is deterministic in the following sense: its value
is uniquely defined by the value of v; a does not introduce any new nondeterminism.

ut
Example 23.13. Nondeterminism can also be introduced by an event control, as
illustrated by the following checker fragment:

rand bit clk;
bit [3:0] a;
always_ff @clk

a <= e; // e - deterministic expression defined elsewhere

536 23 Checkers in Formal Verification

In this example, the clocking event @clk is nondeterministic, and so also is the
value of a because the assignment is performed at nondeterministic time moments.
However, a is deterministic in the sense that it does not introduce any new
nondeterminism: its value is fully defined by the values of e and clk.

The nondeterminism associated with the clocking event is not of an essentially
different kind because the effect of the clocking event could be pushed into the
right-hand side of a checker variable assignment:

always_ff @clk a <= e;

has the same formal semantics as

always_ff @$global_clock a <= $changing_gclk(clk) ? e : a;

had the latter statement been legal in SystemVerilog. ut
A situation similar to assignment of a free variable to a checker variable arises

when a free variable of one checker is passed to a function or to another checker
as an input argument. Formal arguments of a checker can never be declared as free
variables.

Example 23.14. Checker check1 below defines a free variable v and passes it to
checker check2.

checker check1;
rand bit v;
check2 c2(v, $global_clock);

endchecker : check1

checker check2(a, clk = $inferred_clock);
a1: assert property (@clk not always a iff s_eventually !a);

endchecker : check2

In checker, check2 formal argument a is untyped. We could define it to be of
type bit, but not of type rand bit since formal checker arguments cannot be free
variables. ut

Though it is illegal to assign free variables by continuous or blocking assign-
ments, they may be referenced on the right-hand sides.

Example 23.15. In FV modeling, it may be useful to define an expression that
may assume only values from a specific set, for example, only values 2 and 5.
A straightforward way to do this is to define a three-bit free variable and add an
assumption constraining its value, such as:

rand bit [2:0] v;
m1: assume property(@$global_clock v == 3’d2 || v == 3’d5);

A better solution is to define a one-bit free variable and to use a continuous
assignment to a regular variable instead:

bit [2:0] v;
rand bit x;
assign v = x ? 3’d2 : 3’d5;

23.2 Checker Modeling with Free Variables 537

The latter implementation is usually more efficient because it replaces a three-bit
free variable with a one-bit free variable. FV efficiency significantly decreases with
each free bit added. Another advantage is that using free variables in assignments is
more efficient than in assumptions ut

The situation with passing free variables to functions is similar. Though it is
illegal to declare free variables within a function, either in a function body or among
function ports, it is legal to pass free variables to a function, as illustrated in the
following example.

Example 23.16. The following code may be used to find a maximum among two
free variables of size N, where N is an elaboration-time constant.

rand bit[N] v1, v2;

function bit[N] max(bit[N] a, b);
if (a >= b) return a;
return b;

endfunction : max

Though function max operates with regular variables only, it is legal to pass free
variables v1 and v2 to it. ut

Why is it forbidden to assign free variables by continuous or blocking assign-
ment? The main reason is that it is difficult to define acceptable simulation semantics
in this case (see Sect. 23.3). There is also a problem of combinational loops.
Consider, for example, the following illegal code:

rand bit a, b;
bit c;
// c assigned elsewhere
assign a = ~b & c;
assign b = a & c;

If c changes from 0 to 1 then it is completely unclear what should happen with a

and b.
Note that the same problem exists if a and b are defined as regular variables. In

simulation this causes an infinite iteration. This is why in SystemVerilog 2009 it
was illegal to use any continuous or blocking assignments in checkers. However,
this problem also exists in modules, interfaces and programs. It is usually solved at
a tool level. Simulators may detect an infinite iteration, abort it and issue an error
message. Synthesis and FV tools detect combinational loops statically.7 Because the
problem is not specific to checkers, SystemVerilog 2012 relaxes the restrictions and
allows continuous and blocking assignments to regular variables in checkers.

A contention problem, when the same variable is assigned in different processes,
does not exist in checkers. If a variable is assigned in one checker process it cannot

7Simulators may also do this.

538 23 Checkers in Formal Verification

be assigned in another (see Sect. 2.2.1). Nor can a variable be assigned by two
continuous assignments, according to general SystemVerilog rules.8

Formal Semantics. It is difficult to give a general definition of the formal semantics
of continuous and blocking assignments to regular checker variables because of
various constructs, such as task calls in procedures and general looping statements.
If we avoid these constructs and assume that there are no side effects for the
variables in question, that all the loops are statically unrollable, and that there are
no combinational loops, we can provide a formal semantics for continuous and
blocking assignments.

Consider the continuous assignment

assign v = e;

where v is a regular variable and expression e does not depend on v. Its formal
semantics is given by the assumption

assume property (@$global_clock v === e);

Expression e may contain free variables.
In the notation of research literature, the assignment is written v e, and the

equivalent assumption is the invariant G.v D e/. The transition relation for v is in
this case a function. This function is called the current state function, stressing that
it assigns the current, rather than the next, state value of v (cf. Sect. 23.2.2.1).

It remains to provide a formal semantics for blocking assignments to regular
checker variables. This task is much more complicated and requires a thorough
consideration of many details beyond the scope of this book. We provide only a
sketch. In the theory of compilation it is proven that any synthesizable program
can be represented in a Static Single Assignment (SSA) form [31] (see also [51]).9

In SSA form each always_comb and always_latch procedure is represented
equivalently using only continuous assignments, whose semantics has been given.
But the situation is complicated by latch modeling, which introduces incomplete
assignments and NBAs. Detailed description of latch modeling is beyond the scope
of this book. We will just illustrate the concept in the following example.

Example 23.17. Consider the variable declarations

bit c, i;
bit q = 1’b0;

A simple latch may be defined either using an NBA, as in

always_latch
if (c) q <= i;

or using a blocking assignment:

8Multiple continuous assignments are allowed only for nets.
9The program does not have to be synthesizable to be represented in SSA form. The synthesizabil-
ity is required for an efficient representation of the �-function.

23.2 Checker Modeling with Free Variables 539

always_latch
if (c) q = i;

Both representations are equivalent from the perspective of formal semantics, and
we will consider the latter representation. The assignment to q is incomplete in the
sense that it is executed only when condition c is true. The rewriting produces a
continuous assignment with a combinational self-loop: the assignment right-hand
side depends on its target:

assign q = c ? i : q;

To reflect the dependency of the new value of q on its previous value, this assignment
should be modeled in terms of its next state variables, and therefore it is represented
with the following next state function:

q0 c0 ? i 0 : q

Representation of the initialization of q is straightforward:

init q 0 ut

23.2.2.5 Checker Data Model

We give here a summary of the FV model build from the modeling code of a
synthesizable checker. We assume that all variables are split into individual bits.
Each variable v introduces one and only one of the following options:

• v has neither assignment nor initialization.
• Initialization init v e1, corresponding to Boolean assumption v D e1. Here e1

is an expression containing current state variables only.
• Next state function v0 e2, corresponding to assumption G.v0 D e2/. Here e2 is

an expression that may contain both current and next state variables.
• Both initialization and next state function.
• Current state function v e1, corresponding to invariant assumption G.v D e1/.

Here e1 is an expression containing current state variables only.

The current state function is actually redundant, as it is equivalent to the combination
of an initialization and a next state function:

init v e1I v0 e0
1

Essentially the same transition relation is created to build an FV model for
general SystemVerilog modules and interfaces, provided they conform to restric-
tions for “FV synthesizability”. The details of such a build are much more
complicated, involving multiple assignments to nets, general purpose always

procedures, initial procedures, etc. Support for an FV model build has been
tacitly assumed in Sect. 21.2.

540 23 Checkers in Formal Verification

23.2.3 Example: Building Abstract Models with Checkers

Checkers with free variables can be used to build nondeterministic models for FV.

Example 23.18. Consider a pipeline consisting of n stages. Each stage has its own
enabler signal en[i], where i is the number of the stage. This signal en[i] is
asserted when the i-th stage is ready to process the new data. When the data is
ready at the pipeline input, the data_ready flag is asserted. We want to write a
checker verifying that the pipeline latency (the number of clock ticks required to
pass through the pipeline) does not exceed max_latency.

The RTL implementing this model may be very complex, but the exact data and
exact operations performed in the pipeline are not important for our purpose. We can
build an abstract model as a checker that will only take into account the progress of
the data in the pipeline. This checker is shown in Fig. 23.1.

At the beginning of the checker, there are definitions of the checker variables
and several let-definitions provided for convenience. ub(x) (Line 7) defines an
upper bound of a vector that can store the value x. The lower bound of the vector
is understood to be 0. For example, if x = 5 then 3 bits are needed to store x. The
upper bound of this vector will be 2 assuming that its lower bound is 0.

The variable stage (Line 14) contains the number of the active stage, the first
active stage having number 1. The stage can also assume two dummy values:
stage 0, meaning that the data has not been sent to the pipeline yet, and stage
nstages (Line 8), which exceeds the number of actual stages by one, signaling
that data has been fully processed by the pipeline.

The variable latency (Line 15) keeps the current latency of the data. It is
limited by max_latency + 1 (big_latency, Line 10)—in our implementation, if
the latency reaches this value, it is not incremented anymore, as the exact value of
the latency is not important, only the fact that the latency has exceeded the maximum
allowed value.

The main point in this checker is to understand when the transaction starts.
There may be many simultaneous transactions in the system, different data may be
simultaneously processed by different stages of the pipeline, and therefore, checking
the condition data_ready alone is not sufficient for counting the stage and latency.
The checker needs to be able to track any of these transactions, but by taking
advantage of nondeterminism it does not have to allocate and manage resources
to track them all at once. It only needs resources to track one!

The key here is to introduce free variable start (Line 13) and to start counting
the first time that both start and data_ready are simultaneously true. The role of
start is to choose nondeterministically which among all the possible transactions
the checker will track. Since start is free to take any value in each clock tick, we
effectively consider all combinations of possible attempts, and among them also all
possible single attempts. For convenience, we introduce variable go (Line 18) for
the simultaneous occurrence of data_ready and start.

For example, assume that data_ready is high at clock ticks 10 and 20. The
following scenarios are possible:

23.2 Checker Modeling with Free Variables 541

1 checker check_latency(en, data_ready, max_latency,
2 event clk = $inferred_clock,
3 untyped rst = $inferred_disable);
4 default clocking @clk; endclocking
5 default disable iff rst;
6

7 let ub(x) = $clog2(x + 1) - 1;
8 let nstages = $bits(en) + 1;
9 let stage_ub = ub(nstages);

10 let big_latency = max_latency + 1;
11 let latency_ub = ub(big_latency);
12

13 rand bit start;
14 bit [stage_ub:0] stage = ’0;
15 bit [latency_ub:0] latency = ’0;
16

17 bit go;
18 assign go = data_ready && start;
19

20 function type(stage) next_stage;
21 if (rst) return 0;
22 if (stage == 0 && go) return 1;
23 if (stage != 0 && stage != nstages && en[stage])
24 return stage + 1;
25 return stage;
26 endfunction : next_stage
27

28 function type(latency) next_latency;
29 if (rst || latency == 0 && !go) return 0;
30 if (latency == big_latency) return big_latency;
31 return latency + 1;
32 endfunction : next_latency
33

34 always @clk begin
35 stage <= next_stage();
36 latency <= next_latency();
37 end
38

39 a1: assert property (
40 $rose(stage == nstages) -> latency != big_latency);
41 endchecker: check_latency

Fig. 23.1 Checking pipeline latency

1. start is low at both clock ticks 10 and 20.
2. start is low at clock tick 10 and high at clock tick 20.
3. start is high at clock tick 10 and low at clock tick 20.
4. start is high at both clock ticks 10 and 20.

In the first, we never start counting and do not check anything; in the second,
we check only the transaction starting at clock tick 20; in the third, we check only

542 23 Checkers in Formal Verification

the transaction starting at clock tick 10; and in the fourth, we check the transaction
starting at clock tick 10, and when the second transaction comes at clock tick 20, it
is ignored. Why? The checker tracks only one transaction! Essentially, in the fourth
case we check the same scenario as in the third one, since a subsequent go does
not restart counting. FV considers all four scenarios together when it universally
quantifies the free variable, so we will be able to detect a maximal latency violation
for both transactions (if it happens): for the first transaction in the third and in the
fourth scenarios, and for the second transaction in the second scenario.

Lines 20–26. Initially, stage is 0, and it is not incremented until go becomes 1,
which may happen in an arbitrary clock tick when the data_ready is high, as start
is a free variable. Otherwise, the stage number is incremented when the en control
of the corresponding stage is asserted, provided the data has not passed through the
entire pipe, i.e., provided stage != nstages.

Lines 28–32. Initially, the value of latency is 0, and it is not incremented until
free variable start is asserted and data_ready is high. Then it is incremented
each clock tick until the max_latency is exceeded (the value of big_latency is
reached). Then it remains stuck at the value of big_latency forever.

Assertion a1 (Line 39) checks that when data leaves the pipeline, that is
when stage becomes nstages for the first time, latency should not exceed
max_latency. Note that in this case it is safe to use the sampled value function
$rose without an initial delay in the antecedent (see Sect. 7.2.1.3), since by con-
struction, stage cannot assume the value nstage at the beginning or immediately
after the rst deactivation. Note also that we chose latency != big_latency, and
not latency < big_latency, since the synthesis model of the former expression
is more efficient than that of the latter, and therefore the former expression is also
more efficient in FV than the latter.

Discussion: In our implementation, free variable start is unconstrained, and hence
it can freely oscillate on the trace. Although, as we have seen, this oscillation does
not affect FV correctness, it may affect FV performance,10 as many redundant traces
are considered. For instance, the fourth scenario is redundant, as was explained
above. We can use the following assumption to get rid of these redundant scenarios:

m1: assume property (start |=> always !start);

This assumption says that start may be high at most in one clock tick.
We might want to get rid of other useless behaviors, those in which start does

not happen at all or in which it is not synchronized with data_ready. This can be
remedied with the following assumption:

initial
m2: assume property (s_eventually(start && data_ready));

However, assumption m2 is likely to affect negatively the performance of some FV
tools. ut

10This is highly dependent on the specific tool.

23.3 Free Variables in Simulation 543

23.3 Free Variables in Simulation

So far we have discussed the formal semantics of free variables. In this section, we
discuss the behavior of free variables in simulation.

As their syntax suggests, free variables are randomized in simulation. All
uninitialized free variables are randomized initially. Otherwise, only unassigned free
variables are randomized. The following rules are applicable to all randomized free
variables:

• A randomized free variable may change its value at most once during each
simulation tick.

• If a randomized free variable gets a new random value in some simulation tick,
this value becomes ready before the Observed region.

• A sampled value of a free variables is its current value.

The sampled value of a free variable coincides with its current value.

23.3.1 Unconstrained Free Variables

If there are no assumptions in a checker or any of its child checkers, and a checker
variable is neither assigned nor initialized then it can get a new value at any time
step.

Example 23.19. In the original code of Example 23.18, there are no assumptions,
and so the simulator may assign free variable start a new random value at any
simulation step. One extreme case would be assigning it a random value only once,
at its initialization, and then leaving it unchanged. The other extreme case would be
assigning it a new random value at each simulation step. Both behaviors are legal.
However, the first behavior is too “boring”, while the second one is an overkill:
there is no advantage in changing the value of start every simulation tick since all
the assignments and the assertions where it is used are controlled by clk. Therefore,
most simulators will assign start a new random value at every tick of clk. ut

23.3.2 Assigned Free Variables

If a free variable is assigned a value, then it is only randomized at its initialization,
provided it is not initialized. If a free variable is unassigned, but initialized, it is

544 23 Checkers in Formal Verification

randomized, but not at its initialization. If a free variable is both initialized and
assigned, it is not randomized.11

Example 23.20. Consider the following code:

checker check(..., clk = $inferred_clock);
rand bit v;
rand bit w = 1’b0;

always_ff @clk
v <= ...;
...

endchecker : check

In checker check, free variable v is randomized at its initialization only, whereas
free variable w may be randomized at every simulation step except for step 0, where
the value of w is 0. ut

23.3.3 Checkers with Assumptions

The set of all assumptions contained in a checker instance and in its child checkers
is called the assume set of the checker instance.12 If the assume set of a checker
instance is nonempty, then the unassigned free variables are randomized in each tick
of any clock event used in any assumption of the assume set. The random values of
the free variables should be chosen in a way to satisfy all the assumptions in the
assume set, if possible—this means that no assumption from the set should fail at
the simulation step when the new randomization values have been assigned if such
values exist. However, lookahead analysis is not required in constraint solving. In
time steps that are not ticks of any clock in the assume set, the unassigned free
variables may be randomized arbitrarily.

Example 23.21. The assume set of checker check1 consists of single assump-
tion m1. This assumption is clocked by two clocks, clk1 and clk2.

checker check1(sequence s, ..., event clk1, clk2);
rand bit [3:0] v, w, r;
...
m1: assume property (@clk1 s |-> @clk2 v + w < 7);

endchecker : check1

11If a free variable is of an aggregate data type—array or structure, some of its elements may be
assigned, while others remain unassigned. The LRM defines that all elements of the singular data
types (i.e., of all data types except unpacked ones) should be randomized monolithically, whereas
different elements of the unpacked data types may be randomized independently: some elements
may be randomized, while other may not.
12There are several subtleties concerning assumption set definition for procedural checker instan-
tiations and for instances involving const cast of checker arguments. These are not covered here.
Refer to the LRM [8] for the exact definitions.

23.3 Free Variables in Simulation 545

There are three free variables v, w, and r in the checker, all of them uninitialized and
unassigned. All three variables are randomized every tick of clk1 and of clk2,
even though r does not enter assumption m1. The randomized values of r are
unconstrained, whereas the randomized values of v and of w are constrained by
assumption m1. ut
Example 23.22. In the code fragment below, checker check1 from Example 23.21
is rewritten so that assumption m1 has been moved to separate checker c2. Although
there are no more assumptions in checker check1, the assume set of checker check1
consists of assumption mycheck.m1, and the simulation of free variables v, w, and r

is exactly the same as in Example 23.21.

checker check1(sequence s, ..., event clk1, clk2);
rand bit [3:0] v, w, r;
...
check2 mycheck(s, v, w, clk1, clk2);

endchecker : check1

checker check2(sequence s, untyped a, b, event clk1, clk2);
m1: assume property (@clk1 s |-> @clk2 a + b < 7);

endchecker : check2 ut
Example 23.23. In the following checker

checker check1(sequence s, ..., event clk1, clk2);
rand bit [3:0] v, w, r;
...
always @clk1
w <= v + 1;

m1: assume property (@clk1 s |-> @clk2 v + w < 7);
endchecker : check1

free variable w is randomized only at its initialization, as it is assigned a value. Free
variables v and r are randomized every tick of clocks clk1 and clk2. The random
constraint imposed by assumption m1 is used to randomize the value of v. ut

If the randomization constraint imposed by the checker assumptions cannot be
solved, the free variables may be assigned arbitrary values, and the corresponding
assumptions fail.

Example 23.24. In the following checker

checker check(..., event clk);
default clocking @clk; endclocking
rand bit [3:0] v, w;
...
m1: assume property (v + w < 2);
m2: assume property (v + w > 3);

endchecker : check

assumptions m1 and m2 cannot be satisfied together. Arbitrary values of v and w will
be chosen in each clock tick, and the failure of an appropriate assumption will be
reported. For example, if in clock tick 0 the value 0 was assigned to both v and w,

546 23 Checkers in Formal Verification

assumption m1 would pass and assumption m2 would be violated. If in clock tick
1, v gets the value of 1 and w gets the value of 2, then both assumptions will be
violated. ut
Example 23.25. In the following checker

checker check(..., event clk);
rand bit v;
...

m1: assume property (@clk v |-> ##3 1’b0);
endchecker : check

the value of free variable v must always be low to satisfy assumption m1: if in
some clock tick v is high, assumption m1 will fail in three clock ticks. However,
in simulation there is no obligation to satisfy the assumptions in future clock ticks,
and your simulator can choose the value 1 for v in some clock tick, as it does not
result in violation of the assumption in the same clock tick. Of course, in this case,
assumption m1 will fail in three clock ticks. ut

If there are deferred (or final) assumptions in the assume set,13 all checker free
variables are randomized at every tick of a clock from a concurrent assumption from
the assume set and, in addition, they may also be randomized in any other simulation
time step.14

Example 23.26. In the following checker

checker check(..., event clk);
rand bit v, w;
...
m1: assume final ($onehot0({v,w}));
m2: assume property (@clk v |=> w);

endchecker : check

free variables v and w must be randomized every tick of clk and, in addition, they
may be randomized in any simulation tick. ut

Efficiency Tip. Constraining free variables by assumptions significantly slows
down the simulation and sometimes even leads to bogus assumption violations.
It is always preferable to use unconstrained free variables and their assignments
whenever possible. However, from a methodological point of view assumptions on
the model interface may be desirable for assume-guarantee reasoning.

13One should avoid using free variables in all forms of assertion statements but concurrent, see
Sect. 23.3.4.
14This is our interpretation of the standard. The standard is not explicit about free variable
randomization with deferred assumptions.

23.3 Free Variables in Simulation 547

Free variable support in simulation does not provide correctness confidence
even for a given simulation trace, but just shows one arbitrary realization
of the free variables in time. In the presence of temporal assumptions, an
assumption failure in simulation does not necessarily signify incorrectness of
the implementation.

23.3.4 Limitations Imposed on Free Variables

Why are continuous and blocking assignments to free variables illegal? One reason
was explained in Sect. 23.2.2.4. There is another, more compelling reason related
to the simulation semantics of free variables. Had continuous assignments to free
variables been permitted it would be reasonable to expect the following statements
to behave similarly for a free variable v and an expression e:

assign v = e;
assume property (@global_clock v === e);

From the assumption we know that the sampled values of v and e coincide (at the
ticks of the global clock). This requires a right-hand side of a continuous assignment
in checkers to be also sampled. However, such a definition would not work for a
continuous assignment to regular checker variables. The same problem exists also
for blocking assignments.

An attempt to define the simulation semantics of free variable assignment in a
different manner, and require their right-hand side to be sampled, would not work,
either: Since continuous and blocking assignments in checkers are executed in the
Reactive region, assertions would miss new values of free variables, as shown in the
following example.

Example 23.27. Consider the following code fragment assuming that continuous
assignments to free variables are legal and their right-hand side is sampled:

1 rand bit v;
2 bit a;
3 ...
4 assign v = a;
5 a1: assert property(@$global_clock v == a);

The assignment in Line 4 would execute in the Reactive region, and the value of
a would be sampled. Let regular variable a change from 0 to 1. Then the value of
v would only change in the Reactive region, whereas assertion a1 executes in the
Observed region, and it would see the stale value of v, and therefore, would fail,
which is counterintuitive (cf. Exercise 23.8). ut

Unfortunately, there is one more source of inconsistency related to the simulation
semantics of free variables: SystemVerilog allows using free variables in deferred

548 23 Checkers in Formal Verification

assertions. Their simulation semantics looks innocent, and Example 23.26 shows a
reasonable usage. Consider now a different example:

rand bit v;
bit a;
...
m1: assume final(v == a);
a1: assert property (@$global_clock v == a);

Suppose that a transitions from 0 to 1. According to Sect 23.3.3, v receives the value
1 before the Observed region. Concurrent assertion a1 is executed in the Observed
region. The sampled value of v is 1 (its current value), and the sampled value of a is
0 (its preponed value), so that the assertion fails. Therefore, using free variables in
deferred (or final) assertion statements is a bad idea.

Never use free variables in deferred (or final) assertion statements.

23.4 Rigid Variables

23.4.1 Rigid Variables in Formal Verification

Free variables defined in Sect. 23.1 can assume any value at any simulation
step (unless constrained by assumptions). Rigid variables may assume any value
initially, but their value does not change in time. In other words, rigid variables are
constant free variables, which fact is reflected in their syntax. For example,

rand const bit [3:0] r;

is a declaration of rigid variable r. This variable may assume any 4-bit value, but
this value remains unchanged all the time. Note that the rand qualifier must appear
first; const rand is illegal.

It is straightforward to model rigid variables with free variables. For example,
the above declaration of rigid variable r is equivalent to:

rand bit [3:0] r;
assume property(@$global_clock $steady_gclk(r));

This is, essentially, the formal semantics of free variables: rigid variable r is a free
variable with additional assumption G.r D r 0/ imposed (we use research literature
notation here).

Rigid variable initialization is legal, but it renders the rigid variable equivalent to
a non-free constant variable:

rand const bit [3:0] r = 4’d5;

23.4 Rigid Variables 549

is equivalent to

const bit [3:0] r = 4’d5;

We will always assume that rigid variables are uninitialized. Of course, it is
illegal to assign a rigid variable, as it is illegal to assign any constant variable.

Example 23.28. Checker same1 verifies that two large data words contain the same
value:

checker same1(bit [127:0] word1, word2,
event clk = $inferred_clock);
a1: assert property (@clk word1 == word2);

endchecker : same1

This equality check is expensive as the size of the words is big. For some FV tools,15

it might be more efficient to choose an arbitrary bit and check that its values in both
words coincide. This may be achieved by introducing a rigid variable i that indicates
which bit in the words to compare, as implemented in checker same2:

checker same2(bit [127:0] word1, word2,
event clk = $inferred_clock);
rand const bit [6:0] i;
a2: assert property (@clk word1[i] == word2[i]);

endchecker : same2

Assertion a2 compares only one bit in two words instead of comparing 128 bits as in
assertion a1. This comes, however, at a price of introducing a 7-bit rigid variable i.

ut
Example 23.29. Checker data_consistency1 verifies that out_data at the end of
a transaction (end_t asserted) has the same value as in_data at the beginning of
the transaction (start_t asserted).

checker data_consistency1(start_t, end_t, in_data, out_data,
event clk = $inferred_clock,
untyped rst = $inferred_disable);

default clocking @clk; endclocking
default disable iff rst;
rand const var type(in_data) data;

a1: assert property (start_t && data == in_data ##1 end_t[->1]
|-> out_data == data);

endchecker : data_consistency1

Assume for simplicity that both in_data and out_data are of type bit [1:0].
Then assertion a1 is equivalent to the set of the four assertions:

a10: assert property (start_t && 2’b00 == in_data ##1 end_t[->1]
|-> out_data == 2’b00);

a11: assert property (start_t && 2’b01 == in_data ##1 end_t[->1]
|-> out_data == 2’b01);

15It highly depends on the specific tool.

550 23 Checkers in Formal Verification

a12: assert property (start_t && 2’b10 == in_data ##1 end_t[->1]
|-> out_data == 2’b10);

a13: assert property (start_t && 2’b11 == in_data ##1 end_t[->1]
|-> out_data == 2’b11);

Thus, specifying rigid variable data is equivalent to checking the data correspon-
dence for all possible in_data values.16

We can rewrite assertion a1 using local variables instead of rigid variables:

checker data_consistency2(start_t, end_t, in_data, out_data,
event clk = $inferred_clock,
untyped rst = $inferred_disable);

default clocking @clk; endclocking
default disable iff rst;

property data_consistent;
var type(in_data) data;
(start_t, data = in_data) ##1 end_t[->1]

|-> out_data == data;
endproperty : data_consistent

a2: assert property (data_consistent);
endchecker : data_consistency2

Using rigid variables in checker data_consistency1 is even syntactically similar
to local variables, only instead of assigning to a local variable, there is a comparison
with a rigid variable. In this sense, local and rigid variables are interchangeable
when in the beginning of the transaction they store a value of some data and then
check this value later during the transaction. ut

23.4.2 Rigid Variable Support in Simulation

In simulation, rigid variables are randomly initialized, and then their values remain
unchanged. If there are assumptions imposed on rigid variables, a simulator does not
have any obligation to take these assumptions into account when assigning initial
random values to rigid variables. Therefore, there is no guarantee to fulfill even
straightforward assumptions imposed on rigid variables.

The simulation of rigid variables does not fully reflect their nature. Instead
of checking an assertion for all possible values of rigid variables, only one
random value is checked. For instance, if in simulation of checker same2 from
Example 23.28, variable i was initialized with 47, only equality of the 47-th bit
in two words would be checked.

16In PSL, the construct similar to rigid variables is even called forall.

23.4 Rigid Variables 551

23.4.3 Rigid and Free Variables Versus Local Variables

Rigid variables are typically used for latching: they effectively store a value at the
beginning of a transaction, and then check it at the transaction end, as shown in
Example 23.29. This usage is also common for local variables. The advantage of
rigid variables is their straightforward implementation in FV, while not all assertions
with local variables are supported by FV tools. On the contrary, local variables
have full support in simulation, while the rigid variable support is rather poor. Both
assertion implementations look very similar.

It is recommended to use local variables rather than rigid variables, unless
there is a restriction on local variables imposed by an FV tool.

Efficiency Tip. Rigid variables are expensive in FV, but they are significantly less
expensive than the free variables of the same size. When rigid variables may be used
interchangeably with local variables, the efficiency of the rigid variables and of the
local variables in FV is about the same, provided that the FV tool can handle local
variables efficiently.

Sometimes it is possible to achieve the same goal by using local variables instead
of free variables. As opposed to rigid variables, here we are talking about free
variables of a smaller size than corresponding local variables. For instance, the
checker described in Example 23.18 can be implemented as an assertion with local
variables, as discussed in Exercise 23.3, but in this case one-bit free variable start
would be replaced by local variables of a larger size. Both approaches have their
own advantages and drawbacks:

• Processing of unconstrained free variables is straightforward for FV tools.
Although free variables impose a heavy burden on FV, they are efficiently
synthesized. Sophisticated assertions with local variables may be difficult to
synthesize, and their synthesis may introduce substantial penalty in addition to
the penalty introduced by free variables.

• If an abstract model requires complex modeling, it is difficult to keep assertions
with local variables of manageable size. Some modularity may be achieved by
partitioning complex properties into subproperties. Splitting these assertions into
several smaller assertions is problematic, since different assertions cannot share
their local variables, and one will have to duplicate many common parts of
the modeling in different assertions. On the contrary, when using free variables
the modeling can be shared.

• For manageable models, using local variables is more intuitive and readable than
using free variables.

• Local variables can easily be checked in simulation, whereas free variables have
only partial simulation support.

552 23 Checkers in Formal Verification

23.5 Checkers as Generators

Checkers may be used as input stimuli generators for a DUT, i.e., as a synthesizable
testbench. The major advantage of such a testbench is its natural support both in
simulation and in FV. Writing synthesizable testbenches saves the effort spent on
creation of two different environments. A synthesizable testbench is useful even
when created only for FV because it provides an excellent tool for debugging the
FV model correctness in simulation.

Let us start with a simple example in which two inputs of a DUT are restricted to
be mutually exclusive. For simplicity we assume that these inputs are of type bit.

Example 23.30. Conventional implementation of mutually exclusive stimuli.
Using conventional SystemVerilog testbench constructs — programs, classes,

randomization and constraints, — this testbench may be implemented as shown
in Fig. 23.2. The program implementing this testbench declares class Mutex

(Lines 2–7) to represent a data structure for two random bits. These bits are defined
on Line 3. Here rand qualifier specifies only randomness; it is not to be confused
with the checker specification of free variables. These random bits are constrained
using the SystemVerilog constraint construct (Lines 4–6). This constraint has
name c, and its body contains a condition for the mutual exclusion of x and y

(Line 5).
The stimuli are generated in the initial procedure of the program

(Lines 11–20). Line 9 instantiates class Mutex and names the created object vals.
The value generation is done in the loop (Lines 13–19). Lines 14–15 generate the

1 program gen_mutex(output bit out1, out2, clk);
2 class Mutex;
3 rand bit x, y;
4 constraint c {
5 $onehot0({x, y});
6 }
7 endclass : Mutex
8

9 Mutex vals = new;
10

11 initial begin
12 clk = 1’b1;
13 for (int i = 0; i < 100; i ++) begin
14 #5 clk = !clk;
15 #5 clk = !clk;
16 vals.randomize();
17 out1 = vals.x;
18 out2 = vals.y;
19 end
20 end
21 endprogram : gen_mutex

Fig. 23.2 Conventional testbench generating mutually exclusive stimuli

23.5 Checkers as Generators 553

1 checker gen_mutex(output bit out1, out2);
2 default clocking @$global_clock; endclocking
3 rand bit x, y;
4 m1: assume property($onehot0({x, y}));
5 assign {out1, out1} = {x, y};
6 endchecker : gen_mutex

Fig. 23.3 Synthesizable testbench generating mutually exclusive stimuli

clock and advance the simulation time. Function randomize (Line 16) randomizes
values of class member variables x and y taking mutual exclusion constraint c into
account. Lines 17–18 assign the generated values of x and y to output ports out1

and out2 of the program. ut
Compare now the implementation of Example 23.30 with the checker-based

implementation shown in Example 23.31.

Example 23.31. Checker-based implementation of mutually exclusive stimuli.
This implementation is shown in Fig. 23.3. Here, x and y are free variables

(Line 3), and they are randomized by assumption m1 (Line 4). What remains is
to copy the values of the free variables to the checker output ports, which is done by
the continuous assignment statement on Line 5. We have to copy the free variables
to the output ports because the checker ports cannot be free variables. ut

We conclude this section with a more meaningful example of a synthesizable
testbench. This testbench implements a packet generator for the 1-bit serial interface
described in Sect. 1.2.1. The output of the testbench is the input of a DUT that
we need to verify. The packet generator produces packets and transmits them as
transactions bit by bit to the DUT. The verbal specification of the serialization
protocol is as follows.

TX1 The following packet (or transaction) types are supported:

• Data
• Control
• Void

These types are encoded using the following enumeration:

typedef enum logic[1:0] {
txa_data = 2’b10,
txa_control = 2’b01,
txa_void = 2’b00,
txa_forbid = 2’b11

} txa_t;

txa_forbid indicates the forbidden combination of bits.
TX2 All packets have the same size. Each packet consists of a type field, tag

field and data field. The corresponding SystemVerilog type definitions are as
follows:

554 23 Checkers in Formal Verification

typedef bit [5:0] tag_t;
typedef bit [23:0] data_t;
typedef struct packed {

txa_t txa;
tag_t tag;
data_t data;

} packet_t;

TX3 The serialized data is sent to tx_data input pin of the DUT. The validity of
the data bit is indicated by the assertion of tx_valid DUT input pin. There
are two versions of the serialization protocol: normal and quiet. In the quiet
mode it is required that tx_data be set to zero when tx_valid is deasserted.

TX4 Each packet is transmitted bit by bit, from LSB to MSB, one bit per clock
cycle.

TX5 During reset an active transaction, if any, is aborted.
TX6 Packets are transmitted sequentially. Transmission of a different packet is

allowed only when the current packet has been fully transmitted, or when its
transmission has been aborted because of a reset.

TX7 Each packet my be retransmitted according to the internal logic of the
transmitter.

TX8 There are no timing constraints imposed on the transmission of two consecu-
tive packets or on the retransmission of the same packet. Back-to-back packet
transmission is allowed.

Checker tx implementing this testbench is shown in Figs. 23.4 and 23.5.
Fig 23.4 shows the checker interface and several internal declarations. Input checker

1 checker tx(QUIET = 1’b0,
2 event clk = $inferred_clock,
3 untyped rst = $inferred_disable,
4 output bit tx_valid, tx_data
5);
6 default clocking @clk; endclocking
7 default disable iff rst;
8

9 let legal_txa(txa) = txa != txa_forbid;
10

11 rand bit valid;
12 rand bit data;
13 rand bit packet_start;
14 rand bit new_packet;
15 rand packet_t packet;
16

17 assign tx_valid = valid;
18 assign tx_data = data;
19 ...
20 endchecker : tx

Fig. 23.4 Packet generation for 1-bit serial interface. Checker skeleton

23.5 Checkers as Generators 555

1 let LENGTH = $bits(packet_t);
2 typedef bit[$clog2(LENGTH):0] tx_ptr_t;
3 m_rst_vs_packet_start:
4 assume property (disable iff (1’b0) rst |-> !packet_start);
5 m_rst_vs_valid:
6 assume property (disable iff (1’b0) rst |-> !valid);
7 m_non_overlap_start: assume property(
8 packet_start |=> !packet_start[*LENGTH - 1]);
9

10 tx_ptr_t ptr;
11 function tx_ptr_t next_tx_ptr();
12 if (rst) return 0;
13 if (packet_start) return 1;
14 if (ptr > 0 && ptr < LENGTH - 1)
15 return ptr + 1;
16 return 0;
17 endfunction : next_tx_ptr
18 always_ff @clk ptr <= next_tx_ptr();
19

20 m_def_valid: assume property (
21 valid == (packet_start || ptr != 0));
22 m_def_data: assume property (
23 valid |-> data == packet[LENGTH-1-ptr]);
24 m_new_only_if_start: assume property (
25 new_packet |-> packet_start);
26

27 bit packet_seen = 1’b0;
28 always_ff @clk
29 packet_seen <= !rst && (packet_start || packet_seen);
30

31 m_new_if_start_not_seen: assume property (
32 packet_start && !packet_seen |-> new_packet);
33 m_tx_packet_new: assume property (
34 new_packet |-> legal_txa(packet.txa));
35 m_tx_packet_stable: assume property (
36 ##1 !new_packet |-> $stable(packet));
37 if (QUIET)
38 m_quiet_data: assume property (!tx_valid_i |-> !tx_data_i);
39 a_sanity_valid_0: assert property (
40 !packet_start && !packet_seen |-> !valid);
41 a_sanity_valid_1: assert property (
42 packet_start |-> valid[*LENGTH]);

Fig. 23.5 Packet generation for 1-bit serial interface. Checker contents

argument QUIET (Line 1) is an elaboration time constant, and its non-zero value
indicates the quiet mode. By default the serialization protocol is executed in the
normal mode. The other input arguments clk and rst have their standard meaning.
Output arguments tx_valid and tx_data (Line 4) are defined in accordance with
Rule TX3.

556 23 Checkers in Formal Verification

Let-declaration legal_txa on Line 9 is aimed to check the validity of the packet
type, as specified by Rule TX1.

Lines 11–15 contain free variable declarations. Free bit valid (Line 11) indicates
when the transmitted data bit is valid. Free bit data is a data bit—the result of the
serialization. Both these free variables are directly copied to the checker outputs
(Lines 17–18). The necessity of this copy is explained in Example 23.31.

Free bit packet_start (Line 13) indicates the beginning of a packet trans-
mission: either a transmission of a new packet or a retransmission of a recently
transmitted one. Free bit new_packet (Line 14) indicates the beginning of a new
packet transmission. Finally, free variable packet corresponds to packet contents
(Rule TX2). The described free variables are constrained by the assumptions shown
in Fig. 23.5. Let us now move to that figure.

Assumptions m_rst_vs_packet_start and m_rst_vs_valid restrict the gene-
rator behavior during the reset (Rule TX5). Assumption m_rst_vs_packet_start

(Line 3) forbids a new transmission when the reset is active. Assumption
m_rst_vs_valid (Line 5) enforces valid bit deassertion during the reset.
Both assumptions have an explicitly specified disable condition to override the
default. Note the problem with the inconsistent sampling of a reset condition. In
disable iff clauses rst is not sampled, whereas in these two assumptions it is,
because it is part of their body. The same problem exists for the assignment on
Line 18 which implicitly uses the sampled value of rst (Line 12). It remains to
hope that the value of rst does not change at the same time steps when the clock
does.17

Assumption m_non_overlap_start (Line 7) follows Rule TX4: No new trans-
action is allowed until the completion of the current one. The transaction length
LENGTH is defined on Line 1.

Line 10 declares ptr, a pointer to a currently transmitted packet bit. This variable
occupies the number of bits necessary for referencing any bit in a packet, the bit
numeration starting from 0 (Line 2). The pointer is updated at each clock tick
(Line 18); the next value of the pointer is calculated by function next_tx_ptr

(Lines 11–17). Each time the reset is active the processing starts anew, and the
pointer is set to 0 (Line 12; Rule TX5). When packet_start is active, i.e., when
the transmission of a new packet or the retransmission of a transmitted one begins,
the pointer value is set to 1 (Line 13; see also Exercise 23.9). Whenever a packet
transmission continues, the pointer is incremented (Lines 14–15; Rule TX4). Finally,
when the packet transmission has been completed, the pointer is reset to 0 (Line 16).
See Exercise 23.10 regarding an alternative implementation of packet transmission.

Assumption m_def_valid (Line 20) defines the conditions of data validity: at
the beginning of the packet transmission (packet_start asserted) or in its middle
(ptr != 0). We could eliminate free variable valid and use output argument
tx_valid directly, because this assumption may be replaced with assignment

assign tx_valid = packet_start || ptr != 0;

17Remember that this problem exists only in simulation. In FV the reset value is sampled even in
disable iff clauses.

23.5 Checkers as Generators 557

However, we prefer to keep free variable valid because it improves the checker
readability and makes its code more robust for potential modifications of the
protocol.

Assumption m_def_data (Line 22) requires data to contain the currently trans-
mitted bit when the result is valid. Assumption m_new_only_if_start (Line 24)
takes care that packet_start is set for a new packet.

Lines 27–29 define an indication (packet_seen) that at least one packet has
arrived. packet_seen is zeroed at a reset. Assumption m_new_if_start_not_seen
(Line 31) takes care to set new_packet when the first packet has arrived.
Assumption m_tx_packet_new (Line 33) limits packet generation to packets of
a legal type (Fig. 23.4, Line 9). It is sufficient to require this for new packets
only. Assumption m_tx_packet_stable (Line 35) guarantees that the contents of
packet may change only when a new packet arrives.

Lines 37–38 handle the quiet mode. Assumption m_quiet_data (Line 38)
requires the data to be zero when the result is invalid (Rule TX3). Note that the
if statement on Line 37 is a generate if as it belongs directly to the checker scope.

The checker also contains two sanity assertions that check its implementation.
Assertion a_sanity_valid_0 (Line 39) makes sure that the result is invalid until
the first packet starts transmitting. Assertion a_sanity_valid_1 verifies that the
packet is transmitted continuously from the beginning to the end (Rule TX4).

As explained in Sect. 23.3.3 checker free variables are randomized in
simulation subject to the constraints imposed by the assumptions. Contemporary
simulators have strong abilities of solving combinatorial constraints. But our
checker contains two temporal assumptions: m_non_overlap_start (Line 7) and
m_tx_packet_stable (Line 35). This may become an obstacle to generate a viable
test. Note, however, that the implementation of assumption m_non_overlap_start

in simulation should be straightforward as the actual constraint on packet_start at
each clock is unambiguously defined by the values of this variable in the preceding
LENGTH - 1 clock cycles. As for assumption m_tx_packet_stable, it may be
rewritten as

##1 $changed(packet) |-> !new_packet

which makes it, essentially, combinational.

Exercises

23.1. Define the formal semantics of unconditional free variable nonblocking
assignment controlled by a clocking event of each of the following forms:

(a) @(posedge clk),
(b) @(negedge clk),
(c) @(edge clk iff en),
(d) @(posedge clk iff en),
(e) @(negedge clk iff en).

558 23 Checkers in Formal Verification

23.2. Define the formal semantics of a conditional free variable assignment con-
trolled by a clocking event of the form of @(edge clk) and of each of the forms
listed in Exercise 23.1.

23.3. Implement the checker from Example 23.18 using local variables instead of
free variables.

23.4. What is the difference between the behavior of checkers check1 and check2

(dotted parts are the same and do not assign v in both checkers)?

checker check1(...);
bit [3:0] v = ...;
// ...

endchecker : check1

checker check2(...);
rand bit [3:0] v = ...;
// ...

endchecker : check2

How should the checker check2 be modified to have the same behavior as the
checker check1? The variable v should remain free in check2.

23.5. Rewrite the following fragment of a checker always_ff procedure to
eliminate all conditional statements.

if (c1)
if (c2) begin
a <= x; b <= y; a <= z;

end
else a <= x;
else begin
a <= y;
if (c2); else a <= x;

end

23.6. Implement checker data_consistency from Example 23.29 without using
local, free, or rigid variables. Assume that the transactions do not overlap.

23.7. The output data out_data at the end of transaction (end_t asserted) has the
same value as the input data in_data at the beginning of the transaction (start_t
asserted). With each transaction is associated a tag: the tag at the beginning of the
transaction is contained in stag, and the tag at the end of the transaction is contained
in etag. For the same transaction, stag and etag have the same values.

Implement this specification as a checker

(a) using rigid variables, and
(b) as an assertion with local variables.

23.8. What is the problem with the following definition of simulation semantics of
a continuous assignment to a free variable: Continuous assignment to a free variable
executes in the Active region? Consider both the case when the right-hand side is

23.5 Checkers as Generators 559

sampled, and when it is not. Hint: consider an assignment where the right-hand side
is a checker input argument whose actual value is generated in a module.

23.9. Why is a separate processing of a packet start (Line 13) in Fig. 23.5 required?
Why is this processing not subsumed by Lines 14–15?

23.10. Implement a packet transmission in checker tx from Sect. 23.5 using a shift
register instead of a pointer to a current bit (Fig. 23.5, Lines 10–17).

23.11. Modify checker tx (Figs. 23.4 and 23.5) to support packet reception ack-
nowledgment: the generator should receive an acknowledgment (ack asserted) from
the DUT within 4 clock cycles upon the packet transmission. In the absence of the
acknowledgment the same packet must be retransmitted. No new packet, but the
first one, may start transmission until the acknowledgment of the previous packet
reception has been obtained.

23.12. Limit the number of retries described in Exercise 23.11 to 3.

Chapter 24
Checker Libraries

A room without books is like a body without a soul.

— G.K. Chesterton

The enhancements to the IEEE SystemVerilog language in the 2009 and 2012
standards and, in particular, to the SystemVerilog Assertions (SVA) allow us to
create much more useful and versatile checker libraries. In this chapter, we first
identify the weaknesses of the current checker libraries by examining an example
from the OVL library. We then provide a classification of checkers, and show how
various forms of effective checker libraries can be created using the new constructs.
We use the term checker and checker library in a broad sense to denote a verification
unit and library, possibly assertion based. We refer to the SystemVerilog checker
construct using checker.

There are many functional properties common to any design that are reusable
modulo some expression changes. Therefore, to speed up the deployment of
assertions without requiring extensive knowledge of the syntax and semantics of
the SystemVerilog assertions language, it is essential to create libraries of checkers.
Such checker libraries have been around for some time, such as the Accellera Open
Verification Library (OVL) [10], and other checker libraries from EDA vendors.
A similar approach was used even before the arrival of assertion languages by
hiding procedural or RTL implementation of assertions in modules used as checkers.
The initial implementation as well as the Verilog’95 implementation of OVL is in
this form.

The enhancements to the SystemVerilog language in the 2009 and 2012 stan-
dards and, in particular to the assertion features allow us to create much more
useful and versatile checker libraries. They benefit primarily from the following
features: New encapsulation, let declarations, clock and disable inference, deferred
assertions, elaboration error tasks, and enhanced property operators. The new
checker encapsulation can be used to replace the module. These enhancements

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8__24

561

562 24 Checker Libraries

in SVA provide a solution to many problems when designing a checker library. Let
us recall the main new SVA features that help checker library development and
deployment [26]:

• checker encapsulation is versatile for assertion libraries.

– Argument specification is similar to that of properties.
– checker can be instantiated in procedural code.
– Inference of clocking event, disable condition on the ports of the checker is

possible.
– In an always and initial procedure, evaluation is triggered by control

reaching the checker instance.

• Inference functions $inferred_clock and $inferred_disable can be used as
default values on formal ports of checker, sequence and property declarations.

• global clocking and default disable iff declarations are possible.
• Free variables
• Modeling code in checker
• let construct allows for making abstractions from expressions.
• Checking of configuration parameters at elaboration time.

24.1 Weaknesses of Existing Checker Libraries

To explain the current weaknesses, let us consider a simple checker
assert_handshake inspired by its equivalent in the OVL library [10]. The checker
is reduced to include only its important excerpts. Details of included files are
omitted. The user may wish to consult the OVL library for further details if
necessary. First, let us consider the checker interface.

Example 24.1. module-based assert_handshake checker interface

// Accellera Standard V2.8.1 Open Verification Library (OVL).
// Accellera Copyright (c) 2005--2014. All rights reserved.
‘module ovl_handshake (
clock, reset, enable, req, ack, fire);
parameter severity_level = ‘OVL_SEVERITY_DEFAULT;
parameter min_ack_cycle = 0;
parameter max_ack_cycle = 0;
parameter req_drop = 0;
parameter deassert_count = 0;
parameter max_ack_length = 0;
parameter property_type = ‘OVL_PROPERTY_DEFAULT;
parameter msg =‘OVL_MSG_DEFAULT;
parameter coverage_level= ‘OVL_COVER_DEFAULT;
parameter clock_edge = ‘OVL_CLOCK_EDGE_DEFAULT;
parameter reset_polarity =‘ OVL_RESET_POLARITY_DEFAULT;
parameter gating_type = ‘OVL_GATING_TYPE_DEFAULT;

24.2 Kinds of Checkers and Their Characteristics 563

input clock, reset, enable;
input req;
input ack;
output [‘OVL_FIRE_WIDTH-1:0] fire;
//...

‘endmodule // ovl_handshake ut
The macros ‘module and ‘endmodule resolve to either module and endmodule

or interface and endinterface. This distinction is made so that the checker could
also be instantiated in SV interfaces. In either case, the kinds of ports such checkers
are allowed to have impose severe constraints on the deployment of the checker in a
design:

• Clock port clock cannot be an event such as edge clk iff en.
• Clock, disabling condition reset, and the enabling condition cannot be inferred

from the instantiation context.
• The checker cannot be instantiated inside a procedure.
• The ports req and ack must be expressions of type logic, they cannot be of type
sequence or property.

The restrictions make the usage of the checker tedious. In particular, the last
item makes the checker less flexible to use because if either the requests or the
acknowledgments are more complex temporal sequences of signal values, additional
modeling code must be added on the outside of the checker instance to detect such
sequences. This code and the checker instance are usually not to be included in the
synthesized code, hence enclosing them between ‘ifndef—‘endif compilation
controls becomes necessary.

Before transforming the assert_handshake checker to its checker-based form,
let us review the kinds of checkers and the main characteristics a library should
possess.

24.2 Kinds of Checkers and Their Characteristics

Checkers can be classified according to four criteria:

1. Temporality: combinational (has no clock) vs. concurrent (requires a clock).
2. Encapsulation: checker (or module or interface) vs. property (or let)

based.
3. Packaging: in a Verilog library vs. in a SystemVerilog package.
4. Configurability: Local per-instance vs. global for all instances.

564 24 Checker Libraries

24.2.1 Temporality

Many interesting checkers can be stated as unclocked Boolean expressions. Often
clock is not needed and the user may be interested in instantiating the checker in
procedures or design modules that do not have access to any clock. Such checkers
cannot use concurrent assertions because they would require a clocking event.
For this purpose, deferred assertions (Sect. 4.3) are the best candidates. When it
is required to verify behaviors that are synchronous to some clock, concurrent
assertions need to be used. They can be Boolean expressions evaluating each attempt
at a single clock tick or temporal properties evaluating their attempts over several
clock ticks.

24.2.2 Encapsulation

property-based encapsulation for temporal checkers, and let-based encapsulation
for combinational checkers are the simplest ones. They are easy to use, but they
allow no modeling code and can encompass only a single assertion. They are usually
part of relatively simple checker libraries. More complex checkers that may consist
of several assertions, modeling code, and coverage items need encapsulation in
module, interface or more importantly now in checker constructs.

24.2.3 Packaging

Packaging checker libraries as a series of files, one per checker, in a “library”
directory that is included automatically during compilation is the most typical usage.
This mechanism has been used with the various existing module-based checker
libraries. checker, property and let encapsulations allow for a more robust
use model by packaging them in the SystemVerilog package enclosure. In this
way, the appropriate library can be “imported” only where it is needed. Therefore,
even different checkers with the same names can be deployed in different parts of
the design. Of course, there is always the third possibility by accessing checker
definitions that are brought into the source code using the ‘include directive.
However, this method provides the least flexibility and we do not consider it further.

24.2.4 Configurability

Global configuration is achieved best by macros, for example, to accomplish the
following:

24.2 Kinds of Checkers and Their Characteristics 565

• Enabling all assertions or all functional coverage or both.
• Exclusion of nonsynthesizable code like action block reporting tasks, covergroups

or testbench related items.

Local configuration on a per-instance basis is best achieved by elaboration-time
constants and conditional generate blocks. This includes:

• Selection of specific functional coverage items or levels, from a combination of
cover property and covergroup constructs.

• Selection of assert, restrict, or assume forms of assertions.
• Configuration and selection of subsets of assertions that should be active in a

checker instance.
• Specification of minimal and maximal delay latencies and repetition counts in

clock cycles.
• Specific user failure and success messages.
• Specification of severity level of assertion failure.

Elaboration-time constants must provide default values. For example,

• Most typical assertion usage (assertion kind, temporal delays and repetitions).
• Default failure message.
• Minimal useful functional coverage.

Functional coverage should provide several levels of detail whenever practically
useful. Some may or may not be suitable for formal and synthesis tools and these
should also be under global control. Here is a typical gradation:

• Minimal—“did the checked behavior ever happen?”
• More detailed—“which specific delay or data values were observed?”
• Corner cases—“were min and max delays, and boundary data points ever

encountered?”

It is often desirable to perform x/z value checks on signals used in a checker.
There may be separate checkers that perform just that task and report a failure when
an x or z is detected. However, even “regular” assertions may have to include such
checks to disable the assertion from failing or forcing a failure. The choice depends
on whether separate checks for these values are used. If yes, then there is no point in
reporting a failure in regular assertions, they should just report a vacuous or disabled
success. Usually, the detection of x/z is done using the system function $isunknown
that returns true if an x or z is detected in the argument expression value. For more
detailed testing of x and z values, system function $countbits (Sect. 7.1.1) can be
used as well.

The ease of using configuration capability is important when different test
environments are used. For example, control may be provided over the following
features:

• Choice of failure, success and information reporting integrated with the System-
Verilog testbench verification methodologies (e.g., UVM [9], VMM [19] or OVM
[38]), or only reporting using $display, or using run-time error tasks, such as
$error, etc.

566 24 Checker Libraries

• Macro encapsulation over the checker such that it would automatically provide
some of the keywords, thus simplifying instantiation (e.g., Example 24.6). It may
also hide differences between checker, property, and module-based checkers.

• Validation of values of arguments used as elaboration-time constants at elabora-
tion time. Using conditional generate statements to test the constant arguments,
elaboration tasks can issue error messages at elaboration, rather than at a later
time during simulation (possibly many hours after the start of the compilation of
the design).

The checker instances should also be easily identifiable by synthesis and
formal tools, without the need of ‘ifndef—‘endif enclosures around the checker
instances. It is then left up to the tool to specify whether checkers should or should
not be included in the process.

24.3 Examples of Typical Checker Kinds

We now examine examples of different forms of checkers, illustrating the various
characteristics and limitations.

24.3.1 Simple Combinational Checker

The combinational checker shown in the following example is defined in a let

declaration, which is then used in a deferred assertion. Notice the configuration
mechanism using ‘ifdef SYNTHESIS for selecting a form that is suitable for
synthesis and formal tools.

Example 24.2. let-based checker (in a package)

let onehot0 (sig, reset = 1’b1) =
‘ifdef SYNTHESIS
// Selected for synthesis or formal
!|reset || $onehot0(sig);

‘else
// Selected for 4-valued simulation
|reset === 0 ||
($onehot0(sig) && !$isunknown(reset_n);

‘endif ut
Such a checker can be instantiated in a module (program or interface), and

procedural scope as follows.

Example 24.3. let-based checker instantiation

module m(input logic [3:0] r1,
output logic [3:0] r2);

a1: assert final (onehot0(r1))

24.3 Examples of Typical Checker Kinds 567

else $error("a1 failed"); //check input
always_comb begin
r2 = r1;
a2: assert final (onehot0(.sig(r2)))
else $error("a2 failed"); //check output

end
endmodule ut

Note the following features:

• A macro definition SYNTHESIS selects between two forms of let, one suitable
for formal tools and synthesizable checkers, and the other one for four-valued
simulation. In the latter case, the assertion is enabled when reset is 1, disabled
(success) when reset is 0, and it is forced to fail when reset is x, or z.

• Both positional (a1) and named (a2) argument association can be used.
• The system function $onehot0 could be used directly in the assertion, however,

it would not provide for a disabling condition.
• The reset argument has a default actual argument 1’b1, meaning that when the

actual is not provided in an instance, the resetting condition is false by default as
shown in both a1 and a2.

• The assertion is in the deferred form, hence it filters out 0-width glitches on both
reset and sig actual arguments.

• The assertions can be instantiated in the module scope like a1, or in a procedure
like a2.

• The disabling condition cannot be inferred in let instances. That is,
$inferred_disable may not be used as a default actual argument.

24.3.2 A Checker-Based Combinational Checker

Next we examine a more flexible combinational checker. We assume that the
convention is that default disable iff provides an active low reset.

Example 24.4. Combinational checker

typedef enum {ASSERT, ASSUME, NONE} assert_type;
typedef bit [15:0] cover_type;

checker onehot0
(sig,
assert_type usage_kind = ASSERT,
cover_type cover_level = 1,
reset = $inferred_disable,
string msg = "", synthesis = ‘SYNTHESIS);

if (cover_level<16’b0 || cover_level>16’b11)
// check valid coverage selection
$error("Coverage level is invalid %d",
cover_level,

568 24 Checker Libraries

"\nonly 1(level 0), 2(level 2), 3(both)",
"or 0 (disabled) are allowed");

if (usage_kind != ASSERT || usage_kind != ASSUME)
$warning("No assert or assume selected");

if (synthesis) begin : SYNTH
let check_onehot0 (sig, reset) =
((!|reset_n) || $onehot0(sig));

let cover_onehot0 (sig, reset) =
((|reset) && $onehot0(sig));

end : SYNTH
else begin : NO_SYNTH
let check_onehot0 (sig, reset) =
((|reset === 0) || $onehot0(sig) && !$isunknown(reset));

let cover_onehot0 (sig, reset) =
((|reset === 1) && $onehot0(sig));

end : NO_SYNTH

‘ifdef ASSERT_ON
if (usage_kind == ASSERT) begin : ASSERT
Assert_onehot0:
assert final (check_onehot0(sig, reset))

else $error(msg);
end : ASSERT
else if (usage_kind == ASSUME) begin : ASSUME
Assume_onehot0:
assume final (check_onehot0(sig, reset))

else $error(msg);
end : ASSUME
‘endif

‘ifdef COVER_ON
if (cover_level & 1) begin : COVER_L1
Cover_onehot0_1:
cover final (cover_onehot0(sig, reset));

end : COVER_L1

if (!synthesis && (cover_level & 2))
begin : COVER_L2
function int position(logic $bits(sig) arg);
for (int i = 0; i < $bits(sig); i++)

if (sig[i] === 1) return i;
return 0;

endfunction // position

covergroup cg_onehot0_2 with
function sample(int index);
coverpoint index;

endgroup
cg_onehot0_2 onehot0_2_index = new();
Cover_onehot0_2:
cover #0 (cover_onehot0(sig, reset))

onehot0_2_index.sample(position(sig));

24.3 Examples of Typical Checker Kinds 569

end : COVER_L2
‘endif

endchecker : onehot0 ut
This combinational checker illustrates many of the features that the checker

encapsulation provides over the simpler let-based form:

• Coverage can be enabled globally for all checker instances by defining the symbol
COVER_ON. Similarly, verification statements (assert or assume) can be globally
enabled by defining ASSERT_ON.

• Synthesizable form is selected by a conditional generate block controlled by
the argument synthesis that has as default actual value the macro symbol
SYNTHESIS. This allows overriding the global selection if so required.

• The reset condition may be inferred from a default disable iff declaration.
• Deferred assert (usage_kind == ASSERT) or assume

(usage_kind == ASSUME) statement or none can be selected using the argument
usage_kind.

• When an invalid value is provided for cover_level, no coverage is enabled in
this instance and an error message is issued.

• When an invalid value (or NONE) is provided for usage_kind, no verification
statement (assert or assume) is enabled in this instance and a warning message
is issued.

• For Cover_onehot0_2, we use deferred #0 because final cannot be used when
a user defined function or task is invoked in the action block. Otherwise, final
would have been preferred.

• Two levels of functional coverage are provided, they can be individually enabled
or disabled:

– Level 1—when cover_level == 1 is selected, it collects information on how
many times a one hot or 0 condition was encountered while not disabled by
reset.

– Level 2—when cover_level == 2 is selected, the covergroup classifies the
bit positions that are set to 1 when the one hot condition holds. A deferred
cover statement is used to trigger sampling of the bit position index by calling
the sample method of the covergroup in the pass action statement of the
deferred cover statement.

– Both levels can be selected by setting
cover_level == 3.

The checker can be instantiated in a simpler way than the one using a let

declaration because the disable condition can be inferred:

Example 24.5. Combinational checker instantiation

‘define ASSERT_ON
module m(input logic [3:0] r1,

output logic [3:0] r2,
input logic rst_n);

570 24 Checker Libraries

default disable iff rst_n;
onehot0 A1(r1); // check input
always_comb begin
r2 = r1;
onehot0 A2(r1); // check output

end
endmodule ut

As with the previous simple combinational checker (Sect. 24.3.1), this more
complex checker can still be instantiated both inside (instance a1) and outside
(instance a2) a procedure. Both checker instances use default values for configura-
tion constants and enable verification statement assert final because ASSERT_ON
is defined and usage_kind default value of ASSERT is used. Coverage is globally
disabled because COVER_ON is not defined.

24.3.3 A Simple Property-Based Temporal Checker

We now turn our attention to checkers that verify behavior over time–temporal
checkers.

Similarly as with the simple combinational checker and let declarations, we can
define a simple temporal, clocked, checker using property declarations. As before,
we assume that default disable iff defines an active low reset.

Example 24.6. property-based temporal checker

property time_interval_p
(sequence trig, property cond,
start_tick = 1, end_tick = 1,
event clk = $inferred_clock,
untyped rst_n = $inferred_disable);
@clk disable iff (!bit’(|rst_n))
trig |->

always [start_tick:end_tick] cond;
endproperty : time_interval_p ut

Note that in the consequent of |-> we used the always operator instead of using
the consecutive repetition cond[*start_tick:end_tick]. The reason is that we
obtain maximum generality as to the actual argument for the formal cond. It can not
only be a Boolean or a sequence, but also any property expression.

The property verifies that when trig occurs cond holds true in the interval
start_tick to end_tick clock ticks, unless it is disabled by rst_n being 1’b0.
The property has the following characteristics:

• The actual argument for trig is restricted to the type sequence because it is used
in the antecedent of |->. The actual argument for cond can be any property

expression (Boolean, sequence or property). The actual argument for clk must be
a clocking event, while rst_n is left untyped for the user to be able to pass any
valid expression.

24.3 Examples of Typical Checker Kinds 571

• trig and cond do not have default actual arguments, hence the user must supply
valid arguments there.

• Both clk and rst can be inferred from the context because the inference functions
are used as default actual arguments.

• The arguments start_tick and end_tick have the typical default value of 1. If
used as in the following instantiation example, the property will check that cond
holds true at the next clock tick after trig holds true.

A simple instantiation of property time_interval_p is illustrated in the next
example.

Example 24.7. property-based checker instantiation

module m(input logic clk, reset_n, load,
input logic [3:0] r1,
output logic [3:0] r2);

default disable iff reset_n;
always @(posedge clk) begin
if (!reset_n) r2 <= ’b0;
else if (load) r2 <= r1;
loaded_r2: assert property(time_interval_p(
$past(load), r2 == $past(r1))) else
$error("r2 not loaded correctly by r1");

end
endmodule ut

Except for the arguments that are used in the actual verification, all other ones use
default values. The clock and the disabling condition are inferred from the always

procedure and from the default disable iff declaration, respectively.

24.3.4 A Checker-Based Temporal Checker

The final example illustrates the full power of a checker-based temporal checker
definition. We show a modified form of checker assert_handshake discussed at
the beginning of this chapter (Sect. 24.1), but for reasons of brevity we include only
those portions of the code that illustrate the differences.

The interface of the new checker is now as follows1:

Example 24.8. assert_handshake checker definition

import std_ovl_defines::*;
checker assert_handshake (
sequence req, sequence ack,
event clk = $inferred_clock,
untyped reset = $inferred_disable,
//elaboration-time constants:

1Port enable is not used in the OVL checker, so it is not included in this description.

572 24 Checker Libraries

int severity_level = ‘OVL_SEVERITY_DEFAULT,
int min_ack_cycle = 0,
int max_ack_cycle = 0,
int req_drop = 0, // these three arguments
int deassert_count = 0, // may not be needed
int max_ack_length = 0, // since req is a sequence
int property_type = ‘OVL_PROPERTY_DEFAULT,
string msg = ‘OVL_MSG_DEFAULT,
int coverage_level = ‘OVL_COVER_DEFAULT,
int synthesis = ‘SYNTHESIS,
output [‘OVL_FIRE_WIDTH-1:0] fire

);
//...
generate // elaboration-time constant checks at compile time
if (min_ack_cycle < 0)
$error("min_ack_cycle is negative");

if (max_ack_cycle < min_ack_cycle) $error(
"max_ack_cycle is less than min_ack_cycle");

if (req_drop < 0 || req_drop > 1) $warning(
"req_drop \%0d is not 0 or 1",
req_drop, "positive assumed 1,"
"anything less than 1 assumed 0");

// ... checks for other arguments ...
endgenerate

default clocking checker_clk @clk; endclocking
default disable iff (reset);
assign fire = {‘OVL_FIRE_WIDTH{1’b0}}; // Tied low in V2.3
//... Body of the checker ...

endchecker : assert_handshake ut
The parameters from the original checker became regular arguments of the

checker-based checker. It simplifies instantiation, although the user should be
aware that these arguments must be elaboration-time constants. The argument values
of constants are verified at elaboration time using a conditional generate and
elaboration time error tasks. If the values are illegal, then an error message is issued,
or if a reasonable alternative exists, then that value is used and a warning is issued.

The following parameters from the original checker are missing:

parameter clock_edge =‘OVL_CLOCK_EDGE_DEFAULT;
parameter reset_polarity = ‘OVL_RESET_POLARITY_DEFAULT;
parameter gating_type = ‘OVL_GATING_TYPE_DEFAULT;

This is because

• clock_edge is not needed as the argument clk can be an event expression.
• reset_polarity is not needed because we can pass any expression to the

checker and it can infer the appropriate default expression from the contextual
default disable iff declaration.

24.3 Examples of Typical Checker Kinds 573

• gating_type is omitted for the same reason as
clock_edge—the actual clocking event provided for clk can contain iff

enabling condition.

The formal arguments clk and reset were placed after the arguments that do
not have defaults. This simplifies instantiation of the checker when all arguments
use default values. The type of reset is left unspecified (the keyword untyped) to
provide more flexibility as to the kind of the actual reset expression.

The default value constants for the arguments are no more ‘defines, but instead
they are constants picked up from package std_ovl_defines as enum type values.

The type for req and ack is specified as sequence to allow Booleans and
sequences, but prohibit supplying a property expression as the actual argument. This
makes the checker more general, eliminating the need for modeling code to reduce
a complex temporal behavior to a Boolean expression.

The body of the checker has to be modified to comply with restrictions on
modeling code in checker constructs, and to use all the new features that help
implementing and using checkers. The body of the checker-based checker is shown
next. Refer to the OVL library to compare with the original checker body [10].

Only those portions as in the example of the original checker are shown that
illustrate the differences with the original checker. The following piece of code
shows the transformation needed in the modeling code of the checker.

Example 24.9. Body of assert_handshake checker

‘ifdef ASSERT_ON
bit first_req = 1’b0;

function logic setFirstReq();
if (!reset_n) return 1’b0;
if((first_req ^ first_req) == 1’b0)
return s_req.triggered;

return 1’b0;
endfunction : setFirstReq

always @(clk) first_req <= setFirstReq();

Variable first_req is used in a property in the following code fragment:

property ASSERT_HANDSHAKE_ACK_MIN_CYCLE_P;
req |-> not s_eventually [0:min_ack_cycle] ack;

endproperty
property
ASSERT_HANDSHAKE_ACK_WITHOUT_REQ_FIRST_REQ_P;
(##1 ack) implies
(first_req or req.triggered);

endproperty

// other properties ...

// this remains as before
case (property_type)

574 24 Checker Libraries

OVL_ASSERT_2STATE, // defined as enum types
OVL_ASSERT: begin : ovl_assert
if (min_ack_cycle > 0)
begin : a_assert_handshake_ack_min_cycle

A_ASSERT_HANDSHAKE_ACK_MIN_CYCLE_P:
assert property (ASSERT_HANDSHAKE_ACK_MIN_CYCLE_P)

else ovl_error_t("...as before...");
end

// other assert and assume statements
endcase
‘endif //ASSERT_ON

‘ifdef COVER_ON
generate
if (coverage_level != OVL_COVER_NONE) begin : ovl_cover
if (OVL_COVER_BASIC_ON)
begin : ovl_cover_basic

cover_req_asserted:
cover property
(reset throughout req))
ovl_cover_t("req_asserted covered");

end
//... other cover statement ...

end
endgenerate
‘endif // COVER_ON ut

Notice the following differences:

• Case default values on parameters are removed since constant argument values
are checked at compile time.

• Case item labels are predefined enum types rather than ‘define symbols.
• The property expressions use property operators to allow sequences as the

arguments and to make the assertions more efficient for formal tools. For example,
in property ASSERT_HANDSHAKE_ACK_MIN_CYCLE_P, the sequence repetition is
replaced by not s_eventually ... to accept a sequence expression for ack.

• Since both req and ack can be sequences, $rose had to be removed from both
of these operands of the property. Thus, if the user wishes to use $rose on a
Boolean, the appropriate expression has to be passed as the actual argument.2

Note that by extending the type of the arguments to sequence, it is now
impossible to include checks for the presence of x/z values in the variables involved
in the actual arguments. If such checking is required, the best approach is to
create specific checkers just for the purpose of verifying x/z on variables. An
open question remains how to disable existing assertions within the checker in such
cases. It requires either an enhancement to the SystemVerilog language to provide

2If a system function existed that allowed to distinguish Boolean expressions from temporal
sequences and properties, a conditional generate could be used to construct different forms of
properties depending on the actual argument.

24.3 Examples of Typical Checker Kinds 575

a function that detects x/z in sequences and properties, or an enhancement in the
simulator to evaluate assertion in a pessimistic fashion.

The following is an example of instantiation of the new checker. For simplicity,
all elaboration-time arguments take on default values.

Example 24.10. assert_handshake checker instantiation

module m;
bit clk;
logic rst_n, request,

acknowledgment, endtrans;

default clocking @(posedge clk iff enabled);
endclocking

default disable iff rst_n;

//... some design code ...

always @(posedge clk) begin
assert_handshake chk_handshake_inst(
.req($rose(request)),
.ack(acknowledgment ##1 endtrans));

if (!rst_n) begin
//... some design procedure ...

end
end

//... some design code ...

endmodule ut
The main points are:

• The checker instantiation syntax is similar to that of a module, except that there
is no parameter section.

• It can be instantiated in an always procedure.
• The reset argument is inferred from default disable declaration.
• The clocking event is inferred from the always procedure, hence even though
default clocking is defined, the clock from the always procedure takes
precedence.

• The actual argument for the formal argument req is $rose(request); its clock
is obtained from the default clocking defined in the module.

• The actual argument for ack is a sequence expression.

In the next and final section, we summarize the transformations to consider
when converting the old-style module-based checkers into the new format based
on checker encapsulation. This may be of interest when it is not desired to support
two different formats of a checker library.

576 24 Checker Libraries

24.4 Converting Module-Based Checkers to the New Format

The set of transformations include the following items:

• Replace ‘define for various constants by typedef declarations using an enum

type whenever possible.
• Replace always with always_ff, always_comb or always_latch.
• Create compile-time checks on elaboration-time constant values.
• Use initial procedures only for indicating that the enclosed assertions should have

only one evaluation attempt. Initialize variables in their declaration.
• Change interface definition to include original parameters as regular arguments.
• Provide inference functions as default arguments to clock and reset.
• Provide default actual arguments wherever appropriate.
• Generalize the type of arguments to sequence or property wherever the checker

properties can admit such operands.
• Checker instance identification task calls in initial procedures should be replaced

by initial and an immediate assert statement on true, with a pass action statement
displaying the required identification message.

• Consider using covergroup statements to provide more detailed coverage,
selectable by an argument.

• Add default clocking and disable iff declarations and simplify assertions.
• Place the new checkers in a package for easy and controlled access from a design

unit.

Exercises

24.1. Suppose that your design contains some legacy code with module-based
checker instances while new parts of the design should use a checker-based version
of the same checkers. The latter have the same names as the old module based
ones, but are enclosed in a package. How can you use both of these checkers but in
different parts of the design without name clashes?

24.2. The OVL checkers can be obtained from Accellera at [10]. Modify the OVL
SVA checker assert_proposition into the checker form. What kind of assertion
should it use, concurrent, immediate, or deferred?

24.3. When transforming the OVL assert_handshake checker into the checker
form, we omitted any discussion on x/z checking on the arguments req and ack.
This is because the actual arguments can be temporal sequences in which case
we cannot use $isunknown on the argument to check for the presence of x/z.
What would you provide as a solution to the user? Are any extensions to the
SystemVerilog language necessary?

24.4. List some extensions to the SystemVerilog language that would be useful to
have for creating effective checker libraries.

Appendix A
Expression Sampling

In concurrent assertions, in the scope of always_ff procedures in checkers and
in several other SVA constructs sampled values of expressions are used. In most
cases this sampling is done in the Preponed region, but there are exceptions for
different corner cases. In this appendix we provide an exhaustive formal definition
of sampling borrowed from the LRM with some modifications.

A.1 Default Sampled Value

As the first step we define the default sampled value—the sampled value that an
expression has at the beginning of simulation. In the examples below we will use
notation ˚ for the default sampled value; this notation, of course, is not a part of
SystemVerilog.

The default sampled value of an expression is defined as follows:

• The default sampled value of a static variable is the value assigned at its
declaration.

Example A.1. Given the declaration:

logic [7:0] a = 8’h15;

˚.a/ D8’h15. ut
• If no value is assigned to the static variable at its declaration then the default

sampled value is the default value of the corresponding type.

Example A.2. Given the declaration:

logic [7:0] b;

˚.a/ D8’hxx, because the variables of type logic are initialized by default
with x. ut

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8

577

578 A Expression Sampling

• The default sampled value of any other variable or net is the default value of the
corresponding type.

Example A.3. Given the declaration:

wire w = a;

˚.a/ D1’bz, because the default sampled value of a net is the default value of
its type. ut

• If s is a sequence then the default sampled values of s.triggered and
s.matched are false (1’b0).

• The default sampled value of an expression is defined recursively.

Example A.4. Given the declarations:

bit a;
logic [3:0] b = 7, c = 4;

˚.a || b > c/ D ˚.a/||˚. b > c/ D 1’b0 || ˚.b/ > ˚.c/ D 7 > 4 D
1’b1. ut

A default sampled value is used in the definition of sampled value functions
when there is need to reference a sampled value of an expression before time 0 (see
Sect. 7.2.1).

A.2 Sampled Value of Variable

The general rule for variable sampling is as follows:

• The sampled value of a variable in time slot 0 is its default sampled value defined
in Sect. A.1.

• The sampled value of a variable in any other time slot is the value of the variable
in the Preponed region of this time slot.

This rule has the following exceptions:

• The sampled value of an automatic variable is its current value. When a past or a
future value of an automatic variable is referenced by a sampled value function,
the current value of the automatic variable is taken instead. The indication of past
of future is thus disregarded.

Example A.5. The sampled value of i in the following loop:

for (int i = 0; i < 7; i++) begin
...

end

is its current value. If a is a vector, then in both $sampled(a[i]) and
$past(a[i]) the current value of i in the current time slot is assumed. ut

A Expression Sampling 579

• The sampled value of a local variable (see Chaps. 15 and 16) is its current value.
• The sampled value of a free checker variable (see Sect. 23.1) is its current value.

If a free checker variable is referred to by a sampled value function (see Sect. 7.2),
then sampling takes place in the Postponed region of the corresponding clock tick.

Example A.6. Given the following declaration:

rand bit v;

$sampled(v) is the current value of v. In the expression $past(v) the value of
v is taken from the Postponed region of the previous clock tick. The rationale
of this definition for past or future sampled value functions is to take the final
value of the variable in the corresponding clock tick: the notion of the current
value makes sense for the current clock tick only. ut

• An input variable of a clocking block must be sampled by the clocking block with
#1step sampling.1 This is the sampled value of a such variable (see Sect. 2.3 and
the LRM).

A.3 Sampled Value of Expression

Having defined the sampled value of a variable, we now can define the sampled
value of an expression recursively:

• The sampled value of an expression consisting of a single variable is the sampled
value of this variable.

• The sampled value of a const cast expression is the current value of its argument.

Example A.7. $sampled(const’(a)) is the current value of a. ut
• When a past or a future value of a const cast expression is referenced by a sampled

value function, the current value of this expression is taken instead.

Example A.8. $past(const’(a)) is the current value of a. ut
• The sampled value of the sequence methods triggered and matched is defined

as the current value returned by the sequence method.
• When a past or a future value of a sequence method is referenced by a sampled

value function, this value is sampled in the Postponed region of the corresponding
past or future clock tick

Example A.9. If s is a sequence then in $past(s.triggered) the value of
s.triggered is sampled in the Postponed region of the previous tick of the
corresponding clock. The rationale of this definition is to take the final value

1The clocking block sampling may be defined other than #1step, but in this case the input
variable cannot be used in contexts requiring variable sampling in SVA sense, such as a body
of a concurrent assertion.

580 A Expression Sampling

of s.triggered at a past or future time slot, because the notion of the current
value makes sense for the current time slot only. ut

• The sampled value of any other expression is defined recursively using the values
of its operands.

Example A.10. If a is a static variable and s is a sequence then
$sampled(a && s.triggered) = $sampled(a)&& $sampled(s.triggered),
i.e., the value of a is taken from the Preponed region, and the value of
s.triggered is the current value. ut
Example A.11. If a and s are variables and f is a function then
$sampled(f(a, b)) = f($sampled(a), $sampled(b)).

Discussion: The LRM is not clear whether the global variables accessed by the
function are sampled or not. Our interpretation is that these variables should be
sampled. Otherwise, it would cause sampling inconsistency when a function is
invoked from a right-hand side of a checker NBA. See, for example, function
next_tx_ptr in Fig. 23.5, Lines 11–18. Note that in the concurrent assertion
context functions must be automatic and have no side effects (see Sect. 5.1),
therefore the definition is accurate in this case. ut

References

1. IEEE Std. 1364–2001, IEEE Standard Verilog Hardware Description Language (2001)
2. IEEE Std. 1364–2005, IEEE Standard Verilog Hardware Description Language (2005)
3. IEEE Std. 1800–2005, IEEE Standard for SystemVerilog—Unified Hardware Design,

Specification, and Verification Language (2005)
4. IEEE Std. 1076–2008, IEEE Standard VHDL Language Reference Manual (2008)
5. IEEE Std. 1800–2009, IEEE Standard for SystemVerilog—Unified Hardware Design, Specifi-

cation, and Verification Language (2009)
6. IEEE Std. 1850–2010, IEEE Standard for Property Specification Language (PSL) (2010)
7. IEEE Std. 1666–2011, IEEE Standard SystemC R�Language Reference Manual (2011)
8. IEEE Std. 1800–2012, IEEE Standard for SystemVerilog—Unified Hardware Design, Specifi-

cation, and Verification Language (2012)
9. Accellera. Universal Verification Methodology (UVM) 1.1 (2011)

10. Accellera. Accellera Standard Open Verification Library (OVL) V2.8 (2013)
11. A. Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, A. Ziv, C. Meissner, J. Schumann, A unified

methodology for pre-silicon verification and post-silicon validation, in Proceedings of Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2011 (IEEE, 2011), pp. 1–6

12. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-
Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, Y. Zbar, The ForSpec temporal logic: a new
temporal property-specification language, in TACAS’02: Proceedings of the 8th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (Springer,
London, 2002), pp. 296–211

13. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, M.Y. Vardi, Enhanced
vacuity detection in linear temporal logic, in Proceeding of International Conference on
Computer-Aided Verification, Lecture Notes in Computer Science. ISBN 3-540-40524-0,
pp. 368–380 (2003)

14. R. Armoni, S. Egorov, R. Fraer, D. Korchemny, M. Vardi, Efficient LTL compilation for SAT-
based model checking, in IEEE/ACM International Conference on Computer-Aided Design
(IEEE, 2005)

15. P. Ashar, S. Dey, S. Malik, Exploiting multicycle false paths in the performance optimization
of sequential logic circuits. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. I 14(9),
1067–1075 (1995)

16. M.A. Azadpour, SystemVerilog for Design and Verification Using UVM: From RTL to Synthesis
(Springer, New York, 2013)

17. A. Aziz, J. Kukula, T. Shiple, Hybrid verification using saturated simulation, in Proceedings
of the Design Automation Conference, pp. 615–618 (IEEE and ACM, 1998)

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8

581

582 References

18. C. Baier, J.-P. Katoen, Principles of Model Checking (The MIT Press, Cambridge, 2008)
19. J. Bergeron, E. Cerny, A. Hunter, A. Nightingale, Verification Methodology Manual for

SystemVerilog (Springer, New York, 2006)
20. M. Bernardo, A. Cimatti, Formal Methods for Hardware Verification: 6th International School

on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM.
Lecture Notes in Computer Science (Springer, New York, 2006)

21. R. Bloem, B. Jobstmann, N. Piterman, Y. Saár. Synthesis of reactive (1) designs. J. Comput.
Syst. Sci. 78, 911–938 (2011)

22. D. Bustan, Mantis Item 290: Recursive properties can define non-regular languages, Erratum
submitted to the IEEE 1800 SV-AC as part of the development and revision of IEEE
1800–2005, November 2004

23. D. Bustan, J. Havlicek, Some complexity results for SystemVerilog assertions, in Proceedings
of Computer Aided Verification, Lecture Notes in Computer Science. ISBN 3-540-37406-X,
pp. 205–218 (Springer, 2006)

24. D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, M.Y. Vardi. Regular vacuity. Lect. Notes
Comput. Sci. 3725, 191–206 (2005) ISBN 3-540-37406-X

25. D. Bustan, D. Korchemny, E. Seligman, J. Yang, SystemVerilog Assertions: past, present, and
future SVA standardization experience. IEEE Des. Test Comput. 29(2), 23–31 (2012)

26. E. Cerny, D. Korchemny, L. Piper, E. Selingman, S. Dudani, Verification case studies:
evolution from sva 2005 to sva 2009, in Proceedings of Design Verification Conference, DVCon
(Accellera System Initiative, 2009)

27. R. Chadha. Static Timing Analysis for Nanometer Designs (Springer, New York, 2009)
28. L. Claesen, J.-P. Schupp, P. Das, P. Johannes, S. Perremans, H. De Man, Efficient false path

elimination algorithms for timing verification by event graph preprocessing. Integr. VLSI J.
8(2), 173–187 (1989)

29. E.M. Clarke, O. Grumberg, D. Peled, Model Checking, 6th edn. (MIT Press, Cambridge, 2008)
30. V.R. Cooper, Getting Started with UVM: A Beginner’s Guide (Verilab Publishing, Austin,

2013)
31. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, F.K. Zadeck, Efficiently computing static

single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst.
13(4), 451–490 (1991)

32. A. Das, P. Basu, A. Banerjee, P. Dasgupta, P.P. Chakrabarti, C. Rama Mohan, L. Fix,
R. Armoni, Formal verification coverage: computing the coverage gap between temporal
specifications, in ICCAD ’04: Proceedings of the 2004 IEEE/ACM International conference
on Computer-aided design, (IEEE Computer Society, Washington, 2004), pp. 198–203

33. C. Eisner, D. Fisman, J. Havlicek, A topological characterization of weakness, in Proceedings
of Principles of Distributed Computing, pp. 1–8 (ACM, 2005)

34. E.A. Emerson, Temporal and modal logic, in Handbook of Theoretical Computer Science, ed.
by J. van Leeuwen (Elsevier Sience Publishers B.V., Amsterdam, 1990), pp. 996–1072

35. E.A. Emerson, J.Y. Halpern, Decision procedures and expressiveness in the temporal logic of
branching time, in STOC ’82: Proceedings of the 14th Annual ACM Symposium on Theory of
Computing (ACM, New York, 1982), pp. 169–180

36. D. Fisman, O. Kupferman, S. Seinvald, M. Vardi, A framework for inherent vacuity, in
Hardware and Software: Verification and Testing, vol. 5394. Lecture Notes in Computer
Science (Springer, New York, 2008), pp. 7–22

37. H. Foster, Assertion-based verification: Industry myths to realities (invited tutorial), in
Proceedings of Computer Aided Verification, Lecture Notes in Computer Science. ISBN 978-
3-540-70543-7, pp. 5–10 (2008)

38. M. Glasser. Open Verification Methodology Cookbook (Springer, New York, 2009)
39. K. Gulati, S.P. Khatri, Hardware Acceleration of EDA Algorithms. Custom ICs, FPGAs and

GPUs (Springer, New York, 2010)
40. J. Havlicek, N. Levi, H. Miller, K. Shultz, Extended CBV statement semantics. Part of a

proposal presented to the Accellera Formal Verification Technical Committee, April 2002

References 583

41. J. Havlicek, K. Shultz, R. Armoni, S. Dudani, E. Cerny, Accellera Technical Report 2004.01:
Notes on the Semantics of Local Variables in Accellera SystemVerilog 3.1 Concurrent
Assertions, May 2004

42. S. Hazelhurst, O. Weissberg, G. Kamhi, L. Fix, A hybrid verification approach: getting deep
into the design, in DAC ’02: Proceedings of the 39th Conference on Design Automation (ACM,
New York, 2002), pp. 111–116

43. J.L. Hennessy, D.A. Patterson, Computer Architecture, Fourth Edition: A Quantitative
Approach. (Morgan Kaufmann Publishers Inc., San Francisco, 2011)

44. C.R. Ho, M. Theobald, B. Batson, J. Grossman, S.C. Wang, J. Gagliardo, M.M. Deneroff, R.O.
Dror, D.E. Shaw, Four pillars of assertion-based verification, in Proceedings of the Design and
Verification Conference and Exhibition (San Jose, 2009)

45. A. Kuehlmann, C.A.J. van Eijk, Combinational and sequential equivalence checking, in Logic
Synthesis and Verification (Kluwer Academic Publishers, Norwell, 2002), pp. 343–372

46. O. Kupferman, M.Y. Vardi, Model checking of safety properties. Form. Methods Syst. Des.
19(3), 291–314 (2001)

47. O. Kupferman, M.Y. Vardi, Vacuity detection in temporal model checking. Int. J. Softw. Tools
Technol. Transfer 4(2), 224–233 (2003)

48. L. Lamport, Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. (Addison-Wesley, Boston, 2002)

49. S. Malik, A case for runtime validation of hardware, in Haifa Verification Conference, Lecture
Notes in Computer Science. ISBN 978-3-540-32604-5, pp. 30–42 (Springer, 2006)

50. Microsoft Research, AsmL: Abstract State Machine Language (2001), http://research.
microsoft.com/en-us/projects/asml

51. S.S. Muchnick, Advanced Compiler Design and Implementation. (Morgan Kaufmann, San
Francisco, 1973)

52. R. Mukhopadhyay, S.K. Panda, P. Dasgupta, J. Gough, Instrumenting ams assertion verification
on commercial platforms. ACM Trans. Des. Autom. Electron. Syst. 14(2), 1–47 (2009)

53. The Open Group, Assertion Definition Language (2009), http://adl.opengroup.org/about/index.
html

54. R.H. Parker. Caution: clock crossing. a prescription for uncontaminated data across clock
domains. Chip Design Magazine 5 April 2004

55. M. Pellauer, M. Lis, D. Baltus, R. Nikhil, Synthesis of synchronous assertions with guarded
atomic actions, in 2nd ACM/IEEE International Conference on Formal Methods and Models
for Co-Design, (IEEE Computer Society, Washington, 2005), pp. 15–24

56. R.B. Reese, M.A. Thornton. Introduction to Logic Synthesis Using Verilog HDL (Synthesis
Lectures on Digital Circuits and Systems) (Morgan and Claypool, San Rafael, 2006)

57. H. Rotithor, Postsilicon validation methodology for microprocessors. IEEE Des. Test, 17(4),
77–88 (2000)

58. T. Schubert, High-level formal verification of next-generation microprocessors, in Proceedings
of the Design Automation Conference (IEEE/ACM, 2003), pp. 1–6

59. C. Spear, G. Tumbush. SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features. (Springer, New York, 2012)

60. Sun Developer Network, Java Programming Language, Java Standard Edition 6 (2010), http://
java.sun.com/

61. S. Sutherland, S. Davidmann, P. Flake, SystemVerilog for Design: A Guide to Using System-
Verilog for Hardware Design and Modeling, 2nd edn. (Springer, New York, 2006)

62. D. Tabakov, M.Y. Vardi, G. Kamhi, E. Singerman, A temporal language for SystemC,
in FMCAD ’08: Proceedings of the 2008 International Conference on Formal Methods in
Computer-Aided Design, (IEEE Press, Piscataway, 2008), pp. 1–9

63. B.A. Trakhtenbrot, B.I.A. Finite Automata: Behaviour and Synthesis (North-Holland Publish-
ing Co., Amsterdam, 1973)

64. F. Vahid, Digital System Design with SystemVerilog, 2nd edn. (Wiley (1000), New York, 2010)
65. I. Wagner, V. Bertacco, Reversi: Post-silicon validation system for modern microprocessors, in

IEEE International Conference on Computer Design, 2008 (IEEE, 2008), pp. 307–314

http://research.microsoft.com/en-us/projects/asml
http://research.microsoft.com/en-us/projects/asml
http://adl.opengroup.org/about/index.html
http://adl.opengroup.org/about/index.html
http://java.sun.com/
http://java.sun.com/

584 References

66. Y. Wolfsthal, Abstract for the ISOLA special session on “Industrial use of tools for for-
mal analysis”, in ISoLA (Preliminary proceedings), Lecture Notes in Computer Science.
ISBN 3-540-48928-2, pp. 190–190 (Springer, 2004)

67. P. Yeung, Four pillars of assertion-based verification, in Euro DesignCon, International
Engineering Consortium (2004)

68. J. Yuan, K. Albin, A. Aziz, C. Pixley, Constraint synthesis for environment modeling in
functional verification, in Proceedings of Design Automation Conference (IEEE and ACM,
2003), pp. 296–299

Index

Symbols
import, 42

A
abort, 301, 302, 305

accept_on, 227, 283, 288, 302, 305–307,
380, 385, 510

asynchronous, 291, 301, 305–307, 309
nested, 307, 309
reject_on, 227, 283, 288, 302, 305, 307,

385, 422
sync_accept_on, 227, 288, 302, 305,

309, 380, 385
synchronous, 291, 301, 305, 309, 310
sync_reject_on, 227, 288, 302, 305,

309, 385, 411
abort condition, 283, 288, 291, 305–311, 380,

509
ABV, 14, 18, 87
action block, 63–65, 67–69, 73, 79, 80, 82, 84,

93, 142, 143, 151, 158, 283, 302,
308, 324, 326, 379, 420, 440, 565

action blocks, 159
antecedent, 119
approximation, 456
argument

const ref, 283
ref, 283

assert, 477
assert statement, 477
assertion, 5, 18, 20, 62, 526

assert #0, 62
assert final, 63
assert property, 63

assert, 62
analog, 18
concurrent, 19, 315, 318

procedural concurrent assertion, 315
deferred, 15, 18, 19, 28, 65, 66, 70, 71, 142,

162, 167, 172, 176, 315, 492, 561
flush point, 67
report queue, 67

final, 354, 355
deferred, 63, 66

immediate, 19, 63, 84, 176, 492, 564, 566
simple, 62, 65, 70

observed
deferred, 63, 66

static, 334
assertion control

expect control
runtime violation, 156

assertion coverage, 16
assertion modeling, 189
assertion statement, 20, 61, 73, 82, 91, 151,

322, 388, 413, 419, 498
assertion-based verification, 14
associative array, 354, 356
assume statement, 477
assume-guarantee, 463, 546
assumption, 17, 20, 86–90, 477

assume #0, 87
assume final, 87
assume property, 87
assume, 87
concurrent, 88
deferred, 88
immediate, 87

automatic variable, 284, 323, 578

© Springer International Publishing Switzerland 2015
E. Cerny et al., SVA: The Power of Assertions in SystemVerilog,
DOI 10.1007/978-3-319-07139-8

585

586 Index

B
bad prefix, 480
bad state, 481
binary relation, 468
black-box verification, 14
BMC, 455
Boolean

connective, 106
occurrence, 348

C
Cartesian product, 468
CEX, 454, 461, 462
$changed, 150
$changed_gclk, 152
characteristic function, 474
checker, 26, 187

assume set, 544
free variable, 524

fully assigned, 534
instantiation, 205

procedural, 205
static, 205

procedure, 335
rigid variable, 548
variable, 211

checker library, 561
checker-based combinational, 567
checker-based temporal, 571
let-based combinational, 566
property-based temporal, 570
classification, 563

configurability, 564
encapsulation, 564
packaging, 564
temporality, 564

module-based conversion, 576
clock, 76, 273

gated, 77, 146
global, 78, see primary clock
$global_clock, 78, 154, 472
primary, see global clock, 472
system, see global clock, see primary clock

clock convergence
continuity, 295

clock domain crossing, 18, 150
clock flow, 280, 286, 287
clock inferencing, 318
clock rewrite rules, 506
clock scoping, 286
clock tick, 273
clocking, 36

default, 11, 37, 273, 276, 284

global, 78
LTL operators, 292

clocking block
declarations within, 297

clocking event, 273, 275
leading, 273, 274

$clog2, 213, 541
compilation, 31
compilation unit, 32
compiler directives, 32
conjunction property, see property operators,

and
consequent, 119
const cast, 284
control task, 159
$countbits, 138
$countbits, 138, 565
counterexample, 454, 461, 462

spurious, 456
counterexample for liveness, 485
$countones, 140
cover, 91–94, 478, 528
cover statement, 478
coverage, 454

cover #0, 92
deferred, 92

cover property, 92, 423
cover sequence, 92, 421
cover, 92
concurrent, 92
deferred final cover, 420
deferred observed cover, 420
functional, 3, 28, 91, 419, 565, 569
immediate, 92
immediate cover, 420
sample function, 426

coverage database, 93
coverage goal, 16
coverage point, 16, 94
coverage statement, 20
coverage-based verification, 16
covered, 478
covergroup, 379, 425

sample method, 379
current state function, 538
current state variable, 474
cycle, 274

D
data type

chandle, 83
debugging

new assertion, 439

Index 587

reused assertion, 439
default sampled value, 577
delay range, 132

initial, 132
design methodology, 4, 9, 453
disable clause, 302
disable condition, 302
disable iff, 15, 81, 301, 302

default, 304
nesting, 304

disable statement, 332, 333
disablestatement, 316
disjunction property, see property operators,

or
dist, 89
don’t care, 454
DUT, 62

E
elaboration, 32
elaboration time, 32
empty match, 352, 375, 378
empty model, 458, 478
emulation, see hardware acceleration
environment, 62
equivalence verification, 17
evaluation

disabled, 81
evaluation attempt, 74, 345

assertion control tasks, 156
control of, 156
control of action block, 158
efficiency, 445
end time, 75
start time, 75

event, 45
evaluation event, 47
update event, 46

event control, 274, 318
iff, 320
sequence, 265

F
fail action, 63
fairness, 106, 155
false negative, 23, 456
false path elimination, 17
false positive, 456
$fell, 148
$fell_gclk, 152
finite automaton, 469

acceptance, 470

first-order logic, 525
flow diagram, 408
followed by, see property operators, suffix

conjunction
for-loop, 324
formal semantics, 495, 511

clocks, 505
resets, 509

formal specification language, 7
formal verification, 5, 23, 355, 470
formal verification flow, 460
formal verification method

complete, 455
incomplete, 455

free variable, 284, 523
function

bit vector, 137
$future_gclk, 152

G
glitch, 49, 303

H
hardware acceleration, 23
high-level model, 9
hybrid verification, 464

I
$inferred_clock, 277
$inferred_clock, 193, 196
$inferred_disable, 193, 196
interface, 38
$isunbounded, 200
$isunknown, 140, 565, 576

K
Kripke structure, see formal verification model

L
language, 469

finitary, 469
infinitary, 469

leading clock, 74, 281, 285
semantic, 287, 289

lemma, 462
let, 24, 167–177

arguments, 169
scoping rules, 169

letter, 469

588 Index

liveness, 480
general, 480

local variable, 281, 284, 345, 367, 579
argument, 359, 367, 371, 400, 403

default actual, 374
direction, 372, 392

assignment, 347, 351, 352, 375
within repetition, 377

become unassigned, 385
body, 367, 368
context, 512
declaration, 347, 359, 368, 371
declaration assignment, 359, 367, 369, 376

delay, 369
flow, 382, 511
initialization assignment, 369, 376
input, 389
multiplicity of matching, 388
output, 392
receiver, 392
reference, 380
threads, 367, 376, 381
unassigned, 369

logical operator
unclocked, 295

LRM, 31, 124, 167, 171–174, 243, 274, 287,
291, 303, 310, 368, 371, 383, 393,
405, 411, 425, 509, 511, 514, 517,
544

M
matched, 264, 296, 310, 389, 391, 394
minterm, 474
model, 470
model checking, 480
model language, 473
model relation, 477
multicycle path, 18
multiply clocked, 274, 278

N
negation property, see property operators, not
next state function, 531, 532
next state variable, 474
nexttime, 497

O
$onehot, 24, 139
$onehot0, 87, 139
overapproximation, 456

P
package, 41
pass action, 63
$past, 15, 142, 346
past temporal operators, 261
$past_gclk, 152
PLI, 46
pop_front, 351
procedure, 33

always_comb, 316
always, 316
initial, 316
alwaysalways, 33
always_comb, 33, 34
always_ff, 33, 34
always_latch, 33, 34
initialinitial, 33
structured, 33

program, 36, 40, 265
projection

trace, 526
property, 26, 97, 177–180, 183–184

Boolean, 98, 496
hybrid, 480
liveness, 104
mutually recursive, 399, 402
negation, 503
next occurrence, 248
recursive, 399

restrictions, 411
safety, 480
sequential, 113
strong, 487
weak, 487

property operators
bounded always, 241
bounded eventually, 240

property operators
s_until_with, 499
until_with, 499

property coverage, 92
property operators, 228

always, 101, 236
implicit, 102

and, 230, 497
Boolean connectives, 229
bounded s_always, 241
bounded s_eventually, 241
case, 233
if, 232
if-else, 232
iff, 231, 498
implies, 230, 498

Index 589

nexttime, 100, 238
not, 230, 497
or, 230, 498, 500
sequence property, 228
s_eventually, 103, 236, 499
s_nexttime, 238
strong sequence, 228
suffix conjunction, 234

non-overlapping, 234
overlapping, 234

suffix implication, 119, 234, 504, 505
non-overlapping, 25, 119, 234
overlapping, 27, 119, 234

s_until, 236, 497
s_until_with, 237
until, 108, 236, 499
until_with, 108, 237
weak sequence, 228

protocol
FIFO, 349, 358, 403
pipeline, 346
retry, 405
sequential, 347, 379, 405
tag, 353, 360

pruning, 459
free, 459
set, 459

PSL, 27, 75, 248, 550
push_back, 351

Q
quantifier

existential, 469
universal, 469

queue, 350
procedural assertion, 284

quiescent point, 21

R
race, 50
region

Active, 47, 50
Inactive, 47
NBA, 47
Observed, 50, 51
Postponed, 50, 51
Preponed, 50, 51, 274, 283
Re-Inactive, 51
Re-NBA, 51
Reactive, 50, 51, 283

region set
Active, 47

Reactive, 51
regionset, 47
relation

total, 470
repetition range, 127

infinite, 128
reset, 301, 302

asynchronous, 302
default, 11
synchronous, 302

reset condition, 301
general, 310

restriction, 90
$rose, 148
$rose_gclk, 152
RT, 17
RTL, 3, 5, 9, 13–15, 17, 18, 24, 70, 87, 187,

209, 211, 356, 420, 439, 453, 460,
462, 470, 472, 481, 482, 487, 523,
540, 561

Rule of Clock Inference, 319

S
safety property, 480
$sampled, 141, 283, 349
sampled value function, 140, 475

global clocking, 152
future, 152
past, 152

sampling, 20, 22, 79, 274, 283, 577
satisfiability, 478
sequence, 25, 111, 177–183

Boolean, 112, 500
bounded, 113, 135
conjunction, 253
disjunction, 500
empty, 125, 500
iteration, 501
match, 111

empty, 114, 130
method, 257–265
multiply clocked, 286
unbounded, 135

sequence coverage, 92
sequence match item, 378
sequence method, 296, 391
sequence operators

intersect, 251, 500
and, 253
concatenation, 115, 500
consecutive repetition, 124
disjunction, see or
first_match, 256, 501

590 Index

sequence operators (cont.)
fusion, 117, 500
goto repetition, 247
initial delay, 118
nonconsecutive repetition, 250
or, 126, 500
throughout, 246, 253
within, 255
zero repetition, 125

sequence property, see sequential property
Short-circuiting, 66, 72
simulation, 21

glitch, 65, 66, 69, 76, 79, 81, 88
random, 3, 22, 89, 94, 465

simulation semantics, 45
simulation time, 32
singly clocked, 273
SoC, 79
SSA, see static single assignment, 538
$stable, 86, 150
$stable_gclk, 152
starvation, 106
state, 469

accepting, 469
initial, 469

statement
wait, 266

static single assignment, 538
static variable, 322
subroutine

attached to sequence, 362, 378
subsequence

maximal singly clocked, 286
SVTB, 3
synchronizer, 278

unclocked, 295
synthesis, 9, 318
SystemC, 9, 13

T
tight satisfaction, see sequence, match, 500
time slot, 55
timing verification, 17
TLA, 13
trace, 89, 97, see word
transaction, 21

pending, 21
transition relation, 469, 531, 538
triggered, 257, 282, 296, 310, 362, 363,

389, 391, 394

U
unclocked semantics, 506
underapproximation, 456, 457

V
vacuity, 123, 458
vacuous evaluation, 242
vacuous execution

rules of nonvacuity, 242
vacuous success, 242

validation
post-silicon, 18

validity, 477
verification bound, 455
Verilog, 3
VPI, 46

W
white-box verification, 15
word, 469

empty, 469
finite, 469
infinite, 469

	Preface
	Acknowledgments

	Contents
	Acronyms
	Part I Opening
	1 Introduction
	1.1 The Concept of Assertion
	Implementing Checks in Verilog Is Difficult
	Assertions Formally Express Design Intent
	Assertions Improve Bug Detection
	Assertions Promote Faster Root Cause Analysis
	Assertions Can Use Simulation and Formal Checking
	Assertions Are Part of Design Documentation

	1.2 Assertions in Design Methodology
	1.2.1 Using Assertions for High Level Model
	1.2.2 Using Assertions for RTL Models
	Assertions on Interfaces
	Embedding Assertions Within Design
	Assertion Coverage
	Coverage-Based Verification

	1.2.3 Using Assertions Beyond RTL
	Equivalence Verification
	Timing Verification
	Post-Silicon Validation

	1.3 Assertions in SystemVerilog
	Assertion Statements

	1.4 Checking Assertions
	1.4.1 Checking Assertions in Simulation
	1.4.2 Checking Assertions Using Hardware Acceleration
	1.4.3 Checking Assertions Using Formal Verification
	1.4.4 Assertion Efficiency

	1.5 Assertion Reuse
	Expression Reuse
	Sequence Reuse
	Property Reuse
	Assertion Libraries

	1.6 SVA and PSL
	Exercises

	2 SystemVerilog Language Overview
	2.1 Compilation and Elaboration
	2.2 SystemVerilog Procedures
	2.2.1 Specialized Always Procedures
	2.2.1.1 Procedure always_comb
	2.2.1.2 Procedure always_latch
	2.2.1.3 Procedure always_ff

	2.2.2 Final Procedure

	2.3 Clocking Blocks
	2.3.1 Clocking Block Declaration
	2.3.2 Default Clocking

	2.4 Interfaces
	2.5 Programs
	2.6 Packages
	Exercises

	3 SystemVerilog Simulation Semantics
	3.1 Event Based Simulation
	3.2 The Simulation Engine
	3.3 Bringing Order to Events
	3.4 Determinism and Nondeterminism
	3.5 Region Sets
	3.6 A Time Slot and the Movement of Time
	3.7 Simulation Semantics of Assignments
	Exercises

	Part II Basic Assertions
	4 Assertion Statements
	4.1 Assertion Kinds
	4.2 Immediate Assertions
	4.2.1 Immediate Assertion Simulation
	4.2.2 Simulation Glitches
	4.2.3 Effect of Short-Circuiting

	4.3 Deferred Assertions
	4.3.1 Deferred Assertion Simulation
	4.3.2 Deferred Assertion Actions
	4.3.3 Standalone Deferred Assertions
	4.3.4 Effect of Short-Circuiting in Deferred Assertions

	4.4 Concurrent Assertions
	4.4.1 Simulation Evaluation Attempt
	4.4.2 Clock
	Gated Clock
	Global Clocking

	4.4.3 Sampled Values for Concurrent Assertion
	4.4.4 Reset
	4.4.5 Boolean Expressions
	4.4.6 Event Semantics for Concurrent Assertions

	4.5 Assumptions
	4.5.1 Motivation
	4.5.2 Assumption Definition
	4.5.3 Checking Assumptions
	4.5.3.1 Assumptions in Simulation and Emulation
	4.5.3.2 Assumptions in Formal Verification
	4.5.3.3 Assumptions in Random Simulation

	4.6 Restrictions
	4.7 Coverage
	4.7.1 Motivation
	4.7.2 Coverage Definition
	4.7.2.1 Concurrent Coverage

	4.7.3 Checking Coverage
	4.7.3.1 Checking Coverage in Simulation
	4.7.3.2 Checking Coverage in Formal Verification

	4.8 Summary of Checking Assertions
	Exercises

	5 Basic Properties
	5.1 Boolean Property
	5.2 Nexttime Property
	5.3 Always Property
	5.3.1 Implicit Always Operator

	5.4 S_eventually Property
	5.5 Basic Boolean Property Connectives
	5.6 Until Property
	Exercises

	6 Basic Sequences
	6.1 Boolean Sequence
	6.2 Sequential Property
	6.3 Sequence Concatenation
	6.3.1 Multiple Delays
	6.3.2 Top-Level Sequential Properties
	6.3.3 Sequence Fusion
	6.3.4 Initial Delay

	6.4 Suffix Implication
	6.4.1 Nested Implication
	6.4.2 Examples
	6.4.3 Vacuous Execution

	6.5 Consecutive Repetition
	6.5.1 Zero Repetition
	6.5.1.1 Concatenation with Empty Sequence
	6.5.1.2 Fusion with Empty Sequence
	6.5.1.3 Empty Sequence in Antecedent

	6.6 Sequence Disjunction
	6.7 Consecutive Repetition Revisited
	6.7.1 Repetition Range
	6.7.1.1 Finite Repetition Range
	6.7.1.2 Infinite Repetition Range

	6.8 Sequences Admitting Empty Match
	6.8.1 Antecedents Admitting Empty Match

	6.9 Sequence Concatenation and Delay Revisited
	6.10 Unbounded Sequences
	Exercises

	7 Assertion System Functions and Tasks
	7.1 Bit Vector Functions
	7.1.1 Count Bits with Specific Values
	7.1.2 Check for Mutual Exclusion
	7.1.3 One-Hot Encoding
	7.1.4 Number of 1-Bits
	7.1.5 Unknown Bits

	7.2 Sampled Value Functions
	7.2.1 General Sampled Value Functions
	7.2.1.1 Present Sampled Values
	7.2.1.2 Past Sampled Values
	7.2.1.3 Rose and Fell
	7.2.1.4 Changed and Stable
	7.2.1.5 Clock Inference

	7.2.2 Global Clocking Sampled Value Functions
	7.2.2.1 Past Global Clocking Sampled Value Functions
	7.2.2.2 Future Global Clocking Sampled Value Functions

	7.3 Tasks for Controlling Assertions and Runtime Violations
	7.3.1 Tasks for Controlling Evaluation Attempts
	7.3.2 Tasks for Controlling Action Blocks
	7.3.3 General Assertion Control Task

	Exercises

	Part III Metalanguage Constructs
	8 Let, Sequence and Property Declarations; Inference
	8.1 Let Declarations
	8.1.1 Syntax of Let
	8.1.2 Uses of Let

	8.2 Sequence and Property Declarations
	8.2.1 Syntax of Sequence–Endsequence
	8.2.2 Syntax of Property–Endproperty

	8.3 Disable Expression and Clock Inference
	Exercises

	9 Checkers
	9.1 An Apology for Checkers: Sequential Protocol
	9.1.1 Sequential Protocol Specification as Module
	9.1.2 Sequential Protocol as Checker

	9.2 Checker Declaration
	9.2.1 Checker Formal Arguments
	9.2.1.1 Argument Direction
	9.2.1.2 Default Arguments
	9.2.1.3 Context Inference
	9.2.1.4 Checker Argument Types

	9.2.2 Checker Contents
	9.2.2.1 Generate Constructs
	9.2.2.2 Checker Procedures

	9.2.3 Scoping Rules
	9.2.3.1 Checkers in Packages

	9.3 Checker Instantiation
	9.3.1 Connecting Checker Arguments
	9.3.1.1 Positional Association
	9.3.1.2 Explicit Named Association
	9.3.1.3 Implicit Named Association
	9.3.1.4 Wildcard Named Association

	9.3.2 Instantiation Semantics
	9.3.2.1 Object Naming
	9.3.2.2 Context Inference and Name Resolution

	9.3.3 Checker Binding

	9.4 Checker Modeling
	9.4.1 Checker Variables
	9.4.1.1 Functions in Checkers

	9.4.2 Sampling in Checkers
	9.4.3 Checker Variables in Final Procedures

	9.5 Checkers with Output Arguments
	9.5.1 Checker Output Arguments
	9.5.1.1 Checker Output Argument Typing
	9.5.1.2 Checker Output Argument Initialization
	9.5.1.3 Semantics of Checker Output Arguments

	9.5.2 Returning Assertion Status from Checkers
	9.5.3 Writing Modular Checkers

	Exercises

	Part IV Advanced Assertions
	10 Advanced Properties
	10.1 Sequential Property
	10.2 Boolean Property Operators
	Negation
	Disjunction
	Conjunction
	Implication
	Equivalence
	If [Else]
	Case

	10.3 Suffix Operators: Implication and Followed-By
	Suffix Implication
	Suffix Conjunction (Followed-By)

	10.4 Unbounded Linear Temporal Operators
	Until
	Always and S_eventually
	Until_with

	10.5 Bounded Linear Temporal Operators
	Nexttime
	Bounded Eventually and Always Operators

	10.6 Vacuous Evaluation
	Exercises

	11 Advanced Sequences
	11.1 Sequence Operators
	11.1.1 Throughout
	11.1.2 Goto Repetition
	11.1.3 Nonconsecutive Repetition
	11.1.4 Intersection
	11.1.5 Sequence Conjunction
	11.1.6 Sequence Containment
	11.1.7 First Match of a Sequence

	11.2 Sequence Methods
	11.2.1 Triggered: Detecting End Point of a Sequence
	11.2.1.1 Past Temporal Operators
	11.2.1.2 Triggered Outside Assertions in RTL

	11.2.2 The triggered Method in Checkers
	11.2.3 Matched

	11.3 Sequence as Events
	11.3.1 Sequence Event Control
	11.3.2 Level-Sensitive Sequence Control
	11.3.3 Event Semantics of Sequence Match

	Exercises

	12 Clocks
	12.1 Overview of Clocks
	12.1.1 Specifying Clocks
	12.1.2 Multiple Clocks

	12.2 Further Details of Clocks
	12.2.1 Preponed Value Sampling
	12.2.2 Default Clocking
	12.2.3 Restrictions in Multiply Clocked Sequences
	12.2.4 Scoping of Clocks
	12.2.4.1 Clock Flow
	12.2.4.2 Semantic Leading Clocks

	12.2.5 Finer Points of Multiple Clocks
	12.2.5.1 Clocking LTL Operators
	12.2.5.2 Unclocked Synchronizers and Logical Operators
	12.2.5.3 Continuity Under Clock Convergence
	12.2.5.4 Sequence Methods

	12.2.6 Declarations Within a Clocking Block

	Exercises

	13 Resets
	13.1 Overview of Resets
	13.1.1 Disable Clause
	13.1.1.1 Default Disable Condition

	13.1.2 Aborts
	13.1.2.1 Asynchronous Aborts
	13.1.2.2 Synchronous Aborts

	13.2 Further Details of Resets
	13.2.1 Generalities of Reset Conditions
	13.2.2 Aborts as Subproperties

	Exercises

	14 Procedural Concurrent Assertions
	14.1 Using Procedural Context
	14.2 Clock Inferencing
	14.3 Using Automatic Variables
	14.4 Assertions in a For-Loop
	14.5 Event Semantics of Procedural Concurrent Assertions
	14.6 Things to Watch Out For
	14.7 Dealing with Unwanted Procedural Assertion Evaluations
	14.8 Procedural Checker Instances
	Exercises

	15 An Apology for Local Variables
	15.1 Fixed Latency Data Pipeline
	15.2 Sequential Protocol
	15.3 FIFO Protocol
	15.4 Tag Protocol
	15.5 FIFO Protocol Revisited
	15.6 Tag Protocol Revisited
	15.6.1 Tag Protocol Using a Single Static Bit
	15.6.2 Tag Protocol Using Only Local Variables

	Exercises

	16 Mechanics of Local Variables
	16.1 Declaring Body Local Variables
	16.2 Declaring Argument Local Variables
	16.3 Assigning to Local Variables
	16.3.1 Assignment Within Repetition
	16.3.2 Sequence Match Items

	16.4 Referencing Local Variables
	16.4.1 Local Variable Flow
	16.4.2 Becoming Unassigned
	16.4.3 Multiplicity of Matching with Local Variables

	16.5 Input and Output with Local Variables
	16.5.1 Input with Local Variables
	Exception for Sequence Methods

	16.5.2 Output with Local Variables

	Exercises

	17 Recursive Properties
	17.1 Overview of Recursion
	17.2 Retry Protocol
	17.3 Restrictions on Recursive Properties
	17.3.1 Negation and Strong Operators
	17.3.2 Disable Clause
	17.3.3 Time Advance
	17.3.4 Actual Arguments

	Exercises

	18 Coverage
	18.1 Immediate and Deferred Coverage
	18.2 Sequence and Property Coverage
	18.2.1 Sequence Coverage
	18.2.2 Property Coverage
	18.2.3 Covergroup
	18.2.4 Combining Covergroups and Assertions

	18.3 Covergroups in Checkers
	18.4 Coverage on Weak and Strong Properties
	18.5 Examples
	Exercises

	19 Debugging Assertions and Efficiency Considerations
	19.1 Debugging an Assertion Under Development
	19.2 Debugging Assertion Failures from a Test
	19.3 Efficiency Considerations
	Compile Time Performance
	Run Time Performance

	Exercises

	Part V Formal Verification
	20 Introduction to Assertion-Based Formal Verification
	20.1 Counterexample and Witness
	20.2 Complete and Incomplete Methods
	20.3 Approximation
	20.3.1 Overapproximation
	20.3.2 Underapproximation
	Empty Model

	20.3.3 Pruning

	20.4 Formal Verification Flows
	20.4.1 Exhaustive Verification of Model Specification
	20.4.2 Lightweight Verification
	20.4.3 Early RTL Verification

	20.5 Assume-Guarantee Paradigm
	20.6 Formal Verification Efficiency
	20.7 Hybrid Verification
	Exercises

	21 Formal Verification and Models
	21.1 Auxiliary Notions
	21.1.1 Relations
	21.1.2 Logic Notation and Quantifiers
	21.1.3 Languages
	21.1.4 Finite Automaton

	21.2 Formal Verification Model
	21.2.1 Time
	21.2.2 Model Language
	21.2.3 Symbolic Representation
	21.2.3.1 Sampled Value Functions

	21.3 Properties
	21.3.1 Asserts
	21.3.2 Assumes
	21.3.3 Coverage
	21.3.4 Constraining a Model with Assumptions

	21.4 Safety and Liveness
	21.4.1 Safety Properties
	21.4.2 Liveness Properties
	21.4.2.1 Why Write Liveness Properties?
	21.4.2.2 Counterexamples for Liveness Properties
	21.4.2.3 Assumptions and Liveness
	21.4.2.4 Automata of Clocked Properties

	21.5 Weak and Strong Operators
	Suffix Implication
	Negation
	Operator Composition

	21.6 Embedded Assertions
	21.7 Immediate and Deferred Assertions
	Exercises

	22 Formal Semantics
	22.1 Formal Semantics of Properties
	22.1.1 Basic Property Forms
	22.1.1.1 Boolean Property
	22.1.1.2 Negation Property
	22.1.1.3 Conjunction Property
	22.1.1.4 Nexttime Property
	22.1.1.5 Strong Until Property

	22.1.2 Derived Properties
	22.1.2.1 Boolean Connectives
	22.1.2.2 Eventually Property
	22.1.2.3 Always Property
	22.1.2.4 Until Properties

	22.2 Formal Semantics of Sequences
	22.3 Formal Semantics: Sequences and Properties
	22.3.1 Strong Sequential Property
	22.3.2 Extension of Alphabet
	22.3.3 Weak Sequential Property
	22.3.4 Property Negation
	22.3.5 Suffix Implication
	22.3.6 Suffix Conjunction: Followed-by

	22.4 Formal Semantics of Clocks
	22.5 Formal Semantics of Resets
	22.6 Formal Semantics of Local Variables
	22.6.1 Formalizing Local Variable Flow
	22.6.2 Local Variable Contexts
	22.6.3 Sequence Semantics with Local Variables
	22.6.4 Property Semantics with Local Variables

	22.7 Formal Semantics of Recursive Properties
	Exercises

	Part VI Advanced Checkers
	23 Checkers in Formal Verification
	23.1 Free Variables
	23.1.1 Free Variables in Assertions
	23.1.2 Free Variables in Assumptions
	23.1.3 Free Variables in Cover Statements

	23.2 Checker Modeling with Free Variables
	23.2.1 Free Variable Initialization
	23.2.2 Free Variable Assignment
	23.2.2.1 Unconditional Assignment to Free Variables
	23.2.2.2 Conditional Assignment to Free Variable
	23.2.2.3 Fully Assigned Free Variables
	23.2.2.4 Assigning Free Variables to Checker Variables
	23.2.2.5 Checker Data Model

	23.2.3 Example: Building Abstract Models with Checkers

	23.3 Free Variables in Simulation
	23.3.1 Unconstrained Free Variables
	23.3.2 Assigned Free Variables
	23.3.3 Checkers with Assumptions
	23.3.4 Limitations Imposed on Free Variables

	23.4 Rigid Variables
	23.4.1 Rigid Variables in Formal Verification
	23.4.2 Rigid Variable Support in Simulation
	23.4.3 Rigid and Free Variables Versus Local Variables

	23.5 Checkers as Generators
	Exercises

	24 Checker Libraries
	24.1 Weaknesses of Existing Checker Libraries
	24.2 Kinds of Checkers and Their Characteristics
	24.2.1 Temporality
	24.2.2 Encapsulation
	24.2.3 Packaging
	24.2.4 Configurability

	24.3 Examples of Typical Checker Kinds
	24.3.1 Simple Combinational Checker
	24.3.2 A Checker-Based Combinational Checker
	24.3.3 A Simple Property-Based Temporal Checker
	24.3.4 A Checker-Based Temporal Checker

	24.4 Converting Module-Based Checkers to the New Format
	Exercises

	AppendixA Expression Sampling
	A.1 Default Sampled Value
	A.2 Sampled Value of Variable
	A.3 Sampled Value of Expression

	References
	Index

